
RICE UNIVERSITY

Pose Estimation With Low-Resolution
Bearing-Only Sensors

by

Joshua B. Rykowski

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Master of Science

Assistant Professor of Computer Science

Associate Professor of Computer Science
and Electrical and Computer Engineering

~[~~
Dr. Marcia K. O'Malley V
Associate Professor of Mechanical
Engineering

Houston, Texas

December, 2011

ABSTRACT

Pose Estimation With Low-Resolution Bearing-Only Sensors

by

Joshua B. Rykowski

Pose estimation of neighboring robots is a key requirement for configuration con­

trol behaviors in multi-robot systems. Estimating pose is difficult without system

constraints, it is even more challenging when using minimalistic sensing alongside

limited bandwidth. Minimal sensing models are a well studied field in robotics and

are relevant to our particular hardware platform, the r-one, which has sensors that

only measure a low-resolution bearing to neighboring robots. These bearing-only sen­

sors are simpler to design with and cheaper to deploy in large numbers. In this thesis,

I focus on the r-one multi-robot system which is capable of coarsely measuring the

bearing, but not the distance, to neighbors. These sensors have a angular resolution

of only 22.5 degrees due to the construction of the infrared system. I develop a par­

ticle filter algorithm that allows the r-one robot to estimate the pose of a neighbor

using the infrared communication system and odometry measurements. This algo­

rithm relies on the fusion of a coarse bearing measurement and neighbor velocities

and is optimized to use the smallest communications bandwidth possible. I tested

this algorithm with a simulation to demonstrate its effectiveness across varying sensor

setups, neighbor update periods, and number of particles.

Acknow ledgrnents

There are two people who share the credit for supporting me throughout my thesis

adventure. They are my wonderful and devoted wife, Carrie and my ever patient and

ever understanding advisor, James McLurkin.

To Carrie, thank you so much for your support and your devotion during this

academic ordeal! You took care of our home and our wonderful children (Julianne,

Preston, Emmi, and Bryce) with such grace and aplomb. Through all of the late

nights, early mornings, last minute "I need another hour to run another simulation"

(only to come home several hours later) you kept the home fires burning and always

had a positive attitude and knew just what to say when my motivation waned. You

are the reason I am a better person. I love you and our family!

To James, thank you so much for your wisdom, guidance, and patience. My time

under you definitely started off at a snails pace for a variety of reasons. However, you

listened when it was needed, you understood what I was saying and stepped back

when I needed it and stepped in when I thought I didn't need it but really did. I will

always be an "epsilon away ... ". It was a pleasure to work with you!

Finally, I would like to thank my other committee members, Marcia O 'Malley and

Alan Cox, for their understanding and patience.

Sometimes you just need a little faith.

Table of Contents

Abstract

Acknowledgments

List of Illustrations

List of Tables

1 Introduction

1.1 Motivation .

1.2 Contributions

2 Related Work

2.1 Multi-Robot Systems

2.1.1 State of the Art in Outdoor Multi-Robot Systems

2.2 Minimal Sensing

2.2.1 Low-Cost Sensors

2.2.2 Power of Robots

2.2.3 Coordinate Systems .

2.3 Probabilistic Robotics

2.3.1 Main Resources

2.3.2 Techniques That Worked .

2.3.3 Techniques I Considered

2.4 Summary

3 Preliminary Information

3.1 The R-one Robot

3.1.1 Inter-Robot Communication and Localization

3.2 Methods to Determine Orientation

IV

11

iii

Vll

X

1

2

3

4

4

7

8

9

10

11

15

16

16

19

20

21

21

22

26

v

3.3 Data Collection 28

3.4 Robot Model 29

3.5 Sensing Model . 30

3.6 State Model . . 31

4 State Estimation 34

4.1 Probabalistic Robotics 34

4.1.1 Bayes Filter Algorithm 35

4.2 Particle Filter . . . 36

4.2.1 Resampling 37

4.3 Limitations of a Multi Robot System on State Estimation 39

5 Simulation Results 41

5.1 Rone Simulator ... 0 • 0 0 •• 0 0 •• 41

5.1.1 Particle Estimator Robot Class 42

5.1.2 Particle Robot Neighbor Class . 43

5.2 Metrics 45

5.3 Simulation Setup 46

5.4 Simple Particle Filter Implementation Data and Results 47

5.5 Final Particle Filter Implementation and Results 51

5.5.1 The Effect of ESS on the Final Implementation 56

5.5.2 Impact of Sector Changes 56

5.5.3 Poor Experiment Design 58

5.5.4 Degenerate Cases 60

5.6 Convergence Times . . . 62

6 Conclusions and Future Work 65

6.1 Limitations 65

6.2 Future Work . 65

6.2.1 Actual Robot Testing

6.2.2 Automated Parameter Tuning

6.2.3 Pose Smoothing on the R-one

6.3 Final Remarks

Bibliography

vi

66

66

67

67

69

Illustrations

2.1 A representation of the dominance relationship of coordinate systems. 12

3.1 a: The r-one robot. b: Exploded CAD view of the robot assembly.

The robot is composed of two circuit boards bound together with a

circular shell and four screws. c: The motors and encoders mount

directly to the circuit board. 22

3.2 a: The transmitter and shell are designed to produce a radially

uniform power output. b: This is a top view of a CAD model of each

IR receiver's detection region. Each receiver detects signals in a

68oarc. These regions overlap to form 16 distinct sectors. A message

from a neighboring robot will be received on one or two receivers, and

can be processed to determine the direction to within 2.5°. c:

Experimental verification of the overlap of the receiver regions. The

plot is showing the angle each receiver can detect an incoming

message. The average width is 68°, which matches the CAD model.

The corresponding arc from the top view is highlighted in black. 23

3.3 A simple diagram illustrating how the neighbor period update makes

the r-one a distributed, synchronous system. Each robot transmits

only once during the neighbor period, tlt. Since each robot has the

same tlt the system looks like a distributed, synchronous system. 25

3.4 a: The tripod and boom setup used for collection of location

information. b: Camera view of rone robots. . 29

3.5 A representation of robot model for the r-one. 30

3.6 A representation of sensor model for the r-one. The r's represent the

eight infrared receivers. The s's represent the 16 bearing sectors. . . . 31

3.7 A representation of (bearing, range, orientation) for two robots. The

sensing robot is on the left (centered on the origin) and the

neighboring robot is on the right.

3.8 An alternate representation of (x, y, 0) for two robots. The sensing

robots is on the left (centered on the origin) and the neighboring

Vlll

32

robot is on the right. 33

5.1 Flowchart of the particle filter algorithm implemented in Java. 41

5.2 A screenshot of the Java particle filter simulator in motion. . . 44

5.3 Vanilla particle filter standard deviation for both (x,y) and(} while

varying the number of sectors. 48

5.4 Vanilla particle filter standard deviation for both (x,y) and(} while

varying the number of particles. 49

5.5 Vanilla particle filter standard deviation for both (x,y) and (} while

varying the update period. 50

5.6 Optimized particle filter standard deviation for both (x,y) and(}

while varying the number of sectors. 52

5. 7 Optimized particle filter standard deviation for both (x, y) and (}

while varying the number of particles. 53

5.8 Optimized particle filter standard deviation for both (x,y) and(}

while varying the update period. 54

5.9 Error between sector transitions for 2,000 particles, 16 sectors, and a

250 millisecond update period. . . . 57

5.10 Recognizing bad experiment design. 59

5.11 Degenerate Cases of my particle filter algorithm. . 60

5.12 Convergence times, in seconds, for both (x,y) and(} while varying the

number of sectors. 62

lX

5.13 Convergence times, in seconds, for both (x,y) and(} while varying the

population of particles. 63

5.14 Convergence times, in seconds, for both (x,y) and(} while varying the

update period. 64

Tables

3.1 An illustration of the desired message size, in bytes, the actual

number of bits sent and the corresponding transmit time. . . . 24

- ------------------------ ------- ----------------------------

1

Chapter 1

Introduction

Range Matters. Imagine yourself on Sicily Drop Zone at Fort Bragg, North Carolina

immediately following a 2300 time-on-target airborne "jump". Knowing that the

assembly area for your unit is about a kilometer east of the drop zone you quickly ex­

tricate yourself from the parachute harness, pull out your night vision goggles (NVGs)

(the monocle version which limits your depth perception) and begin to expeditiously

move (i.e. run) towards the assembly area.

You fail to remember that looking through this particular version of the NVGs

is akin to closing one eye (it severely limits your depth perception). All of a sudden

you see a flash of light and then you are looking up at the stars, listening to someone

chuckle in the distance. Your inability to estimate range caused you to clothesline

yourself on a low tree branch in view of the rest of your unit. Our new robot, the r­

one, faces a similar problem, without the ability to estimate range between themselves

and their neighbors, these robots are destined to live a life of simple, trivial tasks and

always be fearful of low branches!

The ability to quickly and accurately obtain a good estimate of the pose, (x, y, 8),

of neighboring robots is a requirement to produce many complex behaviors in multi­

robot systems. These behaviors include, but are not limited to: a robot maintaining

a critical distance from its neighbor, a robot ensuring reliable communications by

maintaining a maximum distance, or many robots performing SLAM (simultaneous

2

localization and mapping) [1, 2]. Many systems can measure range directly with the

robot's sensors, but our low-cost robot has a minimalistic sensor system that only

measures angles between neighboring robots. This thesis describes a particle filter al­

gorithm that can estimate the pose of a neighboring robot with low-resolution bearing

sensors.

1.1 Motivation

A multi-robot system has can accomplish tasks that a single robot cannot. An ex­

ample of this would be conducting surveillance, or collecting data, over a large area.

This is simply not possible with a single robot because they cannot be in multiple

locations simultaneously. However, a multi-robot system can disperse and ensure

coverage of the area of interest. Also there are tasks that a multi-robot system can

accomplish much more efficiently. A typical task that a multi-robot system will be

able to accomplish much more efficiently than a single robot is exploration. A single

robot can explore any size area. However, a multi-robot system will be able to explore

the same area in a fraction of the time.

The multi-robot system design to originate from the Multi-Robot Systems Lab at

Rice University, the r-one robot shown in Figure 3.1(a), attempts to fill a gap in the

short list of educational multi-robot systems. Currently, it has a cost of around $220

per robot, a large sensor suite including a gyro, accelerometer, wheel encoders, and

light sensors. It includes a radio for global control, an infrared beacon for ground­

truth localization, and an infrared inter-robot communication and localization system.

The robot can be programmed inC, or can run an embedded Python interpreter to

make programming more accessible to younger, less experienced, students. We are

currently using the platform in an introductory first-year engineering course and a

3

graduate level course on robotics, with good success to date.

However, this platform lacks sensors that can directly measure range to neighbors.

However, we can use its bearing measurements to infer the range. In this thesis, I

estimate the range to neighboring robots with a particle filter algorithm on the r-one.

This estimation also recovers the full pose of the neighbor, (x, y, 0).

1.2 Contributions

The importance of this pose estimator is that it fills a critical gap in the current capa­

bilities of the r-one robot without increasing the cost of the platform. Currently, the

r-one platform can only measure limited geometric information its neighbor without

any idea of the range to the neighbor or the neighbor's (x, y) position in the sensing

robots coordinate system. The resolution of bearing that the r-one determines is

approximately 22.5°, which is very coarse. Section 3.1.1 provides an in-depth expla­

nation on the current sensor capabilities of the r-one.

In developing my particle-filter algorithm, I have successfully extended the state

estimation capabilities of the r-one platform without adding to the overall cost, either

in build cost or materials cost. This extension is useful in that the r-one can now

be used to perform even more complex tasks than it was capable of performing. An

example of this increased capability would be adding formation control to flocking

r-ones. By being able to determine distance between each other the flock of r-ones can

morph their shape to be able to move through a dynamic environment, or maintain

a specified distance to neighboring robots.

4

Chapter 2

Related Work

There are three main areas of work that support my thesis. These include multi-robot

systems, minimalistic sensing and probabilistic robotics. In this chapter I describe

what defines a true distributed multi-robot system and discuss literature on current

full and partial multi-robot systems. The review of minimalistic sensing is split into

two major subsections. The first subsection discusses the Power of Robots which

establishes a dominance relation to stratify different robot platforms. The second

subsection focuses on coordinate systems and uses the dominance relation to rank­

order the current multi-robot systems in terms of their coordinate systems. The final

focus is on probabilistic robotics, more specifically, particle filters for state estimation.

I finish with a discussion about the various particle filter implementations.

2.1 Multi-Robot Systems

I define a true distributed multi-robot system as meeting four distinct criteria:

• Distributed Sensing

• Distributed Actuation

• Distributed Computation

• Distributed Communications

According to this list, there are very few multi-robot systems that meet all four

of these requirements. A majority of multi-robot systems meet only a subset of

5

this criteria, I refer to these as partial multi-robot systems. These partial multi­

robot systems are still relevant in that they are used to research and solve problems

within their particular criteria-space. This ultimately advances the knowledge for

that specific research domain within multi-robot systems.

The General Robotics, Automation, Sensing and Perception (GRASP) laboratory

at the University of Pennsylvania utilizes a quadrotor multi-robot system for research

on coordinated, dynamic flight [3]. Their particular setup meets the distributed

actuation criteria mentioned above. However, they utilize the Vicon Motion Capture

System to provide all of their sensing instead of relying on distributed sensing [4]. This

allows their laboratory to constrain the problem-space of their multi-robot system to

better study specific aspects of their system.

Another current partial multi-robot system, this one built for educational out­

reach, is the Educational, Research-Oriented, Sensing, Inexpensive robot, eROSI,

built by the Center for Distributed Robotics at the University of Minnesota. This

particular multi-robot system possesses a moderate array of sensors that include light

sensors, infrared range sensors, encoders, a camera and a bluetooth module. The ap­

proximate cost of each eROSI is $500.00, placing it at almost double the cost of the

r-one but still substantially cheaper than other multi-robot systems [5].

There are four multi-robot systems that meet all four criteria and they are: the

r-one robot, discussed in detail in Section 3.1, the SwarmBot multi-robot system,

the Khepera III system, and thee-Puck with the infrared turret. The first two were

designed and built by James McLurkin with the latter while he was with iRobot and

the former with the Multi-Robot Systems Lab at Rice University.

The r-one multi-robot system is covered in detail in Section 3.1 [6]. However, a

brief overview of the r-one follows. It is a 10 em robot which allows many robots to be

6

used in a small space. The infrared system is the primary mode of inter-robot commu­

nications. It was designed as an extremely low-cost solution for educational outreach

and meets that goal with a total per robot cost of approximately $ 220.00. The

robot can be programmed in either Python or C (using the FreeRTOS kernel). This

supports both undergraduate introductory courses and advanced robotics courses for

graduate students.

The SwarmBot multi-robot system was developed by James McLurkin and repre­

sents a robust system with a mature set of algorithms [7, 8, 9]. The hardware setup

consists of a complex sensor suite the consisting of bump sensors, light sensors, a cam­

era, encoders, and a infrared communications system (which can measure the full pose

of neighboring robots, bearing, orientation, and range). The robots also use a propri­

etary operating called the Swarm Operating System (SwarmOS™) which provides an

API for writing applications for the SwarmBot. It uses the ThreadX real-time oper­

ating system from Express Logic that supports threads, mutexes, semaphores, queues

and memory allocation. This multi-robot system uses a synchronous distributed com­

munications model. All of the SwarmBots transmit with the same transmission period

ensuring that each SwarmBot will receive only one message from each of its neighbors

during the period. This provides an upper bound on the time each SwarmBot has to

wait for a message and lets us model the entire system as a synchronous distributed

system. This is described in further detail in Section 3.1.1.

The Khepera III multi-robot system was produced by K-Team Corporation with

assistance from the Distributed Intelligent Systems and Algorithms Laboratory at

EPFL [10, 11]. This particular platform is an extensible design that supports multi­

robot education and research with a sensor suite that includes nine infrared range

detectors for obstacle detection, five ultrasonic sensors for long range obstacle detec-

7

tion, and two cliff detectors. The cost of this multi-robot system is prohibitive for

large populations at approximately $3,500 per robot.

The ePuck multi-robot system was developed as an educational outreach tool by

EPFL [12, 13]. With the addition of a separate communications board this is a true

multi-robot system. There are a couple key features that make this an attractive

educational tool. First, it is designed to be programmed over bluetooth and does not

need to be plugged into a computer. Second, it has a removable battery pack allowing

for extended usage time. However, it does have some limitations as well. First, it is

expensive with a price that exceeds $1,000, even more so with the range and bearing

board, which increases the cost by approximately $500 . Second, the curriculum is

built around their definition of a swarm which is approximately three robots. The

caveat to this limitation is that the system will scale to a larger size if that is desired.

2.1.1 State of the Art in Outdoor Multi-Robot Systems

The Multi Autonomous Ground-robotic International Challenge (MAGIC) was a com­

petition sponsored by the United States and Australian Departments of Defense in

an effort to push the development of the next-generation of the fully autonomous

ground vehicles [14]. More specifically, the need to fill a specific technology gap for

urban combat exists and this competition sought to address that gap.

The winner of MAGIC 2010 was Team Michigan lead by Professor Ed Olson. The

heart of this system is the inclusion of a robot-operator interface. The global state

of the map and robot status is integrated into a single user interface. The overall

commander can take control of any robot at any time and have his orders supersede

any of the current robot behaviors. Even though their multi-robot system was custom

built to the MAGIC 2010 specifications the chassis can be modified easily to relax

8

the constraints placed on their design during entry into the competition.

2.2 Minimal Sensing

The theme of minimal sensing is to determine how much a robot can accomplish with

the least amount of capabilities, or the simplest sensor to achieve a given task. This

is a subfield of probabilistic robotics that is still being studied in depth and has been

for over 20 years now.

Erickson et al. provides a spartan approach by using only a clock and a bump

sensor to localize a robot within a complex environment [15]. In this work, the re­

searchers simplify their world model to only include points along the boundary of

environment and ignore all points inside the boundaries. This novel approach to

redefining the environment allows them to develop an algorithm that reaches local­

ization given only the initial orientation of the robot and an extremely limited sensor

suite and not the robot's initial position within the environment. Their algorithm is

built around a heuristic that looks at the entropy of the system and seeks to reduce

that entropy by choosing motions accordingly.

Yu et al. provides a proof of concept of minimal sensing and control with a

simple system modeled on a dubins car [16]. This model has only three states that

allows it to follow a neighbor and still have all of the agents converge. This paper

is useful in that it shows a minimal sensing model can still cause agents to converge

without measuring range or bearing. This convergence is accomplished by means of

a simplified control law. Additionally, the agents do not communicate at all. Even

with this incredibly constrained system, they prove that any number of agents, placed

randomly within their environment, will always converge.

Another approach to minimal sensing is to use a sensor network that tracks a

9

target with a binary sensor using a particle filter [17]. Aslam et al. describes a system

with two types of sensors in the network, one that senses the target moving towards

the sensor and another that senses the target moving away. These simplified sensors

emit a single bit of information which allows the researchers to completely remove the

bandwidth constraint faced by any multi-agent systems. A drawback to this approach

is that the sensor network can only reliably determine the motion of the target. By

extending the model and combining the single bit with local proximity information

garnered from an infrared system the location and direction can be determined.

2.2.1 Low-Cost Sensors

A low-cost lidar alternative, referred to as a laser distance sensor (LDS), was intro­

duced at the 2008 ICRA Conference with a total production cost of $30.00 and built

with commercial off the shelf components [18]. This LDS has an accuracy of 3 cen­

timeters out to 6 meters, 10 Hertz acquisition, and 1 degree resolution over a full 360

degree scan. The inclusion of this sensor could greatly extend the r-one's capabilities

at a minimal increase in cost. However, the major drawback is the lack of actual

design plans available to the public. Currently, the only way to get an LDS is to

purchase a Neato XV-11 and remove the LDS. This has already been accomplished

through a "hack" competition sponsored by www.robotbox.com and now there are

various APis that allow anyone to use the LDS in a custom application [19].

The introduction of the Microsoft Kinect and its subsequent hacking and re­

purposing provides yet another vector with which to provide low-cost sensing. The

Microsoft Kinect camera utilize the RGB-D (red, green, blue and depth) camera

technology developed by PrimeSense [20]. The depth refers to the pixel distance from

the camera and is captured at the same time as the RGB image to provide a three-

10

dimensional image. The capabilities of these cameras are limited in the following

ways: they only provide depth up to a distance of 5 meters, their depth estimates are

noisy and their field of view is approximately 60o. Even with these limitations, this

sensor can extend the capabilities of a multi-robot system by providing an inexpensive

means to ascertain range information as shown by Henry et al. [21]. Additionally,

Herbst et al. provides a variation of SLAM, simultaneous localization and mapping,

that utilizes the Kinect RGB-D camera to identify details of objects within a robot's

environment to enhance the robot's performance [22].

2.2.2 Power of Robots

This thesis resides in the shadow of a much larger discussion about the types and com­

plexity of sensors required to perform a particular task, with two primary examples

coming from Rus et al. and Erdmann et al. [23, 24].

The paper by Rus et al. looks at whether or not a multi-robot system requires an

explicit control law to be able to accomplish the complex of changing the orientation

of an object [23]. The authors determine that planning, global control, and explicit

communication is not a requirement to complete these tasks. This correlates with the

Power of Robots theme in that it attempts to empirically derive the minimal amount

of sensing required to have a mulit-robot system change the pose of an object.

Erdmann proposes a method of reverse engineering sensors based on a robot's

task, its actions, and the uncertainty in control [24]. The bottom line of this paper is

that the author attempts to address three issues. The first is to utilize simple sensors

to improve the reliability of operations. Second, Erdmann attempts to circumvent

the sensing uncertainty issue by trying to design simple sensors that can measure the

particular uncertainty directly. Finally, he tries to define the amount of information

11

required for different task strategies.

However, there is no consensus in the current literature of how to best understand

and stratify the relative "power" of robots and sensors [25]. The general theme seems

to be constructing an ordering based on minimal robot/sensor capability that can

solve tasks. The introduction of sensors with greater capabilities incurs the penalty

of system complexity alongside increased cost (which can be mitigated in some cases,

see RGB-D and LDS in Section2.2). Finally, for multi-robot systems with large

populations sensor cost is a limiting factor: when you add an additional sensor to the

sensor suite you have to multiply the cost by the number of robots that will be in

your swarm.

My particle filter technique settles into this subfield rather well. I take an ex­

tremely simple bearing system that has an approximate resolution of 22.5° and com­

pute a usable range from it. This competes with the current solutions that are

currently available for thee-Puck and the Khepera III [11, 13]. In regards to mini­

malistic sensing my particle filter algorithm presents an alternate method which will

meet the same neighbor localization capabilities as the two commercial solutions but

not add any to cost to the current r-one bill of materials.

2.2.3 Coordinate Systems

O'Kane et al. define a dominance relation that states a robot dominates another

robot if it can collect at least as much information as another robot [25]. This

relationship is further clarified through the use of robotic primitives, or self contained

"instruction sets" for the robot that may involve sensing, motion or both. Building

upon this dominance relation I then add coordinate systems to further stratify the

multi-robot systems. McLurkin defines four different coordinate systems, I consider

12

Figure 2.1 : A representation of the dominance relationship of coordinate systems.

these coordinate systems to be robotic primitives, of which I only focus on global and

local coordinate systems [9).

With this dominance relationship as a backdrop I can then define a partial order

of systems for the current multi-robot systems based on the dominance relationship

of coordinate systems. In Figure 2.1 you see two columns. The column on the left

represents the dominance relation of the coordinate systems and the column on the

right is an illustration of the coordinate. Starting from the top the first coordinate

system is a global coordinate system. This coordinate system is the most dominant

of all the coordinate systems due to its ability to represent information for any of the

subsequent coordinate systems. Additionally, another reason this coordinate system

is the most dominant is that each robot's pose measurement of their neighbors is

13

consistent.t This is represented on the right as a single frame of reference for all

robots.

The next coordinate system is the local coordinate system. In this particular

coordinate system the robot population is split up into local "neighborhoods" or

subsets of the overall robot population. These neighborhoods each have their own

local coordinate system that allows the robots within the neighborhood to know the

pose measurement to all the other local robots relative to their local coordinate axis.

However, each neighborhood of robots does not know the information within nearby

neighborhoods. This is depicted on the right as two separate neighborhoods, each

with their own local coordinate system.

The next step down in this dominance relationship is a bearing and range esti­

mation coordinate system. This includes both my particle filter implementation and

another method currently being researched in the Multi-Robot Systems Lab at Rice

University called scale-free coordinates. Both of these coordinate systems rank be­

low local coordinate because they both only produce an estimate of the pose for the

neighboring robot. The question mark in between the two coordinate system merely

indicates that we do not currently know the relationship between the two coordinate

systems in terms of which one is more dominant than the other. The depiction of

these coordinate systems on the right indicates the bearing and range to a neighbor­

ing robot. Again, the question mark indicates that the range is only an estimate and

not the actual range between the two robots.

The particle filter implementation is a probabilistic technique that attempts to

determine some sort of hidden state variable. This is an variant of the Bayes filter

algorithm that utilizes a collection of estimates, called particles, to represent the

tr.e. the measurement between any two robots is the same from each robot's point of view

14

probability distribution function of the hidden state variables. This is discussed in

detail in Chapter 4.

As mentioned above, an alternate approach to pose estimation on the r-one plat­

form is a technique referred to as Scale-Free Coordinates [26]. This technique utilizes

the same multi-robot system as I do and attempts to mitigate the same hardware

limitations as well. The main difference is the algorithm producing the estimated

pose. I rely on a probabilistic method to infer the hidden state variables with my

particle filter implementation. The scale-free implementation leverages trigonometry

and the local network to produce a reasonable estimate of the range between robots,

up to a scaling factor. The advantages of the scale-free technique are shared with my

technique; no additional cost added to the r-one platform while increasing the r-one's

capabilities. A major disadvantage of this technique is the increased utilization of

bandwidth due to the communications required to compute the geometry of the local

neighborhood. This computation is covered in detail in Section 3.2. However, this

technique represents a promising alternate approach to determine an estimate of the

pose of neighboring robots.

Continuing down the dominance relation I arrive at the bearing-only coordinate

system. This coordinate system is currently implemented on the r-one and only allows

the robot to measure the bearing to its neighbor and not the range. This is indicated

on the the diagram on the right by showing a sector measurement to the neighbor

and nothing more.

Finally, the lowest coordinate system on the totem pole is the range-only coordi­

nate system. This coordinate system is the lowest simply because there is very little

you can do with knowing only the range and nothing more. If you have bearing-only

you can at the very least navigate by landmark recognition as described by Loizou

------ ---~------------

15

and Kumar [27]. In this paper they propose a provably correct bearing-only naviga­

tion controller that is biologically inspired and utilizes landmarks. This coordinate

system is depicted on the right as a circle centered on the robot. The neighboring

robot can be anywhere along the edge of this circle.

In light of this partial order I am trying to extend the capabilities of the r-one

to include a reasonable range measuring system that does not increase the cost of

the platform. This would raise the r-one's current coordinate system to bearing and

range-estimation placing it between bearing-only and local coordinates.

2.3 Probabilistic Robotics

Probabilistic robotics revolves around the idea of attempting to explicitly represent

the uncertainty that is inherent in robotic systems. This uncertainty stems from four

areas:

• Environment

• Robot

• Limited, Noisy Sensors

• Inaccurate Models

By utilizing a probabilistic method one can then mitigate these four areas of uncer­

tainty.

A particular subset of probabilistic robotics is state estimation which refers to a

robots attempt to determine some hidden state based on sensor data. A particle filter

is one method that can be used for state estimation. Particle filters have been studied

for almost 20 years and are a mature area of research for robotics. Dellaert, Fox,

Thrun and Burgard used a particle filter to solve robot localization using a method

they refer to as Monte Carlo Localization [28]. This was an incredible breakthrough

16

as the robot localization problem was widely recognized as the "most fundamental

problem to provide a mobile robot with autonomous capabilities" [29].

2.3.1 Main Resources

First, and foremost, I consider the textbook, Probabalistic Robotics, written by Fox,

Thrun, and Burgard to be the primary resource for anything relating to probabilistic

robotics [30]. It does a great job of building up levels of complexity within probabilistic

robotics. It starts with the theory behind probabilistic robotics by introducing the

Bayes Filter algorithm. It then moves into discussing variations of the Bayes Filter

algorithm to include Kalman Filters, Extended Kalman Filters, and Particle Filters.

It also discusses different methods to model the possible sensors. Finally, it culminates

with simultaneous localization and mapping (SLAM).

Rekleitis provides an exceptional technical report that was a byproduct of the

culmination of this thesis on particle filters for mobile robot localization [31]. It

provides a detailed description of a particle filter, both in plain text and in pseudo­

code. He also addresses the types of error that arises for a robot when it is either

translating or rotating and how to model that error. Appendix D provides substantial

information on the main resampling methods currently used. This appendix also

provides enough information on the variations on resampling so that anyone can

pursue the pertinent literature on their own.

2.3.2 Techniques That Worked

Out of the myriad of specialized techniques available for particle filters I only found

two techniques that really assisted my particle filter in attaining convergence quickly.

These techniques are discussed in the subsequent paragraphs.

17

The Sensor Resetting Localization (SRL) algorithm produced by Lenser et al.,

although developed for Monte Carlo localization (MCL), proved to be quite useful

during my particle filter algorithm development [32]. The authors determined three

key problems with MCL; MCL requires more particles during global localization than

when tracking, MCL cannot handle large modeling errors, finally MCL does not han­

dle unexpected or unmodeled robot movement. To mitigate with these three problems

their SRL algorithm adds a resampling phase to the MCL algorithm. SRL determines

if the probability of an area designated by the samples is low then the algorithm re­

places those samples with samples taken from the current sensor measurement. This

allows the robot to attain global localization quickly and with less samples. This

increases the overall efficiency of the algorithm and reduces its computational load.

It is also robust against a poor robot model in that once the systemic error rises

the poor samples will be replaced with current sensor samples, this makes the robot

resistant to unmodeled movements as well. This proved to be incredibly useful in

my particle filter implementation. By utilizing this method I was able to use current

sensor measurements to "bias" the probability distribution function of the particles

so that the estimated pose would be auto-corrected if it was not close to the current

sector being sensed.

Jensfelt et al. provides a unique resampling method to combat an issue that faces

all particles filters, the reduction of the probability distribution function to a single

point [33]. This collapsed distribution provides an extremely poor estimate of the

state with particle filters. This ultimately will cause the particle filter to fail. Their

modification allows the current sensor reading to contribute more to the weighting of

the particles then the current output of the predictive model. This is accomplished by

re-injecting particles based on the current sensor reading during the sensor update.

18

These particles are given the maximum weight of the current particles and replace the

particles with the lowest weight. I use this reinjection method for the multiplicative

weighting implementation of my particle filter.

Liu et al. describes the basis of sequential importance sampling (used in particle

filters) in depth in this particular paper [34]. The main contribution to my thesis

comes in the form of a heuristic that allows me to declare when I want my particle

filter to resample. This heuristic is referred to as the effective sample size, or ESS. This

refers to the equivalent number of independent and identically distributed samples

at time t. Essentially, this heuristic allows the particle filter to resample when there

are a certain amount of near-zero weight particles as these particles will not affect

the estimated pose. The issue with this heuristic and the r-one sensor model is that

we have a binary sensor, either you are in the sector or you are not. This does not

produce a sample set of independent and identically distributed particles. However, I

was able to use this heuristic with the multiplicative weighting version of the particle

filter that I developed.

Fox et al. describes a situation in which their particle filter implementation per­

forms poorly with both high sensor noise and low sensor noise [35]. Even though this

article deals with mobile robot localization, more specifically Monte Carlo localiza­

tion, it helped me to realize the a flaw in developing my particle filter algorithm. The

introduction of noise in both the odometry measurements and the bearing measure­

ments allowed me to produce a particle filter that would converge. In fact, they offer

three analytical "approaches" to accommodate highly accurate sensors. A drawback

to their approach seems to be the particle set size, which they declare "optimal" be­

tween 1,000 and 5,000. Right now we are currently using 500 particles with anything

above 1,000 particles I exclude due to the computational constraints of the r-one.

19

2.3.3 Techniques I Considered

There are several particle filter techniques that seemed viable at first. However, upon

further research I did not utilize the following techniques for various reasons discussed

below.

The first technique that I considered and then discarded is a real time particle filter

algorithm (RTPF) designed to handle sensor information that arrives significantly

faster than the update rate of the filter (250ms in our case) [36]. The authors explain

that their RTPF does not throw out any sensor data in between sensor updates,

instead they consider all sensor updates by sampling over all of the sensor readings

within a predetermined window size, this produces a state that is a mixture of all

of the sample sets. This is mainly due to the fact that n samples are distributed

among the k observations within an estimation window. At each timestep only nfk

particles are needed, reducing the computational load on the r-one and allowing for

more particles. In my algorithm I only sample at every update period and I do not

care about sensing in between these update periods, making this technique moot.

Resampling is referred to as the "trick" of the particle filter where the particles

are forced back to the posterior bel(xt) [30]. The simplest resampling algorithm used

in particles filters is the Sample with Replacement algorithm. One drawback to this

particular algorithm occurs after the generation of an array of random numbers uni­

formly distributed in [0, 1]. Once this array is created it is then sorted. This is

typically implemented as a quicksort and takes 0(nlogn) time. Carpenter et al. pro­

vides a linear time (O(n)) algorithm by using the cumulative sum of the negative

logarithm of random numbers uniformly distributed in [0, 1] [37]. This produces a

sorted sequence of random numbers uniformly distributed in [0, 1]. This particular

resampling method is not used in my particle filter algorithm due to ease of imple-

20

mentation. However, if I need to further increase my efficiency I would rework my

algorithm to use this resampling method.

Kullback-Liebler distance sampling, KLD-sampling, is an another technique devel­

oped to increase the efficiency of a particle filter algorithm by dynamically adjusting

the particle sample size over time [38]. First, the Kullback-Liebler distance refers to

dissemblance between two probability distribution functions. By putting a bound on

the error being introduced by the re-injection of particles, the the Kullback-Liebler

distance determines the maximum number of particles needed to meet that bound.

Any time the number of particles required to represent the posterior probability is

reduced, the computational load is also reduced. I initially contemplated using this

resampling method to make my algorithm more efficient. However, the memory saved

by the reduction in particles would be overshadowed by the computational require­

ment of calculating the Kullback-Liebler distance, especially on the r-one platform.

2.4 Summary

Now that I have described the pertinent multi-robot literature, works in minimalistic

sensing, and references for probabilistic robotics the next chapter discusses prelim­

inary information to set the stage for my particle filter algorithm. Following that

will be a brief overview or probabilistic robotics with a focus on particle filters. Fi­

nally, I will describe my particle filter algorithm and explain the data produced by

my algorithm.

~~ ---~~~ -------------------------

21

Chapter 3

Preliminary Information

In this chapter I give a brief overview of the r-one multi-robot system built by the

Multi-Robot Systems Laboratory at Rice University. I then discuss reciprocal orien­

tation and the different methods to determine reciprocal orientation and their associ­

ated bandwidth costs. Finally I will close the chapter with a description of the data

collection method.

3.1 The R-one Robot

Figure 3.l(a) shows a fully assembled robot, and Figure 3.l(b) shows the exploded

diagram. The sensor suite consists of a 2-axis gyro, 3-axis accelerometer, and 3

visible-light photo resistors. The robot has two motors with quadrature encoders to

measure position and velocity. The robot includes 8 IR transmitters, 8 IR receivers,

a 2.4 GHz radio with 2Mbps data rate, and a USB port. To interact with the user,

the robot has 3 push buttons and 3 arrays of five LEDs each in red, green, and blue.

The robot is controlled by a Texas Instruments Stellaris LM3S8962 microcon­

troller. The CPU core is an ARM Cortex-M3 running at 50 MHz with 256 KB of

Flash memory and 64 KB of SRAM. This particular CPUt limitation must be con­

sidered in this work because it places an upper bound on the number of particles the

r-one can reasonably create and evolve.

22

(a) The r-one robot. (b) Exploded CAD view. (c) The r-one encoder.

Figure 3.1 : a: The r-one robot . b: Exploded CAD view of the robot assembly. The
robot is composed of two circuit boards bound together with a circular shell and four
screws. c : The motors and encoders mount directly to the circuit board.

The motors and encoders mount directly to the bottom circuit board, shown in

Figure 3.1(c). The encoders have 0.0625 mm/tick linear resolution at the wheel.

The 2.4 GHz radio on the robot can be used for inter-robot communication, but

is designed for centralized command and control. The primary means of inter-robot

communication is the local IR communication system described in the following sec-

tion.

3.1.1 Int er-Robot Communicat ion and Localization

Each robot has a set of eight IR transmitters and eight IR receivers. The transmitters

transmit in unison, and were designed into the shell to provide a nearly radially-

uniform energy emissions pattern. Figure 3.2(a) shows the predicted angular output

based on theIR emitter specifications and the design of the plastic shell. This shows a

power variation of 4%, but we have not verified this performance on physical hardware

yet. Because the communications bandwidth is very limited (see below) , we selected

a maximum range of around 1.0 meters in order to limit the number of neighbors and

23

IRTranamilters
Trial a IR RKeiver5

Angle Slice

l

'•
Positton (rad}

(a) Predicted IR transmitter (b) Top CAD view of IR re- (c) Measured IR overlap.
p ower output. ceiver overlap.

Figure 3.2 : a : The transmitter and shell are designed to produce a radially uniform
power output. b: This is a top view of a CAD model of each IR receiver 's detection
region. Each receiver detects signals in a 68oarc. These regions overlap to form 16
distinct sectors. A message from a neighboring robot will be received on one or two
receivers , and can be processed to determine the direction to within 2.5°. c: Exper­
imental verification of the overlap of the receiver regions. The plot is showing the
angle each receiver can detect an incoming message. The average width is 68°, which
matches the CAD model. The corresponding arc from the top view is highlighted in
black.

messages that are received by each robot.

Each robot has eight IR receivers, arranged so that their reception regions overlap

as shown in Figure 3.2(b) . The shell is designed to limit the detection arc of each

receiver to 68°. By noting which receiver(s) detect a neighboring robot , the bearing

can be estimated to a resolution of approximately 22.5°. Figure 3.2(c) shows the

measured reception arc from each receiver with color corresponding to Figure 3.2(b).

The reception arc varies from 63oto 74owith a mean of 68oover 10 trials.

The receivers are standard Sharp IR remote control devices, with 38khz mod-

ulation and a maximum bit rate of 1200bps. A simple TDMA scheme is utilized:

the robots to transmit at periodic intervals 1 but with a random offset, similar to the

ALOHA protocol [39). This will limit the effective usable bandwidth before network

congestion causes saturation. The protocol is similar to RS232 8N1 and produces a

24

Message Size Message Size Transmit Time
(bytes) (bits) (ms)

3 42 33.6
4 51 40.8
5 60 48

Table 3.1 : An illustration of the desired message size, in bytes, the actual number of
bits sent and the corresponding transmit time.

message size shown in Table 3.1. My algorithm requires a message size of three bytes,

which takes 33.6 milliseconds to transmit. These bandwidth constraints place a limit

on robot density and algorithm complexity, but increasing bandwidth would require

using more expensive or even custom receivers.

Neighbor Transmission Period (Rounds)

Each robot transmits a message at a fixed periodic interval, meaning that every robot

will receive messages from each of its neighbors only once per period. This acts as a

synchronizer and makes the programming model for the r-one to be a synchronous

distributed system from each robots point of view [7]. For this method to work, each

r-one has to abide by the rule that each robot has the same neighbor update period.

The diagram in Figure 3.3 illustrates this point.

In Figure 3.3 the b.t represents the neighbor update period, or the round. Once a

robot sends out their message they wait b.t time before sending out another message.

The vertical lines illustrate that based on robot A's initial transmission, no robot

communicates more than once during each round. The vertical lines are arbitrary

and are merely there to provide a concrete representation of the current round. The

vertical lines could have easily been drawn based on any of the three robot's commu-

25

A

B

Figure 3.3 : A simple diagram illustrating how the neighbor period update makes
the r-one a distributed, synchronous system. Each robot transmits only once during
the neighbor period, b.t. Since each robot has the same b.t the system looks like a
distributed, synchronous system.

26

nications, the result would the same; no robot would transmit more than once per

round.

There are two major constraints that rounds places on my particle filter algorithm

(or any algorithm the r-one is asked to execute). The first constraint deals with the the

amount of updates. Because of the rounds, each r-one will only be able to transmit and

receive infrequent updates. Essentially, they are not allowed to broadcast information

whenever they want to. The second constraint is based on the length of the round. My

particle filter algorithm requires a fair amount of computation to create the particles,

evolve/weight the particles, and calculate a weighted average of the estimated pose.

With this in mind the r-one must be able to accomplish all computations during the

current round. If it is not able to complete all of the computations then it will miss a

round. Too many missed rounds may cause the complex behavior that is relying on

the pose estimate from this algorithm to become unstable or even fail. For a three

byte message and four neighbors, the r-one has 250 milliseconds for each round. All

computation must be completed in this time.

3.2 Methods to Determine Orientation

As mentioned earlier in this chapter, orientation is the angle measurement from the

neighboring robot to the sensing robot from the neighboring robot's point of view.

See Figure 3. 7 for a graphical representation of orientation.

Currently the r-one is can only measure orientation of neighboring robots using

network communication. The first measurement is bearing-only and the other two

are methods of determining orientation. The first measurement is bearing-only. This

allows the r-one to determine the angle to its neighbor defined by its own local coor­

dinate system. This particular method does not add any additional communications

27

to compute. The information required for this to work is already included in the

announcement message that the r-one sends out each communications round which

contains its ID, its current translational velocity, and its current rotational velocity.

When a neighboring r-one receives an announcement message it records the senders

id and the sector that it received the message on, creating a neighbor list that resolves

the neighbor's id to the bearing. This method is 0(1) since the r-one will only ever

send one announcement message regardless of the number of neighbors.

The next method of determining orientation is reciprocal orientation. This partic­

ular method requires the most of the r-one in terms of communications complexity. To

perform this method the r-one transmits its announcement message and then trans­

mits a series of orientation messages, one for each neighbor. Each message contains

the neighbors id and bearing. If a robot receives an orientation message that has its

id in it then it knows the neighbors measurement of its bearing from the neighbors

point of view, or the reciprocal orientation. The communication complexity of this

method is large. The r-one must transmit one announcement message plus an addi­

tional message for each of it's neighbors resulting in a communications complexity of

0(1 +~)with~ representing the maximum number of neighbors.

The final method is a type of a Gray code described as a bit pattern overlap

method. This method will be researched, implemented and tested during the sum­

mer of 2011. Essentially, the r-one will transmit an additional bit of data at the end

of its announcement message for each transmitter that it has. The data within the

message will collide exactly and will not be affected. The additional bits of data, a

single bit representing the particular transmitter the data originated from, will collide

constructively allowing the remaining bits to represent the sector. Even though this

has a relatively low communications complexity cost, the price is paid in having to put

-- --------------- ----------------------

28

more effort in engineering the hardware to ensure that the messages collide construc­

tively. The communications complexity of this method is 0(s) with s representing

the number of transmitters the robot has.

3.3 Data Collection

Data collection on multi robot systems requires the user to know the ground truth

positions of the robots, or the robot's location in an external coordinate frame. There

are many means of determining a robot's global position: GPS [40], a Vicon-like

tracking system [3], radio-acoustic ranging [41, 42], or camera-based tracking [43, 44,

45, 46]. However, GPS is unavailable indoors, a Vicon system is expensive, and radio

acoustic systems work well, but increase the complexity of each robot.

Camera-based tracking systems are currently the most common low-cost method

for providing ground-truth. These systems must have the ability to uniquely identify

individual robots in the camera image. Fiducial tracking can find multiple markers,

and with initialization, identify unique robots [43]. In a uniform environment, robots

can be tracked by color alone as with SwisTrack [44]. Bar code tags such as AprilT­

ags [45] provide unique IDs without initialization, as well as 6-DOF pose estimation.

An alternative to the bar code tags is to track IR beacons on each robot [3, 46]. The

beacons transmit a pattern unique to each robot. One beacon per robot and one

camera allow 2-DOF position to be measured directly. Multiple cameras or beacons

can be used for full 6-DOF pose estimation [47].

Ground truth poses of the robots for this thesis are measured by a vision-based

localization system called the AprilTag system [45]. Figure 3.4(a) shows the actual

AprilTag global localization system that is used for the r-one. The system has three

main components: the robots running the experiment, a tripod and boom mounted

29

(a) Thipod and Boom. (b) Robots in Camera Space.

Figure 3.4: a: The tripod and boom setup used for collection of location information.
b: Camera view of rone robots.

digital camera, and a server computer with data logging software. With this system,

a camera server collects and displays all ground-truth estimates of individual robot

positions based on the IDs of the unique fiducials . This system has been tested and

has a mean position error of 6.56mm and a mean orientation error of 9.6mrad. This

error was determined after 583 testing iterations. I then combine the position data

with log data from the sensing robot to produce a unified file for analysis.

3.4 Robot Model

Depicted in Figure 3.5 is the robot model for the r-one. two types of velocities

indicated for the r-one. The first is translational velocity, or tv. This is the velocity

of the robot along the x-axis and it is measured in millimeters per second. The second

is rotational velocity, or rv. This is the velocity of the robot as it rotates and it is

~ ~-- -----~-----------

30

Figure 3.5 : A representation of robot model for the r-one.

measured in milliradians per second. With these two velocities one can depict the

r-one moving in a straight line, rotating in place or a combination of the two. As

indicated in Equation 3.1 this is the control input, u at time t (ut) which refers to

the tv and rv of the neighbor robot received through the infrared communications

system.

Ut = (tvnbr, TVnbr) (3.1)

3.5 Sensing Model

Figure 3.6 depicts the infrared communications system or the sensor model. This

particular system uses the eight infrared transmitters linked together to transmit

the robot's messages. The receivers overlap to create 16 distinct sectors to measure

the bearing with a resolution of approximately i radians. Initial testing in the lab

indicated a binary transition from one sector to the neighboring sector with no overlap.

31

s3

Figure 3.6 : A representation of sensor model for the r-one. The r's represent the
eight infrared receivers. The s's represent the 16 bearing sectors.

However, this sensor model will cause a particle filter failure due to the lack of error

in the model. Error was added to the sensing model to indicate a 95% probability

that a neighbor is actually in the sector that the robot senses it in and 5% probability

that the neighbor is in one of the other 15 sectors. Equation 3.2 represents the final

sensor input definition:

3.6 State Model

Zt = { Sn with p(0.95)

S-n with p(0.05)
(3.2)

Pose, in a multi-robot system, is a measurement of the neighboring robot's position

in the sensing robot 's local coordinate system. In this thesis I define the sensing

robot as the robot that is attempting to determine the pose of another robot which

is referred to as the neighboring robot. Additionally, pose represents the state model

of the system at time t, or Xt.

\

\
\

32

Figure 3. 7 : A representation of (bearing , range , orientation) for two robots. The
sensing robot is on the left (centered on the origin) and the neighboring robot is on
the right.

There are two representations for the pose of a neighboring robot, the primary

being (bearing, range, orientation), which is illustrated in Figure 3.7. Bearing is the

angle measured from the sensing robot to the neighboring robot, or the heading to

the neighboring robot. Range is the measure of the distance between the center of

the sensing robot and the center of the neighboring robot . Finally, orientation is

the angle measurement from the neighboring robot back to the sensing robot. Note

that the bearing of the neighboring robot from the sensing robot is the same as the

orientation of the sensing robot to the neighboring robot.

Pose can also represented as (x, y, B) , illustrated in Figure 3.8. This is the method

that I use in my particle filter. With this method the (xnbn Ynbr) values are the

location of the neighboring robot in the sensing robot's coordinate system. The Bnbr

is the heading of the neighboring robot in the sensing robot's coordinate frame.

The pose representation depicts the state model for the r-one multi-robot system,

\

\
\
\
\

33

Figure 3.8 : An alternate representation of (x, y, 8) for two robots. The sensing robots
is on the left (centered on the origin) and the neighboring robot is on the right.

illustrated in Figure 3.8. The state at time t is represented as Xt. Equation 3.3

represents the state model:

State= Xt = (xnbr, Ynbn enbr) (3.3)

34

Chapter 4

State Estimation

State estimation refers to a robots attempt to determine some hidden state based

on sensor data. The robot has to estimate its state by inferring quantities from its

sensor data because these sensors often cannot directly measure the state variables.

Additionally, the robot's sensors only carry partial information about the quantities

being measured and the noise of the sensor further compounds the issue. The goal of

state estimation is to attempt to recover state variables from this noisy information.

In my case, I wish to estimate the pose, (xnb·n Ynbr, Onbr), of a neighboring robot.

Furthermore, our sensor model is nonparametric which precludes many common state

estimation techniques.

4.1 Probabalistic Robotics

The primary concept in probabilistic robotics is that of belief, which represents a

robots estimate about the state of the environment. A robot may exist at a known

pose, referred to as its actual pose, in a global coordinate system but that pose can

never be measured directly, even with precise sensors. Instead of measuring the pose

directly the robot must infer its pose, referred to as the estimated pose, from its

sensor data.

Belief is represented as a posterior probability, which is the probability of the

35

current state variables conditioned on the sensor inputs. This is updated in two steps.

First, one calculates the belief at time t after a control input but before receiving the

sensor information. This is referred to as bel, and is portrayed in equation 4.1. It

represents the state, x, at time t given the control input, u, and the sensor input, z,

at timet- 1.

(4.1)

Belief, as indicated in Equation 4.2, represents the state at time t given the entire

history of the control inputs and all of the current sensor inputs.

(4.2)

Probabilistic robotics rely on the Markov assumption which states that the past

and future data are conditionally independent as long as the current belief of the

system, Xt, is known. Essentially since the current belief only depends on the previous

belief (xt-1), all other states can now be disregarded and the recursion stopped after

the previous state is accounted for. This reduces the above equations to the following:

bel(xt) = p(xtlut. Xt-1)

bel(xt) = p(xtlzt, Xt-1)

4.1.1 Bayes Filter Algorithm

(4.3)

(4.4)

The Bayes filter algorithm is the most general algorithm for calculating the belief.

This algorithm recursively calculates the belief bel at time t, and is shown in Algo­

rithm 1. There are three initial states to this algorithm. If the robot has knowledge

of the initial state of the system, x0 , then bel(x0) is initialized with a point mass

distribution about x0 . However, if the initial state of the system is unknown, bel(xo)

36

is initialized with a uniform distribution over the entire state space. Additionally,

partial knowledge of bel(x0) can be expressed as a non-uniform distribution.

1 Algorithm Bayes filter(bel(xt-1), Ut, Zt):
2 for all Xt do
a bel(xt) = J p(xtlut, Xt-1)bel(xt-1)dxt-1;
4 bel(xt) = ryp(ztlxt)bel(xt);
send
a return bel(xt)

Algorithm 1: A generalized form of the Bayes filter algorithm.

This algorithm contains a fundamental equation which defines the Bayes filter:

(4.5)

where 17 is a normalizing constant, Zt is the sensor measurement update and Ut is the

control update. This belief update equation can only be implemented in the strictest

of cases and quickly becomes intractable as the cases become more generalized. The

intractability is a result of attempting to compute the integral for a probability dis­

tribution function. However, this algorithm has lead to several other techniques that

sidestep this intractability such as Kalman filters, extended Kalman filters, particle

filters and many more.

4.2 Particle Filter

A particle filter is a variant of the Bayes filter describe in Section 4.1.1 and like the

Bayes filter it recursively estimates the posterior belief, bel, over the state of the system

Xt. However, instead of attempting to represent the probability distribution function

in its entirety it utilizes a sample-based approach. This approach is approximate and

nonparametric, allowing it to represent distributions other than Gaussian that could

37

also potentially be multi-modal. It uses these samples to track hidden state variables

as they evolve over time. These samples are referred to as particles and represent

the variable of interest by associating each particle with a weight that indicates the

importance of that particle, or how "good" of an estimate the particle depicts. The

estimated state or the variables of interest, bel(xt) can be as simple as a weighted

average of all of the particles.

There are two main steps in a particle filter algorithm: prediction and update. In

the prediction step each particle is modified according to the robot model with velocity

information from the neighboring robot, to include the addition of random noise.

During the update step each particle's weight is updated according to the current

sensor information. Particles with small weights are discarded through a technique

referred to as resampling, described in detail in Section 4.2.1 below. The current

estimate of the variable of interest can be calculated in three ways. First, the weighted

mean can be computed; second, the particle with the highest weight can become the

estimate and, third, the weighted mean inside a small window surrounding the particle

with the highest weight (also called the robust mean). Each of these estimation

methods have pros and cons: a weighted mean fails when there are multi-model

distributions, using the particle with the highest weight introduces a discretization

error, and the robust mean is computationally expensive (although it is the best

method).

4.2.1 Resampling

A major issue that arises as the particle filter progresses is the depletion of the particle

population. As the particles evolve, several particles may drift far enough from the

sensor input for their weight to become negligible and have no effect on the probability

-------- -------·

38

1 Algorithm Particle filter(Xt- 1 , Ut, Zt):

2 Xt = Xt = 0
3 for m = 1 to M do
4 samplex~ "'p(xt I Ut, x~1)
s w~ = p(Zt I x~)

- - + (m m) 6 Xt = Xt xt 'wt
1 end
s for m = 1 to M do
9 draw i with probability a w~

10 add x~ to Xt
u end
12 return Xt

Algorithm 2: A basic implementation of a particle filter algorithm [30].

distribution function of the state variables you are tracking. The estimated sample

size, ESSt, is a hueristic developed by Liu et al. [48] that describes the number of

near-zero-weight particles that reside in the distribution. These equations, 4.6 and

4.6 details the coefficient of variation of the weights of each particle. ESS can be used

as a threshold to indicate when to to resample. When the ESS rises above a certain

threshold the particle population is resampled and the particles with low weights are

dropped in favor of replicating the particles with the higher weights.

2 = var(wt(i)) = _..!.._ ~(M (') _ 1)2
cvt E2((')) M ~ w z

Wt 'l i=l

M
ESSt = 1 2

+cvt

Resampling Techniques

(4.6)

(4.7)

There are three commonly used algorithms to resample particles. They are Select

with Replacement, Linear Time Resampling, and Resampling by Liu et al.. In every

39

algorithm the input is an array of the weights of the particles and the output is

an array of the indices that indicate the particles that are going to be propagated

forward. Select with Replacement is the simplest resampling algorithm and tests

have shown no reasonable increase in performance of the other algorithms over this

simple algorithm which is precisely the reason why I decided on this algorithm for

my particle filter. [31].

In the Select with method, each particle is selected to propagate forward with

a probability proportional to its weight; the higher the weight of the particle the

better the chance it has of being propagated forward. Another method proposed by

Carpenter et al. is Linear Time Resampling. In this method a sorted random number

sequence is generated in linear time by manipulating the negative logarithm of N

random numbers, after that the algorithm is the same as Select with Replacement [37].

The third algorithm is Resampling by Liu et al. put forth in their paper on Sequential

Importance Sampling. This technique uses a function of the weights of the particles

ai = f(wi) to determine which particles are propagated forward. If ai is greater than

or equal to one then k copies of that particle are propagated forward (k = ai)· If the

output is less than one the particle survives with a probability equal to ai [34].

4.3 Limitations of a Multi Robot System on State Estimation

The initial limitation of the r-one on state estimation is the low-cost factor. This

particular limitation is the main constraint which affects all of the other limitations.

In an effort to produce a multi- robot system that is economically viable for any type

of institution or research environment, design decisions were made that placed limits

on the hardware procured for the build (see Section 3.1).

One particular limitation of the r-one on state estimation is a direct result of the

40

choice of microcontroller. As stated in 3.1 the rone is controlled by a Texas Instru­

ments Stellaris LM3S8962 microcontroller. While this microcontroller has plenty of

1/0 it does not have a floating point unit (FPU) which would allow it to perform

floating point calculations. The addition of a microcontroller that includes an FPU

would add to the overall cost of each robot, defeating the goal of maintaining the

r-one as a cheap, yet robust, multi-robot platform. Also, the decision to use the

LM3S8962 was based on the fact that it was an "system on a chip" solution that

did not require external 1/0 controls or external memory, thus reducing the overall

system complexity.

Another limitation of the r-one on state estimation is the limited amount of band­

width for the IR communication system. Refer to 3.1.1 for the more information

about the IR system in the r-one. With the current protocol the typical message size

is 60-bits for a 5-byte message payload, which takes 48 milliseconds to transmit. With

a neighbor period of 1000 ms each robot can effectively maintain a neighbor list that

contains 10 neighbors, any more than that and your IR network becomes saturated

due to communication collisions.

---- ----~-----------

41

Chapter 5

Simulation Results

To test the effectiveness of my particle filter algorithm, without needing to implement

the algorithm on the actual r-one hardware, I needed a simple r-one simulator. It is

this requirement that lead me to take an existing simulator and adapt it to my needs.

This simulator effectively incorporates the state model, robot model and sensing

model put forth in Chapter 3.

5.1 Rone Simulator

The current r-one simulator is written in Java with the Model-View-Controller ar-

chitecture. It was originally coded by Elizabeth Fudge and Siegfried Bilstein; both

undergraduate students in the Multi-Robot Systems Lab at Rice University. I took

this existing framework and extended it to simulate my particle filter.

otion -

Figure 5.1 : Flowchart of the particle filter algorithm implemented in Java.

42

5.1.1 Particle Estimator Robot Class

The ParticleEstimatorRobot class inherits all of the methods from the RobotVertex

class and adds two specific methods for the particle filter. The first method devel­

oped is the updateSensorlnformation. This method does not need any input and the

return type is public void. The first step in this method is to look at the list of current

neighbors and as long as this is populated it completes the following steps for each

neighbor in the list. First it calls the parallel method (updateSensorlnformation) con­

tained in the ParticleRobotNeighbor class, and discussed below. It then determines

the number of low weight particles for the current collection of particles by calling

the countLowWeight method contained in the ParticleRobotNeighbor class. A check

is made to see if the low weight count of the particles is below two predetermined

thresholds. If it is below the resample threshold then the then the particles are resam­

pled by calling the resampleParticles method in the ParticleRobotNeighbor class. If

it is below the reinject threshold then the particles are reinjected by calling the mak­

eNewParticlesUniformDist method. The final action this method completes is to call

the updateAvgPose method in the ParticleRobotNeighbor class. This provides the

latest estimate of the pose of the robot's neighbor by computing a weighted average

across all of the particles.

The second method located within this class is the updateNeighborParticles method.

While there is a neighbor in the neighbor list this method calls evolveParticles in the

ParticleRobotNeighbor class, which will be described in detail below. However, it

provides the motion to the particles based on the transmitted tv and rv values of the

neighbor.

43

5.1.2 Particle Robot Neighbor Class

The first important method in this class is the createReplacementlndex method. This

method is the critical requirement of the resampling portion of the particle filter and it

returns an array of integers which represents the indices of the particles that will to be

propagated forward. This method is based on the Select with Replacement algorithm

in Rekleitis' technical report [31]. Refer to Section 4.2.1 for more information about

this resampling technique.

Another method located m this class is the resampleParticles method. This

method starts out by calling the createReplacementlndex discussed above. It then

uses the output array of indices to create a new set of particles to be propagated for­

ward. Then the reinjection of new particles based on the current sensor measurement

occurs by calling the makeNewParticlesUniformDist method which simply replaces

existing particles with the lowest weight with a predeterimined amount of new parti­

cles based on the current sensor measurement. Finally, the weights of the particles are

normalized which is a requirement for the Effective Sample Size heuristic to function

correctly.

Finally, the last major method in this class is the updateSensor Information method.

The first step of this method is to determine which sector the neighbor is in, which

allows the sensing robot to determine sector changes. Next the method weights the

particles using the sensor model giving a particle in the sector a weight of 0.95 and a

particle out of the sector a weight of 0.05.

~ pause

Number of Particles: 500

Additional PartiCles: 50

Number of sectors: 16

Update Period: 250

Resampllng ThreshOld: 50

Reinjection Threshold: 500

Trial : 1

n=2
r- lOOOmm

PMtlcle Filter Slmu~tor

Figure 5.2 A screenshot of the Java particle filter simulator in motion.

44

45

5.2 Metrics

In measuring the effectiveness of my particle filter I am concerned with two metrics:

speed and accuracy. Accuracy is determined by calculating the difference between

the ground-truth pose and the estimated pose produced by the particle filter. I

split the accuracy measurement into two parts. The first part measures the linear

distance between the (x, y) of the actual and estimated pose based on the sensing

robot's coordinate system. The second part measured the difference between the ()

of the estimated pose and the() of the ground-truth pose, again based on the sensing

robot's coordinate system. The second metric measured was the time it took the

estimated pose to converge with the ground-truth pose. Once the estimated pose

was with 10% of the communications radius of the r-one, approximately one meter, I

declared the estimated pose to be converged and measured the current time. I denote

this convergence on the plots with a black, horizontal line at 0.1 meters and a black

vertical line denoting the time of convergence in milliseconds. One item to note is

that the system may seem like it converges initially but then the error grows. During

this initial period the system does not converge, the illusion of convergence is simply a

byproduct of the initial placement of the neighboring robot. This is discussed in detail

in Section 5.5.3. Additionally, the longer that the neighboring robot stays within the

sensing robot's sector the estimated pose may diverge from the actual pose. This is

due to the amount of information that can be garnered from motion updates versus

sensor updates and is discussed in greater detail in Section 5.5.2.

46

5.3 Simulation Setup

A proper assessment of the effectiveness of my particle filter implementation required

a baseline data set. This data set was the result of what I refer to as the "vanilla" par­

ticle filter implementation. This particular variation did not include any resampling or

reinjection of new particles and used a simple multiplicative weighting scheme. Fox,

Burgard and Thrun actually refer to this particular implementation as a "usually

inferior" implementation of a particle filter [30].

I initialized this implementation with 2,000 particles and allowed those particles to

evolve, be weighted according to the sensor measurement, and calculate the weighted

average of those particles to produce the estimated pose. To determine the algorithm's

sensitivity to different parameters I varied three key design parameters. The first

parameter is the number of particles the particle filter is initialized with. I start with

a population of 125 particles and then doubled it each iteration until I reached 4000

particles. The second parameter is the update period for the sensors in milliseconds.

I started with an update period of 50 milliseconds and doubled it until I reached an

update period of 400 milliseconds. The final parameter is the number of sectors that

the robot uses to sense other robots with, this dictates the resolution of the bearing

measurement for the r-one. I started with four sectors and doubled the number of

sectors until I reached 64 sectors. However, the remaining variables for each iteration

remained in a default configuration consisting of the following values:

• Number of Sectors: 16

• Number of Particles: 2000

• Update Period: 250 milliseconds

• Resampling Threshold: 10% of the Number of Particles

• Reinjection Threshold: 100% of the Number of Particles

~~-----------

47

Furthermore, to collect enough data to collate and analyze I ran each iteration a

total of 12 times. The data collected included the estimated pose and the actual pose

alongside descriptor data that allows me to parse the data and sort it accordingly. To

accomplish this I added a section in the code that captured all of the variables and

output them to a comma-separated values file which was then subsequently manipu­

lated using a Python script. This data was then entered into Matlab to produce the

plots.

I accommodated varying all of these parameters through the work smarter and

not harder idea of automation. To accomplish this I wrapped the main loop of the

simulator with three different while loops, one for each parameter I wanted to test.

This allowed me the freedom to hit run once and walk away from the simulator and

allow it to output all of the files I needed.

5.4 Simple Particle Filter Implementation Data and Results

At first glance this simple implementation appears to allow the r-one to determine

the range to its neighbor much more efficiently than my final particle filter imple­

mentation. This is supported by Figures 5.3(a)- 5.5(b) which show that the overall

error for both the (x, y) position and () declining over time. It would seem that this

is the solution to our range problem. However, I believe that this particular imple­

mentation is not robust enough to quickly handle the r-one making course changes

or other dynamic movements. The particles are only created when the neighbor is

first sensed and those particles are never resampled nor are new particles reinjected,

instead all of the original particles are allowed to evolve until the neighbor is no longer

sensed. If the neighbor were to make a 90° rotation and continue to move forward

the estimated pose would correct only a little but not enough to allow the estimated

0.6

0.5

4.5

3.5

Variable Sectors, 250 ms Update Period, 2000 Particles

10 11 12 13 14 15
Time (seconds)

(a) X,Y Error for Sectors.

Variable Sectors, 250 ms Update Period, 2000 Particles

48

4 Sectors- x,y
- 8 Sectors- x,y
- 16Sectors-x,y
- 32 Sectors- x,y
- 64 Sectors- x,y

16 17 18 19 20 21,
X 10

4 Sectors - theta
- 8 Sectors- theta
- 16 Sectors- theta
- 32 Sectors- theta
- 64 Sectors- theta

13 14 15 16 17 18 19 20 21
Time (seconds) X 10'

(b) Theta Error for Sectors.

Figure 5.3 : Vanilla particle filter st andard deviation for both (x,y) and e while
varying the number of sectors.

0.6

0.5

4.5

Variable Particles. 250 ms Update Period. 16 Sectors

49

C 125 Particles- x.y
250 Particles - x,y

- 500 Particles - x,y
- 1000 Particles - x,y
- 2000 Particles- x,y
- 4000 Particles- x,y

10 11 12 13 14 15 16 17 18 19 20 21
Time (seconds) x 10'

(a) X,Y Error for Particles.

Variable Particles. 250 ms Update Period, 16 Sectors

C 125 Particles - theta
250 Particles - theta

- 500 Particles - theta
- 1000 Particles - theta
- 2000 Particles - theta
- 4000 Particles - theta

10 11 12 13 14 15 16 17 18 19 20 21
nme (seconds) x 10'

(b) Theta Error for Particles.

Figure 5.4 : Vanilla particle filter standard deviation for both (x,y) and B while
varying the number of particles.

4.5

3.5

Variable Update Period, 500 Particles, 16 Sectors

50

50 ms Update - x,y
- 100 ms Update - x,y
- 200 ms Update - x,y
- 250 ms Update - x,y
- 400 ms Update - x,y

10 11 12 13 14 15 16 17 16 19 20 21,
Time (seconds) x 10

(a) X,Y Error for Update Period.

Variable Update Period, 500 Particles, 16 Sectors

(b) Theta Error for Update Period.

~ 50 ms Update - theta
- 100 ms Update- theta
- 200 ms Update - theta
- 250 ms Update - theta
- 400 ms Update - theta

Figure 5.5 : Vanilla particle filter standard deviation for both (x,y) and B while
varying the update period.

51

pose to represent the actual pose.

5.5 Final Particle Filter Implementation and Results

The plots from the final particle filter implementation are much noisier than their

"vanilla" counterparts. However, looking beyond all of the noise it is clear to see that

the error for both (x, y) and () decline over time. Additionally, this implementation

will be able to handle dynamic motion, unlike the simple implementation. The theta

plots indicate that the error in theta is invariant with all of the parameters tested.

The estimated theta reasonably converges between 5 and 6 seconds for most of the

tests.

The first two plots display the positional and bearing errors while varying the

number of sectors that the r-one uses to sense neighbors. The reason for this is

twofold: first, it is to see if the design choice of 16 sectors was a reasonable one and

to see if the particle filter reacts better with a different number of sectors, possibly

warranting a design change. For the four sector case the particle filter performed

horribly. This is the result of three factors. First, the number of particles, 500 in

this case, is not enough to reasonably represent the probability distribution function.

Second the greatest amount of information is gleaned during a sector transition and

for the four sector scenario there are only two sector transitions. Third, the longer

the r-one stays within a sector the more the belief spreads out without any new

information to act on. The eight sector scenario performs marginally better than

the four sector scenario. The 16 and 32 sector scenarios performed reasonably well

and were closely matched in performance. The final scenario, that of 64 sectors,

performed the best out of all the scenarios. Again, this falls in line with I mentioned

earlier about the four sector scenario, only it is the reciprocal of those points. Since

4.5

3.5

52

Variable Sectors, 250 ms Update Period, 2000 Particles

~ 4 Sectors · x,y
- 8 Sectors· x,y
- 16 Sector.;· x,y
- 32 Sector.;· x,y
- 64 Sector.;· x,y

10 11 12 13 14 15 16 17 18 19 20 21
Time (seconds) x 10'

(a) X,Y Error for Sectors with Resampling.

Variable Sectors , 250 ms Update Period, 2000 Particles

!;_ 4 Sectors • theta -8 Sectors · theta
- 16 Sectors· theta
- 32 Sectors · theta
- 64 Sectors· theta

10 11 12 13 14 15 16 17 18 19 20 21
Time (seconds) x 10'

(b) Theta Error for Sectors with Resampling.

Figure 5.6 : Optimized particle filter standard deviation for both (x,y) and B while
varying the number of sectors .

0.6

0.5

0.4

4.5

3.5

Variable Particles. 250 ms Update Period, 16 Sectors

53

C 125 Particles - x,y
250 Particles - x. y

- 500 Particles- x,y
- 1000 Particles- x,y
- 2000 Partlcles-x,y
- 4000 Particles - x,y

10 11 12 13 14 15 16 17 18 19 20 21,
Time (seconds) x 10

(a) X,Y Error for Particles Resampling.

Variable Particles , 250 ms Update Period, 16 Sectors

10 11 12 13 14 15 16
Time (seconds)

(b) Theta Error for Particles Resampling.

(' 125 Particles - theta
250 Particles - theta

- 500 Particles - theta
- 1000 Particles - theta
- 2000 Particles- theta
- 4000 Particles - theta

Figure 5.7 : Optimized particle filter standard deviation for both (x,y) and () while
varying the number of particles.

0.1

4.5

3.5

Variable Update Period, 500 Particles, 16 Sectors

54

I;_ 50 ms Update • x,y
- 100 ms Update- x.y
- 200 ms Update- x,y
- 250 ms Update- x,y
- 400 ms Update- x,y

10 11 12 13 14 15 16 17 18 19 20 21
Time (seconds) x 10'

(a) X,Y Error for Update Period Resampling.

Variable Update Penod, 500 Particles, 16 Sectors

50 ms Update - theta
- 100 ms Updete- theta
- 200 ms Updete- theta
- 250 ms Updete- theta
- 400 ms Updete - theta

10 11 12 13 14 15 16 17 18 19 20 21
Time (seconds) x 10 •

(b) Theta Error for Update Period Resampling.

Figure 5.8 : Optimized particle filter standard deviation for both (x,y) and e while
varying the update period.

55

there are several more sector transitions there is more information being provided to

the particle filter. Also, the time spent in each sector is minimal which does not allow

the belief to spread out very much at all. Finally, the number of particles is more

than adequate to reasonably portray the pdf since the overall area of the sector is

much smaller.

The second plots display the positional and bearing errors while varying the num­

ber of particles used to bootstrap the particle filter. As I mentioned earlier, if you

do not have enough particles to represent the pdf then the particle filter will find it

difficult, if not impossible, to estimate the hidden state variables you would like it to

ascertain. This is supported with the plots; as the number of particles go up the time

to converge, the standard deviation, and the amount of divergence between sector

transitions all decline. The sweet spot seems to be right at 1,000 particles for this

system. However, due to the memory and computational constraints on the r-one I

decided to use 500 particles for my filter and to tune all of my parameters accordingly

since the 500 particle case allows for a reasonable convergence time.

The third set of plots display the positional and bearing errors while varying the

update period of the particle filter. This period determines when the r-one will receive

information from the infrared communications system. With this information it can

then update the weights of the particles and resample or reinject if it is required.

The plots indicate that the r-one does not require a longer update period. In fact the

r-one is insensitive to changes in the update period. is at its peak. The convergence

time among all of the different update periods are similar. It is because of this fact

that the design decision to utilize settle on a 250 millisecond update period for the

r-one is reinforced.

---------------~~-·~~~ ~~~-

56

5.5.1 The Effect of ESSon the Final Implementation

Even though the ESS heuristic first discussed in Section 2.3.2 works for an interim

implementation of my particle filter (one with multiplicative weighting and resamp­

ing), it fails miserably when I add in the actual weighting scheme based on the sensor

model portrayed in Section 3.5. As pointed out earlier, this sensor model does not

produce a typical probability distribution function. Instead, it is binary in nature by

only producing two weights. In fact Liu goes on to state that if the weights of parti­

cles are approximately similar then resampling only serves to decrease the efficiency

of the sampled representation [49]. This resulted in the development of a simplified

method to determine when to resample. Instead of relying on the ESS heuristic I

simply count the number of low weight particles in the current particle distribution.

If that number rises above a preset threshold then I have the particle filter algorithm

resample or reinject.

5.5.2 Impact of Sector Changes

To better understand the impact that the sector transitions had on my particle filter

I decided to simplify two of my earlier plots by plotting the 16 sector data and

adding visual indicators where the sector transitions occurred. Figures 5.9(a) and

5.9(b) is the result of this simplification. The accuracy of the transition indicators

is coarse because they are the result of logging the time when the neighboring robot

crosses into an adjacent sector in a file separate from the other data. However, the

placement transition indicators need not be in the exact location because even the

coarse locations correlate very well with the effect that sector transitions are having

on the mean.

One major takeaway from this particular figure set is that the longer that a neigh-

57

16 Sectors, 250 ms Update Period, 2000 Palticles

0.6

0.5

0.4

0.2

0.1

10 11
nme (seconds)

18 19 20 21,
X 10

(a) X,Y error with sector transitions.

16 Sectors, 250 ms Update Period, 2000 Palticles

-O.SO'--L-...1.__-.l ____ .I.__L _ _L__.L...Jc__.j__....l10:---1L1 - ,-'-2-...L13--L....J14'----,-'-5--"'16-....J17::-'-- 1L8 _ 1.L9--'20:---::2L1

Time (seconds) x 10"

(b) Theta error with sector transitions.

Figure 5.9 : Error between sector transitions for 2,000 particles, 16 sectors, and a 250

millisecond update period.

58

boring robot stays in one of the sensing robot's sectors the worse its estimate of its

pose gets. This is because the most information gleaned from this particle filter is

right at a sector transition. The particles that make this sector transition at ap­

proximately the same time the robot's sensors detect a change in sector will continue

to maintain their high weight while all other particles will be reduced to the lower

weight. You can notice that the the error drops quickly immediately following a sec­

tor transition and reaches a minimal point while the robot traverses the remainder of

that sector only to start increasing again. Again, this is because the longer a robot

stays within a sector the more that the probability distribution function representing

the belief spreads out. This results in the estimated pose drifting away from the

actual pose.

5.5.3 Poor Experiment Design

After reviewing the all of the plots I noticed an anomaly where the error quickly gets

smaller and the estimated position almost converges on the actual position before

getting large again. To further investigate, I drew the simplified plot with 16 sectors,

a 250 millisecond update period, and 2,000 particles on the white board. I then added

the sector transition lines to the plot. Finally, directly below the plot, I sketched the

actual path of the robot and the estimated path of the robot. The red robot and

dashed line represents the actual robot location and the path it takes. The green

robot and dashed line represents the estimated robot location and determined by the

particle filter.

Looking at this hybrid plot it is clear to see that the initial reduction in error and

subsequent increase in error is an artifact of the estimated position crossing the path

of the actual robot. This makes it appear that the estimated pose converges with

59

Figure 5.10 : Recognizing bad experiment design.

~...,.,ol5edotti 1 1

~ 250

R.umollnoTtw..t.lld50

~Ttweltloio. OOO

_ lhoWtoeotO.
Nultlo«otParllclMSOO
__ ,.
~otS«:t::rr16

__ ,..
~Trtr•.lft0Jct50

ReintiCIIonTitrlllhOIG500

(a) All the particles fall outside of (b) The particles get "stuck" at the

the sector after a transition. point of the sector.

Figure 5.11 : Degenerate Cases of my particle filter algorithm.

60

the actual pose. This is merely poor experiment design. To get a better handle on

the how quickly this system converges I would need to disregard the first two sector

transitions, if not the first three, and then determine when the system converges.

Moving forward I addressed this issue by moving the starting point down and the

ending point up. This set of points will ensure that the estimated pose does not cross

the path of the actual pose. This will induce a greater error at the outset since the

probability distribution will have to diverge more before getting a good estimate of

the pose.

5.5.4 Degenerate Cases

After observing my implementation of the particle filter over several iterations I no-

ticed that there are two degenerate cases that occasionally occurred. Both of these

cases are illustrated in Figures 5.11 (a) and 5.11 (b).

The first degenerate case, Figure 5.11(a), is a result of all of the particles ending

61

up outside of the sector during a sector transition. This typically happens when

all of the particles, and subsequently the estimate, are close to the far edge of the

sector. During a sector transition none of the particles make the transition to the new

sector at the same time so all particles are weighted down accordingly. Resampling

does nothing to correct this degenerate case because the goal of resampling is to

propagate particles with higher weights and since they all have the same weights the

particles get "stuck" outside of the sector. To deal with this degenerate case I added

a second threshold to check for during the update phase of the particle filter, this is

the reinjection threshold. When this threshold is met the particle filter is rebooted by

discarding the old particles and making a new uniform distribution of particles. To

detect when all of the particles leave the sector completely the limit of this threshold

is set at the initial number of particles.

The second degenerate case, Figure 5.11 (b), occurs when the only particles re­

maining end up near the point of the sector. Once there they are unable to move

towards the actual pose of the neighboring robot. This is due to the error model for

tv and rv. By introducing a constant error to the tv and rv we produce a nearly

round cloud of particles that depicts the estimated pose. If this cloud of particles

gets near the point of the sector the error model produces particles that are always

inside and outside of the sector. The outside particles are immediately weighted down

and discarded during the next resampling phase, but the inside particles are kept.

Since we are losing a significant portion of our particles but keeping incorrect ones,

the particle filter cannot converge. To deal with this degenerate case I am making

the assumption that the robots will only pass that close for a short time. Therefore

I weight particles that are near the point of the sector as if they were outside of the

sector. This ensures that the particle cloud never gets stuck.

Postion Convergence Time for Sector Variation
~=-------

18

~~==~~~=========,~6---------3~2 ------~64
Number of Sectors

(a) Convergence Time for Position with Sector Variation.

Theta Convergence Time for Sector Variation

~~==~~~=========,~6---------32~------~64
Number of Sectors

(b) Convergence Time for Theta with Sector Variation.

62

Figure 5.12 : Convergence times, in seconds, for both (x,y) and e while varying the
number of sectors.

5.6 Convergence Times

Figures 5.12 (a) and 5.12 (b) illustrate the convergence time while varying the sector

parameter. There are two reasons for varying this parameter. First, I wanted to

see how sensitive my particle filter was to the sector parameter. Second, I wanted

to verify that the 16 sector design was a correct decision. I was able to verify that

my particle filter algorithm is sensitive to the number of sectors which indicates that

tuning is required if the number of sectors change on the r-one. The figure also verifies

that the 16-sector design for the r-one allows for a low convergence time.

Postion Convergence Time for Particle Variation

18

16

14

12

10

500 1000 2000 4000
Number of Particles

(a) Convergence Time for Position with Particle Population
Variation.

Theta Convergence Time for Particle Variation
20

18

500 1000 2000 4000
Number of Particles

(b) Convergence Time for Theta with Particle Population Vari­
ation.

63

Figure 5.13 : Convergence times, in seconds, for both (x,y) and B while varying the
population of particles.

Figures 5.13(a) and 5.13(b) illustrate the convergence time while varying the parti-

de population size parameter. The main reason for adjusting the number of particles

that the particle filter is initialized with is to determine the absolute lowest number

of particles that I can use while still reaching convergence in a reasonable amount

of time. The figures indicate that 1,000 particles seems to be the optimal solution.

However , this may change with more time invested in tuning the particle filter for

500 particles.

Postion Convergence Time for Update Period Variation
20

18

16

12

200 250 400
Update Period (Milliseconds)

(a) Convergence Time for Position with Update Period Varia­
tion.

Theta Convergence Time for Update Period Variation
20

18

250 400

(b) [Convergence Time for Theta with Update Period Variation.

64

Figure 5.14 : Convergence times, in seconds, for both (x,y) and e while varying the
update period.

Figures 5.14(a) and 5.14(b) show the convergence time while varying the update

period parameter. While changing the update period I discovered that my particle

filter algorithm is relatively invariant to the length of the update period. However,

thinking about this a little more thoroughly leads me to believe that this invariance

exists due to the simple experiment design of having the neighboring robot travel in

a straight line. To further investigate this issue I would need to run another round of

experiments that have the neighboring r-one travel using complex patterns.

65

Chapter 6

Conclusions and Future Work

6.1 Limitations

A major limitation of my particle filter implementation is that it requires the robot

being sensed to be moving. If it is not moving the amount of information garnered

from the sensing robot is very little, a majority of the information provided in this

particle filter comes when a robot crosses from one sector to the next.

A major limitation turned out to be the amount of memory that the r-one has.

This memory limited the maximum number of particles to 1,000. However, at this

amount the r-one would not be able to run any other task. This is why I focused on

tuning the particle filter algorithm for 500 particles. This produced reasonable results

while freeing up enough resources for the r-one to run other tasks concurrently with

the particle filter algorithm.

6.2 Future Work

There are several avenues to move forward from this thesis. First, there is the im­

plementing of this algorithm inC and on the r-one hardware to verify it's real-world

effectiveness. Second, with the large number of parameters to tune to make this algo­

rithm optimal one can devise a method to automate the parameter tuning. Finally,

one can add an additional layer between the algorithm and the r-one hardware that

66

will smooth the estimate using an exponential moving average.

6.2.1 Actual Robot Testing

There exists a rift between a real-world implementation of an engineering system

and a software simulation of the system. Even though a developer may take every

precaution available to them they can never make a simulator truly represent the

real world. This is due to the inherent differences in the design approach and the

assumptions made when modeling the subsystems and the interactions between them.

Take the infrared messaging system as an example, more specifically the passing of

the robot ID, translational velocity, and rotational velocity. In the simulator I simply

use a setter/ getter to pass this information from the origin to the destination. On

the actual r-one itself it is not this simple, the r-one has to put the message together

and the infrared message system has to transmit it. There are several potential error

injection points in just in these two steps. With this in mind I wanted to conclude

my thesis with the experimental results of running my particle filter on the r-one's.

The primary way forward is to conduct actual experiments with the r-one multi­

robot system and my particle filter algorithm written in C. Seeing this algorithm

run on the actual hardware would reinforce the findings made through the use of the

simulator and allow me to garner just how computationally exhaustive this particle

filter algorithm is and to see if it is a viable range estimation solution for the r-one.

6.2.2 Automated Parameter Tuning

Another avenue to pursue would be to determine the best set of parameters for

this particle filter implementation. I believe the way forward for this would be to

further extend the simulator and to wrap it with a genetic algorithm to test all of

67

the parameters and to let it run. Once the framework was built up it could be

used to determine the best parameters for any particular situation or the best set of

parameters for a generalized situation. The latter would be the best product of this

work since the state of a multi-robot system is always in flux due to movement of the

robots themselves or to fluctuations in the inter-robot communications.

6.2.3 Pose Smoothing on the R-one

One thing I notice during the simulation runs is that the estimated pose has a ten­

dency to "jitter" quite a bit. This is a result of the sensor model. With the sensor

being an arc we get a lot of information from each sector transition and only a little

information while within the sector. As the robot stays in the sector the estimate

deviates from the actual position due to this lack of information. To combat this

one could implement an exponential moving average for the estimated pose. This

would allow the r-one to weight a large transition in the estimated pose lower than

a smaller transition. This is based on the fact that the velocity controller for the

r-one produces a smooth tv and rv and does not "jump around". By smoothing the

path of the estimated pose the r-one will produce a better estimate the pose of the

neighboring robot.

6.3 Final Remarks

I have evaluated my particle filter algorithm using three key parameters; the number

of sectors, the number of particles and the update period. I have determined that

my particle filter algorithm is sensitive to the the number of sectors and the number

of particles but insensitive to the update period. The sensitivity to the number of

sectors is mitigated by the fact that the algorithm converges in a reasonable amount

68

of time with 16 sectors, the current number that the r-one uses. The number of

particles is also mitigated by the fact that the 500 particle case still converges within

a reasonable amount of time as well. This is a number that the r-one hardware

can efficiently implement. The insensitivity to the update period allows us to move

forward without having to change the current update period on the r-one.

Finally, the main result of this work is the extension of the capabilities of the r-one

robot. By implementing my specific particle filter algorithm and allowing the r-one

to be able to estimate the range between itself and its neighbors I have raised the

r-one in the dominance relation explained in Section 2.2.3. The r-one is now placed

above the bearing-only coordinate system but below local coordinate systems as seen

in Figure 2 .1.

69

Bibliography

[1] P. Ranganathan, R. Morton, A. Richardson, J. Strom, R. Goeddel, M. Bulic,
and E. Olson, "Coordinating a team of robots for urban reconnaisance," in Pro­
ceedings of the Land Warfare Conference (LWC}, Nov. 2010.

[2] W. Burgard, D. Fox, and S. Thrun, "Active mobile robot localization," 1997.

[3] N. Michael, J. Fink, and V. Kumar, "Experimental testbed for large multirobot
teams," Robotics & Automation Magazine, IEEE, vol. 15, no. 1, pp. 53-61, 2008.

[4] "Vicon MX systems." http:/ fwww.vicon.com/products/viconmx.html, 2010.

[5] M. Walter, M. Anderson, I. Burt, and N. Papanikolopoulos, "The design and
evolution of the eROS! robot," in Robotics and Automation, 2007 IEEE Inter­
national Conference on, pp. 2984-2989, 2007.

[6] J. McLurkin, A. Lynch, S. Rixner, T. Barr, A. Chou, K. Foster, and S. Bilstein,
"A Low-Cost Multi-Robot system for research, teaching, and outreach," Proc.
of the Tenth Int. Symp. on Distributed Autonomous Robotic Systems DARS-10,
November, p. 200, 2010.

[7] J. McLurkin, Stupid Robot Tricks: A Behavior-Based Distributed Algorithm Li­
brary for Programming Swarms of Robots. S.M. thesis, Massachusetts Institute
of Technology, 2004.

[8] J. McLurkin, J. Smith, J. Frankel, D. Sotkowitz, D. Blau, and B. Schmidt,
"Speaking swarmish: Human-Robot interface design for large swarms of au­
tonomous mobile robots," Mar. 2006.

[9] J. McLurkin, Analysis and Implementation of Distributed Algorithms for Multi­
Robot Systems. Ph.D. thesis, Massachusetts Institute of Technology, 2008.

[10] R. M. Harlan, D. B. Levine, and S. McClarigan, "The khepera robot and the
kRobot class: a platform for introducing robotics in the undergraduate curricu­
lum," in ACM SIGCSE Bulletin, SIGCSE '01, (New York, NY, USA), p. 105109,
ACM, 2001. ACM ID: 364553.

[11] J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli, "A fast onboard
relative positioning module for multirobot systems," Mechatronics, IEEE/ ASME
Transactions on, vol. 14, no. 2, pp. 151-162, 2009.

[12] C. M. Cianci, X. Raemy, J. Pugh, and A. Martinoli, "Communication in a swarm
of miniature robots: the e-Puck as an educational tool for swarm robotics,"
in Proceedings of the 2nd international conference on Swarm robotics, SAB'06,
(Berlin, Heidelberg), p. 103115, Springer-Verlag, 2007. ACM ID: 1763844.

- ---------~~~---~--~---~~~~~~~~~~-

70

[13] A. Gutierrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin, and
L. Magdalena, "Open e-puck range & bearing miniaturized board for local com­
munication in swarm robotics," in Robotics and Automation, 2009. ICRA '09.
IEEE International Conference on, p. 31113116, 2009.

[14] "MAGIC 2010: Super-smart robots wanted for international challenge .. "
http:/ /www.dsto.defence.gov.au/MAGIC2010/, 2010.

[15] L. Erickson, J. M. OKane, and S. M. LaValle, "Probabilistic localization using
only a clock and a contact sensor," in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2007.

[16] J. Yu, S. M. LaValle, and D. Liberzon, "Rendezvous without coordinates," in
Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, p. 18031808,
2009.

[17] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus, "Track­
ing a moving object with a binary sensor network," in Proceedings of the 1st in­
ternational conference on Embedded networked sensor systems, p. 150161, 2003.

[18] K. Konolige, J. Augenbraun, N. Donaldson, C. Fiebig, and P. Shah, "A Low-Cost
laser distance sensor," 2008.

[19] "The open lidar project - hack the neato XV-11 lidar for a $800 bounty! by
gallamine I RobotBox." zotero:/ /attachment/2/, 2010.

[20] "PrimeSense." http:/ /www.primesense.com/, 2011.

[21] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping: Using
depth cameras for dense 3D modeling of indoor environments," 2010.

[22] E. Herbst, P. Henry, X. Ren, and D. Fox, "Toward object discovery and modeling
via 3-D scene comparison," 2011.

[23] D. Rus and B. D. Jennings, "Moving furniture with teams of autonomous
robots," 1995.

[24] M. Erdmann, "Towards Task-Level planning: Action-Based sensor design,"
Robotics Institute, Jan. 1992.

[25] J. M. OKane and S.M. LaValle, "On comparing the power of mobile robots," in
Robotics: Science and Systems, 2006.

[26] A. Cornejo, J. McLurkin, S. Bilstein, E. FUdge, A. Lynch, and N. Lynch, "Com­
puting Scale-Free coordinates on Multi-Robot systems," The Ninth Int. Work­
shop on the Algorithmic Foundations of Robotics WAFR-10, November, p. 1,
2010.

71

[27] S. G. Loizou and V. Kumar, "Biologically inspired bearing-only navigation and
tracking," pp. 1386-1391, Dec. 2007.

[28] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, "Monte carlo localization for
mobile robots," vol. 2, pp. 1322-1328 vol.2, 1999.

[29] I. J. Cox, "Blanche-an experiment in guidance and navigation of an autonomous
robot vehicle," Robotics and Automation, IEEE Transactions on, vol. 7, pp. 193-
204, Apr. 1991.

[30] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press, 2005.

[31] I. M. Rekleitis, "A particle filter tutorial for mobile robot localization TR-CIM-
04-02," Centre for Intelligent Machines, 2003.

[32] S. Lenser and M. Veloso, "Sensor resetting localization for poorly modelled mo­
bile robots," in Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE
International Conference on, vol. 2, p. 12251232, 2000.

[33] P. Jensfelt, 0. Wijk, D. J. Austin, and M. Andersson, "Experiments on aug­
menting condensation for mobile robot localization," in Robotics and A utoma­
tion, 2000. Proceedings. ICRA '00. IEEE International Conference on, vol. 3,
p. 25182524, 2000.

[34] J. S. Liu, R. Chen, and T. Logvinenko, "A theoretical framework for sequen­
tial importance sampling and resampling," Sequential Monte Carlo Methods in
Practice, p. 225246, 2001.

[35] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, "Particle filters for mobile robot
localization," in Sequential Monte Carlo Methods in Practice, 2001.

[36] C. Kwok, D. Fox, and M. Meila, "Real-time particle filters," Proceedings of the
IEEE, vol. 92, no. 3, p. 469484, 2004.

[37] J. Carpenter, P. Clifford, and P. Fearnhead, "Improved particle filter for nonlin­
ear problems," Radar, Sonar and Navigation, lEE Proceedings-, vol. 146, no. 1,
pp. 2-7, 1999.

[38] D. Fox, "Adapting the sample size in particle filters through KLD-sampling,"
The international Journal of robotics research, vol. 22, no. 12, p. 985, 2003.

[39] N. Abramson, "The aloha system: Another alternative for computer communi­
cations," Technical Report B70-1, University of Hawaii, Honolulu, Hawaii, Apr.
1970.

72

[40] J. Feddema, C. Lewis, and D. Schoenwald, "Decentralized control of coopera­
tive robotic vehicles: theory and application," Robotics and Automation, IEEE
Transactions on, vol. 18, no. 5, p. 852864, 2002.

[41] M. J. Mataric, Interaction and Intelligent Behavior. PhD thesis, Massachusetts
Institute of Technology, 1994.

[42] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The cricket location­
support system," in Proceedings of the 6th annual international conference
on Mobile computing and networking, (Boston, Massachusetts, United States),
p. 3243, ACM, 2000.

[43] M. Veloso, M. Bowling, S. Achim, K. Han, and P. Stone, "The CMUnited-
98 champion Small-Robot team," in RoboCup-98: Robot Soccer World Cup II,
vol. 1604 of Lecture Notes in Computer Science, pp. 77-92, ACM, 1998.

[44] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, and A. Martinoli,
"SwisTrack- a flexible open source tracking software for Multi-Agent systems,"
in Proceedings of the IEEE/RSJ 2008 International Conference on Intelligent
Robots and Systems (IROS 2008}, p. 40044010, IEEE, 2008.

[45] E. Olson, "AprilTag: a robust and flexible multi-purpose fiducial system," tech.
rep., University of Michigan APRIL Laboratory, May 2010.

[46] J. McLurkin, "Experiment design for large Multi-Robot systems," in Robotics:
Science and Systems, Workshop on Good Experimental Methodology in Robotics,
(Seattle, WA, USA), June 2009.

[47] A. Das, R. Fierro, V. Kumar, J. Ostrowski, and C. J. Taylor, "A Vision-Based
formation control framework," IEEE Transactions on Robotics and Automation,
vol. 18, pp. 813-826, Oct. 2002.

[48] J. S. Liu, "Nonparametric hierarchical hayes via sequential imputations," The
Annals of Statistics, vol. 24, no. 3, p. 911930, 1996.

[49] J. S. Liu, Monte Carlo strategies in scientific computing. Springer Verlag, 2008.

