
RICE UNIVERSITY 

Optimization Techniques for Minimizing Energy 
Consumption in Approximate Circuits 

by 

Kirthi Krishna Muntimadugu 

A THESIS SUBMITTED 

IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE 

Master of Science 

Zvi Kedem 
Courant Institute of Mathematical Sciences, 
New York University 

Houston, Texas 

May, 2011 



ABSTRACT 

Optimization Techniques for Minimizing Energy Consumption in Approximate Circuits 

by 

Kirthi Krishna Muntimadugu 

This work presents different global and local optimization techniques for designing 

"approximate" circuits which decrease energy consumption, one of the most important 

criteria in present day circuit design. The concept of "approximate" circuits which trades 

off energy consumption to output quality, thus creating a new dimension to the design space, 

is radically different from the conventional design principle in which all circuits operate 

correctly all the time. But efficient and intelligent designs have to be realized to tap its full 

potential. These techniques, which have not been explored till date, are based on a rigorous 

mathematical model and target to improve the output quality of a given circuit keeping the 

energy consumption to a minimum. They use the value of information and the architecture 

of the circuit to maximize efficiency. They have been applied to digital signal processing 

circuits to realize energy savings up to 2X the conventional value. 



Acknowledgments 

Several people have contributed to the successful completion of this dissertation that it 

would not be possible to acknowledge them all here. If I have failed to recognize someone's 

contribution by name please accept my sincere apologies for doing so. I am grateful to 

everyone who has helped me. 

First, I would like to express my deepest gratitude to my adviser Prof. Krishna V. Palem 

for his vital support and encouragement throughout. His guidance and insights have been 

invaluable in developing this research. His fundamental work on the relationship between 

probability and energy consumption is the foundation for this dissertation. Our long dis­

cussions on various topics spanning from thermodynamics to mathematical modeling have 

been key in my development towards becoming a good researcher. I would like to convey 

my most sincere appreciation to my committee member, Prof. Zvi M. Kedem, who has been 

integral in developing the ideas proposed in this thesis. His assistance has been central to 

the development of the models and optimization techniques described here. I am eternally 

indebted to Prof. Vincent J. Mooney III for his painstaking effort to strengthen this work 

especially from the perspective of a core hardware engineer. His scrupulous attention to 

details has been extremely constructive in improving this research and writing. 

I would like to thank my committee members Prof. Behnaam Aazhang and Prof. Richard 

Baraniuk for their valuable time and feedback which has been of immense help for extending 

this research further. I would like to acknowledge Prof. C. Sidney Burrus for his time and 

perspective which helped guide this research. I also want to thank Prof. Al Barr for the 

stimulating discussions that we had which helped me improve the scope and impact of 

this research. I would like to express my genuine gratitude to Dr. Lakshmi Chakrapani 

for his encouragement and counseling without which it would have been very difficult for 



iv 

me to cope in such a competitive environment. I am very thankful for his feedback on my 

initial unstructured thoughts which helped me to develop them into solid ideas that could be 

implemented. 

The exciting environment at Rice University and Nanyang Technological University has 

been most beneficial. I appreciate everyone who granted me an opportunity to work at these 

prestigious institutions. 

I would like to express my special thanks to my friend and colleague, Avinash Lingam­

neni, for his continuing support and friendship over the past 10 years and collaboration in 

many joint papers. I thank my previous colleagues, Scott Novich, Avani Devarasetty and 

Phani Deepak Parasuramuni for their partnership in my research. 

I would like to express my heartfelt thanks to Sravani Gullapalli for her friendship, 

company, support and help throughout. 

I cannot put into words my appreciation towards my parents, Sathyanarayana Munti­

madugu and Kavitha Muntimadugu for their love, blessings, encouragement, sacrifices and 

support throughout my life. I really appreciate my brother, Prithvi Krishna Muntimadugu, 

for his love and affection. 

Finally, I thank God for my health and happiness. 



Abstract 

Acknowledgments 

List of Illustrations 

List of Tables 

Contents 

1 Introduction and Related Work 

1.1 Challenges in the World of Computing . 

1.2 The Fourth Dimension 

1.3 Thesis Statement 

1.4 Problem Statement 

1.5 Key Contributions of this Research . 

1.6 The Shift from a Deterministic to a Probabilistic Mind-set 

1.7 An Overview of Related Approaches . 

1.8 Thesis Organization . . . . . . . . . . 

2 Philosophy of Inexact Circuit Design 

2.1 Value of Information based Optimization. 

2.2 Energy Accuracy Tradeoff ....... . 

2.2.1 Classification of tradeoff methods 

2.2.2 Approximate circuit design . 

2.3 Key Contributions . . . . . . . . . . 

2.4 Case Study : An Approximate Ripple Carry Adder 

2.5 Simulation Results .... . . . . . . . . . . . . . 

2.5.1 The energy -error relationship of a ripple carry adder 

ii 

III 

ix 

xiii 

1 

3 

6 

6 

7 

8 

9 

14 

16 

17 

18 

19 

21 

22 

23 

27 

29 



vi 

2.5.2 Comparing alternate adder architectures and the E - E relationship 34 

2.5.3 Applying the lessons learned from the adder to audio and image 

data in DFf . 36 

2.6 Principal Thesis . . . 39 

3 Modeling and Optimization of a Single Datapath Element: An 

Approximate Binary Adder 40 

3.1 Key Developments ... 40 

3.2 Technology Background 43 

3.3 Discussion About Circuit Optimization And Our Target Problem 45 

3.3.1 Our target problem: approximate adder supply allocation problem 45 

3.3.2 Background about circuit optimization problems 46 

3.4 RCA Terminology ... 47 

3.5 RCA Delay Assumptions 53 

3.6 Energy Modeling Assumptions 

3.7 Error Model For An Approximate RCA 

3.7.1 Description of a ripple carry adder. 

3.7.2 Modeling the error at the output of an approximate RCA 

3.8 Efficient Evaluation of Average Error of an Approximate RCA 

3.9 Energy Consumption Models ... 

3.9.1 Energy model for an RCA 

3.9.2 

3.9.3 

Energy model for an approximate RCA 

Summary to Section 3.9 . . . . . . . . 

3.10 Minimizing Average Error of an Approximate RCA Using Geometric 

Programming .................. . 

3.10.1 Formulation of an optimization problem . 

55 

57 

57 

60 

73 

76 

76 

78 

82 

83 

84 

3.10.2 How to minimize average RCA error using geometric programming 86 

3.10.3 Supply voltage binning . . . . . . . . . . . . . . . . . . . . . . .. 94 



3.11 Simulation Framework for RCA Experimentation 

3.12 RCA Experimental Results ........... . 

3.12.1 Simulation results of 16-bit and 32-bit approximate ripple carry 

adders .......... . 

3.12.2 Non-monotonic error rates 

3.12.3 Approximate RCA FFT example. 

3.13 Additional Terminology for Carry Lookahead Adders 

3.14 CLA Delay Assumptions .............. . 

3.15 Energy and Error Models for an Approximate CLA Adder 

3.15.1 Description of a carry lookahead adder ..... . 

3.15.2 Energy consumption model for an approximate CLA 

3.15.3 Modeling the error at the output of an approximate CLA 

3.16 Efficient Evaluation and Minimization of Average Error in an Approximate 

CLA ....................... . 

3.17 Simulation Framework for CLA Experimentation 

3.18 Simulation Results for CLAs .......... . 

3.18.1 Simulation results of 16-bit and 32-bit approximate carry 

lookahead adders . . 

3.19 Optimizing General Circuits 

3.19.1 Model of a General Circuit . 

3.19.2 The Average Error Optimization Problem 

3.20 Impact on Circuit Design 

3.21 Principal Thesis . . . . . 

Vll 

96 

98 

98 

102 

103 

107 

108 

109 

109 

110 

111 

117 

117 

117 

• J 18 

· 119 

· 120 

· 122 

· 123 

· 124 

4 Modeling and Optimization of Dataflow Graph of Approximate 

Adders 

4.1 Primary Contributions 

4.2 The Model. . . . . . . 

125 

· 125 

· 127 



viii 

4.2.1 The graph based model. . . . . . . . . . . . . . . . . . . . . .. 127 

4.2.2 The energy optimization problem for our target dataflow graph of 

adders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

4.3 The Single Resource Dataflow Energy-Error Optimization Method . l30 

4.3.1 A single approximate adder ...... . l30 

4.3.2 Computing the significance of an adder 

4.3.3 Multiple approximate adders . . 

4.3.4 Case study: Ripple carry adder. 

. l32 

137 

138 

4.3.5 Optimizing energy distribution. . l38 

4.4 Summary of the Method and Extension to Other Adders. 139 

4.5 Optimizing Designs of DSP Primitives . . . . . . . . . . 141 

4.5.1 Converting constant-number multipliers to adders and shifters 141 

4.5.2 Approximate finite impulse response filter. 142 

4.5.3 Approximate fast Fourier transform 143 

4.6 Simulation Framework and Results . . 145 

4.6.1 Simulation framework . 

4.6.2 Results and comparisons 

4.7 Impact on Circuit Design 

4.8 Principal Thesis . . . . . 

145 

146 

150 

150 

5 Remarks and Future Directions 151 

A Effect of non-zero carry bits on error and energy models 154 

Bibliography 157 



Illustrations 

1.1 The energy consumption and accuracy tradeoff in a 16-bit ripple carry adder 4 

1.2 Instance of trading accuracy to energy consumption in a fast Fourier 

transform for image processing . . . . . . . . . . . 

1.3 Overview of the classification of related approaches 

2.1 Classification and characteristics of various currently known 

energy-accuracy tradeoff techniques . . . . . . . . . . . . . 

2.2 Carry chains and positions for addition of different Binary numbers 

2.3 The change in the average magnitude of error with respect to the operating 

5 

10 

19 

24 

delay D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 29 

2.4 Average magnitude of error with respect to the energy of operation for 

D = 0.8ns (in the range dn- 1 :::: D :::: 2dn- 1 - E) . . . . . . . . . . . . .. 30 

2.5 Average magnitude of error with respect to the energy of operation for 

D = 2.3ns (in the range 4dn- 1 :::: D :::: 8dn-d 30 

2.6 A two point discrete Fourier transform . . . . . 31 

2.7 Average magnitude of error with respect to the energy of operation for 

D = 2.0ns (in the range do :::: D :::: L7:~ d j ) • • • • • • • • • • • •• •• 31 

2.8 Error magnitude and the relative frequency for (a) the uniformly voltage 

scaled case and (b) the non uniformly voltage scaled case . . . . . . .. . 34 

2.9 The E - E relationship for a 16-bit ARCA using the BIVOS and the UVOS 

schemes, where p = 2 ns and 4 ns . . . . . . . . . . . . . . . . . . . . .. 35 



x 

2.10 The relationship between energy and delay as the admitted error varies in 

anARCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

2.11 The E - E relationship for the ARCA, ACLA and ACSA architectures for 

an eager reading interval of 1 ns and 4 ns . . . . . . . . . . . . . . . .. 36 

2.12 The EDP advantages of BIVOS over UVOS in processing an image where 

the EDP gain of BIVOS based approach over a UVOS based approach is 

shown in the figure between the pairs of reconstructed images ..... . 38 

2.13 The image obtained after applying DFf and then applying Inverse-DFf 

using conventional correctly operating adders, adders with BIVOS and 

adders with UVOS .............................. 38 

3.1 Diagram of a 4-bit ripple carry adder . . 

3.2 Diagram of a I-bit full adder (I-bit FA) 

3.3 An Example of a carry chain in a binary addition using an RCA 

3.4 An Example of two contiguous carry chains in a binary addition using an RCA 

3.5 An example to demonstrate that in an RCA it is possible that by increasing 

the supply voltages the accuracy of the sum is decreased. ....... 
3.6 Diagram of an n-bit ripple carry adder to describe the modeling of the 

critical path of a sum bit in a carry chain . . . . 

3.7 Gate level diagram of a 3-bit ripple carry adder 

3.8 A sample floorplan with 4 voltage islands based on the binned solution of a 

3-bit RCA shown in Table 3.4 ....................... 

3.9 Average error magnitude versus average energy consumption of uniform 

voltage allocation and optimized voltage allocation in a 16-bit ripple carry 

58 

58 

61 

61 

64 

66 

69 

93 

adder ..................................... 100 

3.10 Average error magnitude versus average energy consumption of uniform 

voltage allocation and optimized voltage allocation in a 32-bit ripple carry 

adder ..................................... 101 



xi 

3.11 Average error and average energy consumption versus clock cycle time for 

a 16-bit approximate RCA with constant and uniform supply voltage of 1.2V 102 

3.12 Average error versus energy consumption for a 16-bit approximate RCA 

with constant clock cycle time of 4E-1O sec . . . . . . . . . . . . . . . . . 103 

3.13 Flow graph of a complete decimation-in-time decomposition of a 8-point FFT 1 04 

3.14 Graph-theoretic representation of an 8-point FFT . . . . . . . . . . 104 

3.15 Images generated by (a) Case 1 (b) Case 2 (c) Case 3 and (d) Case 4 107 

3.16 Diagram of a 4-bit carry lookahead adder . . . . . . . . . . . . 

3.17 Diagram of a I-bit Propagate-Generate full adder (I-bit PG-FA) 

3.18 Diagram of a 4-bit Carry Look Ahead Block . . . . . . . . . . . 

3.19 Illustration of the paths and delay of the carry bit across a carry-lookahead 

109 

109 

110 

adder .................................... 111 

3.20 Average error magnitude versus average energy consumption of uniform 

voltage allocation and optimized voltage allocation in a 16-bit carry 

lookahead adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

3.21 Average error magnitude versus average energy consumption of uniform 

voltage allocation and optimized voltage allocation in a 32-bit carry 

lookahead adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 20 

4.1 Example of a graph-theoretical representation of a circuit 128 

4.2 An example of an implicit shifter . . . . . . . . . . . . . 128 

4.3 The two paths from Al to A4 (= 0 1). Error of 8 at AI, while propagating 

through the left path contributes an error of 48 to error at 0 1 and an error of 

18 while propagating through the right path. Thus the total error at 0 1 is 58 

and the significance of Al = 58/8. 134 

4.4 A finite impulse response filter . . 141 

4.5 Graph theoretical representation of a finite impulse response filter 142 

4.6 Flow graph of a complete decimation-in-time decomposition of a 8-point FFT 143 



xii 

4.7 Graph-theoretic representation of an 8-point FFT . . . . . . . . . . .. 143 

4.8 Energy consumption vs. Average error for a 8-point FFT with local and 

global optimization . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 146 

4.9 Energy consumption vs. Average error for a 16-point FFT with local and 

global optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 147 

4.10 Reconstructed images obtained after processing through a (a) conventional 

correct 8-point FFT (b) locally optimized approximate 8-point FFf (c) 

globally optimized approximate 8-point FFT. . . . . . . . . . . . . . . . . 149 

A.l An example of a 5-bit binary addition using an RCA when the intermediate 

carry bits are assumed to non-zero at the beginning of the addition. . . . . . 154 



Tables 

3.1 Propagation delay and average dynamic energy per transition of an XOR 

gate in 90nm process technology for various supply voltage values . . .. 57 

3.2 Maximum and minimum propagation delays of the XOR gate and the MUX 

in 90nm technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 58 

3.3 Maximum and minimum propagation delays of the XOR gate and the MUX 

in 90nm technology . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81 

3.4 Propagation delay and supply voltage values from the geometric program 

and corresponding binned supply voltage values for the gates in Fig. 3.7 .. 91 

3.5 Maximum, minimum propagation delays and proportionality constants of 

the XOR gate and the MUX in 90nm technology ............ 98 

3.6 Summary of results of 16-bit and 32-bit approximate ripple carry adders 99 

3.7 Summary of results of 16-bit and 32-bit approximate carry look ahead adders118 

4.1 Significance values of the adders in the graph shown in Fig. 4.1 . . . . . . . 137 



To my parents who have always believed in me 



1 

Chapter 1 

Introduction and Related Work 

Tom Forester, talking about the information revolution, said " If the automobile and 

airplane business had developed like the computer business, a Rolls Royce would cost $2.75 

and would run for 3 million miles on one gallon of gas. And a Boeing 767 would cost just 

$500 and would circle the globe in 20 minutes on five gallons of gas [1]. " 

The reason for such a truly extraordinary revolution can be attributed to many facts, 

but according to my opinion, one of the most important is electronic technology's radical 

reformation from the use of vacuum tubes to current day's 28nm transistors. This revolution 

is more popularly known as the Moore's Law, predicted by one of the founders of Intel, 

Gordon Moore [2]. But this electronic revolution which has been going on for more than 

two decades has been possible only by facing numerous challenges. Today, this revolution 

is again facing some serious challenges. This thesis is an effort to describe an alternative 

to the conventional electronic design methodology so that some of these challenges can be 

overcome. 

1.1 Challenges in the World of Computing 

There are two important challenges that the world of computing is facing. Currently, the 

first challenge is due to the increasingly ubiquitous nature of the present day portable elec­

tronics ranging from mobile phones to GPS-based navigation devices. Portability demands 

lower energy consumption without compromising on the functionality. Also, demand for 
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low energy consuming, also referred to as green design, electronics [3] is gaining a lot of 

momentum. According to the 2008 International Technology Roadmap for Semiconductors 

(ITRS) "Energy Consumption has become an increasingly important topic of public discus­

sion in recent years because of global C02 emission . .. In general, the ITRS documents the 

impressive trends and, more importantly, sets aggressive targets for future electronics energy 

efficiency, for example, computational energy/operation (per logic and per memory-bit state 

changes). The most detailed targets relate directly to semiconductor materials, process 

and device technologies, which form the bases of integrated-circuit manufacturing and 

components, respectively." [4] 

The second challenge is manufacturing reliable and predictable electronic devices. 

Moore's Law predicts that the number of transistors on a single die is going to increase at 

an exponential rate. This has been accomplished by decreasing the size of an individual 

transistor up to 20nm where particular layers such as the gate oxide layer is about 1.2 nrn 

(equivalent to 5 atoms!). But engineering considerations on lithography have limitations 

of designing these tiny elements precisely which leads to hindrances like thermal noise, 

parametric variations and other device perturbations [5, 6, 7] which leads to unreliable 

computing. Again the 2008 ITRS report states as a long term challenge "Dealing with 

fluctuations and statistical process variations". Also the report mentions that "Increasing 

yield loss due to non-visual defects and process variations requires new approaches in 

methodologies, diagnostics and control. [4 J" 

These two challenges have competing requirements in the design of a VLSI system. A 

straightforward method of lowering the energy consumption is to lower the supply voltage of 

the circuit. But this would lead to transistors behaving unreliably because noise becomes a 

dominant factor. To ensure reliability, techniques such as redundancy and majority voting [8] 

can be used. However these techniques tremendously increase the energy consumption of 
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the circuit. Thus conventional methods typically have contradictory results and do not offer 

a common solution to both energy consumption and reliable design. 

1.2 The Fourth Dimension 

The conventional electronic circuit design methodology utilizes three parameters in the 

tradeoff argument, the energy consumption of the circuit, the area occupied by the circuit 

and the speed at which the circuit is being operated. To face the challenges outlined pre­

viously, a radically new solution to introduce a new alternate dimension, the accuracy of 

the circuit, to the traditional design approach has been proposed recently. For the first time 

ever, Palem [9, 10], showed that noise (or randomness) can be exploited as a resource for 

low energy but still obtain useful computation. 

Currently there are three different techniques, applicable in different scenarios, that use 

this novel fourth dimension in circuit design [11, 12, 13]. 

The first approach uses CMOS circuits that operate probabilistic ally due to noise [14, 11]. 

The concept of a probabilistic CMOS switch (PCMOS) was introduced where a PCMOS in­

verter is correct with a probability parameter p ::: 1. The probabilistic inverter has been 

characterized in detail in terms of the relation between its energy consumption per switching 

and its probability of correctness. These probabilistic inverters were then used to design 

bigger probabilistic gates which switch correctly with a probability of correctness. This 

work was later extended to develop a probabilistic boolean logic, because it was realized 

that conventional boolean logic was no more valid in the universe where devices are prob­

abilistic and not deterministic [15]. In probabilistic boolean logic, the basic operators are 

defined with a probability of correctness, for example, an AND gate with a probability of 

correctness p is defined as /\p. Further extending the foundational probabilistic boolean 

logic, a probabilistic arithmetic was developed, where the operators are also defined with a 
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Figure 1.1 : The energy consumption and accuracy tradeoff in a 16-bit ripple carry adder 

probability of correctness, such as + p. 

4 

This concept was applied by George et.al [11], who demonstrated the approach through 

which the correctness of arithmetic primitives may be traded off for energy consumed, while 

providing an acceptable or "good enough" solution. The principle that enables such an 

opportunity, is the relationship between energy and the probability of correctness in highly 

scaled, noise susceptible (future) CMO·S technologies. Though impressive energy efficiencies 

were demonstrated empirically, and though such techniques are likely to be of great value 

in future noise susceptible CMOS and novel devices (such as molecular devices [16]), such 

techniques are not applicable to current day technology generations based on CMOS , where 

the noise levels are not sufficien t to enable such a trade off. 

To apply the concept of trading accuracy for energy consumption in present day de-
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Figure 1.2 : Instance of trading accuracy to energy consumption in a fast Fourier transform 
for image processing 

terministic circuits, we introduced the technique of approximate circuits using voltage 

overscaling [12]. Every digital circuit operates on a supply voltage. The delay of the circuit, 

which is the time the circuit takes to compute the output from the given inputs, is generally 

considered to be inversely proportional to the supply voltage of the circuit in CMOS . Hence 

the conventional design methodology is that a circuit should be operated at a speed which 

allows the outputs to be completely computed otherwise the intermediate values of the 

outputs, which could be different from the final outputs, might be considered as the actual 

outputs. But in certain applications where closer to actual outputs are sufficient, then the 

supply voltages of the circuit can be scaled down lower than the permitted value which is 

dependent on the operating speed. This results in approximate outputs and such circuits 

are referred to as approximate circuits. To provide further intuition, Figure 1.1 shows an 

instance where the energy consumption is being traded for accuracy. This figure shows the 
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results for a 16-bit approximate ripple carry adder. It can be inferred from the figure that as 

the energy consumption of the circuit is lowered, the error of the adder is increased (or the 

accuracy of the circuit is lowered). This behavior can be extrapolated from a single adder 

to designing a 16-point fast Fourier transform (FFT) for image processing. The results of 

an approximate FFT are shown in Figure 1.2. The images that are shown in the figure are 

the result of computing the FFT and then the inverse-FFT where the FFT part is approximate 

but the inverse is accurate. It can be observed from Figure 1.2 that there is an almost 

graceful degradation of quality of the image as energy consumption is lowered. A complete 

description of the simulation framework and assumptions behind these results are given in 

later chapters. 

Another technique to trade accuracy for energy consumption is referred to as probabilis­

tic pruning [13] where under-utilized parts of the circuit are systematically pruned or deleted 

thereby saving energy consumption. 

The philosophy behind the concept of approximate circuits and a discussion of other 

techniques for implementing energy-accuracy tradeoffs are discussed in further detail in 

Chapter 2. 

1.3 Thesis Statement 

The supply voltages of a circuit can be lowered beyond acceptable limits leading to deter­

ministic approximate circuits to achieve low energy computing. 

1.4 Problem Statement 

The two challenges that are mentioned in Section 1.1 are two opposing issues in the design 

of VLSI since solving one issue might deteriorate the other. Voltage overscaling leading to 
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approximate circuits presents one possible solution to both these issues that can be applied 

to current day deterministic designs. For efficient design and synthesis of these approximate 

circuits, characterization, analysis and optimization in terms of their accuracy of outputs, 

energy consumption and performance are essential. 

1.5 Key Contributions of this Research 

This dissertation presents the modeling and optimization of approximate CMOS circuits 

resulting from voltage overscaling. The resulting accuracy, energy consumption and per­

formance of approximate circuits are analyzed and optimized. The use of these circuits for 

different popular DSP applications are also presented. 

The following are the primary contributions of this research: 

1. Characterization and Efficient supply voltage allocation of an approximate adder 

A rigorous mathematical model for a general approximate adder with voltage overscal­

ing has been provided. In doing so, the relationship between the resulting accuracy 

and its switching energy consumption is established. The characterization is based 

on theoretical models that have been developed, and later validated and supported 

by circuit simulations and measurement. This detailed characterization considers the 

following: (i) the type of the adder being used (ii) the effect of carry propagation 

and (iii) the constraints on the design parameters. This work is the first to provide 

an optimization model for minimizing error for a given energy budget for a general 

approximate adder when its supply voltages are overscaled. This optimization model 

is solved using a technique implemented using geometric programming, a variant of 

the more popular linear programming modeL This work is therefore different from 

the previous characterization of approximate adders which establishes theoretical 

bounds on the expected gains through this approach. The characterization in this 
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work, besides being of interest, has utility since this can be used to design efficient 

approximate adders which later can be extended to bigger circuits. 

2. Modeling and Optimization of Dataflow Graph of Adders A concrete model that 

depicts the behavior of propagation of errors in a dataflow graph (circuit) of adders 

and/or shifters is developed which is not constrained on the topology of the graph. 

This model can be used to represent many different circuits including some of the 

popular circuits used in digital signal processing, such as the finite impulse response 

filter or the fast Fourier transform. By analyzing the topology of the graph, the average 

error at the output(s) of the circuit is minimized by optimizing the distribution of 

energy across the different components of the circuit using the technique of Lagrange 

multipliers. This analysis, the first of its kind as per the author's knowledge, allows to 

design optimal approximate circuits that have minimal error for a given energy budget. 

Thus allowing the designer to build bigger and efficient optimal approximate circuits 

from smaller modules. 

1.6 The Shift from a Deterministic to a Probabilistic Mind-set 

Since 20000 BC when the first number representation, the tally marks [17] were introduced, 

to the era of the Egyptians and Sumerians in 3000 BC who invented some of the first 

arithmetic concepts [18] leading to Classical Physics, all phenomena in the universe were 

modeled deterministically. Boltzmann, a pioneer who introduced statistical considerations 

in physical phenomena, was in fact challenged by many of his colleagues on his statistical 

interpretation of the Second Law of Thermodynamics. It is very interesting to realize that the 

debate between deterministic and probabilistic modeling of physical phenomena persisted 

due to its theological dimension on the lines of "Would God order His universe through 
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Chance occurrences [19}." A much more popular quote in this topic is by Albert Einstein, 

"God does not play dice with the universe [20}. "Whether randomness and chance really 

exist in the universe is a topic that deserves a lot more attention and is out of the scope of 

this thesis. 

In this thesis I aim to demonstrate that randomness and chance in a given interpretation 

can be utilized in ways that are profitable and propitious to electronic design. The domain 

of electronics which deal with multimedia (audio and video) signal processing is one of the 

many areas which can tolerate inexact computing. The reason is that the quality of these 

electronics is evaluated only by human perception which can interpret useful information 

from slightly erroneous data. Thus lowering the accuracy would still be tolerable. This leads 

to a new design methodology in which the computations are approximate. A logical shift 

from reliable and deterministic design to probabilistic or stochastic design is inevitable. A 

prominent researcher from Intel Corp. Shekhar Borkar says "We need to evolve from today's 

deterministic design to probabilistic and statistical design for the future, comprehending 

variations, and optimizing for yield, performance, and power" [21,22,23,24]. 

1.7 An Overview of Related Approaches 

The first work to address the issue of reliable computation in the presence of unreliable com­

ponents was by Von Neumann [8]. Specifically, he showed that if the failure probability of a 

component Pe ::::: 0.0073, then a circuit which fails less than half of the time can be designed 

using a cascade of three-input majority gates. There have been further developments on 

the bound on Pe, where Pippenger [25] and Feder [26] showed that if Pe ~ 0.5 - O.5k it is 

impossible to construct reliable networks using k-input gates. 

There have been recent approaches that designers have adopted aimed at solving a 

similar problem that is being addressed in this thesis. To the best of the knowledge of the 
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Figure 1.3 : Overview of the classification of related approaches 

author, most of the approaches can be classified as shown in Figure 1.3. 

The basic aim of all these approaches is to design energy and performance efficient 

circuits mostly targeted towards applications in digital signal processing. These can be 

divided into two categories 

1. Techniques that always produce the correct answer and do not trade "accuracy for 

energy" at the output. This category also includes those approaches that might produce 

some errors during the computation but then specific error correction schemes are 

applied prior to the final output. 

2. Techniques that aim to trade accuracy for energy under two assumptions, (i) If the 

application level impact is low and (ii) the savings in energy consumption are dispro-

portionate to the loss in accuracy 

Let us first discuss about some popular techniques in the first category. These can be 

divided into two sub-categories where the first set uses voltage scaling and multiple voltage 

levels (A. I ) and the other set uses circuit level timing speculation and voltage overscaling for 

energy efficiency (A.2). Some of the techniques {27, 28] in the former set are adaptive which 
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means that the throughput of the circuit is based on the workload. Essentially the throughput 

is adjusted based on the input load at that particular time as opposed to operating at the worst 

case frequency at all times. Non-adaptive techniques typically operate the circuit at multiple 

voltages-critical paths of the circuit being implemented at higher voltages when compared 

to the non-critical paths--or rely on circuit implementation techniques like transistor sizing 

for energy efficiency [29]. Manzak and Chaktrabarti [30] and Yeh et al. [31,32] present 

techniques that are non-adaptive which operate the critical paths of the circuit at higher 

voltages than the non-critical paths and also use transistor sizing. This is similar to a biased 

voltage scaling but the bias is because of the time criticality of the output rather than the 

importance of the data that we use. 

The techniques that use circuit level timing speculation and voltage overscaling are 

broadly know as the "Razor" approach [33, 34] championed by researchers at the University 

of Michigan which allows error at the circuit level, but only temporarily (for a clock cycle 

or two). In this case, errors are corrected by inserting delay in order to continue from a 

known "correct" logic state. In the case of overclocked circuits it is assumed that prior 

approaches to handle flip-flops and meta-stability issues [33, 34] can be used. A recent 

announcement in Technology Review (Published by MIT) [35] describes recent advances 

in error resilient circuit including a prototype chip designed by Tschanz et al. [36] at Intel 

that lets errors happen and then corrects them using less power overall. Shim et al. [37] 

show a design in which circuit level timing errors are not corrected at the circuit level, 

rather techniques borrowed from signal processing are used to correct such errors. Soft 

digital signal processing by Hegde and Shanbhag et al. [38, 37, 39] allows errors in the 

computation, but then uses digital noise tolerance schemes to attempt to correct these errors 

though partially in some cases. 

In contrast, the other category of techniques, are ones which allow limited loss in accu-
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racy of the output for substantial gains in savings of energy consumption without completely 

compensating for error. The first cases in which these techniques have been discussed are 

when the circuits are deep sub-micron and are highly susceptible to noise which will hence­

forth be referred to as probabilistic circuits(B.1). In this case, each component is considered 

to be unreliable similar to the analysis done by Von Neumann [8]. Rigorous modeling has 

been done in this case, to characterize the energy-probability of error relationship. The first 

of the results were by Palem [40, 41, 9] which established quantitatively that error can be 

traded for energy consumed and established that as the tolerable error limit is increased 

the energy saved increases exponentially. A rigorous quantitative analysis and model for 

a energy consumption versus probability of error relationship in a CMOS inverter was 

established by Korkmaz et al. [14]. This was further extended by George et al. [11] to show 

that if efficiently applied, such circuits can result in useful computation (shown in terms 

of digital signal processing applications) for arithmetic. The core concept was to identify 

that some components are more important than others in arithmetic circuits (such as adders 

or multipliers) and hence the investment of energy in these components should be biased 

with respect to the impact the particular component has on the output. Hence the concept of 

BIased VOltage Scaling (BIVOS) was introduced. 

The modeling of probabilistic circuits, required a complete overhaul of the basic boolean 

logic that is considered universally true for all boolean circuits. It was shown by Chakrapani 

et al. [15,42] that conventional boolean logic fails in certain areas for circuits which behave 

probabilistic ally. Hence a radically novel probabilistic boolean logic was developed with all 

associated laws established (such as a probabilistic De-Morgan's law). 

The modeling and analysis of probabilistic circuits would be applicable only when the 

transistors are highly scaled and hence the noise would be a significant factor. But at this 

time, noise is still a tolerable parameter and the devices are still deterministic in nature. 
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Hence we use voltage overscaling where because the critical path is violated there are 

errors in the output of the circuit. This kind of implementation will henceforth be called 

as approximate circuits (B.2). This technique was introduced by Lakshmi et al. [12] in 

which an approximate ripple carry adder was rigorously modeled and theoretical savings 

in energy consumption due to biased voltage scaling versus uniform voltage scaling was 

shown. An exception to these techniques is by Banerjee et al. [43] where in the specific 

case of a 2-dimensional discrete cosine transform they modify the circuit topology such that 

computations that are more important to output quality take shorter time than the ones that do 

not affect the output quality as much. So when they overc1ock the circuit, the computations 

that take shorter time would be computed correctly but the other ones might have errors in 

them. 

A third form of energy-accuracy tradeoff is referred to as probabilistic pruning(B.3) 

where selective components in a circuit are deleted/pruned such that effect on the overall 

output is minimal and thus saving energy. This technique has been implemented on various 

arithmetic adders and substantial savings in energy-delay-area product have been shown by 

Lingamneni et al. [13]. 

A straightforward technique to.reduce the energy consumption is power gating [44], 

which is simply cutting off power to less important circuitry. But in power gating we 

are neglecting the switched part of information completely, whereas in our approach we 

relatively invest based on the significance of the data. 

This thesis focuses on this technique and provides modeling and optimization techniques 

for designing efficient low energy approximate circuits (B.2). 
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1.8 Thesis Organization 

This thesis has been organized into 5 chapters. A brief description of their organization is 

given below. 

• CHAPTER 1: We present the motivation behind designing approximate circuits and 

describe the effect of approximate circuits on the traditional circuit design paradigm. 

We also describe the thesis and problem statements along with the key contributions 

in this thesis. A philosophical viewpoint of the shift from a completely deterministic 

to a probabilistic way of thinking is presented. We also present a classification of 

related approaches and thereby position this work in current state of the art research. 

• CHAPTER 2: We first describe the notion of "value of information" which is the 

primary foundation of the optilT'jzation techniques that are described in this thesis. 

We then present the classification of currently known techniques to trade accuracy for 

energy consumption and then elaborate on the particular tradeoff technique that is 

used in this thesis. To better describe our particular technique we pick the ripple carry 

adder as a case study and analyze its behavior in multiple ways. 

• CHAPTER 3: This chapter presents the first key contribution of this thesis which is 

the modeling of error and energy for a given approximate adder design. We then use 

these models to formulate the problem of optimization of an approximate adder as a 

geometric program which is a type of convex optimization. Essentially we compute 

an allocation of supply voltages to different gates in the adder for minimal loss in 

accuracy for a given energy budget. We present the results of our optimization tech­

niques on two different adder designs. We also present the simulation results of an 

8-point FFT with image data to demonstrate the perceptual impact of approximate 
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circuits. We also present an extension of this modeling that can be applied to any 

general circuit design. 

• CHAPTER 4: Our second key contribution in this thesis is the modeling of a network 

of "inexact" adders. As our primary target for inexact circuits is signal processing, 

we consider the primitive signal processing blocks such as finite impulse response 

filters and fast Fourier transforms (FFT) as our target. Most of these primitives can 

be modeled as a network of adders and shifters. Hence we developed a rigorous 

mathematical model to estimate the loss in accuracy at the output of such a network 

and consequently optimize the distribution of energy to minimize the loss in accuracy. 

We present simulation results for FFT circuits of different sizes to demonstrate the 

improvement due to our optimizations . 

• CHAPTER 5: We finally present our conclusions and list a few directions in which 

this research can be further extended. Some of these extensions are key for a practical 

implementation of these optimization techniques and to also conform to the current 

design methodologies. 
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Chapter 2 

Philosophy of Inexact Circuit Design 

Inexact circuit design is a design philosophy where the conventional constraint of requiring 

100% accuracy in circuits is relaxed. Fundamentally, this philosophy adds a fourth dimen­

sion of accuracy to the current 3-dimensional circuit design space spanning around power 

consumption, area and delay. This philosophy is applicable in the following two situations. 

• The first situation is where the circuits are inherently "unreliable" and "probabilistic". 

Increasing parameter variations, noise susceptibility and decreasing process sizes are 

causing CMOS devices to be non-deterministic. To address these issues and precisely 

model the effect of these probabilistic circuit elements, the metric of accuracy needs 

to be introduced into the entire circuit design framework. 

• The second situation is where the circuits themselves are not probabilistic in nature 

but are deterministic, but the application does not demand 100% accuracy. In such 

cases, relaxing the very rigid constraint of accuracy can be used to decrease energy 

consumption which is one of the leading challenges in current day circuit design. 

The first challenge in adopting an inexact circuit design methodology is to prove that 

circuits with less than 100% accuracy can still be used to perform useful computations in 

many applications which are energy constrained. There are two types of applications where 

inexact circuit design can be implemented. They are 

• The first set of applications is where randomness is a required quality. For example, 

many encryption applications use pseudo-random number generators to produce ran-
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dom numbers. But if there was a circuit that was inherently random then the extensive 

overhead of a pseudo-random number generator can be removed. It has been shown 

by Lakshmi et al. [45] that there are numerous such applications/algorithms which 

actually benefit from having a circuit which is inherently probabilistic. Some of the 

algorithms are Bayesian inference, Random neural networks, probabilistic cellular 

automata, and hyper-encryption. 

• The second set of applications where accuracy can be relaxed is where a less than 

100% correctness can be tolerated. This set primarily consists of traditional digital 

signal processing (DSP) applications whose output is consumedijudged by a human 

being. For example, consider a music player whose quality can be tuned based on 

how much battery power is left. In fact, many DSP algorithms are "approximate" in 

nature. The discrete Fourier transform, for example, represents the entire signal in 

the frequency spectrum with a few samples, thus introducing both quantization and 

sampling error. However, this still works because the human brain can interpret stimuli 

to the body's senses and obtain useful information even if they are not completely 

accurate. A very common illustration of this fact is that a person can understand 

human speech even if there is extensive background noise corrupting the signal. It has 

also been clinically demonstrated that the human brain can spot knO\vn visual patterns 

even if interlaced with extensive noise. [46]. 

2.1 Value of Information based Optimization 

The fourth dimension of accuracy is directly related to the information content that is being 

processed. Therefore to design inexact circuits efficiently,· the consideration of the "value 

of infoffilation" is of paramount importance. Analogous to the case of conventional circuit 
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optimization techniques, inexact circuits also need to be optimized before the full advan­

tage of this tradeoff can be realized. This optimization will revolve around the "value of 

information" that is being processed. To clarify the importance of "value of information" 

we present Example 1. 

Example 1. Consider the addition of two simple decimal numbers, 743 and 8342. Assume 

that the accuracy of each digit position can be individually controlled. If there is an error of 

+ 1 in the unit's positions, then the output of the addition would be 9086 (instead of 9085) 

leading to an error of + 1. But consider the case where the exact same "magnitude" of error 

occurs in the hundred's position instead of the unit's position, then the output of the addition 

would be 9185 (instead of 9085) leading to an error of + 100 = + I x 100. Therefore the 

same amount of error occurring at different places can lead to very different consequences. 

D 

This thesis will focus on the "value of information" as the key towards developing 

optimization techniques to design more efficient inexact circuits. 

2.2 Energy Accuracy Tradeoff 

A particular technique through which the new dimension of accuracy is introduced in cir­

cuits is referred to as an energy-accuracy tradeoff method. These techniques are based 

on practical circuit constraints and are also classified based on them. An energy-accuracy 

tradeoff method gives the circuit designer an approach to control the loss of accuracy in a 

given circuit for a partIcular energy constraint. 
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Figure 2.1 : Ciassification and characteristics of various currently known energy-accuracy 
tradeoff techniques 

2.2.1 Classification of tradeoff methods 

Currently known energy-accuracy tradeoff methods are classified based on their mode of 

implementation and characteristics. They are 

• Probabilistic noise-based circuit design: This technique is applicable to circuits in 

"futuristic" process technologies where process variations and thennal noise are signif-

icant enough to make the individual circuit elements, non-deterministic. For example, 
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one of, the current day approaches to combat the probabilistic effects of thermal noise 

and maintain the deterministic properties of circuits is to keep the supply voltages 

high enough such that thermal noise is "drowned". But this inevitably leads to an 

increase in energy consumption. In applications where a "slight" loss in accuracy can 

be tolerated, the supply voltages could be lowered resulting in thermal noise based 

effects, which might lead to an "inexact and probabilistic output". The phrase "inexact 

and probabilistic output" implies that the outputs of such circuits might not always 

be exactly equal to the correct output and the amount of deviation from the correct 

output also can vary. [40,41,9, 11] 

• Approximate circuit design: This technique is applicable to current day deterministic 

circuits, One of the most rigorous constraints in current day circuit design is to adhere 

to timing constraints. Essentially the operating speed of a circuit is directly related 

to the critical path delay of the circuit. Thus if there is a constraint on the operating 

speed of a circuit, then, the operating supply voltage of the circuit is automatically 

fixed, which in turn, determines the energy consumption of the circuit. Analogous to 

noise-based circuit design, if the target application is such that accuracy of the output 

can be relaxed to a certain threshold then the conventional rigid binding between the 

supply voltage of the circuit and the operating frequency can be broken, then the 

supply voltage of the circuit can be lowered (reducing energy consumption) beyond 

the threshold at which the circuit is guaranteed to be correct. This might lead to an 

inexact output but, in contrast to the noise-based circuit design, is still deterministic. 

That means given the same set of input conditions the output will always be the same, 

albeit inexact. Such circuits are referred to as the approximate circuits and the process 

of operating at higher speeds than permitted by the critical path delay is referred to as 

overclocking. [12,47,48]. 
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• Probabilistic Pruning: This technique is applicable to current day deterministic cir­

cuits. In this approach the components (which could be gates or collection of gates) 

and their associated wires are systematically "pruned" or deleted. The decision of 

which components are pruned is based on the probability of those components be­

ing active during circuit operation and the value of information being produced by 

those components. The extent of pruning is based on the constraints imposed on the 

maximum loss of accuracy that can be tolerated by the application. [13]. 

The classification and characteristics of the three energy-accuracy tradeoff methods is 

also presented in Fig. 2.1 for clarification and quick reference. 

2.2.2 Approximate circuit design 

Approximate circuits as described previously in Section 2.2. I, is a technique where the the 

relationship between the operating frequency of a circuit and its supply voltage is broken. 

Traditionally the operating frequency is based on the circuit's critical path delay which is 

dependent on the circuit topology and its supply voltage. Assuming that the circuit topology 

is not being changed, the operating frequency is a function of the supply voltage. Thus if the 

operating frequency is fixed there is a minimum voltage threshold over which the circuit has 

to be operated to guarantee 100% accuracy in the output. In applications which can tolerate 

a loss in accuracy,the supply voltage of the circuit is lowered below the minimum threshold 

which might lead to an "approximate" output. 

Also traditionally the entire circuit is operated at the same voltage because all parts 

of the circuit are computed correctly. But when we introduce accuracy as a parameter, as 

described in Section 2.1, the reduction in accuracy is affected by the value of infOlmation 

that is being computed by the particular part of the circuit. Hence a BIased VOltage Scaling 

(BIVOS) scheme was proposed by Lakshmi et al. [12] wherein parts of the circuit which 



22 

compute information of higher value are supplied with a higher voltage and. a lower voltage 

is supplied to other parts. We presented the following two key contributions in [12]. 

1. A rigorous theoretical foundation to quantify an energy-accuracy trade off at the 

arithmetic level which can be applied to current day deterministic electronic devices, 

and 

2. A practical technique to realize this trade off in current day technology generations 

that is inspired by the foundational model. 

A primary advantage of this technique is that it can be applied without any alteration to 

the existing circuit design and can be adjusted in real-time by modifying either the operating 

frequency or the supply voltages of the circuit. To further clarify the application of this 

technique and the resulting energy-accuracy tradeoff a case study of an approximate ripple 

carry adder is presented in Section 2.4. 

2.3 Key Contributions 

This chapter first presents the philosophy of inexact circuits and its classification. It will 

provide the intuition behind the approach of approximate circuits but will not discuss 

the theoretical foundations [12] for energy and probability of correctness in approximate 

circuits. 

The key points that are presented are as follows 

1. The scenarios in which inexact circuits can be designed are described. Then the two 

types of application domains in which inexact circuits can be used is presented. 

2. The classification of current energy-tradeoff methods is shown and their respective 

characteristics are described. 
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3. The notion of value of information and its prime importance in the design if inexact 

circuits is presented. 

4. A viable approach through which a tradeoff between energy consumption and accuracy 

of the output in current day technologies is demonstrated. 

5. This approach uses a technique called overscaling, where the supply voltages are 

scaled much higher than allowed by the operating frequency thereby rendering the 

output inexact or approximate 

6. This technique is applied to arithmetic circuits, specifically a ripple carry adder to 

demonstrate its validity. 

7. To demonstrate the tradeoff with respect to the three dimensions, analysis of different 

designs of approximate arithmetic adders are presented along with simulation results. 

8. To demonstrate the tradeoff between energy consumption and output accuracy us­

ing approximate circuits, a two-dimensional fast Fourier transform is built using 

approximate adders. 

2.4 Case Study: An Approximate Ripple Carry Adder 

As an example consider the 8 bit binary addition of two numbers A and B where A = 

01001010 and B = 01000110, where the least significant bit (the "first" bit) is written on 

the right and the most significant bit (the "eighth bit") on the left. Consider the "ripple carry 

technique" to perform such an addition. As illustrated in Figure 2.2(i), it can be noticed 

that the addition of the second bit generates a carry, which is propagated to the third bit, 

which, in turn generates a carry, which when added to the fourth bit, generates a carry and 

sets the results of the addition of the fifth bit to 1. This will be referred to as a carry chain 
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Figure 2.2 : Carry chains and positions for addition of different Binary numbers 

of length 3 originating at position 2. In this example, there is also a carry chain of length 1, 

originating at position 7. If the delay for one addition combined with the wire delay (the 

delay for computing and propagating this carry to the next significant bit position) is d , 

in conventional circuit implementations of this adder, the total delay is taken as D = 8d 

and the circuit operated at a frequency 1/ D. This is because, in the worst case (adding 

10101011 to 01010101 for example) the carry chain is of length 8 and originates at position 

1. The total delay of 8d determines the operating frequency j = 1/8d of the circuit, which 

in turn, determines the operating voltage V, since in CMOS circuits, V ex: 1/ d. This in turn, 

determines the energy consumed, where E ex: V 2
. 

Now, consider the addition operation from the previous paragraph when the entire adder 

circuit is operated at V' = ! V and hence d' = 2d and let the frequency of operation be 

j . Since the individual carry computation and propagation delay is doubled, in the time 

1/ j, any carry can propagate to only half as many (or n/2) bit positions. Now, since the 

length of the larger carry chain is 3 < 8/2, the addition would be performed correctly with 

this voltage lowering. Moreover, in this case, since energy consumed by CMOS circuits is 

quadratically related to the operating voltage, the operating energy E' = E / 4. Hence in 

this case, operating voltage can be halved, and the energy consumed can be improved by 

A 

B 
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a factor of 4, without compromising the correctness of operation. However, considering 

Figure 2.2 (ii) where the length of carry chain is 5, if the adder is operated at voltage V', the 

addition would be performed incorrectly, with 01000000 as the computed result instead of 

10000000, an error magnitude of 64. However this adder achieves a factor of 4 in energy 

efficiency when compared to the case where the adder is operated at voltage V wherein 

the answer is computed correctly. This illustrates the first principle [12]: There is a trade 

off between energy consumption and error induced by propagation delay, in circuits which 

implement arithmetic operations, that can be exploited to gamer energy savings 

Now, consider the case when the inputs are 00010101 and 00001011 (Figure 2.2(iii». 

Even though the length of the carry chain is 5-the same length as the case described in 

Figure 2.2(ii)-since the carry chain originates in a less significant position and though the 

adder is operated at voltage V', the error is significantly lower in this case-a magnitude of 

16-for the same factor of 4 in energy savings when compared to the correct operation with 

voltage V. This case illustrates the second principle [12]: Errors in bits of a higher value 

affect the quality of solution more than similar number of errors in bits of a lower value. 

Combining these two principles, the techniques to design and optimize approximate 

circuits will be presented in this dissertation. Specifically, in the case of a ripple carry adder, 

the full adders in the more significant position will be operated with a higher supply voltage, 

when compared to the full adders in the less significant positions. Thus the error rate or 

"probability" of error in the more significant positions is decreased when compared to the 

less significant positions. This approach [12] has been referred to as the "non uniformly 

voltage scaled addition". A conventional ("uniform") aggressive voltage scaling on the other 

hand, would operate all full adders with the same (reduced) supply voltage, and hence the 

error rate would be the same irrespective of the bit position. 

In the work cited before [11], the methodology is ad-hoc, a mathematical model which 
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trades off the energy investment in each full adder to the expected magnitude of error is 

vital for a systematic exploration to guide the design of arithmetic units, and to provide an 

intellectual framework with sound foundation and to avoid this ad-hoc design. To this end, 

we had introduced in [12], a theoretical characterization of an adder which combines the 

energy consumption with the notion of the value of a bit-in the binary representation of 

numbers, more significant bits are of a higher value than less significant bits for example­

and characterize the ability to trade off energy for quality of solution of arithmetic operations. 

The quality of solution has been quantified through the expected magnitude of error at the 

arithmetic level, and is determined by the error of the constituent bits as well as their values, 

the latter determined by their position significance. This detailed theoretical discussion is 

not presented in this dissertation. 

To better present the intuition behind an approximate circuit, some empirical results are 

discussed in the next section for which we require to define some parameters for the circuit. 

We consider the following four parameters to describe our empirical results (of which three 

are independent): 

1. n the width of the adder, 

2. D* the total computation time for each set of inputs for the adder 

3. f = 1/ D the frequency of operation of the adder, 

4. Vi ex: d;' the supply voltage for each individual full adders. 

For the purpose of illustration, all our simulations are in the context of a ripple carry 

design. While theoretically all the n full adders in an n bit adder can be operated at different 

supply voltages, practical considerations such as routing and the limitation of the number of 

*This is independent of the inputs given or the total critical path delay 
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power planes will limit the number of realizable levels of supply voltage in any CMOS based 

implementation. Hence, in the theoretical foundation presented in [12] we had considered 

an additional independent parameter m, the number of "bins" or distinct levels of supply 

voltages. For example, in the uniformly voltage scaled case, there is m = 1 bin, since all 

full adders are operated at the same supply voltage. In future implementations, typically, 

m ::: 4 distinct levels of supply voltages are anticipated; a restriction that we will observe 

throughout the rest of this dissertation. 

Based on this model, we had shown [12] that for a n bit addition with an operating 

frequency f and with the same energy consumption the ratio of the expected magnitude 

of error between the uniform voltage scaling scheme and the non uniform voltage scaling 

scheme is Q (2n/(c») for a constant number of bins m: as the number of bits n ~ 00 the 

gap (ratio) between expected error introduced by biased voltage scaling and conventional 

voltage scaling for an equal amount of energy consumed grows exponentially as Q(2n/c ). 

The expectation is determined by averaging over the inputs to the adder drawn uniformly 

from the set of all possible inputs. 

2.5 Simulation Results 

This section presents practical implementation techniques, provides simulation results and 

relates the theoretical foundation to the DSP domain. The erroneous behavior and energy 

efficiency of the circuits considered in this work are due to the mismatch of the critical path 

delay and the actual frequency with which the circuits are operated. The behavior of a ripple 

carry adder and later that of a circuit that implements the discrete Fourier transform (DFT) 

built from ripple carry adders is analyzed. The energy and (erroneous) behavior of the ripple 

carry adder as well as the DFT is characterized in the following three contexts: 
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• Case (a) correct operation (the baseline), where the operating frequency is less than 

that determined by the critical path delay of the circuit. In the context of a n bit ripple 

carry adder, if the delays of the individual full adders is represented by the uniform 

delay vector D = (dn- 1 , dn- 2 , ••• ,d1 , do), where d i = d, this corresponds to the 

case where D > nd. 

• Case (b) uniform aggressive voltage overscaling where all of the constituent full 

adders are operated with identical supply voltages, but the ripple carry adder itself is 

operated with a delay less than that of its critical path delay. That is, D is less than 

nd. 

• Case (c) non uniform voltage overscaling, where some full adders are operated at a 

higher voltage than the others, and the entire ripple carry adder is operated with a 

delay less than that of its critical path delay. Hence, again D is less than the sum of 

the delays of the individual full adders. In our experiments, we consider delay vectors 

with 4 bins. 

In all of these cases, the metrics of interest are the average energy consumed and the 

loss in accuracy. The loss in accuracy is quantified in terms of the average magnitude of 

(absolute) error in the case of a ripple carry adder, and the signal to noise ratio (SNR) in the 

context of the DFT. The comparisons of interest are 

• Case (i) the energy consumption and the average magnitude of error of case (b) and 

case (c) above, when compared to the baseline. 

• Case (ii) for identical energy and operating frequencies of case (b) and case (c), their 

average magnitude of errors (and SNR). This was defined to be the relative magnitude 

of error in the context of a ripple carry adder in the theoretical analysis. 
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Figure 2.3 : The change in the average magnitude of error with respect to the operating 
delay D 

• Case (iii) for identical operating frequency and error (or SNR) magnitude, the energy 

consumption of case (b) and case (c). 

We call this relationship between error, energy and operating frequency, the energy-error 

relationship. 

2.5.1 The energy-error relationship of a ripple carry adder 

We consider the ripple carry adder to be composed of a chain of full adders of length n, 

where n is the length of the input operands. In our experiments, a ripple carry adder of length 

16 is considered. The behavior of an individual full adder is modeled using HSPICE using 

TSMC O.25J.1m libraries to derive the delay and energy consumption for supply voltages 

in the range O.7v to 2.5v. The behavior of a ripple carry adder is modeled using a C based 

behavioral simulator which utilizes the data generated by the HSPICE simulations. 

To study the energy-error relationship for various operating frequencies and supply 

voltage configurations, the average error rate of the output and the expected magnitude 

of error for the three cases-case (a), case (b) and case (c) described above-is modeled 
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Figure 2.4 : Average magnitude of error with respect to the energy of operation for 
D = 0.8ns (in the range dn- 1 :::: D :::: 2dn- 1 - E) 
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Figure 2.5 : Average magnitude of error with respect to the energy of operation for 
D = 2.3ns (in the range 4dn- 1 :::: D :::: 8dn-d 

using the behavioral simulator for varying operating frequencies. Three ranges of operating 

frequencies are of interest. If D is the delay vector of a non uniformly voltage scaled adder, 

and if dn- 1 is the delay of the fastest full adder and do is the delay of the slowest full adder, 

the first range of operating frequencies of interest is between dn- 1 and 2dn- 1 - E, or equiva-

lently, dn- 1 :::: D :::: 2dn- 1 - E. We shall refer to this case as the "first range of operating 
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Figure 2.7 : Average magnitude of error with respect to the energy of operation for 
D = 2.0ns (in the range do :::: D :::: L7:~ dj) 

frequencies". Similarly a second range of interest is the case where 4dn- 1 :::: D :::: 8dn- 1 

and finally the range of operating frequencies such that do :::: D :::: L7:~ di . 

For these three ranges of operating frequencies, the energy consumption and error magni-

tude of a 16-bit ripple carry adder is derived for various voltage allocations, where a voltage 

allocation refers to a set of voltages assigned to different full adders in the 16-bit ripple carry 

adder. To compute the average magnitude of error, this adder is operated on 10000 pairs of 

numbers derived from a uniform distribution. 
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Results and discussion 

In all the three ranges, we observe certain general trends. For a specific voltage configura­

tion, as illustrated in Figure 2.3, the average magnitude of error decreases with decreasing 

operating frequency. For a specific voltage configuration, the average energy consumption 

increases with operating delay as higher operating delays allow for more transitions in the 

constituent full adders as carries propagate across positions. Similarly, as illustrated in 

Figure 2.4, Figure 2.5 and Figure 2.7, for a fixed operating frequency, the magnitude of error 

decreases with increasing energy investment, since increasing the energy investment de­

creases the critical path delay. For a fixed operating frequency and energy consumption, the 

non uniformly voltage scaled adder, achieves a lower magnitude of error than the uniformly 

voltage scaled adder, since errors are confined to the lower order bits and hence are of a 

lesser magnitude. A histogram which compares the magnitude of errors and their relative 

frequency of occurrence is presented in Figure 2.8(a) and (b), which shows that in the non 

uniformly voltage scaled case, errors of a lesser magnitude are quite frequent, whereas error 

of a higher magnitude are quite rare. 

Considering the first range of operating frequencies where dn- 1 .::: D .::: 2dn- 1 - E and 

referring back to Figure 2.4, the non uniformly overscaled case (case (c)) achieves up to a 

2.43x reduction in energy consumption when compared to uniformly scaled configuration 

(case (b)) for similar error magnitude of 8156.63 and operating frequency of O.8ns. When 

the operating frequency is in the first range, where dn- 1 .::: D .::: 2dn- 1 - E, the ripple carry 

adder yields the best energy savings over the baseline, since fastest full adders switch only 

once and the rest may not have completed even one computation. In this context, since the 

operating frequency is much higher than that determined by the critical path delay-the 

ratio of the critical path delay to the operating delay D is 23.5 in the case considered in 

Figure 2.4--the average (absolute) magnitude of error when compared to the baseline can 
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be as high as about 26894. 

For operating frequencies in the second range, when the delay of operation of the circuit 

4dn- 1 ::: D ::: 8dn- 1-and is greater than the sum of the delays of the full adders in the 

fastest bin in the non-uniformly overscaled case-the non-uniformly voltage overscaled 

case has an energy savings of about 1.49x over the uniformly overscaled configuration for 

similar error magnitude of 1030. Since in this case the frequency of operation is lesser than 

the case considered above-in the case considered in Figure 2.5, the ratio ofthe critical path 

delay to the operating delay is about 8.5-we note that the lowest average magnitude of 

(absolute) error that can be achieved has decreased as shown in Figure 2.5. 

Finally, for the third range of operating frequencies do ::: D ::: L7:~ di , considering the 

faster operation where D = 2ns, case (c) achieves a 1.86x reduction in energy consumption 

over case (b). Since the operating frequency is higher than that of the representative example 

considered above, for a similar error magnitude of about 1030, the energy consumption of 

case (b) as well as case (c) is higher. 

To summarize, the relationship between energy consumed (E) to compute a 16-bit 

addition and its associated expected error E, henceforth referred to as the E - E relationship, 

is shown in Fig. 2.9 for the BIVOS as well as the UVOS cases. At an expected error of 17%, 

a BIVOS adder operating in 2 ns is 3.25X faster and consumes 3.8X lower energy when 

compared to a conventional adder, i.e., the BIVOS based adder is 12.3X more efficient in 

terms of EDP. 

In Fig. 2.10, we present the relationship between energy (E) and delay (£), henceforth 

referred to as the E - £ relationship. In this figure, we present the relationship for two 

different error values, 5% and 15%. 
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Figure 2.8: Error magnitude and the relative frequency for (a) the uniformly voltage scaled 
case and (b) the non uniformly voltage scaled case 

2.5.2 Comparing alternate adder architectures and the E - E relationship 

We will now compare the behavior of an ARCA to alternate adder architectures, specifically 

Approximate Carry Skip Adder (ACSA) and Approximate Carry Look-ahead Adder (ACLA). 

Consider the manner in which the behavior of adders in Fig. 2.11 vary as we increase the 

operating speed from 1 nB to 4 nB. The basic observation is that for a fixed amount of error, 

while an ARC A is indeed the most energy efficient adder design at 1 nB, its relative advantage 

decreases with increasing £. This is because when £ increases, then the ACSA and ACLA 

propagate the carry information more than an ARC A for a relatively small additional energy 
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Figure 2.9: The E - E relationship for a 16-bit ARCA using the BIVOS and the UVOS 
schemes, where p = 2 nB and 4 nB 
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investment. And thus the ACSA and ACLA have increasingly lower error. Thus, at higher e 
when the advantage of the additional circuitry is utilized completely, the ACSA performs the 

best, followed by the ACLA, with the ARC A trailing both of them. This represents a reversal 

of relative energy and EDP efficiency of the three architectures in going from an e equals 

1 nB to e equals 4 nB. 
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Figure 2.11 : The E - E relationship for the ARCA, ACLA and ACSA architectures for an 
eager reading interval of 1 ns and 4 ns 

2.5.3 Applying the lessons learned from the adder to audio and image data in DFT 

To demonstrate the utility of our voltage overscaling technique, we build a circuit which 

implements the discrete Fourier transform. Discrete Fourier transform is a mathematical 

technique that transforms a signal in time domain to the frequency domain. The input is a 

sequence of n complex numbers xo, Xl,'" ,Xn-l and is transformed into the sequence of n 

complex numbers Yo, Yl,'" , Yn-l, where for 0 ~ k ~ n - 1, 

n-l 
"'"' -2njkl 

Yk = L...Jxje n (2.1) 
1=0 

We have considered a 2-point DFT, where each DFT operation is performed on two 

subsequent values in time. Hence the DFT formula reduces to 

Yo = Xo + Xl and Yl = Xo - Xl (2.2) 

and is illustrated in Figure 2.6 

To study the energy and signal to noise ratio (SNR) of DFT operations, the behavioral 
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simulator is extended to simulate a DFT circuit and this circuit is simulated using repre­

sentative data derived from audio files and images. Each simulation of a DFT described 

in this section consists of about 1000000 operations of the individual full adders, and the 

frequency of operation of the circuit is confined to the third range of operating frequencies. 

In the context of case (b) and case (c) above, after the DFT is computed the inverse DFT of 

the output is computed using a conventional correct technique. This is compared with the 

original input to compute the signal to noise ratio SNR. Since 2' s complement addition is 

present in the DFT data and since the operating frequency we consider is less, for increasing 

the efficiency of simulation, the simulation is performed in the granularity of a full adder 

and the internal state of a full adder as characterized by the signal values of the individual 

gates is not maintained. 

Results and discussions 

Based on the insights obtained from the experiments with the ripple carry adder, which 

indicate the conditions under which the greatest energy savings of case (c) over case (b) can 

be achieved for a low average magnitude of error of case (c) over the baseline, we perform 

the DFT experiment to quantify the energy savings as well as the improvement of SNR of the 

non-uniformly voltage overscaled case over a unifonnly overscaled case. 

For a operating delay of 12ns for the entire circuit which implements the DFT operation, 

in the context of the DFT, the non uniformly voltage overscaled case achieves a SNR of 

19.63dB whereas for identical operating frequency and energy consumption, the signal 

to noise ratio in the context of uniform aggressive voltage overscaling is 5.79dB. Thus 

non-uniform voltage overscaling yields an improvement of 3.4x in the SNR when compared 

to conventional unifonn voltage scaling. If the energy investment in the non-unifonn voltage 

scaling context is lowered such that its SNR matches that of case (b), the non uniformly 



38 

uvas 
SNR ~ -2.702 dB 

uvas 
SNR ~ -4.288 dB 

uvas 

j 
SNR ~ 6.3B5 dB 

Blvas 

SNR = 4.243 dB 

Blvas 

SNR = -4.784 dB 
Blvas 

2ns 2.5ns 3ns 

Speed 

Figure 2.12 : The EDP advantages of BIVOS over UVOS in processing an image where the 
EDP gain of BIVOS based approach over a UVOS based approach is shown in the figure 
between the pairs of reconstructed images 

BlVas 1 was 1 

Conventional 

BIVOS 2 UVOS 2 

Figure 2.13 : The image obtained after applying DFT and then applying Inverse-DFT using 
conventional correctly operating adders, adders with BIVOS and adders with UVOS 

overscaled technique achieves a 27.2% savings in energy consumption when compared to 

the uniformly scaled case. 

The significance of approximate arithmetic as a viable approach to realizing energy sav-

ings will become apparent from Fig. 2.12 and Fig. 2.13. The images in Fig. 2.12 demonstrate 

the following two ideas 

• As the operating delay is decreased, that is, the time provided to the circuits to compute 

the outputs is decreased the visual quality gradually degrades. 
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• Also a biased voltage allocation scheme for the same energy consumption as an 

uniform voltage allocation scheme has a higher output quality since it takes the notion 

of value of information into account. 

In Fig. 2.13, the images labeled as BIVOS 1, BIVOS 2, UVOS 1 and UVOS 2 correspond 

to different voltage biasing schemes used for their respective computation. Going from a 

completely correct computation (which is labeled Conventional to that using BIVOS (labeled 

BIVOS I and BIVOS 2 in Fig. 2.13) an EDP savings of 1.3X and 1.75X respectively was 

achieved with an associated signal to noise ratio (SNR) of 29.41 dB and 1.4 dB, while 

preserving the computational speed or performance. In contrast and with similar EDP values, 

a UVOS based approach (labeled as UVOS 1 and UVOS 2 in Fig. 2.13) results in obviously 

unacceptable images with an associated SNR of -2.7 dB and -3.8 dB respectively. 

2.6 Principal Thesis 

The primary argument in this chapter is radically different from the conventional techniques­

an energy consumption versus accuracy tradeoff in arithmetic circuits is demonstrated 

using a circuit design technique called overclocking. This tradeoff can be used to design 

low energy consuming circuits for applications where lower than 100% accuracy can be 

tolerated. 

But the issue being that brute force overclocking does not lead to an efficient implemen­

tation of this tradeoff. An optimal investment of energy based on value of information is 

required. The rest of this thesis proposes various solutions for optimal design of overclocked 

circuits. 
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Chapter 3 

Modeling and Optimization of a Single Datapath Element: 
An Approximate Binary Adder 

In approximate circuits, the accuracy of the output is traded for energy consumption through 

deliberate overc1ocking and multiple voltage levels. It was shown that in such circuits, where 

outputs need not be completely accurate all the time due to delay errors, accuracy can be 

improved by biased voltage scaling (BIVOS) in which the computation of more significant 

bits is given higher voltage than that of lower significant bits, compared to uniform voltage 

scaling (uvos) in which the same lower voltage is supplied across the adder. But the 

voltage assignment to the components in the circuit has been ad-hoc. There has not been a 

well-grounded approach to guide a circuit designer in determining the voltage allocation for 

the gates in an adder to maximize accuracy while staying within the available energy budget. 

3.1 Key Developments 

In this chapter, we present a methodology which very efficiently finds a supply voltage 

investment in the case of approximate arithmetic adders at the gate level. The primary 

contributions are: 

• We develop a formal model to characterize the average error in an approximate adder 

as a function of its design parameters. 

• We also develop an energy model to estimate the energy consumption of an approxi­

mate adder. We present an algorithm to compute the reduced switching activities for a 
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ripple carry adder due to overclocking. 

• We then pose our target problem as an optimization problem where the objective 

function is the average error of the approximate adder. The constraint is that the 

energy consumption of the adder should be under the given Energy Budget. 

• We compute an approximation of our non-linear optimization problem as a geometric 

program. We then solve it using a standard toolbox which results in a continuous 

allocation of supply voltages to all the gates in the adder. 

• For pragmatic concerns, we propose a heuristic algorithm to limit the number of 

supply voltages in the adder which we refer to as "supply voltage binning". 

• The improvement that results from this methodology is demonstrated by applying 

it to two example 16-bit adder designs, the ripple carry adder (RCA) and the carry 

lookahead adder (CLA). The error was reduced in an RCA by around 2.2X and by 

approximately 2.2SX in a CLA. 

We present here a roadmap to this chapter. In Section 3.2, we present a brief background 

on current day CMOS VLSI technology and also discuss some physical constraints on the 

implementation of multiple voltages in fabrication. technique of approximate arithmetic 

and the technology that motivates it. To avoid ambiguity about the exact problem that we 

target in this chapter, we discuss our goal briefly differentiating it against conventional 

circuit design optimization problems in Section 3.3. We present a comprehensive list of 

the variables and their definitions that will be used throughout the chapter in Section 3.4. 

We describe some assumptions that we use in the chapter on variables related to delay in 

Section 3.5 and with respect to energy modeling in Section 3.6. 
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The crux of the chapter is discussed in Section 3.7 where we present our model for the 

output error estimate of an approximate RCA. To elaborate, Section 3.7.1 presents the gate 

level description of the ripple carry adder. In Section 3.7.2, we present the model of an 

approximate RCA and the mathematical characterization of the output error in an approxi­

mate RCA. We describe our approach to reducing the computational complexity, which is 

one of the primary reasons for the practical validity of our approach, of the mathematical 

characterization of the average output error of an approximate adder over all possible inputs, 

in Section 3.8. We present our approach to model the energy consumption in an approximate 

RCA in Section 3.9. We present our target optimization problem and the technique of 

geometric programming that we use for solving our target optimization problem, which 

results in a globally optimized adder, in Section 3.10.2. We propose a supply voltage binning 

scheme in Section. 3.10.3 where we map the optimal solution obtained from the optimization 

problem in Section 3.10.2 to a given set of supply voltages. 

We then describe our simulation framework using which we performed all of our experi­

ments in Section 3.11. We present the experimental results in Section 3.12 that compare our 

optimal supply voltage allocation scheme to a uniform voltage allocation scheme on our 

target adder designs. In Section 3.12, we also discuss about the non-monotonic behavior of 

output error rates of adders and present the impact of a globally optimized RCA design in 

the context of an FFf. 

Till now we discussed only a ripple carry adder. But the RCA is not the most popular 

adder design. Hence we extend the entire formulation to other kinds of adders. Actually, the 

formulation was developed keeping in mind other adder designs which employ additional 

carry circuitry to increase parallelism in contrast to an RCA which is a completely serial 

architecture. To demonstrate the applicability of our techniques to parallel adders we use 

a carry look-ahead adder as a case study. In Section 3.13 we present the a few additional 
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definitions and terminology that we will use to model the error and energy of the carry 

lookahead adder. If any assumptions/definitions are not stated then it is assumed that they 

are carried over from the RCA case study. Then we present the energy and error model for 

an approximate CLA in Section 3.15. This section will have a similar flow when compared 

to Section 3.7. The most important characteristic of our formulation is that the geometric 

programming based optimization framework remains exactly the same when compared to 

the description in Section 3.10.2. Therefore we do present those details again. We then 

describe the simulation framework for the approximate CLA in Section 3.17 and then present 

the experimental results in Section 3.18. 

We now show our initial thoughts into extending the same geometric programming 

based framework to optimize any general circuit and not just an adder in Section 3.19. 

In Section 3.19.1 we describe our model of a general circuit. We then frame our general 

average error optimization problem in Section 3.19.2. 

The impact of our optimization methodology on circuit design is discussed in Sec­

tion 3.20. 

3.2 Technology Background 

In this section we discuss some background about the technology that we will be using in 

this chapter. Specifically, we explain the concepts of approximate arithmetic, overc1ocking 

and the use of multiple supply voltages in a circuit. 

The problem of reducing energy consumption has in the current day circuit design indus­

try taken the role of a "first citizen." There are multiple approaches that have been proposed 

to combat this problem. In this thesis, we focus on one such approach by Chakrapani et 

al. [12] where a technique called "approximate arithmetic" was proposed. In conventional 

design methodology, a circuit is operated at a speed that is directly related to the critical path 
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delay of the circuit. The critical path delay, in turn, is directly related to the topology, process 

technology and supply voltage(s) of the circuit. The supply voltage dependence is due to the 

switching delay of a transistor being inversely proportional to its supply voltage. Also, it is 

known that the dynamic energy consumption of a transistor is in general proportional to the 

square of its supply voltage. Hence, a very direct way of reducing the switching power of a 

circuit is to reduce its supply voltage. But this would lead to a reduction in the operating 

frequency of the circuit and thus impact performance which is also a serious constraint. 

Keeping these constraints in mind, Chakrapani et al. [12] proposed a methodology in which 

the operating frequency of the circuit is maintained at the same rate but the supply voltage 

is decreased past the limit at which the critical path of the circuit is guaranteed to not be 

violated. This could result in an erroneous output of the circuit but, as shown by Chakrapani 

et aI., can also be used in many applications which do not require strict 100% accuracy 

of computed values such as in audio and video signal processing. Such circuits which 

are "overc1ocked," being operated at a frequency higher than required to guarantee 1 00% 

accuracy, we call "approximate circuits." 

In this chapter we propose a methodology to find an assignment of multiple voltages to 

an approximate ripple carry adder circuit to minimize error for a given energy consumption. 

The first design constraint that arises out of this design methodology is the number of 

mUltiple voltages that could be useful in practice in the fabricated chip. Circuit designers 

are using an increasing number of different voltages in their architectures. Typical high end 

chips seem to have four or five different voltages [49,50]. To benefit from having multiple 

voltages on the die, the circuit designer has to overcome the challenge of creating power 

distribution networks that feed from the voltage regulator modules that supply all the devices 

on the fewest number of interconnect layers. But the important point to note here is that 

the number of different voltages is the bottleneck here and not the actual magnitude of each 
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voltage. The circuit designer has the freedom, albeit at design level, to choose the number 

of voltage levels and the exact values of the different voltages. With the freedom of using 

multiple voltage levels the use of voltage shifters becomes a necessity at least in some cases 

such as when a circuit with lower supply voltage is driving a circuit with higher supply 

voltage (and the difference in the supply voltages is not negligible) and when the output of a 

circuit is being stored in a register. It has been shown by Chang et al. [51] that the area/delay 

overhead of level shifters for using multiple supply voltages can be relatively small. Hence 

in the analysis presented in this thesis for the sake of simplicity of our mathematical model 

and experimental methodology we do not consider the overhead of voltage level shifters. 

We have given a brief background about approximate circuits and overclocking which is 

used throughout in this work. We also use mUltiple voltages in our circuits and hence we 

mention some constraints and issues in using multiple supply voltages. 

3.3 Discussion About Circuit Optimization And Our Target Problem 

In this section we first describe our target problem. We then present a brief background 

about circuit design optimization problems. 

3.3.1 Our target problem: approximate adder supply allocation problem 

In this subsection we present the problem that we target in this chapter. 

An approximate circuit as described in Section 3.2 is a circuit whose output might not be 

equal to the correct output because the circuit is overclocked. In this chapter we specifically 

target approximate adders. The two most basic parameters that characterize an approximate 

adder are the average output error over all possible input cases and the average energy 

consumption. The two main directions in which an approximate adder can be optimized are 

as follows: 
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1. Minimize the energy consumption of an approximate adder for a given average output 

error 

2. Minimize the average output error of an approximate adder for a given energy con­

sumption 

While the former direction may likely be most appropriate for some applications, in this 

chapter we address the latter problem as a first step and are attempting to target the former 

problem for future work. 

In short, our target problem is to minimize the average output error of an approximate 

adder for a given energy consumption. 

3.3.2 Background about circuit optimization problems 

In this subsection we briefly discuss about circuit optimization problems in general and the 

distinction of our target problem with respect to general circuit optimization problems. 

Most circuit design optimization problems are computationally expensive to solve. For 

example, a typical place and route problem may be modeled as a linear programming or an 

integer linear programming problem which in the worst case are very expensive to solve. 

Hence such optimization problems of practical sizes are usually solved using heuristics and 

not by exact methods. 

On the other hand, the problem that we target is the "approximate adder supply allocation 

problem" described in Subsection 3.3.1. Adders are typically used in a few options as far as 

number of bits are concerned: 16, 32 and 64 are the most common. In contrast to regular 

place and route problems which typically target 100,000 to a million transistors, we currently 

do not need to look at adders larger than 64 bits wide. Furthermore, due to limitations in the 

design of power converter circuitry [52] and layout overheads for power planes, typically 
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only a small number of voltages, e.g., four or five, are used in practice. As a result, in the 

design of an energy-optimized adder, at most 64 bits and at most five voltages is in practice 

a reasonable limitation leading to a limited range in the variables of the problem. As such, 

the problem can be formulated and solved using exact methods which can be exponential in 

terms of run time in the worst case. We use geometric programming which typically has 

polynomial run time but can be exponential in the worst case. 

In summary, general circuit optimization problems are computationally very expen­

sive to solve exactly and hence typically heuristics are used. The distinction of our target 

problem with respect to general circuit optimization problems is that we target specifically 

approximate arithmetic adders of a set of exact sizes (64 bits or less) and thus are able to 

utilize an exact solution method. 

3.4 RCA Terminology 

In this section, we define the terms that we use in this chapter to solve the approximate 

ripple carry adder (RCA) supply allocation problem. The reader may choose to skip this 

section and refer back only as needed. 

1. a: A multi-bit binary number with n bits 

2. aj : Represents the i th bit in the multi-bit binary number a where 0::::: i < n. 

3. s: Represents the correct n + 1-bit sum output of an n-bit RCA. As a consequence, 

Sr, where 0 ::::: r < n + 1, denotes the rlh bit of s. 

4. Approximate adder: An approximate adder is an adder circuit whose sum output 

might not be the correct output because the adder is overclocked. In this chapter we 

will first consider only approximate RCAs. 
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5. Sa: Represents the approximate n + I-bit sum output of an n-bit RCA. As a conse­

quence, s~, where 0 :::: r < n + 1, denotes the rlh bit of sa. The sum output of an 

approximate n-bit RCA, sa, may have errors, i.e., it may be the case that sa f:. s. 

6. cq : Represents the qlh, where 0:::: q < n + 1, carry bit in an RCA. 

7. c: The sequence of carry bits in the RCA. Therefore c = CnCn-l ... co. 

8. 0:::: i < j :::: n - 1 : Represents all cases for i and j which satisfy that equation. For 

example, LO~i <j ~n-l f(i, j) denotes the sum of f(i, j) for all values of i and j 

which satisfy 0 :::: i < j :::: n - 1. 

9. Carry chain: Given an n-bit RCA and two specific n-bit binary numbers a and b as 

inputs to the RCA, a carry chain is said to be present from position i to position j if 

and only if 

• ai = bi = 1. This case is referred to as the generation of a carry. 

• aw f:. bw . This case is referred to as the propagation of a carry. 

• aj = bj . If aj = 0, the carry is said to be killed and if aj = 1 another carry 

is said to be generated. In both the cases the carry chain that was generated at 

position i ends at position j. 

where 0 :::s i < w < j :::: n - 1. Please note that this definition of a carry chain is 

borrowed from [53]. 

10. Cij (a, b) : Consider an n-bit RCA and two specific n-bit binary numbers a and b as 

inputs to the RCA. A boolean variable Cij is defined on whether there is carry chain 



starting from position i and ending at position j such that 

Cij(a, b) ~ {: 

where 0::::: i < j < n. 

if there is a carry chain from i to j 

otherwise 

11. N : Represents the number of gates in the RCA. 

12. Ve: Represents the supply voltage of the .e th gate, where 0 ::::: .e < N. 
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(3.1) 

13. v: Represents a vector of size N of all the supply voltages, i.e., the .eth element in the 

vector v is Ve, the supply voltage of the .eth gate. 

14. Ee(Ve) : Represents the worst-case propagation delay of the .eth gate with a supply 

voltage of Ve, where 0 ::::: .e < N. 

15. E(V): Represents a vector of size N where the elements are the worst-case propagation 

delays of the gates in the adder which is a function of the voltage vector. 

16. tin: Represents the time instant when the inputs are provided to the RCA. 

17. t r : Represents the absolute time instant when the correct S r is computed where 

o ::::: r < n + 1. Therefore the time taken for the correct Sr to be computed is equal to 

18. dpr : Given an n-bit RCA and two specific n-bit binary numbers a and b and assuming 

that Cpq = 1 for p < r < q, then we define dpr = tr - tin. dpr is the time elapsed 

from the instant when the inputs are provided to the RCA till the correct sum bit, Sr, 

is generated. 



50 

19. d: Represents an n x n matrix where the rth element in the pth row is dpr . Elements 

dpr for which p ~ r are invalid and so are not considered, hence, this is an upper 

triangular matrix. 

20. D : This is the clock cycle time of the RCA, which is the difference in time between 

when the inputs are given to the RCA and the outputs are taken from the RCA. 

21. Ik : Variable that denotes if there is an error at the kth bit position, where 0 ::: k < 

n + 1, bit output of an n-bit RCA output. 

22. Critical Path Delay: The worst case delay of a circuit for all possible inputs is called 

the critical path delay of the circuit. 

23. Overclocked RCA: In general, an RCA's clock cycle time (D) is greater than or equal 

to the RCA's critical path delay to avoid erroneous outputs. But in our methodology 

we challenge this constraint and operate the RCA at a clock cycle time lower than the 

critical path delay of the RCA. We call this type of RCA as an overclocked RCA and 

the general concept is called overclocking. 

24. Vrnin : The minimum supply voltage permitted to be used for a gate in the process 

technology used. 

25. Vrnax : The maximum supply voltage permitted to be used for a gate in the process 

technology used. 

26. N v : Represents the number of voltage levels that we consider in our experiments 

between Vrnin and Vrnax . For the target process technology of 90nm used in this work, 

Vrnin = 0.8V, Vrnax = 1.2V, and, with a granularity of 0.01 V, Nv is equal to 40. 



51 

27. Ek(Vrnin) : The worst-case delay of the kth gate when the supply voltage is equal to 

28. EkCvmax) : The worst-case delay of the kth gate when the supply voltage is equal to 

29. A: Number of additions in the benchmark used to calculate the switching activities 

in an RCA and also for an approximate RCA. 

30. Wk: Represents the switching activity of the kth gate in a ripple carry adder. Switch­

ing activity is defined as the average number of toggles per addition. The average is 

computed as the ratio of number of toggles at the output of the gate to the number of 

additions (A) in the benchmark. Hence this quantity is a positive real number. 

31. W: Represents a vector of size N where the .eth element is We. 

32. W:: Represents the switching activity of the kth gate in an approximate ripple carry 

adder. 

33. W a : Represents a vector of size N where the .eth element is W{ 

34. Ef (Vi) : The average dynamic energy consumption of the kth gate for a single tran­

sition when its supply voltage is equal to Vi where Vrnin ~ Vi ~ Vmax • The dynamic 

energy consumed by a gate for a single transition depends on many other factors 

such as (i) whether the transition is a LOW to HIGH or a HIGH to LOW, (ii) the 

input(s) and (iii) parasitic capacitances. For the gates and the target technology used 

in this analysis, to compute Ek(Vi) we consider an average energy consumption per 

transition over various input conditions. 
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35. P1(Vj): Represents the static power consumed by the kth gate at a supply voltage of 

Vj. 

36. Yk : Represents the proportionality constant between the propagation delay and the 

average dynamic energy consumption of the kth gate for a single transition averaged 

over several supply voltages. 

37. E : Represents the total energy consumption of an adder over a single addition. 

38. Energy Budget: The total energy budget, in the context of a geometric program (see 

Section 3.9), allocated as per our approximate adder supply allocation problem which 

is described in Section 3.3. 

39. V: Denotes the possible set of supply voltages for supply voltage binning. 

40. Mv : The maximum number of distinct voltages allowed by the circuit designer for 

supply voltage binning. 

41. P (V) : The power set of the possible set of supply voltages for supply voltage binning. 

42. mj : Let p E P(V). Then mj denotes the number of gates in the adder with a supply 

voltage equal to the i th element of p. 

43. Globally optimized RCAs : RCAs with a voltage allocation scheme that is generated 

as a result of solving our target problem will be referred to as globally optimized 

RCAs. 

The terms that we have defined in this section serve as a reference for the models and 

procedures described from Section 3.5 till Section 3.12. 
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3.5 RCA Delay Assumptions 

In this section, we explain some basic assumptions on the variables that are related to 

propagation delay of gates and timing that we use in this chapter. The variables, which are 

already defined in Section 3.4, that we discuss in this section are (i) Ek(Vk), (ii) delaYmin(k), 

and (iii) delaYmax(k). 

We need to clarify some concepts about variables related to propagation delay and timing 

that we use because the technique of "approximate circuits" is, relatively, a novel circuit 

design technique. Before the conception of Probabilistic CMOS (PCMOS) by Palem et 

al. [40, 41, 9], four of the major VLSI circuit design techniques were digital VLSI design, 

asynchronous VLSI design, analog VLSI design and radio frequency VLSI design. In digital 

design, if we consider a certain circuit, the circuit designer can choose to ignore the interme­

diate results that the circuit produces as long as the final output of the circuit when the output 

is read at the end of the clock cycle is correct. But approximate circuits are overclocked, 

which means that the intermediate values can no longer be ignored. Also, similar to the 

case of asynchronous logic design, in approximate circuits the consideration of worst-case 

vs. average-case vs. best-case propagation delays of the circuit is important to properly 

characterize the output error of the approximate circuit. When we refer to worst-case or 

average-case or best-case propagation delay of the circuit, we consider the variation in the 

propagation delay of the circuit for different input transitions in our simulations at a given 

fixed supply voltage. There are many other factors that affect the propagation delay such 

as temperature and process variations. For the simulations presented in this chapter we 

consider that these factors do not change spatially or temporally. Also, for the purpose of 

this work, we will consider only worst-case errors at all places. To clarify, worst-case delay 

of a gate is characterized for various values of supply voltages. For example, we compute 

worst-case delays for Nv = 40 equally spaced supply voltage levels between Vmin = 0.8V 
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and Vrnax = 1.2 V for 90nm technology. At this point, we have not modeled the effect on 

the output error of an approximate adder if average-case or best-case propagation delays 

are used. Instead we start with analysis of approximate RCAs assuming worst case delays. 

We do not have a formal proof to show that average and best case delays have lower error 

rates; however empirically we have found that increasing the delay increases the errors in 

the adder at least 98% of the time. 

In Sections 3.4-3.12 we consider circuits which are RCAs. Each gate in a particular RCA 

could potentially (but not practically) be supplied with a different supply voltage. As per the 

definition of Ek(Vk) in Section 3.4, the worst-case propagation delay of the kth gate is Edvk) 

at supply voltage Vk. It has been shown by many independent sources [54, 55] that the 

propagation delay of a gate is inversely proportional to its supply voltage. This relationship 

was also used by Chakrapani et al. [12] in the modeling of the effect of biased voltage 

scaling in an approximate ripple carry adder. For our modeling, the values of propagation 

delays of gates for a given supply voltage are measured directly from HSPICE for our target 

technology. To relate the two quantities we will use the same relationship, that is, Ek(Vk) is 

inversely proportional to the supply voltage of the kth gate, Vk. From Section 3.4, we know 

that delaYrnin(k) denotes the worst-case delay of the kth gate when the supply voltage is 

equal to Vrnax and delaYrnax(k) denotes the worst-case delay of the kth gate when the supply 

voltage is equal to Vrnin. Thus delaYrnin(k) ::: Ek(Ve) ::: delaYrnax(k). 

For our error and energy modeling we assume for the sake of simplicity that all the carry 

bits are 0 when the inputs are provided to the adder for each addition. In reality the carry 

bits typically retain values from the prior computations and are not reset to 0 every time. 

Further discussion about the effect of non-zero carry bits on error and energy modeling is 

presented in Appendix A. 

In addition to the above, we will assume that the clock cycle time chosen for overclocking 
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(D) is never less than the propagation delay of a single full adder. 

In this section we have discussed the type of propagation delays that we use for approxi-

mate RCAs. We have also described our assumptions regarding the worst-case propagation 

delay of each gate in the circuits of RCAs that we consider. 

3.6 Energy Modeling Assumptions 

In this section we will discuss some of the assumptions we make about our energy models. 

The total energy consumption of a circuit consists of two separate components, the 

dynamic energy consumption and the static energy consumption. The dynamic energy 

consumption constitutes the energy spent during the charging and discharging of capacitive 

loads during logic changes. The average dynamic energy consumed by a CMOS circuit thus 

depends on the number of logic changes which is denoted by the switching activity of the 

adder circuit. The switching activity of gate e, denoted as We, is the average number of 

logic changes that gate undergoes in a single addition. We for gates in the case of an RCA is 

approximately estimated as the ratio of the number of logic changes of gate e to the total 

number of additions in the benchmark (say A). Therefore, 

Total number of toggles of gate e 
We = ------A--==----=:....-..-

To use our energy model to solve our target problem, we will need to represent the aver­

age dynamic energy consumption (Ef(ve) of a gate in terms ofthe worst-case propagation 

delay (Ee(Ve» of that gate. 

From Section 3.4, Ee(Ve) denotes the worst-case propagation delay of the eth gate when 

its supply voltage is Ve. We compute the average dynamic energy consumption and worst 

case propagation delays of all the gates in our process technology through simulations. It 

is known that the dynamic energy consumption of a gate is proportional to the square of 
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the input supply voltage and, as described in Section 3.5, the propagation delay of a gate is 

inversely proportional to its supply voltage. To represent Ef{Vt) in terms of Et{vd we will 

use the curve-fit that the average dynamic energy consumption of a gate is proportional to 

the inverse square of its worst case propagation delay i.e. 

(3.2) 

where Yk is the proportionality constant for the kth gate. 

The proportionality constant, Yk. is dependent on the process technology of the kth gate. 

Yk is computed by taking the average, over several supply voltage levels, of the product 

of the square of the worst-case (over all possible input transitions) propagation delay and 

the switching energy consumption of the kth gate. Thus Yk is computed for the kth gate as 

follows 

(3.3) 

Thus Yk is computed separately for each type of gate. For example, in the design of 

the RCA that we consider there are two types of gates, XOR and MUX. An example of 

computing the proportionality constant for the XOR gate in 90nm technology is given in 

Example 2. 

Example 2. Consider an XOR gate in our target 90nm process technology. We will con-

sider 5 specific voltages for this example and compute the proportionality constant. Refer 

to Table 3.1 for the values of worst-case propagation delay and average dynamic energy 

consumption per transition for the different supply voltage values. The first column shows 

the various supply voltage values. The last column shows the product of the average 

dynamic energy per transition and the square of the propagation delay which denotes the 

proportionality constant, Yk. as per Eq. 3.2. For our modeling and simulations, we take an 

average of the proportionality constant over various supply voltages as shown in Eq. 3.3 
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Table 3.1 : Propagation delay and average dynamic energy per transition of an XOR gate in 
90nm process technology for various supply voltage values 

Vi Ef(Vi) (femto-J) Ek(Vi) (pico-sec) Ef(Vi) x E~(Vi) (l0-35Jsec2) 

0.8 8.63 46.89 1.90 

0.9 11.18 41.61 1.94 

1 14.30 37.93 2.06 

1.1 17.71 35.26 2.20 

1.2 21.65 33.33 2.41 

and in this example the average proportionality constant turns out to be 2.1 x 10-35 Jsec2 . 

As can be observed from Table 3.1, Yk slightly increases with Vi. But the increase is 

approximately 2% per 0.1 V, therefore for simplicity we will assume that this does not affect 

the final result significantly and is captured by the mean (average) of the proportionality 

constant estimates for various voltage values. o 

3.7 Error Model For An Approximate RCA 

In this section we first present a brief discussion of a ripple carry adder. This is followed a 

description of the mathematical framework and the models that we use to characterize the 

average error at the output of an approximate RCA. 

3.7.1 Description of a ripple carry adder 

A ripple carry adder (RCA) is the most basic adder design that is typically considered. 

Consider an n-bit ripple carry adder with inputs to the adder being denoted as a and b, where 

a and b are two n-bit binary numbers and Co is the carry input bit. The RCA is made up of a 
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Figure 3.1 : Diagram of a 4-bit ripple carry adder 

Figure 3.2 : Diagram of a I-bit full adder (I-bit FA) 
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Co 

Table 3.2 : Maximum and minimum propagation delays of the XOR gate and the MUX in 
90nm technology 

Gate delaYmin (pico-sec) delaymax (pico-sec) 

XOR 

MUX 

33.3 

30.5 

55.2 

51.2 

series of blocks called full adders. Each full adder is a collection of logic gates which adds 

two input bits and a carry input to produce a sum output and a carry output. This means 

that the i th full adder adds the two input bits ai and bi (ai and bi are the i th bits in a and b, 
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see Section 3.4) and the carry input Cj to produce Sj, the ith sum bit, and Cj+l, the (i + 1)th 

carry bit. The sum of the adder is s = SnSn-lSn-2 ... so. This adder is called a ripple carry 

adder because the carry ripples through the adder one full adder at a time from the least 

significant bit to the most significant bit. 

A diagram of a 4-bit ripple carry adder is shown in Fig. 3.1. In the diagram, each full 

adder is shown as a single block which is in fact a collection of logic gates. The logic 

diagram for each full adder is shown in Fig. 3.2. We admit that this might not be the best full 

adder design to optimize for area or speed, but we use Fig. 3.2 nonetheless for its simplicity. 

There are two types of gates present in the full adder design shown in Fig. 3.2, an XOR-gate 

and a multiplexer (MUX). To explain the concepts being introduced in this chapter, we will 

be using the delay values of these gates that were computed from HSPICE simulations. The 

minimum (for supply voltage of O.8V) and maximum (for supply voltage of 1.2V) delay 

values of these gates in 90nm technology are shown in Table 3.5. The research presented 

at the beginning in this chapter will be extended later (starting from Section 3.13) to carry 

lookahead adders and can also be extended to other popular full adder circuits in, we believe, 

a straightforward manner as described later. 

Note that on n-bit RCA based on Fig. 3.2 would have N = 3 x n gates. In general, we 

will use the following indexing scheme to refer to a gate in an RCA. 

• The top XOR gate in the full adder in Fig. 3.2 that computes ak E9 bk at position k 

would be referred to using the index 3k + I where the n full adders in the RCA are 

indexed by 0 .:::: k .:::: n - 1 according to bit position. 

• The bottom XOR gate in the full adder as per Fig. 3.2 that computes the sum output, 

Sk at position k would be referred to using the index 3k + 2. 

• The one and only multiplexer in the full adder at position k would be referred to using 
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the index 3k + 3. 

3.7.2 Modeling the error at the output of an approximate RCA 

In this section, we will first present boolean logic functions we use to represent the outputs 

of an RCA. Then we will define and describe carry chains in ripple carry adders. We will 

next describe the effect of carry chains on error at the output of an approximate ripple carry 

adder. We also present the behavior of errors at the output of an overclocked RCA in the 

presence of a carry chain. We then describe the procedure that we follow to characterize 

the time, denoted as dpr (see Section 3.4), it takes for a specific sum bit in an RCA to be 

correctly computed. We describe a mathematical formulation for the error function modeling 

the error at the output of an approximate RCA. 

RCA logic 

In this subsection we present one set of (from among many) boolean logic functions of 

binary addition with respect to an RCA. We will also discuss the effect of a carry chain on 

the outputs of an RCA. 

We will consider n-bit RCAs for some n. Numbers to be added will be in the range 

0, ... ,2n - I and will have the standard binary representation. We will show our procedure 

for modeling and analysis of only unsigned ripple carry adders. We agree that many applica­

tions require handling of signed numbers as well, typically in 2's complement format. But 

because typical2's complement adders utilize an unsigned adder to propagate the carry bits 

with additional circuitry around them to handle the sign, it appears reasonable to analyze 

errors due to carry propagation in an unsigned adder as an initial step. 

Consider the addition of two n-bit numbers a and b in an n-bit RCA, resulting in an 

(n + I)-bit number, consisting of s = SnSn-l •.. So. Thus sum s is computed in an RCA as 
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nnnn 
INPUT A 0 0 1 0 1 1 0 0 

INPUTB 0 0 0 1 0 1 0 0 

SUM 0 1 0 0 0 0 0 0 

POSI110N 7 ]=6 5 4 3 ;=2 1 0 .. 0 

Figure 3.3 : An Example of a carry chain in a binary addition using an RCA 

nnnn 
INPUT A 0 0 1 1 1 1 0 0 

INPUT BOO 0 1 0 1 0 0 

SUM 0 1 0 0 0 0 0 0 

POSI110N 7 6 5 4 3 2 1 0 
..---0..---0 

Figure 3.4 : An Example of two contiguous carry chains in a binary addition using an RCA 

Se = ae EB be EB Ce for 0 :::: .e :::: n - 1. The sequence of carries c is computed as follows. Co is 

input (and is zero for addition) while Ce+1 = (ae EBbe) 'ce + (ae EB be) ·ae for 0:::: .e :::: n-1. 

Note that we have yet to define Sn; in fact, the last sum bit Sn is defined as being equal to the 

carry bit cn . 

Carry chains in ripple carry adders 

In this section, we will discuss carry chains in the context of an RCA. 

Consider an n-bit RCA and two specific n-bit binary numbers a and b as inputs to the 

RCA. To repeat the definition of a carry chain as described in Section 3.4, a carry chain is 

said to be starting from position i and ending at position j if and only if 

• ai = bi = 1. This case is referred to as the generation of a carry. 

• aw i= bw . This case is referred to as the propagation of a carry. 
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• a j = b j. If a j = 0, the carry is said to be killed, and if a j = 1, another carry is said 

to be generated. In both the cases the carry chain that was generated at position i ends 

at position j. 

where 0 :::: i < w < j :::: n - 1. 

In general, if there is a carry chain from i to j , we will set a boolean variable Cij (a, b) 

to 1 as defined in Section 3.4. And for a carry chain from position i to position j, we have 

Sj = 0 EEl Cj; Ck = 1 and Sk = 0, for k E {i + 1, ... , j - I}; and Cj = 1, Sj = 1, and 

Cj+l = aj (= bj ). Thus, if we know that there is a carry chain from position i topositionj, 

we can easily determine the correct sum bits from position (i + 1) to position j. 

In a ripple carry adder, e.g., with a design as described in Section 3.7.1, in the worst-case 

the carry propagates from the lowest significant bit position to the most significant bit 

position. 

Example 3. An example of a carry chain in a binary addition using an RCA is shown in 

Fig. 3.3. As is denoted in the figure, the carry chain starts from position i = 2 and ends at 

position j = 6, and therefore we will say that there is a carry chain from 2 to 6 and will 

also denote C26 = 1. The outputs of the RCA, the sum bits, are shown in Fig. 3.3. As 

described earlier in this section, the correct sum bits between position 3 and 6 are fixed 

based on the fact that there is a carry chain from position 2 and 6. 0 

Definition 1. Consider an n-bit addition with inputs a and b. If there exists two carry chains 

such that Cij (a, b) = 1 and CXy(a, b) = 1, then these carry chains are said to overlap if 

and only ifi :::: x < j :::: y. 

The case shown in Example 3 has a single carry chain across the entire 8-bit addition. 

While technically there can be more than one carry chain in a single addition, the carry 
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chains cannot overlap (as per Definition 1) over each other in any case. We show this 

observation to be true in Observation 1. 

Observation 1. Consider an n-bit addition with inputs a and b. As per the definition of a 

carry chain in Section 3.4, two carry chains cannot overlap. Specifically there cannot exist 

Cij(a, b) = 1 and Cxy(a, b) = 1 such that i ::: x < j ::: y. 

Proof We will prove this using the method of contradiction. 

From Section 3.4, Cij(a, b) = 1 in an n-bit RCA if and only if 

where 0 ::: i < w < j ::: n - 1. 

Assume that Cij(a, b) = 1 and CXy(a, b) = 1 in the same n-bit addition such that 

i ::: x < j ::: y. From the definition, if Cij (a, b) = 1 then for all 0 ::: i < w < j ::: n - 1 it 

is known that a w i- bw . But if Cxy(a, b) = 1, then we know from the definition ofthe carry 

chain that ax = bx = 1. But from our assumption the carry chains are such that i ::: x < j. 

Consider the case where w = x. This results in a contradiction because if Cij(a, b) = 1 

then aw i- bw but if Cxy(a, b) = 1 then aw = bw . 

Hence the observation holds. 

o 

Also in Example 3, the carry chain that started at position i = 2 was killed at position 

j = 6 where a6 = b6 = O. But as described in the definition of a carry chain, it could also 

have been killed if aj = bj = 1. We clarify these points in Example 4. 
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'fYY\ 
Input A 0 1 1 1 1 (15) 

Input B 
0 1 0 0 1 (9) 

Time .111 Error 

0 0 0 0 0 0 0 5(0)= 0 24 

0 0 0 1 1 0 5(')=6 18 

2 0 1 0 1 0 0 5(2)=20 4 

0 1 0 0 0 0 8(3)= 16 8 
3 

4 !o 1 1 0 0 0 
5(4)=24 0 

Figure 3.5 : An example to demonstrate that in an RCA it is possible that by increasing the 
supply voltages the accuracy of the sum is decreased. 

Example 4. An example of two contiguous carry chains in a binary addition using an RCA 

is shown in Fig. 3.4. In this case the first carry chain starts at position 2 and is killed at 

position 4. But because a4 = b4 = 1 another carry chain is generated at position 4 which 

is killed at position 6. Thus in this case both C24(a, b) = 1 and C46 (a, b) = 1. This shows 

that even though C2 = 1, C3 = 1, C4 = 1 and Cs = 1, it actually consists of two separate 

carry chains. Also as described in the definition of a carry chain, even a position that 

generates a new carry chain can also kill a previous carry chain. Furthermore, as per the 

definition of a carry chain, multiple carry chains can exist in a single addition but cannot 

overlap. This is clearly shown by the two directed arrows in Fig. 3.3 and Fig. 3.4. 0 

The relationship between RCA carry chains and overclocking errors 

As mentioned in Section 3.5, we assume that the clock cycle time (D) of an adder is never 

lower than the worst-case propagation delay of a single full adder. Considering an approxi­

mate RCA, this would imply that there would be a possibility of error at the output of an 

RCA only if there is propagation of carry. Because if there is no propagation of carry, the 

clock cycle time is sufficient for the full adders to compute the sum outputs of the RCA. 

Stated in a different way, there may be an error at the output only if there are carry chains in 
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the approximate RCA. Note that this is true only if we assume that the temporary values 

of all the carry bits in the adder are zeros at the beginning of the addition. As explained in 

Section 3.5, we assume that that all the carry bits are 0 when the inputs are provided to the 

adder for each addition. 

Hence in developing an error model for an approximate RCA we will consider the 

behavior of error at the output of an RCA in the presence of carry chains. 

We will now describe a point which is worth noting about RCA error with respect to a 

carry chain. The point is that in general [12,47], it has been assumed that to increase the 

output accuracy of an overclocked RCA the supply voltage(s) of the gates in the circuit of 

the RCA should be increased which in turn results in increasing the energy consumption 

of the circuit of the RCA. However, due to overclocking in the presence of a carry chain, 

increasing the voltage provided to the components of the RCA may also result in decreasing 

the accuracy of the sum read from the RCA in some cases. An example of such a case is 

presented in Example 5. 

Example 5. Consider a 5-bit ripple carry adder (RCA) with a design adding 01111 and 

01001. The gate-level design of an RCA is described in in Section 3.7.1. Consider the 

carry chain starting from position 0 till position 3 as shown in Fig. 3.5. For the sake of this 

example, we will assume that all the full adders in the RCA have the same propagation 

delays. We are excluding the cases where the propagation delays change because of 

random variations and also different input transitions and hence are assuming that the 

propagation delays are exact. Also define s(t) , just for this example, to denote the binary 

sum output of the 5-bit RCA at the tth instant, where t ranges from 0 (which denotes the 

output before the inputs were given to the adder) till the correct output is computed where 

each subsequent step denotes a change in the sum output. Then the computed value 

of s starts with the initial value of s(O) = 000000 (output value 0), consecutively becomes 
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Figure 3.6 : Diagram of an n-bit ripple carry adder to describe the modeling of the critical 
path of a sum bit in a carry chain 

S(l) = 000110 (output value 6), S(2) = 010100 (output value 20), S(3) = 010000 (output 

value 16), and S(4) = 011000 (output value 24). As the correct sum is 24, the consecutive 

errors at t = 1 to 4 are 18, 4, 8, and o. So, assuming some specified overclocked clock 

cycle time, if the voltage supplied allowed the reading of S(3) , the resulting error would be 

8. In contrast, if the voltage supplied were lower, allowing only the reading of S(2) with the 

same overclocking, the resulting error would be only 4. o 

In this subsection we discussed the behavior of errors in an RCA due to overc1ocking 

in the presence of carry chains. We also show using an example the output error of an 

approximate RCA might increase when the supply voltage(s) of the RCA is(are) increased. 

Critical path of a sum bit in a carry chain of an RCA 

In this subsection we will define and discuss the critical path (referred to as the sum path) of 

a particular sum bit in the middle of a carry chain in an RCA. 

We call the longest delay path with respect to a particular sum bit Sk as the "critical path 

for sum Sk." In an RCA, the critical path for sum Sk is the series of gates in the RCA which 

constitutes the longest delay path, assuming worst-case gate delays. This path is essential 

in computing whether there is enough time to always compute correctly a particular sum 



67 

bit Sk. Of course, the true critical path for sum Sk depends on inputs a and b; however, the 

result is that any true critical path-whose delay exceeds that of a single FA-comes from a 

prior bit position: for Sb then, the true critical path given inputs a and b will come from 

bit position i where i < k. To capture all such possibilities, we define dik to be the time 

between the correct computation of sum bit Sk and the time when the inputs are provided 

to the RCA circuit thus triggering a true critical path for Sk starting from bit i. Inputs a 

and b are provided to the RCA at some time tin. Let tk be the time when the correct value 

of Sk is generated (assuming worst-case delays of all gates). Then dik = tk - tin. For the 

special case when the carry chain is from i to j = n, tj is the time instant when carry en 

is generated. d denotes the n x n matrix of all dik. 0 :::: i < k :::: n. Properly speaking, d 

for a particular RCA in a particular technology is a function of the critical paths of the sum 

bits of the RCA, Vi for each gate i in any critical path of any sum bit, and Ei (Vi); however, 

for brevity, we will simply refer to d without specifying all the input values on which d 

depends. 

Example 6. Consider an n-bit ripple carry adder, shown in Fig. 3.6, based on the gate 

level description described in Section 3.7.1. Assume that Cij (a, b) = 1. In this adder, dik 

in the worst-case would be the sum of propagation delays of the top XOR gate in the full 

adder (referring to Fig. 3.2) at position i, MUX gates of the full adders from position i + 1 

to position k - 1 and the bottom XOR gate in the full adder (referring to Fig. 3.2) at position 

k. This is the critical path of the sum bit Sk assuming that Cij(a, b) = 1. 0 

The critical path of a sum bit in the case of an RCA is further clarified through Example 7. 

Example 7. Consider the 3-bit ripple carry adder shown in Fig. 3.7 based on the gate level 

model of an RCA described in Section 3.7.1. Assume that the inputs are such that there 

is a carry chain from position 0 to position 2. One instance of such inputs are a = 011, 
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b = 001 and Co = O. For this instance, a carry bit of 1 is generated at position 0 and is 

propagated through position 1 and is killed at position 2. For this scenario, d02 = t2 - tin, 

where t2 (listed in Section 3.4) is the time when the correct S2 is generated. Assuming 

worst-case gate delays, d02 would be equal to the sum of worst-case propagation delays 

of GATE-1 (where GATE-k denotes the gate with the number k inside it), GATE-3, GATE-6 

and GATE-B. The critical path corresponding to d02 is shown in Fig. 3.7 as a dotted line 

from bit position 0 to the sum output in bit position 2. That means in the worst case, 

d02 = EI (VI) + E3(V3) + E6(V6) + ES(VS). For our target technology, considering maximum 

supply voltages for all the gates, i.e VI = V3 = V6 = Vs = 1.2V, we get d02 = 33.3 ps 

+30.5 ps +30.5 ps +33.3 ps = 127.6 ps. 

With calculations similar to do2 , we find that 

97.1 ps 127.6ps 

d= 97.1 ps 

o 

We presented a description of the critical path delay of a sum bit in a carry chain in 

terms of the propagation delays of the gates in an RCA. 

RCA error based on an analysis of carry chain errors 

In this subsection, we will develop a function for the error at the output of an overc1ocked 

RCA. We define the error at the output of the RCA as a function of a, b, the topology of the 

RCA, Ek(Vk) and D. 

The circuit of an RCA is built of gates. The RCA is given time D for each addition. 

The sum outputs are read at time tin + D, with D independent of the inputs. Due to 

overc1ocking, which we assume, the sum actually read, sa, may be different from s = a + b. 
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Figure 3.7: Gate level diagram of a 3-bit ripple carry adder 

We now proceed to characterize the absolute magnitude of the error 1 sa - s I. We define an 

indicator function as follows: 

1 if dik > D and 3 i, j such that Cij(a, b) = 1 and i < k < j 

h(a, b, d, D) = -1 if dik > D and 3 i, j such that Cij(a, b) = 1 and i < k = j 

o otherwise. 

(3.4) 

If k is in some carry chain and the correct sum is 0 but a sum bit of 1 is read, then there 

is positive error and thus I k = 1. If the correct sum of a bit in a carry chain is 1 and a 0 is 

read, then h = -1, indicating negative error. If the correct value of the sum bit in a carry 

chain is read or if the sum bit is not in a carry chain at all, then there is no error and thus 

h = O. Our approach to apply the indicator function to indicate presence of a positive or 

negative error at a particular bit position is demonstrated using an example in Example 8. 
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Example 8. Consider the addition being performed in Fig. 3.3. Let us apply the definition 

of the indicator function to this addition, assuming an 8-bit ripple carry adder based on the 

ripple carry adder described in Section 3.7.1 . Considering maximum supply voltage to all 

the gates, the delays of the gates are given in Table 3.5 in Section 3.7.1. For this example, 

let us assume that the clock cycle time, D, is 130ps. We then calculate the values of d, 

using the method described in Section 3.7.2. For the purpose of this addition, because 

there is only one carry chain, C26 (a, b), we will only compute the following: d23 = 97.1ps, 

d24 = 127.6ps, d2S = 158.1ps and d26 = 188.6ps. Using the values of d and D, we can 

compute lk(a, b, d, D) for 0::::: k ::::: n - 1 as shown in Eq. 3.4. 

• k = 0: There is no i, j such that Cij(a, b) = 1 and 0 ::::: i < k ::::: j. Therefore 

10 (a, b, d, D) = o. 

• k = 1: There is no i, j such that Cij(a, b) = 1 and 0 ::::: i < k ::::: j. Therefore 

h(a, b, d, D) = o. 

• k = 2: From the definition of a carry chain in Section 3.4, we know that C26 (a, b) = 1, 

but k = 2 does not satisfy 0::::: i < k ::::: j. Therefore 12 (a, b, d, D) = O. 

• k = 3: We know that C26 (a, b) = 1 and for k = 3 it satisfies 0 ::::: i < k ::::: j. But 

d23 ::::: D, therefore h(a, b, d, D) = O. 

• k = 4: We know that C26 (a, b) = 1 and for k = 4 it satisfies 0 ::::: i < k ::::: j. But 

d24 ::::: D, therefore 14 (a, b, d, D) = O. 

• k = 5: We know that C26 (a, b) = 1 and for k = 5 it satisfies 0 ::::: i < k ::::: j. 

Also d2S > D, therefore as per the first line of the indicator function in Eq. 3.4, 

Is (a, b, d, D) = 1. 
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• k = 6: We know that C26 (a, b) = 1 and for k = 6 it satisfies 0 :::: i < k :::: j. 

Also d26 > D, therefore as per the second line of the indicator function in Eq. 3.4, 

16 (a, b, d, D) = -1. 

• k = 7: There is no i, j such that Cij(a, b) = 1 and 0 :::: i < k :::: j. Therefore 

h(a, b, d, D) = O. 

o 

The indicator function is now used to develop a function to compute the error at the 

output of an approximate RCA. Er(D, a, b, d) =1 L:Z=O(sk -sk)2k 1 is the error introduced 

during the computation, assuming non-varying deterministic worst-case delays. 

Theorem 1. 
n 

Er(D,a,b,d) = Lh(a,b,d,D)2k. (3.5) 
k=O 

Proof To prove the theorem, we will describe the three cases of the definition of h(a, b, d, D), 

as given in Eq .. 3.4, which is used in the right hand side of Eq. 3.5. 

1. Consider the first line in the right hand side of Eq. 3.4. This is the case where the 

correct Ck has not been computed by time D because dik > D. Here, Ck = 1 and 

ak EB bk = 1 because we know that Cij(a, b) = 1 and i < k < j. So, Sk = 0 but the 

correct Ck has not been computed by time D and thus s~ = 1. Therefore, the error at 

bit position k contributed (1 - O)2k = h(a, b, d, D)2k to the total error. 

2. Consider the second line in the right hand side of Eq. 3.4. In this situation the correct 

C j (because k = i) has not been computed by time D because dij > D. Here C j = 1 

and either aj = bj = 0 or aj = bj = 1 because we know that Cij(a, b) = 1 and 

k = j. So, Sj = 1 but the correct Cj has not been computed by time D and thus 
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sj = O. Therefore, the error at bit position j contributed (O-1)2j = Ij(a, b, d, D)2j 

to the total error. 

3. Consider the third line in the right hand side of Eq. 3.4. This is the case where there is 

no error at the output of the adder. We have two situations in which there is no error. * 

(a) The first situation is when the particular bit-position is in a carry chain but 

the correct Ck has been computed by time D because dik ::::: D. Therefore 

Cij(a, b) = 1 and i < k ::::: j. This means that s~ = Sk. Therefore there was no 

error at k and 0 = h(a, b, d, D)2k. 

(b) The second situation is when the particular bit position is not in a carry chain. 

As we mentioned in Section 3.5, the clock cycle time is at least greater than the 

delay of a single full adder. So if the particular full adder is not in a carry chain 

then there would not be any error at that position. Therefore, there are no i and 

j for which Cij(a, b) = 1 and i < k ::::: j. So, Ck = O. Therefore there was no 

error at k and 0 = h(a, b, d, D)2k. 

D 

Summary of subsection 3.7.2 

The goal of Subsection 3.7.2 is to develop a function for the error at the output of an approx­

imate RCA. To do this, we first describe boolean logic functions for the bits computed in an 

RCA. We then describe the reason that, given our assumptions, errors at the RCA output 

occur only in the presence of carry chains. We also describe how the outputs of an RCA 

*The case where k = 0 comes under this case because there is no error at this position since it is assumed 

that D is always greater than or equal to the worst-case delay of a single full adder. Hence there is no situation 

in which there could be an error at this position. 
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are affected in the presence of a carry chain. Also, we show using a couple of examples 

the behavior of RCA error due to overc1ocking in a carry chain. We then describe a sample 

computation of the critical path delay of a sum output of an RCA. The function for the error 

at the output of an approximate RCA is computed using the critical path delay of a sum 

output in the form of an indicator function. 

3.8 Efficient Evaluation of Average Error of an Approximate RCA 

In this section, we describe our approach to compute the average of the error at the output of 

an approximate RCA over a candidate set of inputs. We then present the technique that we 

follow to efficiently compute this average error. We also describe the constraints that we 

pose on our target problem. 

Theorem 1 (Eq. 3.5) gives Er(D, a, b, d) which is the error at the output of the target 

RCA for two specific inputs. The average of this error over all possible inputs is 

Eravg(D, d) = avg Er(D, a, b, d). (3.6) 

where d and D are defined in Section 3.4. 

This is a sum of 22n terms, which is not feasible to compute in a straightforward manner 

for large n. We will now transform the expression in Eq. 3.6 into a form that can be computed 

in O(n2) operations. 

Recall that an error can occur only if there is a carry chain in the computation. We then 

note that the total error in a computation is the sum of the errors (if any) in the individual 

carry chains. The error introduced by the carry chain from i to j is 
j j 

Er(D,i,j,d) = L (sk -sk)2k = L h2k. (3.7) 
k=i+l k=i+l 

From Section 3.7.2, we know that the indicator function h depends on D, a, band 

d. If we observe Eq. 3.4, we can see that in the definition of h we use the variables a 
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and b to determine whether there is a carry chain around position k. As in Eq. 3.7, we 

assume that Cij = 1 for i < k .::: j . (note that this can be satisfied for many different input 

pairs). Therefore we do not need a, b as inputs to the indicator function. To simplify our 

explanation we will use the same terminology for the indicator function for Er(D, i, j, d). 

Theorem 2. 

Er(D, a, b, d) = Er(D, i, j, d) 
all i,j for which Cij (a,b) = 1 

Proof Consider an n-bit addition. Let there be a carry chains in the addition, where 

0.::: a'::: n.t 

We know from Theorem 1 that there could be an error at the output of an addition only 

if there is a carry chain. Therefore for the case when a = 0 there is no error. If a = 0 that 

means there does not exist i, j such that Cij (a, b) = 1. Hence the theorem holds for a = O. 

Consider a f:. O. Let the xth carry chain start from position i X and be killed at position 

j x. From Theorem 1, we know that 

n 

Er(D, a, b, d) = L h2k 
k=o 

If we expand the right hand side of Eq. 3.8, we get 

(3.8) 

(3.9) 

As h = 0 if there is no carry chain, we can group the terms on the right hand side of 

Eq. 3.9 into groups of carry chains. This is possible since we have shown in Observation 1 

that carry chains cannot overlap in the same addition. 

(3.10) 

tPor example, if ex = 0 then that means there is no carry being propagated in the entire addition. The other 

extreme case would be if ex = n which would happen if a = b = 2n - 1. 
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where carry chain 1 was generated at i 1 and killed at j 1 and carry chain a was generated at 

i a and killed at ja. 

From Eq. 3.10 and Eq. 3.7 

(3.11) 

Hence the theorem holds. 

o 

One way to compute the average total error at the output of an adder is by summing the 

errors of all possible carry chains weighted by the probability of their occurrence. 

Eravg(D, d) = L pijEr(D, i, j, d), (3.12) 
O=:"i<j=:,.n-l 

where Pij is the probability that there exists a carry chain from i to j. Thus, the average 

total error is evaluated by computing and adding n(n - 1)/2 terms only. 

The probabilities pij can be computed given the distributions of the inputs a and b. 

Here we will assume uniform distribution, that is, ai and bi, for all 0 ::: i < n, are each 

o or 1 with probability t. Based on the definition of a carry chain from Section 3.4, for a 

carry chain to be present from position i to position j the following conditions have to be 

satisfied . 

• a w =f:. bw . Probability of a w =f:. bw is equal to P(a w = 0 and bw = 1) + P(aw = 

1 and bw = 0). This is equal to (t x D + (t x t) = t· 

• aj = bj . Probability of aj = bj is equal to P(aj = 0 and bj - 0) + P(aj 

1 and bj = 1). This is equal to (~ x D + G x ~) = ~. 



Therefore Pij is the product of probabilities of all the three conditions i.e., 

Pij P(ai = bi = 1) x P(aw =f. bw ) x P(aj = bj ) 

- GY x(jlnx~ 
_ (~)j-i+2 
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The above method calculates the probability that there exists a carry chain if the input 

distribution is uniform. In real world applications, this might not be true. Therefore, if 

the knowledge about the probability distribution of the actual inputs is known then that 

could be used instead of using P(ai = 0) = P(bi = 0) = P(ai = 1) = P(bi = 1) = ~. 

If the case is such that instead of the probability distribution we have a candidate input 

benchmark, then the probability distribution could be computed using the benchmark. This 

would require only one pass through the entire candidate set of inputs which is an O(n) 

operation. We will leave the case of non-uniform input bits for future work. 

In this section we discussed our approach to efficiently computing the average error of 

an approximate RCA. We also presented the constraints that we pose on our target problem. 

3.9 Energy Consumption Models 

In this section, we first describe an energy model to estimate energy consumption for a 

CMOS circuit of an RCA. We then describe our approach to extend the energy model of 

an RCA to estimate the energy consumption of an approximate RCA for solving our target 

problem. 

3.9.1 Energy model for an RCA 

In this subsection we will discuss an energy model for an RCA. 
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The total energy consumption in an RCA consists of two separate components, the 

dynamic energy consumption and the static energy consumption. The dynamic energy 

consumption constitutes the energy spent during the charging and discharging of capacitive 

loads during logic changes. The average dynamic energy consumed by a CMOS circuit thus 

depends on the number of logic changes which is denoted by the switching activity of the 

adder circuit. The switching activity of gate .e, denoted as Wi, is the average number of 

logic changes that gate undergoes in a single addition. Wi is approximately estimated as the 

ratio of the number of logic changes of gate .e to the total number of additions (say A). 

To estimate the dynamic energy consumption at the gate level of a CMOS circuit of an 

RCA, we will use the following. 

N 

ED = L Er(Vi) Wi (3.13) 
i=l 

where ErCVi) is the dynamic energy consumption of the .eth gate being operated at supply 

voltage Vi and Wt is the average switching activity of the.eth gate in a single clock cycle 

(assuming a non-pipelined adder). 

The total energy consumption also includes the static energy consumption. The static 

energy consumption in a CMOS circuit is due to the leakage current between different nodes 

in a transistor when the transistor is not switching. In general we assume that the leakage 

current does not change over time and hence static energy consumption of a CMOS circuit 

per clock cycle is estimated to be a linear function of the clock cycle time. To estimate static 

energy consumption we use the following model 

N 

E S = LPj(vt}D (3.14) 
i=l 

where Pj(Vi) is the static power consumption of the .eth gate being operated at supply 

voltage Vi and D is the clock cycle time of the circuit. 
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Therefore, the total energy consumption is the sum of both the dynamic energy con-

sumption and the static energy consumption given by 

N 

E = L (EFeve)Wt + pleVt)D) 
t=l 

where N is the total number of gates in the adder. 

3.9.2 Energy model for an approximate RCA 

(3.15) 

In this subsection we will present our approach to model energy consumption of an approxi­

mate RCA by extending the energy model for an RCA discussed in Section 3.9.1. 

The total energy consumption of an RCA as described in Eq. 3.15 is 

N 

E = L (EFeve)Wt + plevt)D) 
t=l 

For an approximate RCA, Eq. 3.15 may be used if we find the switching activities for 

the gates under overclocking. As described in Section 3.7.2, due to overclocking the sum 

actually read might be different from the correct sum. The fact of whether at a given bit 

position the correct sum bit was computed in time or not was modeled using the indicator 

function in Eq. 3.4 in Section 3.7.2. We will use a similar model of an indicator function to 

check if a particular gate in the RCA had a logic change within the clock cycle time and, 

based on that, re-evaluate (reduce) the switching activity to reflect this. 

Consider an n-bit approximate RCA. Assume a carry chain starting from position i and 

ending at position j . Define an indicator function for computing the energy consumption as 

follows 

[[(d,D, b, D) = {: 
if dik > D and 3 i, j such that Cijea, b) = 1 and i < k ::: j 

otherwise. 

(3.16) 
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Based on the gate level design of the ripple carry adder described in Section 3.7.1, 

we assume that in correct computation, soon after the inputs are provided to the adder all 

the sum bits are initially computed with all the carry bits as O. :I: We discuss the effect of 

non-zero carry bits on the energy modeling in Appendix A. 

As the adder is computing, the correct carry bits propagate through the ripple carry 

adder, and then the sum bits might switch again to reflect the correct values. If If is 1 then 

it denotes that the sum bit at position e is incorrect at the end of the clock cycle time. This 

denotes that the carry did not propagate to position e in time which means that the MUX 

gate in the full adder at position e might have switched at most once and the XOR gate that 

computes the sum in the full adder at position e switched at most once. Here we only need 

to consider the effect of a single carry chain at a particular bit position because multiple 

carry chains cannot overlap as per Observation 1. A carry chain starting from position i to 

position j occurs with a probability of Pij. 

We also know from the definition of switching activities in Section 3.4 that 

Total number of toggles of gate k 
U'k =------------~--~~--

A 

where 0 ~ k < N - 1. Here we are using the indexing scheme that we defined in 

Section 3.7.1. 

But if If = 1 then the number of toggles at gate k, where k = 3e + 2 or k = 3e + 3 

*To estimate the energy consumption model for an approximate RCA we assume that all the carry bits are 

o when the inputs are provided for each addition. But in reality the carry bits typically retain values from the 

prior computations and are not reset to 0 every time. 



(using the indexing scheme defined in Section 3.4), decreases by 1. Hence 

w,a 
k -

(Total number of toggles of gatek) - 1 

A 
Total number of toggles of gate k 1 

A A 
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Thus the average switching activities at the gates computing the sum bit and the carry bit 

at position £ decrease by i. But because the carry chain occurs with a probability of Pij the 

switching activities decrease by pij x i = !!.Jf. But if If = 0 then the switching activities 

do not decrease. 

Therefore including the value of the indicator function, we see that the switching activity 

of gate k = 3£ + 2 and gate k = 3£ + 3 should be reduced by Pi~I!. The above analysis is 

for a given carry chain Cij(a, b). Averaging over all possible carry chains the total reduction 

. " PijI! value IS LO:5.i<j:5.n-l A . 

Therefore, the corresponding switching activities of these gates in an n-bit approximate 

RCA should be decreased accordingly based on the following equations. 

(3.17) 

(3.18) 

where 0 :::: £ < n. As per the design of an RCA described in Section 3.7.1, each full adder 

has 3 gates. Therefore the number of gates is N = 3 x n. As we compute the switching 

activity for each gate, there would be N = 3n unique switching activities. The switching 

activities are indexed based on the indexing scheme for gates defined in Section 3.7.1. 

Example 9. Consider the 3-bit RCA shown in Fig. 3.7. We will compute the approximate 

switching activities (ltla for 0 :::: £ < N) for the gates in this adder. The first step in 
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Table 3.3 : Maximum and minimum propagation delays of the XOR gate and the MUX in 
90nm technology 

Gate delaYmin (pieo-sec) delaymax (pico-sec) 

XOR 

MUX 

33.3 

30.5 

55.2 

51.2 

computing Wa is to compute the switching activities (W) for an RCA that is not being 

overclocked. The total number of input combinations to a 3-bit RCA is A = 23 X 23 = 64. 

Using simulations of the 3-bit RCA, we compute the average switching activity at the output 

of each gate when there is no overclocking, which is the ratio of the number of toggles at 

the output the gate to the number of additions. This gives the average switching of each 

gate per addition. 

Now we reduce these switching activities to take into account the effect of overclocking. 

For the sake of this example, let us consider that CI3 (a, b) = 1. From the description 

of the sum path in Section 3.7.2 and the propagation delay values shown in Table 3.3 

(repeated from Table 3.5 in Section 3.7.1), we know that dOl = 97.1ps and d02 = 127.6ps. 

Let the clock cycle time, D, be 120ps. This means that from Eq. 3.16, I~ .-.:. 0, If = 0 

and Ii = 1. Therefore from Eq. 3.17 and Eq. 3.18, the switching activities of gate 8 

(3 x 2 + 2 = 8), the XOR gate that computes the sum in the last full adder in Fig. 3.7, and 

gate 9 (3 x 2 + 3 = 9), the MUX that computes the carry out in the last full adder, have to 

be reduced. The amount of reduction to the total number of toggles of these two gates is 

1. But this is weighted with the probability of the carry chain, in this case that would be 

P13. Also because we are computing the average switching activity we have to divide this 

by the total number of additions also, in this case we assume that A = 23 X 23 = 64.§ 

§Since it is a simple 3-bit adder our benchmark consists of all possible input cases. But in general the 
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Therefore the approximate switching activities of the two gates are Wsa = Ws - Pl~Ii and 

W9a = W9 - Pl~Ii, where Ii = 1, P13 = Gt (assuming uniform input probabilities) and 

A=64. o 

Our algorithm to re-evaluate the switching activities for an approximate RCA is shown 

in Algorithm 1. This algorithm takes as input the size of the adder (n), the probability that 

a particular carry chain occurs (p) and the switching activities (W) of the gates in a RCA 

without overc1ocking and computes the switching activities (wa) for an approximate RCA. 

Based on the revised estimates of the switching activities, the total energy consumption 

of an approximate RCA is as follows 

N 

Ea = L (Ef(vdwt + pl(vl)D) (3.19) 
l=l 

Substituting the relationship between average dynamic energy consumption and worst-

case propagation delays from Eq. 3.2 as described in Section 3.6 in Eq. 3.19, we get 

(3.20) 

3.9.3 Summary to Section 3.9 

In this section we have described the energy model we use for a CMOS ripple carry adder. 

We also presented our approach to extend the energy model to an approximate RCA using 

carry chains. 

number of additions considered to compute the switching activities could be lower than all possible input cases 

if the number of input cases is prohibitively large. 
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Algorithm 1 Approximate Switching Activities 
1: procedure SWITCHING ACTIVITIY(n,p, W) I> Calculates Wa, switching activities of 

the gates in an approximate RCA 

2: for 0 < j ~ n - 1 do 

3: for 0 ~ i < j do 

4: for i < k ~ j do 

5: 

6: 

Compute dik 

Compute If 

7: if h f. 0 then 

S.. wa UT Pij Ii 
3k+2 +- rr3k+2 - A 

9.. wa UT Pij Ii 
3k+3 +- rr3k+3 - A 

10: else 

11: W3k+ 2 +- W3k+2 

12: W3ak + 3 +- W3k+3 

13: end if 

14: end for 

15: end for 

16: end for 

17: end procedure 

I> Discussed in Section 3.7.2 

I> As defined in Eq 3.16 

3.10 Minimizing Average Error of an Approximate RCA Using Geo-

metric Programming 

In this section we describe our procedure to formulate our target problem, which is mini-

mizing average error of an approximate RCA under a given energy budget, as a geometric 

program. Then we present our approach to perform supply voltage binning on the solution 



84 

obtained from the geometric program. 

3.10.1 Formulation of an optimization problem 

In this subsection we formulate our problem, as described in Section 3.3.1, of minimizing 

average error of an approximate RCA with a given energy budget. 

We form an optimization problem consisting of an objective function and one or more 

constraint functions. The independent variables are called the decision variables whose 

values are the solution to the optimization problem. 

In our case, the objective function is the average error of an approximate RCA as given 

in Eq. 3.12 in Section 3.8. The average error as shown in Eq. 3.12 is a function of D, d and 

the circuit topology. The clock cycle time D is an independent variable, but d (described in 

Section 3.7.2) is a matrix whose elements are a function of the adder topology, resulting 

critical path delays and gate supply voltages. We do not alter the adder topology but instead 

vary the adder supply voltage which directly alters d. The authors found a formulation of 

error optimization in terms of d (represented in terms of e(v» to be much simpler than a 

direct formulation in terms of v. 

Therefore we consider the propagation delays of the gates as the decision variables. 

The RCA under consideration consists of N gates. We need to compute an optimized 

supply voltage allocation scheme, which is the exact assignment of supply voltages to the 

individual gates. To do that we need to compute delays EI (VI)' E2(V2), ... , EN(VN) for 

which the average error is minimized under the constraint that the total energy consumption 

is below the total energy budget. These gate delays will in turn determine the supply voltage 

allocation scheme. 
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The optimization problem is to minimize Eq 3.12 which is 

Eravg(D, d) = L pijEr(D, i, j, d), (3.21) 
O$.i <j $.n-l 

subject to the following two constraints and assumptions. 

1. For each gate k (as per the indexing scheme defined in Section 3.7.1), k = 1,2, ... ,N 

(3.22) 

where the lower and the upper bounds depend on the transistor technology, the type of 

component and fanout. Please refer to Section 3.5 for discussion of the assumptions 

behind Eq. 3.22. 

2. The total energy consumption of all the gate is bounded from above by the given 

energy budget. Thus, 

(3.23) 

The left hand side part of the above inequality has been obtained from Eq. 3.20 

in Section 3.9. In Eq. 3.23, the proportionality constants (Yl) and the static power 

consumption values (Pl(vl) are constants which depend on the process technology 

and transistor-level designs ofthe gates used in the RCA. Since we alter neither the 

process technology nor the transistor-level designs of the gates, Yl and pl(vl) are 

constant as far as the optimization problem is concerned. The clock cycle time D and 

the Energy Budget are variables which we can determine. The propagation delays of 

the gates, EI(vl), are the variables that can change during the optimization process. 

The assumptions under which the above optimization problem is framed are as follows. 
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(i) The gate topology of the circuit of the adder is considered as a given and is not changed 

during the optimization. 

(ii) Potentially the optimization problem can result in a solution that allocates each gate a 

unique supply voltage. But as described in Section 3.2, with multiple supply voltages 

the need for voltage level converters arises. So to make the design more pragmatic we 

will bin the solution from the optimization problem to a fixed set of voltages. Currently 

we do not account for the additional energy consumption due to the voltage level 

converters in the optimization problem. 

(iii) As discussed in Section 3.5, the propagation delays of the gates are considered to be 

worst-case non-varying deterministic delays. 

In this subsection we formulated our target problem as an optimization problem by 

describing the objective function, the constraints and the assumptions. 

3.10.2 How to minimize average RCA error using geometric programming 

In this section we present our approach using a technique called geometric programming 

to increasing the accuracy at the output of the RCA by minimizing the function given in 

Eq. 3.21 in Section 3.10.1. 

In general the full class of optimization problems could be classified into two categories, 

linear optimization problems (LP) and non-linear optimization problems (NLP). The objec-

tive function of our optimization problem in this chapter ,which is shown in Eq. 3.12, is not 

a linear function. To clarify this point, let us observe the objective function. 

Eravg(D, d) = pijEr(D, i, j, d), 
O:';';i<j:';';n-l 
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Substituting Eq. 3.7 we get 

Er",(D,d) = o"E.-1 P'j (~I h2k) , (3.24) 

In Eq. 3.24 it can be observed that the indicator function h is not a linear function and 

in fact it is not even a continuous function. 

The authors have not been able to come up with a linear function to estimate/represent 

Eq. 3.24; therefore, the authors have so far not been able to apply traditional linear program-

ming optimization techniques to this problem. The alternative is to model our problem as 

a nonlinear optimization problem (NLP). Although modeling our problem as an NLP is 

trivial but solving a general NLP is computationally difficult. In contrast, a sub-class of 

NLP known as geometric programs (GP) are easy to solve, and also a global solution can be 

achieved efficiently. There are also very effective and reliable methods to solve a GP. Hence 

we chose to compute an approximation of our target problem as a GP. 

Therefore, our solution is to formulate the problem of minimizing Eq. 3.21 subject to the 

constraints outlined in Section 3.10.1 as a geometric program and then solve it. To further 

explain our procedure we present the definition of a particular type of function called as a 

monomial in Definition 2 and an extension of monomials known as a posynomial (short for 

positive polynomial) in Definition 3 [56]. 

Definition 2. Let Xl, ... , Xn denote n real positive variables, and x = (Xl, ... , Xn) a vector 

with components Xj. A real valued function f of x, with the form 

where c > 0 and aj E R, is called a monomial. [56] 

Definition 3. A posynomial is a sum of one or more monomial functions. [56] 
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To model our target problem as a geometric program, the objective function and all the 

constraints should be in the form of a posynomial. But as can be observed from Eq. 3.24, our 

objective function is not a posynomial. So we will compute a posynomial approximation of 

our objective function based on the methodology given in Section 8.2 of [56]. The approach 

of computing a posynomial approximation of a given function and then using geometric 

programming to solve it is referred to as signomial programming, discussed in detail in [56]. 

As can be seen from Eq. 3.12, our objective function is not a continuous function because 

of the indicator functions. According to [56], to compute the posynomial approximation 

of our objective function we have to first compute its continuous approximation. Then we 

have to use a feasible initial guess to find a posynomial approximation of the continuous 

approximation of our objective function. In our case, we start with a feasible uniform 

voltage allocation scheme as the initial guess and compute a posynomial approximation 

of the objective function in Eq. 3.26. The following is a mathematical description of the 

approximations and redefinitions that we use. 

To simplify the continuous approximation of the discontinuous function Eravg(D, d) 

(shown in Eq. 3.24), we will redefine the indicator function h (given in Equation 3.4) which 

is a part of the right hand side of Eq. 3.24 as follows: 

if dik > D, i < k :::: j 
(3.25) 

otherwise. 

Using this definition, Er(D, i, j, d) which is used in Eq. 3.21 (previously defined in 

Eq. 3.7) is transformed as follows 

j-l 

Er( D, i, j, d) = L (3.26) 
k=i+l k=i+l 

where h is shown in Equation 3.4. Because the new indicator function Ik is a non-negative 

function, the negative sign appears in the definition of Er( D, i, j, d). Thus the combination 
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of the indicator function in Eq. 3.4 and the error function in Eq. 3.7 in Section 3.8 results in 

the same value as the redefined indicator function in Eq. 3.25 and transformed error function 

inEq.3.26. 

This redefinition allows us to make the indicator function a non-negative function so 

that it can be represented in terms of the signum function. We do this because a signum 

function can be approximated to a smooth continuous analytical function which we will 

then approximate to a posynomial as required for a geometric program. 

We now represent Ik' by 

Ik(i, D) = 1 + Sgn~ik - D) 

where sgn(x) is the signum function. For K » 0, sgn(x) ~ tanh(Kx), and we use K = 200.11 

Therefore, 

( . ) 1 tanh(K(dik - D» 1 
Ik l, D ~ - + = ----:-:----::-:-2 2 1 + e-2tc(dik-D ) • 

Thus, our continuous and differentiable approximation of Eq. 3.26 is 

j-l 

Er(D,i,j,d)= L Ik(i,D)2k_lj(i,D)2j 
k=i+l 

where dij are linear functions of Ek(Vk). We use the monomial approximation technique 

(Section 8.2 of [56]) for this expression. This results in 

(3.28) 

'This particular value of K was chosen empirically by observing the plots of the two functions, sgn(x) and 

tanh(Kx), and that the transition from -1 to 1 is fast enough. 
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where C E R+ and am E R for alII:::: m :::: N. The expression in Eq. 3.28 is a monomial 

as per Definition 2. 

We then construct the objective function Er(D, d) as a posynomial (defined in Defini-

tion 3) from Eq. 3.24. 

As €(v) are the decision variables, we now express d in terms of €(v), and write the 

average error as Eravg(D, E). Then the problem is reduced to minimizing a posynomial 

subject to posynomial inequality constraints, giving us a geometric program in a standard 

form: 

subject to EkCvmin) :::: Ek :::: Ek(Vrnax), k = 1, ... , N 

and t (ye El2 wt + Pi(Ve)D) :::: Energy Budget 
e=l e 

where C is the number of possible carry chains in a n-bit adder and N is the number of 

lower level components (such as gates) in the adder. In the case of an = I6-bit adder, 

C = n(n2-l) = 105. 

We use a standard geometric programming toolbox [56,57] to solve this program. The 

solution of the first iteration is used to compute the posynomial approximation again, until 

the objective value starts to converge. This gives us the final allocation of delays to the 

components such that the average error is minimum for the given constraints. Using the 

delays allocated to the components, we can obtain the voltages to be supplied to them. 

To clarify our approach to minimize error using geometric programming, we present an 

example of a 3-bit adder in Example 10. 

Example 10. Consider a 3-bit RCA as shown in Fig. 3.7. We will compute the objective 

function for the 3-bit RCA. The possible carry chains are CO2 (a, b), COl (a, b) and C12 (a, b). 
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Table 3.4 : Propagation delay and supply voltage values from the geometric program and 
corresponding binned supply voltage values for the gates in Fig. 3.7 

Gate Index Ee (ps) Ve (volts) Binned Ve (volts) 

1 44.6 0.84 0.8 

2 46.9 0.8 0.8 

3 34.0 1.16 1.2 

4 44.6 0.84 0.8 

5 40.8 0.92 0.9 

6 33.3 1.2 1.2 

7 39.3 0.96 1.0 

8 38.5 0.98 1.0 

9 33.3 1.2 1.2 

From Eq. 3.24, 

Er(D, d) = P01Er(D, 0,1, d) + P12Er(D, 1,2, d) 

+ P02Er(D, 0, 2, d) 

Following Eq. 3.27, the objective function becomes 

E D d = - 21 ( 1) r( ,) POl 1 + e-2K(dol-D) 

( I 22) + P12 1 + e-2K(d12-D) 

+ ( 1 21 1 22) 
P02 1 + e-2K(do1 -D) - 1 + e-2K(do2-D ) 

From Section 3.7.2 and Fig. 3.7, we know that dOl = E1(V1) + E3(V3) + ES(VS), 

d12 = E4(V4) + E6(V6) + ES(VS) and d02 = E1(V1) + E3(V3) + E6(V6) + Es(Vs). Therefore, 
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the objective function becomes, 

Er(D, d) = POI ( 

As described in Section 3.10.2, we first start with an initial guess of uniform voltage 

allocation. For this example, say that all the gates are provided with the highest supply 

voltage of 1.2V and the corresponding minimum propagation delay values are shown in 

Table 3.5. Let us say that the clock cycle time is D = 120ps. Hence if the values for the 

propagation delay and D are substituted then it results in EI (VI) + E3(V3) + ES(Vs) < D 

and E4(V4) + E6(V6) + ES(VS) < D. Therefore, 

1 
------~~~~~~~~ ~O 1 + e-2IC (1:1 (Vd+1:3(V3)+fS(Vs)-D) 

1 
------...,....-,......,..--..,---,---,--::---,- ~ 0 
1 + e-2IC (1:4(V4)+1:6(V6)+fS(Vs)-D) 

Thus the objective function becomes 

because we only consider the absolute magnitude of the error. We also know from 

Section 3.8 that P02 = (kt. 
Now we use the monomial approximation technique (Section 8.2 of [56]) for this ex­

pression. For keeping the constants at a reasonable exponent (for example, not have 

2.5 x 10-49 as a constant), we use all the delay values in nanosecond units. This results 
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O.8V O.9V 1.0V 1.2V 

Figure 3.8 : A sample ftoorplan with 4 voltage islands based on the binned solution of a 
3-bit RCA shown in Table 3.4 

in the following posynomial approximation (in this case in fact it is a monomial) objective 

function: 

Er(D d) = 02790EO.00833Eo.00762EO.00762EO.00833 
, . 1 3 6 8 

The final allocation of delays and their corresponding supply voltage values obtained 

through signomial programming [56] are shown in Table 3.4. The gate indices used in 

Table 3.4 are based on the indexing scheme defined in Section 3.7.1. The Energy Budget 

used to obtain this solution is 1.11 x 10-13 J. 

o 

In this section we present our solution approach which is a geometric problem based 

modeling of our target minimization problem. We also discuss about the specific toolbox 

that we use in this chapter. 
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3.10.3 Supply voltage binning 

In this section we present our approach to binning the solution obtained from Section 3.10.2 

to a specific set of voltages. We also compare the solutions of the geometric program and 

the binned solutions in the context of a ripple carry adder. 

The solution from Section 3.10.2, in principle, can assign any voltage to any gate under 

the given constraints. For a practical application of the solution we need to limit the number 

of supply voltages and also the number of voltage islands. 

We will first present our approach to limit the number of supply voltages. Let the 

possible set of supply voltages be V and the maximum number of voltages be Mv. We 

then pick a Mv-combination of elements from V. The voltages from this subset are then 

assigned to the gates in the RCA with gates having a higher voltage in the geometric program 

solution getting a higher voltage from this subset. This process is referred to as binning. 

We exhaustively search through all possible binning schemes. Using Eq. 3.24 and the 

relationship between propagation delay and supply voltage we can compute a closed form 

solution of the average error. Hence an exhaustive search is not computationally intensive. 

The algorithm that we use for supply voltage binning is shown in Algorithm 2. Let P (V) be 

the power-set of the set V and p an element of the power-set. Let mj be the number of gates 

assigned with the i th element of p. Without loss of generality assume that all the voltages in 

the sets are sorted in ascending order. 

As an example, we show the binned voltages for the 3-bit RCA example in Table 3.4. 

To determine the number of voltage islands we have to design the floorplan of the actual 

circuit. We agree that designing the floorplan and supply voltage binning concurrently could 

lead to a more efficient solution but we will target this problem in our future work. With 

regard to this work, we first bin the solution obtained from the geometric program and then 

design the floorplan accordingly to minimize the number of different voltage islands. This 
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Algorithm 2 Supply Voltage Binning 
1: procedure BINNING(P(V), Mv) 

2: Sort all the gates in ascending order with respect to the supply voltage assigned by 

the geometric program 

3: for P E P(V) do 

4: if Ipi = Mv then 

5: for Vmj : L~l mj = N, mj 2: 1 do 

6: Assign the first mj unassigned gates with the i th element (ith voltage) of 

P 

7: 

8: 

9: 

10: 

11: 

12: 

end for 

if L~l (Ytt;: Wl + pi (vt) D ) ~ Energy Budget then 

Evaluate Eravg(D, e(v» from Eq. 3.24 

end if 

end if 

end for 

13: Pick the p and mj 's with the minimum Eravg(D, e(v» 

14: end procedure 

might result in some extended interconnects. But for this work, we currently assume that 

the overheads due to a few rare elongated interconnects is not very significant. Based on 

the supply voltage binning and acceptable overheads of multiple voltage lines we can fix 

the number of voltage islands. In Fig. 3.8 we present an example of a floorplan with four 

different voltage islands for the 3-bit RCA solution shown in Table 3.4. Each box in the 

figure represents a single gate. The digit in each box corresponds to the index of the gate as 

indicated in Fig. 3.7. 
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3.11 Simulation Framework for RCA Experimentation 

In this section we describe the simulation framework that we used for our experiments 

through which we aim to show that the voltage assignments generated by our geometric 

program described in Section 3.10.2 after voltage binning have lower error when compared 

to corresponding uniform voltage scaling or a naive biased voltage scaling assignment. 

We use Synopsys HSPICE Version B-200S.09 with Synopsys 90nm technology to design 

and simulate our RCAs. We discuss our models for energy consumption and average error 

in Section. 3.7. The range of voltages with which the gates in the circuit are operated 

is O.SV to 1.2Y. As discussed in Section 3.2 we realize that using multiple voltages may 

necessitate voltage level converters. Currently, we do not include voltage level converters in 

our simulations because our voltage shifts are usually very small (in the O.lV - 0.2V range). 

We simulate the circuits with different supply voltage configurations and obtain the 

average error magnitude and average energy consumption values. The average error magni­

tude for the experiments is computed by taking an average, over the number of additions 

performed in the experiment, of the absolute magnitude between the correct output of the 

approximate adder and the actual output of the approximate adder which might be different 

due to overclocking. The average energy consumption is measured from our HSPICE simu­

lations by taking an average, over the number of additions, of the total energy consumption. 

The total energy consumption is computed as the sum of the integrals of the product of the 

current drawn and the magnitude of the supply voltage over the entire period of simulation. 

The input data set for the experiments is drawn from a uniform distribution. To simulate 

the behavior of the adder we used 10,000 input combinations. We admit that the number 

of test cases is not very high, but we chose this number so that we could explore across 

multiple cases of voltage allocation schemes. 

We designed transistor level models in HSPICE for the RCA based on the gate level 
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description from Section 3.7.1. We apply the procedure described in Sec. 3.10.2 to obtain 

a globally optimized supply voltage allocation scheme for the RCA. This scheme is then 

binned to specific supply voltage values using the approach in Section 3.10.3. For our 

experiments, to perform supply voltage binning we used specific voltage levels which are 

0.8Y, 0.9V, l.OV, l.1 V and l.2V. 

The critical path delay of an adder is computed in HSPICE by providing the adder with 

worst-case inputs. For an adder a worst-case input is one in which there is a carry chain 

from position 0 to position n-l. 

We use three cases for comparing the advantage of our approach. The three cases are 

• Case 1: Uniform voltage scaling (UVoS) : All the gates in the RCA are assigned the 

same voltage. The voltage levels can vary from O.8V to 1.2V at the granularity of 

0.01 V. Therefore there are 41 different voltage allocations. 

• Case 2: Naive biased voltage scaling (n-BiVoS): For comparison, we will consider 

the biased voltage scaling (BiVoS) approach of George et al. [11] modified as follows. 

First, we split the number of bits equally into four sets: for 16 bits, there are four sets 

of four bits each, while for 32 bits, there are four sets of 8 bits each. Then, we tried 

the following possible combinations of four distinct voltages assuming a step size of 

O.IV from O.8V to l.2V: (i) {O.8V, O.9V, l.OV, l.IV}, (ii) {O.8V, O.9V, l.OV, l.2V}, 

(iii) {O.8V, O.9V, l.IV, l.2V}, (iv) {O.8V, l.OV, l.IV, l.2V} and (v) {O.9V, l.OV, l.IV, 

1.2V} where the voltages are assigned from lowest to highest from the LSB to the 

MSB. For example, 0.8V is the supply voltage for the least significant four bits (in 

the case of a 16-bit RCA) or eight bits (for the 32-bit RCA) in four out of five of the 

cases above. We call this approach "naive-BiVoS" or n-BiVoS for short. 

• Case 3: Binned geometric programming solution (BGPS): The solution generated 
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Table 3.5 : Maximum, minimum propagation delays and proportionality constants of the 
XOR gate and the MUX in 90nm technology 

Gate delaYmin delaYmax 

(pieo-sec) (pieo-sec) 

XOR 33.3 

MUX 30.5 

55.2 

51.2 

2.0E-35 

1.6E-35 

from the geometric program which is binned to limit the number of supply voltages. 

The metrics that we compare are the average energy consumption and the average error 

magnitude. We also use the metric of relative error which is the ratio of error to the correct 

output, indicating how much the error affects the output. From these results we picked a few 

data points that illustrate the savings yielded by our methodology. 

3.12 RCA Experimental Results 

We first present the results for individual 16-bit and 32-bit ripple carry adders. Then we 

show the energy impact of a 16-bit globally optimized RCA in the context of an FFT. 

3.12.1 Simulation results of 16-bit and 32-bit approximate ripple carry adders 

In this section, we present the results for 16-bit and 32-bit addition using approximate RCAs. 

Based on the circuit description of the RCA in subsection 3.7.1, the number of gates 

in a 16-bit RCA is 48 and in a 32-bit RCA is 96. We model these adders using the error 

model described in Section 3.7.2. The objective function for optimization, presented in 

Eq. 3.12, is computed efficiently in Section 3.8. The constraints for the geometrie program, 

which are dependent on the technology are also described in Section 3.8. The first constraint 
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Table 3.6 : Summary of results of 16-bit and 32-bit approximate ripple carry adders 

n-bit D (ns) Average Error Magnitude Energy Energy 

Consump- Savings 

tion (fJ) 

UVoS n-BiVoS BGPS UVoS n-BiVoS 

IBGPS IBGPS 

16-bit 0.4 36.83 50.06 21.66 1.70 2.31 110.78 1.41 

16-bit 0.4 36.83 45.97 17.96 2.05 2.56 128.14 1.22 

16-bit 0.4 36.83 38.55 26.31 1.40 1.47 132.9 1.18 

16-bit 0.4 40.92 36.83 23.25 1.76 1.58 139.92 1.12 

32-bit 0.6 18171 33704 13978 1.30 2.41 132.74 2.07 

32-bit 0.6 15634 24637 11412 1.37 2.16 139.41 1.97 

32-bit 0.6 14892 15215 11142 1.34 1.37 152.54 1.8 

32-bit 0.6 14199 10931 8931 1.59 1.22 159.3 1.73 

in Eq. 3.22 limits Ek(Vk), the propagation delay of a single gate, between the maximum 

worst case delay (based on the lowest supply voltage allowed which is 0.8V for our target 

technology) and the minimum worst case delay (based on the highest supply voltage allowed 

which is 1.2V). The RCA circuit that we are using is built using two types of gates, the 

Exclusive OR (XOR) gate and a multiplexer (MUX). The minimum and maximum delays 

for these gates in our target technology, computed in HSPICE, are provided in Table 3.5. 

The second constraint in Eq. 3.23 limits the sum of energy consumption of all the gates. For 

our target technology, the constant Yk in Eq. 3.23 has been computed for the two types of 

gates and is shown in Table 3.5. 
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Figure 3.9 : Average error magnitude versus average energy consumption of uniform voltage 
allocation and optimized voltage allocation in a 16-bit ripple carry adder 

For the experiments that we present here for the 16-bit RCA we chose 4E-I0 sec as the 

clock cycle time (D). To describe the results, we chose an instance where 110 fJ is the 

Energy Budget in the geometric program for all the 48 gates. We present the results of our 

comparison for the three cases described in Section 3.11 in Table 3.6. The solution for Case 

3 (BGPS) is where 18 gates had 0.8V, 11 gates with 0.9V, 8 gates with 1.0V and 11 gates 

with 1.2V. 

Furthermore, we observed that a 16-bit RCA would have an energy consumption of 

IS7pJ (by increasing the supply voltages to l.12V) to have no overclocking errors and thus 

have 100% accuracy at the same frequency of 2.5Ghz and uniform voltage supply (which is 

the current design methodology). This shows that we achieve a I.4X reduction in energy 

consumption by overclocking the adder and biasing the supply voltage, albeit at some loss 

of accuracy. These results are also shown in Table 3.6, where "Energy Savings" refer to the 
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Figure 3.10 : Average error magnitude versus average energy consumption of uniform 
voltage allocation and optimized voltage allocation in a 32-bit ripple carry adder 

reduction in energy consumption of the globally optimized approximate adder with respect 

to the conventional correct adder operating with the same clock cycle time (D). Simulation 

results of a 16-bit RCA being overclocked at 2.5Ghz but for different values of Energy 

Budget in HSPICE are shown in Fig. 3.9. 

The clock cycle time (D) for the 32-bit RCA has been chosen to be 6E-10 sec. To 

demonstrate the results, let us choose one instance of the 32-bit approximate RCA with an 

Energy Budget (in the geometric program) of 132 fJ for all the 96 gates. The solution that 

resulted after supply voltage binning of the geometric program solution is a 32-bit RCA 

where 39 gates with 0.8V, 5 gates with 0.9V, 24 gates with 1.1 V and 28 gates with 1.2V. 

The results for a 32-bit RCA are shown in Table 3.6. Also, average error magnitude versus 

average energy consumption results for a 32-bit approximate RCA are shown in Fig. 3.] O. 
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Figure 3.11 : Average error and average energy consumption versus clock cycle time for a 
16-bit approximate RCA with constant and uniform supply voltage of 1.2V 

3.12.2 Non-monotonic error rates 

In this section, we will present some results to demonstrate the non-monotonicity of the 

average error magnitude with respect to the average energy consumption and clock cycle 

time of an approximate adder. 

Examining Fig. 3.9 and 3.10 we see that the accuracy of the adder typically increases 

with increase energy consumption. But there are several deviations in the trend. Therefore 

accuracy does not monotonically increase with increasing energy consumption. This hap-

pens because the average error magnitude of an approximate adder does not always decrease 

with increasing the supply voltages of the gates in the circuit of the adder. This phenomena 

has been explained in Section 3.7.2. 

To demonstrate the non-monotonicity of the average error at the output of an approxi-
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Figure 3.12: Average error versus energy consumption for a 16-bit approximate RCA with 
constant clock cycle time of 4E-1Q sec 

mate 16-bit RCA the behavior of average error versus clock cycle time is shown in Fig. 3.11. 

The results in in Fig. 3.11 were generated by keeping a constant and uniform supply voltage 

of 1.2V for the entire approximate RCA. 

Also, as another example, we present the behavior of average error versus energy con-

sumption for an approximate 16-bit RCA in Fig. 3.12 while keeping the clock cycle time 

constant at 4E-1Q sec. This was computed by simulating a 16-bit approximate RCA with 

different supply voltages starting from 0.8V till 1.2V with a granularity if 0.01 V. 

3.12.3 Approximate RCA FFT example 

In this section we first describe the architecture of the 8-point FFT that we use for these exper-

iments. Then we present simulation results of an 8-point FFT designed using conventional 

adders, uniform voltage scaled adders and globally optimized adders. 
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Figure 3.13 : Flow graph of a complete decimation-in-time decomposition of a 8-point FFT 

9 

17 

Figure 3.14 : Graph-theoretic representation of an 8-point FFf 

Architecture of an 8-point FFT 

In this subsection we will definition of a discrete Fourier transform and the architecture of 

the 8-point FFf that we use. 

The fast Fourier transform (FFf) is a discrete Fourier transform (DFT) algorithm which 

reduces the number of computations needed for P points from 2p 2 to 2P 19 P. The DFT 
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can be represented as follows 

otherwise. 

where x is the input which is a finite duration sequence (of length N) of complex numbers, 

-2ni 
X is the DFT of x, and WN = e----n-. 

We use a complete decimation-in-time decomposition [58] of an 8-point FFf. A flow 

graph of this 8-point FFf is shown in Fig. 4.6. We use techniques [59] to transform multipli-

cations in the 8-point FFT to additions of shifted inputs. We do this transform because in 

this chapter we target only approximate adders and do not optimize approximate multipliers. 

Also, it has been shown by Zhou et al. [60] that multiplier-less FFfs have lower number of 

computations than the FFfs with both multipliers and adders. The transformed 8-point FFf 

with 24 fixed point real 16-bit ripple carry adders is shown in Fig. 4.7. 

We described the mathematical formulation of the DFT. We also discussed about the 

design of the 8-point FFT and the transformation we used to convert the multipliers into 

adders. 

Experimental results of an approximate 8-point FFT 

The approximate FFf was simulated in MATLAB by artificially introducing errors at the 

outputs of adders in the FFf based on the average error values from the simulations de­

scribed in Section 3.12.1. As input to the FFf, we used the image shown in Fig. 3.15(a) 

with a resolution of 100X100 pixels. 

We use a 16-bit approximate RCA but using the image data as input to the adder. Then 

we collect average error for the three types of approximate adders through simulations in 

HSPICE using the same framework as described in Section 3.11 except for the input data. 
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We use a Gaussian noise source at the output of every adder in MATLAB to simulate the 

effect of overc1ocking with the mean and variance collected from HSPICE simulations of 

the RCA. This will result in an approximately computed FFf of the input image. We then 

perform a correct inverse-FFT in MATLAB of this approximate FFf of the input image. 

Our goal is to see the extent to which the data has been preserved in this experiment. We 

would expect, if both the FFf and the inverse-FFT were correct, that the final image would 

be an exact copy of the original image. 

The different cases that we compare are 

• Case 1: Conventional design where all the adders are being operated at 100% accuracy. 

• Case 2: BGPS: The voltage allocation scheme generated by mathematical formulation 

and the optimization scheme presented in this chapter. 

• Case 3: n-BiVoS: The voltage allocation scheme where the adder is divided into 4 

equal bins with voltages assigned from the set 0.8, 0.9,1.0,1.1, 1.2V. 

• Case 4: UVoS: Approximate adders in the circuit have uniform voltage allocation but 

still being operated at the same frequency. 

The resultant images from the four cases that are discussed above are shown in Fig. 3.15. 

The image generated by the FFT using BGPS adders has a PSNR that is 15db lower than the 

image generated by the FFf using UVoS adders with a similar energy consumption. Also 

the image generated by the n-BiVoS adders is 8.5 dB lower than the image generated by the 

BGPS adders. All these adders have a similar energy consumption. 
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(a) (b) (c) (d) 

Figure 3.15 : Images generated by (a) Case 1 (b) Case 2 (c) Case 3 and (d) Case 4 

3.13 Additional Terminology for Carry Lookahead Adders 

In this section, we will redefine some terms that have been defined in Section 3.4 specifically 

in the context of an RCA. Most of the terms can be trivially applied to the case of a carry 

look ahead adder by changing the context from an RCA to a CLA. But some terms which 

require specialization in the context of a CLA are presented in this section. These redefined 

terms are relevant as a reference from Section 3.1 4 to Section 3.18. 

1. Carry chain: Given an n-bit CLA and two specific n-bit binary numbers a and b as 

inputs to the CLA, a carry chain is said to be present from position i to position j if 

and only if 

e a w =1= bw . 

eaj=bj . 

where 0 :::: i < w < j :::: n - 1. We admit that in a CLA there are multiple paths 

through a carry bit is computed and hence ana.1ogous to the case of an RCA a phys­

ical instantiation of a chain of carry bits does not take place in a carry lookahead 

adder. And hence we will define a carry chain independent of the actual circuit and 

computation because it is used to identify the possibility of an error in our model. 
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2. Cij : Consider an n-bit CLA and two specific n-bit binary numbers a and b as inputs to 

the RCA. A boolean variable Cij is defined on whether there is a carry chain starting 

from position i and ending at position j such that 

Cij = {I 
o 

if there is a carry chain from i to j 
(3.29) 

otherwise 

where 0 ::::: i < j ::::: n - 1. 

3. N : Represents the number of gates in the CLA. For simplicity we will consider a 

carry lookahead block in a carry lookahead adder as a single gate. 

4. dpr : Given an n-bit CLA and two specific n-bit binary numbers a and b. Assume 

that Cpq = 1 for p < r < q. Then we define dpr = tr - tin. dpr is the time elapsed 

from the instant when the inputs are provided to the CLA till the correct sum bit, Sr, 

is generated. 

5. d: Represents an n x n matrix where the rth element in the pth row is dpr . Elements 

dpr for which p 2: r are invalid and so are not considered. 

The terms that we have defined in this section serve as a reference for the models and 

procedure described from Section 3.14 till Section 3.18. 

3.14 CLA Delay Assumptions 

The basic assumptions that we discuss in the case of RCA in Section 3.5 still hold in the 

case of a CLA. 
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Figure 3.16: Diagram of a 4-bit carry lookahead adder 
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Figure 3.17 : Diagram of a I-bit Propagate-Generate full adder (I-bit PG-FA) 

3.15 Energy and Error Models for an Approximate CLA Adder 

In this section we first present a brief discussion of a carry lookahead adder. This is followed 

by a description of the mathematical framework and the models that we use to characterize 

both the energy consumption as well as the average error at the output of an approximate 

CLA. 

3.1S.1 Description of a carry lookahead adder 

In this section a brief description of a carry look ahead is provided. 

Weinberger and Smith [61] proposed the "carry lookahead" scheme in 1958. The carry 

lookahead scheme in contrast to the carry-rippling technique speeds up the propagation 
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Figure 3.18: Diagram of a 4-bit Carry Look Ahead Block 

of carry by additional logic. An example of a 4-bit binary adder with 4-bit carry looka­

head logic is shown in Fig. 3.16. In a carry lookahead adder, I-bit propagate-generate full 

adders (I-bit PG-FAs), shown in Fig. 3.17, are used to generate the additional bits required 

by the carry lookahead logic, as described in Fig. 3.18. These additional bits are called 

the propagate (Pi = ai E9 hi) and generate bits (gi = ai . hi) and hence the name, I-bit 

propagate-generate full adder. For more information on propagate bits, generate bits and 

carry lookahead logic please refer to [62]. 

3.15.2 Energy consumption model for an approximate CLA 

The energy model that we use for a CLA is similar to our energy model for an RCA with 

one exception. We do compute the reduced switching activities for the XOR and MUX 

gates that compute the sum and carry bits, as shown in the I-bit PG FA shown in Fig. 3.17, 

using the same algorithm as in the case of an RCA. But at this time we do not consider the 

reduced switching activities of the gates in the carry lookahead block because that would 

mean considering the time taken from the inputs to each gate in the carry lookahead block. 
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Co 

Figure 3.19 : Illustration of the paths and delay of the carry bit across a carry-Iookahead 
adder 

Also from our simulations we have observed that the reduction in switching activities is less 

than 8% and hence can be neglected. Also our target problem is not affected since we only 

specify an Energy Budget which is an upper bound and hence an overestimation does not 

violate the constraint. 

3.15.3 Modeling the error at the output of an approximate CLA 

In this section, we will first present boolean logic functions that we use in our design of the 

CLA to compute the sum output. We will then describe carry chains in a carry look ahead 

adder. We specifically concentrate on the differences from our analysis of the RCA. We 

present the primary difference in our modeling of the CLA which is the characterization of 

the critical path for each sum bit, also referred to as the "sum path". We describe the mathe·· 

matical formulation for the error function which is the error at the output of an approximate 

adder. 

CLA logic 

In this subsection we describe one set of (from among many) boolean logic functions of 

addition in the context of a CLA. 

We will consider n-bit CLA for some n. Numbers to be added will be in the range 
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0, ... ,2n - 1 and will have the standard binary representation. 

Consider the addition of two n-bit numbers a and b, resulting in an (n + I)-bit number, 

consisting of s = Sn ••. so. The main difference in a CLA from an RCA is that group 

propagate and group generate bits are computed from the individual propagate and generate 

bits. The boolean equations are as follows. 

Pi = ai EB hi 

gi = ai • hi 

P[i:j] = P[i:k] • P[k+l:j] = Pi . Pi+l ... Pj 

G[i:j] = G[i:k] • P[k+l:j] + G[k+l:j] 

Please refer [62] for comprehensive description of boolean logic functions of addition in 

a carry lookahead adder. 

Carry chains in carry lookahead adders 

In this section, we will discuss about carry chains in the context of a carry lookahead adder. 

In an n-bit carry look ahead adder, there are carry look ahead blocks as described in 

Section 3.15.1. Therefore in a CLA the carry does not "ripple" through the adder in the way 

the carry does in a RCA. Every carry look ahead block acts as a look ahead for a specific 

set of positions. Let us say there is a carry look ahead block for bit positions starting from 

position x to position y, where 0:::: x < y :::: n. This carry look ahead block computes the 

carry input for the full adder at position y + 1 much quicker than the time it would usually 

take the carry to propagate through all the full adders between position x and position y. 

Thus the carry takes different paths to reach full adders at different bit positions. This is 

described using Example 11 where instances of two different paths taken by a carry bit is 

described in a carry look ahead adder. 



113 

Example 11. To illustrate the concept of a carry chain in a carry look ahead adder, consider 

the example of a 8-bit carry look ahead adder shown in Fig. 3.19. Assume that there is 

carry chain from position 0 to position 6. In this case, the carry input for the full adder at 

position 3 is generated at position 0 and has to propagate through position 1 and then 

through position 2 arriving at position 3. But the carry input for the full adder at position 5 

is computed by the carry look ahead block and is directly propagated to the full adder at 

position 4 which then propagates it to the full adder at position 5. 0 

If there is a carry chain from i to j , we will set a boolean variable Cij as defined in 

Section 3.13. And if Cij = 1, similar to the case of an RCA, we have Si = 0 EB Ci; Ck = 1 

and Sk = 0, for k E {i + 1, ... , j - 1}; and Cj = 1, Sj = 1, and Cj+l = aj (= bj ). 

The relationship between CLA carry chains and overclocking errors 

In this section, we will discuss the behavior of error at the output of an approximate CLA in 

the context of a carry chain. We will describe this behavior using an example of a CLA. 

The description in Section 3.7.2 about RCA carry chains is also valid in the case of a 

CLA. This means that even in the case of a CLA as the supply voltage(s) to the gates in the 

circuit of a CLA are increased there is a possibility that the error at the output of a CLA 

might also increase. 

But there is one other consideration which is specific to a CLA and does not apply to an 

RCA. Consider a carry chain from i to j, where 0 :::: i < j < n. The point that we wish 

to note is that there are cases where the carry bit may propagate to position k2 before it 

propagates to kl for i < kl < k2 :::: j. An example of such behavior, which seems to be 

counter-intuitive, is presented in Example 12. 

Example 12. For example, consider a 8-bit carry lookahead adder (CLA), as depicted in 

Fig. 3.19, where the number in each box corresponds to the time it takes for it to produce 
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the output from the time it gets the input. We add 01010101 and 10101010 and we assume 

that Co = 1. Then, this carry propagates throughout the adder, but it propagates to kl = 3 

in 12 time units from Co (solid black line in Fig. 3.19) and to k2 = 4 in only 10 time units 

from Co (broken black line in Fig. 3.19). 0 

Critical path of a sum bit in a carry chain of a CLA 

The definition of a "sum path" in the case of an RCA can be applied to a CLA with some 

changes. As defined in Section 3.4, dik is the time between the correct computation of the 

sum bit Sk and the time when the inputs are provided to the circuit, provided Cij = 1 for 

i < k < j. To determine dik as sum of propagation delays of the gates in an adder, Ee, we 

choose a specific design of a CLA as described in Section 3.15.1. 

In an n-bit carry look ahead adder with I-bit look ahead blocks, assume that Cij = 1 

for 0 ::: i < j ::: n. In this case, we will again compute dik . As described earlier in this 

section, the path that the carry takes for each full adder might be different. But based on 

our assumption that Cij = 1, we can specifically determine the exact path as shown earlier 

in this section. The carry path might contain one or more carry look ahead blocks. If the 

carry path has a carry look ahead block, then the critical path for the correct computation of 

the sum bit Sk would include the computation of the propagate and generate bits from the 

I-bit PG-FAs, as explained in Section 3.15.1. For simplicity we will assume a carry look 

ahead block as a single unit for the sake of simplicity in the description of a sum path. In 

such a scenario, there are two types of carry paths that are possible to the kth full adder as 

described in Example 11. The two types of sum paths with reference to Section 3.15.3 are 

described below. 

1. Carry Path Type 1: There is no lookahead block in the path. The path path consists of 



(a) The top XOR gate in the full adder (referring to Fig. 3.17) at position i. 

(b) The MUX gates in full adders at positions from i + 1 till k - 1. 

(c) The bottom XOR gate that computes Sk in full adder at position k. 
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2. Carry Path Type 2: There is at least one lookahead block in the path. In this case the 

sum path consists of 

(a) Maximum of (i) AND gate (referring to Fig. 3.17) in the full adder at position i 

and (ii) XOR gate in the full adders at position t > i and are connected to the 

first lookahead block. 

(b) Carry lookahead blocks 

(c) The MUX gates in full adders from the position where the last carry lookahead 

block provides input to a full adder till the full adder at position k - 1. If the last 

lookahead block connects to the full adder at position k then there is no MUX 

gate in the carry path. 

(d) The bottom XOR gate that computes Sk (referring to Fig. 3.17) in full adder at 

position k. 

Based on the particular sum path type, dik is defined as the sum of the worst-case 

propagation delays of the gates (and lookahead blocks) in the sum path. 

Let us model the adder as a graph G(V, E) where V is the set of vertices (in this case 

they are gates) and E is the set of edges (or interconnects in the circuit). 

Definition 4. Given a directed acyclic graph G(V, E), the inverted graph G'(V', E') is 

defined as follows: 

v' = V 

Let Vi, Vj E V then (Vi, Vj) E E' iff (Vj, Vi) E E 

(3.30) 

(3.31) 
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In general for a given adder design, G(V, E), all possible sum paths for position k, at 

the gate level, can be computed by performing a Breadth First Search (BFS) algorithm 

originating from the particular gate that computes the sum bit Sk on the "inverted" graph 

G'(V', E'). 

The result of the BFS would contain all the paths that influence the output. The path(s) 

that has (have) the longest length is(are) assumed to be the most demanding and hence the 

critical path for that sum bit. And thus only the longest path(s) is(are) considered in the 

computation of error at the output of the adder. This analysis is performed only once and 

thus is computationally not very expensive. Thus dik would be the max of the sum(s) of 

the propagation delays of the the gates (vertices) in the longest path(s). 

Adder error based on an analysis of carry chain errors 

The procedure to develop the function for the error at the output of a CLA given a, b, the 

topology of the CLA, Ek and D is exactly similar to the procedure described for an RCA in 

Section 3.7.2. 

Adder error at the output of a CLA is 

where 

n+l 

Er(D, a, b, d) = L Ik2k. 

k=O 

(3.32) 

1 if dik > D and 3 i,j such thatCij(a, b) = 1 and i < k < j 

h(a, b, d, D) = -1 if dik > D and 3 i, j such that Cij(a, b) = 1 and i < k = j 

o otherwise. 
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3.16 Efficient Evaluation and Minimization of Average Error in an 

Approximate CLA 

Our approach to compute the average of the error at the output of an approximate CLA over 

all possible inputs and the technique that we follow to efficiently compute this average error 

is completely identical to that of an RCA. The constraints are also the same. 

Our approach using geometric programming to increasing the accuracy at the output of 

the adder by minimizing the function given in Eq. 3.32 is identical to our approach for an 

RCA. 

3.17 Simulation Framework for CLA Experimentation 

In this section we describe the simulation framework that we used for our experiments on a 

CLA through which we aim to establish the validity of the solutions generated by geometric 

program described in Section 3.16. 

The framework that we use for the experiments for a CLA is similar to the framework, 

described in Section 3.11, for an RCA. 

The only difference in the case of a CLA is the case of multiple sum paths. But in 

any case, once all the unique sum paths are computed after that at every iteration of the 

geometric program we just need to pick the longest path. 

3.18 Simulation Results for CLAs 

We first present the results for individual 16-bit and 32-bitcarry lookahead adders. 
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Table 3.7 : Summary of results of 16-bit and 32-bit approximate carry look ahead adders 

n-bit D (sec) Average Error Magnitude Energy Consumption (pJ) Energy savings 

BGPS UVoS 

16-bit 4E-1O 559 1229.8 77.74 2.55 

32-bit 8E-1O 18300.3 10964.7 218.8 2.96 

3.18.1 Simulation results of 16-bit and 32-bit approximate carry lookahead adders 

In this section, we compare the average energy consumption and the average error magnitude 

for 16-bit and 32-bit addition using approximate CLAs with globally optimized voltage 

allocation versus a uniform voltage allocation scheme. To demonstrate the generality of our 

methodology, we applied the approach that was applied to a 16-bit and 32-bit approximate 

RCAs to 16-bit and 32-bit CLA. 

The 16-bit CLA has 48 gates and 4100kahead blocks. The CLA contains gates other than 

the XOR gate and the MUX and hence we compute Ek(Vrnin) and Ek(Vrnax) were computed 

for the carry look ahead block through HSPICE simulations. With an Energy Budget of 

6.7E-13 J we note that up to 2.25X reduction in average error magnitude for the same 

average energy consumption of 77.74 pJ is realized through our method. A CLA would 

have an energy consumption of 175.99 pJ to have 100% accuracy at the same frequency and 

uniform voltage supply, indicating a savings in average energy consumption of 2.26X for 

our design, when compared to the conventional design. The results of the 16-bit approximate 

CLA with a clock cycle time of 4E-1O sec are shown in Fig. 3.20. Also the results of 32-bit 

approximate CLA with a clock cycle time of 8E-I0 sec are shown in Fig. 3.21. 

The best results among the data points that we simulated for 16-bit and 32-bit approxi­

mate CLAs are summarized in Table 3.7. 
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3.19 Optimizing General Circuits 

In the previous sections, we have modeled the propagation of errors in an approximate adder 

and based on that optimized the allocation of multiple supply voltages to various gates in 

the circuit. 

Now, we present a technique to model the propagation and effect of errors in a general 

circuit. Based on this, we extend the geometric programming approach to optimally identify 

supply voltages to various components (which could be gates or a collection of multiple 

gates) . 
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Figure 3.21 : ~verage e~o~ magnitude versus average energy consumption of uniform 
voltage allocatIon and optInuzed voltage allocation in a 32-bit carry lookahead adder 

3.19.1 Model of a General Circuit 

For arbitrary circuits, we will characterize the error based on propagation of errors in the 

presence of overc1ocking. The circuit is built of some lower level components, such as gates. 

The average transition delay of component .e will be denoted by Ei. (We assume that the 

average transition delay of a component is inversely proportional to its supply voltage). The 

circuit is given time D for each addition. Inputs are provided to the circuit at some time t 

and the result is read at time t + D . 

For a given circuit and a particular input (i) to it, define 

dz (E , i) = { sum of Ek Ikth gate is in the critical path of computation of output I } 

The output 0 is read at time t + D with D independent of the inputs. Due to overc1ocking, 

which we assume, the output actually read, 0', may be different from o. We now proceed to 
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characterize the error 0' - o. We define an indicator function as follows: 

I,(€.i.D)={: if dl(E, i) > D 

otherwise. 

Essentially, h -=I 0 if critical path delay of output I is more than D which means that the 

output present might not be the correct output. 

The upper bound on the estimated error in the output for this particular input (i) is 

(J 

Er(d, i, D) = L h(E, i, D)Yt (3.33) 
1=1 

where () is the total number of outputs of the given circuit. 

Here YI is the weight associated with the output. If the output is a binary number then 

YI = 21. If the error at the output of the circuit is measured by hamming distance, then 

YI = 1. 

There are a couple of assumptions that were made while formulating Eq. 3.33. Basically 

we assume that the error is worst-case in two possible ways. 

1. It is being assumed that if d > D there will be an error, because even if the critical 

path is higher than the computation time the output might be correct. 

2. The formulation of error in Eq. 3.33 considers that all bits that are different between 

the output and the correct answer will contribute positively to the error (which is the 

case in case of hamming distance) but might not be the case when the output is a 

binary number. 

In retrospect, both of the above conditions are taken into consideration in the formulation of 

the average error of an approximate adder. 
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Now we compute the average of the output error over all possible input cases. Let 'J 

denote the set that contains all possible inputs. Then 

Er = LEr(d, i, D) (3.34) 
i E J 

3.19.2 The Average Error Optimization Problem 

Hence the optimization problem that we need to solve is as follows. It has constraints which 

are similar to the ones explained in the Section 3.10.1. 

Minimize Er 

such that Ek(Vmin) :::: Ek:::: Ek(Vrnax ) 

t (Yl E12 Wl + Pl(Vl)D) :::: Energy Budget 
l=l l 

To solve the above optimization problem, we propose to use geometric programming [56] 

which is an extended version of linear programming. 

Hence we have to compute a posynomial approximation of Er. To do this, we approxi-

mate II as a continuous and differentiable function, 

1 + sgn(dl - D) 
11=------

2 

where sgn(x) is the signum function. Therefore, 

1 tanh(K(dl - D)) 1 
II ~ 2 + 2 = 1 + e-2K(dl-D)· 

We use the monomial approximation technique (Section 8.2 of [56]) for the above 

expression. This leads to 
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where a and c are some constants. 

Thus a continuous and differentiable form of Er(d, i, D) which is in the form of a 

posynomial is 

Er(d, i, D) = t ~ (dl)a YI 
1=1 C D 

Thus the problem has been reduced to minimizing a posynomial subject to posynomial 

inequality constraints, giving us a geometric program in standard form. We use a standard 

geometric programming toolbox [56, 57] to solve this program. In contrast to the case 

of an approximate adder, this program is a straightforward geometric program and hence 

using signomial programming, which is an iterative geometric programming solution, is not 

necessary. 

Thus the solution of the above program gives the optimal delays for the components 

under the physical limits that we impose. The respective magnitudes of the supply voltages 

can be inferred from these values because there is a very standard understood dependence 

between the supply voltage and the delay of standard logic gates. 

3.20 Impact on Circuit Design 

The novel methodology provides the circuit designer an efficient way to decide on the opti­

mal design parameters in approximate adders. As mentioned at the beginning of Chapter 3, 

there has been no definitive method for allocating supply voltages to approximate arithmetic 

circuits. This means that the designer has had to exhaustively explore across all possible 

voltage allocation schemes, which is not practical for other than modest size circuits. 

Our design automation solution, through geometric programming, very quickly gives a 

quantitative comparison of the relative importance of the components in an adder and assign 

supply voltages that can be selected by the designer. 
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Thus we enable the improvement of the output quality of low power approximate arith­

metic adders by intelligently allocating voltages and thus make an attempt to tackle the 

issues of reliability and process variations. 

3.21 Principal Thesis 

Our primary contribution is a tractable solution methodology to automatically assigning 

supply voltages, while obeying design constraints, to components in approximate adders, so 

that the average error of the adder is minimized. The work is applicable to any current adder 

design of any size. 

The primary thesis from this work is that brute-force assignment of multiple voltage 

levels in an adder might lead to an inefficient design. Hence an intelligent way of assigning 

voltage levels based on the relative importance of the gates is necessary. Also this approach 

shows that there exists an assignment that is theoretically the best but might not be very 

practical. So the theoretical solution has to be adjusted based on the specific constraints a 

designer might have. 
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To improve the accuracy of the output of the circuit for the same energy consumption, as 

opposed to uniform voltage scaling, a novel biased voltage scaling approach or BIVOS was 

proposed in [12], where more important data is computed more accurately and accuracy 

is less for less important data. For a single adder, this is done by having a higher supply 

voltage for the most significant bits and a lower supply voltage for the less significant bits. 

First, though energy savings were obtained in [11, 12,47] by biased investment at the 

level of an adder, there was no definitive methodology to optimally supply the voltage across 

the circuit. Second, there was no previous attempt to optimize a circuit that consisted of mul-

tiple components where each of these components could be an n-bit adder. In such circuits, 

analogous to the case of the computed bits in an adder [11, 12], the relative importance of 

these components has to be taken into account in order to optimize energy consumption. For 

example, it is the case that in some circuits, modeled in this chapter, the data produced by a 

particular adder is more important than other adders. 

4.1 Primary Contributions 

In this chapter, we address the latter problem of optimizing a circuit with mUltiple adders 

by showing a very efficient method to relatively invest energy across different adders in a 

circuit based on their importance. For supplying voltages for components inside an adder, 
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we use the previous BIVOS approach. Our method is general enough to model any adder 

design or combination of different adder designs, though we present our specific results for 

the special case of the ripple carry adder. Our primary contributions in this chapter are as 

follows: 

• We provide a strong mathematical foundation capable of modeling the propagation of 

errors in a circuit with multiple shifters and approximate adders. Because of the gen­

erality of our result, this is applicable to any type of inexact adders, probabilistic [11] 

or approximate [12]. 

• We present a very fast algorithm to quantitatively compute the relative importance of 

each adder in any graph as defined in the model. 

• We present a theorem that optimally distributes energy based on the relative impor­

tance of each adder, applicable to any directed acyclic graph structure. 

• We demonstrate this approach on two example circuits, a finite impulse response 

filter (FIR) and a Fast Fourier Transform (FFT), and through HSPICE simulations we 

show that dramatic savings in energy consumption can be achieved when using our 

approach even when compared to the best existing prior art, BIVOS. 

Keeping in mind the domain of DSP, we developed our approach to encompass popularly 

used circuits such as an FIR or an FFT which can be implemented using only adders and 

constant-number multipliers. Also, the standard implementation of a constant-number 

multiplier uses a set of adders and implicit shifting. Hence, in this chapter we will consider 

circuits which consist only of adders and shifters. We only consider optimization of energy 

and errors in dataflow graphs and do not model memory and feedback elements. 

In Section 4.2, we present our target circuit model and state the associated optimization 

problem. In Section 4.3, we develop our solution to minimizing error for a given energy 



127 

budget. We summarize the method and describe the extension to other adders in Section 4.4. 

In Sections 4.5 and 4.6, we show the impact of the solution on two applications of interest, 

an FIR and an FFT. Section 4.7 discusses the impact our method has on a conventional circuit 

design framework. 

4.2 The Model 

In this section we define the model we use and specify the problem we address. The concept 

of trading error for energy savings in circuits is entirely at an early stage and thus, we felt a 

need for a foundational model and formal mathematical results, leaving detailed simulation 

of large systems for later. 

As discussed, we will consider circuits of adders only. Some of these circuits have been 

obtained by reducing constant-number multipliers to a set of adders and shifters. This is 

advantageous because in many circuits used in DSP, values are multiplied by constants and 

hence general multipliers are not needed. They can be replaced with a set of adders and 

shifters using a variety of methods such as those used in [59], thereby reducing total area, 

energy consumed, and delay. In the design of such a circuit, shifting of a number is done 

implicitly by routing the interconnects to shift the bits appropriately to another position. 

But in modeling we will explicitly consider and show shifters as they influence the size 

of the errors. The implicit implementation of the shifter S 1 shown in Fig. 4.1 which shifts a 

number to the left by 2 positions is shown in Fig. 4.2, where a rectangle represents a full 

adder and the number inside the rectangle denotes its position in the adder. 

4.2.1 The graph based model 

In the context of modeling, it is useful to consider shifters explicitly though they are not 

actually implemented. A circuit we target consists of the following components: inputs, 
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X, I, x, I, 

0, 

Figure 4.1 : Example of a graph-theoretical representation of a circuit 

Figure 4.2 : An example of an implicit shifter 

shifters and adders. Some adders or shifters are also labeled as outputs. It is convenient to 

model such a circuit using a directed acyclic graph (DAG). 

The DAG will have some NI + NA + Ns vertices: inputs ft, h, ... , and IN!; adders AI, 

A2, ... , and ANA; and shifters SI, S2, ... , and SNs ' Some of the adders or shifters are also 

labeled as outputs 0 1, O2 , ... , ONa . Thus each Ai or Sj is either not an output or a unique 

Ok, so Ok is just an alias for Ai or Sj. Each Ok may have any number of bits but this will 

typically be a power of two. We will write n for N/. For a simple example, see Fig. 4.1. 

A vertex Ii has in-degree 0, and an input Xi to the circuit is supplied at Ii. An input Xi 

may have any number of bits but will typically be a power of two. A vertex A j has in-degree 

2 and is an adder, adding the two numbers on its incoming arcs. A vertex Sj has in-degree 1 

and shifts the number on its incoming arc either left or right by the specified amount. We 
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will use the term s-shifter for a shifter vertex that shifts the input left with magnitude s 

(where s is a positive or negative integer). 

At each adder or shifter, a linear function of Xl, X2, ... ,Xn is computed. Thus the 

value of the output at Ok (corresponding to some adder or shifter) is a function Fk (x) = 

L:7=1 Wk,iXi for some Wk,l, Wk,2, ... , Wk,n, which can also be written as Wk • xT where 

Wk = (Wk,l, Wk,2, •.. ,Wk,n), x = (Xl, X2, ... , xn) and "." is the scalar product. x is drawn 

from a set X of allowable inputs. For example, each Xi could be an integer in the range 

[0,21°). 

For Fig. 4.1, we see that F1 (x) = (5,5,1,1) . xT • 

4.2.2 The energy optimization problem for our target dataflow graph of adders 

Let E be the total energy budget to be invested in the circuit, and let E Add be the energy 

required to run an adder correctly for all possible inputs. We assume that E < NAEAdd, 

and therefore we cannot assure that all adders run correctly for all inputs, and for different 

inputs x, different error values may appear. Let Ej be the energy actually supplied to adder 

Aj . Given some choice of E1, E2 , ..• , and ENA , such that L:~1 Ej = E, and some input 

x, the resulting expected error for Fk(X) is denoted by Er( Ok. x). We use the term expected 

error here to consider the effect of temperature and process variations in the parameters 

of the circuit, but we will refer to it just as error in the later sections. We rely on [12] for 

calculation of expected error of a single adder. Our task in this chapter is to distribute E 

among the adders so as to 

No 

minimize avg LEr(Ok.x). 
xEX k=l 

(4.1) 

We refer to this problem as the single resource dataflow energy-error optimization 

problem, and our methodology to solve this problem is presented in Section 4.3. 
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4.3 The Single Resource Dataflow Energy-Error Optimization Method 

To model the interactions and effect of multiple adders producing errors in the outputs of 

a circuit, we first consider just a single adder producing error in the circuit to define some 

metrics that we use later in the optimization. 

4.3.1 A single approximate adder 

We consider the implications of a single adder that produces an error (for at least some 

inputs). We will refer to such an adder as an approximate adder. We will see that the same 

errors in different adders may have different implications for errors at an output. Consider 

some input x and assume that only one adder, AEr, produces an "approximate" result since 

the inputs were supplied. This error propagates, and can cause an error of at an output Ok 

for k E {I, 2, ... ,No}. We look at the value of the outputs after time to units since the 

inputs were supplied. Let t(AEr, k) be the time it takes for the output of AEr to propagate to 

Ok. Let Er(AEr' x, t) and Er( Ok, x, t) be the errors at the output of AEr and output Ok after 

t units of time since the inputs were supplied with Er(AEr' x, t) =/: O. Then we define the 

significance of AEr, cr(AEr' x, to, t(AEr, k» as follows: 

L:~l Er( Ok, x, to) 
cr(AEr' x, to, t(AEr, k» = (A (A k» Er Er, x, to - t Er, 

(4.2) 

Let us refer to Fig. 4.1 again. Let the adders AI, A2 , A3 and A4 be 8-bit ripple carry 

adders (RCAs) and the inputs be Xl = 15, X2 = 1, X3 = 0, and X4 = o. Let the worst case 

delay of a full adder be 10 units of time, and therefore an 8-bit RCA has a critical path delay 

of 80 units. With this specific input, A 1 would take 50 units to compute the correct output 

in the worst case because the carry has to propagate across 5 full adders. For this output 

to propagate till 0 1, it would take about 70 units to propagate through the other adders 

as Fig. 4.1 describes a combinational circuit. But if we overclock the circuit such that we 
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sample 0 1 after 50 units, the answer would only be approximate. 

To compute the error at the output after 50 units of time, consider A 1. After 30 units, 

the output of adding 00001111 = 15 and 00000001 = 1, assuming exact worst-case delays, 

is 00000100 = 8. The output value of Al propagates to the output of A2 by 40 units and 

it has a value of 8 x 22 = 32 when it reaches the left input to A4 . Also the output value 

of Al propagates to the output of A3 by 40 units and has a value of 8 when it reaches on 

the other input of A4 • Thus, the value at the output of 0 1 would be 32 + 8 = 40 after 50 

units of time whereas the correct output is 16 X 22 + 16 = 80. As a result, there is an 

error of 40 and the significance of Al to 0 1 is equal to 40/8 = 5 (where 8 is the error of 

the approximate adder after 30 units). This example shows that though the first adder had 

enough time to compute the correct value (by the end of 50 units of time A 1 would have 

computed correctly), this value did not have enough time to propagate through the rest of 

the circuit and thus to impact the final output. 

Note that the exact magnitude of error is dependent on the time at which the outputs are 

sampled and the propagation time from the approximate adder to the particular output. But 

the quantity that we are interested is the significance of the approximate adder which is the 

amount by which the error at the approximate adder is amplified (or reduced) when it has 

propagated to the output. As is evident from the above example, this significance value is 

dependent only on the circuit topology and not the exact magnitude of errors. We strengthen 

this concept in Section 4.3.2 where we evaluate the significance of an adder based solely on 

the circuit topology independent of the individual errors. So we will omit the time parameter 

in the following discussions. 
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4.3.2 Computing the significance of an adder 

Consider some circuit C, some energy budget E, and some input x, such that there is exactly 

one approximate adder (all other adders compute correctly), and denote that adder by AEr . 

This adder may cause errors in various vertices, and for vertex v and input x, the error will 

be denoted by Er(v, x). Then, the significance of AEr to v under x is defined by 

Er(v, x) 
a(AEr> v, x) = (A ). 

Er Er, x 
(4.3) 

Of course, if there is no path from AEr to v, then a (AEr, v, x) = o. We will now prove some 

useful relations. First we note, that, 

(4.4) 

Let v i= AEr . No errors can propagate to a circuit's inputs, so we will consider only shifters 

and adders. Assume that v is an s-shifter with an immediate predecessor u. Then as a shifter 

does not introduce errors but may amplify (or reduce) them, Er(v, x) = 2$ Er(u, x), and 

therefore 

( Er(v, x) $ Er(u, x) $ 

a AEr , v,x) = (A ) = 2 ( ) = 2 a(AEr, u,x). 
Er Er, X Er AEr, X 

(4.5) 

and if a(AEr, u, x) does not depend on x, neither does a(AEr, v, x). 

Assume that v is an adder with immediate predecessors u and w. Adder v is not AEr 

and therefore does not introduce errors. Then, 

Er(v, x) Er(u, x) + Er(w, x) 
a(AEn v, x) = Er(AEr , x) - Er(AEr , x) 

Er(u, x) Er(w, x) 
= +----

Er(AEr , x) Er(AEr , x) 

= a(AEr' u, x) + a(AEr' w, x). (4.6) 

and if a(AEr, u, x) and a(AEr, w, x) do not depend on x, neither does a(AEr, v, x). 
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From Eqs. 4.4-4.6, by simple inductive argument, it follows also that the significance 

of a vertex is always greater or equal to 0 and it does not depend on the value of the input 

x that caused the error at AEr! It is purely a property of the circuit's stucture. Therefore 

we can write just a (AEr> v) for the significance of AEr to v no matter what x is (though 

sometimes it may be convenient to write it explicitly). 

Similarly, it is easy to see, that the a(AEr' x) does not depend on x, so we can just write 

By referring to Fig. 4.1, we can provide intuition for significance and its properties. 

Assume that for some energy budget El and input Xl, Al produced an error of 81, and 

adders A2, A3, and A4 processed their summands correctly. Then A2 produced an error of 

481, A3 of 81, and A4 of 581. So, e.g., a(A 1 , A4,Xt} = 58t!81 = 5. But similarly, if for 

E2 and input X2, Al produced an error of 82 , and adders A2, A3, and A4 processed their 

summands correctly, still a(A 1 , A4, X2) = 582 /82 = 5. 

We can also discuss the relative importance of the correctness of adders. If for some 

energy budget A3 produced an error of 8, and adders AI, A2, and A4 processed their sum­

mands correctly, a(A3, A4, x) = 8/8 = I, so for A4 correctness of Al is more important 

than that of A3 . 

For each v we define an amplification factor, AF(v), to help produce a simple algorithm 

for computing significances, as 

{
I, 

AF(v) = 
28 , 

if v is an input or an adder 
(4.7) 

if it is an s-shifter. 

We extend the definition to paths of vertices, by 

k 

AF(Vjl' Vjz, ... , Vjk) = n AF(VjJ. (4.8) 
i=1 

For vertices u and v, we will denote by P (u, v) the set of all the paths from u to v. 
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Figure 4.3 : The two paths from A1 to A4 (= ad. Error of 8 at A1, while propagating 
through the left path contributes an error of 48 to error at 0 1 and an error of 18 while 
propagating through the right path. Thus the total error at 0 1 is 58 and the significance of 
A1 = 58/8. 

We next give a very easily computable, explicit formula for computing a(AEr' v). 

Lemma 4.3.1. Assume that under some energy budget E and input x a circuit has exactly 

one approximate adder, AEr. Let v be any vertex. Then 

a(AEr,v) = L AF(p). 
peP(AEr,v) 

EXAMPLE. Before starting the formal proof, we look at an example. Let us consider the 

graph in Fig. 4.1 with AEr = A1 and v = 0 1, There are two paths from A1 to 010 the "left" 

path PL = (A1, S1, A2 , ad and the "right" path PR =(A1o A3 , 0 1) as shown in Fig. 4.3. 

Assume that an error of 8 is generated by A 1. Consider PR first. On this path 8 is passed 

through A3 and the incoming error at 0 1 is 8. Consider PL now. On this path 8 is converted 

to 228 by S10 the error of 228 is passed through A2 and the incoming error at 0 1 is 228. The 

total error at 0 1 is (22 + 1)8 = 58. 

By the definition in Eq. 4.8, we have AF(pd = 1.22.1.1 = 22 and AF(PR) = 1·1·1 = 1 

and therefore Lpep(Al,Ol) AF(p) = 4 + 1 = 5. 

But by Eq. 4.3 (recall that x can be omitted), a(A1' ad 5/ = 5. Therefore the 
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Lemma holds for this example. 

Proof To shorten the proof, we skip over simple "pathological" cases, such as the case of 

one vertex connected by two outgoing arcs to a single adder. 

As already noted, if there is no path from AEr to v, i.e., P(AEr' v) = 0 then u(AEr' v) = 
O. Therefore the claim holds in such cases. 

We prove the lemma by induction on N, the number of vertices in the circuit. 

The smallest circuit of interest has N = 3 vertices, two inputs feeding one adder. So 

this will be our base case. Here v = AEr and P (AEr' AEr) consist of only one path of length 

1, namely (AEr)' From Eq. 4.4, u(AEr' AEr) = 1 and as by Eq. 4.7, AF(AEr) = 1, the claim 

holds. 

Let now N > 3 and assume that the lemma holds for all circuits with at most N - 1 

vertices. Consider any circuit C of N vertices and remove from it any vertex v of out-degree 

o together the arcs incoming to it, resulting in a new circuit D. We will also use C and D as 

subscripts to indicate to which of the two circuits we are referring. 

Note that, in general, if AEr has out-degree 0, then again any v of interest is just AEr itself, 

and similarly to the base case, u(AEr' AEr) = AF(AEr) = 1 and the claim holds. Therefore, 

if the removed vertex was AEr, we already know that the claim holds for C, so consider the 

case where AEr was not the removed vertex, and therefore it is also in D. 

There are two cases for v. If v is an s-shifter, it has one predecessor, say u. There is a one­

to-one correspondence between paths in PD(AEr , u) and those in Pc (AEr' v). Every path p in 

the latter set is obtained by extending exactly one path q in the former set by v. By Eqs. 4.7-

4.8, AF(p) = 2s AF(q) and therefore Lpepc(AEr,v) AF(p) = 2S LqePD(AEr,u) AF(q). From 

Eq. 4.5, uc(AEr, v) = 2S UD(AEr , u), and the claim follows. 

If v is an adder, it has two predecessors, say u and w. Note that as a path cannot end both 

with u and w, PD(AEr , u)n PD(AEr , w) = 0. There is a one-to one correspondence between 
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paths in PD(AEr , u) U PD(AEr , w) and those in Pe(AEr, v). Every path p in the latter set is 

obtained by extending exactly one path q in the former set by v. By Eqs. 4.7-4.8, AF(p) = 

AF(q), and therefore LPEPc(AEr,v) AF(p) = LqEPD(AEr,u) AF(q) + LqEPD(AEr,w) AF(q). 

From Eq. 4.6, O"e(AEr , v) = O"D(AEr , u) + O"D(AEr , w), and the claim follows. 

By induction, for any vertex z in D the claim holds. Since v was of out-degree 0, 

no path from AEr to z in C can pass through v, v cannot "impact" any other vertex in 

C, and therefore, Ere (z, x) = ErD (z, x) As, of course Ere (AEr' x) = ErD (AEr' x), it 

follows that O"e(z) = O"D(Z). By induction O"D(AEr , z) = LpEPD(AEr,z) AF(p), and as 

Pe(AEr, z) = PD(AEr , z) the claim holds for all such vertices z. D 

Theorem 1. Assume that under some energy budget E and input x a circuit has exactly one 

approximate adder, AEr. Then, 

No 

O"(AEr) = L L AF(p). (4.9) 

Proof. Immediate from Eq. 4.2 and Lemma 4.3.1. D 

To explicitly demonstrate the application of Theorem 1 to compute the significance 

(relative importance) of each adder we use the graph in Fig. 4.1. The relative significance 

values from Eq. 4.9 for each output from each vertex is shown in Table 4.1. 

The above method to compute the significance of an adder, O"(AEr), by Eq. 4.9, is very 

fast. A simple method of computing AF(p) is to do a breadth-first search [63] from each 

vertex and count all paths from the vertex to the outputs. This would be a O(V + E)V) 

operation where V is the number of vertices and E is the number of arcs in the graph. 

Corollary 1. Assume that under some energy budget E and input x a circuit that contains 

no shifters (explicit or implicit) has exactly one approximate adder, AEr. Then, using I I to 
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Table 4.1 : Significance values of the adders in the graph shown in Fig. 4.1 

AEr a(AEr,Od a(AEr' O2) a (AEr) 

Ai 5 1 6 

A2 1 0 1 

A3 1 1 2 

A4 1 0 1 

denote cardinality, 
No 

a(AEr) = L IP(AEr , Ok)l· 
k=i 

Proof. If there are no shifters, AF(p) = 1 for any path p. D 

4.3.3 Multiple approximate adders 

Until now, we have considered only the case when one adder produces an error while adding 

its summands. In general, a set of adders can produce errors. The cumulative effect of this 

set of adders produces an error in an output whose absolute value is between 0 and the sum 

of the absolute values ofthe individual errors, as they may partially (or fully) cancel each 

other out. 

Modeling this phenomenon of errors canceling out is complex and also partially depends 

on the particular input. Hence to simplify the analysis we will target to minimize the the 

worst possible case, in which the errors do not cancel each other to any extent. Thus, we 

want to minimize the sum of the absolute values of the errors. 
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4.3.4 Case study: Ripple carry adder 

The discussion in Sections 4.2 and 4.3 holds for any type of adder. To proceed, however we 

will need to choose specific designs of adders, whose error production under various energy 

investment has been studied. This leads to considering the Ripple Carry Adder (RCA) for 

which such results exist. 

It has been shown in [12], through simulations over a large number of input cases, that 

the average expected error Er(Ai) for a RCA Ai with BIVOS, is roughly proportional to its 

delay D, i.e. Er(Ai) <X D. In a conventional CMOS transistor, the delay of a transistor DT 

is inversely proportional to its supply voltage VDD, i.e. DT <X VDD- l . 

The dynamic energy consumed during a transition of a transistor switch ET is propor­

tional to the square of its supply voltage, i.e., ET ex VDD2. Also, the delay of adder Ai, 

D, is proportional to the delay of a transistor DT , and the dynamic energy Ei consumed 

by adder Ai is proportional to the energy of a transistor ET. Thus Ei ex ET ex VDD2 ex 

DT -2 ex D-2 ex Er(Ai )-2 and for some constant r, we can write 

(4.10) 

4.3.5 Optimizing energy distribution 

We will make use of a solution to an optimization problem which we present next. 

Lemma 4.3.2. Let integer n > 0 and c, al, a2, ... , an > O. Then, the function L7=1 ajxj 

subject to constraints Xj > 0 for j = 1, ... ,n and L7=1 Xj2 = c is minimized at 

( n 2/3) 1/2 
Lj=l aj 

Xi = -'----/-:-'-- for i = 1, ... , n 
Cl/2 a~ 3 

I 

Proof By using Lagrange multipliers. D 
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It will actually be more useful to write the solution as 

",n 2/3 
2 L..-j=l aj 

Xi = 2/3 for i = 1, ... , n 
cai 

(4.11) 

We now have 

Theorem 2. Given a circuit with significance aj computed for each adder A j, the optimal 

distribution of a given energy budget E to minimize the average sum of worst case errors is 

given by 

(4.12) 

where Ei is the energy devoted to Ai. 

Proof. Let Er(A j, x) be the error produced at approximate adder Ai in the given circuit 

for input x. From Eq. 4.2 and Theorem 1 the sum of errors at the outputs due to Ai is 

a(Aj)Er(Ai , x). Thus, the worst case error that we want to minimize is the average over all 

x's of L:f':l la(Aj)Er(Aj, x)l. Since we have a fixed energy budget E, L:f':l Er-2 (A j, x) 

is constant, see Eq. 4.10. Applying Eq. 4.11, we obtain Eq. 4.12. o 

It is to be note<i that we only determine through Theorem 2 the energy of each adder 

in the graph. The method through which the supply voltages for the components inside a 

single adder are allocated is similar to the method in [12]. We pick a set of voltages and 

then using simulations of the single adder for different binning schemes (binning [12] is a 

technique in which each component is assigned a particular voltage bin) we pick the best. 

4.4 Summary of the Method and Extension to Other Adders 

Our method of minimizing energy usage across multiple adders in a circuit depends on the 

following two key elements. 
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1. Quantitative characterization of the relative significance of each adder in the circuit 

We model the circuit as a DAG consisting of adders and shifters, and compute the 

significance of each adder based on the topology of the circuit as formalized in Eq. 4.9 

2. The computation of the best distribution of the given energy budget, based on the 

relative importance of all the adders, which have been computed above. To do this, 

we rely on the relationship between the voltage supplied to an adder (and thus the 

energy devoted to it) and the average error produced by the adder 

This computation is done for the case of ripple carry adder, for which the relationship 

between the energy and the error is known, and we obtain the energy to be devoted to 

each adder in Eq. 4.12 

Our method to implement the first element is adder-independent. It does not matter 

which adder circuit is used, as the relative importance of an adder depends only on the graph 

topology. The second element, though, depends on the way error produced at the output 

of an adder is affected with respect to the energy invested on that adder, which we did for 

ripple carry adders. 

For adders with different designs (such as a carry lookahead adder or a carry skip adder) 

the error-energy relationship might be different. In this case, the result that will be different 

is of Lemma 4.3.2 (which will influence Theorem 2) where the constraint varies based 

on the error-energy relationship. For example, if for some adder design the energy of the 

adder was proportional to the cube of the inverse of the error (instead of the inverse of a 

square in the case of dynamic energy usage of a ripple carry adder), then the constraint 

would be L:7=1 :~ - c. In a general case, let us consider that the error-energy relationship 
I 

is EA '" f(Er(A j», then the constraint would be L:7=1 f(xj) - c. 
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x[n)-----r+l 

yIn) 

Figure 4.4 : A finite impulse response filter 

4.5 Optimizing Designs of DSP Primitives 

We apply the single resource dataflow energy-error optimization method of Theorem 2 to 

two specific cases, afinite impulse response filter and the Fast Fourier Transform which are 

Ubiquitous in embedded signal processing. These signal processing elements are used in a 

variety of applications such as hearing aids or media players where the output of the devices 

is evaluated by human perception (which can tolerate errors). 

4.5.1 Converting constant-number multipliers to adders and shifters 

As discussed, every constant-number multiplier can be converted to a set of adders and 

shifters. For example, x x 5 = (x « 2) + x and x x 15 = (x « 4) - x. Also, if we 

want both x x 21 and x x 13, then we can compute x x 5 = (x « 2) + x just once and 

use it to compute both x x 21 = (x « 4) + x x 5 and x x 13 = (x « 3) + x x 5. 

To summarize, we try to use canonical signed digit (CSD) coding and sub-expression 

sharing techniques [59] to transform constant-number multiplications to additions and 

shifting most efficiently. 
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YIn) 

Figure 4.5 : Graph theoretical representation of a finite impulse response filter 

4.5.2 Approximate finite impulse response filter 

We will consider digital filters with a finite-duration impulse response (FIR). The output is 

N-l 

y[n] = L h[m] x[n - m]. 
m=O 

where nand m are integers representing samples in time, x is the input sequence, y the 

output sequence and h is the impulse response of length N. 

Any FIR can be represented in the graph-theoretic framework of Section 4.2. Consider 

the FIR shown in Fig. 4.4 which computes y[n] = x[n] - 5x[n - 1] + 20x[n - 2]. Fig. 4.5 

shows it in the form of a DAG where we use a 16-bit 2's complement RCA for each adder. 

According to Theorem 2, the optimal distribution of energy across adders depends on 

the significance of each adder. As there are no shifters and there is exactly one path from 

each adder to the output, a(Aj) = 1 for 1 .:::: i .:::: NA • Thus, every adder in this circuit is 

"equally important" and distribution of energy investment equally across all adders produces 

the minimum error magnitude in the output. This holds for all FIRS. 
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8 

Figure 4.6 : Flow graph of a complete decimation-in-time decomposition of a 8-point FFf 

9 

17 

Figure 4.7 : Graph-theoretic representation of an 8-point FFf 

4.5.3 Approximate fast Fourier transform 

For a finite duration sequence of complex numbers, the Discrete Fourier Transform (DFT) is 

used to transform a sequence from its original representation (often in the time domain) to 
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the frequency domain representation. It is 

ifO::::k::::N-1 

otherwise. 

where x is the input sequence, X is the DFT and WN = e -~i • 

We use the Fast Fourier Transform (FFT) to compute the DFT. A flow graph of a com-

plete decimation-in-time decomposition of an 8-point FFT computation is shown in Fig. 4.6, 

with its graph-theoretic description shown in Fig. 4.7. 

To distribute the energy budget, we use Eq. 4.12, after computing O'j'S for all adders 

Aj's. For this, we use Eq. 4.9, where each Ai in turn plays the role of AEr• From Fig. 4.7, 

N A = 24. We do not show all the significance values for all the adders, but for example, 

0'1 = 2 and 0'6 = 3. Given all O'j'S, we apply Eq. 4.12. 

This method is easily applicable to higher order FFTS and we applied it to a 16-point 

FFT, whose diagram we do not show, as it is quite large. We use the 16-point FFT design 

presented in [60], which is a hardware-efficient architecture based on the phase-amplitude 

splitting technique which converts a DFf to cyclic convolutions and additions. In the design, 

all the multipliers are converted into a set of shifters and adders. 

We convert the original systolic implementation into a parallel implementation by repli-

cating the circuit after removing memory elements and feedback loops. This results in a 

circuit consisting of 207 adders, which processes all 16 data words simultaneously. We used 

16-bit 2's complement adders to design both the 8-point and 16-point FFTs. We show the 

results of applying the energy optimization technique on these circuits in the next section. 
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4.6 Simulation Framework and Results 

In this section we present the framework for validation of this global optimization scheme. 

We will also present the simulation results which show the savings in energy consumption 

that can be obtained by applying this methodology. 

4.6.1 Simulation framework 

To validate our claims we use Synopsys HSPICE Version B-2008.09 and explore across 

different supply voltage configurations. The number of configurations is too large for all of 

them to be explored in HSPICE. SO we developed a very fast, c++ based simulator frame­

work for approximate circuits, which we use as first step in narrowing down the number of 

candidate configurations of interest. We feed this simulator the energy consumption and 

transition delay values of basic gates simulated in HSPICE. The simulator uses this data to 

simulate the behavior of approximate circuits. From this simulation we obtain the average 

error at the output and the average dynamic energy consumption for the circuit over a large 

set of input data. 

Once candidate configurations are obtained by this simulator, we simulate the entire 

circuit with these configurations in HSPICE. All the simulations are performed in Synopsys 

90 nm technology. The technology chosen has approximately 0.1 % static leakage, so we 

have not yet needed to model static energy consumption. The range of voltages in which the 

circuit components are operated is 0.7 V to 1.2 V. To limit the overhead of supplying and 

transmitting these voltages, we picked only four specific ones for all our circuits, namely 

0.7 V, 0.9 V, 1.0 V, and 1.2 V. We looked at all possible combinations of supply voltages 

considering 0.7 V, 0.8 V, 0.9 V, 1.0 V, 1.1 V and 1.2 V, but we picked these four specific 

voltages to present the results as they seemed to perform the best given that we wanted at 

most four distinct voltages (and hence four voltage domains/islands). 
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Figure 4.8 : Energy consumption vs. Average error for a 8-point FFf with local and global 
optimization 

Although our custom simulator is only used to propose candidates to HSPICE for the 

8-point FFT, we validated the simulator with respect to the energy consumption and average 

error to be within a margin of 12% by complete HSPICE simulations of an 8-point FFT for 

the four supply voltage levels. 

These circuits are built using 16-bit 2's complement ripple carry adders. We picked the 

16-bit ripple carry adder for the sake of simplicity of implementation and ease of under-

standing. The circuit that has been simulated is a combinational circuit with no pipelining 

and sampling only at the final outputs. Similar to the technique used in [12], we overc1ock 

the circuits so that the frequency of operation is higher than that permitted by the critical 

path of the circuit. 

4.6.2 Results and comparisons 

We start by briefly summarizing previous results, which are directly relevant to our work. 

Let Econ denote the the energy consumption of a conventional implementation of a circuit, 

in which the circuit is being operated at a frequency that is equal to what is permitted by the 
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Figure 4.9: Energy consumption vs. Average error for a 16-point FFf with local and global 
optimization 

critical path delay, and hence has no approximate answers. 

Now we consider circuits which are overclocked, that is, they are operated at frequencies 

higher than that permitted by conventional implementation (limited by critical path delay). 

Therefore, these circuits are approximate in their computation, as not enough energy (energy 

less than Eeon) is supplied to them, so that they cannot run correctly at the higher frequencies. 

Considering a circuit of an adder, the question studied in [12] was how to choose voltages 

so as to minimize the energy for some acceptable level of the average error. In the first 

method, all the full adders within the adder were given the same voltage level (uniformly 

voltage scaled), with the resulting required energy denoted by Euvos. In the second method, 

various full adders were given one of four voltage levels (biased voltage scaled), with result-

ing required energy denoted by EBIVOS' It was shown that for the same level of overclocking 

and average error, EBIVOS < Euvos. This shows that in an adder, some bit positions are more 

important than others. But this previous work only addresses local optimization. Using this 

approach, design of circuits with more than one n-bit adder implies using BIVOS in each 

adder without considering the relative significance of the various adders. We will refer to 
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this as locally optimized. 

We propose to optimize the energy consumption of an approximate circuit with the 

optimization done using the single resource dataflow energy-error optimization method 

presented in this chapter, with the resulting energy denoted by Eglobal. Thus the relative 

significance of an entire adder with other adders in the circuit are taken into account to 

invest energy in an efficient way by finding the solution to Eqn. 4.1. But for supply voltages 

internal to a single adder we use the BIVOS scheme presented in [12]. Thus, supply voltages 

are assigned to minimize energy considering both entire n-bit adders and components inside 

a single adder. We will refer to this as globally optimized. The results we present show that 

globally optimized yields better energy savings for the same expected error than locally 

optimized. 

We do not present results for the FIR because by using the global optimization scheme 

we conclude that all the adders are equally important and thus energy has to be distributed 

uniformly across all the adders. Hence the conventional locally optimized BIVOS scheme is 

the best we can do. 

For the case of an 8-point FFf (shown in Fig. 4.7), we assume a given energy budget for 

the entire circuit and also find the critical path delay. For each energy budget that we pick, 

we obtain a point that has been used to interpolate the curve in Fig. 4.7. The 8-point FFT has 

a critical path delay of ~ 10 ns when operated at 1.2 V but it is overclocked to a frequency 

of 0.2 GHz (essentially the inputs and outputs are provided with an interval of 5 ns) which is 

faster than permitted by a conventional design methodology. 

Applying Theorem 2 (Eq. 4.12), we find an energy budget per adder from the total 

energy budget of the circuit. Based on this individual energy budget, we apply the previously 

published BIVOS scheme for each of the 24 adders using the four supply voltages (0.7 V, 

0.9 V, 1.0 V, and 1.2 V) assumed. The result for the overall 8-point FFf in HSPICE with 
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(a) (b) (c) 

Figure 4.10 : Reconstructed images obtained after processing through a (a) conventional 
correct 8-point FFT (b) locally optimized approximate 8-point FFT (c) globally optimized 
approximate 8-point FFT 

uniformly distributed random data as input is shown in Fig. 4.8. For the same energy 

investment of 77 pJ, the globally optimized 8-point FFT has 1.95X lower error than the 

"locally" optimized FFT operating at the same speed. Also, global optimization gives the 

designer at the least 1.44X lower energy investment for the same amount of quality trade off 

in the FFT. Overall, the globally optimized FFT has 2.8X lower energy-delay product (EDP) , 

when compared to a conventional FFT for the same error. 

A similar comparison using results from our custom simulator, which has been validated 

with HSPICE, is presented for a 16-point FFT in Fig. 4.9 to show that the analysis is scalable. 

In this case, we achieved 2.05X lower error for the same investment of 2700 pJ in both the 

globally optimized and only locally optimized FFT when they are overclocked to a frequency 

of 0.1 Ghz (the critical path delay of the 16-point FFT at 1.2 V is ~ 20 ns) . 

This phenomenon is also demonstrated in Fig. 4.1 0 which consists of reconstructed 

images after processing them through an approximate 8-point FFT and an inverse FFT. The 

three images in Fig. 4 .10 are the original image, the image processed through FFT with 

only local optimization, and the image processed through FFT with global optimization, 

respectively from left to right. Fig. 4.10(c) has an SNR which is 1.42X times higher than 

the Fig. 4.10(b) for a similar energy of 62 pJ and operating frequency of 0.125 GHz. Also 

Fig. 4.1 O(c) has 1.7X lower energy consumption when compared to Fig. 4.10(a). 
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4.7 Impact on Circuit Design 

The generality of our approach allows a circuit designer who is attempting to optimize the 

design of any circuit that can be represented as a graph of adders to automatically compute 

the optimal investment of energy. The design automation tool will invest energy such that 

the quality is computed as the "best". 

Moreover, the algorithm to compute the relative importance of the adders is extremely 

fast. So the approach scales very easily with the size and complexity of the circuit. 

4.8 Principal Thesis 

The primary thesis from this chapter is that local optimization of individual elements only 

can get so far in efficiency. To extract the full potential of any design methodology a global 

optimization is always necessary. Granted that global optimization with all variables is 

usually computationally prohibitive. That is one the reasons in designing efficient approxi­

mate circuits we split the optimization into two phases. The first phase is designing a good 

datapath element, actually a library of efficient datapath elements. The second phase is to 

use the elements in this library for a dataflow circuit. 
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Chapter 5 

Remarks and Future Directions 

In this thesis we have shown that current circuit design methodology would soon require 

drastic changes in terms of relaxing the requirement of absolute correctness. We have 

demonstrated one such opportunity for trading accuracy to lower energy consumption in 

arithmetic circuits and then extended to primitive digital signal processing circuits. We also 

presented a methodology through multiple voltages can be distributed in an approximate 

arithmetic adder such that the loss of accuracy is minimum keeping under a given energy 

budget. We then present an approach to efficiently design an approximate network of adders 

which essentially models most popular digital signal processing primitives such as filters. 

The research presented in this thesis can be extended in multiple areas. Some of our 

initial thoughts in those directions are as follows. 

• Library of Inexact circuits : The current practice in circuit design framework 

(especially data-path synthesis) is to have a library of arithmetic operators from 

which a circuit designer/tool can choose a particular design of an operator (such as 

adder/multiplier or DSP primitives) based on the requirements and constraints posed. 

The optimization problems that have been framed in this thesis can be solved for 

various levels of energy budgets which would result in different solutions of supply 

voltage allocations. This would result in a library of approximate designs. Build­

ing such a library of approximate arithmetic operators or DSP primitives would be 

enormously useful for any future design purposes. 
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• A minimal error energy-constrained resource-constrained concurrent schedul­

ing and binding of inexact datapath circuits: Currently the modeling and analysis 

of inexact datapath elements assumes a brute-force implementation of the entire algo­

rithm. But for large algorithms, especially in digital signal processing, a brute-force 

implementation of a dedicated resource for each operation in the entire algorithm is 

futile. Some sort of architecture synthesis is required in such scenarios. The optimiza­

tion framework described in this thesis for a datapath sequencing graph can provide a 

"priority" function dependent on the energy constraint. Then based on the resource 

constraints a concurrent scheduling and binding can be performed such that the error 

at the output of the datapath is minimal. This is assuming that there is a library of 

inexact arithmetic blocks with varying levels of energy-accuracy tradeoffs. This entire 

algorithm can be modeled as a combination of a conventional ILP formulation and 

the theoretical optimization presented in this thesis. This algorithm would be very 

useful in designing the datapath for very large circuits. The control block is assumed 

to be designed using correct logic so as to preserve the logical correctness of the entire 

algorithm. For example, a 1024-point FFT could be designed this way. 

• Dual Optimization Problem: The optimization framework that we have shown for a 

single arithmetic adder considers one approach of framing the problem. There is a dual 

problem, mentioned earlier in Chapter 3, which is reducing the energy consumption 

while keeping the average error under an upper bound. The same framework could be 

used to frame the dual problem. 

• Extending the datapath network analysis to other arithmetic primitives: The 

framework for optimization of a network of datapath elements currently assumes 

that all the elements compute linear functions (like adders). The motivation for such 
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an assumption is that many digital signal processing elements are constructed using 

a network of adders and shifters because the multiplications that are computed are 

constant-number multiplications. But there are many other applications which use nor­

mal multiplication and hence modeling the effect of multipliers in the dataflow graph 

is very important. And if possible optimizing the distribution of energy consumption 

across multipliers and adders together is very interesting. 

• Other energy-accuracy tradeoff methods: This thesis only presents one possible 

approach for implementing a tradeoff between energy consumption and accuracy. 

There is a definite possibility that there are many different ways of doing the same 

which could be more efficient also. Based on other requirement and constraints a 

circuit designer might have a different implementation could be more ideal. Analysis 

and modeling of other tradeoff implementations is very interesting. 
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Appendix A 

Effect of non-zero carry bits on error and energy models 

In this section we discuss the effect of non-zero carry bits on the error and energy models 

presented in this paper. 

Consider the indicator function given in Eq. 3.4 in Chapter 3. 

1 if dik > D and 3 i, j such that Cij = 1 and i < k < j 

h = -1 if dik > D and 3 i, j such that Cij = 1 and i < k = j (AI) 

o otherwise. 

Eq. Al is useful in modeling the error at the output of an adder because it denotes 

whether there is a possibility of error at the sum output of a given bit position provided the 

adder topology, worst-case propagation delays of the gates and the clock cycle time. 

As per Theorem 1, this is based on the fact that when Cij = 1, then unless dik ~ D 

Bit position 5 4 3 2 1 0 

Intermediate carry 
bits at TIme =0 

Input A 

Input B 
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j 0 

[0 

1
0 

jO 

jo 

o 0 1 0 0 

o 1 1 1 1 (15) 

o 1 0 0 1~) 

0 0 0 0 0 
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1 1 1 0 0 
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1 1 0 0 0 

s~) Error 

5(0) = 0 24 

5(') = 6 18 

5(2) = 28 -4 

5(3) = 16 8 

5(4) = 24 0 

Figure Al : An example of a 5-bit binary addition using an RCA when the intermediate 
carry bits are assumed to non-zero at the beginning of the addition. 
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the sum output at bit position k is not computed correctly. If observed carefully, this is 

assuming that a carry cannot begin in the middle of a carry chain which could happen if 

the intermediate carry bits were not all zero. For example, if an intermediate carry bit at a 

particular bit position is 1 before the addition begins then a "rogue" carry chain could be 

generated. This is illustrated in Example 13. 

Example 13. Consider the 5-bit addition of the two numbers 01001 and 01111. This is a 

duplication of Example 5 but instead of assuming that all the intermediate carry bits are 0, 

we will assume the intermediate carry bits as shown in Fig. A.1. As we can see from the 

figure, due to the fact that the intermediate carry at bit position 2 is 1 before the addition 

started there is a "rogue" carry chain that begins from bit position 2 which, in this case, 

produces the correct sum output at bit position 3 earlier (shown in Example 5) than it would 

have been computed without the rogue carry chain. 0 

To model the effect of "rogue" carry chains using the procedure of indicator functions is 

very difficult. Since now we have to take into account the probability that an intermediate 

carry bit is 1 and a rogue carry chain is generated. For example, consider that Cij = 1, then 

to evaluate whether there is a possibility of error at bit position k, where i < k ~ j, then 

we have to take into account all the cases where a rogue carry chain could have begun from 

the between bit position i and bit position k. 

We also need to model the effect of multiple rogue carry chains. Our optimization of 

evaluating the average error at the output of the adder by computing an average over all 

possible carry chains is valid because of the fact that carry chains do not overlap (as shown 

in Observation 1. But as explained above, "rogue" carry chains can overlap and hence our 

error model would not hold. 

Similarly our energy model is based on a similar indicator function which again would 

not be valid in the presence of these "rogue" carry chains. 
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Thus a major modification of error and energy modeling would be needed to take the 

effect of non-zero intermediate carry bits into account. Modeling this effect would probably 

result in a closer estimate to the reality but will significantly increase the complexity of the 

algorithm. 
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