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ABSTRACT 

1 

Nanoparticles (NPs) are often synthesized in organic solvents due to advantages of 

superior size and shape control obtainable in a non-polar environment. However, many 

applications featuring NPs require them to be in aqueous media. To transfer NPs from oil 

to water, surfactants with amphiphilic (hydrophobic and hydrophilic) groups have been 

widely used. A popular phase-transfer approach involves formation of oil-in-water 

emulsions upon which the oil storing the NPs is boiled off. In the process, surfactants 

form bilayers with hydrophobic groups on the NPs rendering them water-dispersible. 

This transfer route however is limited in that NPs aggregate to form clusters which results 

in poor colloidal stability and for the specific case of quantum dots (QDs), adversely 

impacts optical properties. It has ever since remained a challenge to devise approaches 

that transfer NPs from oil to water as single particles without compromising NP stability 

and properties. 

We have discovered that by simple addition of salt to water during the step of 

emulsion formation, NP transfer efficiency can be greatly enhanced in "salty-micelles" of 

surfactants. The strength of this approach lies in its simplicity and generic nature in that 

the transfer scheme is valid for different NP, surfactant and salt types. Using a model 
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system with cadmium selenide (CdSe) QDs as NPs, Aerosol-OT (AOT) as the surfactant 

and NaCl as the salt in water, we found >90% of CdSe QDs transferred in salty-micelles 

of AOT which was significantly higher than the 45-55% QDs that transferred in 

deionized-water (DI-water) micelles of AOT. In the salty-micelle environment, QDs were 

found to exist predominantly as single NPs with narrow size distribution, as established 

by light scattering, analytical ultracentrifugation and electron microscopy. The effects of 

salt were in lowering aqueous solubility of AOT through "salting-out" action and in 

screening repulsions between like-charged head groups of AOT molecules. 

Electrophoresis, thermogravimetric analysis and photoluminescence measurements using 

a solvatochromic dye established higher surfactant coverage with greater lateral 

compaction for QDs in salty-micelles over the DI-micelle counterpart. Single NP 

characteristics along with a hydrophobic environment in laterally compact salty-micelles 

resulted in better retention of optical properties of QDs. 

Observations of a secondary effect by salt in inducing spontaneous emulsification 

of a hydrocarbon (octane)/AOT/brine system were systematically investigated by 

tracking time-variant octane droplet size and charge. Salinity levels that determine the 

spontaneous curvature and phase behavior of AOT were seen to influence the initial 

nucleation of octane droplets and their subsequent growth. The smallest octane drops 

(sub 50 nm) were nucleated at the optimum cross-over salinity and emergence of the 

liquid crystalline phase of AOT resulted in slowest growth rates. These factors 

contributed towards higher transfer efficiency ofNPs in salty-micelles. 

Two applications from formulating aqueous NP suspensions by the new phase­

transfer approach are described. In the first, QD and carbon-dot (C-Dot) "nanoreporters" 
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formed in microfluidic channels from PAR-citrate interactions. 
(1) PAR-citrate aggregates (formation conditions: R = 10, PAR 
= 1 mg/mL, flow rate= 25 J.!Lih): (a) bright field and (b) 
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Figure 6.16: Negative control experiment to ascertain the requirement of 
citrate in forming droplets. Schematics (a, b) describe 
experiments that establish requirement of citrate to form droplets 
(Refer Figs. 6.12 and 6.14). Image (c) reveals that no new 
droplet formed when the citrate stream containing neutral 
dextran dye was replaced with an aqueous solution of neutral 
dextran dye. Images (d) and (e) are corresponding images under 
Rhodamine filter and in DIC mode respectively. (All scale bars: 
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Figure 6.19: Gel profiles that emerge from interactions of PAH with citric 
acid. The pH of PAH was 4.38 and the pH of citric acid was 
varied to span its 3 pKa values. R ratios of reactants were fixed at 
50 and flow rate was maintained at 25 mL/hr. Bright Field (a) 
and Fluorescence images (b) when pH of citric acid stream was 
8.38 (where it is predominantly in the trivalent (Cie-) state). 
Bright field (c) and Fluorescence (d) images when pH of citric 
acid stream was 6.39 (corresponds to pKa value of citric acid 
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Chapter 1 
Background and Research Motivation 

1.1 Nanotechnology: Arrival of a New Research Theme 

The field of nanotechnology focuses on investigations and applications of size-dependent 

properties demonstrated by nanomaterials at length scales of 100 nm and below (1 nm = 

10"9 m). 14 It was arguably Feynman's seminal lecture in 1959, "There's plenty of room at 

the bottom" that laid the foundation to concepts such as miniaturization and molecular 

machines. 1 This galvanized a movement that resulted in rapid scientific advances and the 

discovery of size-dependent optical, 5-8 magnetic,9"12 electrical, 13"15 thermal16 and 

catalytic13• 17• 18 properties of nanoscale materials. Importantly, properties demonstrated 

by nanoparticles (NPs) at length scales of 100 nm and below were found to differ 

significantly from their bulk counterparts. 

Understanding nanoscale properties and utilizing them for useful and commercial 

applications has made nanotechnology the most prominent research theme of the past 

three decades across global academia and industry. This is reflected in the systematic 

increase of global funding towards the nanotechnology research initiative (Fig. 1.1 ). 19 In 

addition, the number of nanotechnology-based patents issued by various patent and 

trademark offices worldwide (United States PTO, Europe PO and Japan PO) has seen a 

significant increase indicating the rise in nanotechnology-related research (Fig. 1.2). This 

has been most dramatic in the recently concluded decade of 2000-2009, where 

nanotechnology-based patents that were granted increased from practically non-existent 

numbers in 1970-2000 to around two thousand, marking a 20-fold rise (Fig. 1.3)?0 It is 

therefore apparent that nanotechnology will be a key factor for every academic and 

corporate institution's survival and growth strategy in the decades to follow. 
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Figure 1.1: Current and forecasted global funding for nanotechnology research projects 
(Figure adapted from www.Cientifica.com). 
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Figure 1.3: Number of patents issued for nanotechnology-based inventions vs. 
microtechnology-based inventions (Figure adapted from http://smlperspectives.com). 

In terms of the impacts nanotechnology has made, its presence today is ubiquitous and 

has revolutionized practically all areas of research. Alongside Feynman's vision for 

miniaturization and molecular machines, nanotechnology holds the key to directly 

address atleast four (energy, environment, terrorism/war and disease) of the ten world 

problems faced by humanity as identified by Rice chemist and Nobel-laureate Richard 

Smalley.2 1 Of these problems, the greatest problem that is currently facing humanity is 

the need for reliable, stable, and sustainable energy. In the following section, a brief 

overview is provided of recent impacts of nanotechnology in the area of energy. 

1.2 Critical Impact Area of Nanotechnology: Energy 

In the 2004 talk titled "Future Global Energy Prosperity: The Terawatt Challenge," 

Smalley called for the identification of reliable, stable, sustainable, and inexpensive 

sources of energy to solve the top problem that humanity is faced with? 1 There are 

several ways that nanotechnology could be used to solve the energy problem; namely by 

producing, storing, and/or distributing energy. For instance, the use of new nanomaterials 
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such as carbon nanotube (CNT) wires was advocated to improve the efficiency of energy 

transmission.21"23 Losses on account of resistive heating commonly associated with 

existing copper-based transmission cables could be overcome by this new technology, 

resulting in significant energy savings and lowering of production costs. These findings 

have made parallel impacts in the microelectronics industry where CNT -based 

interconnects are viewed as serious contenders to replace copper in order to sustain 

industry demands for higher device speed and greater miniaturization while also 

minimizing heat and sound production.23, 24 

With respect to energy production and storage, nanomaterials such as 

photovoltaics15 could make solar cells a reality and address the renewable energy 

challenge. Furthermore, nanotechnology-based approaches such as pore-silicon 

technology19 and lithium-intercalation technolog;5-28 are high-potential candidates for 

the next generation of lithium-ion batteries19' 23 and will significantly increase battery life 

and capacity. 

Nanotechnology also has important parts to play in traditional areas of energy. 

The nanotechnology initiative of the Advanced Energy Consortium (AEC) champions the 

design of nanoreporters, nanomaterials with signaling, sensing, and detection capabilities 

for oil exploration and reservoir characterization. The grand objective here is to retrieve 

real-time and spatially-resolved physical (e.g., temperature, pressure, rock porosity, and 

permeability) and chemical (e.g., oil, water, gas and mineral type) information of an oil 

reservoir upon downhole injection of transportable nanoparticles (Fig. 1.4)_29-33 The AEC 

further plans to use nanotechnology to develop the next-generation chemical and C02-

foam based approaches for enhanced oil recovery (EOR). 
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&£ 

Figure 1.4: (Left) Schematic of flow of a nanoreporter with signaling molecules, through 
oil-saturated porous media. (Right) Flow of QDs as model nanoreporters through oil-free 
crushed calcite in a background of seawater. Excitation under a UV -Lamp shows 
illumination of the reservoir column from photoluminescence of QDs (Schematic at left 
is adapted from Berlin et al). 

1.3 The Need for Stable Aqueous Nanoparticle Suspensions 

In order to use NPs as nanoreporters they must be suspended in aqueous saline solutions 

(concentrations close to seawater) at high temperatures ( ~50-70 deg C) since these are 

common reservoir conditions. While NPs can be synthesized directly in aqueous media, 

limited control is obtainable in terms of size. Furthermore, a polydisperse NP population 

is often obtained from water-phase synthesis, leading to reduction in nanoscale 

properties. To overcome these limitations, NPs are thus typically synthesized in organic 

solvents, where a non-polar environment yields high degree of control in size and 

monodispersity.38
-
46 Once synthesized, it would be important to devise approaches to 

transfer NPs from oil phase to water.35
' 

36 In addition to oil-exploration and reservoir 

characterization, NPs in aqueous suspensions can be applied to numerous fields including 

medicine, catalysis, and environmental remediation. This leads me to describe the 
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motivation and layout of this thesis starting with an introduction of a new method of 

nanoparticle transfer which we devised. Such details and more are provided in the section 

below. 

1.4 Research Motivation and Layout of the Thesis 

The primary goal of this thesis was to formulate single-particle aqueous NP suspensions 

by developing a generic bilayer approach for NP phase-transfer using commercial 

surfactants.47 In a previous transfer approach pioneered by Brinker and coworkers,48 oil 

that contained NPs was dispersed in water to form oil-in-water emulsions upon which the 

emulsion was heated and oil was boiled off. In the process, surfactants formed bilayers 

with hydrophobic groups native to the NPs and rendered them water-dispersible.36• 49"52 

This route was limited by low transfer efficiencies and transfer of NPs as aggregated 

clusters. The latter feature along with the laterally "loose" nature of the micelle were seen 

to adversely impact the optical properties of CdSe QDs, as evidenced by low 

photoluminescence (PL) and low values of quantum yield (QY). It has since remained a 

challenge to devise approaches that transfer NPs to water efficiently and effectively, 

without compromising their stability and properties. 

We discovered a simple process modification in the addition of salt to water 

during the stage of emulsion formation by which phase-transfer of NPs could be strongly 

enhanced. NPs were found to transfer into salt-containing water as single NPs and within 

laterally compact micelles that better protected optical properties of QDs. The role of 

electrolyte in affecting NP phase-transfer is tlte subject of Chapter 2 of this thesis. With a 

model system constituting CdSe QDs as NPs, Aerosol-OT (AOT) as the surfactant and 
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NaCl as the salt, we found that over 90% QDs could be successfully transferred from 

hexane to salty-micelles of AOT, a number significantly higher than the 45-55% QDs 

that transferred to DI-water micelles of AOT. QDs in salty-micelles of AOT existed as 

single particles in contrast to clusters of 8-10 particles of QDs in DI micelles. The 

encapsulating salty-micelles rendered higher surfactant coverage and lateral compactness 

over the DI-micelle counterpart from "salting-out" of surfactants and screening of head-

group repulsions by the salt ions (Fig. 1.5). Thus, optical properties of QDs such as PL 

and QY were better retained in salty-micelles. 

CdSe QDs Phase Transferred 
with Aerosoi-OT 

Salty 

Water 

oe NaCI 

Aerosoi-OT forms laterally 
compact bilayer 

~0 
0~ -
o-\ so3 0 

~ 0 

Deionized 

Water 

Under UV-Light Aero sol-O T forms 
loose bilayer 

Figure 1.5: CdSe QDs transfer to salty-water within laterally compact bilayers of 
Aerosol-OT and to deionized water within loose bilayers of Aerosol-QT. 

This work resulted in a publication in the Journal of Physical Chemistry C,53 an assigned 

patent (W0/2010/019390),54 and the best applied paper in Chemical Engineering (2010-

2011) awarded by the American Institute of Chemical Engineers' - South Texas Society 

(AIChE-STS) regional chapter. The strength of this new approach lies in its simplicity 

and generic nature. The transfer scheme was found to be valid across different NP, 
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surfactant, and salt types. With the possible use of commercial grade surfactants, the 

process is now economically viable for many applications, including the design of 

nanoreporters and microfluidic formation of gels and nanoparticle assembled capsules 

which are the subjects of Chapters 4-6. 

In Chapter 3, we studied a secondary function of NaCl-salt in emulsifying a 

hydrocarbon by the mechanism of spontaneous emulsification. This effect was seen to 

impact NP transfer yield, where smaller-sized hydrocarbon droplets that were stable to 

coalescence allowed for higher transfer efficiencies ofQDs. Using AOT as the surfactant, 

emulsions of hexane-in-water and octane-in-water were found to phase-separate at 

shorter time scales when formed in DI water over salty-water (NaCl concentration= 3 

g/L). 

Nanoemulsions were seen to form spontaneously when Water-in-Oil (W/0) or 

Brine-in-Oil (B/0) microemulsions of a hydrocarbon (oil: octane), anionic surfactant 

(AOT) and water or NaCl-brine were diluted in varying levels of excess brine. The 

mechanism of emulsification was local supersaturation and nucleation of oil during the 

inversion process. For nanoemulsions formed in Winsor I, octane drops increased from 

initial levels of 150-250 nm to 500 nm - 1 f..lm over 24 hours. Growth followed an 

Ostwald ripening mechanism but reached the asymptotic stage described by the LSW 

theory only for dilution with salt-free water (Fig. 1.6). At the cross-over salinity (Winsor 

III), the nanoemulsions showed minimal growth with droplet size consistently remaining 

below 100 nm over 24 hours. Optical microscopy suggested that drops in both Winsor I 

and Winsor III regions were coated with a layer of the lamellar liquid crystal. The slower 
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growth at higher salinities was likely due to thicker layers for these conditions where 

surfactant films have low spontaneous curvature. 
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Figure 1.6: Upper inset shows a) birefringence from liquid crystal coating of AOT on 
octane droplets in Winsor 1 observed using cross-polarized microscopy, b) a visual image 
of octane in water nanoemulsions prepared at the cross-over salinity (Winsor III) under 
cross-polarizers, and c) multiple W /0/W emulsions observed using florescence 
microscopy. The middle inset (d) provides a visual comparison of the various 
octane/brine nanoemulsions formed in different Winsor domains after 28 days and the 
lower inset (e) shows the time-dependent droplet diameters of octane/brine 
nanoemulsions formed in different Winsor domains. 
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When nanoemulsions were prepared at salinity levels of the Winsor II domain, drops 

greater than 1 J.lm were consistently recorded for the first 5-7 hours after which size 

decreased to values below 1 J.lm that indicated droplet shrinkage. The large initial drops 

were from W/0/W multiple emulsions formed at a salinity that favored formation ofW/0 

emulsions but with a large excess of water added during dilution. The number of internal 

water drops in multiple emulsions was found to decrease over time, but not their size, 

indicating coalescence of internal drops with the continuous water phase as one 

mechanism of drop shrinkage. 

The influence of salinity m nucleating octane droplets and subsequent 

stabilization of octane by the lamellar phase of AOT were factors dominant in 

determining the initial droplet size of the nanoemulsion and droplet growth trends. The 

high charge on octane droplets helped assure stability to flocculation and coalescence, 

thereby allowing Ostwald ripening and mass transfer to control growth in the Winsor I 

and III regions, thus contributing to the stable nature of nanoemulsions. This work has 

been written as a manuscript and is due for submission in a topical journal of colloids. 55 

This work was also presented in the oral sessions of Emulsions and Foams during the 

AIChE annual conferences at Philadelphia (2008) and Salt Lake City (20 1 0). 

In Chapter 4 of this thesis, we show how our method to phase-transfer NPs from 

oil to water can be used to design QD nanoreporters for downhole applications in oil 

exploration and recovery. While transport of colloidal NPs through porous media has 

been well-studied at ambient temperature and in low-to-zero salinity waters of aquatic 

systems, the possible downhole use of NPs has been severely challenged by the high 

salinity and temperature of petroleum reservoirs. We found that oleic acid-coated, 3-nm 
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CdSe quantum dots (QDs) with an outer coating of nonionic ethoxylated alcohol 

surfactant Neodol 91-7 demonstrated excellent colloidal stability in high-salt-content 

water (Fig. 1.7). 

QDs in Chloroform 

Core Diameter: 3.2 nm 

Native Ligand: 
Oleic Acid (OA) 

V'"'-A 

Phase transfer 

in Neodol 

QDsin Water 
(Neodol: 1.5 g/L) 

• Hydrodynamic 
Diameter: 12 nm 

Bllayers: OA with Neodol 

~ 

Dilute with 

Stock Solutions of Salt 

QDs in 1M NaCI 
(Neodol: 0. 75 g/L) 

QDs in 0.55M Seawater 
(Neodol 0. 75 g/L) 

Figure 1.7: QD suspensions prepared in high salinity water (1M NaCl and 0.55M 
Seawater). 

The QDs showed little aggregation in 1M NaCl and synthetic seawater (ionic strength 

0.55M), according to dynamic light scattering analysis. They were also stable in the 

temperature range of 25-70°C, with the upper limit set by the cloud point temperature of 

the nonionic surfactant. As a model for non-aggregated salt-stable NPs, the QDs showed 

essentially unimpeded flow through packed columns of either crushed calcite or quartz 

sand, with >98% recovery under a wide range of salinities and temperatures. This work 

has been written as a manuscript to be submitted to a topical journal of nanotechnology. 

This work was also presented at the Advanced Energy Consortium's (AEC) bi-annual 

reviews in Austin (December 2010) and Boston (June 2011). 56 
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In Chapter 5, we describe approaches to extend colloidal stability ofNPs to temperatures 

up to 100 oc under salinities of 1M NaCl, 1M KCl, 0.55M synthetic seawater and 1.77M 

ionic strength API brine (Fig. 1.8). These studies were conducted using carbon dots (C-

Dot) since such NPs are more suitable for field studies than the QDs used for our earlier 

model nanoreporter studies. 
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Figure 1.8: a) Schematic of process used to phase-transfer carbon dots from chloroform 
to saline water. b) Change in C-Dot diameters as a function of temperature in different 
salt solutions. c) Visual comparison of C-dot suspensions prepared in high salinity water 
(1M NaCl, 1M KCl and 0.55M Seawater) at 100 °C. 
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This was achieved through the selection of a hybrid surfactant with nonionic and anionic 

groups on the same molecule. The nonionic component of the surfactant rendered the 

molecule saline stable and the anionic component rendered it temperature stable. Having 

both groups on the same chain circumvented non-trivial challenges associated with 

formulating mixed micelles of nonionic and anionic surfactants. Furthermore, the 

prevalent use of hybrid surfactants in areas of EOR makes it easy to introduce 

nanoreporters as a component of the background fluid. Using Avanel S150 CGN as the 

surfactant, NPs such as QDs and C-Dots were made stable to aggregation. Avanel coated 

C-Dots showed unimpeded and tracer-like flow through calcite and quartz sand up to 

70 °C. 

In Chapter 6, an interesting spin-off application of the bilayer phase-transfer 

method was investigated in the study of tandem self-assembly of a cationic polymer, 

multivalent salt and NPs in laminar flow environments of a microchannel. In 

investigating tandem assembly, we found a unique and interesting behavior in that the 

polymer underwent ionic cross-linking by citrate ions to form viscoelastic gel phases. 

This trend differed from the formation of P AH-citrate aggregates under convection­

dominant mixing in a beaker.57 Given the compelling application of in situ gelation at a 

desired location in microchannels as possible flow regulatory devices, 58 we investigated 

the mechanism of gelation in the space of charge ratio of reactants, flow rates, and pH. 59 

Gelation was found to occur in the polymer stream and not the citrate stream due to an 

appreciably higher diffusivity of citrate ions when compared to the gel and P AH, and due 

to laminar flow conditions in the microfluidic environment. Gel formation occurred when 

pH of the PAH stream was below the PAH pKa value of 8.38 and when citrate was either 
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in disodium or trisodium forms. Gelation of P AH began with the formation of colloidal 

aggregates of P AH and citrate, which combined under shear flow to form non-continuous 

or continuous gels. Droplets of citrate formed within regions of continuous gels, as 

excess citrate anions diffused into the gel stream (Fig. 1.9). 

NAC formation in microchannels was shown to be feasible, although under a 

narrow operating range of flow rate, charge ratio, and pH. These results were published 

in Langmuir and presented in the oral sessions of Micro fluidics and Small Scale Flows, 

during the AIChE annual conferences in Salt Lake City (2007), Philadelphia (2008), and 

Nashville (2009). 59 
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Figure 1.9: Ionic cross-linking of polyamine gels of PAR-citrate 1n a microfluidic 
channel. 

A broader review article on the synthesis methods of nanoparticle assembled hollow 

constructs and their applications was published as a review article in Advances in 

Polymer Science. 16 This thesis concludes in Chapter 7 with a summary of the results 

presented in Chapters 2-6 and recommendations for future work. 
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Chapter 2 
Electrolytes Improve N anoparticle Transfer from Oil to Water 

2.1 Nanoparticles Phase-Transfer Strategies 

Nanoparticles (NPs) are often synthesized in organic solvents due to advantages of 

superior size control1
-
5

, size distribution control5
-
9

, and shape controe-17 obtainable in a 

non-polar environment. Such fine control is achieved through the use of surface active 

(surfactant) agents or ligand molecules, which bind to the surface of NPs through polar 

head groups and render the NP solvent-dispersible by exposing their hydrophobic tails to 

the solvent (Fig. 2.1). 

Non Polar Solvent 

Nanoparticle 

Surface 
Ligand 

0 

OH 

(b) 
SH 

(a) 

Figure 2.1: Nanoparticle (NP) dispersed in a non-polar solvent (oil) by surface 
ligand/surfactant molecules such as (a) oleic acid or (b) dodecanethiol. The hydrophilic 
(-COOH or -SH) groups of the ligands are chemically bound to the NP surface and the 
hydrophobic groups render oil-dispersibility to the NP. 
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(Note: In phase-transfer literature, water-dispersible NPs are often and interchangeably 

termed as water-soluble NPs. 18 We will use the terminology of NPs being water­

dispersible since NPs are never really solubilized from a molecular standpoint, and exist 

as discrete and distinct colloidal particles in organic and aqueous media). 

Many significant applications featuring NPs require them to be in aqueous media 

as stable dispersions. These include but are not limited to fields of medicine18-38, 

catalysis3941, and environmental sciences.3944 To transfer NPs from oil to water, it is 

essential to modify the hydrophobic nature of the NP surface. To achieve this, several 

techniques have been developed that can be broadly categorized as ligand exchange 

methods and bilayer formation methods.45 

2.1.1 Ligand Exchange Methods 

Ligand exchange is a process where native hydrophobic ligands on NPs are displaced by 

amphiphilic ligand molecules that have hydrophilic groups at both ends of their 

hydrocarbon chain. Upon exchange, the displacing ligand chemically binds to the NP 

surface with its hydrophilic end whilst the free hydrophilic end makes the NP water­

dispersible. This process is also known as 'ligand-exchange or place-exchange.' 

Fig. 2.2 (a) depicts NP phase-transfer by the ligand/place-exchange process.30-34· 38· 46-75 A 

distinct benefit of this method is that by displacing native ligands small hydrodynamic 

diameters of NPs are maintained. For the case of QDs, smaller sizes are desired due to 

better colloidal stability, superior optical properties (quantum yield or QY) and 

photostability, and a higher probability for cell accessibility (endocytosis) in biological 

applications.30-32, 34, 51, 54, 67, 68,74 
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Figure 2.2: Schematic of two approaches to transfer nanoparticles (NPs) from oil to 
water by surface modification of NP surface. (a) Top Panel: NP phase-transfer through 
ligand or place exchange of native ligands on NP surface (in black) with ligands 
containing hydrophilic head groups (black and brown) at both ends of a hydrocarbon 
chain (in green), making NPs water-dispersible. An example of a commonly used ligand 
is 11-mercaptoundecanoic acid (MUA) with - SH and - OH hydrophilic head groups on 
either ends of an eleven carbon-chain hydrocarbon (b) Bottom Panel: NP phase-transfer 
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through formation of bilayers wherein, the native ligands on the NP surface are retained 
but phase-transfer is done using amphiphilic ligands, constituted of a hydrophobic tail 
group (in green) and hydrophilic head group (in brown). The hydrophobic group (in 
green) of the amphiphile associates with the hydrophobic end of the native ligand (in 
black) and the hydrophilic end (in brown) of the amphiphile makes the NP water­
dispersible. 

Likewise, magnetic iron-oxide NPs with small hydrodynamic diameters and high 

colloidal stability vastly improve magnetothermal therapy and magneto resonance 

imaging (MRI) for cancer cells on account of size-dependent thermal and contrast 

effects.22• 50• 55• 69• 70 In a few cases, careful selection of ligand molecules (such as those 

with silane or amino functionalities) have been used to stabilize NPs across a wide range 

of pH.38• 52 Another feature of the ligand-exchange route is that very high NP phase-

transfer efficiency (nearing 100%) can be achieved (Fig. 2.3) 

To engineer NPs with functional properties for applications in biosensing and 

diagnostics, exchanged ligands have been partially conjugated with protein/immuno/ 

receptor or nucleotide molecules.30• 61 For the case of QDs, their unique optical and 

semiconducting properties have been synergistically combined to form biosensing, 

imaging, detection, and diagnostic assays. 30-33' 38 Chan and Nie reported successful cell 

endocytosis and specific antibody/antigen recognition. CdSe QDs were conjugated with 

proteins and immunomolecules respectively.30 Pathak et a/ synthesized QD probes by 

partially conjugating oligonucleotides onto ligand-exchanged dioxane moieties. 61 

Alongside the examples discussed above, Alivisatos and coworkers prepared 

semiconductor nanocrystals as fluorescent probes and demonstrated benefits of broad and 

continuous excitation spectra in mouse-fibroblasts labeling experiments over 

conventional fluorophores.31 In a similar manner, Chan and Nie reported formation of 



25 

water-dispersible QD solutions with superior luminescence and stability against photo 

bleaching over conventional organic dyes (Fig. 2.4).30 In other variations, ligand 

exchange phase-transfer has been done using thermo responsive polymers47
' 

49 

polymerization 52
, and ozonolysis reactions 57 of native ligands. Dithiocarbamate assembly 

that involves in situ ligand formation by mixing amines in carbon disulphide has proven 

effective to phase-transfer NPs. 53
, 

71 

A B c D E F G H J 

Figure 2.3: Phase-transfer of NPs from toluene to water by ligand-exchange with 11-
mercaptoundecanoic acid (MUA). For each image pair, the left image corresponds to NPs 
in toluene before phase-transfer and the right image to NPs in water upon phase-transfer. 
(A, B: silver. C, D: gold. E, F: platinum. G, H: gold. I, J: palladium). For cases (A-H), 
phase-transfer efficiency was "' 100%, for case (1-J), phase-transfer efficiency was > 
90%. Note: Differences between gold NPs in pairs (C-D) and (G-H) are in the synthesis 
methods. (Figure adapted from Gittins and Caruso). 

Figure 2.4: CdSe-ZnS core-shell QDs, transferred from chloroform to phosphate buffer 
saline (PBS) solution, upon ligand-exchange with mercaptoacetic acid. Conjugation of 
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the mercaptoacetic acid with protein (transferrin) translated to receptor-mediated 
endocytosis in cultured HeLa cells (Figure adapted from Chan and Nie ). 

Although ligand-exchange is an effective method for transferring NPs to aqueous phase 

and is invaluable in many applications, it has several limitations: 

(i) NPs are susceptible to surface oxidation or corrosion due to insufficient 

protection of the NP surface during ligand-exchange. 54 NP phase-transfer by ligand-

exchange sometimes requires multiple solvents or high temperatures (60 - 70 °C), 

making NPs prone to surface corrosion during the phase-transfer step itself. Although not 

reported explicitly, surface corrosion can be inferred by comparing the ultra-violet (UV) 

spectra of NPs, prior to and after ligand-exchange. A significant blue-shift in the position 

of the first exciton of CdSe QDs and Au NPs indicate a decrease in particle size thus 

suggesting surface corrosion. 53' 67' 73 A recent report provides methods to overcome some 

of these drawbacks, particularly those of surface oxidation. However, it makes use of 

sophisticated custom-made polymeric molecules or ligands that are required to be 

designed for specific NP material types. 62, 68 

(ii) Ligand exchange requires the design of different anchor groups for various NP 

materials to be phase-transferred. This limits each ligand exchange method to certain NPs 

and seriously constrains scale-up of the process from an economic standpoint. As an 

illustration, ligands with thiol groups are used to phase-transfer gold34' 56' 59' 73, silver34, 

platinum3\ iron-platinum63, cobalt-platinum65, and semiconductor NPs.30' 72 However, 

amido47, dopamine46, 58' 69, or silane38 groups are required and used to phase-transfer iron-

oxide NPs. The formulation of a generic route to ligand-exchange and phase transfer NPs 
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is a challenge yet to be realized that would constitute invaluable contribution to this 

field. 67 

2.1.2 Bilayer Formation Methods 

In contrast to the ligand exchange method, the general strategy of NP phase-transfer 

through bilayer formation involves preserving the hydrophobic surfactants (or ligands) 

native to the NP surface. Phase-transfer is affected using amphiphilic molecules such as 

surfactants35' 76-84, polymers18' 36' 85-88, glycol-or phospholipids89-92, liposomes93 , and 

oligosaccharides such as cyclodextrin.94 The hydrophobic parts of the amphiphiles form 

bilayers with the native surfactant/ligand via hydrocarbon-hydrocarbon interactions (also 

called hydrophobic interactions) and the hydrophilic parts of the amphiphiles render the 

NPs water-dispersible. Thus, the native ligand on the NP substrate is preserved. Fig. 2.2 

(b) depicts NP phase-transfer through bilayer formation. 

Unlike NPs phase-transferred by ligand-exchange, those phase-transferred in 

bilayers will have slightly higher hydrodynamic diameters due to retention of the native 

NP ligand. However, the high surface density coverage of bilayers imparts NPs with 

superior colloidal stability and protection against oxidation. Furthermore, unlike place-

. exchange where specificity of the displacing ligand's affinity to the NP surface is critical, 

bilayer formation with amphiphiles depends only on the native ligand on the NP and not 

on the Nf. These minimize requirements to design and synthesize sophisticated and 

custom-made polymeric molecules often used in the ligand-exchange process. Hence, 

generic processes with the use of relatively simple and commercially available 

amphiphiles have been developed to facilitate phase-transfer of NPs, making this route 
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highly attractive for scale-up and commercialization.21 ' 54 Upon careful selection of 

amphiphilic molecules to form the bilayer, high NP phase-transfer yields and stable 

dispersibility across a wide range of temperatures, pH, and ionic strengths have been 

achieved. 80 

There are however significant challenges relevant to NP phase-transfer with lipid 

bilayers which must be addressed. One particular problem with this method is that it is 

easy to form clusters of NPs within the encapsulating bilayer environment. In addition to 

lower colloidal stability, clusters of NPs such as those of the CdSe QD variant would 

result in self-quenching of photoluminescence (PL), thus lowering its optical properties. 

In this regard, Dubertret et al have successfully devised a simple method to transfer QDs 

from chloroform to water as single NPs through the use of phospholipids (Fig. 2.5), while 

Colvin and coworkers used oleic acid to obtain single NP dispersions of iron-oxide in 

water (Fig. 2.6). The latter group also showed the oleic acid approach to transfer iron­

oxide as single NPs was an improvement over the clusters of two/three NPs previously 

obtained when IGEPAL ®CO 630 (octylphenyl-polyethylene glycol) nonionic surfactant 

was used.80 
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Figure 2.5: (A) Schematic representing phase-transfer of CdSe/ZnS QDs from 
chloroform to water using a mixture of phospholipids (n-poly (ethylene glycol) 
phosphatidylethanolamine (PEG-PE) and phosphatidylcholine (PC)). (B) TEM images of 
QDs without staining and (C) TEM Images of QDs with staining dye, reveal transfer as 
single QDs encapsulated in a phospholipid block-copolymer micelle (Figure adapted 
from Dubertret eta[). 

l 
8 

Figure 2.6: Transfer of oleic-acid stabilized iron-oxide NPs from hexane to water 
through bilayer formation with (A) IGEPAL®CO 630 (octylphenyl-polyethylene glycol: 
nonionic surfactant) and (B) oleic acid. Iron-oxide was phase-transferred as clusters of 2-
3 NPs in IGEPAL®CO 630, as determined by dynamic light scattering (DLS) and as 
single NPs in oleic acid, as determined by DLS and small-angle X-Ray scattering 
(SAXS) (Figure adapted from Prakash eta[). 
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Common strategies discussed in the literature that are used to affect bilayer formation 

include: 

(i) Interfacial transfer of NPs from oil to water in a two phase system: In this 

process, NPs synthesized in oil are contacted with water containing amphiphilic 

molecules. Mixing is promoted through vigorous stirring or sonication, resulting in an 

increased contact area between amphiphilic molecules in water and oil droplets that 

contain NPs. Transfer is effected upon bilayer formation. This approach is particularly 

useful when NPs are prepared in solvents that have boiling points significantly higher 

than that of water, where conventional boiling off techniques becomes unfeasible. 

Limitations to this approach are that NPs are often transferred as clusters42• 54, and 

complete NP phase-transfer is seldom feasible. Furthermore, upon phase-transfer, total 

separation of oil droplets from the aqueous phase is not possible, thus preventing use in 

food related applications and limiting its application to in vitro 

biological studies.35"37• 80• 81• 84"86• 88• 89• 94 Lees et al recently reported a novel and improved 

scheme involving sophisticated polymerization chemistry that yielded 100% phase­

transfer efficiency of NPs along with colloidal stability across a pH range of 3-13. In their 

method, poly (styrene-co-maleic anhydride) or PSMA polymer was capped around QDs 

and polymerized to form a ring. An amine-terminated ligand was reacted with the PSMA­

capped QDs that opened the maleic anhydride ring and incorporated the amine to impart 

water dispersibility to the QDs.37 However, this method is yet to realize scale-up due to 

the highly specialized nature and high cost of the process. 

(ii) Mixing NPs and the amphiphilic molecules in oil, boiling off the oil, and 

adding the aqueous medium18• 54• 78• 87• 91"93 : In this process, amphiphilic molecules are 
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initially dissolved in oil that contains NPs. The ternary system is then heated so as to 

boil-off oil prior to the addition of water to the binary residue of amphiphile and NPs. 

The presence of the amphiphile makes the NPs water-dispersible. The advantages are that 

NP phase-transfer can be affected from oils that have boiling points significantly higher 

than water. Further, the NP dispersions prepared through this route contain no trace of 

oil, making them suitable for biological and food related applications. The resulting 

dispersions can range from NPs existing as single to multiple nanocrystals clusters 

depending on the nature of amphiphile used. Anderson and Chan, Dubertret et a/ (Fig. 

2.5), Pellegrino et a/ and Smith et a/ have reported formation of single NP dispersions 

when phospholipids or polymers were used as the amphiphile, based on a steric 

stabilization mechanism. 18' 54' 87' 91 Transfer with polymers have additionally allowed for 

site conjugation with proteins and DNA or receptor molecules, thus making NPs 

functional for biological assays and diagnostics. 18' 91 Furthermore, these amphiphiles have 

yielded NP-dispersions with high optical and colloidal stability that can be successfully 

formulated in high ionic-strength buffers. 18, 54, 91 

When surfactants are used as amphiphiles, this route has shown mixed results and 

does not consistently preserve the initial NP size, colloidal stability, and optical 

properties and does not necessarily give high phase-transfer yields. 54' 91 Thereby from the 

perspective of process economics, this method still requires high cost chemicals, 

restricting its applications to high-value biological areas. 

(iii) Using amphiphilic molecules to form oil-in-water emulsions or 

microemulsions followed by boiling off the oil (e.g. chloroform, hexane)76' 77' 83 This 

extremely simple and elegant process was pioneered by Brinker and coworkers and has 
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paved the way to form stable dispersions of nanocrystals in water. 76 In this process, 

aqueous surfactant solutions are added to oil-containing NPs to form oil-in-water (0/W) 

microemulsions. The system is then heated to a temperature at which the oil boils off. As 

the oil evaporates, the surfactants form bilayers with the native ligand on the NP, thus 

dispersing them in water (Fig. 2. 7). To utilize this route, it is necessary that the oil has a 

boiling point lower than that of water. Hence, the solvents from which NPs can be phase-

transferred are few and limited (chloroform, hexane, and benzene). Brinker and 

coworkers transferred Au NPs to water by formulating chloroform/water microemulsions 

and boiling off the chloroform. Fan et al and Li et al used a similar approach to form 

biocompatible CdSe QDs in water with high optical stability. However, NPs were 

transferred as both single NPs as well as clusters of multiple NPs. 76
' 

77
' 
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Figure 2. 7: Transfer of Au NPs from chloroform to water by microemulsion formation. 
Aqueous surfactant solution of cetyltrimethylammonium bromide (CT AB) was added to 
the oil phase that contained nanoparticles (NPs ), and stirred to from an oil/water 
microemulsion. The microemulsion was heated to a temperature above the boiling point 
of oil but below that of water to boil off oil, resulting in phase-transfer to water. NPs with 
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native ligands (a) transferred to water by encapsulation in bilayers of 
surfactant/phospholipids. (b) These NPs can self-assemble into ordered nanocrystal­
micelle superlattices with (c) hexagonal close packed (hcp) or (d) face cubic closed (fcc) 
structures. (e) Thermodynamically defined interdigitated bilayers (Figure adapted from 
Fan et al). 

The advantage of method (iii) over method (ii) is that, along with polymers, commercial 

surfactants and phospholipids can be used to disperse NPs in water. In addition to cost 

benefits, NPs encapsulated in bilayers of surfactants are very interesting colloidal systems 

that serve as starting materials to develop advanced ordered structures and devices from a 

bottom-up approach. As an example, Fan et a/ demonstrated versatile use of 

surfactant/phospholipid-encapsulated Au NPs for applications in biotagging and forming 

self-assembled nanocrystal-micelle superlattices. Upon reacting Au NPs encapsulated in 

surfactants and silicic acid, the material could be self-assembled or spin coated to form 

ordered Au/silica mesophases and were incorporated to form metal-insulator-metal 

(MIM) devices.76' 95 ' 96 More details regarding the processing of these colloidal materials 

will be presented in the following chapter. 

The next section focuses on our unique contribution to this field through the 

development of a route we term, NP phase-transfer using "salty-water micelles."97 We 

have discovered that a small process modification in using salt-containing water to 

formulate oil/water nano or microemulsions dramatically improves NP phase-transfer 

yields and results in NP dispersions with higher colloidal stability than for the case where 

phase-transfer is carried out in plain-water I deionized (DI) I "no-salt" water micelles 

(method iii). 
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2.2 New Nanoparticle Phase-Transfer Concept: "Salty-Micelles" 

2.2.1 Introduction 
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A popular approach to phase-transfer NPs through bilayer formation was pioneered by 

Brinker and coworkers, wherein microemulsions of oil containing NPs were formulated 

using surfactants and phase-transfer to water was carried out by heating the dispersion to 

temperatures above the boiling temperature of oil. Upon evaporation of oil, surfactants 

formed bilayers with native ligands on the NPs that rendered them water-dispersible. 76' 77 

However, NPs transferred by this route were not always in the form of single NPs, which 

was seen to occur only through the use of expensive phospholipids and in very select 

cases, through the use of commercial surfactants. For instance, Fan et al showed that 

CdSe QDs could be transferred as single nanocrystals with retention of optical properties 

when the amphiphile used was phospholipids. 77 Likewise, Brinker and coworkers had 

demonstrated successful transfer of Au NPs as single nanocrystals, using CT AB as the 

amphiphile.76 Given the biological relevance of QDs and the low cost of surfactants such 

as CTAB, it was logical to attempt transfer of QDs to water using CTAB as the 

surfactant. 

Upon investigating the transfer of QDs from chloroform to water usmg a 

microemulsion-based approach involving CTAB, we found high colloidal stability of 

QDs that transferred to water, but very poor optical stability in that PL was found to be 

completely quenched. Investigations with other surfactants such as sodium dodecyl 

benzene sulfonate (SDBS) and Aerosol-OT (AOT) also resulted in stable aqueous QD 

dispersions, but with poor PL. In a recent study, Li et al reported improvement in PL 

retention and quantum yield (QY) of CdSe/ZnS core-shell QDs, when transfer was 
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carried out in bilayers of Gemini surfactants. However, the uncommon and sophisticated 

nature of the surfactant (Gemini surfactants used in this study were commercially 

unavailable and synthesized by the authors) makes the economics of the process 

unfeasible. Furthermore, the authors' claim of optical benefits was not entirely 

convincing because the UV -vis spectra of the transferred QDs had a high background 

scatter (translating to high absorbance values) which could artificially increase their PL 

and QY values.83 It thereby is an open challenge to devise approaches that transfer NPs to 

water efficiently and economically without compromising their stability and properties. 

We have discovered that phase-transfer ofNPs can be strongly enhanced and 

colloidal properties of resulting NP dispersions dramatically improved,97 when a 

simple process modification is made to the process pioneered by Brinker and coworkers. 

The process modification involves adding salt to the water in which the 

emulsion/microemulsion is formulated. Upon boiling off the oil, NPs phase-transferred to 

salty-water micelles (or simply salty-micelles) resulting in NP dispersions different from 

those formed in DI-water/no-salt micelles. With a model system constituting CdSe QDs 

as NPs, AOT as the surfactant, and NaCl as the salt to be dissolved in water, we found 

that over 90% of CdSe QDs transferred from hexane to salty-micelles of AOT. This was 

statistically higher than the 45-55% QDs that transferred to Dl-water micelles of AOT. 

Transmission electron microscopy (TEM), electron diffraction patterns, and UV -vis 

spectroscopy revealed that NPs phase-transferred in salty-micelles remain unchanged 

upon phase-transfer. Dynamic light scattering (DLS), analytical ultracentrifugation (AU), 

and small angle X-Ray scattering (SAXS) studies indicated that NPs transferred as 

individual and single particles. Electrophoretic mobility measurements and 
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thermogravimetric analysis (TGA) revealed a higher surface coverage of surfactant onto 

NPs when phase-transfer to water was carried out in the presence of salt. Spectroscopic 

studies with non-absorbing ZnO NPs and a UV -absorbing Nile Red dye revealed the 

bilayer region of the salty-micelle to be more hydrophobic than that of the DI-water 

micelle, indicating a higher lateral compactness. These translated to better retention in 

optical properties of QDs such as PL and QY when in salty-micelles. Finally, we 

established the generic nature of NP phase-transfer by this process through experiments 

with different NP compositions, shapes, sizes, surfactants, and salt types. 

2.2.2 Materials and Methods 

2.2.2.1 Synthesis of Nanoparticles 

General Comment for all Nanoparticle Synthesis Routines 

The following section describes procedures followed to synthesize NPs that are 

eventually used in phase-transfer studies or towards understanding the mechanism of 

phase transfer. All syntheses were carried out according to procedures in the literature. 

No further details are provided here unless pertaining to a process modification. 

Chemicals used along with supplier source, grade, and purity levels are provided. All 

chemicals were used as obtained, unless mentioned otherwise. Chemical grades and 

purity levels may be assumed to be of American Chemical Society (ACS) grade unless 

mentioned otherwise. Upon synthesis, all NPs were cleaned, separated and purified using 

solvents, as per procedures outlined in the literature. The following solvents were used, 

all of which were procured from Fischer Scientific: acetone, ethanol, methanol, 
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chloroform, toluene, and benzene. The readers are urged to follow necessary safety 

precautions associated with NP synthesis, as listed in the literature. 

Buckminsterfullerene (Bucky balls/Carbon-60 or simply C6o) used in phase­

transfer studies were kindly provided by Prof. M. B. Tomson (Department of Civil and 

Environmental Engineering, Rice University, chemical supplier: SCI, purity level -

99.99%) and Prof. P.M. Ajayan (Department of Mechanical Engineering and Materials 

Science, Rice University, Chemical supplier: BuckyUSA, purity level - 95%). Bucky 

balls (C6o) were dissolved in benzene at a concentration of 1.14 giL for phase transfer. 

Synthesis ofCdSe Semiconductor Nanoparticles: Quantum Dots and Tetrapods 

CdSe QDs were synthesized following the method of Yu and Peng5 and CdSe tetrapods 

were prepared as per the process described by Asokan et a/.98 Cadmium oxide (CdO, 

99.99%), oleic acid (OA, technical grade- 90%), 1-octadecene (ODE, technical grade-

90%), and trioctylphosphine (TOP, 90%), and cetyltrimethylammonium bromide 

(CTAB) were all purchased from Aldrich. Selenium (Se - 99.99%) was obtained from 

Strem Chemicals. 

Synthesis of Au (Metal) Nanoparticles 

Synthesis of Au NPs was carried out following a procedure described by Prasad et al 

using dodecanthiol as the capping agent.99 The chemicals used for Au NP synthesis and 

their suppliers are as follows: AuCh (Alfa Aesar, 64.4% Au), didodecyldimethyl 

ammonium bromide (Aldrich, 98%), sodium borohydride (Acros, 98%), and 

dodecanethiol (Aldrich, 98%). 
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Synthesis of Iron-oxide Nanoparticles 

Synthesis of iron-oxide NPs was carried out following a procedure described by Yu et 

a/.3 Ferric oxy hydroxide (FeO(OH)), OA, and ODE used towards synthesis were 

procured from Aldrich. 

Synthesis of Zinc-oxide Nanoparticles (for Solvatochromic Dye Experiments) 

Zinc-oxide NPs were prepared with zinc acetate dihydrate (Aldrich, ACS reagent), OA, 

ethanol (200 proof), and tetramethylammonium hydroxide pentahydrate (Aldrich, >97%) 

as per the method ofMoussodia et a/.32 

2.2.2.2 Phase-Transfer of Nanoparticles 

Synthesized and cleaned CdSe QDs (~3 nm in size, coated with oleate ligands) were 

suspended in hexane at a concentration of 235 J..Lmol-QD/L using extinction coefficient 

correlations reported by Peng and co-workers.4 The surfactant Aerosol-OT ("AOT" or 

sodium bis(2-ethylhexyl)sulfosuccinate from TCI America, 96% purity) was then 

dissolved in this suspension (30 mg-AOT/mL-hexane). In devising the procedure to 

phase-transfer QDs from oil to water, the final AOT (surfactant) concentration was fixed 

at 1.5 giL to ensure that AOT was well above its critical micellar concentration (CMC) 

(The CMC of AOT at 25 oc is 0.155 giL or 2.66 mM, as reported by Umlong and 

Ismail). 100 

To standardize the concentration of QDs initially added to the water phase upon 

dilution (and before solvent evaporation), the following procedure was devised based on 

a non-invasive approach using UV -vis spectroscopy. The basic principle involves Beer 
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Lambert's law (Eq. 2.1) that relates absorbance (A) at the wavelength corresponding to 

the first exciton absorption peak of QDs, to its concentration (C) in solution: 

A=EIC (2.1) 

Where: f: = Molar absorbtivity (L mol"1 cm-1), 1 = Path length of the quartz cuvette in 

which the sample is stored (1 em) and C = Concentration of the compound in solution 

To estimate NP concentration, the molar absorbtivity is required. For this, 

published correlations by Yu et al were used that relate molar absorbtivity (E) to the 

diameter (D) of QDs by an empirical power law fit given by Eq. (2.2). The diameter of 

the QDs (D) is related to the wavelength (A.) corresponding to the first excitonic 

absorption peak as given by Eq. (2.3).4 

CdSe: E = 5837(Df65 

CdSe: D = (1.6122 x 10-9 )A4 - (2.6575 x 10-6 ).A3 + 
(1.6242 x 1 o-l ).A2 - (0.4277).A + ( 41.57) 

(2.2) 

(2.3) 

These correlations enable estimation of molar aborptivity solely by UV-vis spectroscopy, 

thus circumventing the estimation of QD diameter by elaborate electron microscope 

procedures or QD concentrations by methods such as Inductive Coupled Plasma Atomic 

Emission Spectroscopy (ICP-AES) that destroy the sample. It is important to note that 

Eqs. (2.2) and (2.3) are valid for QDs in the size range 0.9 nm ~ D ~ 9 nm.4 
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From the above discussion, the absorbance value of the first excitonic absorption peak 

can be measured, and since 1 is known and E can be estimated, the concentration of NPs 

in a solvent can be estimated using UV-vis spectroscopy. To standardize the 

concentration levels of QDs initially dosed to water, we adjusted the QD level in the 

AOT -hexane blend such that the effective AOT coverage on the surface of a single QD 

was equivalent to either one or ten monolayers of surfactants. The number of AOT 

molecules required to cover a QD surface depends on the size of the QD (obtainable from 

Eq. 2.3), the length of the stabilizing ligand used (oleic acid, 2 nm) and the head group 

area of AOT (0.55 nm2/molecule). As an illustration, for a green colored QD with the 

first excitonic absorption peak at 548 nm, the diameter of the bare dot from Eq. 2.3 is 3 

nm and that with the oleic acid ligand is 7 nm. Thus, for an available surface area of QDs 

at 156 nm2, the number of AOT molecules required to form an equivalent monolayer is 

285. In satisfying the constraint of an AOT concentration in water at 1.5 g/L, the 

estimated concentrations of QDs in water that corresponded to equivalent coverages of 

one and ten monolayers of AOT on QDs were 1.205 JlM and 12.05 JlM, respectively. 

(Note: The concentration of NPs thus reported are the total number (moles) of QDs 

present (with ligands) per liter of solution). The equivalent values in absorbance units, 

obtained from Eqs. (2.1) and (2.2), for 3 nm QDs were 0.1279 and 1.279, respectively. 

Subsequently, 0.5 mL ofthis mixture was added to 10 mL of salt-containing water (3 g­

NaCl/L, pH - 6) to form an oil-in-water (0/W) emulsion in which the total AOT 

concentration was -1.5 g/L. This mixture was placed in a water bath at 85 oc for 30 min 

to boil off the hexane under magnetic stirring. A faintly turbid QD suspension was 

recovered after cooling to room temperature. This turbidity was removed via 
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centrifugation (8300 xg for 1 hour), as confirmed by UV -vis spectroscopy, generating a 

"salty" QD suspension. The phase-transfer procedure was repeated using 10 mL of 

deionized (DI) water (resistivity of 18.2 MQ·cm, pH ~ 6), generating a "no-salt" QD 

suspension. 

Phase-transfer yield of CdSe QDs from hexane to salty and DI water was 

estimated from the following relation: 

CQA Abs(A.F. E . )A % Phase Transfer Yield = -- = rrst XCI!On 

CQH Abs{A.FirstExciton )H 
(2.4) 

Where: CQA = concentration of QDs in aqueous (DI or salty-water micelle) phase, 

Abs(AFirstExciton)A = UV -vis absorbance value at first exciton wavelength of QDs in 

aqueous (DI or salty-water micelle) phase, CQH =concentration ofQDs in hexane (based 

on a 20-fold dilution of stock in hexane), Abs(AFirstExciton)H = UV -vis absorbance value of 

first exciton ofQDs in hexane (based on a 20-fold dilution of stock in hexane). 

For experiments involving salts other than NaCl, phase transfer was conducted by 

simply replacing NaCl with the other salt (sodium sulfate, calcium chloride). All salts 

used for phase transfer were of ACS grade and were obtained from Fisher Scientific. 

Phase transfer ofCdSe QDs with CTAB as the phase transfer agent was performed in the 

same manner as described above for AOT except for one difference - CT AB was 

dissolved directly in the salty (3 g-NaCl/L) and DI water at 1.5 g/L and not in the hexane 

suspension of QDs. This was done because, at the desired concentration, CT AB did not 

dissolve completely in hexane. Based on control experiments with AOT, we found that 

the outcome of our results did not change regardless of whether the surfactant was 
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dissolved in hexane or in the aqueous solution. Phase transfer of Au and ZnO NPs was 

conducted following the same procedure previously described above with AOT. C60 was 

transferred using CT AB. 

2.2.2.3 Nile Red Fluorescence Study 

Nile Red (NR) studies to probe the polarity of the NP-AOT micelles were conducted 

using ZnO NPs. Phase transfer of ZnO NPs into "no-salt" water and salt-containing 

water (1, 3, and 5 g-NaCVL) was performed with NR added to the ZnO+AOT in hexane 

stock such that the NR:AOT ratio was below 1:200. Upon phase transfer, the NR 

emission spectrum was collected using an excitation wavelength of 480 nm. Phase 

transfer was also performed without ZnO NPs to obtain emission spectra of NR-doped 

empty AOT micelles in DI water and salt-containing water (1, 3, and 5 g-NaCl/L). It is 

noteworthy that NR was found to be insoluble in DI and salty-water. 

2.2.2.4 Colloidal Stability Study 

The stability of AOT-encapsulated CdSe QDs in DI water and salty-water, spiked to 

varying levels of ionic strengths was studied as follows. QDs in salty-water were diluted 

with 3g-NaCl/L solution to bring the QD concentration to the same level as QDs in DI 

water. Subsequently, the QD dispersions were diluted five-fold in pre-made solutions of 

sodium chloride such that the final sodium chloride concentrations in the DI-water 

micelle and salty-water micelle solutions were 3, 7, 10, 12 and 15 g/L. The resulting 

solutions were centrifuged immediately at 8400 x g for 1 hour and the supernatant was 

collected. The fraction of QDs remaining in the supernatant in DI (Con) and salty-
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micelles (Csi) was determined by comparing UV-vis spectra before and after 

centrifugation (Eqs. 2.5 and 2.6). 

Ionic Strength Stability (DI- Water Micelles)= Con = Abs(A.FirstExciton )on 
COIR Abs(A.FirstExciton )oiR 

Ionic Strength Stability (Salty- Water Micelles)= Cs, = Abs(A.FirstExciton )s, 
CSR Abs(A.FirstExciton )sR 

(2.5) 

(2.6) 

Where: The reference concentration (R) of QDs in DI-water (CoiR) and salty-water (CsR) 

micelles were adjusted such that CoiR = CsR prior to centrifugation. 

2.2.2.5 Characterization 

Dynamic Light Scattering (DLS): 

The hydrodynamic diameter ofNPs, stabilized in DI-water and salty-water micelles, were 

estimated using a Brookhaven ZetaP ALS DLS instrument, with a BI-9000AT digital 

autocorrelater and a He-Ne Laser (A.= 656 nm). All measurements were carried out at 

room temperature in standard 4 mL polystyrene cuvettes at a fixed scattering angle of 

90°. For reliable statistics, cluster diameters were measured in triplicates, with each run 

over a time interval of 3 minutes. The diameters reported were number-intensity based, 

using appropriate CONTINS or NNLS fitting routines through the instrument software 

9K.DLSW. The autocorrelater estimates the effective diffusive coefficient (D) that is 

converted to the hydrodynamic diameter (a) using the Stokes-Einstein relationship (Eq. 

2.7): 

(2.7) 
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Where: ks = Boltzmann's constant: 1.38 x 10-23 JK-1, T = temperature of the continuous 

phase (approximate solution temperature- 298 K), and 11 =viscosity of the continuous 

phase (1000 kg m-1s-1 for water). Note: Given that Stokes-Einstein's relationship is valid 

for a dilute colloidal system, the viscosity of the colloidal solution may be safely 

approximated to be equivalent to the viscosity of water. 

Zeta Potential: 

Zeta potential of NP dispersions was estimated from electrophoretic mobility 

measurements (JlE) using the phase analysis light scattering (PALS) feature of the 

Brookhaven ZetaP ALS instrument. Measurements were made at 25 °C, using a dip-in 

(Uzgiris type) electrode for aqueous solutions in 4 mL polystyrene cuvettes. Based on the 

particle diameter (a) and salt concentration, either the Smoluchowski or Hi.ickel 

approximation (Eq. 2.8) was used to determine the zeta potential (c:;;). 

(2.8) 

Where: K = De bye parameter, 11 = viscosity of the continuous phase (1 000 kg m-1s-1 for 

water), JlE = electrophoretic mobility of NPs, Eo = permittivity of free space 

(8.854 X 10-12 C2 N-1 m-2), Er = relative pennittivity (78.5 for water) and f(Ka) is the 

Henry's function that assumes a value of 1.5 for Ka >> 100 (Smoluchowski 

approximation) and a value of 1 when Ka < 1 (Htickel approximation). 
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Analytical Ultracentrifuge: 

Sedimentation coefficient of CdSe QDs in DI and salty micelles were measured on a 

Beckman Optima XL-A ultracentrifuge with the AnTi-60 rotor. The QDs in DI and salty 

water were spun at 20,000 rpm and 30,000 rpm, respectively. The data was analyzed 

using Ultrascan 7.1 to estimate the sedimentation coefficient as described in earlier 

reports. 101 • 102 Hydrodynamic diameters were calculated from the sedimentation 

coefficients by assuming a core-shell model, where CdSe with oleic acid (bound to CdSe 

surface) is modeled as the core and AOT forms the shell. The particle density was 

calculated based on the following relation (Eq. 2.9): 101 • 103 

(2.9) 

For a 3 nm CdSe QD, the density of the core Pcorc was calculated to be 1.31 g/mL based 

on the bulk wurtzite CdSe density (5.8 g/mL), bulk liquid density of oleic acid (0.9 g/mL) 

and a 2 nm thick oleic acid layer on CdSe surface. For the salty water case, Pparticle was 

estimated based on a thickness't' of 1 nm for AOT and the bulk AOT density (Pshell = 1 

g/mL) considering the compact nature of the AOT shell in salty water. The particle 

density for CdSe in DI water was calculated by factoring in the decreased charge density 

from zeta potential measurements (Pshell = 0.23 g/mL). 

The hydrodynamic diameter was then obtained from the sedimentation coefficient by the 

following equation: 
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2g(p particle - P solvent) 

(2.1 0) 

Where, RH is the hydrodynamic radius, ll is the viscosity of the solvent, Sa is the 

sedimentation coefficient, g is the acceleration due to gravity, Psolvent is the density of the 

solvent, and Pparticle is the calculated particle density. 

UV-vis Spectroscopy: 

As-synthesized and phase-transferred NPs were analyzed by UV-vis absorbance 

spectroscopy using a Shimadzu UV-vis (UV-24601 PC) spectrophotometer. Spectra were 

recorded in a scan range between 300 and 750 nm. NPs in organic phase were analyzed 

in quartz cuvettes and NPs in aqueous phase were analyzed using polystyrene cuvettes. 

Photoluminescence (PL) Measurements: 

PL of CdSe QDs and Nile Red-doped ZnO NPs were measured using a Jobin Yvon 

Fluoromax:-3 fluorimeter. Both QDs and Nile Red samples were excited at a wavelength 

of 480 nm to collect their emission in the 500 to 800 nm range. PL intensity was 

determined by integrating the PL peak. Cuvettes used to obtain UV-vis spectra were also 

used for all PL measurements. PL stability of CdSe QDs in a DI and salty-water micelle 

environment was estimated as a function of time. Given that the initial concentration of 

QDs phase-transferred in DI-water micelles was always lower than those phase-

transferred in salty-water micelles (see results and discussion), the QD levels were 

adjusted in salty-water micelles by diluting them with 3 g-NaCl/L solutions so as to 

match the concentration of QDs in DI-water micelles. Thereby, the basis to PL stability 
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comparison was at equal QD concentration levels in DI-water and salty-water micelles of 

AOT. 

PL measurements were made at an excitation wavelength of 480 nm at various 

time intervals (over 3 months) and the respective integrated areas were recorded. PL 

stability was determined as the fraction ofPL retained in DI/salty-micelles with respect to 

an equivalent concentration of QDs in hexane as the reference. PL measurements of QDs 

in hexane were made on days 1 and 70 and the average of PL values on these two days 

was used to compute PL retention. The relation employed is as follows (Eq. 2.11): 

% PL Retained 
PLA.t 

PLH,t-avg 
(2.11) 

Where: PLA,t = Integrated PL area measured at an excitation wavelength of 480 nm for 

QDs in aqueous phase (A) (either DI or salty-water micelles of AOT), at a specific day 

(t), PLH,t-avg =Integrated PL area measured at an excitation wavelength of 480 nm for an 

equivalent concentration of QDs in hexane, as an average of day 1 and 70. 

Quantum-Yield Measurements: 

Quantum yield of CdSe QDs was measured in DI-water micelles of AOT, salty-micelles 

of AOT, and in hexane, following the procedure described in Jobin Yvon Horiba 

manual. 104 The standard (ST) used was Rhodamine 6G. In brief, prior to a measurement, 

the QDs dispersed in a specified environment (for example, salty-micelles of AOT 

prepared in 3 g-NaCl/L), were diluted in the corresponding solvent (salty water at 

3g-NaCl/L). The UV-vis spectrum and absorbance value corresponding to the first 

exciton were recorded (The initial dilution was carried out to ensure the absorbance value 
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measured was below 0.1 units). At the concentrations where UV-vis measurements were 

made, the PL spectra of QDs were recorded and integrated PL areas evaluated. At least 

four sets of UV-vis absorbance values and corresponding integrated PL areas were 

measured at different levels of dilution. Plots of integrated PL area vs. UV -vis 

absorbance values at the first exciton were made. These plots were straight lines with 

gradient (Gradx) and intercept = 0. The Quantum Yield (<l>x) was measured using the 

following equation: 

(2.12) 

Where: <l>sr = Gradient of the standard (Rhodamine 6G in methanol), 11x = Refractive 

Index of the medium in which QY of QDs is to be estimated, 11sr = Refractive Index of 

medium in which the QY of the standard was estimated. In measuring QY, the slit-widths 

of the spectrophotometer were maintained at 2 em. 

Transmission Emission Microscopy (I' EM): 

As-synthesized and phase transferred NPs were imaged using a JEOL 2010 Transmission 

Electron Microscope, operated at 100 kV accelerating beam voltage. Samples were drop-

cast on holey carbon TEM grids (Ted Pella Inc.) and dried overnight prior to imaging. 
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Thermogravmetric analysis (I'GA): 

CdSe QDs dispersed in hexane were prepared for TGA by drying under Argon. CdSe 

QDs phase transferred into no-salt and salty water were centrifuged on a Beckman 

Coulter Ultracentrifuge to separate the particles from the supernatant. The collected 

particles were dried under Argon. All samples were loaded in alumina pans and analyzed 

using a Q-600 Simultaneous TGA/DSC from T A Instruments operating with a 

temperature ramp rate of 5 °C/min under Argon. 

2.2.3 New Phase-Transfer Scheme 

Phase-transfer of NPs using salty-micelles is depicted in the bottom panel of Fig. 2.8. As 

a starting reference point, the top panel of Fig. 2.8 (route (i)) is a representative schematic 

of the method pioneered by Brinker and coworkers 76, and is similar to the phase-transfer 

schematic described in Fig. 2.7. The differences are: (a) The surfactant used is AOT over 

CTAB. (It will be shown in a later section that CT AB could also successfully transfer 

QDs, however, the PL of QDs was better retained when transfer was carried out in 

micelles of AOT). (b) Brinker and coworkers formulated 0/W microemulsions in 

transferring NPs to DI-water micelles, while our method employs 0/W emulsions for NP 

phase transfer. In fact, we find from our independent investigations that there was little 

difference between the characteristics of NP-dispersions prepared in DI-water micelles, 

upon evaporating microemulsions vs. those obtained upon evaporating emulsions. As an 

example, we were able to transfer similar concentrations of CdSe QDs from hexane to 

water when AOT or CT AB concentrations used was 1.5 g-surfactant/L that corresponded 

to a (macro) emulsion domain. This was a significantly lower surfactant concentration 
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when compared with concentrations of AOT and CTAB at 28.6 g-surfactant/L (the latter 

used originally by Brinker and coworkers), where microemulsion domains exist. This 

finding allowed for a significant reduction in NP phase-transfer costs and thus, we 

performed all phase-transfer studies at a dosage of 1.5 g-surfactant/L. 

The new method we have developed is depicted in the bottom panel of Fig 2.8 

(Route (ii)). This method is similar to the Brinker's process (Route (i)) but with an 

important difference in that emulsion formulation is carried out in salt-containing water 

(or simply, salty-water). The starting rationale to carry out NP phase-transfer in salty-

water is as follows: It is well known in surfactant literature that the solubility of ionic 

surfactants increases dramatically above a critical temperature known as the Krafft point 

or Krafft temperature (Fig. 2.9). 105' 106 Above this temperature, the equilibrium structure 

of surfactants shift strongly from its "interfacially active" monomeric form to its micellar 

form which preferentially exists in the bulk. 

The increase in aqueous-phase solubility of surfactants would also lower its 

ability to partition onto a hydrophobic substrate such as NPs. Thus, during the step of oil-

evaporation (that is normally carried out well above the Krafft temperature: 60-85°C 

when the solvent is chloroform or hexane), encapsulation of NPs within surfactant 

. 11 uld b f h" h ~ 1 b"l" . 76 83 95 96 107 m1ce es wo e poor on account o 1g er sur1actant sou 11ty m water. ' ' ' ' 

Furthermore, repulsive electrostatic interactions between charged head groups of ionic 

surfactants would contribute to low surface density coverage of ionic surfactants on NP 

surfaces. These factors would result in low NP phase-transfer yields along with NPs 

transferring as clusters. An immediate implication of these effects is a loss in optical 
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properties of phase-transferred QDs. Photoluminescence of QDs in DI water, as observed 

under a UV-lamp showed QDs to appear as dull (QY = 3%). 
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Figure 2.8: (a) Nanoparticle (NP) phase-transfer using plain/deionized (DI)-water 
micelles: Hexane containing CdSe QDs and Aerosol-OT (AOT) is added to DI water and 
mixed gently to form an emulsion. The concentration of AOT is 1.5 g/L. The emulsion is 
heated at 85 oc for 30 minutes to boil off the hexane, resulting in QDs encapsulated in DI 
water-micelles of AOT. DI-water micelles have a loosely packed structure, resulting in 
quenched photoluminescence (PL) in water and a quantum yield (QY) at 3o/o. (b) NP 
phase-transfer using salty-micelles: Hexane containing CdSe QDs and Aerosol-OT 
(AOT) is added to salt-containing water (NaCl at 3 g/L) and mixed gently to form an 
emulsion. The concentration of AOT is also maintained at 1.5 g/L. The emulsion is 
heated at 85 °C for 30 minutes to boil off the hexane, resulting in QDs encapsulated in 
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salty-micelles of AOT. Salty-micelles have laterally compact structure, resulting in strong 
retention of PL in water and a higher QY at 7%. (c) Structure of sodium bis(2-
ethylhexyl)-sulfosuccinate (Aerosol-OT or AOT, figure reproduced from Nave et al) 

To counter the surfactant solubility characteristics, we used the concept of the "salting-

out" of surfactants by salts. The presence of salts is known to lower water-solubility of 

surfactants through a reorganization of the hydrogen-bond network with water. 105• 106• 109 

This effect termed "salting-out" would enhance surfactant partitioning onto the NP 

surface and possibly increase surfactant coverage. Furthermore, the presence of salt 

counter-ions, known to screen repulsive head-group interactions, could possibly compact 

the surfactant coverage. The PL of QDs in salty-water, as observed under the UV -lamp, 

was bright (QY = 7%). 
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Figure 2.9: Solubility trends for ionic surfactants. The Krafft point or Krafft temperature 
is the point at which surfactant solubility equals the critical micelle concentration. Above 
this temperature, surfactants form a dispersed phase with a steep increase in solubility as 
micelles. Below the Krafft temperature, surfactants crystallize out of solution as hydrated 
crystals. 



53 

In the following sections, we describe the methods used to delineate the mechanism of 

NP phase-transfer in DI and salty-water micelles and to describe the nanostructure of 

resulting colloidal dispersions. 

2.2.4 Results and Discussions 

Diluted to the same concentrations, the respective salty and no-salt suspensions of CdSe 

QDs are shown in Fig. 2.10 (a). Their photoluminescence (PL) clearly differed from one 

another, illustrating the unexpected impact of high-salt-content water solutions (see also, 

Appendix A, Fig. A1). Measurements indicate PL intensity of QDs in salty water was 

more than twice that of QDs in DI water. The UV -vis absorbance spectra were similar to 

one another, with no apparent broadening or shifting of the absorbance features (Fig. 2.10 

(b)). The PL spectra, too, were similar in shape and position. The QDs in salty water 

surprisingly retained PL better than QDs in no-salt water (Fig. 2.10 (c)). After 70 days, 

salty water QDs retained almost 60% of their initial PL intensity while QDs retained only 

~10%. Similar long-term PL stability has only been reported for core-shell QDs (e.g., 

CdSe/ZnS); for comparison, the shelf-life of commercially available ligand-exchanged 

core-shell QDs is 6 months 110• 

To assess the yield of phase-transfer of QDs from hexane to water, we quantified 

the QD concentrations through UV-vis spectroscopy. We found that 84±8% of the QDs 

was successfully transferred into salty water, but only 56±2% was transferred into DI 

water (Eq. 2.4). The balance of the QDs (as well as some AOT) was lost in the precipitate 

after centrifugation. The initial amounts of AOT and CdSe QDs corresponded roughly to 

a AOT -molecule: QD particle number ratio of 285: 1, which was equivalent to a 
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theoretical monolayer coverage by AOT around the oleate-coated CdSe QDs, assuming a 

projected head group surface area of 0. 55 nm2 on 7. 0 nm Q Ds (core diameter of 3. 0 nm + 

twice the oleic acid length of2 nm). 111 
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• 'No-salt' water 

~ 
~ ·;; 80 
·c;; c 
c .! 60 A. A • • • C1) Hexane ..5 • -.5 ..J 

...J a.. 40 • c.. - ':::.!! en 0 20 • • • (1) (2) (1) (2) :i • • • 
Equal CdSe concentration 0 

(1) CdSe in 'Salty' water 
350 500 650 800 0 25 50 75 

(2) CdSe in 'No-salt' water Wavelength (nm) Days 

Figure 2.10: (a) Photographs of "salty" (3 g-NaCl/L = 51 mM; 0.6 J.tmol-QD/L) and "no­
salt" aqueous suspensions of 3.0-nm oleate-coated CdSe QDs (0.6 J.tmol-QD/L) under 
ambient and UV lighting (365 nm); phase-transfer agent = AOT. (b) UV -vis absorbance 
and photoluminescence (PL) spectra of oleate-coated CdSe QDs suspended in hexane, 
salty water, and no-salt water. (c) Percentage PL decrease of QD suspensions stored 
under ambient conditions as a function of time. 

Increasing the AOT:CdSe ratio by 10 times by reducing the initial QD concentration (via 

decreasing CdSe concentration in hexane to 23.5 J.tmol-QD/L while keeping AOT at 1.5 

g/L) improved the transfer yield into salty water to 1 00±3 %, but reduced the yield into 

no-salt water to 48± 1% (Fig. 2.11 ). To understand the nature of the bilayer coating of the 

NPs in salty and DI water, we measured the zeta potential of CdSe QDs to be - 91±6 mV 

and - 77±3 mV, respectively. A lower zeta potential of QDs in salty water was expected 

due to compression of the electric double layer. In our case, however, a higher zeta 

potential was observed, indicating a structural difference between the bilayer-coated QD 

structures in salty and no-salt environments. 
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Figure 2.11: Phase-transfer yield of CdSe QDs transferred from hexane to salty-water 
and no-salt water with AOT at AOT: CdSe ratios of 285:1 (equivalent of 1 monolayer 
coverage of AOT on 3 nm CdSe QDs) and 2850:1 (equivalent of 10 monolayers coverage 
of AOT on 3 nm CdSe QDs). 

We suggest that QDs have more AOT molecules packed within the outer leaflet of the 

bilayer when in the presence of an electrolyte, such that electrostatic repulsions between 

the negatively charged AOT head groups are screened more effectively (Fig. 2.12 (a)). 

This allows more AOT molecules to fit around the QD, leading to a higher surface charge 

density as reflected in the higher zeta potential. Similar effects of electrolytes have been 

d .c: 1" 112 . 11 113 d . d .c: 1 100 reporte 10r tposomes , mtce es , an atr-water-supporte sur1actant mono ayers. 

The number of AOT molecules per QD in salty and no-salt water environments 

was calculated using the following empirical relationship developed by Loeb et al to 

solve the Poisson-Boltzmann equation for a highly charged sphere with zeta potential s < 

150 mV. 115 
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(2.13) 

Where: cr is the surface charge density, E is the dielectric constant, K-1 is the Debye length 

(given by K-1 = 0~4 in nanometers at 25 °C), I is ionic strength (mol/L), ks is the 

Boltzmann constant, Tis the temperature, u is the counter ion valency, e0 is the electron 

charge, 'l'o is the surface potential, and Rh is the hydrodynamic radius of the QDs. 

Through DLS and analytical ultracentrifugation, the Rh of QDs suspended in salty water 

was determined to be -4.5 nm, consistent with a particle core radius of 1.5 nm, oleate 

length of 2 nm, and AOT length of 1 nm. Interestingly, the Rh of QDs suspended in DI 

water was determined to be -8.5 nm. 

Assuming the surface potential was equal to the measured zeta potential and 

calculating the ionic strength from the concentrations of initial AOT (3.4 mmoVL) and 

NaCl, the surface charge density (cr) values in the salty (I = 54.7 mmoVL) and no-salt 

cases (I = 3.4 mmoVL) were found to be 0.072 and 0.020 C/m2, respectively. These 

values corresponded to 69 and 15 AOT -molecules per QD particle; the presence of salt 

increased the AOT content by 4.6 times (see Appendix A, Fig. A2). The difference 

between these estimations from those made from Eq. 2.13 is likely due to the assumption 

that surface potential was not equal to the zeta potential. 

The higher number of AOT molecules per QD in the salty case suggested that the 

AOT layer was more laterally dense than in the no-salt case, resulting in the AOT -oleate 

bilayer being more hydrophobic. To test this hypothesis, we studied the use of the 



57 

solvatochromic dye molecule Nile Red (NR), in which its fluorescence blue-shifts with 

decreasing polarity and increasing hydrophobicity. 116 NR is soluble in hexane, fluorescing 

in the 500-700 nm range (Fig. 2.12 (b), trace 'i'). Virtually insoluble in water, NR was 

solubilized in water using AOT through the same phase transfer process, i.e., a 

hexane/water/ AOT /NR solution was prepared and heated for 30 min to evaporate away 

the hexane to form a micellar solution of NR. Tracking the NR fluorescence conveniently 

allowed us to conclude that 30 minutes was a sufficient length of heating time in the 

phase transfer process (see Appendix A, Fig. A3). 

AOT forms a laterally compressed bilayer 

NP surface 
'no-salt' water 

-~ ....... ......v...~~ so·o 
~ 0 

AOT forms a loose bilayer 

......v... 0 

~so; Aerosoi-OT 
~ 0 

08 NaCI 

(b) NaCI 
Cone. 

+ - Sg/L 

::::;:) 3 g/L 

~ 1 g/L 

~ 0 g/L -·;; 
c: 
C1) 5 giL -c: 

3 giL 

..J 1 g/L a. 
0 g/L 

500 600 700 800 

Wavelength (nm) 

(c) 

c: 
0 
; 
(,) 
ca .... 

LL 
~ -·~ ca 
0 
a. 

0.55 

0.50 wlthZnO NPs 

+----------0.45 , ,--, li 0.40 

0.35 
noZnO NPs 

' 0.30 ! 
0.25 ! 
0.20 

0.15 

0 1 2 3 4 5 

NaCI Cone. (g/L) 

Figure 2.12: (a) Schematic showing AOT-oleate bilayer structure surrounding a NP 
under salty and no-salt conditions. (b) Emission spectra of Nile Red (i) in hexane; phase 
transferred with AOT into (ii) 0, (iii) 1, (iv) 3 and (v) 5 g-NaCl/L; and phase transferred 
with AOT and ZnO NPs into (vi) 0, (vii) 1, (viii) 3 and (ix) 5 g-NaCl/L. Excitation 
wavelength = 480 nm. (c) Plot of polarity fraction, PF=I6o5/(16o5+165o), as a function of 
NaCl concentration for samples phase transferred with and without ZnO NPs, where 16o5 
and 1650 are the average Nile Red PL intensities in the 10 nm band centered at 605 nm and 
650 nm, respectively. 

Fluorescence measurements of NR phase-transferred into water of varying salinity (0, 1, 

3 and 5 giL) showed a broad single peak that blue-shifted from 647 to 626 nm with 
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increasing salinity (Fig. 2.12 (b), traces 'ii'- 'v'). This subtly more hydrophobic nature of 

the AOT micelle interior came from the greater isolation of the water exterior due to the 

tighter packing of AOT molecules. 

Because CdSe QDs and NR fluoresce in the same visible range, we chose to study 

ZnO NPs that did not interfere with NR fluorescence. We prepared ZnO particles (5-nm) 

solvothermally using oleic acid as the ligand 117, and then phase-transferred them with NR 

into 0, 1, 3, and 5 g-NaCl/L solutions (Fig. 2.12 (b)). Without salt, a peak at 647 nm was 

observed (trace 'vi') similar to the case without the ZnO NPs (trace 'ii'). At the higher 

salinities, a blue solvatochromic shift up to 621 nm (traces 'vii' - 'ix') occurred, 

presumably indicative of an increasingly nonpolar environment of the AOT -oleate 

bilayer. Quantitative estimate of the change in polarity was obtained by calculating an 

empirically defined polarity fraction (PF)114, given by PF=16o5/(16o5+165o), where 16o5 and 

1650 are the average NR fluorescence intensities in 10-nm range centered at 605 nm (non­

polar environment) and 650 nm (polar environment), respectively. The PF of NR in the 

ZnO NP bilayers clearly increased with salinity, and the bilayers were slightly more 

hydrophobic than AOT micelles (Fig. 2.12 (c)). We thereby conclude that CdSe QDs in 

salty water had considerably greater long-term PL stability due to their bilayer being a 

better barrier against water penetration. 

We quantified the size of CdSe QDs through several techniques. TEM analysis 

indicated an average diameter of 3.2 nm (relative standard deviation, RSD, of 16%), 

consistent with the first-exciton peak position of ~550 nm)4• No evidence of particle 

aggregation was seen in CdSe QDs phase transferred into no-salt or salt-containing water 

(Fig. 2.13 (a)). DLS measurements of the suspensions, however, indicated otherwise. 
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QDs in hexane and salty water were found to have Dh values of 6.9±0.4 run and 9±2 run, 

respectively, with the difference consistent with the presence of the AOT layer. QDs in 

DI water, on the other hand, had a Dh value of 17±1 run. While the transfer of QDs into 

salty water resulted in discrete and unaggregated particles, the transfer into DI water 

seemingly resulted in aggregates containing as many as 7 particles (e.g., volume ratio = 

(17-run)3/(9-runf- 7). 

(b) 
100 -r------------. 

>. 
(,) 
c 
~ 80 
11:7' 

~ 60 

"' .! e 4o 
0) 

- 'Salty' water 
.! .E 20 

--·'Nc:>-salt' water 
0..._-----~----' 

0 50 100 150 

S-Value {x 10·13 sec) 

(c) 100 

>. 80 
(,) 
c 
Q) 

60 j 
0" 
! u.. 40 
~ 0 

20 

- 'Salty' water 
I --·'No-salt' water 
~ :: •, :. 
:~";. 
I I 
I I 
I I 
I I 
I I 
I 1 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

20nm 

\ : ; QJ.....--..L.L.--..__......_ __ ___. 

0 10 20 30 40 

Hydrodynamic Diameter (nm) 

Figure 2.13: (a) TEM images of CdSe QDs drop-cast from hexane, salty, and no-salt 
suspensions. (b) Sedimentation coefficient distributions and (c) hydrodynamic diameter 
distributions of CdSe QDs in salty and no-salt water suspensions calculated from 
analytical ultracentrifugation measurements. 1 Svedberg= 10-13 sec. 

The DLS results were confirmed through analytical ultracentrifugation experiments. The 

average sedimentation coefficients of CdSe QDs in salty and DI water were found to be 
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21±0.5 S and 58±5 S respectively (Fig. 2.13 (b)). For comparison, oleate-coated CdSe 

QDs (3-nm core diameter) dispersed in toluene were reported to have a sedimentation 

coefficient of 25 S, 102 as estimated by from Eq. 2.10. 

The QDs in salty and no-salt water had mean Dh values of 9.4 nm ( 1.1%) and 20 

nm (4.5%), respectively (Fig. 2.13(c)). This aggregated state of QDs dispersed in DI 

water may be partially responsible for the observed lower QY through self-quenching 

(Fig. 2.10 (c)). It is not entirely clear why QDs are aggregated in the absence of salinity, 

but this could be related to observations that oil (hexane)-containing QDs and AOT, 

when mixed into a NaCl solution, formed stable nanometer-sized 0/W emulsion droplets. 

Unstable micron-sized emulsion droplets were formed when hexane-QD-AOT 

was added to DI water resulting in rapid coalescence and phase-separation of the oil 

phase (Fig. 2.14). 118
' 

11 9 The role of salt in the emulsification of hydrocarbons and 

associated mechanisms of emulsion destabilization is the subject of Chapter 3 in this 

thesis. 

(a) (b) 

Figure 2.14: Emulsions of hexane in (a) salty-water (3 g-NaCl/L) and no-salt water 5 
minutes upon formation. The hexane phase contains CdSe QDs with AOT as the 
emulsifier. 
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Figure 2.15: Colloidal stability of salty and no-salt suspensions of CdSe QDs at higher 
NaCl concentrations. pH= 6. 

Lastly, to probe colloidal stability in greater detail, we first equalized QD concentrations 

in salty and no-salt water. Upon this, the salinity of both suspensions was systematically 

increased and after centrifugation, QDs that remained in suspension was measured using 

UV -vis. More than 20% of QDs were lost after salinity adjustment and centrifugation, 

indicating the no-salt suspension (in vial #2, Fig. 2.10 (a)) had lower colloidal stability 

than the salty suspension (in vial #1, Fig. 2.10 (b)). Increasing the salt content of both 

solutions further (up to 5 times), showed the salty suspension to be generally more stable 

than the no-salt suspension (Fig. 2.15). Salty suspensions of phase-transferred QDs would 

thus be suitably stable in human blood (equivalent salinity of ~9 g-NaCl/L), unlike DI 

water suspensions. It is conceivable that for phase-transferred QDs to be made colloidally 

stable at higher salinities (for example, representative salinity values of sea water is 35 g-

salts/L and that of downstream oil-containing reservoirs are 58.5 g-NaCl/L and 74.5 g-
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KCl/L), appropriate selection of alternate surfactants becomes critical. These are the 

subjects of Chapters 3 and 4 in this thesis. 
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Figure 2.16: UV-vis absorbance spectra of (a) alkylthiol-coated Au NPs suspended in 
hexane, (b) C6o suspended in benzene, and (c) oleate-coated ZnO NPs in hexane, and the 
corresponding salty (3 giL NaCl) and no-salt water suspensions; phase-transfer agent = 
AOT (for Au and ZnO NPs) or CTAB (for C6o). Inset: photographs of NP suspensions. 

Other NP compositions (e.g., Au, C6o and ZnO) and shapes (e.g., tetrapods) have been 

successfully transferred with this technique. In all cases, (i) the amount of NPs 

transferred into salty water was always higher compared to DI water; (ii) the 

hydrodynamic diameter was smaller in the presence of salt; and (iii) charge density 

estimations (from zeta potential analysis) were always higher in the presence of salt 

(Table 2.1). Thiol-coated Au NPs with a diameter of 6.3-nm (RSD = 5.8%) were 

transferred into salty-water with high yield (87% ), but the yield into DI water was 

considerably lower ( 17%) as shown by the much more dilute suspension 

(Fig. 2.16 (a)). The reason for higher transfer yield in salty-water is not fully understood 

although it appears that the decreased aqueous surfactant solubility in the presence of salt 

may be contributing to this effect. The decreased solubility would result in an increased 
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partitioning of surfactants to the emulsion interface, making more surfactant molecules 

available for NP stabilization after the oil phase is evaporated. 

Table 2.1: Hydrodynamic diameter, zeta potential measurements and charge density 
estimations for different NPs phase transferred in no-salt and salt water (3 g-NaCl/L). 

Core 
Hydrodynamic Dia. 

Zeta Potential''' (mV) 
Estimated Charge 

NPType Dia. Ligand 
Expec** 'Db' (nm) density 'a' (C/rrf) 

(nm) 
'Dh' (nm) 

Dl Water 3 g/L NaCI Dl Water 3 g/L NaCI Dl Water 

CdSeQD 3 OA 9 17 ± 1 9±2 -77± 3 -91 ± 6 -0.0203 

Au 6.5 DDT 10.5 22.5 ±2.5 9.3 ± 0.5 - 64.6± 5.8 - 88.1 ± 6.4 -0.015 

CdSe TP 20* OA 20# 31.9 ± 2.3 21.4± 1.7 - 76.6 ± 3.4 -79 ± 5.9 -

C6n& - - - 46.5 ±4.4 21.4± 1.5 + 71.3 ± 2.6 +68.9± 1.9 +0.016 

Fe20, 8 OA 14 29.8 ± 2.9 21.1 ± 1.6 -32.4 ± 4.0 - 81.2 ± 2.4 -0.006 

** - expected hydrodynamic diameter for individually dispersed nanoparticle 
•- the diameter ofCdSe tetrapods was taken as twice the length of the arms (~10 nm) 
#-most of the AOT will form bilayers along the length of the TP arms. With the very small 

area of the ann tip, we can assume the hydrodynmic diameter to be the same as the core dia. 

& - C60 was transferred with cetyltrimethylammonium bromide (CT AB) 

OA refers to oleic acid and DDT refers to dodecanthiol 

3 giL 
NaCl 

-0.0724 

-0.092 

-

+0.054 

-0.07 

It appears that C6o buckyballs, which do not have an organic ligand coating, could also be 

phase-transferred into salty water in much the same manner (Fig. 2.16(b)). With the 

purplish color of the benzene suspension being a signature for unaggregated C60120, the 

yellowish color of the salty suspension indicated the presence of suspended but 

aggregated particles of C60.121-123 The no-salt suspension was not visibly yellow, as the 

transfer yield was quite low (-5%). Reports show that C60 can be phase transferred 

directly without surfactant into water to produce "nC6o" aggregates by stirring C6o-

containing tetrahydrofuran or toluene with water and removing the organic solvent. 121 • 123 

In our processing, CT AB was needed for phase transfer to occur as control experiments 
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confirmed that C60 did not transfer into either salty or deionized water without CT AB. 

The benefits of using salt in the emulsion-based phase transfer of NPs appeared to be true 

not only for different NP types, but also for different surfactants (AOT and CTAB: See 

Appendix A, Fig. A4) and salts (NaCI, Na2S04 and CaCh: See Appendix A, Figs. AS and 

A6). 

2.2.5 Conclusions 

In conclusion, we have shown that a simple process modification of using salty-water 

instead of DI water in the emulsion-based method of transferring NPs from oil to water 

results in several benefits. Formation of compact surface-dense micelles in salty water 

better protects the surface of QDs and increases the transfer yield of NPs. The process 

results predominantly in individual NPs micelles with a narrow size distribution and high 

surface charge density due to better surfactant screening. These improvements increase 

the colloidal stability of the NPs making this process an elegant, economically promising, 

and effective method of transferring NPs from oil to water. 
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Chapter3 
Spontaneous Emulsification of Hydrocarbon/ Aerosol-OT /Brine Systems 

3.1 Introduction 

In Chapter 2, we described a new development in the method to phase-transfer NPs from 

oil to water. 1 We showed that the presence of electrolytes improved phase-transfer 

efficiency of NPs in bilayers of surfactants. Addition of electrolytes transferred NPs as 

single particles and with higher surfactant coverage on the NP surface over those in no-

salt water. The lateral compactness of salty-micelles in the presence of electrolytes was 

higher than in DI-water micelles- a key factor in conserving optical properties of CdSe 

QDs. 

It is not entirely clear why NPs transfer as aggregated clusters in the absence of 

salinity and as single particles when transferred with salt. This could be related to 

observations that oil (hexane)-containing QDs and AOT, when mixed into NaCl-brine, 

formed nanometer-sized 0/W emulsion droplets that were stable to coalescence. On the 

other hand, unstable micron-sized emulsion droplets formed when the hexane-QD-AOT 

blend was added to DI water (Fig. 2.14). NaCl thus in addition to salting-out AOT to the 

QD surface as described in Chapter 2, also serves to emulsify hexane into tiny droplets 

and stabilize them against coalescence for several hours. A point noteworthy is that 

emulsification of hexane droplets, both in NaCl-brine and DI water, required minimal 

external energy or was restricted to gentle mixing. The role of NaCl in emulsifying a 

hydrocarbon by the mechanism of spontaneous emulsification is the subject of this 

chapter. 

Spontaneous emulsification, i.e., emulsification which occurs without application 

of external work, is an intriguing phenomenon which has attracted considerable past 
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attention?-6 It is useful in that for suitable conditions, emulsions having small droplets 

can be formed without application of high shear rates, which may be impractical in some 

situations or have adverse effects on materials being used. 7"9 In recent years, formation 

and application of nanoemulsions, thermodynamically unstable emulsions having droplet 

sizes down to 100 nm and even smaller, have been investigated. While nanoemulsions 

can be prepared at high shear rates using suitable homogenizers, 8• 9 the discussion here is 

limited to nanoemulsions formed spontaneously for applications such as personal and 

household care products,5' 6• 10• 11 drug delivery,5-7• 11 "21 particle synthesis,1• 5"7• 21 -23 , 

detergency. 5• 6• 24"26 and nanoparticle phase-transfer. 1 Reviews on nanoemulslons formed 

by both external mechanical means and spontaneous emulsification may be found 

elsewhere.3' 5• 6• 18' 22 

Although it has been proposed that spontaneous emulsification may be caused by 

mechanical mechanisms such as interfacial turbulence and interfacial expansion due to 

negative interfacial tension, the emphasis here is on spontaneous formation of emulsions 

resulting from local supersaturation.2• 3• 5• 6 Supersaturation can be produced by changes 

in composition3• 5-7, 18• 20-22• 26-37, temperature5"7• 18• 36• 38-40 or pressure. 18 Local composition 

can be varied by mixing and/or diffusion when liquids not in equilibrium are contacted, 

by chemical reaction, or by some combination of these effects.41 Understanding 

emulsification produced by local supersaturation requires, among other things, 

knowledge of equilibrium phase behavior for the system at conditions of interest.2"7• 18• 26-

44 

In this body of work, the primary interest is in processes involving spontaneous 

emulsification which can convert all of an initial oil-rich phase containing one or more 
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surfactants and a small amount of water or NaCl-brine to small droplets. Towards the 

above, external inputs of energy such as high-shear mixing is not required although in a 

select few cases, gentle mixing is used to hasten homogenization, a process known as 

self-emulsification. In the emulsification process, the initial composition is an oil-

continuous solution or an oil-continuous microemulsion. Previous work had shown that 

emulsions consisting entirely of small droplets of oil -- in some cases nanoemulsions --

could be generated in many such systems by completely converting the initial phase to a 

phase that was supersaturated in oil, leading to nucleation of tiny oil droplets. 3, 5, 6, 26-28, 33 

The desired emulsions of micro- or nanodroplets could be obtained if aggregation, 

coalescence, and growth by Ostwald ripening were minimized. 

If the spontaneous curvature of the surfactant films in the initial microemulsion 

favors water-in-oil (W /0) arrangement, supersaturation in oil can be achieved by a 

combination of reversing the sign of the spontaneous curvature to favor an-oil-in-water 

(0/W) arrangement and increasing the water-to-oil ratio in the system (Fig. 3.1 ). One 

method of reversing the spontaneous curvature is to change the surfactant composition of 

the films either by mass transfer of surfactants into or out of the films by diffusion 3-6, 26-

28, 33, 35 (Fig. 3.2) or by chemical reactions.41 For ionic surfactant systems, changes in 

ionic strength can cause spontaneous curvature to reverse, causing self-emulsification. 28 

Another is to change the temperature near the film, which leads to what Shinoda has 

called Phase Inversion Temperature or PIT emulsification.7' 23' 38-4°, 45-47 The temperature 

change must take the system across the PIT, where spontaneous curvature is zero. For 

ionic surfactant systems, changes in ionic strength can cause spontaneous curvature to 

. lf 1 'fi . 28 reverse, causmg se -emu s1 tcatwn. 
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Figure 3.1: Transitions between Winsor I B Winsor III B Winsor II domains of ternary 
Oil/Surfactant/Water systems. Surfactant solubility altering variables such as 
temperature, salt, and co-surfactants change the spontaneous curvature of the surfactant 
from what favors an Oil-in-Water configuration (Winsor I) to a Water-in-Oil 
configuration (Winsor II). 
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Figure 3.2: Spontaneous emulsification of hexadecane produced by a diffusion-based 
mechanism from mass transfer of octanol out of and mass transfer of water into an oil 
droplet comprising ofhexadecane/CsOH/C12E6 droplet (adapted from Rang and Miller). 
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For suitable conditions dilution with water or brine yields 0/W nanoemulsions whose 

droplets can remain small for considerable time if, when nucleated, they are coated with a 

thin layer of the lamellar phase, which hinders flocculation and coalescence and slows 

Ostwald ripening.3"7, 2544 Most past work on spontaneous emulsification has focused on 

determining when it will occur in a system or class of systems, what mechanism(s) 

causes it, and, in some cases, the mean droplet size or size distribution at some chosen 

"end" of the process.3' 5' 6' 25 ' 33' 35 Less attention has been given to quantifying the initial 

mean size and size distribution, tracking droplet size changes with time, and elucidating 

mechanism(s) of droplet growth. This information is often relevant to the effective design 

of applications that are based on nanoemulsions. 

The present work shows and discusses changes over time in mean droplet size for 

different compositions where spontaneous emulsification occurs upon dilution with water 

or NaCl brine of an oil-rich n-octane/anionic surfactant/water or NaCl brine mixture. 

Also discussed are the mechanisms of droplet growth or shrinkage operating in different 

Winsor regimes. The anionic surfactant used is sodium bis(2-ethylhexyl)sulfosuccinate, 

commonly known as Aerosol OT or AOT. 

For this study, octane was selected as the hydrocarbon over hexane that was used 

for NP phase-transfer. This was due to the following reasons: (i) Extensive phase 

diagrams and the cross-over salinity for Octane/AOT/Water/NaCl-Brine system are 

readily available. (ii) Hexane (being volatile) does not easily allow for long term studies 

to monitor droplet size evolution, hence a higher molecular weight hydrocarbon in octane 

(with lower vapor pressure) and that belongs to the same homologous series was used. 

Further, through the use of available empirical correlations38, the findings of 
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destabilization mechanisms for octane-based emulsions can be conveniently extrapolated 

to the Hexane/AOT/Water/NaCl-Brine system. 

Kunieda and Shinoda reported that the conditions for obtaining balanced 

microemulsions solubilizing equal amounts of oil and NaCl brine were nearly the same 

with AOT for n-octane and i-octane.47' 48 At 25°C the required salinity is approximately 

0.3% NaCl by weight. Both Kellay et al using n-octane and Maugey and Belloq using i­

octane found similar values.44' 49 However, the former group reported that the phase in 

equilibrium with excess brine and oil was the lamellar liquid crystalline phase and not a 

microemulsion. A diagram presented by the latter group shows that the lamellar phase 

exists very close to the balanced condition at 0.3% NaCl but does not make clear whether 

a microemulsion is present. Perhaps the situation is similar to that reported by Hackett 

and Miller for other anionic surfactant systems where both phases can coexist with excess 

oil and brine for some conditions near the balanced state. 50 

As shown below, the type of emulsion or nanoemulsion formed during self­

emulsification in the Octane/AOT/(water or NaCl brine) system and the time-dependent 

behavior of droplet size depend mainly on the salinity of the brine used to dilute the 

initial oil-continuous microemulsion. When NaCl concentration is below 0.3 wt%, where 

spontaneous curvature favors an 0/W arrangement (Winsor I region), an 0/W 

nanoemulsion forms with initial droplet sizes of 150-250 nm that increase over time to 

500 nm - 1 J..lm. When NaCl concentration is 0.3 wt% (Winsor III region), a 

nanoemulsion with drops of order 50-1 OOnm, whose droplets grow little over time, is 

observed. At higher salinities, where spontaneous curvature favors a W /0 arrangement 

(Winsor II region) but where water-to-oil ratio is high after dilution, W/0/W multiple 
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emulsions are formed with drop size decreasing with increasing time. 6 It bears emphasis 

that in most of our experiments the final mean drop size was below 1 Jlm, which was 

achieved without external energy inputs. 6 

Electrophoresis studies showed nanoemulsions to have highly negative zeta 

potentials(- 60 mV to -120 mV). The corresponding high negative charge on the octane 

droplets helped assure stability to flocculation and coalescence, thereby allowing mass 

transfer to control growth in the Winsor I and III regions and contributed to the stable 

nature of the nanoemulsions. 

3.2 Materials and Methods 

3.2.1 Preparation of Microemulsions 

For microemulsions prepared with water, the compositions of investigated systems were 

(in weight ratios of Octane/AOT/Water), 60/30/10, 70/20/10, and 80/10/10. Reagent 

grade (99.9% pure) n-octane (or simply octane) was procured from Sigma Aldrich, USA. 

Aerosol-OT [AOT: sodium bis(2-ethylhexyl) sulfosuccinate] was obtained from TCI 

America. Sodium chloride (reagent grade) was obtained from Merck, USA. Ultra pure 

water with 18.2 MO-cm resistivity (Barnstead Nanopure Diamond System) was used in 

the preparation of all solutions and microemulsions. All chemicals were used as obtained 

and without any further purification. For microemulsions prepared with brine, the base 

composition of the system was 70/20/10 (in weight ratios of Octane/AOT/NaCl-Brine). 

The brine concentrations (expressed as %E, wheres = ( salt )) were 0.2, 0.3, and 
salt+ water 

0.4, all by weight. All microemulsions prepared were stored in stoppered containers to 

prevent changes in composition from evaporation. 
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3.2.2 Preparation of N anoemulsions 

For droplet growth and size studies, nanoemulsions were prepared by diluting 

microemulsions in excess brine at 25°C such that final AOT concentration was at 1.5 giL 

(0.15 wt %). The typical batch size of nanoemulsions prepared was 30 mL. Emulsions 

mostly formed spontaneously; although, in a few situations, minimal agitation (restricted 

to gentle hand shaking or self-emulsification) was required. Brine concentrations were 

chosen such that nanoemulsions formed in various Winsor (I, III, and II) regions.44 For 

phase-behavior studies, nanoemulsions were prepared at AOT concentrations of 1.5 and 

15 giL, stored in 30 mL stoppered vials, and visually inspected under plain and polarized 

light to determine phase domains and detect the possible presence of liquid crystalline 

phases of AOT. 

3.2.3 Characterization of Emulsions 

3.2.3.1 Phase Behavior Studies 

For phase-behavior studies, nanoemulsions were prepared as per the method described 

above. Nanoemulsions at the higher AOT concentration were especially prepared to 

clearly delineate octane domains from brine by a higher octane volume fraction. 

Photographs were taken periodically under controlled illumination over a time duration 

spanning 4 weeks. 

3.2.3.2 Polarized Light Screening System 

Polarized light screening technique was used to capture macroscopic liquid crystalline 

domains of AOT in nanoemulsions prepared at different salinity levels. 51 In this set up, 
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diffused light was transmitted through a polarizer set at 0°, with an analyzer set 

orthogonal to it. Nanoemulsion vials were placed in between the polarizer and analyzer 

and liquid crystalline phases were identified by bright birefringence patterns displayed 

with polarized light. 

3.2.3.3 Interfacial-Tension Measurements 

Interfacial tension (IFT) between octane and nanoemulsions prepared at various brine 

salinities were measured using a spinning-drop tensiometer (University of Texas Model 

300). A drop of octane was injected into the capillary tube containing the emulsion. For 

gravitational effects to be negligible and certain approximations to be valid, the capillary 

was rotated at high angular velocities (p) so that the ratio of the length of the cylindrical 

oil drop (L) to its diameter (d) exceeded four. 52 

Octane-nanoemulsion IFT (y) was calculated using the relation: 

(3.1) 

Where: d = diameter of the cylinder, 11 = refractive index of the continuous phase 

(measured using a Milton Roy Refractometer), ~pis the density difference between the 

continuous and dispersed phases, and (p) is the angular velocity. For a specific capillary 

rotation, droplet shape remained constant over several minutes, indicating negligible 

effects of dynamic tensions. 
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3.2.3.4 Dynamic Light Scattering 

Droplet size of nanoemulsions was determined usmg ZetaP ALS (Brookhaven 

Instruments Corporation) DLS instrument at 25 °C with a He-Ne laser (A.= 656 nm), a 

detector set at 90°, and a BI-9000AT digital autocorrelater that records scattered light. 

The laser was stabilized for a recommended time of 15 minutes prior to making 

measurements and periodically tested against a company-supplied polystyrene standard 

(diameter: 92 ± 3 nm) to ensure reliable functioning of the instrument. Nanoemulsions 

prepared were transferred to 4 mL stoppered-polystyrene cuvettes and analyzed in 

triplicates over intervals of 3 minutes to ensure reproducibility. Droplet diameter 

measurements were carried out as a function of time. Prior to each measurement, the 

sealed cuvettes were gently hand shaken to ensure homogenization. The diffusion 

coefficient of the dispersed phase (octane) was estimated using a built-in routine and the 

droplet diameter was calculated using the Stokes-Einstein relationship (Eq. 2.7). Volume 

and intensity-based nonlinear constrained least square (NNLS) and CONTIN fitting 

routines were used to size droplet diameters by the instrument software 9KDLSW. 

3.2.3.5 Zeta Potential Measurements 

Zeta potential of the nanoemulsions was estimated from electrophoretic mobility 

measurements using phase analysis light scattering (PALS) in the Brookhaven ZetaP ALS 

setup. A dip-in (Uzgiris type) electrode with 4 mL polystyrene cuvettes was used and 

measurements were carried out at 25 °C. Henry's equation (Eq. 2.8), valid for the 

condition 0.01 ~ Ka ~ 100, was used to calculate zeta potential (l;), using either 

Smoluchowski' s or HUckel' s approximation. 53• 54 
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3.2.3.6 Optical Microscopy 

Optical and fluorescence microscopy studies of nanoemulsions were carried out with an 

optical microscope (Olympus IX71), under an oil-immersion 100X objective lens 

(Numerical Aperture (NA) 1.4). For microscopy studies, a 70/20/10 

Octane/AOT/Water microemulsion was prepared where octane was doped with a 

hydrophobic, octane-soluble dye (Nile Red, Sigma Aldrich, "-Excitation = 450-500 nm, 

AErnission = 528-605 nm). 

Nanoemulsions were prepared at 1.5 giL AOT and in different Winsor salinities. 

Small volumes (15 J.LL) of these nanoemulsions were transferred onto a microscope slide 

and sealed under a cover slip. These nanoemulsions were observed in bright field and 

fluorescence modes (Texas Red Filter) over several time durations across 24 hours. In 

addition, polarized light microscopy studies were performed with a Zeiss Axioplan 2 

polarized light microscope using a 1 OX lens and a 63X oil-immersion lens with 1.4 NA. 

Images were taken under bright field and cross-polarizer modes. For the latter, the 

polarizer was set at 0° and -45° and the analyzer set orthogonal at 90° and + 45° 

respectively. Studies were carried out over 4 weeks, with fresh microscope slides 

prepared from the same stock of nanoemulsions, till the lamellar coating of AOT at the 

octane/water grew thick enough to show birefringence. 

3.3 Results and Discussions 

3.3.1 Phase Behavior and Interfacial Tensions of Octane-AOT -Brine Systems 

In the present study, spontaneous emulsification was generated by dilution with water or 

NaCl-brine of oil-continuous microemulsions having Octane/AOT/Water compositions 
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with ratios of 60/30/10, 70/20110, and 80/10110 by weight (Fig. 3.3). These ratios were 

chosen because they were used previously in video microscopy experiments for the same 

system?8 AOT concentration after dilution was set at 1.5 g/L, where all of the oil was 

emulsified. However, identification of phases present was facilitated by using higher oil 

and surfactant concentrations. 

n-Ocun 

WATER AOT 

Figure 3.3: Phase diagram of n-Octane/AOT/Water ternary system. The three blue dots 
represent (from bottom to top) 60/30/10, 70/20/10, and 80110/10 weight ratios of 
Octane/ AOT /Water corresponding to an L2 phase or W /0 microemulsion phase. The red 
arrow corresponds to the dilution levels (but not dilution path) from the L2 domains to 
0/W emulsion domains where AOT concentration levels are 1.5 g/L (adapted from 
Nishimi and Miller). 

Figs. 3.4 and 3.5 shows phase behavior for dilution at four salinities of 70/20/10 salt-free 

microemulsions to final AOT concentrations of 1.5 g/L and 15 g/L, respectively, 

resulting in water-continuous nanoemulsions. Images taken across several time points 

showed creaming/separation of an oil-rich phase when dilutions were made with NaCl 

solutions having %E = 0, 0.2, and 0.4. Based on information from the literature of this 

system, (phase behavior studies by Maugey and Bellocq - (Fig. 3.6)44
, Kunieda and 
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Shinoda47' 48, Kellay et al 49) and on the sharp minimum in 1FT at %e = 0.3 (to be 

discussed in Fig. 3.8), it is concluded that phase behavior is in the Winsor I region for %e 

= 0 and 0.2 and in the Winsor II region for %e = 0.4. Indeed for %e= 0.4 separation of an 

oil-continuous microemulsion can be seen after 28 days in Fig. 3.4 and after 4, 14, and 28 

days in Fig. 3.5. 

For dilution with %e= 0.3, bulk phase separation did not occur even after 4 weeks 

and a uniform blue nanoemulsion was seen for AOT at 1.5 giL. It is not considered to be 

an equilibrium single-phase microemulsion because oil and brine solubilization would be 

nearly equal at this salinity, in contrast to the actual composition where there is far more 

brine than oil. For AOT at 15 giL the cloudiness for %e= 0.3 indicates the presence of an 

emulsion or dispersion but with drops or particles small enough that no substantial 

creaming occurs. In addition Fig. 3.7 shows some static birefringence. Probably both oil 

drops and the lamellar liquid crystalline phase are dispersed in the aqueous phase 

although whether present as separate entities or as small oil drops coated by the lamellar 

phase is not clear. In the latter case the lower density of octane and the higher density of 

AOT compared to water could result in an overall drop density near that of the 

continuous phase and little creaming as observed. When phase behavior studies were 

carried out with 70/20/10 Octane/AOT/Brine microemulsions made· with internal brine 

salinities at %e = 0.2, 0.3, or 0.4, behavior similar to that of Figs. 3.4, 3.5 and 3.7 was 

seen. 
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Day 1 Day 3 

Day 7 Day 28 

Figure 3.4: Time-based phase-behavior of nanoemulsions prepared by diluting W/0 
microemulsions of Octane/ AOT /Water (70/2011 0) in different levels of excess brine. In 
each panel, bulk NaCl-brine salinities correspond to %s = 0, 0.2, 0.3 , and 0.4. Final AOT 
concentration in all solutions was 1.5 g/L. 

Day 14 Day28 

Figure 3.5: Time-based phase-behavior of nanoemulsions prepared by diluting W /0 
microemulsions of Octane/AOT/Water (70/20/10) in different levels of excess brine. In 
each panel, bulk NaCl-brine salinities correspond to %s = 0, 0.2, 0.3 , and 0.4. Final AOT 
concentration in all solutions was 15 g/L. 
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Figure 3.6: Temperature vs. surfactant concentration (%y) phase behavior plots for 
different NaCl concentrations (%E) of iso-Octane/AOT/Brine systems. The red dots 
correspond to room temperature (25 °C) and AOT concentration of 1.5 g/L at which 
Octane/Brine emulsions for this study were formulated. Cross over salinity is seen to be 
at %E = 0.3 (adapted from Maugey and Bellocq). 

Figure 3.7: Nanoemulsions formed by W/0 microemulsions of Octane/AOT/Water 
(70/2011 0) in different levels of excess brine, as seen through cross-polarizers on day 4 
with a polarized light screening system. In the image, bulk NaCl-brine salinities 
correspond to %E = 0, 0.2, 0.3 , and 0.4. Final AOT concentration in all solutions was at 
15 g/L. Birefringence is observed in nanoemulsion formed at %E = 0.3 , indicating the 
lamellar liquid crystalline phase of AOT. 
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Interfacial tensions (IFTs) were measured between drops of n-octane and nanoemulsions 

made by diluting microemulsions having all three initial Octane/AOT/Water ratios 

indicated above with water and NaCl brine. From Fig. 3.8, it can be seen that IFT was 

lowest (0.07 mN m-1) by 1-2 orders of magnitude when the brine concentration (%8) was 

0.3 and instead of 0, 0.2, and 0.4. 

This result further confirmed that cross-over salinity for the system, where 

spontaneous curvature is near zero, occurs near %8 = 0.3 , a result consistent with our 

phase behavior results and previously reported studies.44
' 

47
• 

49
• 

55 IFT measurements were 

made within 1 hour after forming the nanoemulsions. Typically several measurements at 

different speeds of rotation were made within a 2-hour period. During this time, variation 

of steady state IFT was found to be negligible. 
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Figure 3.8: Interfacial tensions of octane with nanoemulsions prepared by diluting 
various W/0 microemulsions of Octane: AOT: Water (60/30/10, 70/20/10, and 80/10/10) 
in different levels of excess brine (AOT = 1.5 g/L). 
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It is noteworthy that the absolute value of the lowest IFT measured was 1-2 orders higher 

in magnitude than previous measurements reported by A veyard et a/ for the same 

surfactant with n-heptane at low surfactant concentrations. 55 However, the salinity range 

of the lowest tensions is very narrow57, so that IFT in our system could well have been 

lower by an order of magnitude for %E only slightly different from 0.3. 

3.3.2 Droplet Size Evolution Upon Diluting W/0 Microemulsions and B/0 

Microemulsions in Different Winsor Salinities 

When W/0 microemulsions of Octane/AOT/Water were diluted in excess water or brine, 

0/W nanoemulsions formed. As indicated previously, the final surfactant concentration 

was fixed at 1.5 g-AOT/L. Three regimes oftime-variant octane droplet size and growth 

rates were found that corresponded to the three Winsor domains of phase behavior 

discussed above. In this section, these trends are discussed for nanoemulsions formed 

from initial microemulsions having a 70/20/10 ratio of Octane/AOT/Water (Fig. 3.9). 

Similar trends in droplet size were observed for nanoemulsions derived from 60/30/10 

and 80/10/10 ratios (see Appendix B: Fig. B1). Section 3.4 gives further information on 

drop size distribution for the nanoemulsions and discussion of growth mechanisms 

responsible for the different variations of drop size with time across different Winsor 

regions. 

Fig, 3.9 shows plots of mean drop size as a function of time when the initial 

70/20/10 microemulsions contained no salt. When dilution was with water, mean drop 

diameter was about 200 nm when the first measurement was made some two minutes 

after initial contact. Diameter increased with time, reaching about 1.2 J..Lm after 24 hours. 
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Initial drop size was about the same, but small decreases in growth rate and drop diameter 

after 24 hours were seen at very low salinity(%£= 0.02). When salinity was raised to%£ 

= 0.2, initial drop size was again about the same but growth rates and drop size after 24 

hours were significantly smaller, the latter being approximately 500-600 nm. Thus, 

qualitative behavior was similar for all three experiments where final phase behavior was 

of the Winsor I type. At the cross-over salinity (%£ = 0.3 , Winsor III region), a bluish 

nanoemulsion formed with an initial droplet mean diameter of 50-60 nm. Growth rate 

was low, with the mean diameter remaining under 150 nm after 24 hours. When the 

microemulsion was diluted into the Winsor II regime with brine having %£ = 0.4 and 1.0, 

droplet diameters measured 1-3 !J.m for the first three hours. Subsequently diameters 

decreased to between 500-700 nm after 24 hours. 
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Figure 3.9: Octane drop size study with respect to time in Octane/Brine nanoemulsions 
obtained by diluting 70/20110 Octane/AOT/Water microemulsions in different levels of 
excess brine (AOT = 1.5 g/L). 
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Similar trends in the three Winsor regions were observed for nanoemulsions derived from 

Octane/AOT/Brine microemulsions (B/0 microemulsions). Behavior is shown in Fig. 

3.1 0 for nanoemulsions derived from B/0 microemulsions with a 70/20/1 0 composition 

ratio and a salinity of the brine phase (%e) of 0.3 (Also see Appendix B, Fig. B2). A 

noteworthy difference was that nanoemulsions prepared at specific brine salinity by 

diluting B/0 microemulsions had droplet sizes lower than corresponding nanoemulsions 

prepared by diluting W /0 microemulsions. 56 The most apparent difference for instance 

were emulsions prepared by inverting the 70/20110 W/0 microemulsion in excess brine 

(%E = 0.2), that yielded octane drops that increased in diameter from 200 nm to 850 nm 

over 24 hours (Fig. 3.9). In comparison, a 70/20/10 B/0 microemulsion with internal 

salinity at %e = 0.3 gave octane drops that marginally increased from 200 nm to~ 250 

nm (Fig. 3.10). 

It is noteworthy that the selected AOT concentration of 1.5 g/L at which 

nanoemulsions were prepared and studied was sufficient to ensure that the entire oil­

water interface was stabilized by AOT. From droplet size diameters measured by DLS, 

the interfacial areas of octane at specific time points were estimated. Thus, using an AOT 

head group area of 0.69 nm2, the required number of AOT monomers to stabilize the 

octane/water interface was estimated. 57-59 It was found that the available AOT monomers 

were at least twice (except when initial droplet diameter was 40 nm) the number that 

would theoretically be required to stabilize octane droplets. Furthermore, the number of 

AOT molecules that were not engaged at the octane/water or octane/brine interface was 

in sufficient excess so as to stack up as lamellar liquid crystals. 
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Figure 3.10: Octane drop size study with respect to time in octane/brine nanoemulsions 
obtained by diluting 70/20/10 Octane/AOT/Brine (%E = 0.3) microemulsions in different 
levels of excess brine (AOT = 1.5 g/L). 

3.3.3 Zeta Potential of Octane Droplets in Different Winsor Regimes 

To obtain insights into changes in octane droplet growth and size, zeta potential 

measurements were made. As depicted in Fig. 3.11, zeta potential of the octane droplets 

was greater (more negative) than- 60 mV and independent of time over 24 hours for 

nanoemulsions derived from 70/20/10 Octane/AOT/Water microemulsions. The high 

negative values suggest strong electrostatic repulsion acting to stabilize the 

nanoemulsions. The magnitude of zeta potential decreased significantly with increase in 

salinity levels, which could be attributed to electrostatic charge screening of sulfonate 

groups on AOT by Na+ counter-ions. Similar trends in zeta potentials were observed for 

nanoemulsions prepared from 60/30/10 and 80/10/10 W /0 microemulsions (See 
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Appendix B, Fig. B3).56 Zeta potentials measurements were used to estimate the 

area/molecule of AOT at the Octane-Water (or Brine) interface. 
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Figure 3.11: Zeta potential of Octane/Brine nanoemulsions obtained by diluting 70/20/10 
Octane/AOT/Water microemulsions in different concentrations of excess brine (AOT = 

1.5 g/L). 

Loeb eta/ derived the following equation for the relationship between surface charge and 

surface potential in a diffuse electrical double layer for a slightly curved spherical surface 

(KR>> 1). s3 , 54 

_ 2sKT [ ·nh( ueo'l' o J 211 J <J--- Sl +-
ue0 2k8 T KR 

(3.2) 

Where: a = surface charge density in cm-2
, c = total permittivity, where c = coer, 

8 0 = permittivity of free space (8 .854x 10-12 C2T 1m-1
) and Er = relative permittivity of 
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water (80.1 ), K = Debye parameter (inverse of the De bye screening length K-1, calculated 

for a 1:1 electrolyte in run as K-1 = 0~, where C =concentration of electrolyte in 
-v[C] 

molar units60), ka =Boltzmann's constant (1.381 xl0-23 JK-1), T =temperature (298 K), 

v = valency of counter-ion (Na+ = +1), e0 = charge on electron (-1.6 x 10-19 C), 

\j!o = surface potential (JC1, surface potential is approximately equal to be the zeta 

potential for indifferent ions54• 60), 11 = tanh(ueo'l'o J, and R =radius of droplet. From the 
4kBT 

surface charge density calculated for several corresponding experimental points in 

Figs. 3.9 and 3.11, the area per molecule of AOT at the Octane-Water (Brine) interface 

was estimated to range between (0.45- 4) nm2/molecule. 

This range agrees in order of magnitude with AOT head-group areas reported in 

literature (0.58-0.70) nm2/molecule.57-59• 61 There are likely cases where head-group areas 

were over-estimated by this procedure. For one, counter-ion binding was neglected with 

the result that the number of AOT molecules at the interface may be greater than that 

corresponding to the surface charge. This is on account of the approximation we made of 

using zeta potential to be equivalent to surface potential in Eq. 3-2. While the 

approximation holds good for higher ionic strengths (%s = 0.2-0.4) where electrical 

double layers are compressed from the counter-ions of salt and the potential drop 

between the surface and diffuse plane is not significantly large, the approximation begins 

to break down at %s = 0, where the source of ionic strength is solely from free AOT 

molecules. Another factor that possibly causes overestimation of head group area is that 

if AOT is present in the liquid crystal phase, the assumption of the monolayer is no 
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longer valid since all AOT molecules will not be present at the interface of octane 

droplets. 

3.4 Mechanism of Octane Droplet Growth in Nanoemulsions 

Three distinct trends of nanoemulsion droplet growth were seen corresponding to the 

Winsor regimes into which W/0 microemulsions were diluted. In the sections below, we 

discuss the trends observed and rationalize possible mechanisms that govern droplet 

growth. 

3.4.1 Nanoemulsion Droplet Growth in Water(%&= 0) 

Fig. 3.12 shows the growth trends of octane droplets when nanoemulsions were prepared 

in water. Starting from an initial droplet diameter of200-300 nm, octane droplets grew to 

around 1 micron in 24 hours. No significant differences in droplet size were found in the 

first 6-7 hours for the three initial compositions shown. Qualitatively however, the 

60/30/10 derived nanoemulsion showed the fastest growth rate of the three 

nanoemulsions beyond 7 hours, and its droplet diameters became statistically greater than 

those of the 80110/10 derived nanoemulsion during this time period. 

Nishimi and Miller had previously found that microemulsion compositions with at 

least 25 wt% of AOT and 10 wt% of water underwent vigorous emulsification upon 

contact with excess water?8 At lower AOT concentrations, convection driven by 

Marangoni flow set m near the injected droplets and was accompanied by little 

emulsification. Their observations were made from experiments performed in a small 

rectangular capillary cell and over relatively short time scales (typically between 30 
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seconds to 3 minutes). In the present study emulsification studies were carried out over 

longer time durations, extending to several tens of hours. Vigorous emulsification of 

octane was observed in all cases, albeit sometimes only after several minutes. For 

instance while an AOT -rich 60/30/10 microemulsion underwent instantaneous and rapid 

emulsification, formulations such as the 80110/10 compositions with lower AOT and 

higher octane content showed considerable delays in emulsification. 
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Figure 3.12: Octane droplet size evolution of nanoemulsions formed by diluting W/0 
microemulsion compositions (Octane-AOT-Water: 60/30/10, 70/20110, 80110/10) in 
excess water (Winsor I) (AOT = 1.5 g/L). 

Destabilization of oil/water emulsions can be attributed to flocculation, coalescence, or 

Ostwald ripening. The first two mechanisms seem unlikely in view of the high zeta 

potentials shown in Fig. 3.11 , which indicate substantial electrostatic repulsion among 

drops. Additional arguments against these mechanisms are given in Section 3.4.2 below. 
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The size distribution of the drops formed when dilution was with salt-free water (%E = 0) 

was unimodal, particularly for time periods of 1-15 hours (Table 3.1 ). 

Table 3.1: Population distribution of octane nanoemulsions at select time points showing 
unimodal distribution when 70/20/10 Octane/AOT!Water microemulsions were diluted in 
excess water (%E = 0, AOT = 1.5 g/L) 

Time (hr) Droplet Population Droplet Size 

Diameter G(d)* C(d)** Mean Diameter1 % 
(d) (nm) (nm) Deviation1 

193 20 27 

1 231 100 88 234 18.1 

278 20 100 
727 26 21 

5 800 100 85 803 7.68 
850 50 100 
815 25 6 
844 95 29 

10 900 100 53 946 9.67 950 95 75 
1010 100 97 
1047 80 100 

* G( d) = Weighting function generated by autocorrelator 

* * C( d) = Cumulative distribution function generated by autocorrelator 

1For a droplet population, the autocorrelator determines the mean diameter using the 

formulae listed below. 

I 

[
" d~G(d.)J3 . L.J 1 1 • • Standard Deviation 

Mean dtameter = ~ , % Dev1at10n = x 100 
L.J G( dJ Mean Diameter 

i 

This behavior is characteristic of the asymptotic stage of Ostwald ripening where larger 

droplets grow at the expense of smaller droplets. The driving force is increased solubility 
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of dispersed octane droplets in the continuous phase as droplet curvature increases. 

Consequently, there is a higher concentration of solubilized dispersed phase molecules 

around smaller droplets than larger droplets that gives rise to a concentration gradient and 

results in transport of molecules from smaller to larger droplets. 62-66 

The asymptotic growth of oil droplets by Ostwald ripening can be described by 

the Lifshitz-Slyozov-Wagner (LSW)67' 68 theory, which predicts a variation of mean 

droplet radius (ri) with elapsed time (t) when droplets grow through molecular 

diffusion. The growth/ripening rate (ro3) is given by Eq. 3.3: 

(3.3) 

Where: ro3 = growth/ripening rate with a subscript of 3 indicating a cubic variation of 

droplet radius (rN) with time, C., = equilibrium solubility of octane in water 

(6.83 x10-3 mol m-3) 69, y = interfacial tension between octane and nanoemulsion 

(measured between 0.4-1.2 mN m-1, (Fig. 3.8), Vm = molar volume of octane 

(0.000164 m3 mor1) 69, R =gas constant (8.314 J mor1 K-1), and T =temperature (298 

K). D = molecular diffusivity of octane (m2 s-1, estimated to be ~ 7.56 x 10-6 cm2 s-1 at 

298K and consistent with the literature70 as calculated from the Wilke-Chang equation71 , 

D = 7.4 x 10-8 ~'l'sMs T where, 'I'B = association parameter (2.6 for water), Ma = 
!J.V1·6 

molecular weight of octane (114 gmor1), T = temperature (298 K), ll = viscosity of 

octane(~ 0.514 centipoise at 298 K), and VA= molar volume ofwater (18 cm3/mol)). 
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Using the above parameters, the theoretically estimated growth rate ( co3,theo) was found to 

range between (2.18 - 6.07) x 1 o-25 m3 s-1 (Table 3 .2), which is consistent with calculated 

growth rates reported in the literature for comparable hydrocarbons (octane-decane).64
• 

66
• 

72
-
75 We found that, based on the data of Fig. 3.12, the cube of the mean radius showed a 

reasonably linear dependence on time, as shown in Fig. 3.13, but that the slope ( COJ ,expt) 

was greater than the predicted ( co3,theo) by a factor of 3-14. In the literature, 

experimentally determined growth rates of hydrocarbon/water emulsions have been 

reported to exceed calculated growth rates by a factor of 1-3 orders ofmagnitude.64
• 

66
• 

70
• 

73
-
76 Thus, growth by diffusion-controlled Ostwald ripening seems a reasonable 

explanation for our results in salt-free systems. 
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Figure 3.13: Plot of R3 vs. t for nanoemulsions prepared by diluting 60/30/10, 70/20/10, 
and 80110/10 Octane/AOT/Water microemulsions in excess water (Winsor I domain, 
AOT = 1.5 g/L). 
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Linear time variation of R3 was also observed when nanoemulsions were formed by 

diluting 70/20/10 (Octane/AOT/Brine) B/0 microemulsions in excess water, i.e., initial 

microemulsions with water replaced by NaCl solutions having %E of 0.2, 0.3 and 0.4. As 

in the salt-free case, droplet size distributions were found to be unimodal.56 Furthermore, 

experimentally determined ripening rates ro3 were slightly lower for nanoemulsions 

derived from initial B/0 microemulsions than from initial microemulsions containing 

water (See Appendix B4 Fig. B4) but still greater by factors of between 3-5, than the 

theoretical values of ro3 shown in Table 3 .2. Because mixing during nanoemulsion 

formation is incomplete, salinity may be nonzero near the growing drops, which would 

reduce both 1FT and octane solubility and hence growth rate, according to Eq. 3.3. 

Table 3.2: Comparison of experimentally measured and theoretically calculated Ostwald 
Ripening Rates of octane/water nanoemulsions when excess brine is zero (%E = 0, AOT 
= 1.5 g/L). 

Starting ffi3,expt y (octane- ffi3, theo Factor 

microemulsion (experimentally nanoemulsion (theoretically ( ffi3,exptf ffi3,theo) 

to prepare measured) (m3s"1) 1FT) (mN m"1) estimated) (m3s-1) 

nanoemulsion 

60/30/10 3.69 X 10"24 12.03 6.07 x 10"25 6 

70/20/10 3.11 x 10"24 4.32 2.18 x 10"25 14 

80/10/10 1.80 x 10-24 11.9 6.01 x 10"25 3 

When viewed under the optical microscope in fluorescence mode, droplets with mean 

diameters of the order of 1 f-Lm were observed 24 hours after forming the nanoemulsions 

in %E = 0 (Fig. 3.14, top panel). The population appeared to be unimodal, which is 

consistent with the DLS results. When observed under the microscope through cross-
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polarizers, birefringence was not initially observed. However, after about 4 weeks and 

after a few octane droplets had grown to reach larger dimensions (diameters of 1 0 - 50 

).lm), birefringence was clearly observed at the octane/water interface (Fig. 3.14, bottom 

panel), demonstrating the presence of a layer of the lamellar liquid crystalline phase. 

Figure 3.14: Optical micrographs of nanoemulsions (upon diluting 70/20/10 
Octane/AOT/Water microemulsion) in excess water, %E = 0, AOT = 1.5 g/L. (a) Top 
panel, image under fluorescence mode, 24 hour upon forming nanoemulsions (Scale bar: 
10 ).lm). (b) Bottom panel. Images taken in bright field and under cross-polarizers after 4 
weeks (all scale bars: 50 ).lm). Prominent birefringence patterns observed around large 
octane droplets (25-50 ).lm) and at the octane/water interface for (i) Central image: 
polarizer set at 0° and analyzer set orthogonal at 90°. (ii) Right comer image: polarizer 
set at -45° and analyzer set orthogonal at +45°. 

Upon rotating the polarizer/analyzer arrangement from a 0°/90° configuration to a 

-45° /+45° configuration, a corresponding shift in the regions of dark bands to that of the 

shift in polarizer/analyzer configuration occurred. Weak birefringence could be seen 

through the microscope eyepiece for drops with diameters below about 1 0 ).lm, but was 



107 

not captured by the photographs. The absence of visible birefringence during the first 24 

hours of growth is consistent with the conclusion above that growth during this period is 

due to diffusion-controlled Ostwald ripening. 

Probably the lamellar phase coating IS nonexistent or very thin initially but 

thickens over time and could eventually provide an interfacial resistance to mass transfer 

of octane between the drops and aqueous solution. This is consistent with the fact that a 

thicker lamellar phase coating with increasing salinity provides greater interfacial 

resistance to mass transfer of octane. This is also consistent with the observed slower 

growth rates when dilution of a W /0 microemulsion is made in N aCl solutions, for 

instance with %8 = 0,2 and 0.3 , than with water (Fig. 3.9). This is also consistent with the 

fact that nanoemulsions formed upon diluting B/0 microemulsions show slower growth 

rates in %8 = 0 when compared with a nanoemulsion formed with a W/0 microemulsion 

(Fig. 3 .15). 
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Figure 3.15: Octane droplet size study with respect to time in Octane/Brine 
nanoemulsions obtained by diluting 70/20/10 Octane/AOT/Brine microemulsions with 
different levels of internal salinity (%8 = 0, 0.2, 0.3 , and 0.4) in excess water (%8 = 0, 
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Winsor I) (AOT = 1.5 giL). The presence of internal salinity slows down droplet growth 
rate. 

3.4.2 Droplet Growth in Brine (%E = 0.2·and 0.3) 

Fig. 3.5 shows that oil drops in emulsions produced when a 70/20110 Octane/AOT/Water 

microemulsion is diluted in brine with NaCl content of 0.2% (%E = 0.2) have average 

initial diameters of some 200-300 nm, the same as for dilution with water (%E = 0). 

However, the rate of increase in diameter with time was much less for %E = 0.2. Because 

the zeta potential is high in both cases (approximately -100 m V, according to Fig. 3.11 ), 

it seems unlikely, as indicated previously, that changes in electrostatic repulsion among 

drops was responsible for the observed difference in growth rates. Similar differences 

between growth rates at %E = 0 and 0.2 were seen when initial microemulsion 

compositions were W/0 microemulsions ofOctane/AOT/Water at 60/30/10 and 80/10/10 

(see Appendix B, Fig. B1) and B/0 microemulsions with 70/20/10 composition contained 

NaCl-brine instead ofDI water (Figs. 3.6 and 3.15 and 3.16). That the growth rate is not 

controlled by electrostatics was further supported by the even slower, indeed minimal, 

growth rate shown in Fig. 3.9 for %E = 0.3 although zeta potential had decreased to about 

-80 mV (Fig. 3.11), a change which would be expected to increase flocculation and/or 

coalescence and hence increase growth rate if electrostatic effects were controlling 

droplet growth. 56 

Light scattering measurements showed that the drop size distribution was bimodal 

for the 70/20/10 Octane/AOT/Water microemulsion diluted in brine with %E = 0.2 and 

0.3 for most of the 24-hour period after emulsion formation (Table 3.3 and Table 3.4). 

Thus, Ostwald ripening for these experiments is not in the asymptotic growth stage where 
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drop size distribution is unimodal and Eq. 3.3 does not apply. Nevertheless, mass transfer 

of octane from small to large drops via the bulk aqueous phase can still occur. The 

higher salinity and hence lower spontaneous curvature should facilitate development of a 

lamellar phase coating of the octane drops. However, it is not possible to tell from the 

information available whether the decrease in growth rate stems mainly from an 

interfacial resistance produced by the coating or from the decrease in 1FT and solubility 

of octane in brine at the higher salinity, both of which would act to decrease growth rate 

in the diffusion-controlled case. 

The most striking difference between drop stze data for dilution of 70/20/10 

microemulsions with brines having %E = 0.2 and 0.3 is that the initial mean drop size was 

considerably smaller for %E = 0.3, being as low as 40 nm (Figs. 3.9, 3.10, 3.16 and 3.17). 

The initial size difference was small for 60/30/10 and 80110110 initial microemulsion 

compositions (see Appendix B, Fig. B1), diameters being approximately 180 nm.56 

Growth rates are generally low and comparable for the two salinities for a given initial 

microemulsion composition though lower for %E = 0.3 where noticeable differences 

exist. For nanoemulsions formed at this salinity by diluting 70/20/10 B/0 

microemulsions, growth rates were marginally lower than that formed by diluting the 

70/20/10 W/0 microemulsion. At this salinity, emergence of the lamellar phase takes 

place upon phase-inversion, even in the absence of internal salinity in the starting 

microemulsion. 44 This is supported by static and streaming birefringence demonstrated 

by all nanoemulsions prepared at %E = 0.3, as observed with the polarized light screening 

method and reported in the section above. 
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Table 3.3: Population distribution of octane nanoemulsions at select time points showing 
bimodal distribution when 70/20/10 Octane/AOT/Water microemulsions were diluted in 
excess brine (%E = 0.2, AOT = 1.5 giL). 

Time (hr) Droplet Po :mlation Mean1 % Deviation 1 

Population Diameter G(d)* C(d)** (nm) 
(d) (nm) 

1 la 81 8 1 95.1 10.34 
86 45 8 
91 84 21 
96 97 36 
102 59 45 

lb 271 16 50 347.2 13.73 
287 59 59 
322 100 75 
341 96 90 
361 54 98 
380 14 100 

5 Sa 105 13 3 141.5 20.89 
118 48 11 
131 82 24 
147 84 39 
164 45 46 
184 8 47 

5b 323 47 55 433.9 16.69 
361 58 70 
404 85 85 
452 100 96 
506 95 100 

10 lOa 97 15 5 123.1 19.5 
113 15 9 
132 28 18 
153 6 20 

lOb 242 29 30 350.8 22.81 
282 36 42 
328 100 73 
382 43 87 
445 41 100 

* G( d) = Weighting function generated by autocorrelator 

** C(d) =Cumulative distribution function generated by autocorrelator 
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1
For a droplet population, the autocorrelator determines the mean diameter using the 

formulae listed below. 

1 

Mean diameter = [
L df G(di )]3 . . 

i o/ D . t' Standard Deviation 
:to ev1a 1on = x 100 L G( di ) Mean Diameter 

i 

For a bimodal population, we estimate the mean and standard deviations of the two 

populations separately using the above formulae. The mean (and standard deviation) of 

the overall populations for time periods 1, 5 and 10 hours were 237 (± 31), 304 (± 30) 

and 395 (± 27) nm respectively, averaged over 3 DLS runs. 

Figure 3.16: Octane droplet size study with respect to time in Octane/Brine 
nanoemulsions obtained by diluting 70/20/10 Octane/AOT/Brine microemulsions with 
different levels of internal salinity (%£ = 0, 0.2, 0.3, and 0.4) in excess brine (%£ = 0.2, 
Winsor I) (AOT = 1.5 g/L). The presence of internal salinity slows down droplet growth 
rate due to emergence of the lamellar phase of AOT. Overall growth rates in brine (%£ = 
0.2) are slower when compared to emulsions formed in excess water(%£= 0). 
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Figure 3.17: Octane droplet size study with respect to time in Octane/Brine 
nanoemulsions obtained by diluting 70/20/10 Octane/AOT/Brine microemulsions having 
different levels of internal salinity (%8 = 0, 0.2, 0.3 , and 0.4) in excess brine (%8 = 0.3 , 
Winsor III), (AOT = 1.5 g/L). At the cross-over, the presence of internal salinity slowed 
down droplet growth rate due to emergence of the lamellar phase of AOT such that 
perceptible difference was seen in growth rates of nanoemulsions derived from 
microemulsion compositions with internal brine vs. that with internal water. Overall 
growth rates in brine (%8 = 0.3) are slower when compared to emulsions formed in 
excess water (%8 = 0) and lower brine salinity (o/o8 = 0.2). 

For nanoemulsions prepared at %8 = 0.3, optical studies in fluorescence could not give 

conclusive information on droplet size and size distribution on account of the tiny size of 

the droplets, which had diameters < 250 nm, below the limit of optical resolution. 

Further, the presence of liquid crystalline phase of AOT could not be observed under 

cross-polarizers, even 4 weeks after nanoemulsion preparation. This again is plausibly on 

account of the small size of oil droplets. In view of the birefringence in the phase 

behavior experiments at %8 = 0.3 and the liquid crystal coating of the drops at the lower 

salinities where spontaneous curvature is greater and hence less favorable for formation 

of the lamellar phase, it seems plausible that a thin layer of liquid crystal also coats the 
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drops at o/oE = 0.3. Nanoemulsions formed in brine salinity of 0.2 (%E = 0.2), were 

viewed under fluorescence and cross-polarizers. Twenty four hours upon formation, 

images in fluorescence mode revealed a bimodal distribution wherein one population had 

a size that ranged between 1.5-3 J.lm and the other population was < 0.8 J.lm (Fig. 3.18, 

top panel). Since the fluorescence signal from the larger droplets is stronger than those 

emitted by smaller droplets, the camera is expected to preferentially capture signal from 

the larger population. 

Figure 3.18: Optical micrographs of nanoemulsions (upon diluting 70/20/10 
Octane/AOT/Water microemulsion) in brine with salinity, %E = 0.2 (AOT = 1.5 g/L). (a) 
Top panel: Image under fluorescence mode 24 hour upon forming nanoemulsions (Scale 
bar: 10 J.lm) (b) Bottom panel. Images taken in bright field and under cross-polarizers 
after 4 weeks. Prominent birefringence patterns observed for around large octane droplets 
(30-50 J.lm) and at the octane/water interface for (i) Central image: polarizer set at 0° and 
analyzer set orthogonal at 90°. (ii) Right comer image: polarizer set at -45° and analyzer 
set orthogonal at +45° (all scale bars: 100 J.lm). 
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This and the fact that the smaller droplet population (as sized by DLS) is near the 

theoretical limit of optical resolution (500 - 600 nm) allows for the inference that 

fluorescence studies reveals only the bimodal nature of the population and size range, but 

not precisely the size. The larger population as seen by fluorescence can possibly explain 

the observations of creaming in %E = 0.2, as seen in Figs. 3.4, 3.5 and 3.7. Here, the 

larger droplets can cream and rise as a separate layer in the oil domain. Also, the upper 

limit of reliable size measurement by DLS is~ 3 J..Lm. Hence, while a larger population 

exists, the population sized by the laser was the smaller fraction that remained emulsified 

and in the path ofthe laser. 

Under crossed polarizers, birefringence was not observed for %E= 0.2 until 

droplet size increased and the liquid crystal coating became sufficiently thick. 

Birefringence around the drops appeared 4 weeks upon preparation, and was clearly 

perceivable only for the larger droplet population, similar to the case where %E = 0. 56 As 

in the previous case, the smaller droplet population showed weak birefringence and was 

visible through the microscope eye piece but not to the camera, suggesting a thin liquid 

crystal coating. Nonetheless, the presence of the liquid crystal coating was confirmed by 

rotating the incident angles of the orthogonal polarizer/analyzer arrangement and 

observing the corresponding shift in dark bands. 
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Table 3.4: Population distribution of octane droplets at select time points showing 
unimodal and bimodal distributions when 70/20/10 Octane/AOT/Water microemulsions 
were diluted in excess brine (%E = 0.3, AOT = 1.5 g/L). 

Time (hr) Droplet Population Mean1 % Deviation 1 

Population Diameter G(d)* C(d)** (nm) 

(d) (nm) 

1 1 28.7 11 2 40.2 24.9 
31.1 86 16 
33.7 90 30 
36.5 95 46 
39.5 100 45 
42.3 95 48 
46.3 90 50 
50.2 26 59 
54.3 24 75 
58.5 3 100 

5 5a 37.5 98 28 50.5 11.7 
47.8 100 57 
60.9 98 86 

5b 262 25 93 302.2 16.8 
334 25 100 

10 lOa 33 10 4 42.2 20.4 
41 39 22 
50 13 27 

lOb 167 20 36 218.8 28 
204 100 80 
250 40 98 
306 6 100 

* G( d) = Weighting function generated by autocorrelator 

* * C( d) = Cumulative distribution function generated by autocorrelator 

1For a droplet population, the autocorrelator determines the mean diameter using the 

formulae listed below. 

I 

Mean diameter = [
LdfG(di)l3 s d d D . . . o.1 D . . tan ar ev1at1on 1 00 ' , ;~o evtatton = x L G(di) Mean Diameter 

i 
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For a bimodal population, we estimate the mean and standard deviations of the two 

populations separately using the above formulae. The mean (and standard deviation) of 

the overall populations for time periods 1, 5 and 10 hours were 41 (± 5), 140 (± 30) and 

173 (± 22) nm respectively, averaged over 3 DLS runs. 

3.4.3 Nanoemulsions Formed in Brine (%s = 0.4) 

When dilution occurs with brine having a salinity higher than the crossover concentration 

of %E= 0.3, initial drop diameters are 1f.1m or larger - much larger than those seen 

initially at lower salinities. Moreover, the basic trend shown for %E= 0.4, according to 

Figs. 3.9 and 3.10 is a decrease in diameter during approximately the first ten hours, the 

opposite trend to that described above for lower salinities. Because the initial 

microemulsion is oil continuous and because spontaneous curvature of the surfactant 

films after dilution with brine having %E= 0.4 favors oil-continuous microemulsions, no 

inversion process yielding small droplets occurs as observed at lower salinities. Instead 

convection accompanying the dilution process breaks the initial W/0 microemulsion into 

drops. This mechanism is consistent with a larger mean drop size in the first few hours 

for the experiment with %E= 1.0 than with %E= 0.4 (Fig. 3.9) because interfacial tension 

between microemulsion and brine increases as salinity increases beyond the crossover 

salinity of %E= 0.3. Moreover, bulk water drops are incorporated into the 

microemulsion, forming a W/0/W multiple emulsion, as observed by Nishimi and Miller 

with optical microscopy for similar conditions in this system, because the higher salinity 

promotes stability of W /0 emulsions. 28 
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Fluorescence microscopy of emulsions formed at %E = 0.4 confirmed the existence of 

multiple emulsions (Fig. 3.19, left image). Further, drop sizes fort < 4 hours largely 

agreed with those measured by DLS. However, a few larger drops (diameters> 3 J.tm) 

were observed, which were not captured by DLS, being outside its range of measurement. 

The decrease in drop size with time shown in Figs. 3.9 and 10 could be caused by some 

combination of further breakup due to convection and to coalescence of the internal water 

droplets of the multiple emulsions with the external water phase. Mass transfer of water 

between internal and external water phases may also occur, the direction of transfer being 

to the phase having lower ionic strength. 

Fig. 3.19 (right image) corroborates that coalescence of internal water drops with 

the external aqueous phase is one mechanism for the observed decrease in drop size. 

Several hours after dilution of the original W/0 microemulsion with brine, multiple 

emulsions initially having octane drops with many internal water droplets changed to 

multiple emulsions with smaller octane drops and with a single internal water droplet. It 

is noteworthy that no birefringence was observed under crossed polarizers 4 weeks after 

preparation. This observation is consistent with the literature wherein octane/AOT/brine 

systems move away from the lamellar liquid crystalline phase of AOT into domains of 

Winsor II having nonzero values of spontaneous curvature. 

One additional possibility for the observed decrease is drop size with time is that 

the larger drops present during the first few hours for dilution with %E= 0.4 than with 

lower salinities increases the likelihood that the largest drops may cream to the air-water 

interface. In addition, the likelihood of coalescence there to form a thin oil layer is also 

higher because the zeta potential is lower and because 0/W emulsions are generally less 
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stable in the Winsor II region than at lower salinities. If such an oil layer does form, its 

oil would likely not be dispersed to drops small enough to be included in subsequent 

measurements of size distribution, which would shift the mean drop size to lower values 

than in the absence of creaming/coalescence. 

Figure 3.19: (Left) Multiple emulsions of water/octane/water, observed under 
fluorescence mode (Texas Red Filter, Nile-Red dye), 4 hours upon diluting 70/20110 
Octane/AOT/Water microemulsions in brine at %E = 0.4 (AOT = 1.5 g/L). (Right) 
Multiple emulsions with internally coalesced droplets observed at 12 hours. White color 
corresponds to octane domains; black color corresponds to water/brine domains. All scale 
bars = 1 0 J.lm. 

3.5 Conclusions 

Droplet size evolution of nanoemulsions formed by diluting W /0 and B/0 

microemulsions of octane/AOT/(water or NaCl brine) in excess water or NaCl brine was 

investigated by interfacial tension, dynamic light scattering (DLS), electrophoresis, 

optical microscopy and phase-behavior studies. In DLS studies covering the first 24 

hours after nanoemulsion formation, three distinct trends of size evolution were observed 

that correlated with different Winsor regimes. 0/W nanoemulsions formed spontaneously 

by diluting W /0 or B/0 microemulsions with water or low-salinity brine in the Winsor I 
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regime had low initial mean droplet diameters of 150-250 nm owmg to local 

supersaturation and renucleation of the oil phase during the inversion process. The data 

suggest that the observed growth of these droplets over time was caused by mass transfer. 

However, the well known asymptotic region of Ostwald ripening described by LSW 

theory was found only when the initial microemulsions were diluted with salt-free water. 

At the higher cross-over salinity (Winsor III), 0/W nanoemulsions formed spontaneously 

by a similar mechanism showed minimal growth with diameters consistently remaining 

below 100 nm for at least one day. Because birefringence was observed for these 

conditions with crossed sheets of polarizing material it may be that an interfacial 

resistance causing the low mass transfer and growth rates was present as a result of a 

lamellar-phase coating of the tiny octane drops, Formation of the lamellar phase is 

favored for these conditions where spontaneous curvature is near zero. 

At the even higher salinity levels in the Winsor II domain, drop diameters greater 

than 1 f..1.m were consistently recorded for the first 5-7 hours, but they later decreased to 

values below 1 f..1.m. The high salinity favored W /0 emulsions but the large water excess 

dictated that water is the continuous phase. As a result, W /0/W multiple emulsions were 

formed initially. Drop size decreased over time, an important mechanism being 

coalescence of internal water droplets with the bulk aqueous phase. 

Electrophoresis showed the nanoemulsions to be highly negatively charged (zeta 

potentials of -60 mV to -120 mV). The magnitude of zeta potential decreased with 

increasing salinity. The high charge helped assure stability of the nanoemulsions to 

flocculation and coalescence, thereby allowing mass transfer to control growth rate in the 

Winsor I and III regions. 
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Chapter4 
Colloidal and Flow Behavior of Brine-Stable Quantum Dot Nanoparticles 

4.1 Introduction 

The continuing increase in energy demand worldwide has motivated recent efforts to 

design nanomaterials with signaling, sensing, and detection capabilities for oil 

exp1oration.1-6 The general objective is to retrieve real-time, spatially-resolved physical 

(e.g., temperature7"13, pressure10, rock porosity, and permeability14) and chemical (e.g., 

oil5• 6• 15• 16, water7• 17• 18, gas19• 20, and mineral type21 ) information of an oil reservoir after 

downhole injection of transportable particles. 

Contrast-enhancing agents help detect specific targets at threshold levels and 

through nanoscale properties, enhance response and resolution of existing x-ray, 

electromagnetic, and seismic-based detection methods.14• 22-28 Sensing agents are based 

on the concept of information gathering via changes in their physical or chemical state 

during subsurface transport and their subsequent retrieval and analysis. I-s, 7• 8• 12-20• 28-33 

There have been recent efforts to fabricate miniaturized electronic devices as sensing 

agents that measure, store, and communicate reservoir properties.14• 9•11• 16• 3445 

Tour and coworkers recently synthesized carbon-based submicron particles with 

hydrocarbon sensing capability, in which a hydrophobic compound is released when 

transporting through oil-containing rock.5• 6 These "nanoreporters," -140-nm polyvinyl 

alcohol-coated carbon particles, flowed rapidly through oil- and non-oil-containing 

sandpack columns in deionized water at room temperature, and with little deposition. 

Some aggregation was observed in salt-containing water after several days, which 

resulted in partial particle entrapment during flow experiments. 
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Conditions in a reservoir are usually very harsh, with water salinities approaching those 

of seawater and higher and with temperatures ranging between 70-150 °C.1"3 A 

challenging aspect in the design of contrast-enhancing or sensing agents is the need for 

high colloidal stability under reservoir-relevant conditions. Additionally, if such agents 

are supported on particles, these agents should be unaggregated and non-interacting with 

the reservoir minerals during their transport. Whereas much is known about colloidal 

stability in low-to-no salt-containing aquatic systems46, there are very few studies in 

which nanoparticles have been specifically designed to be stable in high-salt-containing 

water.22' 47 

Here we report a robust method in preparing salt-stable nanoparticle (NP) 

suspensions and for assessing their transport behavior using packed columns. Using oleic 

acid-coated CdSe quantum dots (QDs) as a model NP because of their small size (<10 

nm) and size-dependent optical properties, we identified a commercially available 

nonionic surfactant (Neodol 91-7, referred hereafter as Neodol) as a suitable outer NP 

coating that provided water dispersibility. The QD/Neodol combination showed 

remarkable stability to aggregation at high salinities (1M NaCl and 0.55M synthetic 

seawater) and temperatures up to 70 °C. These NPs exhibited nearly unimpeded flow 

through crushed-calcite columns at these reservoir-relevant salt conditions and 

temperatures. 

4.2 Colloidal Stability ofNanoparticles: The Role of Intermolecular Forces 

For successful transport and breakthrough of NPs through reservoirs, NP dispersions 

need to be stable under reservoir conditions of high salinities and temperatures. Within 
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the scope of this work, salinities at 1M NaCl and 0.55M synthetic seawater (containing 

among others, Ca2+ and Mg2+ ions) and an upper temperature limit of 70°C are considered 

representative of a reservoir. To stabilize nanoparticles under such conditions, it is 

important to understand the role of intermolecular forces, which becomes the basis to 

judiciously select a stabilizing surface-active (surfactant) agent. 

4.2.1 Nanoparticles Stabilized by Electrostatics 

The net energy of interaction (VNET oLvo) between two charged colloidal particles is well 

described by the Derjaguin-Landau-Verwey-Overbeek (DL VO) theory to be the sum of 

the attractive van der Waals (Vvow) energy and repulsive electrical energy (VEoL).48 

VNETDLVO = Vvow + VEDL (4.1) 

For spherical nanoparticles46 : 

(4.2) 

Where: A121 is the Hamaker interaction parameter between two like particles interacting 

across a medium, given by A 121 = (~A 22 -.JA::}, with Au = Hamaker constant for 

particle (1) and A22 = Hamaker constant of medium 2, h = distance of separation between 

two nanoparticle,46' 48 and "A." is the characteristic wavelength associated with 

interactions between NPs. Gregory showed these effects to be of electromagnetic origin, 

prevalent at dimensions of- 1 00 nm and lower. 46' 49 It is noteworthy that at A. values over 
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100 run, ~approaches zero and the expression in Eq. 4.2 reduces to the familiar form 

for van der Waals interactions between two spherical colloidal particles46• 48• 

A 121a1a 2 • 
For the scenario where NPs are QDs interacting m aqueous 

6h(a1 + a 2 ) • 

media, A11- 0.72 x 10-20J and Az2- 4 x 10-20J. Hence, A121 = 1.32 x10-20 J.46 48 Further, 

at and a2 are hydrodynamic radii of particles (here at = a2 = 9.5 run for CdSe QDs 

stabilized by AOT when in water and is 4.5 run for CdSe QDs stabilized by QDs in salty 

water).47 Note: The negative sign in Eq. 4.2 denotes van der Waals to be an attractive 

force. 

The repulsive electrical energy is given by: 

(4.3) 

Where: Eo = permittivity of free space, (8.856 X 10-t2 C2rtm-t), Er = relative permittivity 

(80 for water), kb =Boltzmann's constant (1.38 x 10-23 JK-t), T =temperature (298 K), 

z = valency of ion (+ 1 for Na+, K+ and +2 for Ca2+, Mg2+), e = charge on electron 

(-1.6 X 10-t9 C), rl =tanh( Ze'l't J' where 'l't = surface potential of particle 1, 
4kbT 

r 2 = t.., ... l-.( ze'l'2 J, where '1'2 = surface potential of particle 2. For the scenario where 
u.~.u\ 4kb T 

QDs are stabilized in bilayers of the anionic surfactant AOT, rt = r2. Furthermore, 

K = Debye parameter, which is the inverse Debye screening length (K-t), defined as: 
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(4.4) 

Where Ci refers to the concentration in molar units and Zi refers to the valency of a 

particular species i. All other terms that appear in the parenthesis have been defined 

before in the context of Eq. 4.3. For a 1:1 electrolyte such as NaCl and KCl, Eq. 4.4 

becomes: 

-1 0.304 
K =-- nm 

JC 
(4.5) 

Where C =concentration of electrolyte in molar units.48 In a similar manner, for cases of 

1 :2 and 2:1 electrolytes such as CaCh, MgCh and Na2S04, 

-1 0.176 
K = JC nm (4.6) 

Where C = concentration of electrolyte in molar units.48 Figs. 4.1 and 4.2 depict the net 

energy of interaction between two QDs stabilized by AOT, in different concentrations of 

NaCl and CaCh. In generating the energy-distance curves, the surface potential 'V was 

approximated to be equivalent to the zeta potential, ~· For QDs stabilized by AOT, this 

value was measured to be -77 mV in DI water.47 From Fig. 4.1, it can be seen that in the 

absence of salinity, the interaction energy is of a repulsive nature and its magnitude 

exceeds k8 T energy units by a factor of 10 and to distances of separation well beyond 10 
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J..lm. As salt is introduced into the system, two effects are noticeable - (i) The order of the 

long range repulsion begins to reduce substantially, i.e, the first cross-over from the 

repulsion to attraction interaction energy domains occur at 5.5 J..lm for 0.001M salinity 

(K-1 = 9.61 nm), at 1.65 J..lm for 0.01M salinity (K-1 = 3.04 nm), at 0.4 J..lm for 0.1M 

salinity (K-
1 

= 0.961 nm), and 0.08 J..lm for 1M salinity (K-
1 

= 0.304 nm). 
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Figure 4.1: Net DLVO Interaction Energy for QDs stabilized by AOT at varying levels 
of NaCl concentrations (Inset figure - Magnified regions of energy-distance profile for 
QDs stabilized by AOT in different concentrations ofNaCl). 

This cross-over at long-range corresponds to the well-known secondary minimum or 

flocculation region of the DL VO theory. (ii) The magnitude of the repulsive energy 

barrier progressively reduces from 70 k8 T units in OM NaCl salinity to under 20 k8 T 

units in 1M NaCl salinity. Upon overcoming this barrier, particles enter into a primary 
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energy regime where irreversible coagulation occurs. The above two effects of salts have 

been attributed to charge screening from salt counter-ions that result in electrical double 

layer compression. This promotes flocculation/coagulation of colloidaVnanoparticle 

dispersions and eventually results in their destabilization. 48 

The effect of valency on colloidal/nanoparticle stability also follows from the 

DLVO theory, wherein the critical coagulation concentration (CCC) depends on the 

1 
valency (z) of salt ions and scales as CCC~- (Schulz-Hardy Rule) for large zeta z6 

potentials (when ze'l' >> 1) and scales as CCC ~ -1- for low zeta potential (when 
4kbT z 2 

ze'l' << 1 ). Hence, in the scenarios of divalent or multivalent ions (such as Ca2+ and 
4kbT 

Mg2+ in synthetic seawater), onset of flocculation/coagulation should occur at much 

lower concentrations than for monovalent ions (such as Na+ and K+ ions). Fig. 4.2 depicts 

the interaction energy between QDs stabilized by AOT in the presence of divalent Ca2+. 

A significant effect emerges in altering interaction energies by divalent ions, when 

compared to equal concentrations of monovalent Na +ions. 

Firstly, the screening lengths at corresponding salinities reduce in that K-1 = 5.56 

nm while at O.OOlM CaCh salinity, which further decreases to 1.76 nm, 0.556 nm, and 

0.176 nm when salinities are increased to O.OlM, O.lM and 1M CaCh respectively. This 

lowers the distance at the long range order where cross-over occurs from the repulsive to 

the attractive interaction regime. Second, the magnitude of the primary repulsive barrier 

in the CaCh environment decreases more significantly when compared to NaCl and 

results in earlier onset of NP coagulation. 
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When ionic surfactants are used to bring about electrostatic stabilization, other non-

DLVO effects can come into play which will have destabilizing effects on the colloidal 

particle. Ionic surfactants are particularly sensitive to salt-induced precipitation. This is 

especially seen in the environment of divalent ions such as Ca2+ and Mg2+ since the 

solubility product of the divalent salt of the ionic surfactant is lower than of its 

monovalent ion counterpart. These have resulted in NP and colloidal aggregation at 

salinities lower than what the DLVO theory predicts. 
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Figure 4.2: Net DLVO Interaction Energy for QDs stabilized by AOT at varying levels 
of CaCh concentrations (Inset figure - Magnified regions of energy-distance profile for 
QDs stabilized by AOT in different concentrations of CaCh). 

Steric hindrance can be devised as a strategy to counter some of the salt-induced 

destabilizing effects as seen above. Nonionic surfactants such as alkyl alcohol ethoxylates 

have high salt-tolerance and are more suited in formulating salt-tolerant QD dispersions. 
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However, nonionic surfactants are temperature-sensitive and above a critical temperature 

termed as the cloud point, they phase-separate from water by a dehydration mechanism to 

form a micellar-rich secondary phase. 50"52 It follows that in applications featuring 

nonionic surfactants, one must operate below its cloud point53 or conversely, nonionic 

surfactants must be selected with cloud points above the temperature of applications. 53-55 

In the following section, we discuss the energy-distance curve of steric-stabilized NPs. 

4.2.2 Nanoparticles Stabilized by Steric Hindrance 

Analogous to the net interaction expression described by the DLVO theory, the net 

energy of interaction between two colloidal particles that are steric-stabilized is the sum 

of attractive van der Waals (Vvow) and repulsive steric hindrance (VsT). 

VNet = Vvow + VST (4.7) 

For spherical nanoparticles, V sT is described by: 

(4.8) 

Note: Eq. 4.8 is a modification of the Alexander-DeGennes equation for polymeric 

brushes grafted to a surface. For the case of low molecular weight polymers and 

polymeric nonionic surfactants, the equation is valid until h < 2L. The distance of 

separation s, between two nonionic surfactants on a surface is related to its surface excess 

r A by the relationship:56 
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(4.9) 

Where NA is the Avogadro's number. Typical[' A values for nonionic surfactants are 10"6 

mol/m2, giving representatives values at -13 nm. From Fig. 4.3, it can be seen that with 

an increase in surface coverage of nonionics on NPs, the magnitude of steric repulsion 

increases. When surfactant coverage is sparse, the net interaction energy takes the 

attractive form at short distances of separation. When a sufficiently dense coverage is 

obtained such that the distance of separation between two surfactant molecules is under 

15 nm, the repulsive steric term dominates even at short separation distances. 

Thus it follows that steric stabilization using nonionic surfactants can emerge as 

an alternate approach to stabilize NPs under high conditions of high salinity. For 

successful transport and breakthrough of NPs through reservoirs, NP dispersions need to 

be stable under reservoir conditions of high salinities and temperatures. Within the scope 

of this work, salinities at 1M NaCl, and 0.55M synthetic seawater (containing among 

others, Ca2+ and Mg2+ ions) and an upper temperature limit of 70 °C are considered 

representative of a reservoir. Aggregation ofNP dispersions occurs above 100 mM ionic 

strength, well below these salinities.46 To stabilize NPs for the conditions of a reservoir, 

appropriate processing routes and judicious selection of surfactants are required?2• 47 

Our previous experience of formulating QD dispersions by an emulsion-based 

transfer approach with ionic surfactants (Aerosol-OT) yielded stable unaggregated and 

single QDs coated by surfactant bilayers. However, the ionic nature of Aerosol-OT 

caused precipitation to occur beyond 0.25M NaC1,47 and was thus inappropriate for this 

application. 
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Figure 4.3: Net Interaction Energy for NPs stabilized by a nonionic surfactant as a 
function of surface coverage. 

As an alternative, nonionic surfactants such as alkyl alcohol ethoxylates have high salt-

tolerance and are more suited in formulating stable QD dispersions at higher ionic 

strengths.51 We therefore selected Neodol91-7 (nonionic surfactant with a distribution of 

C9-C 11 linear alkyl groups and 7 ethylene oxide groups, referred hereafter as Neodol), 

which had a measured cloud point of 7 4 °C. 57 

4.3 Materials and Methods 

4.3.1 Synthesis and Phase Transfer of Quantum Dots 

Oleic acid-coated CdSe QDs were synthesized by the hot injection method following 

previously published procedures. 58
' 

59 Cadmium oxide (CdO, 99.99% ), oleic acid (OA, 

technical grade - 90%), 1-octadecene (ODE, technical grade - 90%), and 

trioctylphosphine (TOP, 90%) were all purchased from Aldrich. Selenium (Se- 99.99%) 
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was obtained from Strem Chemicals. All chemicals used in this study were used as 

supplied and without further purification. [Caution: Hot injection routes to synthesize 

QDs involve steps that may lead to hazardous explosive conditions] After purification, 

CdSe QDs were suspended in chloroform (Fischer, ACS grade), to which Neodol 91-7 

(Shell Chemicals) was added (referred hereafter as Neodol). The final concentrations 

were 221 J..Lmol-QD/L-chloroform and 30 mg-Neodol/mL-chloroform. QD transfer from 

chloroform to water was carried out following a recently published protocol.47 1 mL of 

the QD/Neodol/chloroform solution blend was added to 20 mL of ultrapure water (18.2 

M.O-cm resistivity, pH ~ 6.8, Barnstead Nanopure Diamond System) to form an emulsion 

in which QDs solubilized in chloform, constituted the dispersed phase and water formed 

the continuous phase. The emulsion was subsequently heated for 30 minutes at 90 oc so 

as to boil-off the chloroform (Fig. 4.4). 

-

Oil 
I I I 

Add QDs + Neodol9l-7 Heat emulsion to 90 °C 
+ chloroform to water (above boiling point of 

chloroform and cloud 
point of Neodol 91-7) 

Add concentrated 
salt solutions of 

NaCI or synthetic 
seawater -

Water dispersions of QDs 
in bilayers of oleic-acid and 

Neodol91-7 

NPs dispersions in 
saline water (1M aCI 

or 0.54M synthetic 
seawater) 

0 Water 

0 Chloroform 
* Quantum Dot (QD) 0 0 Salt Ions 
T Non-Ionic Surfactant 

(Neodol9l-7) 

Figure 4.4: Schematic to formulate nanoparticle dispersions of QDs/N eodol 91-7 in 
saline water. 
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As the chloroform evaporated, the hydrophobic carbon chains (tail groups) of Neodol 

formed bilayers with oleic acid native to the QDs and the hydrophilic ethoxylated head 

groups project outwards towards water (denoted as QD/Neodol), rendering the QDs 

water-dispersible. QD/Neodol dispersions (pH 6.6) were diluted in pre-formulated stock 

solutions of salt so as to form dispersions of QD/Neodol in 1M NaCl and 0.55M synthetic 

seawater. Synthetic seawater is a solution of 3.5 mM CaCh, 5.5 mM MgCh, 19.8 mM 

KCl, 0.5M NaCl, 0.5 mM Na2S04, and 2 mM NaHC03•5' 6 The pH value of the final 

QD/Neodol suspensions in 1M NaCl and synthetic seawater were 7.8, and 8.5, 

respectively. All chemicals for preparing stock solutions were procured from Merck. In 

all dispersions, the concentration ofQDs was 4.5 f.!M and that ofNeodol was 0.75g/L. It 

is to be noted that the phase-transfer of QDs, as reported in our earlier work, could be 

carried out directly in salt-containing water.47 However, we found that the benefits of 

transfer in salt-containing water (higher phase-transfer yield, transfer of QDs as single­

particles) as realized previously with a charged ionic surfactant (Aerosol-OT), diminished 

when carried out with a nonionic surfactant. Further, losses of salt due to crystallization 

at high phase-transfer temperature (90 °C) reduced the accuracy of final salt 

concentrations in the QD dispersions. 

4.3.2 Characterization 

4.3.2.1 Dynamic Light Scattering 

The hydrodynamic diameter of QD/Neodol in different salt solutions was estimated 

across temperatures ranging from 6-70 °C by DLS. A Brookhaven ZetaP ALS DLS 

instrument, with a BI-9000AT digital autocorrelater, a He-Ne Laser (A.= 656 nm) and a 
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temperature-stabilized sample holder was used for light scattering measurements. 

Samples were loaded in a stoppered quartz cuvette and pre-equilibrated at a specific 

temperature for at least 15 minutes. Sample measurements were made at a fixed 

scattering angle of 90°, over time intervals of 3 minutes and repeated at least 5 times for 

reliable statistics. Hydrodynamic diameters measured were number and volume-averaged 

and scattering data were fitted using CONTINS or NNLS fitting routines through the 

instrument software 9KDLSW. Number-based diameter (DN) scales linearly with 

:LD-n. 
diameter (DN = L 1 1 

) whereas volume-based diameter (Dv) scales as the cube of the 
ni 

I 

(LD3n. J3 diameter (Dv = L ~i 1 
), where ni is the weighted mean of a sample population with 

diameter Di.60 At temperatures below the cloud points of Neodol in respective DI and 

salt water environments, the number and volume-averaged diameters were in near 

agreement with each other. This indicated an absence of large aggregates in solution, 

when below the cloud point ofNeodol. 

It is also noteworthy that across all measurements below the cloud point of 

Neodol and in respective DI and salt water environments, bimodal populations were 

recorded. One of the populations that emerged consistently ranged between 5-9 nm. This 

population was lower than the theoretically estimated hydrodynamic diameter of 

QD/Neodol of~ 12 nm (radius = core radius of QD = 1.6 nm, + linear length of oleic acid 

= 2.1 nm, +linear length ofNeodol = 3.2 nm,- penetration depth of hydrophobic tail of 

Neodol ~ 1 nm) and was assigned to the population constituting empty micelles of 

Neodol. These were ascertained independently by making light scattering measurements 
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of control samples for plain Neodol (i.e., Neodol without QDs), also prepared at 0.75 giL 

and under respective conditions of salinities (DI water, 1M NaCl and 0.55M synthetic 

seawater). Thus, when below the cloud point, specific contributions from empty micelle 

populations were deducted so as to prevent underestimation of hydrodynamic diameter of 

QD/Neodol population. This bimodal nature of sample population ceased to exist at 

temperatures near the cloud points of Neodol in DI water (70 °C) and different salt 

environments (60°C for Neodol in 1M NaCl; 70 °C for Neodol in 0.55M synthetic 

seawater). Further, an increase in scattering counts from the laser and deviations between 

estimated number and volume-averaged hydrodynamic diameters indicated the onset of 

QD aggregation. It is noteworthy that although for the aforementioned cases where 

number and volume-averaged diameters differed, the order of magnitude sizes were 

similar and remained below 100 nm. That the phenomenon was found to be reversible 

(i.e., upon cooling the solution, previously measured (and lower) hydrodynamic 

diameters of QD/Neodol were retained) confirmed QD aggregation at higher 

temperatures to correspond with micellar aggregation near the cloud point. 

4.3.2.2 Zeta Potential 

Zeta potential of QD/Neodol in DI water was estimated from electrophoretic mobility 

measurements using the phase analysis light scattering (PALS) feature of the Brookhaven 

ZetaP ALS instrument. Measurements were made at 25 °C, using a dip-in electrode for 

aqueous solutions in 4 mL polystyrene cuvettes. Based on the particle size (12 nm) and 

salt concentration, the Smoluchowski approximations was used to determine zeta 

potential at - -18 ± 2 mV. For QDs in high salinity solutions (1M NaCl and 0.55M 

synthetic seawater), measurements of zeta potentials were inconclusive on account of 
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poor reproducibility, and thus are not reported. This is also in line with assumptions 

behind theories for electrophoretic mobility that assume salts to be at low concentrations. 

4.3.2.3 UV -vis Spectroscopy 

Concentration of QDs was analyzed by UV-vis absorbance spectroscopy usmg a 

Shimadzu UV-vis (UV-24601 PC) spectrophotometer. 3-mL stoppered quartz cuvettes 

were used for QDs in chloroform; 1-mL quartz cuvettes or 4-mL polystyrene cuvettes 

were used for QDs in aqueous phase. 

4.3.2.4 Transmission Emission Microscopy (TEM) 

As-synthesized and phase transferred QDs were imaged using a JEOL 2010 transmission 

electron microscope, operating at a 100 kV accelerating beam voltage. Samples were 

drop-cast on holey carbon TEM grids (Ted Pella Inc) and dried overnight prior to 

imaging. 

4.3.3 Breakthrough Studies 

For breakthrough studies, packed columns of crushed calcite (Ward, Iceland spar 99.99% 

CaC03106-250 J.Lm) was set-up. The material was packed into glass columns (Omnifit 

borosilicate column, length (L) = 11 em, inner diameter (d)= 1 em) and connected to a 

syringe infusion pump (Harvard Apparatus Inc., Holliston MA) at the inlet. At the outlet, 

pre-weighed sample collection vials were placed to store solutions that underwent 

column breakthrough solutions (set-up shown in Fig. 4.5). The set-up was checked for 

leaks by flowing ultrapure water through the column at 8 mL/hr for 4 hours. 
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The pore volume (PV) of crushed calcite in the column was experimentally determined to 

be ~3.3 mL, employing a previously published tracer-based method using radioactive 

tritiated water eH20).61 -64 The water-filled porosity (E) of the column material was 

estimated by the relation: 

PV 
(4.10) E=------

Column Volume 

The porosity of calcite was estimated at 0.38. Further, the bulk density of calcite was 

estimated using the relation62: 

(4.11) 

Where pp is the particle density of the column material (an intrinsic property). Using a 

particle density of calcite of 2.71 glee, the corresponding bulk density value was 

estimated at 1.67g/cc. Prior to each breakthrough run, the columns were flushed with a 

non-QD-containing salt solution for at least 4 hr so as to ensure equilibration with the 

column material before QD/Neodol in corresponding salt solutions were introduced. All 

volumetric flow rates (Q) used in this study were 8 mL/hr (corresponding to a Darcy 

velocity (vd) of 2.44 m/d. The average linear pore velocity (v) was estimated from the 

relation: 

(4.12) 
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Where d is the inner diameter of the column (11 em). The linear pore velocity of 

QD/Neodol in calcite was estimated at 6.4 rnld. It is noteworthy that Tomson and 

coworkers65 and Weisner and coworkers66"68 among others69-72 have reported velocity 

dependency of NP breakthrough and retention in columns. For most NPs, with the 

exception of fullerenes and their derivatives, NP retention by column material was found 

to increase as flow rates were lowered indicating that a higher residence time of NPs 

around the column material increased the probability of attachment. In our experiments, 

the operating velocity was selected to be the same or atleast one order of magnitude 

lower than those previously used where NP attachment was observed. Hence we can 

consider our studies to be in a regime where velocity-induced effects for NP attachment 

are negligible in comparison to temperature-induced attachment effects. 

Concentration of QDs in the column effluent (Cexit) was determined as a function 

of PV using UV -vis spectroscopy and the Beer-Lambert law with published size­

dependent molar extinction coefficients of CdSe QDs.47' 73 Unless mentioned otherwise, 

the QD/Neodol dispersion was pumped through the column for 3.5 PV's before being 

replaced by the background salt solution. Flow of the salt solution was continued until no 

more QDs could be detected at the outlet (i.e., Cexit - 0). Breakthrough curves, 

represented as plots of CexiJCo (where Co representing the starting inlet concentration= 

0.5 absorbance units) versus PV were subsequently created. For studies at higher 

temperatures, columns were immersed and equilibrated for 4 hours in a jacketed vessel, 

with temperature controlled by a Neslab RTE-111 waterbath. Transport coefficients 

(specifically retardation factor R, and dispersion coefficient D) were estimated by a lD 

advection-convection model using the CXTFIT program (see Appendix C, Section C2). 
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Figure 4.5: Experimental set-up of QD breakthrough studies through crushed calcite 
column. 

4.3.3.1 Scintillation Counter 

In tracer-breakthrough studies, the concentration of tritiated water eH20) was measured 

using a liquid scintillation counter (Beckman Instruments Inc., Fullerton CA). Tritiated 

water (Amersham Co.) diluted to an inlet concentration of 0.025 J..LCi/mL 

(1 J.!Ci = 2.2 x 106 disintegrations per minute (DPM)) was flowed through a packed 

column at 8 mL/hr. Samples from the effluent stream were collected periodically in pre-

weighed glass scintillation vials to which phenylxylylmethane-based liquid scintillation 

cocktails (Ready Safe, Beckman Coulter) were added at sample/cocktail ratios (v/v) of 

0.1. The ratio of 3H20 concentration in the effluent (C) and 3H20 concentration before 

entering the packed column (Co) was plotted against volume to obtain a tracer 

breakthrough curve (See Appendix C, Fig. C 1 ). 
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4.4 Results and Discussions 

4.4.1 Colloidal Properties of QDs/Neodol 

Fig. 4.6 depicts the general preparation steps of aqueous dispersions of QDs (referred 

hereafter as "QD/Neodol") with three different salinities. The QDs were encapsulated by 

a bilayer of oleic acid and Neodol as per the procedure described in Fig. 4.4. For colloidal 

stability and breakthrough studies, aqueous QD/Neodol dispersions (~25 mL) were 

diluted in pre-formulated stock solutions ( ~ 25 mL) of salt so as to form dispersions of 

QD/Neodol in 1M NaCl and 0.55M synthetic seawater.5' 6 The final QD concentration in 

all solutions was 4.5 J..lmol-QD/L. The final Neodol concentration of 0.75 g/L was well 

above the critical micelle concentration of ~0.085 giL in water51 ' 57, such that Neodol 

micelles and Neodol-coated QDs co-existed in suspension (as detected via DLS). UV-vis 

spectroscopy and transmission electron microscopy (TEM) indicated the CdSe QDs were 

intact and undamaged after their transfer from chloroform to water and subsequent 

dilution in the various salt solutions (Fig. 4.7). The QD/Neodol dispersions at the various 

salinities were stable for several months (>3 months), with no visible signs of QD 

precipitation. 

The stability of QDs in different salt environments and temperatures was studied 

by monitoring their hydrodynamic diameter (Dh) using dynamic light scattering (DLS) 

(Fig. 4.8). Both number and volume averaged hydrodynamic diameters were recorded. At 

room temperature and in DI water, QDs had a Dh of 11±0.5 nm matching closely with the 

theoretically estimated Dh of QD/Neodol: 2 x [1.6 nm (core radius of QD) + 2.1 nm 

(linear length of oleic acid)+ 3.3 nm (linear length ofNeodol), - 1 nm (penetration depth 

of hydrophobic tail ofNeodol)] = 12 nm. This increased to 17±1.2 nm at 70 °C. During 
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this clouding process with increasing temperature, the larger Dh values resulted from 

Neodol-coated QDs aggregating with other QDs and other Neodol micelles. 

QDs in Chloroform 

Core Diameter: 3.2 nm 
Ugand: Oleic Acid (OA) 

V'-A 

Phase Transfer 

In Neodol 

~ 

QOs in Water 
(Neodol: 1.5 g/L) 

-Hydrodynamic 
Diameter: 12 nm 

~ 

Dilute with 

QDs in 1M NaCI 
(Neodol: 0.75 g/L) 

Salt Stock Solutions 

QDs in O.SSM Seawater 
{Neodol: 0.75 g/l) 

Figure 4.6: Phase-transfer of QDs from chloroform to water and different salt 
environments using bilayers of oleic acid and Neodol. 
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Figure 4.7: UV-vis spectra and TEM micrographs of QDs in chloroform and following 
phase-transfer to DI water and in various salt solutions. (All scale bars in TEM 
micrographs = 20 nm). 
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Figure 4.8: Hydrodynamic diameter of QD/Neodol as a function of temperature in water 
and in different salt environments. QD concentration in all DLS measurements was 4.5 
J..LM and the Neodol concentration was 0.75 g/L. 

When in synthetic seawater and 1M NaCl environments, the QDs had Dh values (~11 

nm) similar to those in DI water, up to 60 oc and 50 °C, respectively. Above these 

temperatures, aggregation of QDs occurred, leading to sizes of 27-29 nm. The QD 

suspensions in 1M NaCl, and synthetic seawater were similar (pH = 7.8 and 8.5, 

respectively), and so pH was likely not a factor in colloidal stability. Above their cloud 

points, the QD/Neodol dispersions were cloudy and opaque, and no settling was 

observed. Reducing the temperature below their cloud points caused the dispersions to 

revert to their clear and transparent forms, for which the original Dh values were 
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recovered. The aggregation of QD/Neodol was reversible, consistent with a different NP­

nonionic surfactant system (silica NPs and Triton X-100).52 

The temperatures around which reversible aggregation occurred were coincident 

with the cloud point temperatures of the Neodol-only solutions in DI water, synthetic 

seawater, 1M NaCl, (determined to be ~70, ~70, and ~58 °C, respectively, via DLS and 

visual observation). The cloud points were depressed in the presence of 1M NaCl due to 

"salting-out" effects that make poly(ethylene oxide)-based nonionic surfactants easier to 

dehydrate. 5°' 51' 74' 75 Interestingly, the cloud point ofNeodol in synthetic seawater did not 

differ from that of Neodol in DI water, in spite of the large quantity of salt (0.55M ionic 

strength). This non-effect may be due to the presence of "salting-in" electrolytes (MgCh, 

CaCh) that elevate the cloud point temperature and counteract the effect of "salting-out" 

electrolytes (NaCl, KCl, Na2S04).50 The measured cloud point ofNeodol in DI water was 

lower than the reported value of 74 °C, perhaps due to the presence ofNeodol surfactant 

of other chain lengths. 57 

It is noteworthy that across all measurements below the cloud point ofNeodol and 

in respective DI and saline environments, bimodal populations were recorded. One of the 

populations that emerged consistently ranged between 5-9 nm. This population was lower 

than the theoretically estimated hydrodynamic diameter of QD/Neodol of- 12 nm and 

was assigned to the population constituting empty micelles of Neodol. These were 

ascertained independently by making light scattering measurements of control samples 

for plain Neodol (i.e., Neodol without QDs), also prepared at 0.75 g/L and under 

respective conditions of salinities (DI water, 1M NaCl and 0.55M synthetic seawater). 

Thus, when below the cloud point, specific contributions from empty micelle populations 
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were deducted so as to prevent underestimation ofhydrodynamic diameter ofQD/Neodol 

population. Furthermore, number and volume averaged hydrodynamic diameters were 

similar, indicating an absence of large aggregates. 

This bimodal nature of sample population ceased to exist at temperatures at and 

above the cloud points of Neodol in DI water (70 °C) and different salt environments 

(58°C for Neodol in 1M NaCl, 70 °C for Neodol in 0.55M synthetic seawater). At such 

temperatures, scattering counts of the laser increased significantly and deviations 

between number and volume-averaged hydrodynamic diameters emerged, indicating 

onset of QD aggregation. Although number and volume-averaged diameters differed at 

the aforementioned temperatures, the order of magnitude of the diameters was similar 

and remained well below 100 nm. 

4.4.2 Transport and Breakthrough of QD/Neodol through Packed Calcite Column 

Calcite and dolomite are calcium carbonate minerals that account for over 60% of world 

reservoir formations, storing over 60% of proven oil reserves and 40% of proven natural 

gas reserves. 57 Silica-rich sandstone formations constitute the other significant reservoir 

variant. The natural affinity of alkyl ethoxylates to adsorb strongly to sandstone, 

particularly nearing their cloud points, is well known in surfactant literature. 76 The use of 

ethoxylated nonionics in sandstone reservoirs is thereby not practiced in areas of 

enhanced oil recovery77 (see Appendix C, Section C3) transport and breakthrough of 

QD/Neodol through quartz sand). 

Column studies of QD/Neodol in 0.55M synthetic seawater and 1M NaCl were 

carried out at temperatures of 25 °C, 50 °C, and 70 °C (Table 4.1 ). These conditions are 
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much harsher than those commonly used m packed column studies involving NP 

transport, i.e., at low salinities (~ 100 mM or lower NaCl) and at 

room temperature.46' 61 ' 66-68' 72' 78-81 A synthetic seawater suspension of QD/Neodol was 

passed through the calcite packed column at different temperatures (Fig. 4.9a). At room 

temperature, the QDs achieved breakthrough at 1 pore volume (PV), defined at which the 

measured outlet QD concentration reaches 50% of the inlet concentration (i.e., Cexit!Co = 

50%). This breakthrough behavior was similar to that of tritiated water flowing with 

0.55M synthetic seawater through the calcite at room temperature (see Appendix C, Fig. 

C 1 ). Tritiated water is considered an ideal tracer compound that does not interact with the 

carrier fluid or with the column material.61 -64 Cexiv'Co of QD/Neodol reached ~100% at 

1.5 PV's, indicative of complete breakthrough, and remained there until the QD/Neodol 

suspension flow was replaced by synthetic seawater. This switch was made at 3.5 PV's, 

unless mentioned otherwise. After Cexiv'Co reached~ 0%, UV -vis analysis of the collected 

QD suspension indicated most of the particles ( ~96%) passed through the column with 

minor loss (Table 4.2). This loss of Neodol-coated QDs is due to a small fraction of 

QD/Neodol that show irreversible adsorption affinity onto calcite surfaces through 

hydrogen-bond interactions. 82 

At the higher temperatures of 50 and 70 °C, the QDs achieved breakthrough 

between 1.1-1.3 PV's, and reached ~100% at 1.5-1.6 PV's. Most ofthe QDs (>93%) also 

passed through the column without significant loss to the calcite column, indicating 

minor interaction with the column material at the higher temperatures (Table 4.2). When 

a IM NaCl suspension of QD/Neodol was studied in the same manner at different 

temperatures (Fig. 4.9b ), QD breakthrough of 50% occurred at nearly similar PV s ( ~ 1.1) 
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for all temperatures. While in the room temperature run, total Cexit/C0 breakthrough of 

100% occurred at -1.25 PV's and remained steady until the inlet stream was replaced 

with NaCl at 3.3 PV. Roughly 91% of QDs were recovered, indicating that a larger 

fraction of QDs was retained compared to the synthetic seawater case. 

Table 4.1: Parameters used for QD/Neodol breakthrough experiments. 

Parameter Value Remarks 

Column Length (L) 11 em --

Column Inner Diameter (d) lcm --
Pore Volume (PV) 3.3 mL PV estimated from 

tritiated water 
breakthrough 
experiments61 -64 

Porosity (E) 0.38 Eq. 4.10 

Soil particle radius ( ac) 106-250 f.!m --

Particle density (pp) 2.71 glee --

Bulk density (pb) 1.39 glee Eq. 4.11 

Volumetric flow rate (Q) 8mL/hr 

Darcy velocity (vd) 2.44 m/d Eq. 4.12 

Linear pore velocity 6.4 m/d Eq. 4.12 

Background salinity 1M NaCl and 0.55M 
synthetic seawater 

Temperature 25, 50 and 70 °C --



154 

Unusually, CexiJCo reached maximum values of 125% and 138% at 50 °C and 70 °C, 

respectively, before falling to ~100-105%. QD recovery was 91-93% at all temperatures 

tested, indicating the loss of QDs were comparable (Table 4.2). The recovery was slightly 

lower when compared to corresponding cases where seawater is the background solution. 

That the suspension became more concentrated at higher temperatures in 1M NaCl 

background is suggestive that the kinetics of QD adsorption and desorption became more 

rapid at the higher temperatures, such that QDs accumulated within the first PV before 

releasing into the carrier fluid. Perhaps the QDs in the synthetic seawater case did not 

exhibit this behavior because Neodol had a lower solubility in 1M NaCl than in synthetic 

seawater, as evidenced by its cloud point being lower in 1M NaCl than in synthetic 

seawater. 

Table 4.2: Percent recovery of QDs from calcite packed columns at different 
temperatures. 

Carrier Fluid 25°C 50°C 70°C 

0.55M 96 94 97 

synthetic seawater 

1MNaCl 91 93 92 

The larger but similar Dh values of QDs in 1M NaCl and in synthetic seawater at 70 oc 

suggested that the > 1 00% values of CexiJCo were on account of the predominant effect 

brought about from the salting-out action by Na + ions. Alongside depressing the cloud 

point of Neodol, the salting-out effect would enhance adsorption of Neodol onto the 
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surface of calcite that would result in QDs encapsulated in bilayers of Neodol to deposit 

onto the calcite surface. That the nature of Neodol adsorption is partial and reversible is 

evident from subsequent QD release, as empty micelles of Neodol exchange with 

QD/Neodol previously associated with calcite. The more gradual nature of release at the 

70 oc run compared to the 50 oc case is consistent with the proposed mechanism, since 

adsorption at and beyond the cloud point gets stronger as more number of ethoxylated 

groups on Neodol, that previously hydrogen-bonded with water, is now available for 

binding onto calcite. 
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Figure 4.9: Breakthrough profiles of QD/Neodol in (a) 0.55M synthetic seawater and (b) 
1M NaCl. A salt solution, passing through the column, is switched to the QD/Neodol 
suspension in the same salt solution at PV = 0. At PV ~ 3.0-3.5 (marked by a dashed 
vertical line), the QD/Neodol suspension is replaced by the same salt solution. (c) 
Breakthrough profiles of QD/Neodol at 70 °C in 1M NaCl background solution after 
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calcite is pre-saturated by solutions of 1M NaCl and 0.75 giL Neodol/1M NaCl. The error 
bars on Cexit!Co were ± 2%. 

To ascertain that the overshoot ofCexitiCo at higher temperatures was due to an adsorption 

based mechanism, a separate experiment was carried out where the calcite column was 

flushed with 1M NaCl solution containing Neodol at 0.75 g/L at 70 °C (instead of a plain 

1M NaCl solution at the same temperature) prior to switching to a QD/Neodol suspension 

flow at PV = 0. The resulting breakthrough curve showed that Cexit!Co did not exceed 

100%, and the QD recovery was- 95% (Fig. 4.9c). Similar behavior and QD recovery 

values were observed at 25 and 50 °C and indicated significant reduction in partial 

retention of QDs within calcite, when surface adsorption sites were pre-saturated with 

Neodol. 

4.4.3 Modeling Transport and Breakthrough of QD/Neodol through Packed Calcite 

Column 

Transport and breakthrough of QD/Neodol through packed porous columns can be 

described by the 1-D advection-dispersion equation62: 

(4.13) 

Where: C represents concentration of NPs, t and x are the NP travel time and distance 

and v represents the linear flow velocity (also called the average pore-water velocity). 

The term R, known as the retardation factor, is defined as: 



R=l+ pbkd 
E 
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(4.14) 

Where Pb = soil bulk density, ~ = is an empirical distribution coefficient, alternately 

termed the partition coefficient and E = porosity of column material. The distribution 

coefficient ~ emerges from the assumption of a linear adsorption relationship between 

the change in the amount of NP adsorbed ( dq) on the porous media per unit mass of solid 

weight with respect to change in concentration ( dC) of NP that flows. Hence, for a linear 

relationship of the form q = kdC, the distribution coefficient in Eq. 4.14 is represented as 

kd = =~ . The retardation factor physically represents the interaction of transporting NP 

with column material. From Eq. 4.14, R assumes a value of unity when kd tends to zero, 

thereby representing no adsorption or non-interaction of NPs with the column material. 

The other terms in Eq. 4.13, namely Dandy represent the dispersion coefficient and first-

order removal rate constant respectively. The Cexit/C0 for all studies attained values of 

unity and higher suggesting that y is negligible (y ~ 0). The CXTFIT routine was used to 

fit experimental breakthrough profiles (without the washout portion), by minimizing 

sums of least squares between experimental data and theoretical values of the analytical 

solution ofEq. 4.13, using Rand D as fitting parameters (see Appendix C, Section C1 for 

details of curve fitting procedure). 83 

When in synthetic seawater background, the progressive delay in breakthrough 

with temperature was captured by an increase in R (1.072 to 1.238) and a corresponding 

increase of the distribution coefficient ~ of QD/Neodol (0.0197 to 0.0437 ml/g) onto 

calcite (Table 4.3 and Fig. 4.1 0). These indicate temperature-dependent increase in 
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interactions and adsorption of QD/Neodol with calcite. The dispersion values increased 

from 0.028 to 0.08 cm2 min-I, but did not increase significantly between 50 and 70 °C 

where size increased from 12 nm to ~ 25 nm, suggesting dispersion to be temperature but 

not size dependent. Such dependency has been observed for tritiated water and other 

tracers. 62-64 The R and k<t values are low relative to those reported in literature: these 

along with high total breakthrough (CexiJCo) of 100% and overall QD recovery of >95% 

show the efficacy of the Neodol coating in successful QD transport through porous 

media. 

In 1M NaCl background and at room temperature, R and D coefficients of 

QD/Neodol (Fig. 4.10c, R = 1.001, D = 0.069 cm2 min-I) were similar to that of an ideal 

tracer such as tritiated water (Appendix C, Fig. Cl, R = 1, D = 0.012 cm2 min-I). At 

higher temperatures, CexiJCo was well over 100%, pointing to partial adsorption and 

release of QDs. Determining transport coefficients for these cases is beyond the scope of 

the CXTFIT routine. That the adsorption could be reduced by pre-saturating the calcite 

with Neodol was demonstrated at 70 °C by pre-flowing Neodol in 1M NaCl. Previously 

seen > 1 00% Cexit/Co was seen to reduce to near 100% (Fig. 4.11) and transport 

coefficients evaluated showed increase in R and D (R = 1.11, D = 0.06 cm2 min-I) 

pointing to temperature induced adsorption and dispersion effects as previously seen in 

seawater. 

It is interesting to note that although the Dh and cloud points of QD/Neodol in 1M 

NaCl were more responsive to temperature than in seawater, it did not translate to higher 

R values than those observed in seawater. These points to greater interparticle 

interactions between QD/Neodo1 in 1M NaC1 than in seawater. This suggests that 
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QD/Neodol adsorption onto calcite in 1M NaCl background is not restricted to a 

monolayer. Interparticle attraction can lead to QD/Neodol stacking onto calcite leading to 

a buildup ofNPs followed by exchange with empty micelles that gives the high values of 

overshoot. By saturating adsorption sites with Neodol, QD/Neodol attachment onto 

calcite initially as a monolayer and subsequently as multiple layers is circumvented. 

Table 4.3: Transport coefficients of QD/Neodol flow through calcite packed columns. 

Carrier Fluid 
D (cm2 min-1) kcJ (mL g-1) Temperature R 

(Flow Material) 

0.55M Synthetic 25 oc 1.0001 0.012 0 

Seawater 
70 oc 1.0003 0.020 0 

(Tritiated Water) 

0.55M Synthetic 25 oc 1.072 0.069 0.0197 

Seawater 50 oc 1.16 0.078 0.0437 

(QD/Neodol) 70 oc 1.238 0.082 0.0651 

lMNaCl 25 oc 1.001 0.039 0.003 

(QD/Neodol) 70 oc 1.118 0.06 0.0323 

*Transport coefficients estimated for QD breakthrough when calcite was pre-saturated 

at 70 °C with 1M NaCl and 0.75 giL Neodol. 
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Figure 4.10: Experimental and fitted results for transport of QD/Neodol through crushed 
calcite in synthetic seawater background at (a) 25 oc (b) 50 oc (c) 70 °C. 
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4.5 Conclusions 

We showed that by coating NPs with Neodol nonionic surfactant, high stability to QD 

aggregation and successful transport through crushed calcite (100% breakthrough,> 95% 

QD recovery) could be obtained at salinity and temperature conditions, representative of 

a reservoir. To achieve this, the cloud point of the selected Neodol (74 °C) was above the 

temperature of application (70 °C). The type of background salinity was seen to affect the 

cloud point of Neodol - In seawater, the competing effects of salting-out and salting-in 

types of ions ensured high temperature stability of QDs, resulting in low adsorption onto 

calcite and high QD recovery(> 95%). In a 1M NaCl background, the salting-out action 

by Na + ions was seen to lower the cloud point of Neodol, inducing strong partial 

adsorption of QD/Neodol onto calcite and interparticle attraction, thus resulting in an 

overshoot type release with relatively lower QD recovery (92%) at 70 °C. Observed 

overshoot was eliminated and higher (>95%) QD recovery was realized upon pre­

saturating surface adsorption sites on calcite with a background solution of NeodolllM 

NaCl. 
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ChapterS 
Colloidal and Flow Behavior of Brine and Temperature-Stable C-Dot Nanoreporters 

5.1 Introduction 

In the previous chapter, we described a facile approach to formulate brine suspensions of 

QDs with stability in 1M NaCl and 0.55M seawater brine. 1 The process involved transfer 

of QDs into bilayers of a nonionic surfactant Neodol 91-7 (referred to as Neodol). The 

nonionic type of surfactant was selected due to its tolerance to high ionic strengths, where 

ionic surfactants are typically known to precipitate.2-4 Furthermore, the selection criterion 

of the nonionic surfactant was such that its cloud point (for Neodol91-7, cloud point= 74 

°C) was above the temperature of application (70 °C). It emerged from the study that 

QDs transferred as single particle suspensions and were stable to aggregation at 

temperatures below and upto the cloud point of Neodol. Aggregation was found to be 

reversible, i.e, the NP suspension appeared cloudy above the cloud point but changed to a 

clear suspension when temperature was lowered to below the cloud point where QDs 

were found to re-attain their single particle sizes. Aggregation of QDs at elevated 

temperatures was thus attributed to a phenomenon governed by micellar aggregation. 5 

The salt-type comprising the background salinity was an important factor that 

affected QD aggregation. Salting-out action of NaCl lowered cloud point of Neodol to 

58 °C, causing QD aggregation to commence at 60 °C (Fig. 4.8).2· s-a This was found to 

impede transport of QDs through calcite in a NaCl background, particularly at elevated 

temperatures (Fig. 4.9 (b)) on account of partial adsorption of Neodol onto calcite sites. 

The above and the limited use of ethoxylated nonionics in sandstone reservoirs9 were 

factors that could severely limit the use of Neodol-coated nanoreporters for real-time 

downhole applications. 1 
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In this chapter, the focus is on two aspects of a new nanoreporter design. The first is the 

selection of an alternate coating as a replacement for Neodol with a view to extend 

tolerance to aggregation to 100 °C in various saline backgrounds. Furthermore and in 

light of toxicity and cost-related issues of CdSe QDs, 10• 11 a different core material that is 

non-toxic and inexpensive in oleic-acid functionalized carbon-black (C-Dot) was 

selected. 12 

In selecting a surfactant with extended stability to temperatures beyond 70 °C, a 

nonionic surfactant with a higher degree of ethoxylation could have been used. For a 

constant C-chain length, a higher degree of ethoxylation is known to increase cloud 

point,2 however, applications in quartz-sand reservoirs would yet remain an issue. We 

thereby decided to move towards a hybrid surfactant-type such as Avanel S150 CGN, 

with a molecular structure of C12-1sE01sS03"Na+. This surfactant has nonionic (EO) and 

anionic (S03) groups on the same molecule. Such hybrid surfactants were recently 

synthesized by oil and chemical companies such as Shell and BASF for chemical 

enhanced oil recovery (chemical EOR) applications in reservoirs where ionic strengths 

(1-3M NaCl or KCl) and temperatures (upto 120 °C) are extremeY Having the nonionic 

and anionic groups on the same molecule also helps bypass the often effective but non­

trivial approach to develop EOR strategies using mixed-surfactant micelles of nonionic 

and anionic surfactants.2' 14 

In the next section, we describe the procedure to synthesize C-Dots and their 

phase-transfer in saline backgrounds of Avanel. We also discuss preliminary 

breakthrough results ofC-Dot/Avanel with calcite and quartz sand as column material. 
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5.2 Materials and Methods 

5.2.1 Synthesis and Phase-Transfer ofC-Dots in Bilayers of Avanel 

Oleic acid-coated carbon-black (called C-Dots) were synthesized as per the procedure 

devised by Han et a/. 15 For synthesis, carbon black (diameter mean: 15 nm) was procured 

from Cabot Corp., dichloromethane (CH2Ch), potassium permanganate (KMn04), 

hydrochloric acid (HCl, 36.5 wt%), n-hexane (95%), acetone, oleic acid (OA, technical 

grade - 90%) and acetic acid were purchased from Fischer Scientific and tetrabutyl 

ammonium bromide (TBABr 99%) was purchased from Acros Organics. For phase­

transfer, the hybrid non-ionic anionic surfactant Avanel S150 CGN (called Avanel from 

here on) was procured from BASF. All chemicals were used as received and without any 

further purification. 

Towards synthesis, 1g carbon black and 300 mL CH2Ch were added into a 500 

mL three-necked round bottom flask (RBF) (Fig. 5.1). The mixture was sonicated for 30 

minutes to result in a fine dispersion. In a separate beaker, 3g TBABr (dissolved in 30 

mL deionized water), 0.75g KMn04 (dissolved in 20 mL deionized water) and 30 mL 

acetic acid were mixed and added to the dispersion in the RBF. The resulting mixture was 

stirred vigorously at 25 °C for 24 hours using a magnetic stirrer set-up. Upon this, the 

mixture was washed with 0.1M HCl solution, precipitated with acetone and centrifuged at 

3500 rpm for 1 hour. The supernatant was discarded and the residue was retained, to 

which the steps of washing with acetone, sonication and centrifugation were repeated 

thrice. The resulting product was hydroxylated carbon black that was left overnight for 

drying. 
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Figure 5.1: Synthesis procedure of C-Dots from hydroxylation of carbon black and 
functionalization with oleic acid. 

For functionalization with oleic acid, 0.1g of the hydroxylated carbon black was 

dispersed in 100 mL of n-hexane in a 250 mL RBF. To this dispersion, 1 g oleic acid was 

added and the mixture was stirred vigorously under magnetic stirring for 4 hours and at 

60 °C under reflux. The resulting product was carbon black with oleic acid functionality 

(called carbon-dots or C-dots) which was precipitated from hexane using acetone and 

cleared off excess unreacted oleic acid by sonication and centrifugation. The C-dots 

obtained were dried overnight and suspended in chloroform to form a concentrated stock 

solution at 400 ppm, estimated by UV -vis spectroscopy and previously published 

calibration curves. 12
' 

16 
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For phase-transfer, solutions of Avanel at 0.75 g/L were prepared in saline water 

compositions of 1M NaCl, 1M KCl, and 0.55M synthetic seawater. Another saline water 

composition (API brine, 8 wt.% CaCh and 2 wt.% NaCl, 1.77M ionic strength) with 

higher concentration of divalent ions was introduced as per recommendations by the 

Advanced Energy Consortium (AEC) so as to simulate conditions in reservoirs with high 

divalent ion concentration. 4 mL of C-dots in chloroform was added to these solutions 

and heated at 90 oc for 30 minutes as per the procedure described in Section 2.2.3. It is to 

be noted that unlike phase-transfer in Neodol, the presence of salt was important to result 

in high transfer yields due to the ionic component of A vanel. Fig. 5.2 depicts the 

schematic of C-dots transfer to 1M NaCl, 1M KCl and 0.55M seawater solutions and Fig. 

5.3 depicts the schematic of C-dots upon transfer to 1. 77M API brine. 
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Figure 5.2: Transfer of C-Dots into bilayers of Avanel in various saline environments. 
The concentration of C-Dots in 1M NaCl and 1M KCl is 15 ppm and in 0.55M seawater 
is 80 ppm. 
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Figure 5.3: Transfer of C-Dots into bilayers of Avanel in API brine. Concentration of C­
Dots in API brine is 1 00 ppm. 

5.2.2 Characterization 

5.2.2.1 Dynamic Light Scattering 

The hydrodynamic diameter of C-Dot/Avanel in different salt solutions was estimated 

across temperatures ranging from 6-70 oc by DLS, as per the method described in section 

4.3 .2.1. Hydrodynamic diameters measured were number and volume-averaged and 

scattering data were fitted using CONTINS or NNLS fitting routines through the 

instrument software 9KDLSW. Number-based diameter (DN) scales linearly with 

LD.n . 
diameter (DN = L ' ' ) whereas volume-based diameter (Dv) scales as the cube of the 

ni 
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(LD3n- J~ diameter (Dv = L ~i ' ), where ni is the weighted mean of a sample population with 

5.2.2.2 Zeta Potential 

Zeta potential of C-Dot/Avanel in DI water was estimated from electrophoretic mobility 

measurements as per the method described in section 4.3.2.2. The zeta potential in DI 

water was -35 ± 4 mV. For C-Dots in high salinity solutions, measurements of zeta 

potentials were inconclusive on account of poor reproducibility, and are thus not 

reported. This is consistent with previous studies reported in section 4.3.2.2 and is also in 

accordance with assumptions behind theories for electrophoretic mobility that require 

salts to be at low concentrations. 18, 19 

5.2.2.3 UV -vis Spectroscopy 

Concentration of QDs was analyzed by UV -vis absorbance spectroscopy using a 

Shimadzu UV-vis (UV-24601 PC) spectrophotometer. Details of the procedure are 

described in Section 4.3.2.3. Concentrations were estimated using previously developed 

calibration curves. 12' 16 

5.2.3 Breakthrough Studies 

Preliminary breakthrough studies of C-Dot/ A vanel were carried out in packed columns of 

crushed calcite and quartz sand in API brine background as per the procedure described 

in section 4.3.3. Prior to breakthrough runs in crushed-calcite, the column was flushed 
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with a background solution comprising of 0.75 giL Avanel in 1.77M API brine (termed 

as A vanel/ API brine). It is important to mention that the equilibration step with 

A vanel/ API brine was carried out to prevent a permanent attachment of negatively 

charged C-Dot/Avanel onto positively charged calcite. This was observed in our initial 

set of experiments where equilibration was carried out with API brine background and 

breakthrough ofC-Dot/Avanel was poor. For flow through quartz-sand, equilibration was 

done with 1.77M API brine upon which C-Dot/Avanel in API brine was flowed. On 

account of the negative charge of quartz-sand, equilibration with A vanel/ API brine was 

not required. All volumetric flow rates (Q) used in this study was 8 mL/hr (corresponding 

to a Darcy velocity (vd) of2.44 m/d). 

Concentration of C-Dots in the column effluent (Cexit) was determined as a 

function of PV using UV-vis spectroscopy and Beer-Lambert's law using previously 

published calibration curves. 12' 16 Unless mentioned otherwise, the C-Dot/Avanel 

dispersion was pumped through the column for 3.5 PV's before being replaced by the 

background salt solution. Flow of the salt solution was continued until no more C-Dots 

could be detected at the outlet (i.e., Cexit - 0). Breakthrough curves, represented as plots 

of Cexit/C0 (where Co representing the starting inlet concentration= 0.5 absorbance units) 

versus PV were subsequently created. For studies at higher temperatures, columns were 

immersed and equilibrated for 4 hours in a jacketed vessel, with temperature controlled 

by a Neslab RTE-111 waterbath. 
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5.3 Results and Discussions 

5.3.1 Colloidal Properties of C-Dots/Avanel 

Fig. 5.1 shows variations in hydrodynamic diameters ofC-Dots/Avanel in different saline 

backgrounds of 1M NaCl, 1M KCl and 0.55M seawater and as a function of temperature. 

Fig. 5.2 shows variations in hydrodynamic diameters of C-Dots/Avanel in 1.77M API 

brine. The hydrodynamic diameters remained under 100 nm and did not vary 

significantly across the temperature range studied. It is to be noted that C-Dots in Avanel 

were not single particles and existed as clusters, different from the hydrodynamic 

diameters calculated by theory. This was possibly on account of an initial size 

distribution in the starting carbon black population. 12 

Beyond 70 °C which is the limit of the existing heating set up of the DLS 

machine, stability to aggregation was tested by equilibrating the samples in a paraffin oil 

bath set at 1 00 °C, over a period of 12 hours. The solutions were seen to remain clear and 

with no visible signs of settling, suggesting that the C-Dots were stable to aggregation 

even at elevated temperatures. 



-E 
s:::: -

t 
Synthetic 
Seawater 

. unaggregated even 
: at 100C 

100 I 
80 l 

+ 1M NaCI 

• 1MKCI 

60 1 

• 0 .54M 

40 j f 
C-Oots remain / 

J- - - - - - - - - - - - - - - - - - - - - : 
Theoretical Olameter(30 nm) i 

20 

0 

0 25 50 

~ Temperature Limit 
l'or DLS instrument 

75 100 

Temperature (C) 

0.5M Seawater, 1 OOC 

180 

Figure 5.4: Hydrodynamic diameters of C-Dot/ Avanel as a function of temperature in 
saline backgrounds of 1M NaCl, 1M KCl and 0.55M seawater. 
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5.3.2 Transport and Breakthrough of C-Dot/Avanel through Crushed-Calcite and 

Quartz Sand Columns 

Transport and breakthrough profiles of C-Dot/Avanel through crushed-calcite and quartz 

sand columns are depicted in Figs. 5.6 and 5.7 respectively. The background salinity was 

1.77M API brine. For transport study through calcite, C-Dot recovery was <10% when 

pre-equilibration prior to C-Dot/ Avanel flow was made with API brine. Recovery 

dramatically improved to >95o/o when pre-equilibration was carried out with Avanel/ API 

brine. Pre-equilibration with Avanel ensured positively charged adsorption sites on 

calcite were saturated and allowed for unimpeded transport of C-Dot/ A vanel. 
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Figure 5.6: Breakthrough profiles of C-Dot/Avanel in 1.77M API brine background 
through crushed-calcite columns at 25 oc and 70 °C. The calcite-columns were pre­
saturated with 0.75 g/L Avanel/1.77M API brine before C-Dot/Avanel in 1.77M API 
brine was introduced into the column. At 3.5 PV's as indicated by the dashed black line, 
the C-Dot solution was replaced by 0.75 g/L Avanel/1.77M API brine. 

Alongside a high recovery, tracer-like behavior of C-Dots was observed, where 50% 

breakthrough was found to occur between 1-1.2 PV's, at temperatures up to 70 °C. Given 

that API Brine composition is 8 wt% NaCl (that corresponds to ~ 1.36M NaCl) and for 
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1M NaCl background, overshoot was observed with QD/Neodol at higher temperatures, 

the hybrid A vanel surfactant proves effective in facilitating NP transport at higher 

temperatures. 

Fig. 5.7 shows flow of C-Dot/Avanel in 1.77M API brine through quartz-sand. 

The recovery of C-Dots post flow and breakthrough was high(> 90%) and the negative 

charge of quartz-sand did not require a pre-equilibration step with A vanel/ API brine. 

Breakthrough of C-Dot continued to be delayed (1.2-1.6 PV's) relative to transport 

profiles observed for calcite. However, previously observed high overshoot as seen in 

QD/Neodol did not occur, indicating lower adsorption affinity for A vanel onto quartz. 
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Figure 5. 7: Breakthrough profiles of C-Dot/ A vanel in 1. 77M API brine background 
through quartz sand columns at 25 oc and 70 °C. The quartz-sand column was pre­
saturated with 1. 77M API brine before C-Dot/ A vanel in 1. 77M API brine was introduced 
into the column. At 3.6 PV's as indicated by the dashed black line, the C-Dot solution 
was replaced by 1. 77M API brine. 

5.4 Conclusions 

Non-toxic and inexpensive C-Dot/Avanel reporters were formulated by oleic-acid 

functionalization of hydroxylated carbon-black and subsequent transfer to bilayers of 
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A vanel. The resulting nanoreporters demonstrated high stability in salt backgrounds of 

1M NaCl, 1M KCl, 0.55M seawater and 1.77M API brine and up to temperatures of 100 

°C. Flow and transport studies in API brine background through crushed-calcite and 

quartz-sand showed largely unimpeded flow with high recovery. Flow through calcite 

required a pre-equilibration step with A vanel/ API brine to saturate positively charged 

adsorption sites. Flow through quartz-sand did not require the pre-equilibration with 

Avanel. While C-Dot retardation through quartz-sand was higher than calcite, delay was 

lower and without overshoot when compared to nanoreporters formulated with Neodol. 

The A vanel coating thus provides a way to nanoreporter design with high colloidal 

stability and tracer-like breakthrough characteristics. 



184 

5.5 References 

1. Kini, G. C.; Yu, J.; Wang, L.; Tour, J. M.; Kan, A. T.; Biswal, S. L.; Tomson, M. 
B.; Wong, M.S., Colloidal and Convective Transport Behavior of Saline-stable Quantum 
Dot Nanoparticles. To be submitted 2011. 

2. Rosen, M. J., Surfactants and Interfacial Phenomena. 3rd ed.; Wiley-Interscience: 
New York, 2004. 

3. Bagaria, H. G.; Kini, G. C.; Wong, M. S., Electrolyte Solutions Improve 
Nanoparticle Transfer from Oil to Water. Journal of Physical Chemistry C 2010, 114, 
(47), 19901-19907. 

4. Petosa, A. R.; Jaisi, D. P.; Quevedo, I. R.; Elimelech, M.; Tufenkji, N., 
Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: 
Role of Physicochemical Interactions. Environmental Science & Technology 2010, 44, 
(17), 6532-6549. 

5. Mustafina, A. R.; Elistratova, J. G.; Bochkova, 0. D.; Burilov, V. A.; Fedorenko, 
S. V.; Konovalov, A. 1.; Soloveva, S. Y., Temperature induced phase separation of 
luminescent silica nanoparticles in Triton X-1 00 solutions. Journal of Colloid and 
Interface Science 2011, 354, (2), 644-649. 

6. Hey, M. J.; Jackson, D.P.; Yan, H., The salting-out effect and phase separation in 
aqueous solutions of electrolytes and poly( ethylene glycol). Polymer 2005, 46, (8), 2567-
2572. 

7. Kenkare, P. U.; Hall, C. K.; Kilpatrick, P. K., The effects of salts on the lower 
consolute boundary of a nonionic micellar solution. Journal of Colloid and Interface 
Science 1996, 184, (2), 456-468. 

8. Morini, M.A.; Messina, P. V.; Schulz, P. C., The interaction of electrolytes with 
non-ionic surfactant micelles. Colloid and Polymer Science 2005,283, (11), 1206-1218. 

9. Curbelo, F. D. S.; Barros, E. L.; Dutra, T.V.; Dantas, T. N.C.; Garnica, A. I. C., 
Oil recovery by ionic and nonionic surfactants and adsorption in sandstones. Afinidad 
2006, 63, (524), 291-295. 

10. Wedin, R.; Priester, J. H.; Mielke, R. E.; Kramer, S.; Jackson, S.; Stoimenov, P. 
K.; Stucky, G. D.; Cherr, G. N.; Orias, E.; Holden, P. A., Biomagnification of cadmium 



185 

selenide quantum dots in a simple experimental microbial food chain. Nature 
Nanotechnology 2011,6, (1), 65-71. 

11. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Probing the cytotoxicity of 
semiconductor quantum dots. Nano Letters 2004,4, (1), 11-18. 

12. Berlin, J. M.; Yu, J.; Lu, W.; Walsh, E. E.; Zhang, L. L.; Zhang, P.; Chen, W.; 
Kan, A. T.; Wong, M. S.; Tomson, M. B.; Tour, J. M., Engineered nanoparticles for 
hydrocarbon detection in oil-field rocks. Energy & Environmental Science 2010, 4, (2), 
505-509. 

13. Puerto, M.; Hirasaki, G. J.; Miller, C. A.; Barnes, J. R., Surfactant Systems for 
EOR in High-Temperature, High-Salinity Environments. In SPE Improved Oil Recovery 
Symposium Tulsa, 2010. 

14. Ogino, K.; Abe, M., Mixed Surfactant Systems. 2nd ed. ed.; CRC Press: New 
York, 1992; p 4 72. 

15. Han, H.; Lee, J.; Park, D. W.; Shim, S. E., Surface Modification of Carbon Black 
by Oleic Acid for Miniemulsion Polymerization of Styrene. Macromolecular Research 
2010, 18, (5), 435-441. 

16. Yu, J.; Berlin, J. M.; Lu, W.; Zhang, L. L.; Kan, A. T.; Zhang, P.; Walsh, E. E.; 
Work, S. N.; Chen, W.; Tour, J. M.; Wong, M. S.; Tomson, M. B., Transport Study of 
Nanoparticles for Oilfield Application. In SPE International Conforence on Oilfield 
Scale, Aberdeen, U.K., 2010. 

17. Hiemenz, P. L.; Rajagopalan, R., Principles of Colloid and Surface Chemistry. 
3rd ed.; CRC Press: Boca Raton, 1997; p 672. 

18. Evans, D. F., Wennerstrom, H, The Colloidal Domain: Where Physics, Chemistry, 
Biology and Technology Meet. 2 ed.; Wiley-VCH: 1999. 

19. Hunter, R. J., Zeta Potential in Colloid Science: Principles and Applications. 
Academic Press: London, 1981. 



186 

Chapter6 
Microfluidic Formation of Ionically Crosslinked Polyamine Gels 

6.1 Introduction 

In Chapter 2, we had described a new phase-transfer strategy to create stable colloidal 

dispersions of single NPs encapsulated in salty-micelles of surfactants. Subsequently in 

Chapters 4 and 5, we demonstrated approaches to formulate NPs that were stable to 

aggregation under conditions of high ionic strengths and temperatures. We also 

investigated their flow and transport through crushed calcite and sand-pack columns, 

material that simulate a reservoir. 

In this chapter, we shift our focus to a microfluidic environment where controlled 

flow and diffusion-limited conditions of mixing prevail. A research area in our group 

deals with the tandem assembly of NPs on a polymer-salt aggregate template to result in 

nanoparticle assembled capsules (NACs), where NPs constitute the shell wall. 1"6 Thus far, 

NAC synthesis has been carried out in a batch mode, with limited control possible on the 

spatial deposition of NPs. Further, only a limited variety of water-dispersible NPs can be 

used to form NACs. We decided to expand the scope ofNAC synthesis on a continuous 

mode basis in microfluidics, using a wider variety of water-dispersible NPs, now 

obtainable through salty-micelle encapsulation. Further, the laminar flow environments 

can be used to form new variant ofNACs with spatial control over NP deposition. 

In attempting tandem assembly in microchannels, we found a unique and 

unexpected behavior in that polymer-salt aggregates which serve as templates to 

assemble NPs as NACs, fused to form viscoelastic gels under shear from reactant flow 

rates. These gels form in situ and at room temperature, exhibit shear-thickening behavior 

as the polymer is cross-linked to form viscoelastic gel phases, and remain stable and 
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intact even upon cessation of flow. Upon reviewing literature of gel formation in 

microfluidics, we realized the significance of these findings in the possibility of using in 

situ formed gels as flow regulators in microchannels. Current methods to regulate flow in 

microchannels involving gels require elaborate micromachining and lithographic 

methods. Thereby, in this chapter, we describe our investigations on the mechanism of 

forming ionically crosslinked polyamine gels in microfluidic channels. We begin this 

chapter by providing a brief introduction to the field of microfluidics. 

6.1.1 Microfluidics and its Unique Environment 

Prof. G.M.Whitesides, one of the pioneers in developing the field of microfluidics,7 

defines microfluidics as ''the science and technology of systems that manipulate small 

(pico to atto liters) amounts of fluids, using channels with dimensions of tens to hundreds 

of micrometers." The development of this fascinating field came about from attempts to 

miniaturize the field of analysis. The following were the drivers to miniaturization: 

(i) The use of very small quantities of samples and reagents, thus minimizing 

consumption and cost (particularly important in high value industries such as 

pharmaceuticals). 

(ii) The ability to carry out rapid separations and detections, while achieving high 

resolution and sensitivity. 

(iii) Requirements of small footprints and portable nature of the device. 

Fig. 6.1 (i) depicts one of the most basic microfluidic devices, comprising of three inlet 

channels that merge to form the main channel. The first generation microfluidic channels 

were made of silicon, glass and hard polymers, but ever since the advent of the "wonder 
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polymeric material" - polydimethylsiloxane or PDMS and advances 1n the field of 

microelectronics, the miniaturization of channels have undergone a sea of change, 

resulting in devices that serve as "Labs on a Chip" (Fig. 6.1 (ii)), and now even 

"Factories on a Chip."7 Squires and Quake, in their comprehensive review on fluid 

physics at the nanoliter scale, discuss the analogy between miniaturization in 

microfluidics and microelectronics. 8 

(i} (ii) 

Figure 6.1: (i) A simple microchannel comprising three inlet channels merging to form a 
main central channel. (ii) A highly miniaturized "Lab on a Chip" type of microfluidic 
device - Microfluidic Chemostat. This device is used to study growth of microbial 
populations. The human finger and the United States dime coin gives a sense of scale and 
the dramatic extent of miniaturization going from (i) to (ii). (Fig. 6.1 (i), adapted from 
Beebe et al. Fig. 6.1 (ii), adapted from Whitesides G.M. (2006)). 

As a consequence, microfluidics has now grown into a wide research theme that has 

impacted and contributed to the development of several disciplines in a way that it is 

bound to change the world and in the way that we live. In fact, the July 2006 edition of 

the prestigious scientific journal Nature, exclusively covered "Lab on a Chip" as its core 

theme. This issue featured perspectives from leaders on various disciplines of 

microfluidics, namely miniaturized chemical analysis, optofluidics, single molecule 
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probing, control and detection of chemical reactions, biology and global health, thus 

announcing the coming of age of microfluidics as a field.7' 9"14 

So what is so special about the microfluidic environment that has triggered off so 

many developments? The obvious characteristic is its small size, whose compelling 

advantages have already been discussed. The non obvious is the flow characteristics of 

fluids in microchannels, namely that of laminar flow. 

Fig. 6.2 illustrates the laminar flow profiles observed in microfluidic channels. 

The consequence of laminar flow is that mixing between fluid layers starts at the 

interface upon which, it becomes diffusion limited (poor mixing). These can be further 

understood in terms of two important dimensionless numbers that are critical m 

describing the essential microfluidic environment -the Reynolds and Peclet Numbers. 

6.1.2 Reynolds Number 

In Whitesides' definition of microfluidics, a key specification was the dimensions of the 

channel, namely tens to hundreds of microns. At these scales, mass transport in fluids is 

dominated by viscous dissipation and inertial effects are generally negligible. The ratio of 

inertial and viscous effects is captured by the Reynolds number CNRe) which is defined 

below as: 

N _ dvp = pv2 = Intertial Forces 
Re J.l. J.I.V Viscous Forces 

(6-1) 

d 

Where: d =diameter ofthe pipe, v =velocity ofthe fluid, p =density of the fluid, and 

J.l. = viscosity of the fluid. 



190 

(i) (ii) 

(iii} 

Figure 6.2: Illustrations of laminar flow behavior in microfluidic devices (i) Inlet 
channels with different colored dyes flow into the main channel at different points but 
remain exactly parallel to each other. (ii) Color gradient generator: Inlet streams (top to 
bottom) with colors varying from red to green and its intermediate mixtures, are 
introduced into the main channel. It can be seen that the color gradient is maintained even 
in the main channel due to laminar flow conditions. (iii) Effects of valve shut on and off: 
(A) Colored dye solutions flow through six inlet pipes to the main channel. The dyes flow 
as parallel streams in the main channel due to laminar conditions. Images (B - F) 
correspond to those wherein inlet streams are shut (one at a time, and counter clockwise 
for images B through F). Fluid is occupied by the stream entering at a higher pressure and 
mixing is still seen to be absent (Image Courtesy: Prof. G.M.Whitesides group website). 
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Assuming water to be the working fluid, typical velocities of 1 J.lm/s - 1 cm/s and 

channel radii between 10-100 J.lm, NRe is found to range in the order of 1 o-6 and 10. 

These low values of NRe further confirm that viscous forces typically overwhelm inertial 

forces, and the resulting flows are linear (laminar). It is the essential dimensions of the 

microfluidic (10-100 J.lffi) that provide this effect. Since inertia provides the nonlinearity 

that is responsible for numerous instabilities and turbulence, the loss in inertial 

nonlinearity accentuates physical phenomena that are less prominent on the macroscale 

(Fig. 6.2). The review by Squires and Quake provides further details on how laminar flow 

profiles in microfluidics can be systematically altered by increasing Reynolds number 

and geometry, thus providing the basis to designing microfluidic plumbing, mixing and 

actuation components. 8 

6.1.3 Peclet Number 

High Reynolds numbers dominate most aspects of life, particularly when dealing with the 

macroscale through the dominance of inertia over viscous forces. The presence of eddies 

and turbulence in such conditions significantly lower the time scales of mixing. The 

situation differs in microfluidics, wherein laminar fluid flows that naturally arise in the 

low Reynolds number scenario, forces mixing to occur by diffusion alone. This behavior 

results in mixing times that can be unacceptably long and range in the order of minutes or 

more. It thereby becomes necessary to complement the Reynolds number with other 

dimensionless groups that quantify the "time scale" and thereby, the associated "path 

length" required for mixing to take place. This is captured by the Peclet number. 
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Consider the T junction geometry as shown in Fig. 6.3. Let two fluids (A and B) be 

injected to flow alongside each other upon entering the main channel with width "w". It 

is well known that A and B initially mix at the interface, and hence, the next logical 

question would be to estimate the time (and corresponding distance z) when the two 

fluids become completely homogenized. 

-- B -

Figure 6.3: A microfluidic channel with T -junction geometry where two fluids A and B 
mix purely by diffusion. The Peclet number captures the time (and consequently channel 
length) required for complete mixing to take place (Figure adapted from Squires and 
Quake). 

The time -ro required for molecules to diffuse across the entire channel length is given by 

'tn ,...., w 2 I D , where D is the diffusion coefficient. In this time, the distance covered by the 

molecule down the channel would be, z ,...., vw 2 /D , where v is the fluid velocity. 

Consequently, the number of channel widths required for complete mixing to occur 

would be given by: 

N =~= vw 
Pe W D (6-2) 
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The Pee let number (N re) expresses the relative importance of convection to diffusion. In 

this example, the number of channel widths required for full mixing varies linearly with 

Nre· Thus, the reaction path length for complete mixing of a molecule (such as a protein, 

D = 40 J..Lm2/s) through a channel of 100 J..Lm width and at a velocity of 100 J..Lrnls would 

require approximately 250 channel widths (2.5 em) and 4 minutes of mixing time. Thus, 

a characteristic feature of micro fluidics is their typically large Peclet numbers. 

Purely diffusive mixing can be advantageous or undesirable and depends purely 

on the application in hand. Often, microfluidic chemical reactors require different 

solutions to be brought together and mixed rapidly, allowing the dynamics of the 

reactions to be probed, rather than the diffusive dynamics of the molecules themselves. In 

this case, micropumps and micro rotary mixers have been devised to increase mixing by 

exploiting the parabolic flow profile nature in microchannels (Fig. 6.4 ). 

(i) (ii) 

Figure 6.4: Rotary pumps have been utilized to rapidly mix solutions in microchannels 
(here DNA and cells). (i) DNA (green stream) and cells (yellow stream) before mixing. 
(ii) DNA and cell streams upon mixing (Figure adapted from Melin and Quake). 
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The opposite problem is faced, however, in sorting and analyzing the products of those 

same reactions: the faster the mixing, the harder the separation. Controlling dispersion in 

microfluidic devices, then, is often of paramount importance. 

6.1.4 Capillary Number 

For the case where fluid flows are immiscible, surface or interfacial tensions can affect 

the dynamics of the free surface. In this case, the capillary number (Ca) serves as in 

important dimensionless number that quantifies the competition between surface tension 

(y) and viscous forces (J.l). 

Ca = _J.l_V = __ V_i_sc_o_u_s_S_tr_e_s_s __ 
y Surface Tension Stress 

(6-3) 

Where: v = velocity of the fluid. Based on the capillary number, microfluidic geometries 

can be designed, both for low and high Reynolds Number flow to induce droplet and 

foam formation by inducing Rayleigh-Plateau instabilities.8 In the following section, we 

review recent work on gel formation in a microfluidic environment, which forms the 

basis to our work on ionically crosslinked gelation. 

6.2 Microfluidic Formation of Ionically Cross-Linked Gels and Nanoparticle 

Assembled Capsules 

6.2.1 Background 

An active area of our research group has been on the use of self-assembly methods of 

NPs to form capsules. This method is a simple 2-step tandem-assembly approach in 

which a linear cationic polymer is mixed with a salt of a multivalent anion in the 'first 
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step, to form instantaneously a positively charged polymer-salt aggregate. These 

aggregates serve as colloidal templates to which, negatively charged NPs are added to in 

the second step to form Nanoparticle Assembled Capsules (NACs). In 2005, Rana et a/ 

demonstrated the 2-step tandem-assembly approach to form NACs using poly (L-lysine) 

(PLL) as the polymer and tetrasodium ethylenediamine tetraacetate (EDTA) as the 

multivalent anion, resulting in formation of positively charged colloidal aggregates of 

PLL crosslinked by EDTA (Fig. 6.5). These aggregates were unstable and grew in time. 

To stabilize the aggregates, NPs (such as silica) were added as a part of the second step, 

resulting in the formation of nanoparticle assembled capsules (NACs) where the shell 

boundary ofthe capsule was comprised ofmultiple layers of silica NPs (Fig. 6.5). 1 

The governing synthesis parameter was the "R ratio", defined as the total negative 

charge from the multivalent anion divided by the total positive charge from the polymer. 

Since the polymer/salt aggregates grow in time as metastable species (with growth rates a 

function of R ratio), the capsule sizes can be controlled by both growth time and R ratio. 

Larger silica NP capsules are prepared with polymer/salt aggregates aged for longer times 

than shorter times. The capsule material is essentially made of NPs and polymer in the 

shell, in which the polymer holds the oppositely charged NPs together. Interestingly, the 

NAC interior can contain either the polymer/salt aggregate or water, depending on the 

salt-type used. Thus polymer-filled or water-filled capsules can be generated in one pot, 

merely by changing the precursor. 

Subsequent investigations have established the general nature of the tandem 

assembly method, wherein, a host of linear cationic polymers (poly(allylamine 

hydrochloride) or P AH) and multivalent salt variants (monosodium citrate, disodium 
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citrate, sodium acetate, trisodium citrate, sodium succinate, disodium sulfate tetrasodium 

ethylenediaminetetraacetate (EDTA) and disodium hydrogen phosphate (Na2HP04)).2 

Besides Si02 NP capsules, capsules made of Sn02 NPs, ZnO NPs, Fe203 NPs, Fe304 

NPs, CdSe QDs, polymer, Ah03-Si02 NPs and Si02 NPs - silicic acid have been 

successfully synthesized. J-s, t? In more recent developments, Murthy et al describe 

formation of patchy/multicompartment capsules using a blend of polymers (P AH and 

PLL), citric acid and Si02 NPs.6 

[!] 

+ 

+ 

. OTA 
C ·omc 

Polym r-filled 
silica capsul s 

(1 um) 

Figure 6.5: Schematic depicting tandem self-assembly of microcapsules. (a) Two-step 
formation of nanoparticle assembled capsules (NACs): In the first step, a positively 
charged linear cationic polymer (poly (L-lysine) (PLL) is reacted with a multivalent 
anion, tetrasodium ethylenediamine tetraacetate (EDTA) to form EDTA-bridged PLL 
aggregates. (b) Confocal microscopy image of EDT A-bridged PLL aggregates, where 



197 

PLL is partially conjugated by FITC fluorophores. (c) Bright field (top), confocal 
(bottom), and combined confocal/bright-field images (inset) of three different s~lica 
structures suspended in water. (f) SEM images of NACs. (g) TEM images of NACs 
(Scale Bars: 5 J..lm) (Figure adapted from Rana et al). 

The unique selling proposition of the tandem-assembly process is its contribution to the 

field of green chemistry in obtaining closed shell colloidal structures through an 

environmental friendly route, as the entire synthesis is carried out in water, at near neutral 

pH and at room temperature. Further, the size of the colloidal template can be controlled 

by charge ratios of reactants that results in structures from sizes of 100 nm to 2 J..lm. 18 To 

expand the scope of synthesizing NACs on a continuous mode basis and to form new 

types of NACs, it was envisaged that controlled flow conditions in a microfluidic could 

be beneficial. Further, with our understanding of transferring NPs to water phase using 

salty-micelles of surfactants, we could attempt the use of new NP types in forming the 

capsule shell boundary. 

Fig. 6.6 shows the preliminary proposed schematic of forming NACs on a 

continuous mode basis. We planned to flow a linear cationic polymer (poly-

allylaminehydrochloride (PAH)) through the central stream and multivalent anions of 

citrate through the side streams to form citrate-bridged P AH aggregates. Farther down the 

channel, we proposed to add NPs so that NACs could be formed on a continuous mode 

basis. We also felt that adding NPs of two different types from the two side streams could 

result in the formation of "Janus" variants of capsules. 
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Figure 6.6: Preliminary schematic of forming nanoparticle assembled capsules (NACs) 
on a continuous mode basis and the possibility of forming new NAC types. 

However, upon attempting the first step of flowing PAH through the central stream and 

citrate through the side streams of a three-inlet microfluidic channel, we found structures 

formed that were contrary to expectations. Fig. 6. 7 shows the two contrasting scenarios of 

structures formed when P AH and citrate interact under bulk vortex -mixing conditions 

(top) and under laminar flow conditions in a microfluidic and under shear flow (bottom). 

We decided to re-visit the challenge of forming capsules at a later duration, upon 

characterizing and exploring this gelation phenomenon. 

Thereby, to put into context the relevance of our work on gelation in 

microfluidics, we provide a brief literature overview of gel formation in microfluidics 

that constitutes the next section. 
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Figure 6. 7: Polyallylamine hydrochloride (P AH) and citrate interactions in a bulk 
vortexing environment (top) gives rise to citrate-bridged PAH aggregates (fluorescence 
mode). In a micro fluidic environment (bottom), new structures such as gels and droplets 
form, in addition to previously reported aggregates, when P AH and citrate flow under 
conditions of shear. 

6.2.2 Gel Formation Strategies in Microfluidic Devices and their Applications 

A recent focus area in microfluidic research has been on flow and formation of gels in 

microchannels. 19
-
26 Microfluidic devices allow for the confinement of reagents and 

precise control of the time of reaction. 12
' 

27
-
33 Primary applications of gels in micro fluidic 

d . . C: • C: fl 1 2 1 34-47 . 48-52 d . d evtces are 1n 10rm1ng components 10r ow contro , ' separations, etectlon an 

sensing,41
' 

50 that are essential towards developing micro total analytical (J.lTAS) systems. 

Recent J.lTAS systems that use gel-based components include glucose and insulin 

detection devices,36
' 

41 enzymatic microreactors,53 optical chemosensors54 and nucleic 

acid separation systems. 55 Other applications of gels in microchannels include synthesis 

of advanced functional materials,25
' 

56
-
67,as encapsulation agents 61

-
63

' 
67 and as adaptive 

liquid microlenses. 68 
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The principal advantage of using gels as functional components of (J..I.TAS) systems is 

that conventional microactuators (using electromagnetic, pneumatic, thermopneumatic or 

electrostatic principles for its functioning) require external power sources for their 

operation. Often, assembly lines and microcontrollers that constitute the power supply, 

far exceed the size of the miniaturized devices, thus restricting their use in portable/point­

of-use applications from economical and practical standpoints.21 The use of gels that have 

functionalities responsive to thermal,36"39 photo40' 69 or chemical (ionic strength or pH) 

changes41 ' 42' 70 in the device environment has resulted in the development of a new class 

of non-mechanical microactuation systems, that do not require external power supply.37-

40' 44 In response to external stimuli, gels undergo reversible or irreversible volume 

transitions from expanded to collapsed states, thus bypassing the requirements for 

external power supplies. 34' 44' 45' 63 ' 66' 71 

An effective approach to incorporating gels within a microchannel is to form gel 

structures in situ.21 ' 46' 47' 72 In situ gel formation is an important route to fabricate gels at 

precise locations in a microchannel, which otherwise would require the use of multiple­

steps of microfabrication.21 ' 22 To date, in situ gel formation in microfluidic channels has 

been based on polymerization reactions, in combination with additional steps like flow 

focusing, geometric confinement and UV/photolithography.21 , 24, 46, 47, 57, 58, 60-64, 67, 73-79 

As an illustration, Beebe et al did pioneering work to fabricate active hydrogel 

components within microfluidic channels, by direct photo patterning of a liquid phase. 

This method allows for rapid, easy and in situ formation of stimuli-responsive flow 

components with exquisite high-definition designs (Fig. 6.8).21 An important feature of 

these hydro gels was their rapid response times (less than ten seconds) to changes in 
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external stimuli (pH). However, many of the hydrogels, particularly with high aspect 

ratios were found to be structurally weak and the use of prefabricated posts in 

microchannels was required to provide structural support and stability (Fig. 6.9)?1 

Similarly, Koh and Pishko incorporated biological grade polyethylene glycol (PEG) 

hydrogel microstructures into microchannels using photoreaction injection molding. 

Although a wide array of structures were achievable through this method, it required 

multiple steps ofmicrofabrication and alignment (Fig. 6.10).22 

In some cases, charge-based cross-linking reactions have also been used to create 

gels and gel-based structures, such as those prepared from calcium chloride and sodium 

alginate?6
• 

33
• 

65 However, even such electrostatic cross-linking routes to gel formation 

require them to be carried out in a flow focusing geometry or with an additional 

polymerization step (Fig. 6.11 )_26
• 

57
• 

60
• 

65
• 

80
• 

81 

a b 

e 

c 
Figure 6.8: Rapid in situ formation of hydrogels in microchannels by direct photo 
patterning. (a) The fabrication procedure utilizes an online ultraviolet (UV) source and a 
photomask that transfers designs to the liquid phase with different shapes and patterns (b-
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f). Note: The photomask containing respective designs are listed at the top right comer of 
each photograph in (b-e). (b) Triangle shape (c) Convex shaped pattern (d) Concave 
shaped pattern (e) High aspect ratio design shaped in the English alphabet "C" (f) 
Simultaneous polymerization of multiple structures with a single exposure of UV light. 
Scale bars: (b-e): 250 J.lm; (f): 500 J.lm (Figure adapted from Beebe et al). 

Bazargan and Stoeber recently reported on reversible gelation in microchannels from 

thermoresponsive pluronics with salt solutions of Na3P04 . Gelation at room temperature 

was achieved, although it was found to occur within a limited range of pluronic and salt 

concentrations. 23
' 

82 
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Figure 6.9: Prefabricated posts in a microchannel to provide structural support for 
hydrogels. (a) Diagram depicting hydrogel jackets around posts (b) Actual device after 
polymerization of hydro gels. (c) Hydrogel jackets block side channel branch in expanded 
states. (d) Contracted hydro gels allow fluid to flow down the side branch. (e) 
Improvement in time response of hydrogel jacket design (curve depicted by circles) 
versus alternate design using larger cylindrical structure but without hydrogel jacket 
(curve depicted by squares). fD is the fractional change in diameter (scale bars: 300 J.lm) 
(Figure adapted from Beebe et al). 
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(i) (II) 

Figure 6.10: (i) Photoreaction InJection molding procedure to incorporate hydrogel 
channels within PDMS microchannels (ii) Arrays of hydrogel microstructures containing 
different fluorophores. (Top Left or (a)) Six channels filled with precursor solutions 
containing Fluorescein Isothiocyanate (FITC) and Tetramethylrhodamine isothiocyanate 
(TRITC) alternatively. (Bottom Left or (b)) Hydrogel microstructures inside 
microchannels upon photopolymerization. (Top Right or (c)) Array of hydrogel 
microstructures obtained after removal of PDMS microchannels. (Bottom Right or (d)) 
Scanning electron microscope image of the hydrogel array. (Figures adapted from Koh 
and Pishko ). 

(I) (II) 

Figure 6.11: (i) (a) Schematic of microfluidic device used to prepare calcium alginate 
gels by cross-linking reactions of sodium alginate with calcium chloride, utilizing either 
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one (b, c) or two (d, e) flow-focusing step schemes. (b) One-flow focusing channel to 
generate sodium alginate droplets. (c) Another flow-focusing channel to generate CaCh 
droplets. ( d, e) Fusion channels with two circular expansion chambers where calcium 
alginate particles are formed, corresponding to two different conditions of volumetric 
flow rates. (ii) Optical microscopy images of calcium alginate particles (mean size of 
particle corresponds to 30 IJ.m) (Figure adapted from Liu et al). 

From the above discussion, it is apparent that a lot of progress has been made in gel 

formation in microfluidic channels that serve as active components in j..tTAS systems. 

Further, gel particles have additionally been synthesized that constitute a new class of 

advanced materials. However, the challenge to form gels in situ and without the 

requirement of microfabrication methods is yet to be realized. Furthermore, reversibility 

of gel thickness is controllable for the case of hydrogels, whereas gels formed via 

electrostatic reactions of calcium chloride and sodium alginate result in irreversible gels. 

In the next section, we describe our contribution to the field of in situ gel 

formation in microfluidics. We have found that when a linear cationic polymer 

(poly(allylamine hydrochloride) (PAH)) reacts with a multivalent anion (trisodium 

citrate) under shear flow, polymer gelation can be achieved in situ and at room 

temperature. To the best of our knowledge, this is the first example of in situ, in-channel, 

room temperature polymer gel formation that is based on electrostatic interactions and 

does not require an immiscible phase or a flow focusing device. We find that the 

polyamine exhibits shear-thickening behavior while cross-linking with citrate to form 

viscoelastic gel phases, and that the gels remain stable and intact after cessation of flow. 83 
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Chemicals used in microfluidic template fabrication, channel fabrication and in PAR­

citric acid interaction studies were procured from chemical suppliers and used without 

any further purification. Hydrogen peroxide (H202, 30% (v/v)) and sulfuric acid (H2S04) 

were procured from Fisher Scientific. A piranha solution used to clean silicon wafers, 

was prepared by mixing H202 and H2S04 in volume ratios of 1 : 1. The piranha solution 

was effective in removing organic materials from the wafers. It is important to note that 

this solution is highly oxidative, corrosive and possibly explosive, and requires careful 

handling. SU-8 50 photoresist and SU-8 developer solutions were purchased from 

Microchem Corporation. Poly( dimethylsiloxane) (PDMS) used to make microfluidic 

channels was prepared from Sylgard 184® kits purchased from Dow Coming. The kit 

consists of a liquid silicone rubber elastomer base (vinyl-terminated PDMS) and a curing 

agent (mixture of a platinum complex and copolymers of methylhydrosiloxane and 

dimethylsiloxane) that was mixed in a weight ratio of 10:1 to result in liquid PDMS. 

Poly(allylamine hydrochloride) (PAH, Mw: 70,000 g mor1) was obtained from 

Fisher Scientific and trisodium salt of citric acid (trisodium citrate or simply citrate) from 

Sigma-Aldrich. Unless specified otherwise, the pH of PAH and citrate solutions were 

maintained at their natural pH of preparation (pH ofPAH was 4.38 and that oftrisodium 

citrate was 8.38). Sodium hydroxide (IN NaOH) and hydrochloric acid (IN HCl) used in 

investigating the dependency of P AH-citric acid interactions on pH were purchased from 

Fischer Scientific. For fluorescence studies, charged dyes such as Fluorescein 

Isothiocyanate (FITC) and Rhodamine B isothiocyanate (RITC) were purchased from 
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Sigma-Aldrich. FITC and RITC dyes were conjugated to PAH for fluorescence studies 

using a membrane dialysis protocol described elsewhere wherein 1 % (w/v) of PAH was 

replaced by its conjugated variant. 84 Unless specified otherwise, all fluorescence studies 

utilized PAH conjugated with RITC (called PAH-RITC). A neutral fluorescent dye 

(dextran-tetramethylrhodamine or dextran-Rh) was procured from Invitrogen 

Corporation. Studies featuring the neutral dye were also performed at dye concentrations 

of 1% (w/v). All solutions were prepared using ultrapure grade water (18.2 MQ-cm, 

Barnstead Nanopure Diamond System). 

6.2.3.2 Microfl.uidic Master Template and Device Formation 

Microfluidic channels used in this study have an architecture that consists of three inlet 

channels (width x height, 50 J.Lm x 50 J.Lm) that merge to form the main channel (width x 

height, 150 J.Lm x 50 J.Lm). The device was fabricated using standard replica molding 

techniques and photoresist processing guidelines. 85-88 First, an inverse layout of the 

microchannel pattern was generated using conventional photolithography techniques in a 

Class 100 clean room facility (Rice University). Silicon wafers (University Wafers, 4-in. 

mechanical grade) were pre-cleaned in piranha and dehydrated at 200 °C. A layer of 50 

J.Lm thick negative UV photoresist (SU-8 50) was spun onto the wafer using a spin coater 

(Headway Research Inc., 2000 rpm for 30 seconds) and soft baked on a hot-plate at 95 oc 

for 20 minutes. Next, the device designed using AutoCAD and printed onto a chrome 

mask (Fineline Imaging), was transferred to the photoresist by a conventional contact 

aligner (SUSS Mask Aligner MJB4). The photoresist was developed in SU-8 developer 
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solution to remove uncross-linked resist. This gave the master template with positive 

relief of the microchannels. 

In fabricating the microfluidic device, liquid PDMS was poured onto the silicon 

master, degassed for 20 minutes and cured at 80 °C. Holes were punched into the cured 

PDMS channels which were then treated with UV/ozone environment (Novascan) and 

bound to glass slides. Tubings (SCI Scientific Commodities, 0.58 mm inner diameter) 

were inserted at inlet and outlet ports and the junctions were rendered air-tight using 

epoxy. 

6.2.3.3 Monitoring Gel Formation 

While imaging, the device was placed on the stage of an inverted microscope (Olympus) 

and reactants were flowed at controlled rates using either a syringe pump (Harvard 

Apparatus Pump 33) or a gas displacement pump (Fluigent MFCS 8C), as shown in Fig. 

6.12. Unless specified otherwise, PAH was flowed through the central channel in all 

studies and citric acid was flown through the side channels. Events were monitored by 

video microscopy with a digital camera (Hamamatsu) at a rate of 10 frames/second using 

Simple PCI software. Structures resulting from PAR-citric acid interactions were 

characterized by optical microscopy (Olympus IX71) and confocal microscopy (Carl 

Ziess LSM 51 0). In fluorescence studies, a laser excitation wavelength of 488 nm was 

chosen for FITC (A-Ex= 494.5 nm, AEm = 519 nm) and an excitation wavelength of 543 nm 

was selected for both, RITC (A-Ex= 560 nm, AEm = 580 nm) and dextran-Rh (A-Ex= 555 

nm, AEm = 580 nm). Image analysis and intensity profiling of fluorescing structures were 

carried out using Simple PCI and Image J (National Institutes of Health) softwares. 
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In studying P AH -citric acid interactions in microchannels, channels were first primed 

with PAH-RITC drawn through the central channel and ultrapure water through the side 

channels. After priming, the ultrapure water stream was replaced by citric acid buffer. 

Initial P AH concentration was 1 mg/mL and concentration of citric acid was adjusted so 

that charge ratio (R) of citric acid to PAH varied from 0.1 to 1 to 10 to 50. (Charge Ratio 

(R) is defined as the ratio of total negative charge of the added salt to the total positive 

charge of the polymer, R = (ani.on) x (z - ) , where z- is the negative charge per molecule 
(cation) x (z+) 

of citric acid (3-) and z + is the positive charge per P AH monomer (1 +). The base polymer 

concentration for calculations of citric acid at all specified an R ratio was 1 mg/mL ). 

Citric Acid 

PAH-RITC 

Citric Acid 

Direction of Flow 

50 pm ~~~~~~ 
Side (left) and Front (Right) Views 

Syringe/Gas 
Displacem.ent Pumps 

• Photoresist 
Silicon Wafer 

Figure 6.12: Schematic depicting experimental set-up of the microfluidic device and 
flow control systems used to study P AH -citrate interactions. 

Flow of reactants was individually varied at volumetric flow rates of 25 J..LL/hr, 25 

J..LL/min, 25 mL/hr and 25 mL/min (corresponding to flow rates from 0.025 to 1500 
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mL/hr). While it takes a minimum of 16 experiments to verify the resulting structures (for 

4 R ratios and 4 flow rates), most data points were repeated a minimum of three times to 

ensure reproducibility of data and to obtain reliable statistics. For cases where flow rates 

were 25 flL/hr or 25 flL/min, the experiments were repeated twice on account of the 

lengthy time duration of the experiment. 

6.2.4. Results and Discussion 

6.2.4.1 Nature of Structures formed in Microfluidic Channels 

Predominantly, three types of structures (aggregates, gels and droplets) were seen to 

form. Co-existence of multiple structures was seen to occur in the microfluidic channel 

for several of the investigated conditions. Structures observed in the microfluidic device 

were plotted on a state diagram, shown in Fig. 6.13 as a function of R ratio and flow rate 

of reactants. 

100 I Aggregates 
I 

' --, Non-Continuous 
10 I \ Gels 

\ Continuous Gels 
R Ratio ' ----• \ + Droplets 

1 \ 

' 
..... __ ---

0.1 

25 25 25 25 
JLL.Ihr JLL.Imin mLJhr mLJmin 

Flow Rate ~ 

Figure 6.13: Nonequilibrium state diagram summarizing changes in state of PAH from 
P AH-citrate interactions. (Diagram constructed from changes observed in P AH stream 
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within the first five minutes of reacting flow. Initial inlet P AH concentration was fixed at 
1 mg/mL for all cases). Regions west and south of dotted line demark the space where 
aggregates could be resolved under fluorescence microscopy and regions north and east 
of dashed line demark the space where droplets appeared. 

These nonequilibrium structures correspond to those that emerged within a specific cut-

off time interval. Eventually all conditions led to the formation of a gel phase. The cut-off 

time was fixed at 5 minutes, given that most structures formed within this time frame 

with the exception of a few cases of extreme R ratios or flow rates, where time required 

for structure formation spanned across several tens of hours. The cut-off time allowed us 

to probe the emerging structures and mechanism leading to gel formation. 

(a) Citrate-bridged aggregates of PAH or PAH-citrate aggregates 

The first structures that emerged were PAR-citrate aggregates that formed at the interface 

between the citric acid and PAH streams, as illustrated in Figs. 6.14 (a-c). These 

aggregates appeared as micron-sized spheres and as bright spherical spots under 

fluorescence mode, as shown in Fig. 6.14 (b). Upon cross linking, the fluorescence 

intensity of the PAR-citrate aggregates was seen to be significantly higher than the 

background fluorescence intensity of PAH-RITC. The aggregates formed were in 

Brownian motion and is consistent with earlier studies by Murthy et at, who reported 

formation of aggregates by vortex-mixing PAH and citrate in batch conditions. 1-5 

(b) Gel networks ofPAH 

After aggregates formed, gel networks of PAH cross-linked by citrate appeared as non-

continuous, irregularly shaped non-spherical networks. As with the aggregates, the 
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formation of the non-continuous gel phase, as shown in Figs. 6.14 (d-f) also began at the 

interface between the polymer and citrate streams. Eventually these non-continuous gel 

networks formed a continuous gel, as shown in Figs. 6.14 (g-i). Our microscopy studies 

also revealed that gelation occurred entirely within the P AH stream, indicating that the 

gel was very slow in diffusing into the citrate stream. As PAH got cross-linked by citrate, 

an increase in the fluorescence intensity was observed as the gel phase formed. Also, the 

viscosity of the P AH gel was significantly higher when compared to unreacted P AH and 

citrate streams. 

(c) Droplets ofCitrate 

Once the gel phase was formed, aqueous droplets rich in citrate ions emerged within the 

gel, as shown in Figs. 6.14 G-1). Most droplets formed at the junction of the PAH and 

citrate streams as illustrated in Figs. 6.14 G) and 6.14 (1). A noteworthy feature of 

droplets that formed was their deformable nature wherein, they elongated to ellipsoids 

under shear flow. Droplets that emerged were found to be unstable in nature and after a 

sufficient number-density of droplets formed (at high R ratios and high flow rates), they 

grew to larger droplets and droplet networks as shown in Fig. 6.14 (k). 

To establish that droplets were indeed citrate-rich aqueous regions, control 

experiments of two fluorescent dyes was performed. In the first experiment, P AH 

conjugated with FITC (PAH-FITC) was flowed through the central stream while a 

mixture of citrate and neutral dextran-Rh dye were flowed through the side streams, as 

shown in Fig. 6.15 (a). PAH conjugated with FITC was selected in this experiment over 

previously used PAH-RITC due to its appreciable difference in excitation wavelength 
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over dextran-Rh. Neutral dextran-Rh was selected to prevent electrostatic interactions of 

the dye with P AH. Upon droplet formation, reactant flow was stopped and the channel 

was imaged under a confocal microscope using FITC and Rhodamine filters. 

Fluorescence imaging revealed that droplets appeared dark under the FITC filter, thus 

indicating an absence of P AH in the droplets as shown in Fig. 6.15 (b). Droplets appeared 

bright under the Rhodamine filter, thereby indicating the presence of dextran-Rh inside 

the droplets, as shown in Fig. 6.15 (c). Intensity profiling across a magnified region of a 

representative droplet, as illustrated in Fig. 6.15 (e) and Fig. 6.15 (f) was carried out 

which confirmed the absence of PAH within the droplet and presence of dextran-Rh in 

regions within the droplet. A negative control experiment featured replacing citrate 

streams with a water-dextran-Rh stream upon onset of polymer gelation and droplet 

formation. It was seen that no droplets emerged, thereby establishing the requirement of 

citrate for droplet formation (Fig. 6.16). The citrate solution emerged as droplets only 

after completely cross-linking the P AH into a continuous gel. A plausible explanation for 

the emergence of citrate-rich droplets in completely gelated regions of P AH is that the gel 

remains permeable to the citrate solution. It is noteworthy that the driving force for citrate 

to diffuse into the PAH stream, even upon completely cross-linking PAH into a 

continuous gel, is predominantly from a concentration gradient, given that the 

concentration of citrate entering the side streams of the microfluidic channel was fixed. It 

is possible that the citrate ions exist as a separate phase in citrate-rich droplets, possibly 

to screen itself from the hydrophobic organic groups of cross-linked PAH. The presence 

of the neutral dextran-Rh dye specifically within the citrate-rich droplet phase and its 

absence from the gelated P AH region supports the concentration gradient driven 
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argument of citrate ion diffusion and the hydrophobic nature of the cross-linked P AH gel 

that results in the emergence of citrate-rich aqueous droplet phases. 

Aggreg tes 

Non-Con ·nuous Gels 

Continuous Ge 

Drop ts of Citrate 
· Ge ted Regions 

ofPAH 

Figure 6.14: Optical and fluorescence microscopy images of structures formed in 
micro fluidic channels from P AH -citrate interactions. ( 1) P AH -citrate aggregates 
(formation conditions: R = 10, PAH = 1 mg/mL, flow rate= 25 f.lL/h): (a) bright field and 
(b) fluorescence images and (c) schematic of region where aggregates formed in the 
micro fluidic channel (scale bars - a, b: 10 J.lm). (2) PAH cross-linked incompletely to 
form noncontinuous gels (formation conditions: R = 0.1 , P AH = 1 mg/mL, flow rate = 25 
mL/h): (d) bright field and (e) fluorescent images and (f) schematic of the region in the 
microfluidic channel where discrete gels formed (scale bars-d, e: 10 J.lm). (3) P AH cross­
linked completely to form continuous gels (formation conditions: R = 50, P AH = 
1mg/mL, flow rate = 25 mL/h): (g) bright field and (h) fluorescent images and (i) 
schematic of the region in the microfluidic channel where continuous gels formed (scale 
bars- g, h: 50 J.lm). (4) Droplets rich in citrate ions (formation conditions: R =50, PAH = 
1mg/mL, flow rate = 25mL/min): G) bright field and (k) fluorescent images of citrate 
droplets within the continuous gel stream of the microfluidic channel. (1) Schematic 
depicting droplet formation in the microfluidic channel. Droplets emanate from the 
junction of the microfluidic channel after reactant streams first interact and form 
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continuous gels. The droplets that formed flowed along the length of the channel. (scale 
bars - j, k: 25 J.Lm) 

PAH-FITC Side streams: 
Citrate and 
Dextran-Rh 

Figure 6.15: (a) Schematic to elucidate the nature of droplets. A neutral dye (dextran­
tetramethylrhodamine) was added to the citrate stream and reacted with P AH-FITC under 
conditions of R = 10, PAH = 1 mg/mL, and flow rate = 25 mL/h. Upon droplet formation, 
the flow was stopped and the reactant streams were observed in fluorescence mode of a 
confocal microscope. (b) Confocal images of droplets observed under a FITC filter. (c) 
Confocal images of droplets observed under a rhodamine filter. (d) Differential 
interference contrast (DIC) image of droplets corresponding to images b and c). (e) 
Magnified region of a droplet observed through a FITC filter that corresponds to the 
circled region in image b. (f) Magnified region of a droplet observed through a 
rhodamine filter that corresponds to the circled region in image c. (g) DIC image of 
droplets corresponding to images e and f. (h) Intensity profiles of droplets in images e 
and f along regions marked with a white line establishes the absence of P AH in droplet 
and the diffusion of dextran dye into the interior of the droplet. (All scale bars are 20 J.Lm) 
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Figure 6.16: Negative control experiment to ascertain the requirement of citrate in 
forming droplets. Schematics (a, b) describe experiments that establish requirement of 
citrate to form droplets (Refer Figs. 6.12 and 6.14). Image (c) reveals that no new droplet 
formed when the citrate stream containing neutral dextran dye was replaced with an 
aqueous solution of neutral dextran dye. Images (d) and (e) are corresponding images 
under Rhodamine filter and in DIC mode respectively. (All scale bars: 20 J..Lm) 

6.2.4.2 Structural Changes in Microfluidic Channels 

The previous section described the nature of structures from P AH-citrate interactions in 

microfluidic channels. From the nonequilibrium state diagram, it is evident that multiple 

structures co-exist across all R ratio-flow rate pairs. Fig. 6.17 is a representative confocal 

image of the microchannel that clearly illustrates co-existence of multiple structures. It 

can be seen from Figs. 6.13 , 6.14 and 6.15 that the following trends emerge of structural 

evolution from P AH -citrate interaction: 

(1) PAR-citrate aggregates formed under conditions (a) R ratios 2::: 1 when flow 

rate was at 25 J.!Lihr. (b) R ratio = 0.1 for flow rates of 25 J..LL/min or higher. 
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(2) Polymer gels emerged when (a) R ratios> 1 for flow rate of 25 f.lL/hr where 

non-continuous/continuous gels co-existed with aggregates but not droplets. (b) For R 

ratio of 0.1 and flow rates of 25 f.lL/min or higher, only non-continuous gels formed that 

co-existed with aggregates but not continuous gels or droplets. 

(3) Droplets emerged for R ratios> 1 when flow rates were 25 f.lL/min or higher 

that co-existed with non-continuous/continuous gels. It is noteworthy that as the 

magnitude of flow rate increased, the R ratio at which droplets formed decreased (R =50 

for flow rate of25 f.lL/min and R = 10 for flow rate of25 mL/hr). 

(a) 

PAH-FITC, central 
stream 

1 

{b) 

Side streams: Citrate 
and dextran-Rh 

Figure 6.17: Schematic depicting the coexistence of structures in a microfluidic channel 
using confocal microscopy (conditions: R = 10, PAH = 1 mg/mL, and flow rate = 25 
mL/h) when viewed under (a) a FITC filter and (b) a rhodamine filter. (c) Predominant 
existence of P AH -citrate aggregates (green spots) and gel (continuous green region). (d) 
PAH-citrate aggregates, gels, and citrate droplets (dark spots). (e) Citrate droplets present 
within the cross-linked polymer gel. (f) Complementary region to image d as viewed 
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through a rhodamine filter. PAR-citrate aggregates appear as dark spots. (g) 
Complementary region to image e as viewed through a rhodamine filter. The P AH gel 
appears dark, and droplets of citrate appear red because of the presence of dextran-Rh. 
(All scale bars are 20 J.lm) 

The following sections explain the effects of charge ratio, flow rates and pH on structure 

formation. 

6.2.4.3 Effects of R ratio and Flow Rates 

The trends shown in Fig. 6.13 indicate that R ratio and flow rate of reactants affected the 

time required to form a PAH gel. For a given flow rate, an increase in R ratio provides a 

higher concentration of citrate ions into the microfluidic channel. The resulting effect was 

that aggregates appeared at R = 1 for a flow rate of 25 J.LL/hr, whereas for a higher R ratio 

of 50 and at the same flow rate, non-continuous and continuous gels formed along with 

aggregates. Given flow rates were equal, it is indicative that at higher R ratios, there was 

an increase in the rate of aggregate formation that resulted in faster gelation of P AH. This 

also explains the general trend of an increase in emergence of structures observed within 

the five minute time interval, as flow rates were increased for a given R ratio. 

An increase in flow rate for a given R ratio has dual effects: Higher flow rates at a 

given R ratio increases the concentration of citrate ions in the channel from enhanced 

convection mediated transport. Higher flow rates also have an additional effect in that 

increased shear stresses promote gelation of P AH from combination of aggregates. It is 

important to note that simple diffusion of citrate in the absence of fluid flow did not 

promote gelation of PAH. To elaborate, when R ratio was fixed at 10, gelation of PAH 

occurred when reactants were flowed at 25 mL!min. However, when flow was halted by 
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equalizing pressure, no further gelation in PAR was observed downstream of the channel, 

although diffusion of citrate ions to the polymer stream continued from existing 

concentration gradients and electrostatic interactions (Fig. 6.18). 
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Figure 6.18: Schematic of structures from R ratio and flow dependent PAR-interactions 
in microchannels. 

It can also be seen from Fig. 6.13 that in addition to shear stresses from flow rates, a 

threshold citrate concentration was required to form continuous gels from P AH -citrate 

aggregates. For the case where citrate ion concentration was limiting with respect to PAR 

at R = 0.1 , cross-linking of PAR-citrate aggregates to form continuous gels did not occur, 

even several hours upon onset of reactant flow into the flow channels (Fig. 6.18). This 
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was true across the flow rates (and corresponding shear stresses) investigated ranging 

from 25 fJL/hr to 25 mL/min and may be attributed to an inadequate number of 

aggregates formed when citrate was limiting in concentration, thus rendering incomplete 

gelation of P AH across the range of flow rates (and shear stresses) investigated (Fig. 

6.18). 

6.2.4.4 Effect of Laminar Flow Conditions 

A feature of our investigation on polymer gelation in microfluidic channels is that 

gelation and droplet formation were seen to occur specifically within the P AH stream of 

the microfluidic device. This may be rationalized from the laminar flow profiles 

prevalent in the microfluidic environment. It is known that the effective time t for 

diffusion of a species i across the length Lin a channel is given by ti =~,where D; is 
Di 

the effective diffusivity of species i (sum of electrostatic and concentration gradient 

components). It is also known that the diffusivity of a polymer Dp (such as PAH, Mw = 

70 kDa) is significantly smaller than that of a multivalent ion De (such as citrate, Mw = 

294 Da). Hence, it follows that tp > te, implying that the time required for citrate ions to 

diffuse into the P AH stream is much lower than that for the P AH to diffuse into the 

stream containing citrate ions. After the citrate ions diffuse into the P AH stream to cross-

link the polymer, the viscosity of the resulting polymer gel stream increases and the 

diffusivity Da of the gel becomes lower than both, the diffusivity of unreacted P AH and 

unreacted citrate ions (Da < Dp < De). This further increase the time-scale for the 

polymer to diffuse through the gel matrix to the citrate stream, thus restricting gelation to 

occur mainly within the polymer stream. Thus, a laminar flow environment along with 
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differences in diffusivity of P AH and citrate restrict structure formation to within that of 

the polymer stream. To rule out geometrical effects, a control experiment was run where 

flow streams of reactants were switched (polymer in side streams and salt in central 

stream), which further confirmed that gels and droplets formed only within the polymer 

stream. 

The trends from the state diagram and the discussions above suggest the following 

mechanism to explain gelation from PAR-citrate interactions in microchannels (Fig. 

6.18). Under laminar flow, differences in diffusivity of P AH and citrate implies that 

structure formation starts at the interface between the citrate and P AH stream. Aggregates 

of PAR-citrate initially form when citrate ions diffuse into the PAH stream by salt­

induced counter-ion condensation of the P AH backbone. Further, under shear flow, the 

aggregates combine to form anionically cross-linked gel. Gelation increases with flow 

rates, from formation of higher numbers of aggregates by increased transport of citrate 

ions, and from combination of aggregates at higher shear. For the case where citrate ions 

exceed P AH in concentration (R ~ 1 ), gelation rates decrease with increase in R ratios and 

flow rates. Subsequent to continuous gel formation, excess citrate diffuses to gelated 

regions of P AH and exist as droplets that are rich in citrate, from saturation of available 

charge sites on PAH that are unavailable for cross-linking. For the case where citrate is 

limiting with respect to PAH, aggregates initially form which gelate PAH under shear. 

The extent of gelation however is limited to the formation of non-continuous gels, due to 

a lower number of aggregates initially formed. For this case, droplets of citric acid do not 

appear within the cut-off time scale, since cross-linking ofPAH is incomplete. 
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6.2.4.5 Manipulating Electrostatic Interactions via pH 

In this section, we report the effect of charge on gelation trends of P AH in a microfluidic 

channel. The charge on a multivalent citric acid and P AH can be manipulated using pH as 

a variable for respective solutions (citric acid has 3 pKa values at 3.14, 4.77 and 6.39 and 

PAH has a single pKa value at 8.5). Thereby, we show polymer gelation could be 

controlled using pH as a parameter. 

Thus far, all studies of PAR-citrate interactions in the microchannel were carried 

out at a citric acid pH of 8.35 and a PAH pH of 4.38. In the following study, the pH of 

citric acid and PAH solutions were adjusted using 1N HCl and 1N NaOH solutions, 

outside of the microchannel, R ratio of a specific speciated form of citric acid to P AH 

was fixed at 50 (base concentration of P AH = 1 mg/mL) and flow rates of P AH and citric 

acid was fixed at 25 mL/hr. 

We first discuss, gelation trends when PAH was positively charged (pH of PAH 

stream was fixed at 4.38) and the charge on citric acid was varied from trivalent to 

zerovalent states (See Table 6.1 for charged states of citric acid at different pH and Fig. 

6.19 for corresponding gel profiles in the microchannel). 

Gelation from cross-linking of PAH by the citric acid stream was seen to 

progressively ·decrease as charge on citric acid was lowered from its trivalent to 

zerovalent states. The P AH stream was completely cross-linked by citric acid when it was 

predominantly trivalent at pH 8.35 and also at its pKa value of 6.39, where it coexisted 

equally as citrate3- and citrate2-. The extent of PAH cross-linking however, reduced 

between the two pH levels, as citrate3- progressively converted to the citrate2- form. 
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Table 6.1: Characteristics of PAH gelation upon varying pH of citric acid (The pH of 
PAH was fixed at 4.38). 

pH of Citric Speciated States of Gel Description 

Acid Stream Citric Acid 

8.38 Citrate3- : (> 99%) Fully cross-linked PAH stream 

(Figs. 6.19 (a, b)) 

6.39 Citrate3- : 50% Fully cross-linked PAH stream 

Citrate2- : 50% (Figs. 6.19 (c, d)) 

5.56 Citrate2- : 77% Partially cross-linked PAH 

Citrate3-: 11.5% stream (Figs. 6.19 (e, f)) 

Citrate1- : 11.5% 

4.77 Citrate2- : 50% P AH cross-linking 

Citrate1-: 50% predominantly at the interface of 

P AH and citric acid streams 

(Figs. 6.19 (g, h)) 

4.0 Citrate1-: 77% P AH cross-linking 

Citrate2- : 11.5% predominantly at the interface of 

Citrate0 : 11.5% P AH and citric acid streams 

(Figs. 6.19 (i, j)) 

3.14 Citrate1- : 50% No cross-linking ofPAH 

Citrate0 : 50% (Figs. 6.19 (k, 1)) 

1.38 Citrate0 : (> 99%) No cross-linking ofPAH 

(Figs. 6.19 (m, n)) 

When citric acid was primarily in its divalent state at pH 5.56, cross-linking ofPAH was 

restricted to the interface of P AH and citric acid streams. Similar gelation trends were 

observed at the second pKa of citric acid at pH of 4.77, where it coexisted equally as 

citrate2- and citrate1- and at pH of 4.0, where citric acid was predominantly monovalent 

along with its divalent and uncharged forms. No gelation was observed at the first pKa of 
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citric acid (pH= 3.14), where citric acid coexisted equally as citrate•- and citrate0
) and at 

pH of 1.3 8, where the dominant species was zero valent citrate (> 97% ). 

Figure 6.19: Gel profiles that emerge from interactions of P AH with citric acid. The pH 
ofPAH was 4.38 and the pH of citric acid was varied to span its 3 pKa values. R ratios of 
reactants were fixed at 50 and flow rate was maintained at 25 mL/hr. Bright Field (a) and 
Fluorescence images (b) when EH of citric acid stream was 8.38 (where it is 
predominantly in the trivalent (Cit) state). Bright field (c) and Fluorescence (d) images 
when pH of citric acid stream was 6.39 (corresponds to pKa value of citric acid where it 
co-exists as cie- and HCit2

- in a 1:1 ratio). Bright field (e) and Fluorescence (f) images 
when pH of citric acid stream was 5.56 (where HCit2

- was at its highest theoretical level 
(77%)). Bright field (g) and Fluorescence (h) images when pH of citric acid stream was 
4. 77 (corresponds to pKa value of citric acid where it coexists as HCit2

- and H2Cif in a 
1:1 ratio). Bright field (i) and Fluorescence G) images when pH of citric acid stream was 
4.0 (where H2Cif is at its highest theoretical level (77%)). Bright field (k) and 
Fluorescence (1) images when pH of citric acid stream was 3.14 (pKa value of citric acid 
where it coexists as H2Cit1

- and H3Cit0 in a 1:1 ratio). Bright field (m) Fluorescence (n) 
images when pH of citric acid stream was 1.38 (where citric acid exists predominantly in 
monovalent (H3Cit0

: > 97%) state). (All Scale Bars: 50 1-1m). 
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From the trends above, it emerges that divalent and trivalent citric acid induced cross-

linking of P AH. Although gelation occurred at a pH of 4 where citric acid was 

predominantly monovalent, the presence of divalent citric acid species is proposed to 

have caused gelation. This can be inferred from an absence of gelation at pH of 3.14, 

where no divalent form of citric acid was present and was further confirmed by a control 

experiment wherein, gelation was observed upon adjusting the pH of citric acid to 

slightly above 3.14 ( ~ 3.1 7), where the divalent form of citrate first starts to emerge. 

These observations are also consistent with our proposed mechanism of 

aggregates serving as precursors to gel formation under shear flow, as studies of PAH-

citrate interactions in batch mode had previously established that for P AH-citrate 

aggregate formation to occur, it was necessary for citric acid to be in its di or trivalent 

forms. 2 

To elucidate the role of charge on PAH in gel formation, pH ofPAH was adjusted 

to 10.25 (above its pKa of 8.5) and pH of citric acid stream was maintained at 8.38. No 

gelation or droplet formation occurred when P AH was in its zero valent form, thus further 

establishing the electrostatic basis of gel formation (Fig. 6.20). 

Figure 6.20: Fluorescence image when pH of P AH stream was adjusted to 10.25 (where 
it is uncharged: pKa of P AH = 8.5) and the pH of citric acid was 8.38 (where it exists 
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predominantly as Cit3"). R ratios of reactants were fixed at 50 and flow rate was 
maintained at 25 mL/hr. No reaction occurred of PAH and citrate under these conditions 
(Scale bar: 50 !liD). 

6.2.5 Conclusions 

In this study, we describe the in situ gelation of poly(allylamine hydrochloride) (PAH) 

upon cross-linking by citrate anions under laminar flow conditions in a microfluidic 

channel. Gelation was seen to occur at room temperature, and parameters such as the 

charge ratio, shear stress from the reactant flow rate, and the pH of the reactant streams 

were seen to influence gel formation and morphology. Aggregates ofPAH and citric acid 

initially formed by citrate-induced counter ion condensation of the P AH backbone from 

the diffusion of citric acid into the P AH stream. Under shear flow, aggregates combined 

to form noncontinuous gels across all flow rates when the charge ratio was limited in 

citrate. Continuous gels formed across all flow rates when the charge ratio favored 

citrate. Droplets of citric acid emerged in continuous gel regions where sites to cross-link 

P AH were saturated. The electrostatic basis of PAR-citrate interactions was shown by 

individually varying the pH of citric acid and P AH streams. The gelation of P AH took 

place only when P AH was charged and when citric acid was either in its divalent or 

trivalent state where aggregate formation first occurs. We believe that this is the first 

example of in situ, in-channel polymer gel formation that exhibits shear-thickening 

behavior leading to viscoelastic gels that remain stable and intact even upon cessation of 

flow. These gels are envisioned to have applications as nonmechanical flow regulators in 

microfluidic devices. Their formation could be engineered at room temperature, in situ, 

and at specified locations in a microchannel with the extent of flow regulation 

controllable by changing the reactant charge ratio and pH. Finally, we have shown that 
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these gels remain permeable to citrate droplets, which may enable us to encapsulate 

charged molecules of interest. Further studies into the stability of these droplets may lead 

to gels that serve as small-molecule carriers. 

Returning to our original quest of forming NACs in capsules, we first decided to 

test if we can form NACs in the first place, based on our understanding of the state 

diagram. We know the flow conditions and R ratios under which aggregates appear. 

Based on such conditions, we formed aggregates in the microfluidic stream and upon its 

emergence, replaced the three streams with silica NPs (Fig. 6.21 ). We observed 

instantaneous formation ofNACs in the microfluidic device, as analyzed by bright-field, 

fluorescence and scanning electron microscopy. While this served as further evidence of 

the existence of aggregates, a process modification will be required to make microfluidic 

formation ofNACs, more tenable. 

Agg 
(a) 

Replace Citrate stream with 
s· ica P 

Rep ce PAH stream · 
p 

Rep .ce Citra stream · 
s~ ica P 

PAH..Citrate-S. ·ca NACs (b) 

} -. t~-· 
• • 1 

0 • • . ~· .. •.• . . 
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Figure 6.21: Experiment to show the formation of nanoparticle assembled capsules 
(NACs) in a microfluidic device. (i) PAH-RITC and citrate flowed based on conditions in 
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state diagram (Fig. 6.12) (R = 10, PAH = 1 mg/mL, flow rate = 25 J.1Lihr) to form 
aggregate-like structures. (ii) All flow streams replaced by 20 wt.%, Si02 NP stream. If 
aggregates had indeed formed in schematic (i), reaction configuration in schematic (ii) 
should result in NAC formation. (iii) Fluorescence images ofNAC-like structures formed 
in microfluidic environment. (iv) Bright field image of NAC-like structures analyzed 
outside of the microfluidic on a glass-slide. Characteristic NAC-like behavior observed in 
that, the structures were in Brownian motion (v) Scanning electron microscope (SEM) 
images of structures formed from schematic (ii) confirm formation of NACs. Hence, 
structures formed from schematic (i) were indeed aggregates ofPAH-citrate. 
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Chapter 7 
Summary and Recommendations for Future Work 

7.1 Thesis Summary 

The advent of a generic, economical, and facile approach to create stable NP aqueous 

suspensions was the motivation that led to this PhD thesis. 1-4 Since NPs synthesized in 

water often have high polydispersity, there is a need to effectively transfer monodisperse 

NPs synthesized in oil to water. The method of bilayer transfer is particularly useful and 

was originally pioneered by Brinker and coworkers. The transfer approach however had 

the following limitations (i) Transfer yields of NPs were low (45-55%) and NPs 

transferred as clusters or aggregates in bilayers (ii) A high surfactant concentration was 

required to formulate the initial microemulsion, which made the transfer process 

expensive while yet not giving the desired high transfer yields and single NP suspensions 

(iii) For medical applications where NP stability in high ionic strength buffers is essential 

(equivalent to 9 g-NaCl/L or higher), expensive and biocompatible phospholipids were 

used, making the process economically unviable. 

An idea to address the above challenges motivated our efforts to develop a new 

and improved transfer process through an understanding of surfactant phase-behavior, as 

was described in Chapter 2. We found that through the addition of salt during the stage of 

emulsion formation, transfer yields of NPs increased dramatically to 90-1 00%. NPs in the 

new bilayer configuration of salty-micelles transferred as single particles. A lowering of 

surfactant solubility from salting-out effects along with counter-ion induced screening of 

head-group repulsions resulted in higher surfactant coverage on the NP surface. The latter 

effect also contributed to enhanced lateral compactness of salty-micelles, resulting in a 

bilayer environment with high non-polar nature that better conserved optical properties of 
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bare QDs. I showed the transfer scheme to be generic across different NP (CdSe QDs and 

tetrapods, Au, C6o, ZnO, Fe203, W03), surfactant (anionic- AOT, SDS, cationic- CTAB, 

nonionic - Neodol 91-7, hybrid anionic-nonionic - Avanel) and salt (NaCl, Na2S04, 

Na3Citrate, CaCh, AlCh) types. 

In Chapter 3, the effect of salt-induced spontaneous emulsification of a blend of 

hydrocarbon/AOT/water was described. Implications of this effect on NP phase-transfer 

were secondary in that, the smaller sized hydrocarbon droplets resulted in a higher degree 

of NP phase-transfer post evaporation of the hydrocarbon. Salt was found to affect the 

nucleation of octane droplets by influencing the phase-behavior of AOT which in turn 

affected the initial droplet size and subsequent growth of nanoemulsion droplets that 

formed. The phase-behavior of AOT was the dominant factor over electrostatics in 

determining emulsion stability to coalescence. Beyond NP transfer yield, this result has 

important implications in areas of laundry and personal care, where the conventional 

approach to formulate emulsions with ionic surfactants is based on electrostatics-derived 

stability. Here we have learned the converse which leads to an alternate approach in 

formulating emulsions. Through the use of nonionic surfactants that rely on steric­

stabilization over electrostatics, emulsions can be formed at lower concentrations where 

significant cost-benefits and water savings can be realized. 

In Chapters 4 and 5, an application of NPs towards characterization of reservoirs 

was discussed. It was shown in Chapter 4 that by transferring NPs in bilayers of a 

nonionic surfactant Neodol 91-7, stability to aggregation was achieved even in high ionic 

strengths of 1M NaCl and 0.55M seawater. Temperature stability up to 70 °C was 

obtained by selecting the nonionic such that its cloud point was above the temperature of 
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application. Transport studies through crushed calcite columns in 1M NaCl and 0.55M 

seawater backgrounds and temperatures upto 70 °C showed QD/Neodol breakthrough 

was similar to that of an ideal tracer. Retardation coefficients evaluated were close to 

unity and overall QD recovery was >95%, thus making them ideal nanoreporters to carry 

and deliver oil-soluble tracers to oil-sites of a reservoir. Studies through quartz sand 

columns showed retardation of QD/Neodol at room temperature that increased 

significantly at higher temperatures. This was on account of a natural affinity of Neodol 

to quartz sand. In the oil industry, this behavior has prevented the use ofnonionic alcohol 

ethoxylates in quartz sand and sandstone-type reservoir materials. 

In Chapter 5, NP tolerance to aggregation in saline media was shown to increase 

up to 100 °C through the use of a hybrid surfactant A vanel S 150 CGN (A vanel). The 

surfactant had nonionic and anionic functional groups on the same surfactant chain, with 

potential applications for quartz sand type reservoirs. The concerns of QD toxicity were 

addressed by synthesizing carbon-dot (C-Dot) nanoparticles and transferring them to 

bilayers of A vanel as future nanoreporters for reservoir characterization. 

In Chapter 6, findings on the tandem assembly process of PAH-citrate aggregates 

and nanoparticles in a microfluidic environment were discussed. In a laminar flow 

environment where mixing is limited by diffusion, instantaneous gelation of PAH-citrate 

aggregates was observed, where shear induced structural transformations from aggregates 

to non-continuous and continuous gels. Droplets of citric acid emerged in continuous gel 

regions where sites to cross-link PAH were saturated. The interactions leading to PAR­

citrate crosslinking were electrostatic in nature - it was shown that the extent of gelation 

could be controlled by manipulating charge(s) on PAH and citric acid respectively, using 
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pH as the parameter. To form nanoparticle assembled capsules, flow-focusing 

microfluidic channel geometry is thus proposed. 

7.2 Recommendations for Future Work 

7.2.1 Electrostatic Self-Assembly of Nanoparticles to form Superlattices 

In Chapter 2, we learned that the salty-micelle approach to NP phase-transfer resulted in 

aqueous suspensions of single NPs. Grzybowski and coworkers recently showed that 

single NPs with opposite charge could be self-assembled in aqueous media to form 

ordered superlattices with an open-type diamond-like structure (Fig. 7.1).ll-IS 
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Figure 7.1: Electrostatic self-assembly (ESA) scheme to assemble oppositely charged 
nanoparticles into superlattices with open-pack diamond-like structure (Figure adapted 
from Kalsin et al and Kalsin and Grzybowski) 
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In their method, single NP suspensions were prepared by ligand exchange and the 

surfactants used were very expensive (> $1000/g). Further, owing to the non-generic 

nature of ligand exchange, a limited number of NPs (namely Au and Ag) could be self-

assembled to superlattices. The new NP transfer approach could address both the cost and 

non-generic issues of this method. Preliminary results showed that CdSe QDs could be 

assembled into superlattices (Fig. 7 .2). This scheme could be extended to form binary and 

even ternary type superlattices, featuring two or more unique NP types. A foreseeable 

limitation of the new approach is the co-crystallization of salts and its subsequent 

separation. Recommended work for the future would be to formulate a robust approach to 

form single, binary, and ternary type superlattices in high yields. Furthermore, the 

flexibility of selecting surfactant types (anionic, cationic and nonionic) and chain lengths 

could lead to interesting new structures. 
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Figure 7.2: Electrostatic self-assembly (ESA) scheme to assemble oppositely charged 
nanoparticles using commercial surfactants (NP = CdSe QDs) 
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7.2.2 Nanoreporters with Oil-Detection Capabilities 

In Chapters 4 and 5, it was shown that NPs formulated with nonionic and hybrid 

nonionic/anionic surfactants showed tolerance to aggregation in high salinity 

backgrounds and temperatures up to a 100 °C. In oil-free media, the NPs showed tracer­

like breakthrough in various saline backgrounds and at temperatures upto 70 °C. As 

future work, these NPs can be used as nanoreporters towards the detection of oil in 

reservoirs. 

In this regard, two classes of nanoreporters can be envisaged and are proposed as 

possible future forms of bilayer-based nanoreporters: 

7.2.2.1 Nanoreporters where NPs function as Signaling or Contrast Agents 

In the first category of nanoreporters, the NP in itself could selectively partition into oil 

domains in a reservoir. Fig. 7.3 show preliminary results of irreversible NP transfer to oil 

domains from seawater background into model oil such as isooctane. In this batch 

experiment, a suspension of QD/Neodol in 0.55M synthetic seawater background was 

contacted with an equal volume of isooctane. The system was heated in a paraffin oil bath 

to 90 °C (above the cloud point of Neodol) under conditions of gentle stirring such that 

the isooctane/seawater interface was not disturbed. In roughly two hours time, QDs were 

seen to migrate from the seawater phase to isooctane, as seen in the schematic. Upon 

transfer, when the system was cooled to room temperature, the QDs remained in the 

isooctane phase. 
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At Room 
Temperature 

At Room 
Temperature 

Figure 7.3: Irreversible migration of QDs (top panel) and C-Dots (bottom panel) from 
seawater to isooctane when the system is heated to 90 oc (above the cloud point of the 
surfactant N eo dol 91-7) and cooled back to room temperature. 

Such irreversible migration was also observed for a C-Dot/Neodol system, when heated 

to above the cloud point temperature of Neodol, C-Dots were found to irreversibly 

migrate to the isooctane phase showing the generality of the process. In the case of QDs, 

fluorescence could be a signal to demark oil domains from non-oil domains. Other NPs 

such as Fe20 3, if transferred by this approach to an oil domain in a reservoir, could 

increase the signal response from an incoming seismic wavefront used to map a reservoir. 

These in turn could create better differentiation between oil and non-oil domains and 

improve the reliability of the detection process. Future work thus recommended is a 

systematic study of NP flow through calcite and quartz sand columns that are pre-
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saturated with oil. Possib~e studies would also include imaging NPs entrapped in oil 

domains with fluorescence, seismic, or NMR-based techniques. 

7.2.2.2 Nanoreporters where NPs function as Delivery Agents of Signaling Molecules 

The second variant of proposed bilayer-based nanoreporters is depicted in Fig. 7.4. This 

variant was inspired from recent work published by Tour and coworkers. 16' 17 In this 

scheme, the NPs serve as a carrier of a signaling molecule/tracer (such as radioactive 

tetrachlorobiphenyl (PCB) tracer or triheptylamine (THA) mass spectroscopy tracer) and 

delivers it selectively to oil-domains of a reservoir. Upon retrieving the NPs post 

transport through the reservoir column, NPs were analyzed for the amount of signaling 

molecules left behind and based on a mass balance, the quantity of signaling molecule 

delivered was estimated. Furthermore, studies were performed to quantify the 

dependency of oil-content in a reservoir with the amount of signaling molecule delivered. 

Thus with available calibration charts, the quantity of oil in a reservoir could be estimated 

using the signaling molecule left behind on the NP carrier. 

The nanoreporters developed by Tour and coworkers were carbon-based 

(polyethylene glycol hydrophobic carbon clusters (PEG-HCC) and polyvinyl alcohol 

oxidized carbon black (PVA-OCB)) where a high molecular weight water-soluble 

polymer is covalently attached to the carbon-core. 16 While the nanoreporter cargo has 

advantages of an inexpensive and non-toxic carbon source, the process of functionalizing 

the carbon-core with the PEG or PV A polymer involves multiple steps of synthesis and 

dialysis. 
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Injection Recovery & Analysis 

Figure 7.4: Schematic for delivery of signaling molecules loaded on a NP into oil 
domains within a reservoir (Figure adapted from Berlin et al). 

An alternate approach to design a nanoreporter along the above lines would be to transfer 

the hydrophobic carbon core (carbon-black functionalized with oleic acid, called C-Dots) 

into bilayers of commercially available surfactants. A key difference of this new 

schematic is that the bilayer of oleic acid and surfactant is based on weak hydrophobic 

interactions, different from covalently attached PEG and PV A polymers onto HCC or 

OCBs. In the new schematic, the signaling molecule could be introduced into the 

hydrophobic bilayer domain and based on the type of surfactant used, breakthrough of 

bilayer C-Dot nanoreporters can be engineered to demonstrate tracer-like flow behavior 

in oil-free or oil-saturated porous media. Thus, the signaling molecule can be delivered 

selectively to oil-domains and used to estimate oil content in the column. This alternate 

configuration is scalable and can be made in large quantities and in an economical 

manner. 



246 

7 .2.3 Polyamine Gels for Flow Control and Actuation 

In Chapter 6, we had reviewed recent literature of gel formation approaches in 

micro fluidics and its applications towards flow regulation and actuation. 18 We saw that 

the challenge to form gels in situ and without the requirement of microfabrication 

methods is yet to be realized. In this regard, I believe that our discovery of the gelation 

phenomenon of P AH and citrate in a microfluidic environment has immense potential in 

applications of flow regulation. 19 The outstanding features are in situ formation of gels at 

room temperature and at desired locations of a microchannel, without the requirements of 

microfabrication methods. Furthermore, gel thickness may be controlled by varying R 

ratios and the charge on the anion. 

Figs. 7.5 (i) and (ii) represent preliminary data for thickness profiles of the PAH-

citrate system, when carried through cycles of increase in pH followed by decrease and 

vice-versa. Although a hysteresis in gel thickness trends is observable between the two 

sequences of pH change, gelation trends did not change significantly and little differences 

were observed in resulting gel thickness. 
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Figure 7.5: (i) Increase-decrease pH cycle - gel thickness profile and (ii) Decrease-
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increase pH cycle - gel thickness profile for P AH -citrate gels formed, under conditions of 
R ratio= 50 (PAH = 1 mg/mL) and flow rate of25 mL/hr. 

It is proposed for future work that through the use of lithography and confocal 

microscopy, the gel thickness be monitored as a function of speciation on citric acid 

along the height of the microchannel so as to investigate possible applications of the 

gelation phenomenon in flow control and actuation. 

7.2.4 Hybrid Polyamine/Glutaraldehyde Gels for Flow of Organic Solvents 

Polyamine gels formed by ionic crosslinking of P AH and citric acid collapse when 

subjected to the environment of organic solvents. To design polyamine gels stable in 

organic solvents, a cross-linking reaction based on aldol condensation of polyamine gels 

with glutaraldehyde is proposed (Fig. 7.6 (i)).20
, 

21 
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Figure 7.6: (i) Schematic of the aldol condensation reaction (ii) Schematic for forming 
hybrid polyamine-glutaraldehyde gels. 
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A proposed method to use the reaction In microchannels is given m Fig. 7.6 (ii). 

Preliminary results indicate that upon condensation with glutaraldehyde, the hybrid 

polyamine gels are stable in a paraffin oil environment (Fig. 7. 7). It is thus proposed that 

through an optimization of R ratios, citric acid speciation and glutaraldehyde 

concentration, new variants of gels can be synthesized with compatibility to organic 

solvents. 

(i) (ii) (iii) 

Figure 7. 7: Stability of PAR-Citrate-Glutaraldehyde Gels (i) in environments of (ii) 
water and mineral oil (iii). All scale bars are 50 J..tm. 

7 .2.5 Flow Focusing Approaches for Micro fluidic Synthesis of NACs 

In Chapter 6, we demonstrated the feasibility of forming NACs in microchannels. 

However, NAC formation in the previous geometry was found to occur under highly 

specific conditions. Furthermore, the microchannel geometry in which tandem assembly 

was investigated was found to favor formation of gels over capsules. To make NAC 

synthesis more tenable while exploiting laminar conditions of a microchannel, I propose 

a modification to the existing device geometry by introducing an orifice or flow-focusing 

constriction. This in conjunction with an immiscible oil phase creates conditions of 

"pinch off' or "Rayleigh-Plateau instabilities", making possible continuous-mode 

production of droplets of the polymer-salt aggregates. By introducing NPs downstream of 

the channel, NACs could be synthesized on a continuous mode basis. Preliminary results 
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suggest that NACs with tunable levels of surface coverage of NPs can be formed in 

microchannels based on reactant flow conditions and residence times ofNPs (Fig. 7 .8). 

Figure 7.8: Nanoparticle assembled capsules (NACs) of PAH, citrate and silica NPs 
formed in a microchannel with flow-focusing geometry with varying levels of NP 
coverage. 

Systematic investigation of reactant flow conditions, the spatial location where NPs are 

introduced along the channel length and the residence time of NPs in the channel could 

help control NP coverage of the resulting NACs and possibly pave the way to form new 

NAC variants with controllable surface morphology. 
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Appendix A 
Section Al: Photoluminescence Studies 
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Figure Al: Dark-field digital images of CdSe QD fluorescence in three different 
environments upon excitation by a UV -lamp source. In each set comprising a triad, the 
left sample is QDs in hexane, the middle sample is QDs in plain/deionized (DI)-water 
micelles of AOT and the right sample is QDs in salty-water micelles of AOT. CdSe QD 
Types: Clockwise from Left- Red dots (5.79 nm), Green dots (2.68 nm), Yellow-Green 
dots (2.85 nm) and Yellow dots (3.26 nm). The measured quantum yields for the yellow­
green dots (from left to right) are 14%, 3% and 5% respectively. 



Section A2: Thermogravimetric Analysis (TGA) 
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Figure A2: Results from thermogravimetric analysis of (a) CdSe+OA from hexane (b) 
CdSe+OA+AOT from ' no-salt' water, (c) CdSe+OA+AOT from ' salty'water and (d) 
AOT only. (' OA' refers to oleic acid). 

Loss profile of AOT only (curve 'd') indicates major weight loss of 80.7% (100-19.3) 

around 295 oc followed by a gradual loss of up to 88.8% (100-11.2) at 700 °C. This data 

is helpful in identifying the weight fraction of AOT when CdSe+Oleic acid (OA) is 

present in the sample. For example, in the weight loss profile of CdSe+OA+AOT from 

' salty' water (curve 'c '), the initial weight loss of 44.2% (100-55.8) at around 270 oc is 

attributed to AOT alone as no such peak is present in CdSe+OA (curve ' a' ). Then the 

contribution of AOT in curve (c) at 700 oc is given by 44.2 x 88.8/80.7 = 48.6%. 

Similarly, the contribution of AOT in curve (b) corresponding to CdSe+OA+AOT in 'no-
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salt'water at 700 oc is given by (100-75.2) x 88.8/80.7 = 27.3%. The presence of 48.6% 

and 27.3% AOT in samples from 'salty'and 'no-salt' water, respectively, indicates that 

the remaining weight loss at 700°C of23.1% (100-28.3-48.6) and 33.9% (100-38.8-27.3) 

is from CdSe+OA. Based on these values, the AOT:'CdSe+OA'ratio for samples from 

'salty' and 'no-salt' water are calculated to be 2.1 (48.6/23.1) and 0.81 (27.3/33.9). These 

results point to a 2.62 fold higher amount of AOT in the 'salty' water sample compared 

to the 'no-salt' sample. 

Section A3: Nile Red Studies 
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Figure A3: Nile red PL spectra at various stages of the phase transfer process (up to 60 
minutes). 



Section A4: Phase-Transfer of CdSe QDs using CT AB 
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Figure A4: (a) UV-Vis spectra and (b) photograph of CdSe QDs phase transferred in DI 
water and 3 g/L NaCl solution with CT AB as the phase transfer agent. 

Section A5: Phase-Transfer of CdSe QDs in Na2S04 
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Figure A5: (a) UV-Vis spectra and (b) photograph ofCdSe QDs phase transferred in DI 
water and (b) 0.38 g/L Na2S04 solution with AOT as the phase transfer agent. 



Section A6: Phase-Transfer of CdSe QDs in CaCh 
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Figure A6: (a) UV-Vis spectra and (b) photograph ofCdSe QDs phase transferred in DI 
water and (b) 0.05 g/L CaCh solution with AOT as the phase transfer agent. 
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Appendix B 
Section B1: Time-dependent Droplet Size of Nanoemulsions formed by Diluting 
60/30/10 and 80/10/10 W/0 Microemulsions in Excess Brine. 
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Figure B1: Octane drop size study with respect to time in Octane/Brine nanoemulsions 
obtained by diluting 60/30/10 (top) and 80/10/10 (bottom) Octane/AOT/Water 
microemulsions in different levels of excess brine (AOT = 1.5 g/L). 
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Section B2: Time-dependent Droplet Size of Nanoemulsions formed by diluting 
70/20/10 B/0 Microemulsions with Different Internal Salinities in Excess Brine. 
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Figure B2: Octane drop size study with respect to time in Octane/Brine nanoemulsions 
obtained by diluting 70/20/10 Octane/AOT/Brine (%E = 0.2) (top) and 70/20/10 
Octane/AOT/Brine (%E = 0.4) (bottom) microemulsions in different levels of excess 
brine (AOT = 1.5 g/L). 
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Section B3: Time-dependent Zeta Potential on Octane Drops of Nanoemulsions 
formed by diluting 60/30/10 and 80/10/10 W/0 Microemulsions in Excess Brine. 
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Figure B3: Zeta potential of Octane/Brine nanoemulsions obtained by diluting 60/30/10 
(top) and 80/10110 (bottom) Octane/AOT/Water microemulsions in different levels of 
excess brine (AOT = 1.5 g/L ). 
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Section B4: Plots of R3 vs. t of Nanoemulsion Drops formed by diluting B/0 
Microemulsions in Winsor I (0/oE = 0). 
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Figure B4: Plots of R3 vs. t for nanoemulsions prepared by diluting 70/20110 
Octane/AOT/Brine microemulsions with different levels of internal salinity (%E = 0, 0.2, 
0.3 and 0.4) in excess water (%E = 0, Winsor I). AOT = 1.5 g/L). 
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Appendix C 
Section Cl: Details of Curve Fitting by the CXTFIT Routine 

The transport equation of NPs moving through porous media can be represented by a 1-

dimensional advective-dispersion equation given by Eq. 4.13 in the main text. For the 

case when NPs show 100% breakthrough, or when they are not taken up by the column 

material, the term y ~ 0. Eq. 4.13 thus takes the form: 

(C4.1) 

Eq. C4.1 is a partial differential equation that is subject to the following initial and 

boundary conditions and thus bears an analytical solution: 

The initial condition ofEq. C4.1 is: 

C(x,O) = 0, fort= 0 

The boundary conditions ofEq. C4.1, fort> 0 are: 

C(O, t) = C0 

ac 
vC 0 =vC-D-

8x x=O 

(C4.2) 

(C4.3) 

(C4.4) 

The analytical solution for Eq. C4.1 has been described by van Genuchten and Alves and 

is given by Eq. C4.5. 

C(x, t) = C + (C0 - C)A(x, t) + B(x, t) (C4.5a) 

and 

C(x, t) = C + (C0 - C)A(x, t) + B(x, t)- CA(x, t- t 0 ) (C4.5b) 
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Eq. C4.5a is valid for the time interval, 0 < t < to, where to represents the time till which 

the NPs are pumped to the column. Eq. C4.5b is valid for the time interval t >to, i.e after 

NPs enter the column. A and B are defined as follows: 

1 [Rx-vt] ( v2t J [ (Rx-vt) 2
] 1( vx v2tJ (vx) [Rx+vt] A =-erfc .JDRt + -- exp- -- 1+-+- exp- erfc .JDRt 

2 2 DRt 1tDR 4DRt 2 D DR D 2 DRt 

and 

B = _r_ 
R 

(C4.6) 

( Rx t DR) [Rx-vt] ( t )~( 2DR) [ (Rx-vt) 2
] t+ ---+- erfc - -- Rx+vt+-- exp- + 

2v 2 2v2 2.JDRt 41t1tD v 4DRt 

( t DR (Rx + vt) 2
) (vx) rtl [Rx + vt] 2- 2v2 + 4DRt exp D e c z.JDRt 

(C4.7) 

The analytical solution was used to fit the experimental breakthrough profiles (without 

the washout portion) in cases where C/C0 does not exceed 100% using the method of 

least squares with R, Dandy as fitting parameters.62, 66 
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Section C2: Breakthrough Profile of Tracer through Calcite 
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Figure Cl: Experimental and fitted results for 3H20 transport through calcite, 0.55M 
Synthetic seawater background, 25 °C. Rand D values were estimated at 1 and 0.012 cm2 

min-1 respectively. 

Section C3: Transport and Breakthrough of QD/Neodol through Quartz Sand 

The natural affinity of alkyl ethoxylate nonionics to sand is well known in surfactant 

literature75 and their use in sandstone reservoirs is not practiced in areas of enhanced oil 

recovery.76 In this section, we investigate the transport and breakthrough of QD/Neodol 

through quartz sand and evaluate if the high natural affinity of the Neodol coating 

impacts QD breakthrough and recovery. Table C1 summarizes the parameters used for 

QD/Neodol breakthrough experiments through quartz sand (Fischer, 99.9999%). 

A 0.54M synthetic seawater suspension of QD/Neodol was passed through the 

quartz sand packed column at different temperatures (Fig. C2). Breakthrough of 50% 

occurred at 1.1 PV for the room temperature case and was delayed to between 1.2-1.4 
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PV s at higher temperatures. At higher temperatures, complete breakthrough occurred 

with CexiJCo seen to exceed 100% that indicated adsorption. 

Table Cl: Parameters used for QD/Neodol breakthrough experiments in quartz sand. 

Parameter Value Remarks 

Column Length (L) llcm --

Column Inner Diameter (d) lcm --

Pore Volume (PV) 3.6mL PV estimated from 
tritiated water 
breakthrough 
experiments62"65 

Porosity (E) 0.41 Eq. 4.10 

Soil particle radius ( ~) 152-402 ~m --

Particle density (pp) 2.52 glee --

Bulk density (Ph) 1.48 glee Eq. 4.11 

Volumetric flow rate (Q) 8 mL/hr 

Darcy velocity (vd) 2.44 m/d Eq. 4.12 

Linear pore velocity 5.86 m/d Eq. 4.12 

Background salinity 1M NaCl and 0.54M 
synthetic seawater 

Temperature 25, 50 and 70 °C 

The breakthrough profiles further indicates delays to result from effects of retardation 

over dispersion. This was different from the transport behavior observed in the case of 

calcite in seawater background, where QD adsorption was not observed and dispersion 

effects from temperature were prevalent. This shows NP transport through porous media 

is dependent on both, the type of saline environments as well as the material constituting 

the medium. 
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Figure C2: Breakthrough profiles of QD/Neodol in (a) 0.54M synthetic seawater (b) 1M 
NaCl. At PV ~ 3.0-3.5, the inlet QD/Neodol formulations were replaced by solutions 
with respective background salinities. The error bar on Cexit/Co was ±2%. 

That QD adsorption was through Neodol-sand interactions is also evident from the 

release of QDs after more inlet solution flowed into the column. QD release followed a 

plug-like behavior, suggesting rapid substitution of QDs adsorbed onto sand via Neodol 

with empty Neodol micelles that existed in the influent solution. Overall QD recovery 

across all temperatures was> 92%, indicating that NPs, although partially adsorbed onto 

sand, was recovered through the course of the experimental run (Table C2). Thus in the 

scope of NP transport, the use of nonionics, atleast for packed-sand columns did not 

result in significant retention of QDs. 
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Table C2: Percent recovery of QDs from quartz packed columns at different 
temperatures. 

Carrier Fluid 

0.54M 
synthetic seawater 

1MNaCl 

25 oc 50 oc 

94 93 

95 99 

Section C4: Sensitivity Analysis of lD Advection-Dispersion Equation 

70 oc 

92 

90 

Sensitivity Analysis of the 1 D advection-dispersion equation was performed by 

individually varying one of the three parameters of (R, Dandy) ofEq. 4.13 while keeping 

the other two constant. 

Fig. C3 represents the scenario where R was varied from 1 (no partitioning of NP 

onto column surface: for calcite, ~ at R = 1 is 0 mL g-1) to 5 (significant partitioning of 

NP onto column surface: for calcite, kct at R = 1 is 1.093 mL g-1) while keeping D 

(0.001 cm2 min-1) and y (0 min-1) constant. The implication of increasing R was reflected 

by the delay at which NP breakthrough occurred. For R = 1, breakthrough was seen to 

occur at 1 PV and this increased to 5 PV's for R = 5. 

Fig. C4 represents the alternate scenario where D was varied from 

0.00001 cm2 min-1 to 0.1 cm2 min-1 while keeping R and y fixed at 1 and 0 min-1 

respectively. The first trend that emerged was that the PV at which breakthrough occurred 

did not shift (breakthrough took place at 1PV). At low values ofD (0.00001 cm2 min-1 and 

0.0001 cm2 min-1), concentration variation ofNPs with PV was seen to occur in a manner 

akin to a step change. This implies that in the absence of dispersion, NPs would 

breakthrough as a pulse. When D was increased progressively, breakthrough of NPs was 
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seen to shift from a pulse to a gradual spread, but about the same PV where 50% 

breakthrough first occurred. This highlights effects brought about by column porosity 

which results in non-ideal flow patterns different from ideal plug flow . 
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Figure C3: Sensitivity analysis of lD advection-dispersion equation by varying R while 
keeping D and y constant. 
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Figure C4: Sensitivity analysis of lD advection-dispersion equation by varying D while 
keeping R and y constant. 
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Fig. CS represents the third scenario where y was varied from 0.00001 min-1 to 0.1 min-1 

while keeping R and D fixed at 1 and 0.001 cm2 min-1 respectively. While the 

concentration-PV profile was similar to that in Fig. C3, the outlet concentration reduced 

progressively from 100% to lower values indicating permanent retention of NPs by 

column material. 
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Figure CS: Sensitivity analysis of 1D advection-dispersion equation by varying y while 
keeping R and D constant. 


