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ABSTRACT 

Pose Estimation With Low-Resolution Bearing-Only Sensors 

by 

Joshua B. Rykowski 

Pose estimation of neighboring robots is a key requirement for configuration con­

trol behaviors in multi-robot systems. Estimating pose is difficult without system 

constraints, it is even more challenging when using minimalistic sensing alongside 

limited bandwidth. Minimal sensing models are a well studied field in robotics and 

are relevant to our particular hardware platform, the r-one, which has sensors that 

only measure a low-resolution bearing to neighboring robots. These bearing-only sen­

sors are simpler to design with and cheaper to deploy in large numbers. In this thesis, 

I focus on the r-one multi-robot system which is capable of coarsely measuring the 

bearing, but not the distance, to neighbors. These sensors have a angular resolution 

of only 22.5 degrees due to the construction of the infrared system. I develop a par­

ticle filter algorithm that allows the r-one robot to estimate the pose of a neighbor 

using the infrared communication system and odometry measurements. This algo­

rithm relies on the fusion of a coarse bearing measurement and neighbor velocities 

and is optimized to use the smallest communications bandwidth possible. I tested 

this algorithm with a simulation to demonstrate its effectiveness across varying sensor 

setups, neighbor update periods, and number of particles. 
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Chapter 1 

Introduction 

Range Matters. Imagine yourself on Sicily Drop Zone at Fort Bragg, North Carolina 

immediately following a 2300 time-on-target airborne "jump". Knowing that the 

assembly area for your unit is about a kilometer east of the drop zone you quickly ex­

tricate yourself from the parachute harness, pull out your night vision goggles (NVGs) 

(the monocle version which limits your depth perception) and begin to expeditiously 

move (i.e. run) towards the assembly area. 

You fail to remember that looking through this particular version of the NVGs 

is akin to closing one eye (it severely limits your depth perception). All of a sudden 

you see a flash of light and then you are looking up at the stars, listening to someone 

chuckle in the distance. Your inability to estimate range caused you to clothesline 

yourself on a low tree branch in view of the rest of your unit. Our new robot, the r­

one, faces a similar problem, without the ability to estimate range between themselves 

and their neighbors, these robots are destined to live a life of simple, trivial tasks and 

always be fearful of low branches! 

The ability to quickly and accurately obtain a good estimate of the pose, (x, y, 8), 

of neighboring robots is a requirement to produce many complex behaviors in multi­

robot systems. These behaviors include, but are not limited to: a robot maintaining 

a critical distance from its neighbor, a robot ensuring reliable communications by 

maintaining a maximum distance, or many robots performing SLAM (simultaneous 
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localization and mapping) [1, 2]. Many systems can measure range directly with the 

robot's sensors, but our low-cost robot has a minimalistic sensor system that only 

measures angles between neighboring robots. This thesis describes a particle filter al­

gorithm that can estimate the pose of a neighboring robot with low-resolution bearing 

sensors. 

1.1 Motivation 

A multi-robot system has can accomplish tasks that a single robot cannot. An ex­

ample of this would be conducting surveillance, or collecting data, over a large area. 

This is simply not possible with a single robot because they cannot be in multiple 

locations simultaneously. However, a multi-robot system can disperse and ensure 

coverage of the area of interest. Also there are tasks that a multi-robot system can 

accomplish much more efficiently. A typical task that a multi-robot system will be 

able to accomplish much more efficiently than a single robot is exploration. A single 

robot can explore any size area. However, a multi-robot system will be able to explore 

the same area in a fraction of the time. 

The multi-robot system design to originate from the Multi-Robot Systems Lab at 

Rice University, the r-one robot shown in Figure 3.1(a), attempts to fill a gap in the 

short list of educational multi-robot systems. Currently, it has a cost of around $220 

per robot, a large sensor suite including a gyro, accelerometer, wheel encoders, and 

light sensors. It includes a radio for global control, an infrared beacon for ground­

truth localization, and an infrared inter-robot communication and localization system. 

The robot can be programmed inC, or can run an embedded Python interpreter to 

make programming more accessible to younger, less experienced, students. We are 

currently using the platform in an introductory first-year engineering course and a 
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graduate level course on robotics, with good success to date. 

However, this platform lacks sensors that can directly measure range to neighbors. 

However, we can use its bearing measurements to infer the range. In this thesis, I 

estimate the range to neighboring robots with a particle filter algorithm on the r-one. 

This estimation also recovers the full pose of the neighbor, (x, y, 0). 

1.2 Contributions 

The importance of this pose estimator is that it fills a critical gap in the current capa­

bilities of the r-one robot without increasing the cost of the platform. Currently, the 

r-one platform can only measure limited geometric information its neighbor without 

any idea of the range to the neighbor or the neighbor's (x, y) position in the sensing 

robots coordinate system. The resolution of bearing that the r-one determines is 

approximately 22.5°, which is very coarse. Section 3.1.1 provides an in-depth expla­

nation on the current sensor capabilities of the r-one. 

In developing my particle-filter algorithm, I have successfully extended the state 

estimation capabilities of the r-one platform without adding to the overall cost, either 

in build cost or materials cost. This extension is useful in that the r-one can now 

be used to perform even more complex tasks than it was capable of performing. An 

example of this increased capability would be adding formation control to flocking 

r-ones. By being able to determine distance between each other the flock of r-ones can 

morph their shape to be able to move through a dynamic environment, or maintain 

a specified distance to neighboring robots. 
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Chapter 2 

Related Work 

There are three main areas of work that support my thesis. These include multi-robot 

systems, minimalistic sensing and probabilistic robotics. In this chapter I describe 

what defines a true distributed multi-robot system and discuss literature on current 

full and partial multi-robot systems. The review of minimalistic sensing is split into 

two major subsections. The first subsection discusses the Power of Robots which 

establishes a dominance relation to stratify different robot platforms. The second 

subsection focuses on coordinate systems and uses the dominance relation to rank­

order the current multi-robot systems in terms of their coordinate systems. The final 

focus is on probabilistic robotics, more specifically, particle filters for state estimation. 

I finish with a discussion about the various particle filter implementations. 

2.1 Multi-Robot Systems 

I define a true distributed multi-robot system as meeting four distinct criteria: 

• Distributed Sensing 

• Distributed Actuation 

• Distributed Computation 

• Distributed Communications 

According to this list, there are very few multi-robot systems that meet all four 

of these requirements. A majority of multi-robot systems meet only a subset of 



5 

this criteria, I refer to these as partial multi-robot systems. These partial multi­

robot systems are still relevant in that they are used to research and solve problems 

within their particular criteria-space. This ultimately advances the knowledge for 

that specific research domain within multi-robot systems. 

The General Robotics, Automation, Sensing and Perception (GRASP) laboratory 

at the University of Pennsylvania utilizes a quadrotor multi-robot system for research 

on coordinated, dynamic flight [3]. Their particular setup meets the distributed 

actuation criteria mentioned above. However, they utilize the Vicon Motion Capture 

System to provide all of their sensing instead of relying on distributed sensing [4]. This 

allows their laboratory to constrain the problem-space of their multi-robot system to 

better study specific aspects of their system. 

Another current partial multi-robot system, this one built for educational out­

reach, is the Educational, Research-Oriented, Sensing, Inexpensive robot, eROSI, 

built by the Center for Distributed Robotics at the University of Minnesota. This 

particular multi-robot system possesses a moderate array of sensors that include light 

sensors, infrared range sensors, encoders, a camera and a bluetooth module. The ap­

proximate cost of each eROSI is $500.00, placing it at almost double the cost of the 

r-one but still substantially cheaper than other multi-robot systems [5]. 

There are four multi-robot systems that meet all four criteria and they are: the 

r-one robot, discussed in detail in Section 3.1, the SwarmBot multi-robot system, 

the Khepera III system, and thee-Puck with the infrared turret. The first two were 

designed and built by James McLurkin with the latter while he was with iRobot and 

the former with the Multi-Robot Systems Lab at Rice University. 

The r-one multi-robot system is covered in detail in Section 3.1 [6]. However, a 

brief overview of the r-one follows. It is a 10 em robot which allows many robots to be 
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used in a small space. The infrared system is the primary mode of inter-robot commu­

nications. It was designed as an extremely low-cost solution for educational outreach 

and meets that goal with a total per robot cost of approximately $ 220.00. The 

robot can be programmed in either Python or C (using the FreeRTOS kernel). This 

supports both undergraduate introductory courses and advanced robotics courses for 

graduate students. 

The SwarmBot multi-robot system was developed by James McLurkin and repre­

sents a robust system with a mature set of algorithms [7, 8, 9]. The hardware setup 

consists of a complex sensor suite the consisting of bump sensors, light sensors, a cam­

era, encoders, and a infrared communications system (which can measure the full pose 

of neighboring robots, bearing, orientation, and range). The robots also use a propri­

etary operating called the Swarm Operating System (SwarmOS™) which provides an 

API for writing applications for the SwarmBot. It uses the ThreadX real-time oper­

ating system from Express Logic that supports threads, mutexes, semaphores, queues 

and memory allocation. This multi-robot system uses a synchronous distributed com­

munications model. All of the SwarmBots transmit with the same transmission period 

ensuring that each SwarmBot will receive only one message from each of its neighbors 

during the period. This provides an upper bound on the time each SwarmBot has to 

wait for a message and lets us model the entire system as a synchronous distributed 

system. This is described in further detail in Section 3.1.1. 

The Khepera III multi-robot system was produced by K-Team Corporation with 

assistance from the Distributed Intelligent Systems and Algorithms Laboratory at 

EPFL [10, 11]. This particular platform is an extensible design that supports multi­

robot education and research with a sensor suite that includes nine infrared range 

detectors for obstacle detection, five ultrasonic sensors for long range obstacle detec-
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tion, and two cliff detectors. The cost of this multi-robot system is prohibitive for 

large populations at approximately $3,500 per robot. 

The ePuck multi-robot system was developed as an educational outreach tool by 

EPFL [12, 13]. With the addition of a separate communications board this is a true 

multi-robot system. There are a couple key features that make this an attractive 

educational tool. First, it is designed to be programmed over bluetooth and does not 

need to be plugged into a computer. Second, it has a removable battery pack allowing 

for extended usage time. However, it does have some limitations as well. First, it is 

expensive with a price that exceeds $1,000, even more so with the range and bearing 

board, which increases the cost by approximately $500 . Second, the curriculum is 

built around their definition of a swarm which is approximately three robots. The 

caveat to this limitation is that the system will scale to a larger size if that is desired. 

2.1.1 State of the Art in Outdoor Multi-Robot Systems 

The Multi Autonomous Ground-robotic International Challenge (MAGIC) was a com­

petition sponsored by the United States and Australian Departments of Defense in 

an effort to push the development of the next-generation of the fully autonomous 

ground vehicles [14]. More specifically, the need to fill a specific technology gap for 

urban combat exists and this competition sought to address that gap. 

The winner of MAGIC 2010 was Team Michigan lead by Professor Ed Olson. The 

heart of this system is the inclusion of a robot-operator interface. The global state 

of the map and robot status is integrated into a single user interface. The overall 

commander can take control of any robot at any time and have his orders supersede 

any of the current robot behaviors. Even though their multi-robot system was custom 

built to the MAGIC 2010 specifications the chassis can be modified easily to relax 
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the constraints placed on their design during entry into the competition. 

2.2 Minimal Sensing 

The theme of minimal sensing is to determine how much a robot can accomplish with 

the least amount of capabilities, or the simplest sensor to achieve a given task. This 

is a subfield of probabilistic robotics that is still being studied in depth and has been 

for over 20 years now. 

Erickson et al. provides a spartan approach by using only a clock and a bump 

sensor to localize a robot within a complex environment [15]. In this work, the re­

searchers simplify their world model to only include points along the boundary of 

environment and ignore all points inside the boundaries. This novel approach to 

redefining the environment allows them to develop an algorithm that reaches local­

ization given only the initial orientation of the robot and an extremely limited sensor 

suite and not the robot's initial position within the environment. Their algorithm is 

built around a heuristic that looks at the entropy of the system and seeks to reduce 

that entropy by choosing motions accordingly. 

Yu et al. provides a proof of concept of minimal sensing and control with a 

simple system modeled on a dubins car [16]. This model has only three states that 

allows it to follow a neighbor and still have all of the agents converge. This paper 

is useful in that it shows a minimal sensing model can still cause agents to converge 

without measuring range or bearing. This convergence is accomplished by means of 

a simplified control law. Additionally, the agents do not communicate at all. Even 

with this incredibly constrained system, they prove that any number of agents, placed 

randomly within their environment, will always converge. 

Another approach to minimal sensing is to use a sensor network that tracks a 
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target with a binary sensor using a particle filter [17]. Aslam et al. describes a system 

with two types of sensors in the network, one that senses the target moving towards 

the sensor and another that senses the target moving away. These simplified sensors 

emit a single bit of information which allows the researchers to completely remove the 

bandwidth constraint faced by any multi-agent systems. A drawback to this approach 

is that the sensor network can only reliably determine the motion of the target. By 

extending the model and combining the single bit with local proximity information 

garnered from an infrared system the location and direction can be determined. 

2.2.1 Low-Cost Sensors 

A low-cost lidar alternative, referred to as a laser distance sensor (LDS), was intro­

duced at the 2008 ICRA Conference with a total production cost of $30.00 and built 

with commercial off the shelf components [18]. This LDS has an accuracy of 3 cen­

timeters out to 6 meters, 10 Hertz acquisition, and 1 degree resolution over a full 360 

degree scan. The inclusion of this sensor could greatly extend the r-one's capabilities 

at a minimal increase in cost. However, the major drawback is the lack of actual 

design plans available to the public. Currently, the only way to get an LDS is to 

purchase a Neato XV-11 and remove the LDS. This has already been accomplished 

through a "hack" competition sponsored by www.robotbox.com and now there are 

various APis that allow anyone to use the LDS in a custom application [19]. 

The introduction of the Microsoft Kinect and its subsequent hacking and re­

purposing provides yet another vector with which to provide low-cost sensing. The 

Microsoft Kinect camera utilize the RGB-D (red, green, blue and depth) camera 

technology developed by PrimeSense [20]. The depth refers to the pixel distance from 

the camera and is captured at the same time as the RGB image to provide a three-
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dimensional image. The capabilities of these cameras are limited in the following 

ways: they only provide depth up to a distance of 5 meters, their depth estimates are 

noisy and their field of view is approximately 60o. Even with these limitations, this 

sensor can extend the capabilities of a multi-robot system by providing an inexpensive 

means to ascertain range information as shown by Henry et al. [21]. Additionally, 

Herbst et al. provides a variation of SLAM, simultaneous localization and mapping, 

that utilizes the Kinect RGB-D camera to identify details of objects within a robot's 

environment to enhance the robot's performance [22]. 

2.2.2 Power of Robots 

This thesis resides in the shadow of a much larger discussion about the types and com­

plexity of sensors required to perform a particular task, with two primary examples 

coming from Rus et al. and Erdmann et al. [23, 24]. 

The paper by Rus et al. looks at whether or not a multi-robot system requires an 

explicit control law to be able to accomplish the complex of changing the orientation 

of an object [23]. The authors determine that planning, global control, and explicit 

communication is not a requirement to complete these tasks. This correlates with the 

Power of Robots theme in that it attempts to empirically derive the minimal amount 

of sensing required to have a mulit-robot system change the pose of an object. 

Erdmann proposes a method of reverse engineering sensors based on a robot's 

task, its actions, and the uncertainty in control [24]. The bottom line of this paper is 

that the author attempts to address three issues. The first is to utilize simple sensors 

to improve the reliability of operations. Second, Erdmann attempts to circumvent 

the sensing uncertainty issue by trying to design simple sensors that can measure the 

particular uncertainty directly. Finally, he tries to define the amount of information 
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required for different task strategies. 

However, there is no consensus in the current literature of how to best understand 

and stratify the relative "power" of robots and sensors [25]. The general theme seems 

to be constructing an ordering based on minimal robot/sensor capability that can 

solve tasks. The introduction of sensors with greater capabilities incurs the penalty 

of system complexity alongside increased cost (which can be mitigated in some cases, 

see RGB-D and LDS in Section2.2). Finally, for multi-robot systems with large 

populations sensor cost is a limiting factor: when you add an additional sensor to the 

sensor suite you have to multiply the cost by the number of robots that will be in 

your swarm. 

My particle filter technique settles into this subfield rather well. I take an ex­

tremely simple bearing system that has an approximate resolution of 22.5° and com­

pute a usable range from it. This competes with the current solutions that are 

currently available for thee-Puck and the Khepera III [11, 13]. In regards to mini­

malistic sensing my particle filter algorithm presents an alternate method which will 

meet the same neighbor localization capabilities as the two commercial solutions but 

not add any to cost to the current r-one bill of materials. 

2.2.3 Coordinate Systems 

O'Kane et al. define a dominance relation that states a robot dominates another 

robot if it can collect at least as much information as another robot [25]. This 

relationship is further clarified through the use of robotic primitives, or self contained 

"instruction sets" for the robot that may involve sensing, motion or both. Building 

upon this dominance relation I then add coordinate systems to further stratify the 

multi-robot systems. McLurkin defines four different coordinate systems, I consider 
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Figure 2.1 : A representation of the dominance relationship of coordinate systems. 

these coordinate systems to be robotic primitives, of which I only focus on global and 

local coordinate systems [9). 

With this dominance relationship as a backdrop I can then define a partial order 

of systems for the current multi-robot systems based on the dominance relationship 

of coordinate systems. In Figure 2.1 you see two columns. The column on the left 

represents the dominance relation of the coordinate systems and the column on the 

right is an illustration of the coordinate. Starting from the top the first coordinate 

system is a global coordinate system. This coordinate system is the most dominant 

of all the coordinate systems due to its ability to represent information for any of the 

subsequent coordinate systems. Additionally, another reason this coordinate system 

is the most dominant is that each robot's pose measurement of their neighbors is 
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consistent.t This is represented on the right as a single frame of reference for all 

robots. 

The next coordinate system is the local coordinate system. In this particular 

coordinate system the robot population is split up into local "neighborhoods" or 

subsets of the overall robot population. These neighborhoods each have their own 

local coordinate system that allows the robots within the neighborhood to know the 

pose measurement to all the other local robots relative to their local coordinate axis. 

However, each neighborhood of robots does not know the information within nearby 

neighborhoods. This is depicted on the right as two separate neighborhoods, each 

with their own local coordinate system. 

The next step down in this dominance relationship is a bearing and range esti­

mation coordinate system. This includes both my particle filter implementation and 

another method currently being researched in the Multi-Robot Systems Lab at Rice 

University called scale-free coordinates. Both of these coordinate systems rank be­

low local coordinate because they both only produce an estimate of the pose for the 

neighboring robot. The question mark in between the two coordinate system merely 

indicates that we do not currently know the relationship between the two coordinate 

systems in terms of which one is more dominant than the other. The depiction of 

these coordinate systems on the right indicates the bearing and range to a neighbor­

ing robot. Again, the question mark indicates that the range is only an estimate and 

not the actual range between the two robots. 

The particle filter implementation is a probabilistic technique that attempts to 

determine some sort of hidden state variable. This is an variant of the Bayes filter 

algorithm that utilizes a collection of estimates, called particles, to represent the 

tr.e. the measurement between any two robots is the same from each robot's point of view 
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probability distribution function of the hidden state variables. This is discussed in 

detail in Chapter 4. 

As mentioned above, an alternate approach to pose estimation on the r-one plat­

form is a technique referred to as Scale-Free Coordinates [26]. This technique utilizes 

the same multi-robot system as I do and attempts to mitigate the same hardware 

limitations as well. The main difference is the algorithm producing the estimated 

pose. I rely on a probabilistic method to infer the hidden state variables with my 

particle filter implementation. The scale-free implementation leverages trigonometry 

and the local network to produce a reasonable estimate of the range between robots, 

up to a scaling factor. The advantages of the scale-free technique are shared with my 

technique; no additional cost added to the r-one platform while increasing the r-one's 

capabilities. A major disadvantage of this technique is the increased utilization of 

bandwidth due to the communications required to compute the geometry of the local 

neighborhood. This computation is covered in detail in Section 3.2. However, this 

technique represents a promising alternate approach to determine an estimate of the 

pose of neighboring robots. 

Continuing down the dominance relation I arrive at the bearing-only coordinate 

system. This coordinate system is currently implemented on the r-one and only allows 

the robot to measure the bearing to its neighbor and not the range. This is indicated 

on the the diagram on the right by showing a sector measurement to the neighbor 

and nothing more. 

Finally, the lowest coordinate system on the totem pole is the range-only coordi­

nate system. This coordinate system is the lowest simply because there is very little 

you can do with knowing only the range and nothing more. If you have bearing-only 

you can at the very least navigate by landmark recognition as described by Loizou 
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and Kumar [27]. In this paper they propose a provably correct bearing-only naviga­

tion controller that is biologically inspired and utilizes landmarks. This coordinate 

system is depicted on the right as a circle centered on the robot. The neighboring 

robot can be anywhere along the edge of this circle. 

In light of this partial order I am trying to extend the capabilities of the r-one 

to include a reasonable range measuring system that does not increase the cost of 

the platform. This would raise the r-one's current coordinate system to bearing and 

range-estimation placing it between bearing-only and local coordinates. 

2.3 Probabilistic Robotics 

Probabilistic robotics revolves around the idea of attempting to explicitly represent 

the uncertainty that is inherent in robotic systems. This uncertainty stems from four 

areas: 

• Environment 

• Robot 

• Limited, Noisy Sensors 

• Inaccurate Models 

By utilizing a probabilistic method one can then mitigate these four areas of uncer­

tainty. 

A particular subset of probabilistic robotics is state estimation which refers to a 

robots attempt to determine some hidden state based on sensor data. A particle filter 

is one method that can be used for state estimation. Particle filters have been studied 

for almost 20 years and are a mature area of research for robotics. Dellaert, Fox, 

Thrun and Burgard used a particle filter to solve robot localization using a method 

they refer to as Monte Carlo Localization [28]. This was an incredible breakthrough 
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as the robot localization problem was widely recognized as the "most fundamental 

problem to provide a mobile robot with autonomous capabilities" [29]. 

2.3.1 Main Resources 

First, and foremost, I consider the textbook, Probabalistic Robotics, written by Fox, 

Thrun, and Burgard to be the primary resource for anything relating to probabilistic 

robotics [30]. It does a great job of building up levels of complexity within probabilistic 

robotics. It starts with the theory behind probabilistic robotics by introducing the 

Bayes Filter algorithm. It then moves into discussing variations of the Bayes Filter 

algorithm to include Kalman Filters, Extended Kalman Filters, and Particle Filters. 

It also discusses different methods to model the possible sensors. Finally, it culminates 

with simultaneous localization and mapping (SLAM). 

Rekleitis provides an exceptional technical report that was a byproduct of the 

culmination of this thesis on particle filters for mobile robot localization [31]. It 

provides a detailed description of a particle filter, both in plain text and in pseudo­

code. He also addresses the types of error that arises for a robot when it is either 

translating or rotating and how to model that error. Appendix D provides substantial 

information on the main resampling methods currently used. This appendix also 

provides enough information on the variations on resampling so that anyone can 

pursue the pertinent literature on their own. 

2.3.2 Techniques That Worked 

Out of the myriad of specialized techniques available for particle filters I only found 

two techniques that really assisted my particle filter in attaining convergence quickly. 

These techniques are discussed in the subsequent paragraphs. 
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The Sensor Resetting Localization (SRL) algorithm produced by Lenser et al., 

although developed for Monte Carlo localization (MCL), proved to be quite useful 

during my particle filter algorithm development [32]. The authors determined three 

key problems with MCL; MCL requires more particles during global localization than 

when tracking, MCL cannot handle large modeling errors, finally MCL does not han­

dle unexpected or unmodeled robot movement. To mitigate with these three problems 

their SRL algorithm adds a resampling phase to the MCL algorithm. SRL determines 

if the probability of an area designated by the samples is low then the algorithm re­

places those samples with samples taken from the current sensor measurement. This 

allows the robot to attain global localization quickly and with less samples. This 

increases the overall efficiency of the algorithm and reduces its computational load. 

It is also robust against a poor robot model in that once the systemic error rises 

the poor samples will be replaced with current sensor samples, this makes the robot 

resistant to unmodeled movements as well. This proved to be incredibly useful in 

my particle filter implementation. By utilizing this method I was able to use current 

sensor measurements to "bias" the probability distribution function of the particles 

so that the estimated pose would be auto-corrected if it was not close to the current 

sector being sensed. 

Jensfelt et al. provides a unique resampling method to combat an issue that faces 

all particles filters, the reduction of the probability distribution function to a single 

point [33]. This collapsed distribution provides an extremely poor estimate of the 

state with particle filters. This ultimately will cause the particle filter to fail. Their 

modification allows the current sensor reading to contribute more to the weighting of 

the particles then the current output of the predictive model. This is accomplished by 

re-injecting particles based on the current sensor reading during the sensor update. 
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These particles are given the maximum weight of the current particles and replace the 

particles with the lowest weight. I use this reinjection method for the multiplicative 

weighting implementation of my particle filter. 

Liu et al. describes the basis of sequential importance sampling (used in particle 

filters) in depth in this particular paper [34]. The main contribution to my thesis 

comes in the form of a heuristic that allows me to declare when I want my particle 

filter to resample. This heuristic is referred to as the effective sample size, or ESS. This 

refers to the equivalent number of independent and identically distributed samples 

at time t. Essentially, this heuristic allows the particle filter to resample when there 

are a certain amount of near-zero weight particles as these particles will not affect 

the estimated pose. The issue with this heuristic and the r-one sensor model is that 

we have a binary sensor, either you are in the sector or you are not. This does not 

produce a sample set of independent and identically distributed particles. However, I 

was able to use this heuristic with the multiplicative weighting version of the particle 

filter that I developed. 

Fox et al. describes a situation in which their particle filter implementation per­

forms poorly with both high sensor noise and low sensor noise [35]. Even though this 

article deals with mobile robot localization, more specifically Monte Carlo localiza­

tion, it helped me to realize the a flaw in developing my particle filter algorithm. The 

introduction of noise in both the odometry measurements and the bearing measure­

ments allowed me to produce a particle filter that would converge. In fact, they offer 

three analytical "approaches" to accommodate highly accurate sensors. A drawback 

to their approach seems to be the particle set size, which they declare "optimal" be­

tween 1,000 and 5,000. Right now we are currently using 500 particles with anything 

above 1,000 particles I exclude due to the computational constraints of the r-one. 
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2.3.3 Techniques I Considered 

There are several particle filter techniques that seemed viable at first. However, upon 

further research I did not utilize the following techniques for various reasons discussed 

below. 

The first technique that I considered and then discarded is a real time particle filter 

algorithm (RTPF) designed to handle sensor information that arrives significantly 

faster than the update rate of the filter (250ms in our case) [36]. The authors explain 

that their RTPF does not throw out any sensor data in between sensor updates, 

instead they consider all sensor updates by sampling over all of the sensor readings 

within a predetermined window size, this produces a state that is a mixture of all 

of the sample sets. This is mainly due to the fact that n samples are distributed 

among the k observations within an estimation window. At each timestep only nfk 

particles are needed, reducing the computational load on the r-one and allowing for 

more particles. In my algorithm I only sample at every update period and I do not 

care about sensing in between these update periods, making this technique moot. 

Resampling is referred to as the "trick" of the particle filter where the particles 

are forced back to the posterior bel(xt) [30]. The simplest resampling algorithm used 

in particles filters is the Sample with Replacement algorithm. One drawback to this 

particular algorithm occurs after the generation of an array of random numbers uni­

formly distributed in [0, 1]. Once this array is created it is then sorted. This is 

typically implemented as a quicksort and takes 0( nlogn) time. Carpenter et al. pro­

vides a linear time (O(n)) algorithm by using the cumulative sum of the negative 

logarithm of random numbers uniformly distributed in [0, 1] [37]. This produces a 

sorted sequence of random numbers uniformly distributed in [0, 1]. This particular 

resampling method is not used in my particle filter algorithm due to ease of imple-
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mentation. However, if I need to further increase my efficiency I would rework my 

algorithm to use this resampling method. 

Kullback-Liebler distance sampling, KLD-sampling, is an another technique devel­

oped to increase the efficiency of a particle filter algorithm by dynamically adjusting 

the particle sample size over time [38]. First, the Kullback-Liebler distance refers to 

dissemblance between two probability distribution functions. By putting a bound on 

the error being introduced by the re-injection of particles, the the Kullback-Liebler 

distance determines the maximum number of particles needed to meet that bound. 

Any time the number of particles required to represent the posterior probability is 

reduced, the computational load is also reduced. I initially contemplated using this 

resampling method to make my algorithm more efficient. However, the memory saved 

by the reduction in particles would be overshadowed by the computational require­

ment of calculating the Kullback-Liebler distance, especially on the r-one platform. 

2.4 Summary 

Now that I have described the pertinent multi-robot literature, works in minimalistic 

sensing, and references for probabilistic robotics the next chapter discusses prelim­

inary information to set the stage for my particle filter algorithm. Following that 

will be a brief overview or probabilistic robotics with a focus on particle filters. Fi­

nally, I will describe my particle filter algorithm and explain the data produced by 

my algorithm. 
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Chapter 3 

Preliminary Information 

In this chapter I give a brief overview of the r-one multi-robot system built by the 

Multi-Robot Systems Laboratory at Rice University. I then discuss reciprocal orien­

tation and the different methods to determine reciprocal orientation and their associ­

ated bandwidth costs. Finally I will close the chapter with a description of the data 

collection method. 

3.1 The R-one Robot 

Figure 3.l(a) shows a fully assembled robot, and Figure 3.l(b) shows the exploded 

diagram. The sensor suite consists of a 2-axis gyro, 3-axis accelerometer, and 3 

visible-light photo resistors. The robot has two motors with quadrature encoders to 

measure position and velocity. The robot includes 8 IR transmitters, 8 IR receivers, 

a 2.4 GHz radio with 2Mbps data rate, and a USB port. To interact with the user, 

the robot has 3 push buttons and 3 arrays of five LEDs each in red, green, and blue. 

The robot is controlled by a Texas Instruments Stellaris LM3S8962 microcon­

troller. The CPU core is an ARM Cortex-M3 running at 50 MHz with 256 KB of 

Flash memory and 64 KB of SRAM. This particular CPUt limitation must be con­

sidered in this work because it places an upper bound on the number of particles the 

r-one can reasonably create and evolve. 
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(a) The r-one robot. (b) Exploded CAD view. (c) The r-one encoder. 

Figure 3.1 : a: The r-one robot . b: Exploded CAD view of the robot assembly. The 
robot is composed of two circuit boards bound together with a circular shell and four 
screws. c : The motors and encoders mount directly to the circuit board. 

The motors and encoders mount directly to the bottom circuit board, shown in 

Figure 3.1(c). The encoders have 0.0625 mm/tick linear resolution at the wheel. 

The 2.4 GHz radio on the robot can be used for inter-robot communication, but 

is designed for centralized command and control. The primary means of inter-robot 

communication is the local IR communication system described in the following sec-

tion. 

3.1.1 Int er-Robot Communicat ion and Localization 

Each robot has a set of eight IR transmitters and eight IR receivers. The transmitters 

transmit in unison, and were designed into the shell to provide a nearly radially-

uniform energy emissions pattern. Figure 3.2(a) shows the predicted angular output 

based on theIR emitter specifications and the design of the plastic shell. This shows a 

power variation of 4%, but we have not verified this performance on physical hardware 

yet. Because the communications bandwidth is very limited (see below) , we selected 

a maximum range of around 1.0 meters in order to limit the number of neighbors and 
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Figure 3.2 : a : The transmitter and shell are designed to produce a radially uniform 
power output. b: This is a top view of a CAD model of each IR receiver 's detection 
region. Each receiver detects signals in a 68oarc. These regions overlap to form 16 
distinct sectors. A message from a neighboring robot will be received on one or two 
receivers , and can be processed to determine the direction to within 2.5°. c: Exper­
imental verification of the overlap of the receiver regions. The plot is showing the 
angle each receiver can detect an incoming message. The average width is 68°, which 
matches the CAD model. The corresponding arc from the top view is highlighted in 
black. 

messages that are received by each robot. 

Each robot has eight IR receivers, arranged so that their reception regions overlap 

as shown in Figure 3.2(b) . The shell is designed to limit the detection arc of each 

receiver to 68°. By noting which receiver(s) detect a neighboring robot , the bearing 

can be estimated to a resolution of approximately 22.5°. Figure 3.2( c) shows the 

measured reception arc from each receiver with color corresponding to Figure 3.2(b). 

The reception arc varies from 63oto 74owith a mean of 68oover 10 trials. 

The receivers are standard Sharp IR remote control devices, with 38khz mod-

ulation and a maximum bit rate of 1200bps. A simple TDMA scheme is utilized: 

the robots to transmit at periodic intervals 1 but with a random offset, similar to the 

ALOHA protocol [39). This will limit the effective usable bandwidth before network 

congestion causes saturation. The protocol is similar to RS232 8N1 and produces a 
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Message Size Message Size Transmit Time 
(bytes) (bits) (ms) 

3 42 33.6 
4 51 40.8 
5 60 48 

Table 3.1 : An illustration of the desired message size, in bytes, the actual number of 
bits sent and the corresponding transmit time. 

message size shown in Table 3.1. My algorithm requires a message size of three bytes, 

which takes 33.6 milliseconds to transmit. These bandwidth constraints place a limit 

on robot density and algorithm complexity, but increasing bandwidth would require 

using more expensive or even custom receivers. 

Neighbor Transmission Period (Rounds) 

Each robot transmits a message at a fixed periodic interval, meaning that every robot 

will receive messages from each of its neighbors only once per period. This acts as a 

synchronizer and makes the programming model for the r-one to be a synchronous 

distributed system from each robots point of view [7]. For this method to work, each 

r-one has to abide by the rule that each robot has the same neighbor update period. 

The diagram in Figure 3.3 illustrates this point. 

In Figure 3.3 the b.t represents the neighbor update period, or the round. Once a 

robot sends out their message they wait b.t time before sending out another message. 

The vertical lines illustrate that based on robot A's initial transmission, no robot 

communicates more than once during each round. The vertical lines are arbitrary 

and are merely there to provide a concrete representation of the current round. The 

vertical lines could have easily been drawn based on any of the three robot's commu-
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A 

B 

Figure 3.3 : A simple diagram illustrating how the neighbor period update makes 
the r-one a distributed, synchronous system. Each robot transmits only once during 
the neighbor period, b.t. Since each robot has the same b.t the system looks like a 
distributed, synchronous system. 
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nications, the result would the same; no robot would transmit more than once per 

round. 

There are two major constraints that rounds places on my particle filter algorithm 

(or any algorithm the r-one is asked to execute). The first constraint deals with the the 

amount of updates. Because of the rounds, each r-one will only be able to transmit and 

receive infrequent updates. Essentially, they are not allowed to broadcast information 

whenever they want to. The second constraint is based on the length of the round. My 

particle filter algorithm requires a fair amount of computation to create the particles, 

evolve/weight the particles, and calculate a weighted average of the estimated pose. 

With this in mind the r-one must be able to accomplish all computations during the 

current round. If it is not able to complete all of the computations then it will miss a 

round. Too many missed rounds may cause the complex behavior that is relying on 

the pose estimate from this algorithm to become unstable or even fail. For a three 

byte message and four neighbors, the r-one has 250 milliseconds for each round. All 

computation must be completed in this time. 

3.2 Methods to Determine Orientation 

As mentioned earlier in this chapter, orientation is the angle measurement from the 

neighboring robot to the sensing robot from the neighboring robot's point of view. 

See Figure 3. 7 for a graphical representation of orientation. 

Currently the r-one is can only measure orientation of neighboring robots using 

network communication. The first measurement is bearing-only and the other two 

are methods of determining orientation. The first measurement is bearing-only. This 

allows the r-one to determine the angle to its neighbor defined by its own local coor­

dinate system. This particular method does not add any additional communications 
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to compute. The information required for this to work is already included in the 

announcement message that the r-one sends out each communications round which 

contains its ID, its current translational velocity, and its current rotational velocity. 

When a neighboring r-one receives an announcement message it records the senders 

id and the sector that it received the message on, creating a neighbor list that resolves 

the neighbor's id to the bearing. This method is 0(1) since the r-one will only ever 

send one announcement message regardless of the number of neighbors. 

The next method of determining orientation is reciprocal orientation. This partic­

ular method requires the most of the r-one in terms of communications complexity. To 

perform this method the r-one transmits its announcement message and then trans­

mits a series of orientation messages, one for each neighbor. Each message contains 

the neighbors id and bearing. If a robot receives an orientation message that has its 

id in it then it knows the neighbors measurement of its bearing from the neighbors 

point of view, or the reciprocal orientation. The communication complexity of this 

method is large. The r-one must transmit one announcement message plus an addi­

tional message for each of it's neighbors resulting in a communications complexity of 

0(1 +~)with~ representing the maximum number of neighbors. 

The final method is a type of a Gray code described as a bit pattern overlap 

method. This method will be researched, implemented and tested during the sum­

mer of 2011. Essentially, the r-one will transmit an additional bit of data at the end 

of its announcement message for each transmitter that it has. The data within the 

message will collide exactly and will not be affected. The additional bits of data, a 

single bit representing the particular transmitter the data originated from, will collide 

constructively allowing the remaining bits to represent the sector. Even though this 

has a relatively low communications complexity cost, the price is paid in having to put 
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more effort in engineering the hardware to ensure that the messages collide construc­

tively. The communications complexity of this method is 0( s) with s representing 

the number of transmitters the robot has. 

3.3 Data Collection 

Data collection on multi robot systems requires the user to know the ground truth 

positions of the robots, or the robot's location in an external coordinate frame. There 

are many means of determining a robot's global position: GPS [40], a Vicon-like 

tracking system [3], radio-acoustic ranging [41, 42], or camera-based tracking [43, 44, 

45, 46]. However, GPS is unavailable indoors, a Vicon system is expensive, and radio 

acoustic systems work well, but increase the complexity of each robot. 

Camera-based tracking systems are currently the most common low-cost method 

for providing ground-truth. These systems must have the ability to uniquely identify 

individual robots in the camera image. Fiducial tracking can find multiple markers, 

and with initialization, identify unique robots [43]. In a uniform environment, robots 

can be tracked by color alone as with SwisTrack [44]. Bar code tags such as AprilT­

ags [45] provide unique IDs without initialization, as well as 6-DOF pose estimation. 

An alternative to the bar code tags is to track IR beacons on each robot [3, 46]. The 

beacons transmit a pattern unique to each robot. One beacon per robot and one 

camera allow 2-DOF position to be measured directly. Multiple cameras or beacons 

can be used for full 6-DOF pose estimation [47]. 

Ground truth poses of the robots for this thesis are measured by a vision-based 

localization system called the AprilTag system [45]. Figure 3.4(a) shows the actual 

AprilTag global localization system that is used for the r-one. The system has three 

main components: the robots running the experiment, a tripod and boom mounted 
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(a) Thipod and Boom. (b) Robots in Camera Space. 

Figure 3.4: a: The tripod and boom setup used for collection of location information. 
b: Camera view of rone robots. 

digital camera, and a server computer with data logging software. With this system, 

a camera server collects and displays all ground-truth estimates of individual robot 

positions based on the IDs of the unique fiducials . This system has been tested and 

has a mean position error of 6.56mm and a mean orientation error of 9.6mrad. This 

error was determined after 583 testing iterations. I then combine the position data 

with log data from the sensing robot to produce a unified file for analysis. 

3.4 Robot Model 

Depicted in Figure 3.5 is the robot model for the r-one. two types of velocities 

indicated for the r-one. The first is translational velocity, or tv. This is the velocity 

of the robot along the x-axis and it is measured in millimeters per second. The second 

is rotational velocity, or rv. This is the velocity of the robot as it rotates and it is 



~ ~-- -----~-----------

30 

Figure 3.5 : A representation of robot model for the r-one. 

measured in milliradians per second. With these two velocities one can depict the 

r-one moving in a straight line, rotating in place or a combination of the two. As 

indicated in Equation 3.1 this is the control input, u at time t (ut) which refers to 

the tv and rv of the neighbor robot received through the infrared communications 

system. 

Ut = ( tvnbr, TVnbr) (3.1) 

3.5 Sensing Model 

Figure 3.6 depicts the infrared communications system or the sensor model. This 

particular system uses the eight infrared transmitters linked together to transmit 

the robot's messages. The receivers overlap to create 16 distinct sectors to measure 

the bearing with a resolution of approximately i radians. Initial testing in the lab 

indicated a binary transition from one sector to the neighboring sector with no overlap. 



31 

s3 

Figure 3.6 : A representation of sensor model for the r-one. The r's represent the 
eight infrared receivers. The s's represent the 16 bearing sectors. 

However, this sensor model will cause a particle filter failure due to the lack of error 

in the model. Error was added to the sensing model to indicate a 95% probability 

that a neighbor is actually in the sector that the robot senses it in and 5% probability 

that the neighbor is in one of the other 15 sectors. Equation 3.2 represents the final 

sensor input definition: 

3.6 State Model 

Zt = { Sn with p(0.95) 

S-n with p(0.05) 
(3.2) 

Pose, in a multi-robot system, is a measurement of the neighboring robot's position 

in the sensing robot 's local coordinate system. In this thesis I define the sensing 

robot as the robot that is attempting to determine the pose of another robot which 

is referred to as the neighboring robot. Additionally, pose represents the state model 

of the system at time t, or Xt. 
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Figure 3. 7 : A representation of (bearing , range , orientation) for two robots. The 
sensing robot is on the left (centered on the origin) and the neighboring robot is on 
the right. 

There are two representations for the pose of a neighboring robot, the primary 

being (bearing, range, orientation), which is illustrated in Figure 3.7. Bearing is the 

angle measured from the sensing robot to the neighboring robot, or the heading to 

the neighboring robot. Range is the measure of the distance between the center of 

the sensing robot and the center of the neighboring robot . Finally, orientation is 

the angle measurement from the neighboring robot back to the sensing robot. Note 

that the bearing of the neighboring robot from the sensing robot is the same as the 

orientation of the sensing robot to the neighboring robot. 

Pose can also represented as (x, y, B) , illustrated in Figure 3.8. This is the method 

that I use in my particle filter. With this method the (xnbn Ynbr) values are the 

location of the neighboring robot in the sensing robot's coordinate system. The Bnbr 

is the heading of the neighboring robot in the sensing robot's coordinate frame. 

The pose representation depicts the state model for the r-one multi-robot system, 
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Figure 3.8 : An alternate representation of (x, y, 8) for two robots. The sensing robots 
is on the left (centered on the origin) and the neighboring robot is on the right. 

illustrated in Figure 3.8. The state at time t is represented as Xt. Equation 3.3 

represents the state model: 

State= Xt = (xnbr, Ynbn enbr) (3.3) 
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Chapter 4 

State Estimation 

State estimation refers to a robots attempt to determine some hidden state based 

on sensor data. The robot has to estimate its state by inferring quantities from its 

sensor data because these sensors often cannot directly measure the state variables. 

Additionally, the robot's sensors only carry partial information about the quantities 

being measured and the noise of the sensor further compounds the issue. The goal of 

state estimation is to attempt to recover state variables from this noisy information. 

In my case, I wish to estimate the pose, (xnb·n Ynbr, Onbr), of a neighboring robot. 

Furthermore, our sensor model is nonparametric which precludes many common state 

estimation techniques. 

4.1 Probabalistic Robotics 

The primary concept in probabilistic robotics is that of belief, which represents a 

robots estimate about the state of the environment. A robot may exist at a known 

pose, referred to as its actual pose, in a global coordinate system but that pose can 

never be measured directly, even with precise sensors. Instead of measuring the pose 

directly the robot must infer its pose, referred to as the estimated pose, from its 

sensor data. 

Belief is represented as a posterior probability, which is the probability of the 
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current state variables conditioned on the sensor inputs. This is updated in two steps. 

First, one calculates the belief at time t after a control input but before receiving the 

sensor information. This is referred to as bel, and is portrayed in equation 4.1. It 

represents the state, x, at time t given the control input, u, and the sensor input, z, 

at timet- 1. 

(4.1) 

Belief, as indicated in Equation 4.2, represents the state at time t given the entire 

history of the control inputs and all of the current sensor inputs. 

(4.2) 

Probabilistic robotics rely on the Markov assumption which states that the past 

and future data are conditionally independent as long as the current belief of the 

system, Xt, is known. Essentially since the current belief only depends on the previous 

belief (xt-1), all other states can now be disregarded and the recursion stopped after 

the previous state is accounted for. This reduces the above equations to the following: 

bel(xt) = p(xtlut. Xt-1) 

bel(xt) = p(xtlzt, Xt-1) 

4.1.1 Bayes Filter Algorithm 

(4.3) 

(4.4) 

The Bayes filter algorithm is the most general algorithm for calculating the belief. 

This algorithm recursively calculates the belief bel at time t, and is shown in Algo­

rithm 1. There are three initial states to this algorithm. If the robot has knowledge 

of the initial state of the system, x0 , then bel(x0 ) is initialized with a point mass 

distribution about x0 . However, if the initial state of the system is unknown, bel(xo) 
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is initialized with a uniform distribution over the entire state space. Additionally, 

partial knowledge of bel(x0 ) can be expressed as a non-uniform distribution. 

1 Algorithm Bayes filter( bel(xt-1), Ut, Zt ): 
2 for all Xt do 
a bel(xt) = J p(xtlut, Xt-1)bel(xt-1)dxt-1; 
4 bel(xt) = ryp(ztlxt)bel(xt); 
send 
a return bel(xt) 

Algorithm 1: A generalized form of the Bayes filter algorithm. 

This algorithm contains a fundamental equation which defines the Bayes filter: 

(4.5) 

where 17 is a normalizing constant, Zt is the sensor measurement update and Ut is the 

control update. This belief update equation can only be implemented in the strictest 

of cases and quickly becomes intractable as the cases become more generalized. The 

intractability is a result of attempting to compute the integral for a probability dis­

tribution function. However, this algorithm has lead to several other techniques that 

sidestep this intractability such as Kalman filters, extended Kalman filters, particle 

filters and many more. 

4.2 Particle Filter 

A particle filter is a variant of the Bayes filter describe in Section 4.1.1 and like the 

Bayes filter it recursively estimates the posterior belief, bel, over the state of the system 

Xt. However, instead of attempting to represent the probability distribution function 

in its entirety it utilizes a sample-based approach. This approach is approximate and 

nonparametric, allowing it to represent distributions other than Gaussian that could 
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also potentially be multi-modal. It uses these samples to track hidden state variables 

as they evolve over time. These samples are referred to as particles and represent 

the variable of interest by associating each particle with a weight that indicates the 

importance of that particle, or how "good" of an estimate the particle depicts. The 

estimated state or the variables of interest, bel(xt) can be as simple as a weighted 

average of all of the particles. 

There are two main steps in a particle filter algorithm: prediction and update. In 

the prediction step each particle is modified according to the robot model with velocity 

information from the neighboring robot, to include the addition of random noise. 

During the update step each particle's weight is updated according to the current 

sensor information. Particles with small weights are discarded through a technique 

referred to as resampling, described in detail in Section 4.2.1 below. The current 

estimate of the variable of interest can be calculated in three ways. First, the weighted 

mean can be computed; second, the particle with the highest weight can become the 

estimate and, third, the weighted mean inside a small window surrounding the particle 

with the highest weight (also called the robust mean). Each of these estimation 

methods have pros and cons: a weighted mean fails when there are multi-model 

distributions, using the particle with the highest weight introduces a discretization 

error, and the robust mean is computationally expensive (although it is the best 

method). 

4.2.1 Resampling 

A major issue that arises as the particle filter progresses is the depletion of the particle 

population. As the particles evolve, several particles may drift far enough from the 

sensor input for their weight to become negligible and have no effect on the probability 
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1 Algorithm Particle filter(Xt- 1 , Ut, Zt): 

2 Xt = Xt = 0 
3 for m = 1 to M do 
4 samplex~ "'p(xt I Ut, x~1 ) 
s w~ = p( Zt I x~) 

- - + ( m m) 6 Xt = Xt xt 'wt 
1 end 
s for m = 1 to M do 
9 draw i with probability a w~ 

10 add x~ to Xt 
u end 
12 return Xt 

Algorithm 2: A basic implementation of a particle filter algorithm [30]. 

distribution function of the state variables you are tracking. The estimated sample 

size, ESSt, is a hueristic developed by Liu et al. [48] that describes the number of 

near-zero-weight particles that reside in the distribution. These equations, 4.6 and 

4.6 details the coefficient of variation of the weights of each particle. ESS can be used 

as a threshold to indicate when to to resample. When the ESS rises above a certain 

threshold the particle population is resampled and the particles with low weights are 

dropped in favor of replicating the particles with the higher weights. 

2 = var(wt(i)) = _..!.._ ~(M ( ') _ 1)2 
cvt E2( (')) M ~ w z 

Wt 'l i=l 

M 
ESSt = 1 2 

+cvt 

Resampling Techniques 

(4.6) 

(4.7) 

There are three commonly used algorithms to resample particles. They are Select 

with Replacement, Linear Time Resampling, and Resampling by Liu et al.. In every 
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algorithm the input is an array of the weights of the particles and the output is 

an array of the indices that indicate the particles that are going to be propagated 

forward. Select with Replacement is the simplest resampling algorithm and tests 

have shown no reasonable increase in performance of the other algorithms over this 

simple algorithm which is precisely the reason why I decided on this algorithm for 

my particle filter. [31]. 

In the Select with method, each particle is selected to propagate forward with 

a probability proportional to its weight; the higher the weight of the particle the 

better the chance it has of being propagated forward. Another method proposed by 

Carpenter et al. is Linear Time Resampling. In this method a sorted random number 

sequence is generated in linear time by manipulating the negative logarithm of N 

random numbers, after that the algorithm is the same as Select with Replacement [37]. 

The third algorithm is Resampling by Liu et al. put forth in their paper on Sequential 

Importance Sampling. This technique uses a function of the weights of the particles 

ai = f(wi) to determine which particles are propagated forward. If ai is greater than 

or equal to one then k copies of that particle are propagated forward (k = ai)· If the 

output is less than one the particle survives with a probability equal to ai [34]. 

4.3 Limitations of a Multi Robot System on State Estimation 

The initial limitation of the r-one on state estimation is the low-cost factor. This 

particular limitation is the main constraint which affects all of the other limitations. 

In an effort to produce a multi- robot system that is economically viable for any type 

of institution or research environment, design decisions were made that placed limits 

on the hardware procured for the build (see Section 3.1). 

One particular limitation of the r-one on state estimation is a direct result of the 
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choice of microcontroller. As stated in 3.1 the rone is controlled by a Texas Instru­

ments Stellaris LM3S8962 microcontroller. While this microcontroller has plenty of 

1/0 it does not have a floating point unit (FPU) which would allow it to perform 

floating point calculations. The addition of a microcontroller that includes an FPU 

would add to the overall cost of each robot, defeating the goal of maintaining the 

r-one as a cheap, yet robust, multi-robot platform. Also, the decision to use the 

LM3S8962 was based on the fact that it was an "system on a chip" solution that 

did not require external 1/0 controls or external memory, thus reducing the overall 

system complexity. 

Another limitation of the r-one on state estimation is the limited amount of band­

width for the IR communication system. Refer to 3.1.1 for the more information 

about the IR system in the r-one. With the current protocol the typical message size 

is 60-bits for a 5-byte message payload, which takes 48 milliseconds to transmit. With 

a neighbor period of 1000 ms each robot can effectively maintain a neighbor list that 

contains 10 neighbors, any more than that and your IR network becomes saturated 

due to communication collisions. 
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Chapter 5 

Simulation Results 

To test the effectiveness of my particle filter algorithm, without needing to implement 

the algorithm on the actual r-one hardware, I needed a simple r-one simulator. It is 

this requirement that lead me to take an existing simulator and adapt it to my needs. 

This simulator effectively incorporates the state model, robot model and sensing 

model put forth in Chapter 3. 

5.1 Rone Simulator 

The current r-one simulator is written in Java with the Model-View-Controller ar-

chitecture. It was originally coded by Elizabeth Fudge and Siegfried Bilstein; both 

undergraduate students in the Multi-Robot Systems Lab at Rice University. I took 

this existing framework and extended it to simulate my particle filter. 

otion -

Figure 5.1 : Flowchart of the particle filter algorithm implemented in Java. 
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5.1.1 Particle Estimator Robot Class 

The ParticleEstimatorRobot class inherits all of the methods from the RobotVertex 

class and adds two specific methods for the particle filter. The first method devel­

oped is the updateSensorlnformation. This method does not need any input and the 

return type is public void. The first step in this method is to look at the list of current 

neighbors and as long as this is populated it completes the following steps for each 

neighbor in the list. First it calls the parallel method ( updateSensorlnformation) con­

tained in the ParticleRobotNeighbor class, and discussed below. It then determines 

the number of low weight particles for the current collection of particles by calling 

the countLowWeight method contained in the ParticleRobotNeighbor class. A check 

is made to see if the low weight count of the particles is below two predetermined 

thresholds. If it is below the resample threshold then the then the particles are resam­

pled by calling the resampleParticles method in the ParticleRobotNeighbor class. If 

it is below the reinject threshold then the particles are reinjected by calling the mak­

eNewParticlesUniformDist method. The final action this method completes is to call 

the updateAvgPose method in the ParticleRobotNeighbor class. This provides the 

latest estimate of the pose of the robot's neighbor by computing a weighted average 

across all of the particles. 

The second method located within this class is the updateNeighborParticles method. 

While there is a neighbor in the neighbor list this method calls evolveParticles in the 

ParticleRobotNeighbor class, which will be described in detail below. However, it 

provides the motion to the particles based on the transmitted tv and rv values of the 

neighbor. 
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5.1.2 Particle Robot Neighbor Class 

The first important method in this class is the createReplacementlndex method. This 

method is the critical requirement of the resampling portion of the particle filter and it 

returns an array of integers which represents the indices of the particles that will to be 

propagated forward. This method is based on the Select with Replacement algorithm 

in Rekleitis' technical report [31]. Refer to Section 4.2.1 for more information about 

this resampling technique. 

Another method located m this class is the resampleParticles method. This 

method starts out by calling the createReplacementlndex discussed above. It then 

uses the output array of indices to create a new set of particles to be propagated for­

ward. Then the reinjection of new particles based on the current sensor measurement 

occurs by calling the makeNewParticlesUniformDist method which simply replaces 

existing particles with the lowest weight with a predeterimined amount of new parti­

cles based on the current sensor measurement. Finally, the weights of the particles are 

normalized which is a requirement for the Effective Sample Size heuristic to function 

correctly. 

Finally, the last major method in this class is the updateSensor Information method. 

The first step of this method is to determine which sector the neighbor is in, which 

allows the sensing robot to determine sector changes. Next the method weights the 

particles using the sensor model giving a particle in the sector a weight of 0.95 and a 

particle out of the sector a weight of 0.05. 
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Figure 5.2 A screenshot of the Java particle filter simulator in motion. 
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5.2 Metrics 

In measuring the effectiveness of my particle filter I am concerned with two metrics: 

speed and accuracy. Accuracy is determined by calculating the difference between 

the ground-truth pose and the estimated pose produced by the particle filter. I 

split the accuracy measurement into two parts. The first part measures the linear 

distance between the ( x, y) of the actual and estimated pose based on the sensing 

robot's coordinate system. The second part measured the difference between the () 

of the estimated pose and the() of the ground-truth pose, again based on the sensing 

robot's coordinate system. The second metric measured was the time it took the 

estimated pose to converge with the ground-truth pose. Once the estimated pose 

was with 10% of the communications radius of the r-one, approximately one meter, I 

declared the estimated pose to be converged and measured the current time. I denote 

this convergence on the plots with a black, horizontal line at 0.1 meters and a black 

vertical line denoting the time of convergence in milliseconds. One item to note is 

that the system may seem like it converges initially but then the error grows. During 

this initial period the system does not converge, the illusion of convergence is simply a 

byproduct of the initial placement of the neighboring robot. This is discussed in detail 

in Section 5.5.3. Additionally, the longer that the neighboring robot stays within the 

sensing robot's sector the estimated pose may diverge from the actual pose. This is 

due to the amount of information that can be garnered from motion updates versus 

sensor updates and is discussed in greater detail in Section 5.5.2. 
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5.3 Simulation Setup 

A proper assessment of the effectiveness of my particle filter implementation required 

a baseline data set. This data set was the result of what I refer to as the "vanilla" par­

ticle filter implementation. This particular variation did not include any resampling or 

reinjection of new particles and used a simple multiplicative weighting scheme. Fox, 

Burgard and Thrun actually refer to this particular implementation as a "usually 

inferior" implementation of a particle filter [30]. 

I initialized this implementation with 2,000 particles and allowed those particles to 

evolve, be weighted according to the sensor measurement, and calculate the weighted 

average of those particles to produce the estimated pose. To determine the algorithm's 

sensitivity to different parameters I varied three key design parameters. The first 

parameter is the number of particles the particle filter is initialized with. I start with 

a population of 125 particles and then doubled it each iteration until I reached 4000 

particles. The second parameter is the update period for the sensors in milliseconds. 

I started with an update period of 50 milliseconds and doubled it until I reached an 

update period of 400 milliseconds. The final parameter is the number of sectors that 

the robot uses to sense other robots with, this dictates the resolution of the bearing 

measurement for the r-one. I started with four sectors and doubled the number of 

sectors until I reached 64 sectors. However, the remaining variables for each iteration 

remained in a default configuration consisting of the following values: 

• Number of Sectors: 16 

• Number of Particles: 2000 

• Update Period: 250 milliseconds 

• Resampling Threshold: 10% of the Number of Particles 

• Reinjection Threshold: 100% of the Number of Particles 
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Furthermore, to collect enough data to collate and analyze I ran each iteration a 

total of 12 times. The data collected included the estimated pose and the actual pose 

alongside descriptor data that allows me to parse the data and sort it accordingly. To 

accomplish this I added a section in the code that captured all of the variables and 

output them to a comma-separated values file which was then subsequently manipu­

lated using a Python script. This data was then entered into Matlab to produce the 

plots. 

I accommodated varying all of these parameters through the work smarter and 

not harder idea of automation. To accomplish this I wrapped the main loop of the 

simulator with three different while loops, one for each parameter I wanted to test. 

This allowed me the freedom to hit run once and walk away from the simulator and 

allow it to output all of the files I needed. 

5.4 Simple Particle Filter Implementation Data and Results 

At first glance this simple implementation appears to allow the r-one to determine 

the range to its neighbor much more efficiently than my final particle filter imple­

mentation. This is supported by Figures 5.3(a)- 5.5(b) which show that the overall 

error for both the (x, y) position and () declining over time. It would seem that this 

is the solution to our range problem. However, I believe that this particular imple­

mentation is not robust enough to quickly handle the r-one making course changes 

or other dynamic movements. The particles are only created when the neighbor is 

first sensed and those particles are never resampled nor are new particles reinjected, 

instead all of the original particles are allowed to evolve until the neighbor is no longer 

sensed. If the neighbor were to make a 90° rotation and continue to move forward 

the estimated pose would correct only a little but not enough to allow the estimated 
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Figure 5.3 : Vanilla particle filter st andard deviation for both (x,y) and e while 
varying the number of sectors. 
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Figure 5.4 : Vanilla particle filter standard deviation for both (x,y) and B while 
varying the number of particles. 
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pose to represent the actual pose. 

5.5 Final Particle Filter Implementation and Results 

The plots from the final particle filter implementation are much noisier than their 

"vanilla" counterparts. However, looking beyond all of the noise it is clear to see that 

the error for both (x, y) and () decline over time. Additionally, this implementation 

will be able to handle dynamic motion, unlike the simple implementation. The theta 

plots indicate that the error in theta is invariant with all of the parameters tested. 

The estimated theta reasonably converges between 5 and 6 seconds for most of the 

tests. 

The first two plots display the positional and bearing errors while varying the 

number of sectors that the r-one uses to sense neighbors. The reason for this is 

twofold: first, it is to see if the design choice of 16 sectors was a reasonable one and 

to see if the particle filter reacts better with a different number of sectors, possibly 

warranting a design change. For the four sector case the particle filter performed 

horribly. This is the result of three factors. First, the number of particles, 500 in 

this case, is not enough to reasonably represent the probability distribution function. 

Second the greatest amount of information is gleaned during a sector transition and 

for the four sector scenario there are only two sector transitions. Third, the longer 

the r-one stays within a sector the more the belief spreads out without any new 

information to act on. The eight sector scenario performs marginally better than 

the four sector scenario. The 16 and 32 sector scenarios performed reasonably well 

and were closely matched in performance. The final scenario, that of 64 sectors, 

performed the best out of all the scenarios. Again, this falls in line with I mentioned 

earlier about the four sector scenario, only it is the reciprocal of those points. Since 
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Figure 5.6 : Optimized particle filter standard deviation for both (x,y) and B while 
varying the number of sectors . 
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Figure 5.7 : Optimized particle filter standard deviation for both (x,y) and () while 
varying the number of particles. 
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Figure 5.8 : Optimized particle filter standard deviation for both (x,y) and e while 
varying the update period. 
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there are several more sector transitions there is more information being provided to 

the particle filter. Also, the time spent in each sector is minimal which does not allow 

the belief to spread out very much at all. Finally, the number of particles is more 

than adequate to reasonably portray the pdf since the overall area of the sector is 

much smaller. 

The second plots display the positional and bearing errors while varying the num­

ber of particles used to bootstrap the particle filter. As I mentioned earlier, if you 

do not have enough particles to represent the pdf then the particle filter will find it 

difficult, if not impossible, to estimate the hidden state variables you would like it to 

ascertain. This is supported with the plots; as the number of particles go up the time 

to converge, the standard deviation, and the amount of divergence between sector 

transitions all decline. The sweet spot seems to be right at 1,000 particles for this 

system. However, due to the memory and computational constraints on the r-one I 

decided to use 500 particles for my filter and to tune all of my parameters accordingly 

since the 500 particle case allows for a reasonable convergence time. 

The third set of plots display the positional and bearing errors while varying the 

update period of the particle filter. This period determines when the r-one will receive 

information from the infrared communications system. With this information it can 

then update the weights of the particles and resample or reinject if it is required. 

The plots indicate that the r-one does not require a longer update period. In fact the 

r-one is insensitive to changes in the update period. is at its peak. The convergence 

time among all of the different update periods are similar. It is because of this fact 

that the design decision to utilize settle on a 250 millisecond update period for the 

r-one is reinforced. 



---------------~~-·~~~ ~~~-

56 

5.5.1 The Effect of ESSon the Final Implementation 

Even though the ESS heuristic first discussed in Section 2.3.2 works for an interim 

implementation of my particle filter (one with multiplicative weighting and resamp­

ing), it fails miserably when I add in the actual weighting scheme based on the sensor 

model portrayed in Section 3.5. As pointed out earlier, this sensor model does not 

produce a typical probability distribution function. Instead, it is binary in nature by 

only producing two weights. In fact Liu goes on to state that if the weights of parti­

cles are approximately similar then resampling only serves to decrease the efficiency 

of the sampled representation [49]. This resulted in the development of a simplified 

method to determine when to resample. Instead of relying on the ESS heuristic I 

simply count the number of low weight particles in the current particle distribution. 

If that number rises above a preset threshold then I have the particle filter algorithm 

resample or reinject. 

5.5.2 Impact of Sector Changes 

To better understand the impact that the sector transitions had on my particle filter 

I decided to simplify two of my earlier plots by plotting the 16 sector data and 

adding visual indicators where the sector transitions occurred. Figures 5.9(a) and 

5.9(b) is the result of this simplification. The accuracy of the transition indicators 

is coarse because they are the result of logging the time when the neighboring robot 

crosses into an adjacent sector in a file separate from the other data. However, the 

placement transition indicators need not be in the exact location because even the 

coarse locations correlate very well with the effect that sector transitions are having 

on the mean. 

One major takeaway from this particular figure set is that the longer that a neigh-
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Figure 5.9 : Error between sector transitions for 2,000 particles, 16 sectors, and a 250 

millisecond update period. 



58 

boring robot stays in one of the sensing robot's sectors the worse its estimate of its 

pose gets. This is because the most information gleaned from this particle filter is 

right at a sector transition. The particles that make this sector transition at ap­

proximately the same time the robot's sensors detect a change in sector will continue 

to maintain their high weight while all other particles will be reduced to the lower 

weight. You can notice that the the error drops quickly immediately following a sec­

tor transition and reaches a minimal point while the robot traverses the remainder of 

that sector only to start increasing again. Again, this is because the longer a robot 

stays within a sector the more that the probability distribution function representing 

the belief spreads out. This results in the estimated pose drifting away from the 

actual pose. 

5.5.3 Poor Experiment Design 

After reviewing the all of the plots I noticed an anomaly where the error quickly gets 

smaller and the estimated position almost converges on the actual position before 

getting large again. To further investigate, I drew the simplified plot with 16 sectors, 

a 250 millisecond update period, and 2,000 particles on the white board. I then added 

the sector transition lines to the plot. Finally, directly below the plot, I sketched the 

actual path of the robot and the estimated path of the robot. The red robot and 

dashed line represents the actual robot location and the path it takes. The green 

robot and dashed line represents the estimated robot location and determined by the 

particle filter. 

Looking at this hybrid plot it is clear to see that the initial reduction in error and 

subsequent increase in error is an artifact of the estimated position crossing the path 

of the actual robot. This makes it appear that the estimated pose converges with 
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Figure 5.10 : Recognizing bad experiment design. 
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the actual pose. This is merely poor experiment design. To get a better handle on 

the how quickly this system converges I would need to disregard the first two sector 

transitions, if not the first three, and then determine when the system converges. 

Moving forward I addressed this issue by moving the starting point down and the 

ending point up. This set of points will ensure that the estimated pose does not cross 

the path of the actual pose. This will induce a greater error at the outset since the 

probability distribution will have to diverge more before getting a good estimate of 

the pose. 

5.5.4 Degenerate Cases 

After observing my implementation of the particle filter over several iterations I no-

ticed that there are two degenerate cases that occasionally occurred. Both of these 

cases are illustrated in Figures 5.11 (a) and 5.11 (b). 

The first degenerate case, Figure 5.11(a), is a result of all of the particles ending 
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up outside of the sector during a sector transition. This typically happens when 

all of the particles, and subsequently the estimate, are close to the far edge of the 

sector. During a sector transition none of the particles make the transition to the new 

sector at the same time so all particles are weighted down accordingly. Resampling 

does nothing to correct this degenerate case because the goal of resampling is to 

propagate particles with higher weights and since they all have the same weights the 

particles get "stuck" outside of the sector. To deal with this degenerate case I added 

a second threshold to check for during the update phase of the particle filter, this is 

the reinjection threshold. When this threshold is met the particle filter is rebooted by 

discarding the old particles and making a new uniform distribution of particles. To 

detect when all of the particles leave the sector completely the limit of this threshold 

is set at the initial number of particles. 

The second degenerate case, Figure 5.11 (b), occurs when the only particles re­

maining end up near the point of the sector. Once there they are unable to move 

towards the actual pose of the neighboring robot. This is due to the error model for 

tv and rv. By introducing a constant error to the tv and rv we produce a nearly 

round cloud of particles that depicts the estimated pose. If this cloud of particles 

gets near the point of the sector the error model produces particles that are always 

inside and outside of the sector. The outside particles are immediately weighted down 

and discarded during the next resampling phase, but the inside particles are kept. 

Since we are losing a significant portion of our particles but keeping incorrect ones, 

the particle filter cannot converge. To deal with this degenerate case I am making 

the assumption that the robots will only pass that close for a short time. Therefore 

I weight particles that are near the point of the sector as if they were outside of the 

sector. This ensures that the particle cloud never gets stuck. 
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Figure 5.12 : Convergence times, in seconds, for both (x,y) and e while varying the 
number of sectors. 

5.6 Convergence Times 

Figures 5.12 (a) and 5.12 (b) illustrate the convergence time while varying the sector 

parameter. There are two reasons for varying this parameter. First, I wanted to 

see how sensitive my particle filter was to the sector parameter. Second, I wanted 

to verify that the 16 sector design was a correct decision. I was able to verify that 

my particle filter algorithm is sensitive to the number of sectors which indicates that 

tuning is required if the number of sectors change on the r-one. The figure also verifies 

that the 16-sector design for the r-one allows for a low convergence time. 
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Figure 5.13 : Convergence times, in seconds, for both (x,y) and B while varying the 
population of particles. 

Figures 5.13(a) and 5.13(b) illustrate the convergence time while varying the parti-

de population size parameter. The main reason for adjusting the number of particles 

that the particle filter is initialized with is to determine the absolute lowest number 

of particles that I can use while still reaching convergence in a reasonable amount 

of time. The figures indicate that 1,000 particles seems to be the optimal solution. 

However , this may change with more time invested in tuning the particle filter for 

500 particles. 
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Figure 5.14 : Convergence times, in seconds, for both (x,y) and e while varying the 
update period. 

Figures 5.14(a) and 5.14(b) show the convergence time while varying the update 

period parameter. While changing the update period I discovered that my particle 

filter algorithm is relatively invariant to the length of the update period. However, 

thinking about this a little more thoroughly leads me to believe that this invariance 

exists due to the simple experiment design of having the neighboring robot travel in 

a straight line. To further investigate this issue I would need to run another round of 

experiments that have the neighboring r-one travel using complex patterns. 
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Chapter 6 

Conclusions and Future Work 

6.1 Limitations 

A major limitation of my particle filter implementation is that it requires the robot 

being sensed to be moving. If it is not moving the amount of information garnered 

from the sensing robot is very little, a majority of the information provided in this 

particle filter comes when a robot crosses from one sector to the next. 

A major limitation turned out to be the amount of memory that the r-one has. 

This memory limited the maximum number of particles to 1,000. However, at this 

amount the r-one would not be able to run any other task. This is why I focused on 

tuning the particle filter algorithm for 500 particles. This produced reasonable results 

while freeing up enough resources for the r-one to run other tasks concurrently with 

the particle filter algorithm. 

6.2 Future Work 

There are several avenues to move forward from this thesis. First, there is the im­

plementing of this algorithm inC and on the r-one hardware to verify it's real-world 

effectiveness. Second, with the large number of parameters to tune to make this algo­

rithm optimal one can devise a method to automate the parameter tuning. Finally, 

one can add an additional layer between the algorithm and the r-one hardware that 
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will smooth the estimate using an exponential moving average. 

6.2.1 Actual Robot Testing 

There exists a rift between a real-world implementation of an engineering system 

and a software simulation of the system. Even though a developer may take every 

precaution available to them they can never make a simulator truly represent the 

real world. This is due to the inherent differences in the design approach and the 

assumptions made when modeling the subsystems and the interactions between them. 

Take the infrared messaging system as an example, more specifically the passing of 

the robot ID, translational velocity, and rotational velocity. In the simulator I simply 

use a setter/ getter to pass this information from the origin to the destination. On 

the actual r-one itself it is not this simple, the r-one has to put the message together 

and the infrared message system has to transmit it. There are several potential error 

injection points in just in these two steps. With this in mind I wanted to conclude 

my thesis with the experimental results of running my particle filter on the r-one's. 

The primary way forward is to conduct actual experiments with the r-one multi­

robot system and my particle filter algorithm written in C. Seeing this algorithm 

run on the actual hardware would reinforce the findings made through the use of the 

simulator and allow me to garner just how computationally exhaustive this particle 

filter algorithm is and to see if it is a viable range estimation solution for the r-one. 

6.2.2 Automated Parameter Tuning 

Another avenue to pursue would be to determine the best set of parameters for 

this particle filter implementation. I believe the way forward for this would be to 

further extend the simulator and to wrap it with a genetic algorithm to test all of 
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the parameters and to let it run. Once the framework was built up it could be 

used to determine the best parameters for any particular situation or the best set of 

parameters for a generalized situation. The latter would be the best product of this 

work since the state of a multi-robot system is always in flux due to movement of the 

robots themselves or to fluctuations in the inter-robot communications. 

6.2.3 Pose Smoothing on the R-one 

One thing I notice during the simulation runs is that the estimated pose has a ten­

dency to "jitter" quite a bit. This is a result of the sensor model. With the sensor 

being an arc we get a lot of information from each sector transition and only a little 

information while within the sector. As the robot stays in the sector the estimate 

deviates from the actual position due to this lack of information. To combat this 

one could implement an exponential moving average for the estimated pose. This 

would allow the r-one to weight a large transition in the estimated pose lower than 

a smaller transition. This is based on the fact that the velocity controller for the 

r-one produces a smooth tv and rv and does not "jump around". By smoothing the 

path of the estimated pose the r-one will produce a better estimate the pose of the 

neighboring robot. 

6.3 Final Remarks 

I have evaluated my particle filter algorithm using three key parameters; the number 

of sectors, the number of particles and the update period. I have determined that 

my particle filter algorithm is sensitive to the the number of sectors and the number 

of particles but insensitive to the update period. The sensitivity to the number of 

sectors is mitigated by the fact that the algorithm converges in a reasonable amount 
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of time with 16 sectors, the current number that the r-one uses. The number of 

particles is also mitigated by the fact that the 500 particle case still converges within 

a reasonable amount of time as well. This is a number that the r-one hardware 

can efficiently implement. The insensitivity to the update period allows us to move 

forward without having to change the current update period on the r-one. 

Finally, the main result of this work is the extension of the capabilities of the r-one 

robot. By implementing my specific particle filter algorithm and allowing the r-one 

to be able to estimate the range between itself and its neighbors I have raised the 

r-one in the dominance relation explained in Section 2.2.3. The r-one is now placed 

above the bearing-only coordinate system but below local coordinate systems as seen 

in Figure 2 .1. 
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