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Abstract 

In the first chapter, we propose a new method for modeling competition in electric­

ity spot markets, namely, by approximating the supply functions of the competitors 

with cubic splines. We argue that this method is preferable to approximation by lin­

ear or piecewise-affine functions, which have been the main approaches to date. We 

apply our method to the firms competing in the Texas market. We also show that, 

more often than not, we will observe that the marginal revenue functions of the firms 

will have increasing segments which may lead to multiple profit-maximizing optima 

for a firm. 

In the second chapter, we model the effects of forward contracting on power prices 

in wholesale electricity markets. In contrast to most of the previous literature, we 

explicitly model power retailers, and introduce risk aversion. As expected, increasing 

the number of players have pro-competitive effects on the spot price of electricity. 

We also find that as the generators bid more competitively, spot and forward prices 

converge. Our model also captures the effects of level and variability of power demand 

on the players' contracting decisions. 

In the final chapter, we depart from equilibrium approach and utilizing agent­

based modeling, analyze the effects of increased power demand price sensitivity on 

the level and volatility of power prices. We find that as the price sensitivity in­

creases at the demand side, power price as well as its volatility decrease significantly. 

We also argue that the celebrated Herfindahl-Hirschman Index to measure market 

concentration is not a suitable metric for power markets. 
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Chapter 1 

A New Tool for Modeling the Electricity Spot 
Markets and its Application to the ERCOT 

Market 

1.1 Introduction 

1 

The two competing models in the industrial organization literature for explaining 

how firms compete in electricity markets are the celebrated Cournot model and the 

supply function equilibrium model of Klemperer and Meyer (1989, [51]).1 

A typical electricity wholesaler owns several generation facilities whose marginal 

costs differ depending mainly on the facilities' fuel source. As a result, rather than 

submitting a single price which corresponds to the unique profit maximizing quantity 

given a realization of its residual demand, a firm2 may do better by submitting a 

schedule of price-quantity pairs taking into account various possible realizations of 

its residual demand. This is essentially the motivation behind the supply function 

equilibrium model that Klemperer and Meyer (1989) analyze. Green and Newbery 

(1992, [36]) and Bolle (1992, [10]) are the first authors to realize the appropriateness 

of Klemperer and Meyer's approach for modeling electricity spot markets. 

Although some authors still prefer the Cournot model ([12], [16], [48]), mainly 

for its mathematical convenience, many others prefer the supply function equilibrium 

lSome examples are [11], [12], [16], [42] and [48] for the Cournot model, and [3], [7], [8], [36], [37] 
and [46] for the supply function equilibrium model. 

2We use the terms "electricity wholesaler", "generator", "bidder", "player" and "firm" inter­
changeably. 
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model since it better represents the everyday operations of the firms competing in 

electricity markets. We also take this approach. After developing our model, we use 

data on the firms from the Electric Reliability Council of Texas (henceforth ERCOT) 

area to test whether the firms are behaving optimally. 

The rest of this paper is organized as follows: We will present our motivation in 

section 1.2, the institutional setting of the ERCOT market in section 1.3, our model 

in section 1.4. Section 1.4.3 analyzes the increasing marginal revenue case and section 

1.5 talks about applying our model to the firms competing in the ERCOT market. 

Section 1.6 concludes. 

1.2 Motivation 

As mentioned above, supply function equilibrium models represent the operations in 

electricity markets more accurately than Cournot models do. However this accuracy 

comes at a cost. To be specific, letting the strategy space of the players consist of 

supply functions entails solving a set of differential equations to find the equilibrium 

(or equilibria) of the model. However, this is a cumbersome task unless the modeler 

makes some restrictive assumptions. 

The first is assuming that there are two symmetric firms, as in Green and New-

bery (1992, [36]). While this was realistic for the then recently deregulated British 

electricity market analyzed in Green and Newbery (1992), in today's markets there 

are many asymmetric firms. Hence, this assumption needs to be dropped. 

The second is assuming that the firms possess linear supply and marginal cost 

functions. 3 There are very successful applications of this approach, most notably by 

3In the literature, it is customary to call lines passing through the origin "linear function" and 
lines with non-zero intercepts "affine". We will also use this terminology. 
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Rudkevich (1999, 2002, 2005; [78, 79, 80]) and Baldick et al. (2000, 2004; [6, 7]). 

By assuming linearity, Rudkevich (1999, 2005) can find a closed form solution for 

the equilibrium in his stylized model with n firms. In that model, just by observ-

ing what had happened in the market in the previous period, players can attain a 

profit-maximizing equilibrium and convergence to this equilibrium happens very fast. 

Baldick et al. (2000, 2004; [6, 7]) relax the linearity assumption of Rudkevich (1999, 

2005; [78, 80]) and assume that firms possess piecewise-affine supply functions as in 

figure 1.1. The piecewise-affine assumption allows the authors to model more than 

two asymmetric firms with capacity constraints. They find that their model fits the 

data from the British market better than the linear case. 
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Figure 1.1 : Piecewise-affine supply function. 

The approach that Baldick et al. take is not free from problems, however. First 

and most important, if the firms possess piecewise affine supply functions such as the 

one in figure 1.1, the capacity constraints will cause the aggregate supply function to 
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have jumps - a simple example of which is shown in figure 1.2. In the event that the 

market demand intersects the aggregate supply at both of its pieces, it is not clear 

what price-quantity pair will clear the market. Baldick et al. (2000, 2004) overcome 

this type of discontinuity problem by removing some parts of the aggregate supply 

function from both pieces, and interpolating the function at the jump. A second 

drawback of this approach is that we are deprived of the convenience of calculus 

methods. Finally, we lose the idea that the response of anyone firm can be modelled 

as profit-maximizing. This is problematic if we believe, for example, that financial 

market pressures on privately owned firms would encourage profit maximization as a 

goal. 

{} 

Figure 1.2 : Market clearing price-quantity pair is not well-defined. 

These shortcomings motivated us to interpolate the supply and cost functions 

using shape-preserving cubic splines, which are continuous and differentiable. Next, 

we present a brief summary of how the ERCOT market operates followed by a stylized 
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model and the details of our approach. 

1.3 Structure of the ERCOT Market 

After the Texas Legislature amended the Public Utility Regulatory Act to deregu­

late the wholesale generation market in 1995, ERCOT became the first independent 

system operator in US. Its main missions are to direct the operation of the electric 

grid, which currently covers 75 percent of the land area in Texas and 85 percent of 

the state's electric load ([103]), and administer the power market. 

In Texas, most wholesale electricity is traded via bilateral agreements. In order 

to balance supply (i.e., generation) and demand (Le., load) in real time, ERCOT also 

administers a secondary (auction) market, called the Balancing Electricity Services 

(BES) market (or the "spot market"), where an average of 5% of the total transac-

tions occur. On each day, market participants submit to ERCOT their production 

and obligation schedules for the following day, through their qualified scheduling enti­

ties (QSEs). However, actual production and consumption of electricity may vary due 

to unanticipated circumstances such as weather conditions, unplanned plant outages 

or transmission problems. As a result, companies are allowed to increase or de-

crease their real time production relative to the schedule they submitted one day ago. 

For each hour, generators offer bid schedules, composed of up to 40 price-quantity 

pairs, 20 monotonically increasing price-quantity pairs for augmenting (UBES) and 

20 monotonically decreasing price-quantity pairs for decreasing (DBES) their pro­

duction relative to their day-ahed schedule.4 While DBES bids are mandatory, the 

firms are not obliged to submit UBES bids. ERCOT aggregates these bid schedules 

41n EReOT's jargon, these are called "Up Balancing Energy Services Bids - UBES" and "Down 
Balancing Energy Services Bids - DBES" respectively 
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into a single supply function for each type of service at each congestion zone.5 Every 

fifteen minutes, fourteen minutes before the operating interval, ERCOT intersects 

the market demand with the aggregate supply to determine the "market clearing 

price of energy". If there is no congestion on the transmission lines, the ERCOT 

region becomes a single market. In case of congestion, the market is separated into 

zones, each having different market clearing prices. ERCOT notifies the QSEs of the 

market clearing price and gives them deployment instructions ten minutes before the 

operating interval. QSEs start to run their units accordingly, five minutes before the 

operating interval. For a complete description of the market's operations, see the 

ERCOT protocols, particularly section 6 in [23] and the very insightful article by 

Teng et al. (2004, [91]). 

As mentioned in Horta<;su and Puller (2005, 2008; [45, 46]), the market partici-

pants have a great deal of information on their competitors. Most plants in Texas 

have similar production technology6 and their fuel efficiency data is publicly avail-

able. Also, traders seem to know which rival generators are producing at any point 

in time. Furthermore, it is possible to purchase real time data on the generation of 

large competitors.7 Finally, every bidder has access to the aggregate bid data, which 

is released by ERCOT with a 2-day lag. Since each generator knows its own bids, this 

helps bidders infer their residual demand, assuming that the aggregate bids two days 

ago are similar to the ones today or are similar functions of other publicly observable 

data such as weather statistics. 

5ERCOT organizes sources of supply and demand into "Congestion Zones" based on the likelihood 
of transmission constraints between these market areas. The ERCOT region is currently divided 
into four zones. For additional details see §7 in [23J. 

6Most plants in Texas use natural gas. 

7This can also be inferred from the public real-time data on flows through a large number of 
nodes on the system. 
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1.4 A Stylized Model 

We denote by N = {I, 2, ... , n} the set of firms in the market. Ci(qi) is firm i's cost 

function and it is assumed to be quadratic, convex and twice continuously differen-

tiable. Dt(p) is the aggregate demand for electricity at time t. It is assumed to be 

differentiable and its slope satisfies -00 < Dp < O. 

At each period t, each firm simultaneously submits a supply function Sit(p). The 

residual demand faced by firm i is then RDi(P) = Dt(p) - Ej#i Sjt(p). The system 

administrator calculates the market clearing price, denoted as P; using the market 

clearing condition 

L Sit(pn = D(pn (1.1) 
iEN 

We are interested in the noncooperative equilibrium of the game 

where N is the set of firms, Sit is player i's strategy and 'lrit : ITjENSjt x Dt(p) - lR 

is firm i's expected profit. 

Following Klemperer and Meyer (1989), we assume that the profit maximizing 

price-quantity pairs can be related to each other by a supply function for each firm: 

qi = Si(P). That is, at any time t, each qi corresponds to a specific price p. Then the 

problem of firm i becomes to maximize, with respect to p, the profit 

with the first order condition 
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~ S' ( ) Sit(p) D'( ) 
~ jt P = P _ C' (Sit (p)) + t P , 
Jrt 

(1.3) 

for all i E N, where f'(x) is the first derivative of f(x). 

Any set of nondecreasing supply functions which solve the set of equations (1.3) 

is an equilibrium of the game r.8 

1.4.1 A Simple 2-Firm Example 

The following 2-firm example will make our motivation clearer: 

Let's suppose that the market demand is D(p) = 80 - p and firm j observes that 

firm i bid9 price-quantity pairs {(p, q) : (0,0), (5,20), (10,35), (15,45), 

(20,50), (40, 60)PO and approximates i's supply by interpolating the observed bids in 

a linear fashion and gets the following piecewise linear function: 

8Note that this formulation does not take into account the capacity constraints. As explained in 
Green and Newbery (1992, [36]) §IIB, under capacity constraints, a solution intermediate between 
Cournot and Bertrand outcomes will not be stable and firms will find it profitable to deviate to the 
Cournot solution. 

9This is without loss of generality since what matters for a given firm is its residual demand 
function. A firm may aggregate all of its competitors' bids and subtract this from the (expected) 
market demand to find its residual demand. That is to say, firm j may represent the total of firm 
i's competitors. 

10 As mentioned in section 1.3, ERCOT, the independent system operator, releases the aggregate 
bid data with a two-day lag. Hence, in our simple two-firm example, firm j can easily figure out 
what ibid. 
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4p if p ::; 5 

3p + 5 if p ::; 10 

(1.4) 

p + 30 if p ::; 20 

~ + 40 if p ~ 20 

Then, the residual demand faced by firm j will be 

80 - 5p if p ::; 5 

75 -4p if p ::; 10 

RD(P)j = D(p) - Si(P) = 65- 3p if p ::; 15 (1.5) 

50- 2p if p ::; 20 

40-~ 
2 if p ::; 26.67 

Inverting (1.5), multiplying by q and then differentiating the whole expression 

with respect to q, we get the marginal revenue curve of firm j: 

80 _ ~q 
3 3 if q ::; 10 

25 - q if q ~ 20 

MRj(q) = 65 _ 'l:q 
3 3 if q ~ 35 (1.6) 

75 _ lq 
4 2 if q ~ 55 

16 - ~q if q ~ 80 

Figure 1.3 plots the residual demand and marginal revenue functions for firm j. 
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Figure 1.3 : Kinks in residual demand will lead to discontinuities in the marginal 
revenue. 

The jumps in the marginal revenue curve are a potential problem. Instead of 

taking an ad-hoc approach such as "interpolating the quantities at the jump" ([6], 

[7]) it would be worthwhile to obtain a continuous marginal revenue curve, after the 

operation D(p) - Si (p). Given that the market demand is smooth, this, in turn, could 

be achieved if the supply function of the first firm was smooth. This shortcoming 

motivates us to try to fit a smooth function to a given set of (p, q) pairs. If firm j 

interpolated i's bid with a smooth function, its marginal revenue curve would also be 

smooth. 
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1.4.2 Approximating Competitor's Supply with a Spline 

The aforementioned problem with piecewise linear approximation motivates us to 

approximate supply by interpolating a set of bid data with a smooth polynomial. To 

the best of our knowledge, no one has taken this approach before. 

There is a huge literature on approximating functions and/or data with polyno­

mial splines. One can consult [32, 33, 72, 82] and the references therein. A potential 

problem is that while market rules require firms to submit bids that are non-decreasing 

in price, polynomial splines generally do not respect this requirement. Thus, in add i-

tion to a smooth approximation, we also demand that our interpolant is monotone. 

Fortunately, we have algorithms at our disposal to achieve this task. 

We will follow Fritsch and Carlson's (1980, [33]) method. Let 7r = PI :::; P2 :::; 

:::; Pn be a partition of the interval [Pr,Pn]. Given these n price values and the 

corresponding quantities, that is, n (p, q) pairs, the aim is to construct a piecewise 

defined cubic function S(p) on 7r which is lfl and is such that S(Pi) = qi' After noting 
3 

that the set of all polynomials of the third degree, P3 = {s(p) = E C;p i - I , Ci, P E 
i=1 

IR}, forms a 3-dimensional vector space with a finite basis (e.g., {l,p - a, (p - a)2}), 

we can, on each interval Ii = [Pi,Pi+1] represent S(p) as a cubic polynomial: 

(1.7) 

where dj = S'(Pj), j = i, i+ 1 and the Hk(p) are the Hermite basis functions for h 

namely, HI(p) = ¢((PHI-P)/hi), H2(P) = ¢((p-Pi)/hi), H3(P) = -hi'l/J((PHI-P)/hi) 

and H4(P) = hi'l/)((p - Pi)/hi), where hi = PHI - Pi, ¢(x) = 3x2 - 2x3 and 7j;(x) = 

Hence, in order to interpolate {(Pi, qi) 1, 1,2, ... , n} we essentially need an 



12 

algorithm which calculates the derivative values di such that they all have the same 

sign with the slope of the secant connecting two consecutive points: 

(1.8) 

The following lemmata will give the necessary and sufficient conditions for a cubic 

polynomial to be monotone on an interval: 

Lemma 1.4.1. Let eli = di/ ~i' f3i = di+d ~i and eli+f3i ~ 2. Then S(p) is monotone 

on Ii iff (1.8) is satisfied. 

Proof Suppose S(p) is monotone increasing on h Then ~i > 0 and for all p E h 

S'(p) > O. In particular, sgn(S'(Pi)) = sgn(di) and sgn(S'(Pi+1)) = sgn(di+d are 

both positive and (1.8) is satisfied. The case when S(p) is monotone decreasing is 

similar. 

Conversely, assume (1.8) holds. First, using the formula S(p) = E S(~;Pi (p - Pi)i, 
t. 

i=O 

expand S(p) around Pi to get 

Differentiating (1.9) with respect to P gives 

and 
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Note that di + di+1 - 2~i = (ai + f3i - 2)~i. So, if ai + f3i = 2 then S(p) is quadratic 

or linear, hence S'(p) is linear or constant. Then, (1.8) characterizes monotonicity of 

S(p) since min{di,di+1}::; S'(p) :::; max{di,dHd. If, on the other hand, ai+f3i-2 < 

0, there are two cases to consider: 

1. If qi < qi+1 then di + di+1 - 2~i < 0, therefore S' (p) is concave. This, together 

with (1.8), implies that ° :::; min{di,dH1 } :::; S'(p) hence S(p) is monotone 

increasing. 

2. If qi > qi+1 then di + di+1 - 2~i > 0, therefore S'(p) is convex. This, together 

with (1.8), implies that ° ;::: min{ di, dH1 } ~ S'(p) hence S(p) is monotone 

decreasing. 

o 

Lemma 1.4.2. Let ai + f3i > 2 and (1.8) holds. Then S(p) is monotone on Ii 

if and only if 2ai + f3i :::; 3, or ai + 2f3i :::; 3, or <p(ai' f3i) ;::: 0, where <p(a,f3) = 

a - (2a + 13 - 3)2/3(a + 13 - 2). 

Proof. First, we observe from (1.11) that S'(p) attains its unique extremum at 

(1.12) 

and 

(1.13) 

To prove the claim, note that conditions (1.12) and (1.13) imply that S(p) is 

monotone on Ii if and only if either p* (j. (Pi, Pi+1) , or, p* E (Pi, PHd and sgn(S'(p*)) = 
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sgn(6. i ) , Simple algebra shows that p* < Pi implies 2ai + {3i ~ 3, p* ~ PHI implies 

ai + 2{3i ~ 3 and the condition 'P( ai, (3i) ~ 0 is equivalent to saying p* E (Pi, PHI) and 

sgn(S'(p*)) = sgn(6. i ), 

o 

These results suggest the following algorithm: 

Let the data to be interpolated be (Pk, qk) for k = 1,2, .. " n, 

1. Initialize the slope parameters, 

• Using three point difference formulall , initialize di for i = 2, "" n - I, 

2, Check whether the slope paremeters satisfy the necessary and sufficient con-

ditions for monotonicity, If they do not satisfy those conditions, update their 

values accordingly: 

• Let 6.k = (qk+l - qk)/(Pk+l - Pk) for k = 1,2, .. " n - 1. 

• If 6.k = 0 then do the update dk = dk+l = 0, for k = 1,2, .. " n - 1. Else 

- If a~ + {3f > 9 then do the updates dk = Tkdk and dk+l = Tkdk+l where 

Tk = 3(a~ + {3f)-I/2, 

We implemented this algorithm with Maple ([66, 67]), Let's turn back to our 

2-firm example and see what difference this makes: 

If firm j approximated i's supply with a monotone cubic spline instead, he would 

get 

11 ' '()' k 1 k k 1 h £ l' qk -qk-l + qk±l -qk GIven three pomts, Pi, qi , Z = - , , + ,t e ormu a IS 2(Pk Pk-t} 2(Pktl-Pk) ' 
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.1...p2 _ .1...p3 + 4p 
10 50 if p ::; 5 

2p _ .1...p2 
2 10 if p ::; 10 

Si(P) = 2p _ .1...p2 
2 10 if p ::; 15 (1.14) 

-45 + 51 P _ '§.p2 + _1 p3 
4 5 100 if p ::; 20 

20 5 1 2 1 3 + '2P - 16P + 1600P if p ::; 40 

By evaluating the derivative of (1.14) at the critical points one can easily see that it 

is smooth. Figure 1.4 plots the linear and the spline interpolants to the given (p, q) 

pairs. 

o~-~~-~-~-~-~~-~ 
o 10 20 30 40 

p 
I· . • .. Spline approximation - - Linear approximation 1 

Figure 1.4 : Linear vs. Spline Inperpolation 

This will give the following expression for the residual demand, which is necessarily 

smooth: 
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80 - 5p - .lp2 + .lp3 
10 50 ifp::;5 

80 - lip + .lp2 2 10 if p ::; 10 

RDj(q) = 80 - lip + .lp2 2 10 if p ::; 15 (1.15) 

125 _ 55p + .:!p2 __ 1 p3 
4 5 100 if p ::; 20 

60 7 1 2 1 3 
- 2P + 16P - 1600P if p ::; 26.175 

Again, inverting (1.15)12, multiplying by q and then differentiating the whole 

expression with respect to quantity, we get the marginal revenue curve of firm j. We 

suppress the extremely complicated expressions and just plot the result in figure 1.5: 

25 

20 

15 

p 

10 

5 

10 20 30 40 50 60 70 80 
q 

Figure 1.5 : Monotone spline interpolation results in differentiable residual demand 
and continuous marginal revenue functions. 

12Not a trivial task. See appendix B for an alternative approach. 
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1.4.3 Increasing Marginal Revenue and the Possibility of MUltiple Profit 

Maximizing Optima 

One problem that has been ignored in modeling electricity spot markets is that the 

marginal revenue function of a generator can increase on some intervals. Some re-

searchers previously noted this anomaly for a monopolist and analyzed the conditions 

under which we may expect a monopolist to have an increasing marginal revenue 

curve ([96], [30], [22]). Walters (1980, [96]) considers a monopolist facing a demand 

curve that yields such a marginal revenue curve and he argues that "[t]here is much 

evidence to show that such demand curves are characteristic of utility and service 

industries. For example, it is well known that an electric utility company, usually a 

statutory monopoly, has a very inelastic demand for domestic electricity for lighting 

purposes; but at lower prices the utility can break into the vast market for heating, 

air-conditioning, and industrial power. When not prohibited by law, and where tech­

nically feasible, electric utilities will price-discriminate in these markets." 13 Formby 

et al. (1982, [30]) "demonstrate that the conditions for a positively sloping marginal 

revenue curve are much less stringent than is generally recognized" and add that 

"positively sloping marginal revenue functions must be considered whenever convex 

demand functions are analyzed". They give examples of several functional forms fre­

quently used in economic analysis which lead to upward sloping marginal revenue 

curves. Finally, Coughlin (1984, [22]) derives statements regarding the elasticities 

of a monopolist's demand and marginal revenue functions that are equivalent to the 

direction of change for the marginal revenue function. 

13The common practice of using a different price schedule for different types of customers can 
most readily be rationalized as price discrimination. In particular, commercial customers typically 
purchase electricity mainly for lighting and other essentials and thus have relatively less elastic 
demand. They also typically face the highest charges. 
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None of these studies, however, consider an oligopolistic market structure and 

none of them suggest what to do in the case of multiple equilibria. We will show 

that, for electricity generating firms, ending up with a residual demand for which 

the marginal revenue is positively sloped is the rule, rather than the exception. As 

a result, multiple profit maximizing price-quantity pairs for a firm is not a very 

remote possibility. Furthermore, the set of ex-post profit maximizing points will 

not necessarily lie on a monotone path, a violation of ERCOT market rules. A 

reasonable hypothesis about what a firm is likely to do when faced with multiple 

profit maximizing optima, however, is still an open question. 

First, we state some useful results. 

Definition 1.4.3. A real valued function f defined on A c lR is convex on A if for 

Lemma 1.4.4. f is convex if and only if for all Xl, X2 and X3 in AJ such that Xl < 

(1.16) 

Proof. Suppose f is convex and let X2 be a convex combination of Xl and X3: X2 := 

aXI + (1 - a)x3 for some a E [0,1]. Then we have: 

f(X2) - f(xd < af(xI) + (1 - a)f(x3) - f(XI) 
X2 - Xl X2 - Xl 

f(X3) - f(XI) _ f(X3) - (af(XI) + (1- a)f(x3)) 
-

X3 - Xl 

< ,,-f (-,-X-,-3 )_-_f.-e(,---x 2_) 
X3 - X2 

The inequalities in the first and third lines follow from the definition of convexity. 

In order to visualize the equalities, the figure below will be helpful. 
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f(X3) 

....... af(xd + (1 - a)f(x3) 

f(X2) 

-I--~~ ... :::::: ... ==-:-:-... ~ ... :-:-:-............................................. f(xt) 

Conversely, assume that for all Xl, X2 and X3 (1.16) holds. Take any a E (0,1) 

and without loss of generality let X2 = aXl + (1 - a)x3. Then, 

f(aXl + (1 - a)x3) - f(Xl) 

aXI + (1 - a)x3 - Xl 

Canceling (X3 - xd gives 

upon rearranging we get 

f(aXI + (1 - a)x3) - f(xd 
(1 - a)(x3 - Xl) 

< f(X3) - f(axl + (1 - a)x3) 
- X3 - aXl - (1 - a)x3 

f(X3) - f(axl + (1 - a)x3) 
-

a(x3 - Xl) 

o 

Lemma 1.4.5. Let f : A -+ B C lR be an invertible function and let f- l be its 

inverse. If f is decreasing and conve.7:, so is f- l . 
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Proof. Take any three points Xl, X2 and X3 from A and suppose, wlog, that Xl < X2 < 

X3· Hence Y3 .- f(X3) < Y2 := f(X2) < Yl := f(Xl) so f- l is decreasing and by 

lemma 1.4.4 

f(X2) - f(Xl) ::; f(X3) - f(X2) < 0 ~ f(Xl) - f(X2) > f(X2) - f(X3) > 0 
X2 - Xl X3 - X2 X2 - Xl - X3 - X2 

X2 - Xl f- l (Y2) - f- l (YI) 
~ -

f(Xl) - f(X2) Yl - Y2 
< X3 - X2 f- 1(Y3) - f- l (Y2) 
- f(X2) - f(X3) Y2 - Y3 

~ -=-f-_1...:.,:.(Y--.:1 )_----:f:.--_l (.:.=,.Y::::..:....2) > f- l (Y2) - f- 1 (Y3) 
Yl - Y2 Y2 - Y3 

hence f- 1 is convex. o 

Lemma 1.4.6. Let f : (a, b) -+ lR be a CC2 function. Then f is convex if and only if 

its second derivative is nonnegative on (a, b). 

Proof. See [75], page 26. o 

Now, suppose for simplicity there are only two firms and the market demand, 

D(p), is perfectly inelastic. 14 Suppose firm l's competitor bids a supply function 

14Some large firms sign up for time-of-use metering of electricity and respond to spot prices. In 
particular, many co-generating firms can alter the amount of power they supply to, or take from, 
the grid and will do so in response to prices. As this last example illustrates, conceptually we can 
think of price-responsive demand as an alternative source of supply and take the non-responsive 
demand as the "demand" represented in the model. This view of price-responsive demand as a type 
of "supply resource" has even been formalized in many electricity markets. For example, ERCOT 
has a program called "Load acting as resource" (LaaR), in which a company with minimum load 
of 1 MWh can sign up to allow a portion or all of its energy demand to be responsive to market 
prices. In exchange for getting paid a fixed annual fee, the company has to curtail its energy 
demand immediately if asked by the system operator. It can be argued that existence of LaaRs 
provides some (imperfect) elasticity in real time, but they provide up to the 50% cap of ERCOT's 
Responsive Reserves procurement of 2300 MWs, which corresponds to only 1.8% of EReOT peak 
demand, observed on August 16th, 2010. Between April 2006 and August 2010, LaaRs had been 
deployed only 13 times. See [24] for details. 
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82(p) E C(f2 which is concave in p. Concavity is a realistic assumption here, given 

the capacity constraints. Then the residual demand function firm 1 faces will be 

(D - 82 )(p). Since 82 is concave, -82 and hence D - 82 is convex. Consequently 

by lemma 1.4.5, the residual demand firm 1 faces, as a function of q, will be convex 

as well. Let RD : [0, qj ~ 1R+ denote that residual demand function. Then the 

expression for marginal revenue will be 

d 
MR(q) = dq (qRD(q)) = RD(q) + qRD'(q) (1.17) 

Now, consider the slope of the function defined by (1.17): 

d 
dq M R(q) = 2RD'(q) + qRD"(q). (1.18) 

The first term on the right hand side of equation (1.18) is negative since the resid-

ual demand function is negatively sloped. But if we do not impose any restrictions on 

the shape of the residual demand, namely, that it is globally concave, the second term 

on the right hand side will be positive on the intervals where RD(q) is convex (by 

lemma 1.4.6) and on those intervals, the second term may dominate the first. Then 

(1.18) will be positive and marginal revenue will be increasing on that range, i.e., 

2RD'(q) + qRD"(q) > O. Following Coughlin's analysis (1984, [22]), by rearranging 

this last equation we get: 
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2RD'(q) + qRD"(q) > a 

-2> qRD"(q)j RD'(q) 

-2 > dRD'(q) jRD'(q) = dRD'(q) jdq 
dq q RD'(q) q 

-¢::=} - 2 > quantity elasticity of slope of residual demand. 

(1.19) 

So we can state: 

Proposition 1.4.7. Marginal revenue will be increasing if quantity elasticity of the 

residual demand is less than -2. 

Increasing marginal revenue creates the possibility of multiple profit maximizing 

quantities and prices for the firm. Multiplicity of optima, in turn, will create un-

certainty as to what price-quantity pairs the firm will bid to the market. This is 

problematic not only because it creates or enhances circumstances under which the 

firm may manipulate the bidding process. It also creates uncertainty from the point 

of view of the system administrator who is responsible to keep the system balanced 

at all times. 15 How much quantity is dispatched from each generator is crucial since 

electricity, to a large extent, is not storable. 

Consider the following figure where we used hypothetical bid data: 16 

15 And this is a serious problem because the most distinctive feature of the electricity markets is 
that supply and demand should be in balance at any second. Supply-demand imbalance will lead to 
blackouts and/or deviations from the target system frequency. Lineweber and McNulty (2001, [57]) 
estimate that the US economy across all business sectors is losing between $119 billion and $188 
billion annually due to power outages and power quality issues. 

16Even though we used hypothetical bid data, the shape of the resulting residual demand function 
closely resembles that of figures 4.2 and 4.3 in Wolak (2003, [100D, where the author used real data 
from the Australian market. 
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Figure 1.6 : Multiple profit-maximizing quantities. 

Both q = 1.04 and q = 5.91 are profit-maximizing quantities, and at both of 

these quantities, marginal revenue and marginal cost curves intersect, and at both 

quantities, the profit of the firm is 8.402. The price corresponding to q = 1.04 is 

8.73 and the price corresponding to q = 5.91 is 2.27. Given this realization of the 

residual demand, it is not clear which quantity the firm will produce. Even though 

one may think that the firm itself is indifferent, the same cannot be said for the 

system operator or for consumers. One profit-maximizing output level is almost 6 

times the other. In addition, to maintain system balance, this uncertainty has to be 

resolved. Finally, from a market design perspective, the difference between the two 

profit maximizing prices gives this firm the opportunity to manipulate the bidding 

process. 
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1.5 Application to ERCOT Market 

In this section, we use data on the firms' marginal costs and actual bidsI7 to construct 

their ex-post profit maximizing supply functions. Figure 1.7 illustrates our method. I8 

We start with a given realization of the residual demand function and calculate the 

corresponding marginal revenue. Intersection of marginal revenue with the marginal 

cost (the black, dashed curve) will give the profit maximizing quantity for that specific 

realization of the market demand. We shift market demand to get separate residual 

demand and marginal revenue functions and obtain other profit maximizing points. 

Connecting these gives us the ex-post optimal supply function for the firm (the dot­

dashed blue curve). 

Note that all four realizations of the residual demand and the corresponding 

marginal revenue curves intersect at a point to the right of the origin. This quantity 

is the amount of energy the firm sold in bilateral contracts. To the right of this point, 

the firm is a net seller in the BES market and hence acts as a monopolist on its resid-

ual demand curve. To the left of that point, the firm is a net buyer of electricity and 

acts as a monopsonist. While the forward contract position is private information of 

the generators, there is an intuitive method to estimate it using a firm's marginal cost 

function and its BES bids: If the firm is short in the market, it needs to buy power 

to cover its contractual obligations. Hence, up to this contract quantity, the firm will 

want to bid less than its marginal cost function and try to decrease the market price 

17rn the ERCOT region, each company is represented by a qualified scheduling entity (QSE) and 
ERCOT, prior to January 31,2011, released QSE-specific bid data for the past two years, sixty days 
after the operating day. The data were available at ERCOT.com for the zonal market. ERCOT 
implemented a new market design and switched to the "nodal system" on December 1, 2010, for 
which there is no publicly available bid data. 

18This is identical to Hortac;su and Puller's (2005, 2008) "empirical strategy". 
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Figure 1.7 : Construction of the ex-post optimal supply function. The blue dots are 
the optimum quantity-price pairs. 

and to the right of it the firm will want to bid more than its marginal cost 19 . 

1.5.1 Comparison of Actual BES Bids to Ex-post Optimal Bids 

We apply our method for analyzing five firms; Austin Energy, Brazos Electric Power 

Cooperative, Calpine, Luminant and NRG from March 2009 through August 2009. 

Figures 1.8, 1.9, 1.10, 1.11 and 1.12 are from March 18, 2009 between 8 and 9 PM, 

a time period during which there was no zonal congestion and the whole ERCOT 

region had a single market clearing price. 

As mentioned in section 1.3, the DBES bids are monotonically decreasing in price. 

19Hortagsu and Puller (2005, 2008; [45, 46]) say that "[t]his practice was acknowledged by all of 
the firms that they interviewed during their research." Our conversations with market participants 
also verified the validity of this approach. 
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In order to be able to present both the up and the down bids on the same figure, we 

first normalize the down bids by taking their mirror image with respect to the price 

axis. Then we analyze the DBES and UBES cases separately since the aggregate 

down and the aggregate up bids usually overlap and the period we chose was not 

an exception. After we calculate the ex-post optimum bids separately for the two 

cases, we combine the results for each firm to come up with its ex-post optimal bid 

stack. Occasionally, we had some optimum bid points lying outside the monotone 

path combining the others. Since such points violate the market rules, we eliminate 

those. 

We start from a balancing market demand of -5000 MWs and go up to 4000 MWs 

by adding 100 MW increments. 

Shioshansi and Oren (2007, [84]) and Hortac,;su and Puller (2008, [46]) analyzed the 

market in 2002. They found that the incremental bids of TXU, the biggest wholesaler 

in Texas in terms of installed capacity, were very close to its ex-post optimal supply 

function. However, TXU's decremental bids were much lower than ex-post optimum. 

We examined the recent behavior of TXU, now operating under the name Luminant. 

We found both their decremental and incremental bids to be fairly close to their ex­

post optimum supply function. However, especially on the incremental side, they use 

a very coarse bidding strategy. We have difficulty explaining this because the high 

and low operating limits, high and low sustainable limits and ramp rates of their 

power plants seem to allow for a more refined bidding strategy. This is particularly 

the case between 0 and 700 MWs for the period shown in figure 1.8. 

According to Hortac,;su and Puller's (2008) analysis, the second biggest producer 

Reliant, which now operates under the name NRG, was bidding remarkably close to 

its ex-post optimum bids. This result was supported by Shioshansi and Oren (2007). 
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Figure 1.8 : Analysis for Luminant. Estimated contracted quantity is 700 MWs . 
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During the sample period we analyzed however, this is not the case (figure 1.9). NRG 

bids significantly below what would be ex-post optimum and most of the time does 

not submit any incremental bids. Some small wholesalers usually avoid the balancing 

market. It has been suggested that this may be because they do not want to modify 

their production schedules. 20 Hortac;su and Puller (2008, [46]) suggest that the high 

cost of setting up and operating a real time bidding desk is another reason for smaller 

wholesalers' avoiding incremental bids. However, we do not think either reason holds 

for NRG and find their lack of incremental bids rather surprising. 

Calpine is one of the biggest electricity producers in the ERCOT region and they 

own the most efficient generation fleet. It was also one of the firms Hortac;su and 

20Private conversations with real time power traders. Also see [45] and [46]. 
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Figure 1.9 : Analysis for NRG. Estimated contracted quantity is 0 MWs. 
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Puller (2005, 2008) analyzed for the year 2002. Parallel to their results, we found 

that, on the decremental side, Calpine'S bids are far from being optimal, although, 

we can say that they bid very close to optimum on the incremental side. A general 

tendency of Calpine is to use too few bid points (see figure 1.10). 

Brazos Electric Power Cooperative (figure 1.11) is one of the smaller wholesalers. 

They are using a more refined bidding strategy compared to their bigger rivals and 

seem to bid close to their ex-post optimum supply function between 0 and 100 MWs, 

but outside that region, their bids are far from being optimal. 

The final wholesaler we analyze is Austin Energy, another small producer (figure 

1.12). Like Brazos Electric Power Cooperative, they also use a more refined bidding 
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Figure 1.10 : Analysis for Calpine. Estimated contracted quantity is -844 MWs. 
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strategy with the incremental bids closer to their optima compared to the decremental 

bids. 

Before concluding this section, it is important to note that we had to make many 

simplifying assumptions to arrive at these results. First of all, while we did our best 

to estimate the cost functions as precisely as possible, the real marginal costs may 

depart from our estimates since we assumed that ramprate constraints, upper and 

lower operating limits and upper and lower sustainable limits of the generators are 

not binding. In addition, we do not explicitly take into account start-up and shut­

down costs, which may be significant. 21 Also, the heatrates we use for calculating the 

21 Another reason for choosing this specific time period is that the plants running between 20:00 
to 21:00 were also running before 20:00 and after 21:00. 
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Figure 1.11 : Analysis for Brazos Electric Power Cooperative. Estimated contracted 
quantity is 292 MWs. 

marginal cost functions are average figures. In particular, one implication of this last 

assumptions is that the marginal cost of a given plant will be a constant function of 

quantity, which is not the case in reality. An excellent report by Hirst (2001, [41]) 

explains all these concepts and their implications in detail. 

1.6 Conclusions and Future Research 

We presented an alternative tool for modeling the bidding process in electricity spot 

markets. We approximate bidders' supply functions by interpolating their bid data 

as well as their marginal cost functions with piecewise cubic splines. This method 

gives us differentiable residual demand, and thus, continuous marginal revenue curves. 
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Figure 1.12 : Analysis for Austin Energy. Estimated contracted quantity is 35 MWs. 

Furthermore, as mentioned in Teng et al. (2004, [91]), rather than working with step 

functions, ERCOT divides two adjacent bids into up to 100 segments (see the next 

figure) in order to calculate the market clearing price. Our method is in essence 

dividing two adjacent bids into infinitely many segments. 

$/MW 

~(q3'P3) 

~2) 
MW 
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Also, having such a flexible tool to calculate the optimal bid curves efficiently 

facilitates analyzing many more time periods and circumstances, and allow us to 

investigate a wider range of hypotheses about firm behavior and market outcomes. 

However, these advantages come at a cost; namely, now each supply function has 

up to 3n parameters, where n is the number of polynomial pieces in a given supply 

function. This makes it hard to find a closed form solution for the equilibrium con-

ditions. It is also hard now to analyze whether and how learning in this environment 

will take place (see [78] and [80] for the linear supply function equilibrium case). 

We also showed that, in electricity markets where the competitors' residual de-

mand functions will necessarily have convex sections, their marginal revenue curves 

will have increasing segments. This anomaly may lead to multiple profit maximiz-

ing optima for some players, which, in turn, causes additional uncertainty about the 

amount that player will want to supply to the balancing market. We are currently 

working on further implications of this anomaly and how to deal with the uncertainty 

it creates. 

We applied our technique to firms competing in the Texas wholesale market and 

found that while the firms with the biggest stakes in the market generally bid closer 

to what economic theory predicts,22 they do not fully take advantage of their market 

power. Smaller firms still have some chance to bid strategically, even though their 

residual demand is much more ela.."ltic. However, they do not appear to fully exploit 

this opportunity. 

22 Another explanation for Luminant's and Reliant's success may be that these firms were the 
incumbent utilities prior to deregulation. Arguably, they are familiar with the whole system, espe­
cially the transmission grid, more than any of their competitors. This certainly is a comparative 
advantage for these two firms. We thank Martin Lin for pointing this out. 
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For our analysis, we confined ourselves to those hours during which there are 

no transmission constraints. However, the existence of transmission constraints, or 

expectation of them, can alter the bidding behavior of the firms. In future research, 

we will also incorporate these constraints. Another question we will investigate as an 

extension to our analysis is whether allowing the firms to bid smooth functions rather 

than step functions would alter their bidding strategies significantly. 
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Chapter 2 

Electricity Forward Markets and Competition in 
Supply Functions: The Case of Risk-Averse Agents 

2.1 Introduction 

The interaction between forward/futures contracts and the spot price of the under­

lying commodity has attracted the attention of researchers from several fields such 

as economics, finance, industrial organization and power systems engineering. In 

their seminal work, Allaz and Vila (1993, [2]) show that existence of future trad-

ing in an oligopolistic market, where the oligopolists act non-cooperatively and have 

Cournot conjectures, promotes competition and as the frequency of trading increases, 

we achieve the competitive outcome. l Contrary to this encouraging result, Ferreira 

(2003, [28]) provides a counter-argument to the previous literature on the positive 

effects of trading in forward/futures markets on competition, where he shows that 

the introduction of futures market may have an anti-competitive effect. Mahenc and 

Salanie (2004, [64]) find that under Bertrand competition, equilibrium prices are lower 

if there is no forward contracting. Liski and Montero (2006, [58]) show that if the 

game is played infinitely, it does not matter if the oligopolists compete in price or 

quantity; the possibility of forward trading allows firms to sustain collusive profits 

1 Even though it is not stated by Allaz and Vila (1993, [2]) and other researchers building on 
their model (see, for example, [34] and [15]), it turns out that symmetry of cost functions and 
number of players are critical assumptions for this result to hold. In [86], Su provides a three-player 
counterexample to the Allaz-Vila result and the existence results for the Allaz-Vila model under 
asymmetric cost functions. 
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that would not be possible without the existence of forward markets. Green and Coq 

(2010, [35]) focus on the length of contracts and find out that the pro-competitive 

effect of forward contracting is not guaranteed and by selling "the right amount of 

contracts", firms can sustain prices above marginal cost. 2 Hughes and Kao (1997 [47]) 

reconsider the validity of another assumption in the Allaz-Vila model, namely that 

the contracts are publicly observable. 3 They find that if the contracts are not observ-

able, producers prefer not to participate in the forward market and the Allaz-Vila 

result fails to hold. Ferreira (2006, [29]) also investigates the effects of observability 

on market efficiency but finds that imperfect observability may induce even more 

competitive outcomes that those of Allaz-Vila mode1.4 

Endowed with this theoretical background, many researchers applied these ideas 

to wholesale power markets. Powell (1993, [73]) is the first to model the producers 

and the retailers separately. The risk-neutral producers engage in Cournot competi-

tion and set the quantity in the spot market but the forward price in the contract 

market. The retailers are risk-averse and are endowed with mean-variance utility 

functions. Under the assumption that the generators do not collude, the competitive 

outcome is attained. Green (1999 [34]) analyzes a symmetric duopoly, competing in 

supply functions in the spot market, and finds that competition in the contract mar-

ket leads to lower spot market prices. Chung et al. (2004, [18]) have a very similar 

2In a remotely related model, Aghion and Bolton (1987, [1]) show that an incumbent firm can 
block new entry by signing forward contracts. Newbery (1998, [68]) also investigates the relationship 
between forward contracts and entry, and relates these ideas to the competition in the British 
wholesale power market. He finds that "if entry remains contestable and the contract market is 
reasonably liquid and active ... then the inefficiencies of market power caused by too few generators 
are much reduced." 

3In power markets these data are strictly confidential. 

4In the aforementioned work by Ferreira (2003, [28]), contracts are observable. In this literature, 
researchers almost unanimously agree on the policy recommendation that authorities should make 
contracts observable. On the other hand, see an extensive survey by Madhavan (2000, [63]) where 
he points out that more transparency does not necessarily mean increased efficiency. 
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setup to Green's (1999 [34]) but they extend Green's model to multiple asymmetric 

firms. Their results are also similar to Green's. Wolak (2000, [99]) develops a bidding 

model with forward contracts, and applies his model to the National Electricity Mar-

ket in Australia, for which he has confidential forward contract data. He finds that 

forward contracts are effective in mitigating market power of generators. Kamat and 

Oren (2004, [49]), Yao et al. (2007, [106] and 2008, [107]) use a Cournot model over 

an electricity network and hence can incorporate transmission constraints into their 

model. These papers formulate the model as an equilibrium problem with equilibrium 

constraints. 5 The players are risk-neutral. They find that existence of transmission 

constraints, or even a small probability of congestion will result in substantially re-

duced forward contracting but agree with the result that forward contracting mit i-

gates market power. Bushnell (2007, [15]) also uses a Cournot model but extends it 

to multiple players. Given the assumptions, his corollary 3 states that "the impact of 

one round of forward contracting on the Lerner index is equivalent to an increase in 

firms to a number equal to the square of the number of firms in the market". Wang et 

al. (2008, [97]) compare the effect of financial options contracts under both Cournot 

competition and competition in linear supply functions and find that the mitigation 

effect of contracting is higher under linear supply function competition. Niu et al. 

(2005, [70]) develop players' optimal spot market bids given their forward positions, 

and test their model with data from ERCOT. Their model is useful in the sense that 

it can be used to analyze the effects of different forward contract levels on real-time 

5In these models, each generator solves a mathematical problem with equilibrium constraints 
(MPEC). In their manuscript, Luo et. al (2006, [62]) describe an MPEC as "an optimization 
problem in which the essential constraints are defined by a parametric variational inequality or 
complementarity system." In the studies cited above, the parameter is the competitors' forward 
positions. These models look very promising and in [106] and [107], the authors develop effective 
algorithms for solving relatively large systems. 
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market prices. They agree with the conventional view that forward contracts mitigate 

market power. In a very recent paper, Holmberg (2011, [43]) models an asymmet­

ric duopoly competing in supply functions, and he also incorporates price caps. His 

model also implies that forward contracting has pro-competitive effects. 

Coq and Orzen (2006, [21]) test the Allaz-Vila model in an experimental set­

ting. Their results support the view that forward contracting is an effective means of 

mitigating market power, but suggest that entry is more effective than introducing 

forward markets. Brandts et al. (2008, [14]), in addition to analyzing power markets 

modeled with Cournot players, extend these experiments to a supply function compe­

tition setting with quadratic marginal cost functions. In their setting with no demand 

uncertainty, they find that under both settings efficiency is improved if forward mar­

kets are introduced. They agree with Coq and Orzen's (2006, [21]) results in that 

availability of forward contracts leads to efficiency gains, but find that the addition 

of another producer increases production more than does forward contracting, and 

efficiency gains from forward contracting are not guaranteed. 

A negative result comes from Sanchez et al. (2009, [81]). They develop an agent­

based simulation model of the Spanish power market. The results of their simulations, 

where the agents are risk-neutral, suggest that if forward contracting is voluntary, only 

the small players will want to do so, while the dominant players will exercise market 

power in the spot market rather than trade forward. 

In all of the aforementioned models, which imply that forward contracting in­

creases efficiency, the intuition is that locking in prices by signing forward contracts 

decreases market power and spot prices by shrinking the size of the spot market that 

(dominant) firms can manipulate. But then a natural question arises which is never 

asked in these models (Harvey and Hogan (2000, [38]) are the only ones to explicitly 
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raise this question): Why would the dominant firms voluntarily engage in forward 

contracting, if it decreases their potential profits? In the Allaz-Vila type settings, 

clearly producers do not care about competition; they are trying to achieve the first­

mover advantage by selling forward, but since everyone does the same, a prisoners' 

dilemma type result occurs. Others implicitly answer the question by appealing to 

the "strategic incentive" of the players:6 By increasing its forward sales, a producer 

lowers the forward price, and hence its competitors' forward sales. Left with this 

unsold capacity, the competitors have to bid more aggressively in the spot market. 

Again, since each player will want to behave the same way, they collectively end up 

worse-off. 

Leaving Powell's work (1993) aside, none of these papers models the buyers in the 

contract market. Another common attribute in these models is that the players are 

risk-neutral. In our opinion, the risk-neutrality assumption should be dropped. Power 

generation technologies are extremely capital intensive investments. In a report pre­

pared for members and committees of the US Congress, Kaplan (2008, [50]) estimates 

that power plants cost above $2,100 per kilowatt, with the exception of combined cy­

cle natural gas plants ($1,200 per kilowatt). In particular, a kilowatt capacity of a 

nuclear plant costs well above $3,000. In light of these data, when modeling wholesale 

power markets it is only natural to think that generators are risk-averse agents, who 

want to recover their investment costs without too much exposure to volatile power 

prices. While generators' risk preferences may change over time, that is, as they 

recover their fixed costs, our conversations with professionals from the industry rein­

forces our intuition that even then, generators are risk-averse players. The retailers, 

on the other hand, operate on very narrow margins, hence, arguably, they are even 

6See, for example, [34J, [18J and [43J. 
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ERCOT real time prices, 02/02/2011 

4 8 12 20 28 36 44 52 60 68 76 84 96 
15-minute intervals 

Figure 2.1: ERCOT power prices under extreme weather conditions. Mean 
power price: $783.22, range: $3,004.74, standard deviation: $1188.96. Source: 
www.ercot.com 

more risk-averse than the generators. They try to mitigate the effects of power price 

volatility, and as can ben seen in figure 2.1, this volatility luay be extreme, especially 

under severe weather conditions.7 Besselubinder and Lemmon (2002, [9]) model both 

the generators and retailers as risk-averse agents . While they assume the generators 

choose quantities (rather than a supply function) in the spot market, their model is 

more general in the sense that cost functions range from quadratic to quintic. The 

advantage of this approach is that the authors can account for the fact that when 

demand is very high, inefficient peaking plants start running and we observe a supply 

stack that resembles a "hockey stick" . The results of their analyses imply that the 

7 Currently, offers are capped at $3000/MWh in ERCOT. 
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forward power price is a biased forecast of the expected spot price. They also come 

up with equations describing producers' and retailers' optimal forward positions. 

Another assumption in many of these models (see, for example [34] and [18]) 

that we find disturbing is that "a sufficiently large proportion of the buyers in the 

contract market are risk-neutral with rational expectations, and will therefore drive 

the contract price to equal the expected spot price", that is to say, there is no risk 

premium. In light of the empirical evidence8 , we also drop this assumption. 

A brief description of wholesale power markets 

Before we go into the details of our model, we give a brief description of the nature 

of competition in a wholesale power market. 

Producers generate electricity from many different sources with varying marginal 

costs. The overall marginal cost of a power producer is a non-decreasing function 

of quantity ("merit order"). Since the main determinants of production costs, the 

fuel used and the heat rates,9 are common knowledge, each producer can estimate its 

competitors' cost functions with a great deal of accuracy.lO 

Power producers sell electricity in the wholesale market to large industrial cus-

tomers and retailers. Retailers add a mark-up and sell electricity to their customers. 

Since electricity cannot be stored in a cost effective way to alleviate price spikes, 

market participants trade forward contracts to smooth out their income streams. 

8See, for example, Longstaff and Wang (2004, [61]). 

9Reat rate is an input-output measure of efficiency of a power plant and tells how much heat 
energy is required (measured in Btu's-British thermal units) to produce one kilowatt-hour of energy. 
It implicitly assumes a linear short-run production technology. 

lOThere is no heat rate associated with hydroelectric plants, wind turbines and solar cells but the 
short run marginal costs of these sources are essentially zero - except for hydroelectricity based on 
stored water, where the short run cost is essentially the opportunity cost of the water. In many 
systems, such as ERCOT, however, there is little such capacity. 
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In the next section we develop a stylized model of a wholesale power market, where 

the players as risk-averse agents. While this complicates the algebra quite a bit, we 

believe it is an indispensable feature of the players in power markets. Since electricity 

is not storable at the wholesale level, and supply and demand should balance at all 

times, buy-hold-sell type of strategy is not an option and hence basing our arguments 

on the expectation that forward and spot power prices would converge is not very 

logicalll . In an effort to represent the bidding behavior in today's wholesale power 

markets more realistically, we also model the spot market as one where the players 

compete with supply functions. 

2.2 Model 

We model a wholesale market with set M = {Gl , G2 , ... , Gm } of risk averse generators 

and set N = {Rl' R 2, ... , Rn} of risk averse retailers endowed with the utility function 

(2.1) 

where 'Yk is the risk aversion parameter of k and trk is its profit function: 

(2.2) 

if k is a generator, and 

(2.3) 

11 A party which has a contract to purchase power also has to arrange a buyer ("sink") for that 
power because of suppy-demand and non-storability constraints. As also pointed out in [9], occa­
sionally some power marketers default on their power purchase agreements, not because they cannot 
afford to honor their contracts, but because they cannot arrange a sink. 
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if k is a retailer. 

Generator i's aim is to maximize its expected utility of profits where the term 

(f - P )XCi in its profit function represents the "two-way contracts for differences": a 

generator needs to refund its customers if the spot price P exceeds the contract price 

f and vice versa. Retailers serve their demand (qRJ at a fixed price (PR), hedge their 

positions in the contract market and try to maximize their expected utility of profit. 

The generators are characterized by quadratic cost functions given by Ci(qcJ = 

O.5Ciqbi + aiqci for all i = 1,2, ... , n, which leads to an affine marginal cost function 

for each generator: 

(2.4) 

In order to ensure strict convexity of the cost functions, we assume that Ci > 0 

for all i. 

Generators compete with nondecreasing and affine supply functions 

i=1,2, ... ,n, (2.5) 

Generators also compete in the forward contract market by selling XCi' i = 1, ... , m 

units of contracts to the retailers. Retailers' demand for the forward contracts is 

denoted by XR i , i = 1, ... , n. 

120ur model is more general than it actually looks since we can interpret supply as net of baseload 
generation (hydro, nuclear and large coal plants) and variable and intermittent generation sources 
such as wind and solar. Analysis of generators' marginal cost curves also shows that over a very 
wide range of output (again, net of baseload and peak demand), marginal costs are approximately 
linear. This point is also stressed in [34] and [101]. 
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We assume 1fGi and 1fRi are distributed normally, where randomness is coming 

from the inelastic market demand, denoted by Q. Let Jl denote the expected profit 

of player i EMU Nand a2 denote its variance. Then: 

Lemma 2.2.1. For player i EMU N, maximizing its expected utility of profit boils 

down to maximizing the expression 

1 2 
Jl- -'ya 2 . 

Proof. Expected utility of profit is equal to 

the above expression as 

-e 2 -- -e 2u~ 1f' -'Y(p,-~) [ 1 J -J.... (7ri-CP,-'Yu2»)2d ] 
ay'2; ~ 

But the quantity inside the square brackets is the integral of the pdf of a normal 

random variable with mean Jl - "(a2 and variance a 2 over its full support, hence it is 

equal to 1. It follows that, the objective of i is to maximize Jl- ~"(a2. o 

2.2.1 Equilibrium in the Spot Market 

We start solving our model at the spot market stage, taking the contract positions of 

the players as given. 

Empirical evidence suggests that, as the spot market approaches, the system oper-

ator and the wholesalers can determine the system load with a great deal of accuracy. 
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This implies that generator i's problem at the spot market stage can be written as 13 

(2.6) 

n 
Market demand, Q, which is equal to the total retail demand L qR;, will be satisfied 

i=l 
m m 

by total generation, given by L qGi' This implies that qGi = Q - L qGj' Then we 

can write (2.6) as 14 

max 
p 

with the first-order condition 

i=1 j#i 

By (2.5), we can write (2.8) as 

13Gi can estimate the generation stack and the (inelastic) market demand. Hence, given its own 
bids, it also knows whether it is going to be dispatched or not (qcJ. Here, it is implicitly assumed 
that G i has an idea as to what Gj bid for that day. 

n 
14Where no confusion arises, we drop the limits from the summation sign. So L ai means L ai 

i=l 
and so on. 

15Byequation (2.5), the second-order condition is 

which is non-positive since for all i, Ci and (3i are positive. Hence, the solution to (2.8) is indeed the 
maximizer. 
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which should hold for any value of p, hence we have 

(2.10) 

and 

(2.11) 

which together give 

(2.12) 

and 

(2.13) 

From this point on, we assume that the producers use identical generating technologies 

and treat them as symmetric players. 

Given the symmetry assumption, total physical production is 

m m 1 [ ] ~qCi = ~(ai + (3iP) = 1 + c(m _ 1)(3 Lxci - am(m - 1)(3 + m(m - l)(3p . 

(2.14) 

Equating total physical production to market demand Q = L qRi we get 

(1 + c(m - l)(3)Q + am(m - 1)(3 - X 
P= m(m - 1)(3 

(2.15) 

where X = L XCi = L XRi is the total forward position. It is clear from equations 

(2.13) and (2.15) that forward positions of generators have no effect on the equilibrium 

supply functions but the equilibrium spot price is decreasing in the total forward 
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position. 

We can express generator i's production as 

(2.16) 

= XCi - a(m - 1){3 + (m - 1){3 (1 + c(m - l){3)Q + am(m - 1){3 - X 
1 + c(m - 1){3 1 + c(m - 1){3 m(m - 1){3 

mXci - am(m - 1){3 + (1 + c(m - l){3)Q + am(m - 1){3 - X 
-

m[l + c(m - 1){3] 

To simplify the notation, let z := m(m - 1){3 and t := 1 + c(m - 1){3. Then 

and 

az -X +tQ 
p=-----

z 

mXCi - X +tQ 
Qc· = . , tm 

2.2.2 Equilibrium in the Contract Market 

(2.17) 

(2.18) 

(2.19) 

Following Bessembinder and Lemmon (2002, [9]), we model the contract market as a 

closed system. Given the spot price and quantity calculated above, we can now solve 

for the players' optimal forward positions. 

Generators' Problem 

Generator i's problem at the forward contracting stage is to 

maxE(UCi) = max (E(7rcJ - ~var(7rcJ) 
XGi XGi 2 

with the following first order condition: 
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aE(ucJ _ aE(pqcJ f E() aE(p) a (C E ( 2. ) E( )) ---:::-'-.:...:..:... - + - p - XC·-- - -- - qc· + a qC· 
aXCi aXCi 'aXCi aXCi 2' , 

A [Ovar(pqc.) a 2 c2 a 2 2 a ()] 
- -2 l:\ '+ ~xCivar(p) + -4 -l:\-var(qcJ + a ~var qCi 

uX uX~ uX~ ux~ 

[ a a C 2 a + A ~XCiCOV(pqCi'P) + ~-2cOV(pqCi,qCi) + ~acov(pqCi,qCi) 
uX~ uX~ uX~ 

a XC·C 2 a a ac 2 ] 
- ~-2' cov(p, qci ) - -l:\-axCicov(P, qCi ) - ~-2 cov(qci , qCi) = 0 
uX~ ux~ uX~ 

(2.20) 

Substituting for p and qCi from the first stage, various variance and covariance terms 

f d C d 1 . d f ~ aXG· h fi d rom appen ix .1 an ettmg V stan or L.., r we can express t is rst-or er 
j"fi XGi 

condition as16 

16The second derivative of this expression with respect to the generator's forward position will 
not to be negative over all of its domain, parameterized by its six parameters, (3, c, m, var(Q),). and 
m ax . L: ~. We will run our simulations only on the range where the second derivative is guaranteed 

j"li XG; 

to be negative. See appendix D.l for details. 
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8E( UGi ) = m - 2 - 2V E( Q) + a ( m - 1 - V) 

&~ ~ ~ 

2xGi (1- m) (1 + V) + X_ i (2 - m + 2V) f az - XGi - X- i tE(Q) XGi(1 + V) 
+ + - - -- + -='-!.--...!.. 

mtz z z z 

_ a(m -1- V) _ C(m -1- V E(Q) + XGi m2 - m(2xGi + X- i + XGi V) + (XGi + X_ i )(l + V)) 
~ ~2 m~ 

>. [2(m - 2 - 2V) ( ) 2t(m - 2 - 2V) 2 t2 
--2 22 xGi(m-2)-2X_ i +az var(Q)+ 22 COV(Q ,Q)+2XGi2var(Q) 

m z m z z 

+ ~:t ( m -1 - V) (~(XGi(m -1) - X_i)var(Q) + coV(Q2, Q))] 

\ [J!-. (Q2 Q) ! (XGi (m - 2) - X- i + az) (Q) t(m - 2 - 2V) (Q) + A 2 COY , + var + XGi 2 var 
mz z mz mz 

C (3m - 4 - 4V 2 3 1 
+ 2 m3z cov(Q, Q ) + (m tz)- (4XGi (m - 2)(m - 1) + X_ i (8 - 6m)) 

2az(m -1 - V) + xGi(8 - 6m)V + 8X_ i V (Q)) + 3t var m z 

+ avar(Q) (m _ 2 - 2V) - ~ (_t-COV(Q, Q2) + _2_(XGo (m -1) - x_i)var(Q)) 
m 2z 2 m 2z m 2z • 

- cxGivar(Q) (m -1- V) - ~var(Q) - acvar(Q) (m -1- V)] = O. (2.21) 
m 2z mz m 3t 

Factoring out XCi' X-i and f ::G~, we obtain the following system of equations: 
#:i G. 
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where 

A = 2(1 - m) + ~ _ c(m - 1)2 
mtz z m 2t2 

\ (Q) [(m - 2)2 t2 c2(m - 1)2 2t(m - 2) 2c(m - l)(m - 2) 2c(m - 1)] - ,war + - + - - + ----''----;,,----'-
m 2z2 z2 m4t2 mz2 m 3tz m 2z 

~ aXGj [2 + m(t - 1) c(m - 1) 
+ L..,; -£)- + 2 2 

jt-i uXGi mtz m t 

\ (Q) (2(m - 2) c2(m - 1) 2t 2c(3m - 4) C)] + ",var + ---+ +--
m 2z2 m4t2 mz2 m 3tz m 2z' 

(2.22) 

B 2+m(t-1) c(m-1) \ (Q)[2(m-2) c2(m-1) 2t c(4-3m) c] 
i = + + ",var + - -- + + --

mtz m 2t2 m 2z2 m4t2 mz2 m 3tz m 2z 

L:m 
aXGj [ 2 c ( 4c 4 c2 )] + -- -----+,xvar Q --------

. .../... aXGi mtz m 2t2 ( ) m 3tz m 2z2 2m4t ' 
J,~ 

(2.23) 

and, 

Ci = E(Q) [2 - m +!.. + c(m - 1)] - f + a 
mz z m 2t 

\ (Q2 Q) [t(2 - m) c2(m - 1) ct t2 c(3m - 4)] - ",cov - - -- + -- + --'---,~-'-
, m 2z2 2m4t 2m2z mz2 2m3z 

-t. -~:-~-: [,xcov(Q2, Q) (-m2-2:-2 + -2:-24-t - -~3-cz) + E(Q) (-t~-' 2 - -z~-) ] (2.24) 

Solution to this system will give the optimal forward positions of the generators. 

Retailers' Problem 

We assume that retailers sell power to their customers with fixed price contracts. Let 

this fixed price be 1 + r times the wholesale spot price, where r > O. Given this 
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assumption, the expression for retailer i's profit reduces to 

(2.25) 

and retailer i wants to maximize 

A 
E(URJ = E(7rRJ - 2"var(7rRJ 

= rE(pqRJ - fXRi + XRiE(P) 

- ~ [r2var(pqRJ + x1i var(p) + 2rXRicov(pqRi'P)] (2.26) 

by choosing XRi' The first order condition for this problem iS17 

8E(URJ 8E(pqRJ f E() 8E(p) ----:-'--'-'- = r - + P + X R- --:--"'-.:... 
8xR; 8XRi t 8XRi 

A [ 2 8var(pqR;) () 2 8var(p) 
- - r 8 + 2x Ri var P + x Ri 8 

2 XRi XRi 

8COV(pqR:' p)] + 2rcov(pqRilP) + 2rxRi 8XRi' 

=0. (2.27) 

Substituting for p and various variance-covariance terms from appendix C.I, we can 

write 

(2.28) 

where 

[( )
2 n 8 ] 2 t - rSR rSR' XRj 

Ai = - + Avar(Q) t - _t (t - rSR-) L-
z Z Z2 t j'fi 8XRi 

17Second order condition shows that XRi is indeed the maximizer. See appendix D.2 for details. 
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and SRi is the share of retailer i in the contract market, with SRI + ... + SRn = 1. The 

solution of the following system of equations will give x Ri: 

Both for the generators and the retailers, we have to solve a linear system of equations. 

To that end, we need to invert the "coefficient" matrix shown above. The following 

lemma tells us how to do that: 

Lemma 2.2.2. Let T be an n x n (n > 2) matrix where the ith diagonal element is 

Ai and the off-diagonal elements on row i ar'e B i . Its inverse is another n x n matrix 

with the ith diagonal entry and the ilh off-diagonal entries given r'espectively as 

(2.29) 



-Bi IT (Ak - Bk) 
k;6{i,j} 

ft Ai + t [( _l)k-l(k - 1) L: . IT Ai IT. Bl] , 
t=1 k=2 Sn-k tESn_k l;6t 
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(2.30) 

where Sm denotes the m-element subsets of S = {I, 2, 3, ... , n}, m > O. If m = 0, 

So = 0, in which case ITk;6i,j and ITl;6i become ITk;6i and ITl' respectively. If n = 2, 

the solution is trivial. 

Proof. As shown in appendix E, this follows from lemma E.O.I. o 

The expression 

IT 
(S\{i} )n-k-2 jE(S\{i} )n-k-2 l;6i,j 

means that the product 

IT Aj IT Bl 
jE(S\{i} )n-k-2 l;6i,j 

is going to be summed over all possible (n - k - 2)-element subsets of the set S\ {i}. 

An example will make it clearer: 

Let n = 4 and 

Al BI BI BI 

T= 
B2 A2 B2 B2 

B3 B3 A3 B3 

B4 B4 B4 A4 

When we invert T, the first diagonal element and the off-diagonal element at the first 

row, second column will respectively be 

A2A3A4 - A2B3B4 - A3B 2B4 - A4B2B3 + 2B2B 3B 4 

denominator 
(2.31 ) 



and 

where denominator is 

-B1(A3 - B3)(A4 - B4) 
denominator 

Other diagonal and off-diagonal elements will be similar. 
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(2.32) 

This lemma is useful for expressing the optimal forward positions analytically. 

However, the resulting expressions will be extremely long, and we see no benefit in 

presenting them here. Instead, we will implement this algorithm with the help of a 

computer and solve for the optimal forward positions numerically, as a function of the 

forward price, f. After we solve for the forward positions of both the generators and 

the retailers, we will obtain f by noting that, given our assumption that the system 

is closed, forward contracts will be in zero net supply: 

rn n 

i=l i=l 

There are two main types of models in the literature on forward contracts. The 

first one is the no-arbitrage type of models and we already argued that they are not 

suitable for analyzing power markets. In the second type of models, the forward 

prices are determined endogenously. French (1986, [31]), Fama and French (1987, 

[27]), Hirshleifer (1990, [39]) and Bessembinder and Lemmon (2002,[9])18 are some 

examples of this approach. The main focus in these studies is the relationship between 

18 A more detailed literature review can be found in [61]. 
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forward and spot prices, in particular the so-called "forward premium", f - E(p), or 

the forward premium as a percentage of the spot price. From an investor's point 

of view, the investment decision may be a function of the forward premium. For 

example, in order to value a tolling agreement, a firm would want to know how the 

forward price it will lock in will compare to the spot price for a given level of power 

demand. 

We also focus on this metric and present our results in the next section. 

2.3 Results 

Power demand varies significantly during the day and across seasons. 19 We ran some 

simulations in order to understand how the level and variation in power demand affect 

the direction of the forward bias. By playing with the levels of the several parameters 

of the model, we can make the bias arbitrarily large, but since we are not interested 

in the absolute values of the forward price and expected spot price in order to answer 

this particular question, the statistic we look at is the bias f - E(p) as a percentage 

of expected spot price, E(p). The result can be seen in figure 2.2, which is consistent 

with the intuition in the classical economics and finance literature: To hedge their long 

position in the underlying commodity, producers (i.e., power generators) get short in 

the forward/futures market. It is this hedging pressure that creates the downward 

bias in the contract price (E(p) > f).20 Risk-averse buyers (Le., retailers), who take 

long positions in these contracts are being compensated by a positive expected profit 

for bearing risk. Our model implies that, given the level of expected demand, as 

19In ERCOT, minimum demand observed during 2009 was 21,340 MWs on October 18 and the 
maximum was observed on July 13, at 63,516 MWs. The corresponding figures for 2010 were: 21,728 
MWs on April 25, and 64,805 MWs on August 23rd. 

20See [20], [19], [90], [39], [61J and the references therein for details. 
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the demand uncertainty increases, especially at lower levels of expected demand, this 

hedging pressure becomes even more dominant and retailers on the other side of the 

contract demand higher returns for bearing this risk. 

Bias as a percentage of expected spot price 

Figure 2.2 : There are 50 generators and 100 retailers with Bertrand conjectures , 
a = 1, c = 5, AG = .2, AR = .5, f3 = .2, r = .2. 

To see what the setup in [9] would imply with quadratic costs, we reproduced 

their simulations with quadratic cost functions. 21 The general relationship between 

the variables and the percentage bias is the same, albeit at different levels. 22 

Next, we fix the risk aversion parameter of the retailers at AR = 1, expected 

demand at 100 and vary AG to see how this would affect the direction of bias. We 

21This was necessary, since they only consider quartic cost functions in their simulations. 

22These results seem to depend on how convex the cost function is. Hirshleifer (1990, [39]) shows 
that the equilibrium forward premium need not be negative, and in the Bessembinder-Lemmon 
setup with cubic, quartic and quintic cost functions the premium is strictly positive and increasing 
in demand variance. In their empirical work, Longstaff and Wang (2004, [61]) analyze the forward 
prices in the PJ f market and find that average premia range from -$4.31 to $5.44.) 
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assume that generators are bidding competitively. As can be seen in figure 2.3, given 

the level of demand variance, as the generators become more risk averse, the bias 

increases in absolute value, conforming to our intuition. As the generators become 

less risk averse, maybe as they recover their fixed costs, the bias shrinks, again, 

consistent with our intuition. 

Bias as percentage of E(p) 

- 0.2 

- 1.2 

-2.2 

- 3.2 

- 4.2 

- 5.2 

- 6.2 

1,500 

Figure 2.3 : Generators ' risk preferences may change over time. 

To assess the effect of supply function slope on the prices and the percentage 

bias, we calibrated our model with demand data from ERCOT. Generators expect 

demand to be 50,000 megawatts during a given hour, with a standard deviation of 

2,000 megawatts . With 30 generators and 100 retailers, when the supply functions 

are very steep, we observe price spikes (and correspondingly high percentage bias in 

absolute value). As the generators start bidding more competitively, the spot price 

of power decreases dramatically and converges to the forward price (figures 2.4a and 

2.4b) . Here, f3 = 50 means they are bidding their marginal costs. 
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We observe the same trend by increasing the number of generators to 100 from 30, 

keeping the number of retailers constant . The spot price converges to $10.1/MWh 

and the bias in forward price converges to less than one-half percent (figures 2.5a and 

2.5b). 

In order to see how increasing the number of market participants would affect the 

forward premium, we ran another set of simulations with these same parameters, by 

changing the number of generators and retailers. The bias is monotonically decreasing 

in the number of players. With 10 generators and 10 retailers, the bias is -33.9%. If 

we increase the number of generators to 100, the bias decreases to -0.5%. With 10 

generators and 100 retailers, it is -3.2% and when we have 100 generators and 100 

retailers, the bias as a percentage of expected spot price shrinks to -0.28%.23 

23Even though it is virtually impossible to have 100 power generation companies in any market, 
bidding is done through qualified scheduling entities (QSEs) and for instance, in ERCOT there are 
about 160 registered QSE's operating as of March 2011 (see ercot.com/mktparticipants for details). 
While there is no way for us to know which QSE represents which company, except for generating 
companies running their own QSEs, a power generation company may use different QSEs for different 
generation assets it owns. 
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As a proxy to observability of contracts, we also check the effect of changes in 

generators' and retailers' conjectural variations on the amount of power sold forward. 

In the literature with risk-neutral agents, if the producers believe that their own 

contract decisions will not affect those of their competitors' (Cournot conjectures, 

~ ~XCj = 0) generators choose not to sell any contracts. If, on the other hand, 
j=l=i XCi 

they believe that competitors' contracting decisions would completely offset a change 

in their own contract sales (Bertrand conjectures, ~ ~XCj = -1) , they cover all of 
j=l=i XCi 

their expected output in the contract market and the competitive outcome will be 

~fuc . f achieved. Of course, 6 ~ can take any value between -1 and 0, i we want to assess 
j=l=i XCi 

the effects of "imperfect observability" . 

We take m = n = 30 and fix demand at 1000 with a standard deviation of 100. 

Generators bid in their marginal costs. With Cournot conjectures, generators' total 

contract sales is 890, which increases only to 891 under Bertrand conjectures. Hence, 

our model is indecisive as to whether a change in conjectural variations would result 
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in more contract sales. 

2.4 Conclusions and Future Research 

We presented a 2-stage model of a wholesale power market where the generators com­

pete with affine supply functions in the spot market and hedge their long positions 

by selling contracts in the forward market. We model the generators as risk-averse 

agents. Since electricity is not storable, we cannot assume the existence of a large 

number of risk-neutral power marketers to eliminate arbitrage opportunities. There­

fore, we explicitly model the retailers, who take the opposite side of the forward 

contracts. Given the fact that the retailers are operating on very thin margins, we 

also model them as risk-averse agents. 

We find that, as demand uncertainty increases, bias as a percentage of expected 

spot price becomes more negative. Another implication of our model is that as 

the number of market participants increases, and the generators bid closer to their 

marginal cost functions, the expected spot price of electricity and the forward price 

converge to each other. 

We also analyze the effect of a change in generators' risk preferences over time. 

For a given level of expected demand, we consider how a change in the generators' 

risk parameter, together with a change in demand volatility, affect the forward bias. 

We find that, given the level of demand volatility, the bias increases in absolute value 

as the generators become more risk averse. 

Risk-aversion is an essential characteristic of market participants in wholesale 

power markets. Even though it complicates the analysis quite a lot, we believe mod­

eling the players as risk-averse agents is worth the effort. Again, in an effort to mimic 

the spot market operations in wholesale power markets, we modeled the spot market 
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as one where the generators' choice variables are affine supply functions. However, 

due to the technical limitations of the affine supply function equilibrium approach, 

we were not able to capture one of the most important characteristics of wholesale 

power markets, namely that the supply stack is approximately convex, and at high 

quantities it is very steep. Approximating t he supply functions and the marginal 

costs with step functions would be worthwhile, but incorporating this into a model 

with risk-averse agents is an open question. 

Another distinguishing characteristic of power prices is that they are usually highly 

skewed and may have high kurtosis. 24 Our model gives the skewness of the spot price 

Distribution of spot prices, March 10,2009 
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(a) J.L = 24.2, (J = 19.7, skewness=-8.1, 
kurtosis=714.15 
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Distribution of spot prices, September 20, 2009 
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(b) J.L = 34.3, (J = 122.2, skewness=9.3, 
kurtosis=89.3 

Figure 2.6 : Spot power prices are highly skewed. Source: www.ercot.com 

24Skewness is the third, kurtosis is the fourth moment of a random variable around its mean. While 
skewness is mainly positive, we also frequently observe negative skewness in spot power prices. See 
figures 2.6a and 2.6b. Kurtosis measures the peakedness of a distribution and a higher kurtosis 
means more of the variance observed is the result of rare but extreme deviations, as opposed to 
frequent but modest deviations. 
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as (t/Z)3 . skew(Q), which is zero since we take demand to be normally distributed. 

However, there is strong empirical evidence which suggests otherwise, for both the 

spot and the forward markets (see, for example, Longstaff and Wang (2004, [61])). 

Bessembinder and Lemmon (2002, [9]) incorporate skewness into their model and 

express the premium as a linear combination of skewness and variance of spot power 

price (see their equation (13)). In their model, forward premia are positively related 

to skewness but negatively related to price volatility (which is a function of demand 

variance). Naturally, as the distribution of power prices becomes more skewed, these 

premia, which are always negative in our model, may become positive. Incorporating 

price skewness into a supply function competition model is thus another important 

improvement upon ours. 



Chapter 3 

An Analysis of Increased Power Demand Price 
Responsiveness on Locational Marginal Prices 

3.1 Introduction 

62 

The electric utility sector originated in 1882, when Edison's Pearl Street Power Station 

began operating in Manhattan, New York City, and the first transmission line, a 2.4 

Kv, 37-mile DC line was installed in Germany ([17]). Since then, generator and 

transmission line capacities have increased dramatically, but for more than a century 

we have not seen any major breakthroughs on the consumption side: The main 

concern in the industry had been to secure reliable and uninterrupted power supply. 

The industry did not focus on the potential efficiency gains from allowing demand 

side to enter the system more actively. As a result, the medium to long term demand 

for power, in virtually every wholesale power market had (and still has) very low price 

responsiveness. 

In the past decade or so, some promising improvements in power grid manage-

ment technology began to surface, the results of which we collectively refer to as the 

"smart grid". A smart grid can be summarized as a power system, which is capable 

of integrating the actions of all of its components (generation, transmission and dis-

tribution, consumption) by enabling two-way digital communication between these 

components. As a result of this two-way communication, a smart grid will be able to 

meet more demand without the need to add new generating capacity by increasing 
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efficiency of resource use. 1 Furthermore, the demand will be met by higher quality 

power; with fewer spikes in system voltage, more stable frequency and fewer black­

outs. Greater price responsiveness of demand would also facilitate the integration of 

intermittent energy sources such as wind and solar. 

For the purposes of this study, the most important feature of a smart grid is 

that it will enable the demand side become an active participant in a power market. 

This is going to be done by replacing our appliances, or retrofitting the existing ones 

with a smart control unit, communicating with the power grid. These devices will 

monitor the system frequency2 in real time and will shift the time of electricity usage 

of appliances for which time is not critical. Clearly, this flexibility will increase the 

price responsiveness of demand. 

Our aim in this paper is to assess the effects on the level and volatility of power 

prices of increased responsiveness of demand. We do so by simulating a hypothetical 

power market populated by autonomous agents. We will also argue that the widely-

used market concentration index, the Herfindahl-Hirschman Index, is not a suitable 

metric for power markets. 

3.2 Methodology 

In our analysis, we will depart from an equilibrium approach and specifically look 

at how the agents in our hypothetical power system behave out of equilibrium. This 

1 Hirst (2008, [40]), the chief technologist at a British energy solutions company, estimates that 
if all refrigerators in U.K. had or were retrofitted with his company's "smart control unit", UK 
could shut down an 800-MW power plant. The same study also estimates the level of response 
available from retrofitting one million refrigerators with the same device as 20 MWs. This means 
the elimination of 20 MWs of spinning reserve every hour from the grid. 

2System frequency indicates whether the supply and demand are in balance in a power grid. The 
target frequency in the US electricity grid is 60Hz. Any deviation from this value means there is 
excess supply or demand. 
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methodology is called "agent-based computational economics" (ACE). Tesfatsion and 

Judd (2006, [93]) define ACE as " the computational study of economic processes 

modeled as dynamic systems of interacting agents who do not necessarily possess 

perfect rationality and information." 3 . 

Agent-based modeling is a relatively new methodology. More abundant and 

cheaper computing power has allowed researchers to tackle problems which would 

be very hard, if not impossible, to solve analytically. One of the fields to benefit most 

from this modeling approach is power system economics. One of the first papers is 

Visudhiphan and Ilie (1999, [95]) where the authors model a wholesale power market 

as a dynamic system in which generators can learn from their previous actions. They 

find that the daily repetition aspect of real electricity markets plays an important role 

in market dynamics such as exercising market power. Later, Bower and Bunn (2000, 

[13]) find that pool-based daily auctions (e.g., P JM) can result in lower power prices 

than continuous bilateral trading (e.g., ERCOT, prior to December 2010). Nicolaisen 

et al. (2001, [69]) use a modified version of the learning algorithm developed by Erev 

and Roth (1995, 1998; [25, 26]) to analyze the efficiency consequences of firm concen­

tration and capacity choices. 4 In a recent paper, Li and Tesfatsion (2010, [55]) assess 

the effects of strategic bidding on system operator's net surplus collection5 and find 

that as the generators act more strategically, which results in less efficient dispatch, 

the ISO's net surplus increases. 

For our analyses, we will use the AMES Wholesale Market Testbed, which is 

3For a more detailed overview, see Tesfatsion (2006, [92]). For several other definitions and a 
comparison to the classical equilibrium approach, see Arthur (2006, [4]). 

4For a more extensive survey of the applications of ACE to wholesale power markets, see Weidlich 
and Veit (2008, [98]). 

58ystem operators, or I80s, are supposed to be revenue-neutral entities. In today's power mar­
kets, any positive surplus they collect is -mostly- distributed to financial transmission rights holders. 
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developed by University of Iowa researchers for experimental analysis of wholesale 

power markets.6 AMES encompasses some of the core features of the Federal Energy 

Regulatory Commission's recommendations for a standard power market design. It 

models a one-settlement power market (that is, it only has the day-ahead market 

and the spot market is not modeled) complete with a realistic transmission system, 

and incorporates the actions of an independent system operator (ISO), load-serving 

entities, (LSEs) 7 and generation companies. The program allows for a user-specified 

stopping rule, such as a maximum number of days. The ISO oversees the grid and 

is responsible for operating the market as efficiently as possible. The LSEs try to 

secure power for their retail customers. They enter the market by bidding in their 

demand, which can be price elastic. The generators try to maximize their daily 

profits by bidding in linear supply functions. During each day, generator i chooses a 

supply function subject to its capacity constraints and reports it to the ISO for use 

in all 24 hours of the following day. After receiving demand and supply bids from the 

market participants, the ISO solves hourly DC optimal power flow problems where the 

objective is to minimize dispatch costs subject to supply, demand and transmission 

constraints. As part of the solution process, the ISO also obtains the "locational 

marginal prices" (LMPs) for each node in the system.8 After this problem is solved 

for each day, the ISO settles the day-ahead market and posts the market-clearing 

prices and power supply commitments for the next day. Given this feedback, each 

6See Sun and Tesfatsion (2007, [87, 88]) for details. AMES is a free and open-source platform de­
veloped in Java, and can be downloaded at www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm. 

7We use the terms LSE and retailer interchangeably. 

8Very briefly, LMP at a node can be defined &"i the "least cost of serving 1 MWh of incremental 
demand at that node". More technically, it is the Lagrange multiplier at the LP problem &"isociated 
with that specific constraint. For determining the LMPs for the ubiquitous 3-node network, see 
Lin (2005, [56]). This only requires Ohm's law and Kirchoff's current and voltage laws. Solution 
to systems with four or more nodes is more complicated, but Liu et a1. (2009, [60, 59]) are very 
accessible resources. 
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generator calculates its profits and using a stochastic reinforcement learning algorithm 

(details to follow in the next section), chooses another supply function to bid in for 

the next day. It is assumed that there are no system disturbances such as generator 

failures, line outages and weather shocks. Hence there is no need for ancillary services 

and they are not modeled. 

In the next section, we provide the details of the model incorporated into AMES, 

the learning algorithm and the specifics of the hypothetical market we will be working 

on. 

3.3 Model and Experimental Design 

We have a set of three retailers {Ll' L2 , L3 } and five capacity-constrained generators 

{Gll ... , G5 } interacting on the following network: 9 

Bus 5 Bus 4 
~------------------------------~--+LSE3 

G4 

Bus 1 ...,........, ... Bus 2 

Generators' cost functions are given by 

9This network topology is based on the training documents used in the P JM market and ISO 
New England, hence it is safe to assume that it is a very good representation of a real market. One 
can also interpret each bus as a "zone", consisting of thousands of buses. See Lally (2002, [53]) for 
details. 



67 

where the parameters Fi, ai, bi and the upper capacity limitslO are as given in table 

3.1. Each generator is endowed with an action domain, denoted as ADGi' which 

Table 3.1 : Generators' True Marginal Cost Functions and Capacities 

Fi a b qmax 
G· 

G1 50 30 0.02 110 
G2 20 35 0.03 100 
G3 2000 15 0.008 520 
G4 200 25 0.009 200 
G5 1500 10 0.002 600 

consists of a finite number of supply functions SGi' and includes Gi's true marginal 

cost function ai + 2bi qGi (figure 3.1). The cardinalities of the sets ADGi are the same 

for all generators. 

3.3.1 Generator Learning 

In AMES, only the generators can learn from their past actions. The learning algo-

rithm is based on the stochastic reinforcement learning algorithm developed by Ido 

Erev and Alvin Roth (1995, 1998; [25, 26]). According to this algorithm, a generator 

calculates his profit everyday after the day ahead market is settled. If the outcome is 

relatively good he increases the probability of choosing that particular supply func­

tion again for the next day, if the outcome is relatively bad, decreases the probability 

of choosing the same supply function. Let m = 1, ... , Mi index the set ADi and Pim(l) 

denote the initial propensity of generator i to choose action m. Before day 1, each 

generator assigns equal probabilities to every action m E ADi . Let Pim(d) stand for 

lOIt is assumed that there are no binding "lower sustainable limits" hence qrin = 0 for all i. 
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Figure 3.1 : Generators' true marginal cost functions. 
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the current propensity of generator i to choose m E ADi on day d, for use in day 

d + 1. Then, the choice probabilities generator i uses to choose a supply function for 

day d are constructed by 
ePim(d) /Ti 

1fim(d) = -",-M7"":. ""-i . -e-Pi-j(-d)-/T-i ' 
DJ=l 

(3.1) 

where ~ is the temperature parameter, which determines how much weight the gen-

erator gives to propensity values in determining the choice probabilities. Note that 

as Ti -+ 00, 1fim(d) -+ 1/ M i , which means that the propensity values play no role in 

determining the probabilities. On the other extreme, as Ti -+ 0, Pim become peaked 

around actions which have the highest propensity values. 

At the end of each day, generator i updates the current propensities it assigns 

to action m to be used to calculate the action choice probabilities for day d + 1 as 

follows: Let m' be the action selected on day d and ~ml (d) be the profit guaranteed 
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for day d + 1 after the settlement. Then, for each m E ADi 

(3.2) 

where 

if m = m' 
(3.3) 

if m =I m', 

Here ri E [0,1] is the recency parameter, which limits the growth of p over time; as ri 

grows, past experience is slowly "forgotten". ei E [0, 1) is the experimentation param­

eter, which facilitates experimentation with different actions while the generators are 

learning during the early stages. This parameter guarantees that the supply functions 

which resulted in good payoffs will not be the only ones chosen by a generator; he 

will bid in similar supply functions more often. Li and Tesfatsion (2010, [54]) carried 

out detailed analyses of the effects these parameters' values on generator earnings. 

They found the sweet-spot values of these learning parameters to be r = 0.04 and 

e = 0.96. We also use the same parameter values in our simulations. Choice of the 

initial propensity parameter and Ti are also critical: For the default values given in 

AMES, no learning occurs. In our simulations we set them such that Pim (1) /Ti = 100. 

3.3.2 LSE bids 

LSE bids are the combination of an hourly fixed quantity qfi as given in figure 3.2, 

and a price-sensitive (inverse) demand function given by 

(3.4) 
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Figure 3.2 : Hourly fixed demand of the retailers. 
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for a given hour h and day dll , where qr
i 

E [0, q~AX]. Here, q~AX denotes the 

maximum potential price-sensitive demand and it is bounded from above by the 

benchmark-case value of qf.. These bids apply throughout the entire period of the 
t 

simulation. 

Following [55], we define the ratio Ri for retailer Li to assess the effects of changes 

in demand sensitivity in LSE bids. For a given hour and day, Ri is defined as 

(3.5) 

where the numerator is as defined above, and the denominator is maximum total 

potential demand for L i . For our analyses, we start with q~ AX = 0 and, keeping the 

denominator constant, we increase the numerator in steps, the first one being 10% of 

11 We drop hand d where no confusion arises. 
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qfi • We then keep increasing q~AX until we hit its upper limit, making it equal to 

110% of the previous value at each step. At the end, we obtain a common set of R 

values for each retailer, ranging from 0 to 1. Clearly, as R increases, the retailers will 

be able to shed some of their demand in response to high prices. We set the stopping 

rule to 100 days. 

The results of our simulations are in the next section. 

3.4 Results 

In our first set of simulations, we set the transmission line limits high enough to 

eliminate the possibility of transmission congestion. 12 Then, we ran the same set of 

simulations with the line capacities as given in table 3.213 , which resulted in significant 

transmission constraints. 

Table 3.2 : 'fransmission Line Limits 

Line From node To node Limit (MWs) Reactance (n) 
1 1 2 250 0.0281 
2 1 4 150 0.0304 
3 1 5 400 0.0064 
4 2 3 350 0.0108 
5 3 4 240 0.0297 
6 4 5 240 0.0297 

We first give the benchmark values of LMPs in figures B.1a and 3.3b, where the 

12If there is no transmission congestion, LMPs at every node are going to be the same. With 
congestion, prices will differ, with the possibility of a unique price for each node. The outcomes 
may be quite counterintuitive: See Oren et. al (1995, [71]) and Wu et. al (1996, [102]) for some 
interesting examples. 

13See Lally (2002, [53]), page 8. In table 3.2, reactance is the opposition to charge in an AC circuit. 
It is the complex part in the equation of the impedance. 
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generators do not bid strategically and the retailers only bid fixed quantities (R = 0). 
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Figure 3.3 : Benchluark LMPs. 

Next, we look at LMPs under both the transmission-constrained and uncon-

strained cases. We chose hour 18:00 since it corresponds to the tilue of the day 

when demand is highest. As expected, LMPs decrease as the retailers' ability to 

withhold demand, measured by R, increases (figures 3.4a and 3.4b ).14 

Figures 3.4a and 3.4b also suggest that the level of LMP is not a monotone function 

of the length of interaction in this market. Fixing R, we do not see a pattern of 

convergence in power prices as the length of interaction increases (figure 3.5). The 

variation in prices in figure 3.5 is a result of the learning algorithm: The generators 

continuously update their supply functions in an effort to increase their profits, which 

14For figure 3.4b, we consider bus 2, since there is no generation located there and it hosts the 
largest retailer. 
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causes the spikes when R is low. As R increases, however, we see fewer spikes, but 

no convergence in prices. Figures 3.6a and 3.6b show that the prices are volatile, but 

volatility is decreasing significantly as R increases. 

The United States Department of Justice, as well as many regulatory agencies 

in other countries, use the Herfindahl-Hirschman Index (HHI)15 to measure market 

concentration, including concentration in power markets. Using the IEEE 30-bus 

network16 with 9 generators and 21 retailers, we ran another set of simulations to 

show that the HHI is not an appropriate measure in power markets. 

We first consider the retail side of the market and interpret the fixed demand of 

15Given n firms with percentage market shares Si , i = 1, ... , n, the HHI is L i sr, According to 
section §5.3 of the Horizontal Merger Guidelines of the Department of Justice, a market where the 
HHI is below 1,500 is considered unconcentrated and a market with HHI above 2500 is highly concen­
trated. For unconcentrated markets, "[m]ergers ... are unlikely to have adverse competitive effects 
and ordinarily require no further analysis. " For HHI falling in between, the market is considered 
moderately concentrated. See [94] for details . 

16Details of the network topology can be found at Shahidehpour et. al (2002, [83]) on page 478. 
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Figure 3.5: LlVIPs as function of R across days at bus 2 under transmission congestion. 

the retailers as their capacities. 

Under the benchmark case (Case 1) , where the generators bid their true marginal 

cost functions and the demand is fixed , the total daily surplus of the retailers is $20. 

We then took line 1-2 offline (Case 2). As a result of the increase in LMPs due 

to this constraint, the total retailer surplus jumped to 155. Retailers 2 and 3 are the 

ones who benefited the most from this line outage. 

Given the data in table 3.3, the HHI is 1073.5, which is considered an unconcen-

trated market and a merger between retailers 2 and 3 would increase the HHI only by 

40.3 points, to 1113.8, which is still considered unproblematic. Retailer 3 has about 

one-fourth of the market. Retailer 2 is tiny, but it may have talented traders who 
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know how to game the market and use retailer 3's (demand) capacity as a leverageJ7 

As a result, the acquisition of retailer 2 by retailer 3 may be a harmful combination. 

Under case 2, this merged firm gets almost all of the surplus, even though it has only 

1/4th of the market . 

The problem clearly lies in the fact that the HHI statistic does not take into 

account the locations of the players, which is a very critical variable in power markets. 

When we look at the generation side of the market, we see that even a small generator 

can exercise market power as a result of transrnission congestion. 

In the 30-bus test case, the HHI in the generation market (figure 3.4) is 1,408 and 

the HHI index again does not raise a red flag. However, under congestion, generators 

17Thaders can schedule trades to artificially create congestion. Before clearing the day-ahead 
market, the ISO foresees the problems these trades may create, and pays the traders to back up or 
modify their trades to relieve the congestion. 
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Table 3.3 : Retail Market 

I Retailer I Capacity I Case 1 surplus I Case 2 surplus I % change I 
1 430.99 0.00 0.00 -
2 47.65 9.28 121.15 1205% 
3 1342.56 1.97 28.87 1366 % 
4 679.22 0.00 0.00 -
5 452.8 0.00 0.00 -
6 595.8 0.14 0.00 -100% 
7 115.2 0.41 0.07 -84% 
8 222.44 0.96 1.54 61% 
9 123.14 0.86 0.84 -2% 
10 162.86 0.78 0.60 -23% 
11 69.55 0.70 0.41 -41% 
12 178.74 0.49 0.14 -72% 
13 63.54 0.74 0.36 -51% 
14 188.71 0.62 0.22 -64% 
15 43.68 0.57 0.17 -69% 
16 347.59 0.42 0.07 -83% 
17 63.54 0.63 0.32 -49% 
18 172.81 0.45 0.11 -77% 
19 69.55 0.33 0.03 -92% 
20 47.65 0.26 0.01 -97% 
21 210.52 0.26 0.01 -97% 

Total 5628.54 19.87 154.92 679% 

8 and 9 can exercise market power and significantly increase their profits. 

3.5 Conclusions and Future Research 

We analyzed the effects of increased power demand price sensitivity on the level and 

volatility of power prices using agent-based modeling. We found that, as the price 

responsiveness of power demand increases, prices and their volatility decrease. 

Even though we had to depart from equilibrium analysis, and hence the benefit 

of drawing general conclusions, this approach has many advantages. First of all, 

we can explicitly and easily incorporate a power grid, with arbitrary level of detail, 

into the model. Settlement rules specific to each market can also be incorporated 
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Table 3.4 : Generation Market 

I Generator I Capacity I Case 1 profit I Case 2 profit I % change I 
1 100 948,984 240,912 -74.6% 
2 80 1,236,598 3,247,949 162.7% 
3 50 1,722,341 2,599,050 50.9% 
4 50 1,591,339 2,192,603 37.8% 
5 20 109,009 220,522 102.3% 
6 70 723,366 889,683 23% 
7 60 1,008,295 1,242,993 23.3% 
8 20 58,604 140,929 140.5% 
9 20 16,269 54,889 237.4% 

Total 470 7,414,803 10,829,529 46 % 

without too much difficulty. We do not have to dispense with these just because of 

the computational burden and complexities they bring, thanks to cheap computing 

power. Second, we do not have to assume that the players are perfectly rational 

which, most likely, is not the case. I8 We believe that the observed behavior of the 

agents is a more realistic representation of the environment we are trying to model. 

We did our analysis using the AMES testbed. While AMES is a flexible platform 

where the user can work with virtually any network topology, it has some limita-

tions. First, only the generators can learn from their actions; the most the retailers 

can do is to bid in more price-sensitive functions. Considering the greater flexibility 

of consumption that will result from the widespread implementation of smart grids, 

extending the platform to one where the demand side can also learn would be worth-

while. Second, there is no justification for choosing the specific learning algorithm 

used. In the Roth-Erev learning algorithm, agents only update their own action choice 

probabilities. In the first paper of this dissertation, we conjectured that generators 

18Erev and Roth (1998, [26]) discuss the implications of their learning algorithm "for developing 
a low-rationality, cognitive game theory" . 
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can exercise market power by analyzing past market data and bid accordingly. Em­

pirical evidence from the ERCOT market -partially- agreed with our conjecture. The 

model could be altered to incorporate this learning algorithm. 

We also provided the results of 30-bus runs to show that the HHI is not a suitable 

metric to measure market power in power markets. The problem with the HHI is that 

it does not take the agents' locations into account. Any index to be used in power 

markets should take location into account, and it will probably require analyzing the 

participants on a node-by-node basis. We are currently working on this problem. 

AMES implements locational marginal pricing as the congestion management 

mechanism. In their recent paper, Li and Tesfatsion (2010, [55]) analyze the dis­

tribution of surplus in a hypothetical power market using AMES. They find that 

the ISO surplus increases as generators behave less competitively. This result has 

the potential to create some incentive problems. As revenue-neutral entities, ISOs 

distribute their surplus, and the current trend is to allocate it to the transmission 

rights holders. The key conclusion of their paper is that this surplus "should be used 

pro-actively to mitigate the conditions encouraging generator capacity withholding" . 

This surplus accrued to the ISO is a direct result of using LMP as the congestion 

management mechanism. While it makes perfect sense to implement LMP in AMES 

since LMP is the most widespread used mechanism today, even backed by the Federal 

Energy Regulatory Commission, there are serious criticisms for its use as a congestion 

management mechanism, see for example Rosenberg (2000 and 2004; [76, 77]). The 

most important one for our purposes is that the revenues collected (ISO's surplus) 

far exceed the actual redispatch costs to relieve transmission congestion. Rosenberg 

(2004, [77]) proposes what he calls the "Compensation/Charge Method", where the 

disparity between redispatch costs and congestion revenues disappears. Solution con-
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cepts from cooperative microeconomics, such as the nucleolus and Shapley value can 

also be applied. 19 This is another problem we are currently working on. 

19See for example Tan and Lie (2002, [89]), Yang et al. (2003, [105]), Du et al. (2006, [85]), Zolezzi 
and Rudnick (2007, [108]), Xiao and Li (2009, [104]), Azevedo et al. (2009, [5]). 
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Chapter 4 

Epilogue 

In this dissertation, we presented three essays on power system economics. 

The first essay proposed a new method for modeling competition in wholesale 

power markets, namely, by approximating the supply functions of the competitors 

with cubic splines. We argued that this method is preferable to approximation by 

linear or piecewise-affine functions, which have been the main approaches to date. We 

applied our method to the firms competing in the Texas market and found that the 

firms with relatively big stakes in the market generally bid close to what economic 

theory would predict. We also showed that, more often than not, we will observe that 

the marginal revenue functions of the firms will have increasing segments which may 

lead to multiple profit-maximizing optima for a firm. 

In the second essay, we focused on the relationship between the forward and spot 

prices of power. We departed from the general approach in the economics literature 

and modeled the players as risk-averse agents. We analyzed the effects of several 

variables such as the degree of risk aversion and power demand variability on the 

forward bias, defined as the difference between the forward and spot prices of power. 

The results of our simulations imply that as power demand becomes more variable, 

for a given level of expected demand, the bias increases in absolute value. This is 

consistent with the classical literature in finance. We obtained similar results as the 

agents became more risk-averse. We also showed that the two prices converge to 

each other as the generators bid closer to their marginal costs. In addition to this 
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convergence result, the bias converges to zero, as we increase the number of players. 

The third essay analyzed, in an agent-based setting, the effects of increased power 

demand price sensitivity on the level and volatility of locational marginal prices. 

As intuition would suggest, we found that, as power demand becomes more price­

responsive, both the level and the volatility of the prices decrease. We also argued that 

the widely-used index for measuring market concentration, the celebrated Herfindahl­

Hirscman Index, is not a suitable metric for power markets. 

We made many simplifying assumptions to do our analyses. In the first essay, we 

disregarded some physical constraints power generators face in real life; such as their 

high and low operating limits and ramp rate constraints. We also did not analyze 

bidding behavior when the transmission grid was congested. The effects of these 

assumptions remain to be investigated. Also, it is an open question as to whether the 

bidding behavior of the firms would change if they were allowed to bid continuous 

functions. 

In the second essay, we assumed a linear functional form for the marginal cost 

functions for the sake of mathematical tractability. We also assumed that power 

demand was distributed normally. As a result of these assumptions, our model could 

not explain the fact that the forward bias can also be positive. How to relax these 

assumptions in a supply function equilibrium setting, however, is an open question. 

As we argued in the third essay, an important open question is whether we can 

come up with a more suitable metric than the Herfindahl-Hirschman Index for mea­

suring concentration in power markets. Any metric to replace the HHI should take 

into account the locations of the players. Tools from spatial statistics can be applied 

to investigate this issue further. 
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Appendix A 

Construction of Marginal Cost Functions 

Data on plants' capacity, fuel source and fuel efficiency 1 are publicly available at 

Energy Information Administration and Environmental Protection Agency websites2. 

We obtain the price data from EIA's website. 

Each firm in our sample owns several plants. Marginal cost functions will be 

constructed by multiplying a firm's generation fleet's individual plant's heat rate 

with the relevant fuel price, and stacking them from the lowest to the highest cost 

generator after adding the relevant operating and management expenses to fuel cost3 . 

ERCOT publishes data on which generators are available and online during a given 

hour, and only those generators are used in the marginal cost calculations. 

We use EIA form 923 for natural gas and coal prices. For natural gas plants 

we assume 5 cents commodity charge per MMBtu and 1.5% pipeline fuel charge per 

MMBtu4 • Coal plants need sulfur dioxide permits. S02 permit rates for each power 

plant in operation are given in the EPA's NEEDS database. We assume that the cost 

of a permit is $50/ton. 

1 Fuel efficiency is measured in (average) heat rate. Heat rate is defined as the number of British 
Thermal Units of heat required to produce a kilowatt-hour of energy. 

2We thank Jennifer Rosthal for sharing her compiled dataset. 

3More details are given in the following 
www.owlnet.rice.eduj ""inalj energy jManualFor Energy EconStudent. pdf 

4Private conversation with two natural gas traders. [45], [46] and 
$O.lOjMMBtu. 

companion manual: 

[84] assume a charge of 
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Appendix B 

Reason for Choosing the Fritsch-Carlson Method 
and a Note on the Code 

B.l Why We Chose Fritsch-Carlson Method 

Fritsch and Carlson (1980) argue that their method stands out "by its efficiency, in 

terms of the time required to determine the interpolant, storage required to represent 

it, and/or time required to evaluate it". While today's computers are much faster 

compared to the ones the authors had, we have more data points and efficiency of 

an algorithm is still desirable. Furthermore, Kvasov (2000, [52]) shows that the error 

of approximation with this method remains small (see his theorem 4.2). Moreover, 

the Fritsch-Carlson method is local, that is, a change in the data will only affect 

the relevant interval, and not the whole polynomial. This attribute of the Fritsch-

Carlson method is especially useful, since we further smooth the residual demand 

function after fitting a spline to it. 

Other methods, most notably the ones by Pruess (1979, [74]) and McAllister and 

Roulier (1981, [65]), could also be used. The first one uses (up to two) additional knots 

per interval of data and it requires, "a nonlinear iteration to determine the locations 

of the additional breakpoints" (see [33]). The latter, in addition to being monotonic, 

also preserves convexity of the data. It uses at most one additional breakpoint. 

Nevertheless, inserting additional data means increased storage requirements and 

more time for evaluation. Also, as described by the authors on page 340, their method 
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suffers from some pathological phenomena, in particular that "small changes in the 

slopes used for the determination of the various cases may cause radical variations in 

the resulting spline" . 

B.2 A Note on the Code for Simulations 

As touched upon above, inverting the residual demand explicitly to get a function 

of quantity is the hardest and most time consuming part in our code. Instead of 

inverting the function explicitly, we could sample n (p, q) pairs from RD : P -+ Q, 

store them in an n x 2 matrix, transpose it and fit another spline to the resulting 2 x n 

matrix of (q,p) values. While "taking the inverse" using this method is much easier, it 

only exacerbates the increasing marginal revenue problem mentioned in section 1.4.3. 

To illustrate this alternative approach, on the next page, 3 graphs are plotted, 

where, respectively, 5, 10 and 20 equally spaced sample points from each of [Pi, Pi+1], 

i = 1..4 are taken. One can see that as the number of sampled points increases, the 

marginal revenue curve behaves nicer. On the following page, we superimpose the 

residual demand curves (left column) and the marginal revenue curves. Even though 

the residual demand curves produced by both methods almost perfectly match, even 

when 5 points are sampled, we cannot say the same for the marginal revenue curves 

(on the right). Despite the fact that the marginal revenue curves match perfectly as 

we sample more points, we will continue taking the inverse of the residual demand 

function explicitly because this second method is even more resource-consuming. 
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Appendix C 

Variance-covariance terms and the related 
derivatives 
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Let X-i denote LHi XCi or LHi XRi depending on the context (generator vs. re­

tailer). We will assume that the retail price PR is a constant multiple of the spot 

market price p: PR = (1 + r)p 

Let a, b, c, dE lR. and W, X, Y and Z be random variables. Using the properties of 

covariance, namely, cov(a + X, b + Y) = cov(X, Y) and 

cov(aW +bX, cY +dZ) = ac cov(W, Y) +ad cov(W, Z) +bc cov(X, Y) +bd cov(X, Z) 

we obtain the following, which we will use to solve for the optimum forward positions 

of the market participants: 

C.1 Retailer 

In what follows, we assume that DQ / Dx Ri = 0 since Q is the total retail (and hence 

market, in our case) demand which is not affected by the retailers' forward positions. 

Also, SRi denotes retailer i's share of the market demand Q, where L:~l SRi = 1. 
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az - X + tQ az - X + tQ [ ( )] 
2 

Var(pqRJ = Var(pSRiQ) = E z SRiQ - E z SRiQ 

= E [SRi (a: - X) (Q _ E(Q)) + S~.t (Q2 _ E(Q2))] 2 

= sh.<az 2- X)2 var(Q) + (SRit)2var(Q2) + 2sh.t(a: - X) cov(Q,Q2) 
z z z 

2Shi(az-X)(1+ f: ~:Hi) 2shit(1+ f: ~:Hi) 
Ovar(pqRi ) = _ #i Hi (Q) _ j;i<i H, (Q2 Q) 

~ 2 var 2 COV, 
uXR. Z z 

2sh. ( ~ ax R· ) [ 2 ] = -~ 1+ La (az-X)var(Q)+tcoV(Q ,Q) 
z j;i<i XRi 

(C.1) 

var(p) = t:var(Q) ==> Ovar(p) =0 
z aXR. 

(C.2) 
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C.2 Generator 

cov(pqGi,p) = cov(_t_Q2 + (XGi +!:. _ 2X )Q, !Q) 
mz z m mz z 

t 2 2 t (XGi a 2X) 
= mz2cov(Q ,Q) + z -;- + m - mz var(Q) 

( ~ 8XG.) t m-2-2L,,~ 
8cOV(pqGi ,p) Hi G, 

==? 2 var(Q) 
8XGi mz 

(0.4) 

( 2 ) (t 2 XGi a 2X Q2 2XGi 2X ) 
COy pqG·, qG. = COy -Q + (- + - - -)Q, - + (-- - -)Q 

" mz z m mz m 2 tm tm2 

= _t_var(Q2) + [~(2XGi _ 2X) + ~(XGi +!:. _ 2X )]cov(Q,Q2) 
m 3z mz m m 2 m 2 z m mz 

+ -+--- ---- var ( XGi a 2X) (2XGi 2X) (Q) 
z m mz tm tm2 

3m - 4 - 4 f: 8x Ri 
==? 8COV~qGi,q'bi) = [ 3 i¥i 8XRi ]cOV(Q,Q2) 

XG i m z 

m - 2 - 2 f: 8xGj 

+ [( m:¥i 8xGi ) (2x(m -t~2- 2X_i) 

2(m - 1) - 2 f: 8xGj 

+ (X(m - 2) ::X-i + az) ( tm2 Hi 8XGi ) ] var(Q) 

m 8xG. 
3m - 4 - 4 I: -=.J... .¥.8XGi 

3 J' cov(Q, Q2) 
mz 

4x(m - l)(m - 2) + (8 - 6m)X_i + x(8 - 6m) f: ~:Gj + 8X- i f: ~:Gj 
+ [ i¥i G, i¥i G, 

m 3tz 

( ~ 8XG.) 2az m - 1 - L" ~ 
8xG· ] + 3 Hi • var(Q) 

m tz 
(0.5) 



[ t 2 (XGo a 2X) Q] cov(pqGo,qGo) = COy -Q + -' + - - - Q,-
., mz z m 1nz m 

=-cov(Q ,Q)+- -+--- varQ t 2 1 (XGi a 2X) () 
m 2z m z m mz 

acov(pqGp qG;) = var(Q) (m _ 2 _ 2 f: aXG;) 
aXG; m 2 z OJ. 0 aXG; 

Jr' 

2 ( t Q2 2xG; 2X)) cov(p,qGo) = COy -Q, 2 + (-t- - -t 2 Q , z m m m 

t 2 1 2xGo 2X 
= -cov(Q,Q ) + -(-' - -)var(Q) 

zm2 z m m 2 

acov(p, q'bJ = 2var(Q) (m _ 1 _ f: aXG; ) 
aXG, m 2 z OJ. ° aXG, 

Jr' 

t Q t 
cov(p,qG;) = cov(-Q, -) = -var(Q) 

z m zm 
acov(p, qGt) = 0 

aXG; 

2 [Q2 (2XGi 2X) Q] cov(qGi , qG;) = COY m2 + tm - tm2 Q, m 

= _1 cov(Q2, Q) + ~ (2XGi _ 2X )var(Q) 
m3 m tm tm2 

==? acov(q'b"qG.) = 2var;Q) (m -1- f: aXG;) 
aXG; m t OJ. ° aXG; 

Jr' 
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(C.6) 

(C.7) 

(C.8) 

(C.9) 
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( ) [ t Q2 mxC· - 2X + aZ Q (az - X) (mxc. - X)] var pqc. = var - + ' + ' 
, mz rnz z tm 

t 2 (Q2) [mxc - 2X + az] 2 (Q) (mxc. - 2X + az) t (Q2 Q) = ~var + ' var + 2 ' -COy , 
rn z mz mz rnz 

avar(pqCi) = 2 [mxci + az - 2X] (m _ 2 _ 2 f axcj )var(Q) 
aXCi m 2z2 '-J.' axci 

Jr' 

2t ( 2:m axc.) 2 +-- m-2-2 __ 3 cov(Q ,Q) 
m 2z2 axc· 

j#i ' 

( 
m aXG ) 2 m-2-22::--=..i.. 
j#i aXGi ( ) 

m 2z2 xCi(m-2)-2X_i+az var(Q) 

( 
m axa.) 2t m - 2 - 2 2:: ---=:.l. 
'#' aXGi 

+ 2 ; , COV(Q2, Q) 
mz 

var(p) = t: var(Q) => avar(p) = 0 
z axci 

( ) 2 ( ) 
1 mxc - X 4 mxc - X 

var(qz,)=-4var(Q2)+4 '2 var(Q) +-2 '2 cov(Q2,Q) 
, m tm m m t 

(C.10) 

(C.l1) 

avar(qz,J = 8(mxCi - X) (m -1- f axcj )var(Q) + ~ (m -1- f aXCj )COV(Q2,Q) 
axci m 4t 2 '-J.' axci m 4t '-J.' axc, 

Jr' Jr' 

4 ( ~ axc· ) [2 ( ) ] = m 4t m - 1 - ~ axc: t xc;(m - 1) - X-i var(Q) + cov(Q2, Q) (C.12) 
Jr' 

var(qcJ = ~var(Q) => avar(Q) = 0 
m aXCi 

(C.13) 
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Appendix D 

Second order conditions 

D.1 Generator 

The second derivative of equation (2.21) with respect to the forward position generator 

i is 

=2(1-m)u + l+u + __ c_(m2 _m(1+u)+u) 
mtz z m 2t2 

\ (Q) [(m - 2u)(m - 2) t2 c2(m - u)(m - 1) t(m - 2) 
- A var + - + - ---'---.,,--'-

m 2z2 z2 m 4t2 mz2 

_ t(m - 2u) _ c(m(2m - 3) + (4 - 3m)u) + c(2m - 1 - u)] (D.l) 
mz2 m 3tz m 2z 

f """' aXG . • """' aXG . [ J [J Al where u stands or 1 + ~#i ~ and SInce ~#i ~ E -1, 0, u E 0,1. so, , , 
z = m(m - 1),8 and t = 1 + c(m - 1),8, as before. It is safe to assume that the 

generators will not bid in a supply function less steep than their marginal cost; hence 

c,8 E (0, 1J. Plugging in these, we get 



where 'P(c,m,u,j3,A,var(Q)) is given by 

Avar(Q) [(m6 - 4m3 - 4m5 + m 2 + 6m4) (c,B) 4 + ( - 4m - 4u + 4m2 + 4um2 )c,B + 4u 

+ ( - m 2 + 9m3 + 3um2 - 3um3 - m -llm4 - mu + um4 + 4m5 ) (c,B) 3 

+ ( - 4m3 + 4um3 - 4m2 + 2mu + 4m - 7um2 + 4m4 + u) (c,B) 2] 

+,B [( - m 6 - mGu - 3m4 + um3 + 3m5 + 3m5u - 3um4 + m 3 ) (c,B) 2 

+ ( - um2 + um3 - 5m5 - m 5u - 3m3 + m G + 7m4 + um4) (c,B) 

+ um4 + m 3 - 3um3 - m 4 + 2um2 ] 

93 

(D.2) 

The expression to the left of 'P(.) is clearly negative. Then we have to check over 

what ranges of its parameters 'P(.) is positive. If we let 'Y = A . var(Q), we have 

five parameters to deal with. Fixing three of those, we can check the sign of 'P(.) 

by varying the other two. Unfortunately, there are too many variables to deal with 

and since 'P(.) is not well-behaved we are not able to draw general conclusions as to 

what its sign would be. While we found it generally positive, for very small values of 

demand variance, risk aversion parameter and m, we were able to find some examples 

(see figures D.la and D.lb) where 'P(.) will be negative. Hence, one needs to be 

careful when carrying out simulations. For example, for m = 20, regardless of the 

values of other parameters, a sufficient condition for non-negativity of 'P(.) is that 

A . var( Q) ~ 1.3. In our simulations m is large enough and we do not observe 

negative values for 'P(.). 
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phi Domain of phi 

0.12 

0.12 0 .32 0.52 0.72 0.92 

(a) Negative values are of <p(.) are in red. (b) <p (.) > 0 over the "green" domain. 

F igure D.1 : Domain of <pC). Avar(Q) = .2, m = 6, U = O. 

D.2 Retailer 

For the second order condition to hold, we need to show that 

1 A [ st ] - - - - r2 A + 2t2var(Q) - 4rvar(Q)(1 + W)2 
z 2 z 

(D.3) 

is negative, where A = 2var(Q)(1+W) ;~ +2(1+W)var(Q) ;~ and W is the conjectural 

variations. A sufficient condition is that W = - 1 (Bertrand conjectures). Even under 

Cournot conjectures (W = 0) , we can easily show that the condition holds by noting 

that 

rst ( rs ) 2 rst r2 A + 2t2var( Q) - 4var( Q) - 2 = 4 - + 2t2 - r-2 z z z 

- -- + - +- > _ ( rs - t
2
) ( rS2 1 ) 0 

z Z Z 2 - , 
(D.4) 
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Hence, the whole expression (D.3) is negative, given z = m(m - 1),8 > 0 for m > 1. 
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Appendix E 

Proof of lemma 2.2.2 

Lemma E.O.1. Let [; ;] be a block matrix. Its inverse is given by 

[
(A - BD-IC)-l -A-IB(D - CA-1B)_1] 

-D-1C(A - BD-1C)-1 (D - CA-l B)-l 

Proof. See [44], §1.6. o 

We restate lemma 2.2.2 for convenience: 

Lemma E.O.2. Let T be an n x n (n> 2) matrix where the ith diagonal element is 

di and the off-diagonal elements on row i are Ci. Its inverse is another n x n matrix 

with the ith diagonal entry and the ijth off-diagonal entries given respectively as 

n-2 

IT dj + [E (-l)kk( E IT dj IT Cl)] 
jf:i k=l (S\{i})n-k-2 jE(S\{i})n_k_2 l#i,j 

n n (E.1) 
IT dj + E[(-l)k-l(k -1) E IT di IT Cj] 
j=l k=2 Sn-k iESn_k j#i 

n n (E.2) 
ITdi + E[(-1)k-l(k-1) E IT diITczl 
i=l k=2 Sn-k iESn_k l#i 

where 8m denotes the m-element subsets of 8 = {I, 2, 3, ... , n}, m > O. If m = 0, 

80 = 0, in which case ITk#i,j and ITl#i become nk#i and nu respectively. 

Proof. By induction. The claim trivially holds for n = 3. Suppose it holds for n = r. 

We have to show it is true for n = r + 1 as well. In order to do so, it is enough to note 
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that T is A, the column vector [CI' C2, ... , Cr-l] is B, the row vector [Cr Cr Cr] is 

C and the scalar dr is D in lemma E.O.I. 0 
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