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i
Abstract

In the first chapter, we propose a new method for modeling competition in electric-
ity spot markets, namely, by approximating the supply functions of the competitors
with cubic splines. We argue that this method is preferable to approximation by lin-
ear or piecewise-affine functions, which have been the main approaches to date. We
apply our method to the firms competing in the Texas market. We also show that,
more often than not, we will observe that the marginal revenue functions of the firms
will have increasing segments which may lead to multiple profit-maximizing optima
for a firm.

In the second chapter, we model the effects of forward contracting on power prices
in wholesale electricity markets. In contrast to most of the previous literature, we
explicitly model power retailers, and introduce risk aversion. As expected, increasing
the number of players have pro-competitive effects on the spot price of electricity.
We also find that as the generators bid more competitively, spot and forward prices
converge. Our model also captures the effects of level and variability of power demand
on the players’ contracting decisions.

In the final chapter, we depart from equilibrium approach and utilizing agent-
based modeling, analyze the effects of increased power demand price sensitivity on
the level and volatility of power prices. We find that as the price sensitivity in-
creases at the demand side, power price as well as its volatility decrease significantly.
We also argue that the celebrated Herfindahl-Hirschman Index to measure market

concentration is not a suitable metric for power markets.
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Chapter 1

A New Tool for Modeling the Electricity Spot
Markets and its Application to the ERCOT
Market

1.1 Introduction

The two competing models in the industrial organization literature for explaining
how firms compete in electricity markets are the celebrated Cournot model and the
supply function equilibrium model of Klemperer and Meyer (1989, [51]).!

A typical electricity wholesaler owns several generation facilities whose marginal
costs differ depending mainly on the facilities’ fuel source. As a result, rather than
submitting a single price which corresponds to the unique profit maximizing quantity
given a realization of its residual demand, a firm? may do better by submitting a
schedule of price-quantity pairs taking into account various possible realizations of
its residual demand. This is essentially the motivation behind the supply function
equilibrium model that Klemperer and Meyer (1989) analyze. Green and Newbery
(1992, [36]) and Bolle (1992, [10]) are the first authors to realize the appropriateness
of Klemperer and Meyer’s approach for modeling electricity spot markets.

Although some authors still prefer the Cournot model ([12], [16], [48]), mainly

for its mathematical convenience, many others prefer the supply function equilibrium

!Some examples are [11], [12], [16], [42] and [48] for the Cournot model, and [3], [7], (8], [36], [37]
and [46] for the supply function equilibrium model.

2We use the terms “electricity wholesaler”, “generator”, “bidder”, “player” and “firm” inter-
changeably.



model since it better represents the everyday operations of the firms competing in
electricity markets. We also take this approach. After developing our model, we use
data on the firms from the Electric Reliability Council of Texas (henceforth ERCOT)
area to test whether the firms are behaving optimally.

The rest of this paper is organized as follows: We will present our motivation in
section 1.2, the institutional setting of the ERCOT market in section 1.3, our model
in section 1.4. Section 1.4.3 analyzes the increasing marginal revenue case and section
1.5 talks about applying our model to the firms competing in the ERCOT market.

Section 1.6 concludes.

1.2 Motivation

As mentioned above, supply function equilibrium models represent the operations in
electricity markets more accurately than Cournot models do. However this accuracy
comes at a cost. To be specific, letting the strategy space of the players consist of
supply functions entails solving a set of differential equations to find the equilibrium
(or equilibria) of the model. However, this is a cumbersome task unless the modeler
makes some restrictive assumptions.

The first is assuming that there are two symmetric firms, as in Green and New-
bery (1992, [36]). While this was realistic for the then recently deregulated British
electricity market analyzed in Green and Newbery (1992), in today’s markets there
are many asymmetric firms. Hence, this assumption needs to be dropped.

The second is assuming that the firms possess linear supply and marginal cost

functions.® There are very successful applications of this approach, most notably by

3In the literature, it is customary to call lines passing through the origin “linear function” and
lines with non-zero intercepts “affine”. We will also use this terminology.



Rudkevich (1999, 2002, 2005; [78, 79, 80]) and Baldick et al. (2000, 2004; [6, 7]).
By assuming linearity, Rudkevich (1999, 2005) can find a closed form solution for
the equilibrium in his stylized model with n firms. In that model, just by observ-
ing what had happened in the market in the previous period, players can attain a
profit-maximizing equilibrium and convergence to this equilibrium happens very fast.
Baldick et al. (2000, 2004; [6, 7]) relax the linearity assumption of Rudkevich (1999,
2005; [78, 80]) and assume that firms possess piecewise-affine supply functions as in
figure 1.1. The piecewise-affine assumption allows the authors to model more than
two asymmetric firms with capacity constraints. They find that their model fits the

data from the British market better than the linear case.

Figure 1.1 : Piecewise-affine supply function.

The approach that Baldick et al. take is not free from problems, however. First
and most important, if the firms possess piecewise affine supply functions such as the

one in figure 1.1, the capacity constraints will cause the aggregate supply function to



have jumps - a simple example of which is shown in figure 1.2. In the event that the
market demand intersects the aggregate supply at both of its pieces, it is not clear
what price-quantity pair will clear the market. Baldick et al. (2000, 2004) overcome
this type of discontinuity problem by removing some parts of the aggregate supply
function from both pieces, and interpolating the function at the jump. A second
drawback of this approach is that we are deprived of the convenience of calculus
methods. Finally, we lose the idea that the response of any one firm can be modelled
as profit-maximizing. This is problematic if we believe, for example, that financial
market pressures on privately owned firms would encourage profit maximization as a

goal.

15 1

Figure 1.2 : Market clearing price-quantity pair is not well-defined.

These shortcomings motivated us to interpolate the supply and cost functions
using shape-preserving cubic splines, which are continuous and differentiable. Next,

we present a brief summary of how the ERCOT market operates followed by a stylized



model and the details of our approach.

1.3 Structure of the ERCOT Market

After the Texas Legislature amended the Public Utility Regulatory Act to deregu-
late the wholesale generation market in 1995, ERCOT became the first independent
system operator in US. Its main missions are to direct the operation of the electric
grid, which currently covers 75 percent of the land area in Texas and 85 percent of
the state’s electric load ([103]), and administer the power market.

In Texas, most wholesale electricity is traded via bilateral agreements. In order
to balance supply (i.e., generation) and demand (i.e., load) in real time, ERCOT also
administers a secondary (auction) market, called the Balancing Electricity Services
(BES) market (or the “spot market”), where an average of 5% of the total transac-
tions occur. On each day, market participants submit to ERCOT their production
and obligation schedules for the following day, through their qualified scheduling enti-
ties (QSEs). However, actual production and consumption of electricity may vary due
to unanticipated circumstances such as weather conditions, unplanned plant outages
or transmission problems. As a result, companies are allowed to increase or de-
crease their real time production relative to the schedule they submitted one day ago.
For each hour, generators offer bid schedules, composed of up to 40 price-quantity
pairs, 20 monotonically increasing price-quantity pairs for augmenting (UBES) and
20 monotonically decreasing price-quantity pairs for decreasing (DBES) their pro-
duction relative to their day-ahed schedule. While DBES bids are mandatory, the

firms are not obliged to submit UBES bids. ERCOT aggregates these bid schedules

4In ERCOT’s jargon, these are called “Up Balancing Energy Services Bids - UBES” and “Down
Balancing Energy Services Bids - DBES” respectively



into a single supply function for each type of service at each congestion zone.> Every
fifteen minutes, fourteen minutes before the operating interval, ERCOT intersects
the market demand with the aggregate supply to determine the “market clearing
price of energy”. If there is no congestion on the transmission lines, the ERCOT
region becomes a single market. In case of congestion, the market is separated into
zones, each having different market clearing prices. ERCOT notifies the QSEs of the
market clearing price and gives them deployment instructions ten minutes before the
operating interval. QSEs start to run their units accordingly, five minutes before the
operating interval. For a complete description of the market’s operations, see the
ERCOT protocols, particularly section 6 in [23] and the very insightful article by
Teng et al. (2004, [91]).

As mentioned in Hortagsu and Puller (2005, 2008; [45, 46]), the market partici-
pants have a great deal of information on their competitors. Most plants in Texas
have similar production technology® and their fuel efficiency data is publicly avail-
able. Also, traders seem to know which rival generators are producing at any point
in time. Furthermore, it is possible to purchase real time data on the generation of
large competitors.” Finally, every bidder has access to the aggregate bid data, which
is released by ERCOT with a 2-day lag. Since each generator knows its own bids, this
helps bidders infer their residual demand, assuming that the aggregate bids two days
ago are similar to the ones today or are similar functions of other publicly observable

data such as weather statistics.

SERCOT organizes sources of supply and demand into “Congestion Zones” based on the likelihood
of transmission constraints between these market areas. The ERCOT region is currently divided
into four zones. For additional details see §7 in [23].

6Most plants in Texas use natural gas.

"This can also be inferred from the public real-time data on flows through a large number of
nodes on the system.



1.4 A Stylized Model

We denote by N = {1,2,...,n} the set of firms in the market. C;(g;) is firm 4’s cost
function and it is assumed to be quadratic, convex and twice continuously differen-
tiable. Dy(p) is the aggregate demand for electricity at time ¢. It is assumed to be
differentiable and its slope satisfies —oo < D, < 0.

At each period t, each firm simultaneously submits a supply function S;;(p). The
residual demand faced by firm i is then RD;(p) = Di(p) — >_,; Sjt(p). The system
administrator calculates the market clearing price, denoted as p; using the market

clearing condition

S Su(p}) = D(p}) (11)

iEN

We are interested in the noncooperative equilibrium of the game

I'= (N, (Sit)ien, (Tit)ien),

where N is the set of firms, Sy; is player ¢’s strategy and 7y : IIjenSj: X Di(p) — R
is firm 4’s expected profit.

Following Klemperer and Meyer (1989), we assume that the profit maximizing
price-quantity pairs can be related to each other by a supply function for each firm:
g; = Si(p). That is, at any time ¢, each ¢; corresponds to a specific price p. Then the

problem of firm 7 becomes to maximize, with respect to p, the profit

Tit(p) = P (Dt(P) - Z Sjt(p)> - Ci (Dt(p) - Z Sjt(P)) (1.2)

J#i J#i

with the first order condition



/ — Sit(p) /
; Sj(p) = p—CSa) t Dy(p), (1.3)

for all 4 € N, where f'(z) is the first derivative of f(x).

Any set of nondecreasing supply functions which solve the set of equations (1.3)

is an equilibrium of the game I'.3

1.4.1 A Simple 2-Firm Example
The following 2-firm example will make our motivation clearer:

Let’s suppose that the market demand is D(p) = 80 — p and firm j observes that
firm ¢ bid® price-quantity pairs {(p, q) : (0, 0), (5,20), (10, 35), (15, 45),
(20, 50), (40, 60)}'° and approximates i’s supply by interpolating the observed bids in

a linear fashion and gets the following piecewise linear function:

8Note that this formulation does not take into account the capacity constraints. As explained in
Green and Newbery (1992, [36]) §IIB, under capacity constraints, a solution intermediate between
Cournot and Bertrand outcomes will not be stable and firms will find it profitable to deviate to the
Cournot solution.

9This is without loss of generality since what matters for a given firm is its residual demand
function. A firm may aggregate all of its competitors’ bids and subtract this from the (expected)
market demand to find its residual demand. That is to say, firm j may represent the total of firm
i’s competitors.

10As mentioned in section 1.3, ERCOT, the independent system operator, releases the aggregate
bid data with a two-day lag. Hence, in our simple two-firm example, firm j can easily figure out
what ¢ bid.



(

4p ifp<b
3p+5 ifp<10
Si(p)=142p+15 ifp<15 (1.4)

p+30 ifp<20

\g +40 ifp>20
Then, the residual demand faced by firm 7 will be

(

80—5p ifp<>H
7 —4p ifp <10
RD(p); = D(p) — Si(p) =4 65—3p ifp< 15 (1.5)

50— 2p if p <20

3p
\40 — £ if p < 26.67

Inverting (1.5), multiplying by ¢ and then differentiating the whole expression

with respect to ¢, we get the marginal revenue curve of firm j:

%9—%q if ¢ <10
25—q ifg>20
MR;(q) = {6 _2g ifg> 35 (1.6)

B_1q ifg>55

16 — 2q if ¢ >80
\

Figure 1.3 plots the residual demand and marginal revenue functions for firm j.
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I

Residual Demand === =— Marginal Revenue

Figure 1.3 : Kinks in residual demand will lead to discontinuities in the marginal
revenue.

The jumps in the marginal revenue curve are a potential problem. Instead of
taking an ad-hoc approach such as “interpolating the quantities at the jump” ([6],
[7]) it would be worthwhile to obtain a continuous marginal revenue curve, after the
operation D(p)— S;(p). Given that the market demand is smooth, this, in turn, could
be achieved if the supply function of the first firm was smooth. This shortcoming
motivates us to try to fit a smooth function to a given set of (p,q) pairs. If firm j
interpolated i’s bid with a smooth function, its marginal revenue curve would also be

smooth.
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1.4.2 Approximating Competitor’s Supply with a Spline

The aforementioned problem with piecewise linear approximation motivates us to
approximate supply by interpolating a set of bid data with a smooth polynomial. To
the best of our knowledge, no one has taken this approach before.

There is a huge literature on approximating functions and/or data with polyno-
mial splines. One can consult [32, 33, 72, 82] and the references therein. A potential
problem is that while market rules require firms to submit bids that are non-decreasing
in price, polynomial splines generally do not respect this requirement. Thus, in addi-
tion to a smooth approximation, we also demand that our interpolant is monotone.
Fortunately, we have algorithms at our disposal to achieve this task.

We will follow Fritsch and Carlson’s (1980, [33]) method. Let 7 = p; < py <
... < pp be a partition of the interval [p;,p,]. Given these n price values and the
corresponding quantities, that is, n (p,q) pairs, the aim is to construct a piecewise
defined cubic function S(p) on m which is ¥ and is such that S(p;) = ¢;. After noting
that the set of all polynomials of the third degree, P; = {s(p) = f:lcipi_l, ci,p €

i=
R}, forms a 3-dimensional vector space with a finite basis (e.g., {1,p — a, (p — a)?}),

we can, on each interval I; = [p;, pi11] represent S(p) as a cubic polynomial:

S(p) = ¢:H1(p) + qir1H2(p) + di H3(p) + dir1Ha(p) (L.7)

where d; = S'(p;), j = 4,1+ 1 and the Hy(p) are the Hermite basis functions for I3,
namely, Hy(p) = ¢((pir1—p)/h:), Ha(p) = ¢((p—pi)/ i), Hs(p) = —hith((pir1—p)/hs)
and Hy(p) = hio((p — pi)/hi), where h; = piy1 — pi, $(z) = 32?2 — 22° and o(z) =
-z

Hence, in order to interpolate {(pi,q) : # = 1,2,...,n} we essentially need an
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algorithm which calculates the derivative values d; such that they all have the same

sign with the slope of the secant connecting two consecutive points:

sgn(d;) = sgn(diy1) = sgn(4;) (1.8)

where A; = (¢iv1 — @)/ hi.
The following lemmata will give the necessary and sufficient conditions for a cubic

polynomial to be monotone on an interval:

Lemma 1.4.1. Let o; = d;/A;, B = div1/D; and o+ 0; < 2. Then S(p) is monotone

on I; iff (1.8) is satisfied.

Proof. Suppose S(p) is monotone increasing on I;. Then A; > 0 and for all p € I,
S'(p) > 0. In particular, sgn(S’(p;)) = sgn(d;) and sgn(S'(pi+1)) = sgn(diy1) are
both positive and (1.8) is satisfied. The case when S(p) is monotone decreasing is
similar.

S@p;

Conversely, assume (1.8) holds. First, using the formula S(p) = > =% (p — D)%
i=0

expand S(p) around p; to get

—2d; — dip1 + 30

di + diy1 — 24, i
= = - (p—pi)*+di(p—pi) + . (1.9)

S(p) 2 (p—pi)*+

Differentiating (1.9) with respect to p gives

3(di + diyr — 20 2(—2d; — diy1 + 30
S'(p) = (e + ,:21 )(p—pi)2+ ( h,“ )(p—pi) +d;  (1.10)

and

di + diy — 2 2(—2d; — diy1 + 30
5'(p) = 24T %) Lo~ pi) + ( P ), (1.11)
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Note that d; + di+1 — 24A; = (o + B — 2)A;. So, if a; + 3; = 2 then S(p) is quadratic
or linear, hence S’(p) is linear or constant. Then, (1.8) characterizes monotonicity of
S(p) since min{d;,d;+1} < S'(p) < maz{d;,d;+1}. If, on the other hand, a; + 3; —2 <

0, there are two cases to consider:

1. If ¢; < gi41 then d; + diy1 — 2A; < 0, therefore S’(p) is concave. This, together
with (1.8), implies that 0 < min{d;,d;+1} < S’(p) hence S(p) is monotone

increasing.

2. If ¢; > giq1 then d; + d;y1 — 2A; > 0, therefore S’(p) is convex. This, together
with (1.8), implies that 0 > min{d;,d;+1} > S’(p) hence S(p) is monotone

decreasing.

O

Lemma 1.4.2. Let o5 + 5; > 2 and (1.8) holds. Then S(p) is monotone on I;
if and only if 20 + B < 3, or o5 + 203 < 3, or p(ay, B;) > 0, where p(a,f) =

a— (2a+6—-3)%/3(a+ 8 -2).

Proof. First, we observe from (1.11) that S’(p) attains its unique extremum at

hi [20; + B — 3
fEpit o | 1.12
p p1+3{ai+ﬁi—2} (1.12)
and
S'(p*) = p(ai, Bi) A (1.13)

To prove the claim, note that conditions (1.12) and (1.13) imply that S(p) is

monotone on I; if and only if either p* & (p;, Pi+1), or, p* € (i, Pi+1) and sgn(S'(p*)) =
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sgn(4;). Simple algebra shows that p* < p; implies 2c; + 5; < 3, p* > p;41 implies
a; +206; < 3 and the condition ¢(a;, £;) > 0 is equivalent to saying p* € (p;, pir1) and
sgn(S'(p*)) = sgn(4;).

These results suggest the following algorithm:

Let the data to be interpolated be (pg,qx) for k =1,2,...,n.

1. Initialize the slope parameters.

e Using three point difference formula!!, initialize d; for i = 2,...,n — 1.
e Ford; and dp, let di = (g2—q1)/(p2—p1) and dr, = (gn—q(n-1))/ (Prn—D(n-1))-

2. Check whether the slope paremeters satisfy the necessary and sufficient con-
ditions for monotonicity. If they do not satisfy those conditions, update their

values accordingly:

o Let Ax = (qk+1 — qk)/(Pkt1 —px) for k=1,2,...,n— 1.

e If Ay = 0 then do the update dy = diy1 =0, for k=1,2,...,n — 1. Else
— Set ap = di/Ar and B = di+1/ Ak
— If a2 + 82 > 9 then do the updates dy, = Txdy and dy1 = Tedi+1 Where

e = 3o+ )

We implemented this algorithm with Maple ([66, 67]). Let’s turn back to our
2-firm example and see what difference this makes:

If firm j approximated #’s supply with a monotone cubic spline instead, he would

get

gk —qk-—1 qk41—4gk
y T2

11Given three points, (ps,q;), i = k — 1,k, k + 1, the formula is Z(pr—pr1 (Pri1—pr) "
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2P ~ 6P’
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ifp<5b
if p<10
if p<15
if p<20

if p <40

15

(1.14)

By evaluating the derivative of (1.14) at the critical points one can easily see that it

is smooth. Figure 1.4 plots the linear and the spline interpolants to the given (p, q)

pairs.
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Figure 1.4 : Linear vs. Spline Inperpolation

This will give the following expression for the residual demand, which is necessarily

smooth:
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ifp<5b
if p<10
if p<15 (1.15)
if p <20

if p < 26.175

Again, inverting (1.15)'2, multiplying by ¢ and then differentiating the whole

expression with respect to quantity, we get the marginal revenue curve of firm 7. We

suppress the extremely complicated expressions and just plot the result in figure 1.5:

T T 1

70 80

Figure 1.5 : Monotone spline interpolation results in differentiable residual demand

and continuous marginal revenue functions.

12Not a trivial task. See appendix B for an alternative approach.
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1.4.3 Increasing Marginal Revenue and the Possibility of Multiple Profit

Maximizing Optima

One problem that has been ignored in modeling electricity spot markets is that the
marginal revenue function of a generator can increase on some intervals. Some re-
searchers previously noted this anomaly for a monopolist and analyzed the conditions
under which we may expect a monopolist to have an increasing marginal revenue
curve ([96], [30], [22]). Walters (1980, [96]) considers a monopolist facing a demand
curve that yields such a marginal revenue curve and he argues that “[t]here is much
evidence to show that such demand curves are characteristic of utility and service
industries. For example, it is well known that an electric utility company, usually a
statutory monopoly, has a very inelastic demand for domestic electricity for lighting
purposes; but at lower prices the utility can break into the vast market for heating,
air-conditioning, and industrial power. When not prohibited by law, and where tech-
nically feasible, electric utilities will price-discriminate in these markets.” '3 Formby
et al. (1982, [30]) “demonstrate that the conditions for a positively sloping marginal
revenue curve are much less stringent than is generally recognized” and add that
“positively sloping marginal revenue functions must be considered whenever convex
demand functions are analyzed”. They give examples of several functional forms fre-
quently used in economic analysis which lead to upward sloping marginal revenue
curves. Finally, Coughlin (1984, [22]) derives statements regarding the elasticities
of a monopolist’s demand and marginal revenue functions that are equivalent to the

direction of change for the marginal revenue function.

13The common practice of using a different price schedule for different types of customers can
most readily be rationalized as price discrimination. In particular, commercial customers typically
purchase electricity mainly for lighting and other essentials and thus have relatively less elastic

demand. They also typically face the highest charges.
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None of these studies, however, consider an oligopolistic market structure and
none of them suggest what to do in the case of multiple equilibria. We will show
that, for electricity generating firms, ending up with a residual demand for which
the marginal revenue is positively sloped is the rule, rather than the exception. As
a result, multiple profit maximizing price-quantity pairs for a firm is not a very
remote possibility. Furthermore, the set of ex-post profit maximizing points will
not necessarily lie on a monotone path, a violation of ERCOT market rules. A
reasonable hypothesis about what a firm is likely to do when faced with multiple
profit maximizing optima, however, is still an open question.

First, we state some useful results.
Definition 1.4.3. A real valued function f defined on A C R is convex on A if for
all 21,29 € A and a € [0,1] we have f(az: + (1 — @)zs) < af(z1) + (1 — @) f(z2).

Lemma 1.4.4. f is convez if and only if for all z1,29 and z3 in A, such that z; <

To < T3 we have

f(za) — f(z1) < f(x3) — f(x2) (1.16)

T2 — T T3 — T2

Proof. Suppose f is convex and let zo be a convex combination of z; and z3: z2 :=

az; + (1 — a)zs for some a € [0,1]. Then we have:

f(z2) — f(x1) < af(z) + (1 — a)f(z3) — f(z1)

Ty — T1 - Ty — X1

_ f(z3) — f(z1) _ flzs) — (af(xl) +(1— a)f(xg))
< f(ﬂfa:s:) :i(ﬂf'z)

The inequalities in the first and third lines follow from the definition of convexity.

In order to visualize the equalities, the figure below will be helpful.
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I T2 x3

Conversely, assume that for all x;,z, and z3 (1.16) holds. Take any a € (0,1)

and without loss of generality let z; = ax; + (1 — a)z3. Then,

f(aa:l +(1- a)x3) — flzy) _ f(aa:l +(1— a)xg) — f(z1)
ar; + (1 —a)zs — 2y (1—a)(zs — 1)
< f(z3) — flaz; + (1 — a)z3)
- z3—azr; — (1 —a)z;
_ flzs) — flazi + (1 — a)zs3)

B o(rs — x1)

Canceling (z3 — z1) gives

a(f(az1+ (1 — a)zs) — f(z1)) < (1 —a)(f(zs) — flazs + (1 - @)z3))

upon rearranging we get

flazi + (1 — @)z;) < af(zy) + (1 — ) f(zs).
O

Lemma 1.4.5. Let f : A — B C R be an invertible function and let f~ be its

inverse. If f is decreasing and convez, so is f~1.
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Proof. Take any three points z, zo and z3 from A and suppose, wlog, that z; < z5 <
r3. Hence y3 := f(z3) < y2 1= f(z2) < y1 := f(x1) so f~! is decreasing and by

lemma 1.4.4

f(z2) — f(z1) < f(z3) — f(x2) f(z1) — f(z2) > f(z2) — f(x3)

< <0 = > >0
Tg — T T3 — To Tro — 1 T3 — Io
-2 fTHy) — ()
f(z1) — f(z2) Y1 — Yo
c_T3T"Ts f M s) — 71 (y2)
= f(z2) — f(z3) Y2 — Y3
. ST w) = () > 7 (y2) — 7 (ys)
Y1 — Y2 Y2 — Y3
hence f~1 is convex. O

Lemma 1.4.6. Let f : (a,b) — R be a €2 function. Then f is convex if and only if

its second derivative is nonnegative on (a,b).
Proof. See [75], page 26. O

Now, suppose for simplicity there are only two firms and the market demand,

14

D(p), is perfectly inelastic.!* Suppose firm 1’s competitor bids a supply function

14Some large firms sign up for time-of-use metering of electricity and respond to spot prices. In
particular, many co-generating firms can alter the amount of power they supply to, or take from,
the grid and will do so in response to prices. As this last example illustrates, conceptually we can
think of price-responsive demand as an alternative source of supply and take the non-responsive
demand as the “demand” represented in the model. This view of price-responsive demand as a type
of “supply resource” has even been formalized in many electricity markets. For example, ERCOT
has a program called “Load acting as resource” (LaaR), in which a company with minimum load
of 1 MWh can sign up to allow a portion or all of its energy demand to be responsive to market
prices. In exchange for getting paid a fixed annual fee, the company has to curtail its energy
demand immediately if asked by the system operator. It can be argued that existence of LaaRs
provides some (imperfect) elasticity in real time, but they provide up to the 50% cap of ERCOT’s
Responsive Reserves procurement of 2300 MWs, which corresponds to only 1.8% of ERCOT peak
demand, observed on August 16th, 2010. Between April 2006 and August 2010, LaaRs had been
deployed only 13 times. See [24] for details.
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Sa(p) € ¥? which is concave in p. Concavity is a realistic assumption here, given
the capacity constraints. Then the residual demand function firm 1 faces will be
(D — S3)(p). Since S, is concave, —S; and hence D — S, is convex. Consequently
by lemma 1.4.5, the residual demand firm 1 faces, as a function of g, will be convex
as well. Let RD : [0,q] — R, denote that residual demand function. Then the

expression for marginal revenue will be

MR(q) = 5 (¢RD(@) = RD(@) + aRD'(@) (117)

Now, consider the slope of the function defined by (1.17):

S MR(G) = 2RD/ (@) + 4RD"(q). (1.18)

The first term on the right hand side of equation (1.18) is negative since the resid-
ual demand function is negatively sloped. But if we do not impose any restrictions on
the shape of the residual demand, namely, that it is globally concave, the second term
on the right hand side will be positive on the intervals where RD(q) is convex (by
lemma 1.4.6) and on those intervals, the second term may dominate the first. Then
(1.18) will be positive and marginal revenue will be increasing on that range, i.e.,
2RD'(q) + qRD"(q) > 0. Following Coughlin’s analysis (1984, [22]), by rearranging

this last equation we get:
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2RD'(q) + gRD"(q) > 0

<= —2>qRD"(q)/RD'(q)

dRD'(q) ,RD'(q) _ dRD'(q) ,dg

T T TEw

<= —2 > quantity elasticity of slope of residual demand.
(1.19)

So we can state:

Proposition 1.4.7. Marginal revenue will be increasing if quantity elasticity of the

residual demand is less than -2.

Increasing marginal revenue creates the possibility of multiple profit maximizing
quantities and prices for the firm. Multiplicity of optima, in turn, will create un-
certainty as to what price-quantity pairs the firm will bid to the market. This is
problematic not only because it creates or enhances circumstances under which the
firm may manipulate the bidding process. It also creates uncertainty from the point
of view of the system administrator who is responsible to keep the system balanced
at all times.'®> How much quantity is dispatched from each generator is crucial since
electricity, to a large extent, is not storable.

Consider the following figure where we used hypothetical bid data:'6

15And this is a serious problem because the most distinctive feature of the electricity markets is
that supply and demand should be in balance at any second. Supply-demand imbalance will lead to
blackouts and/or deviations from the target system frequency. Lineweber and McNulty (2001, [57])
estimate that the US economy across all business sectors is losing between $119 billion and $188
billion annually due to power outages and power quality issues.

16Even though we used hypothetical bid data, the shape of the resulting residual demand function
closely resembles that of figures 4.2 and 4.3 in Wolak (2003, [100]), where the author used real data
from the Australian market.
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""" residual demand == marginal revenue = == Marginal cost |

Figure 1.6 : Multiple profit-maximizing quantities.

Both ¢ = 1.04 and ¢ = 5.91 are profit-maximizing quantities, and at both of
these quantities, marginal revenue and marginal cost curves intersect, and at both
quantities, the profit of the firm is 8.402. The price corresponding to ¢ = 1.04 is
8.73 and the price corresponding to ¢ = 5.91 is 2.27. Given this realization of the
residual demand, it is not clear which quantity the firm will produce. Even though
one may think that the firm itself is indifferent, the same cannot be said for the
system operator or for consumers. One profit-maximizing output level is almost 6
times the other. In addition, to maintain system balance, this uncertainty has to be
resolved. Finally, from a market design perspective, the difference between the two
profit maximizing prices gives this firm the opportunity to manipulate the bidding

process.
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1.5 Application to ERCOT Market

In this section, we use data on the firms’ marginal costs and actual bids!” to construct
their ex-post profit maximizing supply functions. Figure 1.7 illustrates our method.!8
We start with a given realization of the residual demand function and calculate the
corresponding marginal revenue. Intersection of marginal revenue with the marginal
cost (the black, dashed curve) will give the profit maximizing quantity for that specific
realization of the market demand. We shift market demand to get separate residual
demand and marginal revenue functions and obtain other profit maximizing points.
Connecting these gives us the ex-post optimal supply function for the firm (the dot-
dashed blue curve).

Note that all four realizations of the residual demand and the corresponding
marginal revenue curves intersect at a point to the right of the origin. This quantity
is the amount of energy the firm sold in bilateral contracts. To the right of this point,
the firm is a net seller in the BES market and hence acts as a monopolist on its resid-
ual demand curve. To the left of that point, the firm is a net buyer of electricity and
acts as a monopsonist. While the forward contract position is private information of
the generators, there is an intuitive method to estimate it using a firm’s marginal cost
function and its BES bids: If the firm is short in the market, it needs to buy power
to cover its contractual obligations. Hence, up to this contract quantity, the firm will

want to bid less than its marginal cost function and try to decrease the market price

17In the ERCOT region, each company is represented by a qualified scheduling entity (QSE) and
ERCOT, prior to January 31, 2011, released QSE-specific bid data for the past two years, sixty days
after the operating day. The data were available at ERCOT.com for the zonal market. ERCOT
implemented a new market design and switched to the “nodal system” on December 1, 2010, for
which there is no publicly available bid data.

18This is identical to Hortagsu and Puller’s (2005, 2008) “empirical strategy”.
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Figure 1.7 : Construction of the ex-post optimal supply function. The blue dots are
the optimum quantity-price pairs.

and to the right of it the firm will want to bid more than its marginal cost®.

1.5.1 Comparison of Actual BES Bids to Ex-post Optimal Bids

We apply our method for analyzing five firms; Austin Energy, Brazos Electric Power
Cooperative, Calpine, Luminant and NRG from March 2009 through August 2009.
Figures 1.8, 1.9, 1.10, 1.11 and 1.12 are from March 18, 2009 between 8 and 9 PM,
a time period during which there was no zonal congestion and the whole ERCOT
region had a single market clearing price.

As mentioned in section 1.3, the DBES bids are monotonically decreasing in price.

19Hortagsu and Puller (2005, 2008; [45, 46]) say that “[t|his practice was acknowledged by all of
the firms that they interviewed during their research.” Our conversations with market participants

also verified the validity of this approach.
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In order to be able to present both the up and the down bids on the same figure, we
first normalize the down bids by taking their mirror image with respect to the price
axis. Then we analyze the DBES and UBES cases separately since the aggregate
down and the aggregate up bids usually overlap and the period we chose was not
an exception. After we calculate the ex-post optimum bids separately for the two
cases, we combine the results for each firm to come up with its ex-post optimal bid
stack. Occasionally, we had some optimum bid points lying outside the monotone
path combining the others. Since such points violate the market rules, we eliminate
those.

We start from a balancing market demand of -5000 MWs and go up to 4000 MWs
by adding 100 MW increments.

Shioshansi and Oren (2007, [84]) and Hortagsu and Puller (2008, [46]) analyzed the
market in 2002. They found that the incremental bids of TXU, the biggest wholesaler
in Texas in terms of installed capacity, were very close to its ex-post optimal supply
function. However, TXU’s decremental bids were much lower than ex-post optimum.
We examined the recent behavior of TXU, now operating under the name Luminant.
We found both their decremental and incremental bids to be fairly close to their ex-
post optimum supply function. However, especially on the incremental side, they use
a very coarse bidding strategy. We have difficulty explaining this because the high
and low operating limits, high and low sustainable limits and ramp rates of their
power plants seem to allow for a more refined bidding strategy. This is particularly

the case between 0 and 700 MWs for the period shown in figure 1.8.

According to Hortagsu and Puller’s (2008) analysis, the second biggest producer
Reliant, which now operates under the name NRG, was bidding remarkably close to

its ex-post optimum bids. This result was supported by Shioshansi and Oren (2007).
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Luminant, March 18, 2009, 20:00-21:00
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Figure 1.8 : Analysis for Luminant. Estimated contracted quantity is 700 MWs .

During the sample period we analyzed however, this is not the case (figure 1.9). NRG
bids significantly below what would be ex-post optimum and most of the time does
not submit any incremental bids. Some small wholesalers usually avoid the balancing
market. It has been suggested that this may be because they do not want to modify
their production schedules.?’ Hortagsu and Puller (2008, [46]) suggest that the high
cost of setting up and operating a real time bidding desk is another reason for smaller
wholesalers’ avoiding incremental bids. However, we do not think either reason holds

for NRG and find their lack of incremental bids rather surprising.

Calpine is one of the biggest electricity producers in the ERCOT region and they

own the most efficient generation fleet. It was also one of the firms Hortagsu and

20Pprivate conversations with real time power traders. Also see [45] and [46].
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NRG, March 18, 2009, 20:00-21:00
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Figure 1.9 : Analysis for NRG. Estimated contracted quantity is 0 MWs.

Puller (2005, 2008) analyzed for the year 2002. Parallel to their results, we found
that, on the decremental side, Calpine’s bids are far from being optimal, although,
we can say that they bid very close to optimum on the incremental side. A general

tendency of Calpine is to use too few bid points (see figure 1.10).

Brazos Electric Power Cooperative (figure 1.11) is one of the smaller wholesalers.
They are using a more refined bidding strategy compared to their bigger rivals and
seem to bid close to their ex-post optimum supply function between 0 and 100 MWs,

but outside that region, their bids are far from being optimal.

The final wholesaler we analyze is Austin Energy, another small producer (figure

1.12). Like Brazos Electric Power Cooperative, they also use a more refined bidding
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Figure 1.10 : Analysis for Calpine. Estimated contracted quantity is -844 MWs.

strategy with the incremental bids closer to their optima compared to the decremental

bids.

Before concluding this section, it is important to note that we had to make many
simplifying assumptions to arrive at these results. First of all, while we did our best
to estimate the cost functions as precisely as possible, the real marginal costs may
depart from our estimates since we assumed that ramprate constraints, upper and
lower operating limits and upper and lower sustainable limits of the generators are
not binding. In addition, we do not explicitly take into account start-up and shut-

down costs, which may be significant.?! Also, the heatrates we use for calculating the

21 Another reason for choosing this specific time period is that the plants running between 20:00
to 21:00 were also running before 20:00 and after 21:00.
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Brazos Electric Power Cooperative,
March 18, 2009, 20:00-21:00
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Figure 1.11 : Analysis for Brazos Electric Power Cooperative. Estimated contracted
quantity is 292 MWs.

marginal cost functions are average figures. In particular, one implication of this last
assumptions is that the marginal cost of a given plant will be a constant function of
quantity, which is not the case in reality. An excellent report by Hirst (2001, [41])

explains all these concepts and their implications in detail.

1.6 Conclusions and Future Research

We presented an alternative tool for modeling the bidding process in electricity spot
markets. We approximate bidders’ supply functions by interpolating their bid data
as well as their marginal cost functions with piecewise cubic splines. This method

gives us differentiable residual demand, and thus, continuous marginal revenue curves.



31

Austin Energy, March 18, 2009, 20:00-21:00
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Figure 1.12 : Analysis for Austin Energy. Estimated contracted quantity is 35 MWs.

Furthermore, as mentioned in Teng et al. (2004, [91]), rather than working with step
functions, ERCOT divides two adjacent bids into up to 100 segments (see the next
figure) in order to calculate the market clearing price. Our method is in essence

dividing two adjacent bids into infinitely many segments.
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Also, having such a flexible tool to calculate the optimal bid curves efficiently
facilitates analyzing many more time periods and circumstances, and allow us to
investigate a wider range of hypotheses about firm behavior and market outcomes.

However, these advantages come at a cost; namely, now each supply function has
up to 3n parameters, where n is the number of polynomial pieces in a given supply
function. This makes it hard to find a closed form solution for the equilibrium con-
ditions. It is also hard now to analyze whether and how learning in this environment
will take place (see [78] and [80] for the linear supply function equilibrium case).

We also showed that, in electricity markets where the competitors’ residual de-
mand functions will necessarily have convex sections, their marginal revenue curves
will have increasing segments. This anomaly may lead to multiple profit maximiz-
ing optima for some players, which, in turn, causes additional uncertainty about the
amount that player will want to supply to the balancing market. We are currently
working on further implications of this anomaly and how to deal with the uncertainty
it creates.

We applied our technique to firms competing in the Texas wholesale market and
found that while the firms with the biggest stakes in the market generally bid closer
to what economic theory predicts,?? they do not fully take advantage of their market
power. Smaller firms still have some chance to bid strategically, even though their
residual demand is much more elastic. However, they do not appear to fully exploit

this opportunity.

22 Another explanation for Luminant’s and Reliant’s success may be that these firms were the
incumbent utilities prior to deregulation. Arguably, they are familiar with the whole system, espe-
cially the transmission grid, more than any of their competitors. This certainly is a comparative
advantage for these two firms. We thank Martin Lin for pointing this out.
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For our analysis, we confined ourselves to those hours during which there are
no transmission constraints. However, the existence of transmission constraints, or
expectation of them, can alter the bidding behavior of the firms. In future research,
we will also incorporate these constraints. Another question we will investigate as an
extension to our analysis is whether allowing the firms to bid smooth functions rather

than step functions would alter their bidding strategies significantly.
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Chapter 2

Electricity Forward Markets and Competition in
Supply Functions: The Case of Risk-Averse Agents

2.1 Introduction

The interaction between forward/futures contracts and the spot price of the under-
lying commodity has attracted the attention of researchers from several fields such
as economics, finance, industrial organization and power systems engineering. In
their seminal work, Allaz and Vila (1993, [2]) show that existence of future trad-
ing in an oligopolistic market, where the oligopolists act non-cooperatively and have
Cournot conjectures, promotes competition and as the frequency of trading increases,
we achieve the competitive outcome.! Contrary to this encouraging result, Ferreira
(2003, [28]) provides a counter-argument to the previous literature on the positive
effects of trading in forward/futures markets on competition, where he shows that
the introduction of futures market may have an anti-competitive effect. Mahenc and
Salanié (2004, [64]) find that under Bertrand competition, equilibrium prices are lower
if there is no forward contracting. Liski and Montero (2006, [58]) show that if the
game is played infinitely, it does not matter if the oligopolists compete in price or

quantity; the possibility of forward trading allows firms to sustain collusive profits

1Even though it is not stated by Allaz and Vila (1993, [2]) and other researchers building on
their model (see, for example, [34] and [15]), it turns out that symmetry of cost functions and
number of players are critical assumptions for this result to hold. In [86], Su provides a three-player
counterexample to the Allaz-Vila result and the existence results for the Allaz-Vila model under
asymmetric cost functions.
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that would not be possible without the existence of forward markets. Green and Coq
(2010, [35]) focus on the length of contracts and find out that the pro-competitive
effect of forward contracting is not guaranteed and by selling “the right amount of
contracts”, firms can sustain prices above marginal cost.? Hughes and Kao (1997 [47])
reconsider the validity of another assumption in the Allaz-Vila model, namely that
the contracts are publicly observable.? They find that if the contracts are not observ-
able, producers prefer not to participate in the forward market and the Allaz-Vila
result fails to hold. Ferreira (2006, [29]) also investigates the effects of observability
on market efficiency but finds that imperfect observability may induce even more
competitive outcomes that those of Allaz-Vila model.*

Endowed with this theoretical background, many researchers applied these ideas
to wholesale power markets. Powell (1993, [73]) is the first to model the producers
and the retailers separately. The risk-neutral producers engage in Cournot competi-
tion and set the quantity in the spot market but the forward price in the contract
market. The retailers are risk-averse and are endowed with mean-variance utility
functions. Under the assumption that the generators do not collude, the competitive
outcome is attained. Green (1999 [34]) analyzes a symmetric duopoly, competing in
supply functions in the spot market, and finds that competition in the contract mar-

ket leads to lower spot market prices. Chung et al. (2004, [18]) have a very similar

2In a remotely related model, Aghion and Bolton (1987, [1]) show that an incumbent firm can
block new entry by signing forward contracts. Newbery (1998, [68]) also investigates the relationship
between forward contracts and entry, and relates these ideas to the competition in the British
wholesale power market. He finds that “if entry remains contestable and the contract market is
reasonably liquid and active ... then the inefficiencies of market power caused by too few generators
are much reduced.”

3In power markets these data are strictly confidential.

4In the aforementioned work by Ferreira (2003, [28]), contracts are observable. In this literature,
researchers almost unanimously agree on the policy recommendation that authorities should make

contracts observable. On the other hand, see an extensive survey by Madhavan (2000, [63]) where
he points out that more transparency does not necessarily mean increased efficiency.
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setup to Green’s (1999 [34]) but they extend Green’s model to multiple asymmetric
firms. Their results are also similar to Green’s. Wolak (2000, [99]) develops a bidding
model with forward contracts, and applies his model to the National Electricity Mar-
ket in Australia, for which he has confidential forward contract data. He finds that
forward contracts are effective in mitigating market power of generators. Kamat and
Oren (2004, [49]), Yao et al. (2007, [106] and 2008, [107]) use a Cournot model over
an electricity network and hence can incorporate transmission constraints into their
model. These papers formulate the model as an equilibrium problem with equilibrium
constraints.> The players are risk-neutral. They find that existence of transmission
constraints, or even a small probability of congestion will result in substantially re-
duced forward contracting but agree with the result that forward contracting miti-
gates market power. Bushnell (2007, [15]) also uses a Cournot model but extends it
to multiple players. Given the assumptions, his corollary 3 states that “the impact of
one round of forward contracting on the Lerner index is equivalent to an increase in
firms to a number equal to the square of the number of firms in the market”. Wang et
al. (2008, [97]) compare the effect of financial options contracts under both Cournot
competition and competition in linear supply functions and find that the mitigation
effect of contracting is higher under linear supply function competition. Niu et al.
(2005, [70]) develop players’ optimal spot market bids given their forward positions,
and test their model with data from ERCOT. Their model is useful in the sense that

it can be used to analyze the effects of different forward contract levels on real-time

5In these models, each generator solves a mathematical problem with equilibrium constraints
(MPEC). In their manuscript, Luo et. al (2006, [62]) describe an MPEC as “an optimization
problem in which the essential constraints are defined by a parametric variational inequality or
complementarity system.” In the studies cited above, the parameter is the competitors’ forward
positions. These models look very promising and in [106] and [107], the authors develop effective
algorithms for solving relatively large systems.



37

market prices. They agree with the conventional view that forward contracts mitigate
market power. In a very recent paper, Holmberg (2011, [43]) models an asymmet-
ric duopoly competing in supply functions, and he also incorporates price caps. His
model also implies that forward contracting has pro-competitive effects.

Coq and Orzen (2006, [21]) test the Allaz-Vila model in an experimental set-
ting. Their results support the view that forward contracting is an effective means of
mitigating market power, but suggest that entry is more effective than introducing
forward markets. Brandts et al. (2008, [14]), in addition to analyzing power markets
modeled with Cournot players, extend these experiments to a supply function compe-
tition setting with quadratic marginal cost functions. In their setting with no demand
uncertainty, they find that under both settings efficiency is improved if forward mar-
kets are introduced. They agree with Coq and Orzen’s (2006, [21]) results in that
availability of forward contracts leads to efficiency gains, but find that the addition
of another producer increases production more than does forward contracting, and
efficiency gains from forward contracting are not guaranteed.

A negative result comes from Sénchez et al. (2009, [81]). They develop an agent-
based simulation model of the Spanish power market. The results of their simulations,
where the agents are risk-neutral, suggest that if forward contracting is voluntary, only
the small players will want to do so, while the dominant players will exercise market
power in the spot market rather than trade forward.

In all of the aforementioned models, which imply that forward contracting in-
creases efficiency, the intuition is that locking in prices by signing forward contracts
decreases market power and spot prices by shrinking the size of the spot market that
(dominant) firms can manipulate. But then a natural question arises which is never

asked in these models (Harvey and Hogan (2000, [38]) are the only ones to explicitly
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raise this question): Why would the dominant firms voluntarily engage in forward
contracting, if it decreases their potential profits? In the Allaz-Vila type settings,
clearly producers do not care about competition; they are trying to achieve the first-
mover advantage by selling forward, but since everyone does the same, a prisoners’
dilemma type result occurs. Others implicitly answer the question by appealing to
the “strategic incentive” of the players:® By increasing its forward sales, a producer
lowers the forward price, and hence its competitors’ forward sales. Left with this
unsold capacity, the competitors have to bid more aggressively in the spot market.
Again, since each player will want to behave the same way, they collectively end up
worse-off.

Leaving Powell’s work (1993) aside, none of these papers models the buyers in the
contract market. Another common attribute in these models is that the players are
risk-neutral. In our opinion, the risk-neutrality assumption should be dropped. Power
generation technologies are extremely capital intensive investments. In a report pre-
pared for members and committees of the US Congress, Kaplan (2008, [50]) estimates
that power plants cost above $2,100 per kilowatt, with the exception of combined cy-
cle natural gas plants (31,200 per kilowatt). In particular, a kilowatt capacity of a
nuclear plant costs well above $3,000. In light of these data, when modeling wholesale
power markets it is only natural to think that generators are risk-averse agents, who
want to recover their investment costs without too much exposure to volatile power
prices. While generators’ risk preferences may change over time, that is, as they
recover their fixed costs, our conversations with professionals from the industry rein-
forces our intuition that even then, generators are risk-averse players. The retailers,

on the other hand, operate on very narrow margins, hence, arguably, they are even

6See, for example, [34], [18] and [43].
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ERCOT real time prices, 02/02/2011
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Figure 2.1 : ERCOT power prices under extreme weather conditions. Mean

power price: $783.22, range: $3,004.74, standard deviation: $1188.96. Source:
www.ercot.com

more risk-averse than the generators. They try to mitigate the effects of power price
volatility, and as can ben seen in figure 2.1, this volatility may be extreme, especially
under severe weather conditions.” Bessembinder and Lemmon (2002, [9]) model both
the generators and retailers as risk-averse agents. While they assume the generators
choose quantities (rather than a supply function) in the spot market, their model is
more general in the sense that cost functions range from quadratic to quintic. The
advantage of this approach is that the authors can account for the fact that when
demand is very high, inefficient peaking plants start running and we observe a supply

stack that resembles a “hockey stick”. The results of their analyses imply that the

"Currently, offers are capped at $3000/MWh in ERCOT.
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forward power price is a biased forecast of the expected spot price. They also come
up with equations describing producers’ and retailers’ optimal forward positions.
Another assumption in many of these models (see, for example [34] and [18])
that we find disturbing is that “a sufficiently large proportion of the buyers in the
contract market are risk-neutral with rational expectations, and will therefore drive
the contract price to equal the expected spot price”, that is to say, there is no risk

premium. In light of the empirical evidence®, we also drop this assumption.

A brief description of wholesale power markets

Before we go into the details of our model, we give a brief description of the nature
of competition in a wholesale power market.

Producers generate electricity from many different sources with varying marginal
costs. The overall marginal cost of a power producer is a non-decreasing function
of quantity (“merit order”). Since the main determinants of production costs, the
fuel used and the heat rates,” are common knowledge, each producer can estimate its
competitors’ cost functions with a great deal of accuracy.!?

Power producers sell electricity in the wholesale market to large industrial cus-
tomers and retailers. Retailers add a mark-up and sell electricity to their customers.
Since electricity cannot be stored in a cost effective way to alleviate price spikes,

market participants trade forward contracts to smooth out their income streams.

8See, for example, Longstaff and Wang (2004, [61]).

9Heat rate is an input-output measure of efficiency of a power plant and tells how much heat
energy is required (measured in Btu’s-British thermal units) to produce one kilowatt-hour of energy.
It implicitly assumes a linear short-run production technology.

10T here is no heat rate associated with hydroelectric plants, wind turbines and solar cells but the
short run marginal costs of these sources are essentially zero - except for hydroelectricity based on
stored water, where the short run cost is essentially the opportunity cost of the water. In many
systems, such as ERCOT, however, there is little such capacity.
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In the next section we develop a stylized model of a wholesale power market, where
the players as risk-averse agents. While this complicates the algebra quite a bit, we
believe it is an indispensable feature of the players in power markets. Since electricity
is not storable at the wholesale level, and supply and demand should balance at all
times, buy-hold-sell type of strategy is not an option and hence basing our arguments
on the expectation that forward and spot power prices would converge is not very
logical'’. In an effort to represent the bidding behavior in today’s wholesale power
markets more realistically, we also model the spot market as one where the players

compete with supply functions.

2.2 Model

We model a wholesale market with set M = {G}, Gy, ..., G, } of risk averse generators

and set N = {R1, Ry, ..., R,} of risk averse retailers endowed with the utility function

ug(mg) = —e ™ ke MUN, (2.1)

where +;, is the risk aversion parameter of £ and 7 is its profit function:

TG, (p) =D 4c; (p) + (f - p) TG — CGi (QGi (p))’ (2'2)

if k£ is a generator, and

7R, (TR;) = qr, - (PR — D) + zR, - (P — f), (2.3)

11 A party which has a contract to purchase power also has to arrange a buyer (“sink”) for that
power because of suppy-demand and non-storability constraints. As also pointed out in [9], occa-
sionally some power marketers default on their power purchase agreements, not because they cannot
afford to honor their contracts, but because they cannot arrange a sink.
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if k is a retailer.

Generator i’s aim is to maximize its expected utility of profits where the term
(f —p)zg, in its profit function represents the “two-way contracts for differences”: a
generator needs to refund its customers if the spot price p exceeds the contract price
f and vice versa. Retailers serve their demand (gg,) at a fixed price (pg), hedge their
positions in the contract market and try to maximize their expected utility of profit.

The generators are characterized by quadratic cost functions given by Ci(gg,) =
0.5ciqéi + aiqg, for all i = 1,2,...,n, which leads to an affine marginal cost function
for each generator:

dC;(qc,
MC; = M =cqc, +ai, 1=12,..,n. (2.4)

dgc,
In order to ensure strict convexity of the cost functions, we assume that ¢; > 0
for all 4.

Generators compete with nondecreasing and affine supply functions

0 if p<maz{0,—a;/G:}
gc.:(p) = i=1,2,..n, (2.5)

o, + Bip if p>maz{0,—a;/6;}

by choosing «; and 3;2.
Generators also compete in the forward contract market by selling zg,, i =1,...,m
units of contracts to the retailers. Retailers’ demand for the forward contracts is

denoted by zg,, ¢ =1,...,n.

120Qur model is more general than it actually looks since we can interpret supply as net of baseload
generation (hydro, nuclear and large coal plants) and variable and intermittent generation sources
such as wind and solar. Analysis of generators’ marginal cost curves also shows that over a very
wide range of output (again, net of baseload and peak demand), marginal costs are approximately
linear. This point is also stressed in [34] and [101].
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We assume 7g, and 7g, are distributed normally, where randomness is coming
from the inelastic market demand, denoted by Q). Let u denote the expected profit

of player i € M U N and o? denote its variance. Then:

Lemma 2.2.1. For player i € M U N, maximizing its expected utility of profit boils

down to mazximizing the expression
p— 70"

Proof. Expected utility of profit is equal to

i (o) g,

o 2
/—e‘"’""dN(m) - /—e"”’rie—%("ﬁ?ﬁ) dm; =

o\ 2r

1 -
— [ —e
vl

Noting that (ym;20% + (m; — p)?) = ((m — p+ 702))2 — v02(yo? — 2p4), we can write

the above expression as

_e—“r(uJ‘z’—z)[ 1 /_e—ﬁz(m—(u—wz))zdm}

oV 2T

But the quantity inside the square brackets is the integral of the pdf of a normal

2

random variable with mean p — o2 and variance o2 over its full support, hence it is

equal to 1. It follows that, the objective of ¢ is to maximize p — %702. O

2.2.1 Equilibrium in the Spot Market

We start solving our model at the spot market stage, taking the contract positions of
the players as given.
Empirical evidence suggests that, as the spot market approaches, the system oper-

ator and the wholesalers can determine the system load with a great deal of accuracy.
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This implies that generator i’s problem at the spot market stage can be written as **

max 7, (p) = pac;(p) + (f —p)zc; — Ci(gc; (p)). (2.6)

Market demand, @, which is equal to the total retail demand " gg, will be satisfied

i=1

m m

by total generation, given by ) qg,. This implies that g5, = @ — _ qg,. Then we
i=1 i

can write (2.6) as

max p(Q—Z gc,(p) —:Uci> +fzg— -;—c,- (Q— Z q9G; (P)) 2 —a; (Q—Z q9c; (10))

J#i J# J#
2.7)

with the first-order condition

qc;(p) — za, — (p — a; — ¢igg, (p)) (Z@) =0, i=1,2,..,m" (2.8)

J#i

By (2.5), we can write (2.8) as

o + fip = zg, — (a; + i) (Zﬁj) +(1- Ciﬁi)(Zﬁj)P (2.9)

J# J#

13G; can estimate the generation stack and the (inelastic) market demand. Hence, given its own
bids, it also knows whether it is going to be dispatched or not (g¢g,). Here, it is implicitly assumed
that G; has an idea as to what G; bid for that day.
n
14Where no confusion arises, we drop the limits from the summation sign. So 5~ a; means 3 a;
i=1
and so on.
15By equation (2.5), the second-order condition is

5 -(za) (o)

J#L J#

which is non-positive since for all 7, ¢; and §; are positive. Hence, the solution to (2.8) is indeed the
maximizer.
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which should hold for any value of p, hence we have

o; = zg, — (a; + c;oy) (Z ,6J> (2.10)

J#i

and

Bip = (1—c;f3) (Zﬁ,) (2.11)

J#i

which together give
TG, — ai 3 B
J#
o= — 7' 2.12
¢ ]. + C; Z ,Bj ( )
J#
and
JF
= 2.13
J#i
From this point on, we assume that the producers use identical generating technologies
and treat them as symmetric players.

Given the symmetry assumption, total physical production is

ZQG, ; (o + Bip) = 1+c(nlz_1)ﬁ[2xci—am(m—l)ﬁ+m(m——1)ﬁp .

(2.14)

Equating total physical production to market demand Q = > qr, we get

(1+c¢(m—-1)B)Q +am(m—1)8 - X
m(m — 1)

p= , (2.15)
where X = Y g, = ) g, is the total forward position. It is clear from equations
(2.13) and (2.15) that forward positions of generators have no effect on the equilibrium

supply functions but the equilibrium spot price is decreasing in the total forward
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position.

We can express generator i’s production as

96, = i + Bip (2.16)
_ zg,—a(m—1)8 (m—-1)8 (1+cm-1)8)Q+am(m—1)8—-X
T 14em—-1)8 1+c(m-1)p m(m — 1)p

mzg, —am(m —1)B + (1 +c(m —1)8)Q + am(m — 1) — X

— 2.17
m[l + e(m — 1)5] (217)
To simplify the notation, let z := m(m —1)8 and ¢ := 1 + ¢(m — 1)3. Then
pzaz—X—i-tQ, (2.18)
z
and
— X+t
g, = L2C " +iQ (2.19)
m

2.2.2 Equilibrium in the Contract Market

Following Bessembinder and Lemmon (2002, [9]), we model the contract market as a
closed system. Given the spot price and quantity calculated ab<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>