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ABSTRACT 

Spontaneous Emergence of Hierarchy in Biological Systems 

by 

Jiankui He 

Hierarchy is widely observed in biological systems. In this thesis, evidence from na-

ture is presented to show that protein interactions have became increasingly modular as 

evolution has proceeded over the last four billion years. The evolution of animal body 

plan development is considered. Results show the genes that determine the phylum and 

superphylum characters evolve slowly, while those genes that determine classes, families, 

and speciation evolve more rapidly. This result furnishes support to the hypothesis that 

the hierarchical structure of developmental regulatory networks provides an organizing 

structure that guides the evolution of aspects of the body plan. Next, the world trade 



network is treated as an evolving system. The theory of modularity predicts that the 

trade network is more sensitive to recessionary shocks and recovers more slowly from 

them now than it did 40 years ago, due to structural changes in the world trade network 

induced by globalization. Economic data show that recession-induced change to the world 

trade network leads to an increased hierarchical structure of the global trade network for 

a few years after the recession. In the study of influenza virus evolution, an approach for 

early detection of new dominant strains is presented. This method is shown to be able to 

identify a cluster around an incipient dominant strain before it becomes dominant. Re-

cently, CRISPR has been suggested to provide adaptive immune response to bacteria. A 

population dynamics model is proposed that explains the biological observation that the 

leader-proximal end of CRISPR is more diversified and the leader-distal end of CRISPR 

is less diversifed. Finally, the creation of diversity of antibody repertoire is investigated. 

It is commonly believed that a heavy chain is generated by randomly combining V, D and 

J gene segments. However, using high throughput sequence data in this study, the naive 



iv 

VDJ repertoire is shown to be strongly correlated between individuals, which suggest 

VDJ recombination involves regulated mechanisms. 



Acknowledgments 

First and foremost, I would like to thank my adviser Dr. Michael W. Deem for his 

guidance and support through my years at Rice. I am really fortune to have him as my 

advisor. I would also like to acknowledge the advice and support of Dr. Jun Sun and 

Dr. Ramdas Pophale. I am grateful to Keyao Pan and Dirk Lorenz for many discussions 

I had. 

Finally, I would like to dedicate this thesis to my fiancee Van Zeng. 



Contents 

Abstract ii 

Acknowledgments v 

List of Figures xu 

List of Tables xxi 

1 Introduction 1 

1.1 The big pictures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 

1.2 Organization of the thesis ... . . . . . . . . . . . . . . . . . . . . . .. 6 

I Hierarchy in evolving systems 12 

2 Spontaneous emergence of modularity 13 

2.1 Introduction.................................. 13 

2.2 A definition of compositional age . . . . . . . . . . . . . . . . . . . . .. 15 



vii 

2.3 Compositional age and evolutionary rate . . . . . . . . . . . . . . . . .. 19 

2.4 Growth of modularity in the protein-protein interaction network . . . .. 19 

2.5 Growth of modularity in the domain-domain interaction network. . . .. 27 

2.6 Conclusion................................... 31 

3 Hierarchical evolution of animal body plans 33 

3.1 Introduction.................................. 33 

3.2 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . .. 38 

3.2.1 Sea urchin gene regulatory network . . . . . . . . . . . . . . . .. 38 

3.2.2 Ratio of nonsynonymous substitution to synonymous substitution 

of genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39 

3.3 Results..................................... 42 

3.3.1 Evolutionary rate in hierarchy . . . . . . . . . . . . . . . . . . .. 42 

3.3.2 Generative entrenchment . . . . . . . . . . . . . . . . . . . . . .. 45 



viii 

3.3.3 Time of appearance of regulatory genes . . . . . . . . . . . . . .. 48 

3.4 Discussion ............................. ··.··· 50 

4 Structure and Response in the World Trade Network 54 

4.1 Introduction.................................. 54 

4.2 Results..................................... 57 

4.2.1 Measure of hierarchy by CCC . . . . . . . . . . . . . . . . . . .. 57 

4.2.2 Evolution of structure in world trade . . . . . . . . . . . . . . .. 60 

4.2.3 Response of world trade to recessions . . . . . . . . . . . . . . .. 66 

4.3 Conclusion................................... 71 

II Influenza virus evolution 73 

5 Prediction of incipient dominant influenza strain by clustering 74 

5.1 Introduction.................................. 74 



ix 

5.2 Results..................................... 78 

5.2.1 Evolutionary path of 2009 A(H1N1) influenza . . . . . . . . . .. 78 

5.2.2 Low-dimensional clustering. . . . . . . . . . . . . . . . . . . . .. 81 

5.2.3 H3N2 virus evolution for 38 years . . . . . . . . . . . . . . . . .. 87 

5.2.4 Influenza vaccine strain selection .................. 89 

5.2.5 Demonstration of low-dimensional sequence clustering method. 95 

5.2.6 Prediction for H3N2 influenza in 2009-2010. 98 

5.2.7 Comparison with previous results. . . . . . . . . . . . . . . . . .. 101 

5.2.8 Detecting A/Wellington/1/2004 in the 2004 flu season in the South-

ern hemisphere . . . . . . . . . . . . . . . . . . . . . . . . . . .. 106 

5.2.9 Detecting A/California/4/2004 as a future dominant strain. . .. 108 

5.3 Discussion................................... 112 

5.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . .. 114 

5.4.1 Data sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 114 



x 

5.4.2 Geographical spread pattern of 2009 A(H1N1) . . . . . . . . . .. 115 

5.4.3 Multidimensional scaling . . . . . . . . . . . . . . . . . . . . . .. 116 

5.4.4 Biases in the data. . . . . . . . . . . . . . . . . . . . . . . . . .. 121 

III Bacterial and animal immune systems 122 

6 Heterogeneous Diversity of Spacers within CRISPR 123 

6.1 Introduction.................................. 123 

6.2 Results..................................... 125 

6.2.1 Differential equation model ..................... 126 

6.2.2 Stochastic simulation model . . . . . . . . . . . . . . . . . . . .. 133 

6.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . .. 137 

6.3 Conclusion................................... 140 

7 Regulated mechanism in antibody VDJ recombination 142 



xi 

7.1 Introduction.................................. 142 

7.2 Results..................................... 144 

7.2.1 Correlation in the naive VDJ repertoire. . . . . . . . . . . . . .. 144 

7.2.2 Regulated model of VDJ recombination. . . . . . . . . . . . . .. 152 

7.3 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . .. 159 

8 Conclusion 161 

References 163 



List of Figures 

2.1 Distribution of conserved sequences with compositional age to find (a) age 

of LUCA, and (b) divergence time of fungi. 16 

2.2 The dN / dB and compositional age of proteins in B. cerevisiae. As mea-

sured by the average dN / dB, newer genes are evolving more rapidly than 

older genes. The correlation coefficient is R2 = 0.82 . . . . . . . . . . .. 20 

2.3 The degree distribution of the B. cerevisiae domain-domain interaction 

network. 21 



xiii 

2.4 The reordered topological overlap matrix of the E. coli protein interaction 

network constructed from proteins whose compositional age are larger than 

12.8 (a), 12.6 (b), and 12.2 (c). (d) The linear relationship between com-

positional age and real age. (e) and (f), The banded modularity evolution 

of E. coli and S. cerevisiae, respectively. The lines of different color in (e) 

and (f) correspond to different band sizes (W). 23 

2.5 Evolution of module modularity of protein interaction network in E. coli 

( a) and S. cerevisiae (b). 27 

2.6 (a) Average number of proteins in a module at different compositional 

ages, (b) Size of network in different compositional age network. 28 

2.7 Evolution of banded modularity of domain-domain interaction network in 

E. coli (a) and S. cerevisiae (b). 28 

2.8 Domain interaction network modularity evolution in E. coli (a) and S. 

cerevisiae (b). Score is the inverse of modularity. 31 



xiv 

3.1 The gene regulatory network of sea urchin endomesoderm specification up 

to 30 hours. The top five genes form the kernel. . . . . . . . . . . . . .. 40 

3.2 The hierarchy of the gene regulatory network and functions at different 

levels of development of the body plan. 41 

3.3 The ratio of the rate of non-synonymous substitutions to the rate of syn-

onymous substitutions for different components of the gene regulatory net-

works that control the development of animal embryos. 44 

3.4 The earliest appearance time of regulatory genes for kernels, plug-ins and 

I/Os as experimental data available(Davidson et al., 2002). 47 

3.5 The distribution of dN/dS for each hierarchical level. P(dN/dS) is the 

probability of a gene with the dN/dS in specific hierarchical level. . . .. 48 

4.1 Dendrogram representation of trade networks for selected countries at 1969 

(top figure) and 2007 (bottom figure). 58 



xv 

4.2 The CCC from 1969 to 2007. The upper right insert is the ratio of total 

world trade to world GDP. The lower left insert is the total world trade in 

units of US dollar. .............................. 61 

4.3 The trade share matrix Sij = M ij / (L:~=1 M im + L:~=1 M jn ) after hier-

archical clustering between countries in 2007. 64 

4.4 (a) The ratio of the total world excluding the USA GDP change (per-

centage) to the change of the USA GDP (percentage) in 5 recessions, 

F in the y axis. (b) Impulse response analysis of spread of recession. 

The world GDP change is plotted as a function of the CCC. The reduc-

tion in the world GDP is greater when the CCC value is low. Insert 

figure: The GDP recovery from recession can be well fit by the relation 

Y(t) f'"J Y(oo) - aexp( -At). Yearly recovery rates, A, are shown versus 

the CCC. In accord with theory, the recovery rate is positively correlated 

with the CCC. 68 



xvi 

5.1 The evolutionary path of 2009 A(H1N1) influenza. 82 

5.2 (a), Kernel density estimation for the protein distance map of 2009 A(H1N1) 

influenza as of December 5, 2009. (b), The protein distance map of 2009 

A(H1N1) influenza. 84 

5.3 (a) The protein distance map and (b) corresponding Kernel density esti-

mation of influenza from 1968 to 2007. . . . . . . . . . . . . . . . . . .. 90 

5.4 (a) Kernel density estimation and (c) protein distance map for H3N2 

viruses between October 1, 2002 and February 1, 2003. (b) Kernel density 

estimation and (d) protein distance map for H3N2 viruses between Oc-

tober 1, 2001, and September 9, 2002. A 0.0030 unit of protein distance 

equals one substitution of the HAl protein sequence of H3N2. . . . . .. 99 



xvii 

5.5 (a) Kernel density estimation and (c) protein distance map for H3N2 

viruses from October 1, 2008, to June 14, 2009. (b) Kernel density es-

timation and (d) protein distance map for H3N2 viruses between October 

1, 2008, and March 30,2009. A 0.0030 unit of protein distance equals one 

substitution of the HAl protein sequence of H3N2. ............ 102 

5.6 (a), Kernel density estimation for the protein distance map for H3N2 

viruses between 10/01/2003 and 09/30/2004. (b), Kernel density estima-

tion for the protein distance map for H3N2 viruses between 10/01/2003 

and 02/01/2004. (c), Protein distance map for H3N2 viruses between 

10/01/2003 and 09/30/2004. We plot a dotted line to separate the two 

clusters. (d), Protein distance map for H3N2 viruses between 10/01/2003 

and 02/01/2004. The vertical and horizontal axes of all figures represent 

protein distance. A 0.0030 unit of protein distance equals one mutation of 

the HAl protein sequence of H3N2. .................... 109 



xviii 

5.7 Plot of Euclidean distances of proteins as in Fig. 5.4( d) on x-axis and plot 

of distance of corresponding proteins in y-axis. Closeness to the diago-

nal measures fidelity of the low dimensional projection. A 0.0030 unit of 

protein distance equals one mutation of the HAl protein sequence of H3N2. 118 

6.1 A schematic representation to describe CRISPR-phage dynamics. .... 127 

6.2 Diversity of two spacers of CRISPR with time. .............. 132 

6.3 Diversity of spacers at different positions of CRISPR, when the system 

reaches steady state. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 136 

6.4 Diversity of spacers of CRISPR loci 1 of S. thermophilus strains[71]. The 

positions with a small number in the x-axis are leader-proximal. . . . .. 138 

6.5 Diversity of spacers of CRISPR loci of Leptospirillum species. The data 

are noisy because the CRISPR loci sequence data of Leptospirillum are 

fragmented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 139 



xix 

7.1 VDJ repertoire correlation analysis for all 14 fish. (a) Correlation of VDJ 

repertoire with highly expressed VDJ combinations removed. (b) His-

togram of correlation of VDJ repertoire with the top 2% of most expressed 

VDJ combinations removed. In both figures, the simulation is conducted 

by randomly swapping the sequence reads between VDJ combinations. 146 

7.2 Naive and activated VDJ repertoire correlation analysis for all 14 fish. . 148 

7.3 Correlation matrix of the activated VDJ repertoire. Only fish 4 and 6, fish 

12 and 13 have strong correlations. . . . . . . . . . . . . . . . . . . . .. 149 

7.4 (a) Correlation Dn between naive VDJ repertoire T[Jk(N) and model esti-

mation P[Jk. (b) Fitting quality as illustrated by fish 5. ......... 154 

7.5 ~n(v) as estimated from the model for all 39 V segments in 14 fish. .. 155 

7.6 Average Pi(V) over 14 fish. ......................... 156 



xx 

7.7 Pr:(J) as estimated from the model for all 5 J segments in 14 fish. Fish 

10 and 14 have distinct probability distribution. Recall in Figure 7.4(a) 

that the model prediction fits the data of fish 10 and 14 less well than the 

other fish. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157 

7.8 Average Pk(J) over 14 fish. ......................... 158 



List of Tables 

3.1 Evotionary rate of regularoty genes III pairs of organisms (Org.1 and 

Org. 2). Group 1 are kernels, group 2 are plug-ins, group 3 are I/O, 

group 4 are batteries. STRPU: Strongylocentrotus purpuratus, PATVU: 

Patella vulgata, ASTM: Asterina miniata, HEMPU: Hemicentrotus pul-

cherrimus, PARLI: Paracentrotus lividus, HELER: Heliocidaris erythro-

gramma, HELTB: Heliocidaris tuberculata, LYTVA: Lytechinus variegatus. 52 

3.2 P-value of Wilcoxon test for different hierarchical levels. The hypothesis 

for the Wilcoxon test is that two independent samples come from distri-

but ions with the same median. . . . . . . . . . . . . . . . . . . . . . . .. 53 

5.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 105 

5.2 The geographical spread pattern of 2009 A(H1N1). "Others" refers to 

other countries except USA and Mexico. . . . . . . . . . . . . . . . . .. 116 



xxii 

5.3 Consensus strain 1 is the calculated from all strains in the cluster on the 

right side of Figure 5.5(c). Consensus strain 2 is the calculated from all 

strains in the cluster on the left side of Figure 5.5(c). . . . . . . . . . .. 119 



Chapter 1 

Introduction 

The main goal of the research topic in this Doctoral Thesis is the statistical inves-

tigation of the modularity, diversity, and stochasticity in evolving systems. This thesis 

contains three parts covering modularity and hierarchy, influenza virus evolution, and 

immune systems [63, 60, 61, 62, 59]. 

1.1 The big pictures 

The main theme of biology in twentieth-century is an attempt to reduce biological 

phenomena to the behavior of molecules [57]. Enormous success has been achieved with 

this approach. However, a discrete biological function can only rarely be attributed to 

an individual molecule. In most cases, biological behavior and functions arises from 

the complex interactions of proteins, genes and many other components. For example, 

the signal transduction systems involves signal receptors, chemical messagers, molecules 
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for amplifying signals, proteins related to gene expression and so on. To understand 

the organization of complex interaction networks of molecules, we need new concepts to 

describe the "design principles" of biological systems, profoundly shaped by evolution. 

We argue here that "hierarchy" is a critical level of biological organization. 

Hierarchy and modularity are prevalent in biology. Generally, a "module" is a sub-

network that has more internal edges than external edges, or is composed of features that 

act together in performing some discrete function that is semi-autonomous in relation 

to others. For example, some proteins are composed of several domains with indepen-

dent function. Each domain in these proteins is a module. The gene regulatory network 

that control the animal body plan development is also organized into modules. Differ-

ent modules controls development of different patterns. Modules are often hierarchically 

organized and hierarchy is a multi-level organization of modularity. Hierarchy is also 

observed in other fields. In the world trade, economies of individual countries organize 

into groups, or modules, that trade more with other countries in the group than with 
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countries outside the group. For example, the US, Mexico, and Canada trade more with 

each other than with other countries. These trading groups organize into higher-level 

groups and so on. In this way the world trade network organizes into a hierarchical 

structure. 

Modularity arises in the evolution. Recent studies have proposed the theory of evo-

lution of modularity in rugged landscape [113, 120, 118, 119, 19, 156, 128]. This theory 

can be summarized in the formula: 

M' 
PE =

R 
(1.1) 

Here, PE is environmental pressure, R is the resistance to evolving, and M' is the rate 

of change of modularity. This theory state that in the rugged fitness landscape, where 

evolution is relatively slow, the rate of change in modularity is proportional to environ-

mental pressure. According to this theory, the modularity is inevitable in evolution under 

three conditions: 1, the evolution is in a rugged fitness landscape and therefore relatively 
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slow; 2, the environment is changing; and 3, horizontal gene transfer is present. We will 

show in Chapter 2 that the growth of modularity in the evolution of protein interaction 

and domain interaction networks. 

Hierarchy can increase the evolvability of biological systems [107, 126, 31, 91]. The 

space of all genotype is exponentially large. For example, random searching for fitness 

maxima in the landscape seems costly and nearly impossible even on the evolutionary 

time scales. For example, a single nucleotide mutation in the genome rarely increase the 

fitness. But a system that can be decomposed into modules can evolve one module at a 

time. Since the subspace of modules is much smaller than the whole space of all genotype, 

it is much easier and faster to find the local fitness maxima in modules. Also, a modular 

structure to the molecules of life allows for biological information to be stored in pieces. 

Evolution can proceed not just by changing one base of the genetic code or movement 

of one atom or amino acid at a time, but rather by exchange of these functional pieces 

among living organisms. In addition, embedding particular functions in the discrete 
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modules allows the core function of a module to be robust to change, and allows for 

changing of cell's function and properties by alerting the connections between modules. 

We will show in Chapter 3 that the evolution of animal body plan occurs in a hierarchical 

way, in which the the core modules are resistant to change and the periphery modules 

evolve much faster. 

Hierarchy can increase the robustness of the systems [77]. Robustness enables the 

system to main functionalities again external and internal perturbations. Because the 

weak interactions between modules can buffer the effect of perturbation, hierarchy retains 

the impacts of a perturbation within a single module, while minimizing the effects on the 

whole systems. We will show in Chapter 4 that hierarchy in the world trade network can 

help countries to recover more quickly from recessions and to reduce the loss in recessions. 
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1.2 Organization of the thesis 

This thesis is organized into 3 parts. The first part discusses the modularity and 

hierarchy in evolving systems. The second part discusses influenza virus evolution and 

influenza vaccine design. The third part discuss the bacterial immune system CRISPR 

and VDJ recombination in animal immune systems. This thesis contains 6 different 

chapters. Each chapter documents findings from a different research projects and is 

self-contained. 

Chapter 2 documents the spontaneous of modularity in biological systems [63]. Thea-

ries of protein structure postulate a universal, primordial diversity of folds, from which all 

proteins are constructed. It has been further argued that an increasingly diverse array of 

selective pressures upon proteins as evolution has proceeded may have lead to compart-

mentalization of protein functions into discrete modules. Scant evidence exists to date 

as to whether modularity has increased or decreased with evolutionary progress. Here 
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we show that protein interactions became increasingly modular as evolution proceeded 

over the last four billion years. We also introduce a new method to determine the diver-

gence time of a protein. We suggest that the modularity of protein interactions arose as 

the mechanism by which the increasingly large and complex protein interaction network 

maintained the ability to evolve. As evolution proceeded, and the diversity of species 

increased and the environment changed, proteins became more modular and specialized 

in their interactions. 

Chapter 3 documents the hierarchical evolution of animal body plan development [60]. 

An open question in animal evolution is why the phylum- and superphylum-Ievel body 

plans have changed so little, while the class- and family-level body plans have changed so 

greatly since the early Cambrian. Davidson and Erwin [32] proposed that the hierarchical 

structure of gene regulatory networks leads to different observed evolutionary rates for 

terminal properties of the body plan versus major aspects of body plan morphology. 

In this chapter, the speed of evolution of genes in these gene regulatory networks is 
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calculated. We found that the genes which determine the phylum and superphylum 

characters evolve slowly, while those genes which determine the classes, families, and 

speciation evolve more rapidly. This result furnishes support to the hypothesis that 

the hierarchical structure of developmental regulatory networks provides an organizing 

structure which guides the evolution of aspects of the body plan. 

Chapter 4 documents the structure and response in world trade network [62]. We 

examine how the structure of the world trade network has been shaped by globalization 

and recessions over the last 40 years. We show that by treating the world trade network 

as an evolving system, theory predicts the trade network is more sensitive to recessionary 

shocks and recovers more slowly from them now than it did 40 years ago, due to structural 

changes in the world trade network induced by globalization. We also show that recession-

induced change to the world trade network leads to an increased hierarchical structure 

of the global trade network for a few years after the recession. 

Chapter 5 documents the evolution of influenza viruses [61]. Influenza has been 
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circulating in the human population and has caused three pandemics in the last century 

(1918 H1N1, 1957 H2N2 and 1968 H3N2). The 2009 A(H1N1) was classified by World 

Health Organization as the fourth pandemic. Influenza has a high evolution rate, which 

makes vaccine design challenging. We here consider an approach for early detection of 

new dominant strains. By clustering the 2009 A(H1N1) sequence data, we found two main 

clusters. We then define a metric to detect the emergence of dominant strains. We show 

on historical H3N2 data that this method is able to identify a cluster around an incipient 

dominant strain before it becomes dominant. For example, for H3N2 as of 30 March 

2009, the method detects the cluster for the new A/British Columbia/RV1222/2009 

strain. This strain detection tool would appear to be useful for annual influenza vaccine 

selection. 

Chapter 6 documents the bacterial immune systems [59J. Clustered regularly inter-

spaced short palindromic repeats (CRISPR) in bacterial and archaeal DNA have recently 

been shown to be a new type of antiviral immune system in these organisms. We here 



10 

study the diversity of spacers in CRISPR under selective pressure. We propose a popu-

lation dynamics model that explains the biological observation that the leader-proximal 

end of CRISPR is more diversified and the leader-distal end of CRISPR is more con-

served. This result is shown to be in agreement with recent experiments. Our results 

show that the CRISPR spacer structure is influenced by and provides a record of the 

viral challenges that bacteria face. 

Chapter 7 documents VDJ recombination in animal immune systems. It is commonly 

thought that the VDJ recombination is a random process and therefore there should 

be no correlation in the antibody repertoire. We developed computational methods to 

construct the naive antibody repertoire from high throughput zebrafish sequence data. 

We found that the naive VDJ repertoire are strongly correlated between individual fish, 

which suggest VDJ recombination involves regulated mechanisms. We further propose a 

model that the frequency of a particular VDJ combination is determined by the product 

of frequency of its V, D and J gene segments. This model can produce the original data 
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and it provides insight on how VDJ recombination is regulated. This study allow us to 

understand the creation of the diversity of immune response and direct experiments to 

uncover the mechanism of VDJ recombination. 
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Part I 

Hierarchy in evolving systems 



Chapter 2 

Spontaneous emergence of modularity 

2.1 Introduction 

Modularity and hierarchy are ubiquitous in biology, compartmentalizing information 

of and interactions among genes and proteins [104, 57, 17,23]. Levels of hierarchy span 

atoms, amino acids, secondary structures, proteins, pathways, cells, tissues, organs and 

organisms [84, 116, 105]. Physical methods have been used to characterize modularity 

in network systems [81, 115]. For example, selection for stability of function has been 

shown to lead to modular networks [124]. Network motifs have been identified for the 

transcriptional regulation network of E. coli [106]. Once modularity has arisen, so that 

the environment a species faces is modular, these modularly varying goals were shown to 

select for modular structure [76, 9]. A number of other theories have been put forward 

that suggest modularity may grow with evolutionary progress [120, 118, 119, 19, 156, 128]. 

There are suggestions that by being modular, for example, a system will be more robust 
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to perturbations and more evolvable [107, 126, 31, 77, 91]. On the other hand, there is a 

selective pressure for evolvability in a population evolving in a changing environment [38]. 

It has been hypothesized, therefore, that modularity will arise spontaneously in a popula-

tion of individuals evolving in a changing environment [34]. Support for this hypothesis 

had been elusive [51], until the recent theoretical evidence that environmental change 

coupled with horizontal gene transfer inevitably and generically leads to the evolution of 

modular structures [113]. To date, experimental evidence in support of these theories has 

been difficult to come by, since we can not go back in evolutionary time to observe growth 

of modularity. By introducing a method to date the divergence time of proteins and a 

quantitative definition of modularity, we here show that modularity in protein-protein 

and domain-domain interaction networks has grown as evolution proceeded over the last 

3.5 billion years. 
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2.2 A definition of compositional age 

To study modularity in biology, both a quantitative definition of modularity and a 

calibration of evolutionary time for the biological objects of interest are needed. In this 

study, the compositional age approach is used to quantify the divergence time of a protein 

[112]. In this method the order of appearance of the amino acids over evolutionary time 

is identified. Proteins that contain a greater fraction of the oldest amino acids are then 

identified as arising earlier than those proteins that contain a greater fraction of the newer 

amino acids. By averaging the compositional age of each of the proteins in a species, 

the average evolutionary time of that species is determined. In this chapter, we make 

this method quantitative, calibrating it upon evolutionary time points over the last 3.5 

billion years. 

To find the time of divergence of the earliest proteins, 9 bacteria, 3 archaea, and 

4 eukaryotic organisms are selected to find the conserved sequences presumed to have 
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Compositional Age Compositional Age 

(a) (b) 

Figure 2.1 Distribution of conserved sequences with compositional age to find (a) age of 

LUCA, and (b) divergence time of fungi. 

arisen from LUCA (Last Universal Common Ancestor). The bacterial species are A. 

aeolicus, T. maritima, D. radiodurans, F. nucleatum, T. pallidum, C. glutamicum, C. 

acetobutylicum, S. aureus, and E. coli. The archae a species are A. fulgidus, S. solfatar-

icus, and P. aerophilum. The eukaryote species are C. elegans, S. cerevisiae, S. pombe, 

and D. melanogaster. All the sequence data come from EMBL-EBI. Using the software 

CONSER V (http://www.gen-info.osaka-u.ac.jp/ngoto/CONSERV I), 2163 conserved se-

quences are found with greater than 7 amino acids that appear in all the three kingdoms 
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and in at least 8 proteins. The compositional age for these sequences is calculated. A 

histogram is shown in Fig. 2.1(a). The distribution of compositional age peaks at 13.32. 

There is some debate about the age of LUCA, with estimates ranging from 3.5 to 4.0 

billion years ago [65]. In this study, we set LUCA at 3.8 billion years ago. Therefore a 

compositional age of 13.32 corresponds to a real age of 3.8 billion years. 

To find the divergence times of fungal proteins, 10 species of fungi are investigated. In 

the group Dikarya/ Ascomycota/Saccharomycotina, we choose S. cerevisiae, C. glabrata, 

K. lactis, Y. lipolytica, and P. stipitis. In the group Dikarya/ Ascomycota/Pezizomycotina, 

we choose N. crass a, M. grisea, and A. fumigatus. 8535 sequences are found with greater 

than 15 amino acids that appear in both branches and in at least 4 proteins. The his-

togram of compositional age of these sequences is shown in Fig. 2.1(b). The compositional 

age peaks at 12.1. 1.1 billion years ago is therefore chosen as the real age of divergence 

time of these two branches of fungi [65]. So, the compositional age of 12.1 corresponds 

to an evolutionary age of 1.1 billion years. 
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To find the compositional age of recent proteins, we search for the youngest proteins in 

E. coli. Only proteins in the COG (Clusters of Orthologous Groups of proteins) database 

are considered, to exclude those protein fragment without function in the FASTA file. 

We compare the proteins in two strains of E. coli: K12 and 0157 :H7 EDL 933. The 

0157 strain of E. coli diverged from K12 strain about 4 million years ago [97J. We take 

the strains of E. coli from the COG database that exclude the orthologous proteins that 

are shared by K12 and 0157, which should be quite young, probably less than 4 million 

years. The youngest new protein of 0157 has compositional age 9.607. The youngest 

new protein of K12 has compositional age 9.652. We, therefore, set the compositional 

age of the present as 9.6. 
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2.3 Compositional age and evolutionary rate 

To test the definition of composition age, the relationship between the compositional 

age of proteins and the evolutionary rate of the corresponding genes is determined. As the 

measure of evolutionary rate, we use the commonly accepted ratio of nonsynonymous to 

synonymous substitutions per site (dN / dB). Hirsh et al. provided dN / dB for 3392 genes 

from orthologous open reading frames (ORFs) in four species of yeast [68]. We bin the 

proteins by compositional age and calculate the average dN / dB. Results are shown in 

Fig. 2.2. Newer genes are evolving more rapidly than older genes. 

2.4 Growth of modularity in the protein-protein interaction 

network 

We now turn to modularity. Modularity of both protein domain structure and of 

the protein-protein interaction network are quantified [12, 88, 87]. The protein-protein 

interaction network data come from DIP. 1846 proteins are obtained with 6971 inter-

action edges in E. coli and 3211 proteins with 17535 interaction edges in S. cerevisiae. 
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Figure 2.2 The dNjdB and compositional age of proteins in S. cerevisiae. As measured by 

the average dN j dB, newer genes are evolving more rapidly than older genes. The correlation 

coefficient is R2 = 0.82 
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Figure 2.3 The degree distribution of the S. cerevisiae domain-domain interaction network. 

The domain-domain interaction data come from InterDom. We only consider domain 

interactions based on the DIP database and take only these domain interactions with a 

score in the top 75%, to eliminate the noisy data. 276 proteins are obtained in E. coli 

and 427 proteins in S. cerevisiae, from which we extract the protein domains for study. 

Interestingly, the domain-domain interaction network is scale free with, = 2.4, see Fig. 

2.3. 

To quantify modularity in the interaction networks, we construct the topological over-
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lap matrix [96] from the interaction network, reorder it with the average linkage clustering 

method [39], and normalize the number of interactions within modules according to net-

work size. The topological overlap matrix element, Tij, is the ratio of common nearest 

neighbors of the interacting proteins i and j to their respective degrees. The topological 

overlap matrix reflects the topological overlap of the nearest neighbors of two nodes. For 

any two nodes i and j, the topological overlap is defined as [96]: Tij 2::11. aiuauj+aij 

min(ki ,kj )+l-aij· 

Here aij is the elements of the interaction network matrix with value 0 (not interacting) 

or 1 (interacting). The average-linkage hierarchical clustering algorithm is then used [96] 

to reorder the topological overlap matrix so that the more tightly linked and clustered 

nodes are moved close to each other. In this way, the modules and hierarchical structure 

of the network are identified. 

The reordered topological overlap matrix of E. coli at different times is shown in 

Fig. 2.4. The color reflects the strength of the topological overlap of two nodes (from 

0.0 to 1.0), as shown in the color bar in Fig. 2.4(a). The protein-protein interaction 
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Figure 2.4 The reordered topological overlap matrix of the E. coli protein interaction 

network constructed from proteins whose compositional age are larger than 12.8 (a), 12.6 (b), 

and 12.2 (c). (d) The linear relationship between compositional age and real age. (e) and (f), 

The banded modularity evolution of E. coli and S. cerevisiae, respectively. The lines of different 

color in (e) and (f) correspond to different band sizes (W). 
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network evolves from an almost saturated, unstructured network III Fig. 2.4(a) to a 

mildly modular network with four modules in Fig. 2.4(b) and then to a highly modular 

network in Fig. 2.4(c). To compare the modularity quantitatively, we define banded 

modularity as the ratio of interaction within a diagonal band to the total interactions, 

normalized by the ratio of the area of the band to the area of the matrix: Mbanded = 

matrix and Tij is the element of reordered topological overlap matrix. Since the network 

size grows in time, modularity of network of different sizes is compared. The factor 

Modularity grows with evolutionary time. In Fig. 2.4(e), the banded modularity grows 

with compositional age in E. coli. The similar result is observed in S. cerevisiae in Fig. 

2.4(f). Banded modularity of a saturated matrix, i.e., a matrix with all elements being 

1 except the diagonal ones being 0, is shown in Fig. 2.4 (e) and (f) for comparison. The 

banded modularity of a saturated network is 1. This result holds true for different band 
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widths and different organisms; this phenomenon is robustly observed. In a modular 

structure, there are more interactions within a module than between modules. Banded 

modularity is a concise definition of modularity, but may also be interpreted as simply 

locality, in which true modules may not be identifiable. 

To measure modularity in a more detailed way, we search along the diagonal of the 

reordered topological overlap matrix to find the explicit modules, and the ratio of inter-

actions in the modules to the total interactions is calculate, normalized by the ratio of 

the area of modules to the area of the whole matrix. These modules are defined quanti-

tatively. First, we suppose the protein i and i + 1 form a module, and we ask whether 

another another protein i + 2, should be added to the module. The protein is added if 

the average interaction between i + 2 and the existing module is larger than a cutoff, 

which is set as 0.2 in this study. This procedure continues. When it comes to a protein 

with average interaction less than the cutoff, this protein forms the first member of a 

new module, and we begin the search to add further proteins to this new module. The 
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modules so identified depend on the cutoff. In this study, the E. coli and S. cerevisiae 

networks are highly modular. We tried several cutoff and found the results are quite 

stable, with results in accord with visual observation of the clustered matrix. The result 

'D E'D 
is defined as as module modularity: Mmodule = Efjkij=l Tjk * ( j,ki~=ll)_l, where in the 

Ej,kij=l Tjk D(D 1) 

upper sum with the prime, k is over those proteins in the same module as j, D is the 

dimension of the matrix. 

This definition is applied to the reordered topological overlap matrix to obtain the 

result for E. coli and S. cerevisiae in Fig. 2.5. The growth of module modularity in 

both organisms is observed. There is a positive correlation between banded and modular 

modularity. The growth of modularity is robust to the precise definition of modularity. 

The average size of module at different compositional age network is stable, see Fig. 

2.6(a). The relationship between the size of the network and compositional age is show 

in Fig. 2.6(b). The average module size does not change much in evolution, and the 

number of proteins in each module in of S. cerevisiae is fewer than that in E. coli, 
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Figure 2.5 Evolution of module modularity of protein interaction network in E. coli (a) 

and S. cerevisiae (b). 

perhaps reflecting that S. cerevisiae is more modular. 

2.5 Growth of modularity in the domain-domain interaction 

network 

We observed modularity not only in the protein-protein interaction network, but also 

in the domain-domain interaction network. The result of the banded modularity of the 

domain-domain interaction network of E. coli and S. cerevisiae is shown in Fig. 2.7. The 

growth of banded modularity is pronounced in both cases. 
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Our definitions of modularity allows the comparison of modularity of matrices of 

different sizes. The saturated interaction matrix does not have any modular structure, 

regardless of the band size, as shown in Fig. 2.4(e),(f). A network generated by randomly 

selected proteins in E. coli is of constant low modularity, independent of the number of 

proteins used. The network constructed based on its compositional age, however, shows a 

clear growth of its modularity. This result shows that the validity of organizing proteins 

by their compositional age. 

Modularity of the unweighted domain-domain interaction network is also measured 

directly, without construction of topological overlap matrix. We determine the fraction of 

a protein to which other proteins interact. To the extent that interactions become more 

localized within proteins, the protein is defined to be more modular. If protein B interacts 

with protein A, and the interaction is with only a few of the domains of protein A, then 

this interaction is more modular than if protein B interacts with a greater number of the 

domains of protein A. Averaging this measurement over all proteins B, this procedure 



30 

gives a measure of the modularity of protein A. So, we calculate the ratio of interacting 

domains to the number of domains in a protein, which gives the inverse of modularity. 

we define a Score, which is the inverse of modularity, as: 2~ ~~1 ( :~2/3 + :,B2/3). Here 
D, LB D, LA 

l represents a protein-protein interaction or a link. To distinguish the two proteins in 

a link, one protein is marked as A, the other one as B. The number of links is N. The 

term LA (LB ) is the number of amino acids of protein A (B). The number of interacting 

domains is lA, and the number of total domains is DA in protein A. The ratio of b: 
is normalized by the surface area of the target protein L;r, and so the Score should 

measure only the modularity and normalize out the size effect of target proteins. 

In Fig. 2.8, we compare the Scores of different domain-domain interaction network 

at different compositional age. The inverse of the Score increases monotonically with 

evolutionary progress. Because the inverse of the Score is modularity, we again observe 

that modularity has increased through evolutionary time. This observation is robust 

under different definitions of the Score. 
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Figure 2.8 Domain interaction network modularity evolution in E. coli (a) and S. cerevisiae 

(b). Score is the inverse of modularity. 

2.6 Conclusion 

We have introduced several quantitative definitions of modularity for interacting net-

works. We use them to measure the modularity of the protein-protein interaction network 

and domain-domain interaction network in S. cerevisiae and E. coli. We have also intro-

duced a method to quantify the evolutionary divergence time of proteins. We consistently 

find that modularity, by all definitions and in both organisms, has grown through evo-

lutionary time. This observation is in agreement with the theory that environmental 
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change coupled with horizontal gene transfer naturally and inevitably leads to evolution 

of increased modularity [113]. In this sense, early life was a generalist, being less modular. 

As evolution proceeded, and diversity of species increased and the environment changed, 

proteins became more modular and specialized in their interactions. 



Chapter 3 

Hierarchical evolution of animal body plans 

3.1 Introduction 

The Cambrian explosion has been an extensively debated topic in animal evolution for 

more than one century [127, 154]. Biological organisms were composed of individual cells, 

occasionally organized into colonies, before the Cambrian explosion [154, 64]. Subsequent 

to the Cambrian explosion, evolution greatly speed up, and the major phyla appeared. 

For example, the bilateral, anterior-posterior organization of body plan appears in fossil 

records from the early Cambrian [25]. These results are the basis for the open question 

in animal evolution of why the phylum- and superphylum-Ievel body plans have changed 

so little and no more new phylum- and superphylum- body plans appeared, while the 

class- and family-level body plans have changed so greatly with so many class, family, 

and species appearing since the early Cambrian [123]. Since the development of the 

animal body plan is precisely controlled by gene regulatory networks, the mechanism to 
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explain the different rates of change of the phylum- and superphylum-Ievel body plans 

versus the class- and family-level body plans may lie in the structure and evolution of 

gene regulatory networks. 

If the gene regulatory network were an unstructured or nearly random network, any 

change to the network such as deleting one gene would result in drastic difference in 

the body plan, because each gene may regulate or be regulated by several other genes, 

and the effects of deletion will spread out to the whole network quickly[15]. To resolve 

this problem, Davidson and Erwin [32, 42] proposed that the classic evolution theory 

based on selection of changes upon an unstructured genetic framework does not provide 

a satisfactory answer for the mechanism. Instead, they constructed the gene regulatory 

networks that control the early development of animal embryos (see Fig. 3.1) [80] and 

proposed a hierarchical modular structure of the gene regulatory network. The gene 

regulatory network of sea urchin endomesoderm specification up to 30 hours is composed 

of about sixty genes. This network is relatively modular. For example, as measured by 



35 

the commonly used Newman modularity measure [86], defined as the fraction of edges 

that lie within modules rather than between modules relative to that expected by chance, 

the modularity of this gene regulatory network is 0.49. This modularity value greater 

than zero indicates that this network is quite modular. 

Davidson and Erwin found that the gene regulatory network can be described by a 

hierarchy with four types of modules. The first type is named "kernel." For example, 

the endoderm specification kernel is composed of five genes in sea urchins, see Fig. 3.1. 

The heart-field specification kernel [103, 30] is used in both Drosophila and vertebrate 

development. The other three types are named as "plug-ins," "I/O switches," and "bat-

teries." Each type of module functions differently in the development of embryo. The 

kernels might relate to the phylum- and superphylum- level characteristics; the plug-ins 

and I/Os might relate to the class, order, and family characteristics; and the batteries 

might relate to the speciation characteristics (see Fig. 3.2). This proposal stimulated 

debate [29, 32]. For example, the diverse kinds of changes in the hierarchy of gene regula-
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tory networks and their evolutionary consequences are thought to be imperfect, and yet 

all essential major phylum-level body plans appeared at the early Cambrian. Davidson 

and Erwin stated that "Critically, these kernels would have formed through the same 

processes of evolution as affect the other components, but once formed and operating to 

specify particular body parts, they would have become refractory to subsequent change." 

If this theory is correct, we would expect the evolution of the gene regulatory net-

work to be heterogeneous. The "kernels" module should evolve more slowly than other 

parts of the gene regulatory network, since the phylum- and superphylum-Ievel body 

plan characteristics have not changed substantially since the early Cambrian. The gene 

regulatory networks are primarily composed of two elements: transcription factors and 

cis-regulatory modules. Transcription factors are proteins that can either activate or 

repress transcription by binding to cis-regulatory elements. Transcription factor binding 

sites are often organized into clusters named cis-regulatory modules, which typically span 

a few hundred nucleotides and can contain dozens of binding sites for several transcription 
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factors [26]. A full understanding of the evolution of the gene regulatory network would 

consider both transcription factors and cis-regulatory modules. Cis-regulatory modules 

are poorly conserved during evolution, and even in closely related species may differ dras-

tically [26, 153]. Because experimental identification of cis-regulatory elements is still not 

well developed, and because computational prediction of cis-regulatory elements is still 

difficult [41], we will here consider only evolution of the transcription factors. Transcrip-

tion factors are more conserved and evolve more slowly than cis-regulatory elements. On 

the timescale of hundreds of millions of years that we consider here, it is important to 

consider the evolution of transcription factor networks. For example, acquisition of an 

extra repressive regulatory domain in the insect protein Ubx results in the prevention of 

the development of abdominal legs [99]. Although transcription factors change slowly, 

their effect on the development body plan is of equal importance to that of cis-regulatory 

elements, since the variation of transcription factors directly changes the topology of the 

gene regulatory network. To test the theory of Davidson and Erwin, we calculated the 
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speed of evolution of regulatory genes. We found that those genes which determine the 

phylum and superphylum characters evolve slowly, while those genes which determine the 

classes, families, and speciation evolve more rapidly. These observations provide support 

for Davidson and Erwin's theory. 

3.2 Materials and Methods 

3.2.1 Sea urchin gene regulatory network 

The sea urchin is a traditional model organism in developmental biology. The sea 

urchin (Strongylocentrotus purpuratus) and sea star (Asterina miniata ) are in the same 

phylum Echinodermata. The sea urchin is in the class Echinoidea, and the sea star is in 

the class Asteroidea. The last common ancestor of echinoid and asteroid existed about 0.5 

billion years ago in the late Cambrian [109, 21, 125]. Other sea urchins used in this study 

are Hemicentrotus pulcherrimus, Paracentrotus lividus, Heliocidaris erythrogramma, He-

liocidaris tuberculata, Lytechinus variegatus. They are in the same superorder Echinacea 

with Strongylocentrotus purpuratus. The genome of the sea urchin Strongylocentrotus 
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purpuratus was sequenced in 2006. The gene sequences used in this paper were all down-

loaded from the EMBL-EBI database in July 2008. The experimentally determined sea 

urchin gene regulatory network was downloaded from http://sugp.caltech.edu/endomes/. 

3.2.2 Ratio of nonsynonymous substitution to synonymous substitution of 

genes 

We used the widely-accepted ratio of the rate of non-synonymous substitutions to 

the rate of synonymous substitutions (dN / dS) as a measure of the rate of evolution. 

Generally, dS is a measure of evolutionary divergence between two genes due to neutral 

substitution, and the dN / dS is the departure from the neutral substitution caused by 

functional constraints and selection. The larger the dN / dS value, the faster the is gene 

evolving due to selection. We used a standard method to calculate dN / dS [69]. First, 

we obtain the genes in the gene regulatory networks of sea urchin endomesoderm, see 

Fig. 3.1. We applied Wu-BLAST2 to search the orthologous genes in the 7 genomes 

mentioned above from EMBL-EBI. All the protein pairs are required to be reciprocal 
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Figure 3.1 The gene regulatory network of sea urchin endomesoderm specification up to 

30 hours. The top five genes form the kernel. 
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Figure 3.2 The hierarchy of the gene regulatory network and functions at different levels 

of development of the body plan. 
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best hits. Since these organisms are closely related, all orthologous protein have the 

same name and likely perform similar functions. Then, the orthologous protein pairs 

are aligned in ClustalW [117] and calculated the dN/dS in PAL2NAL [114]. For each 

gene, the dN / dS of all the protein pairs of that gene are averaged. Take gene Bra as an 

example, Bra genes are found in sea urchins Hemicentrotus pulcherrimus, Paracentrotus 

lividus, Lytechinus variegatus and Strongylocentrotus purpuratus. Bra should also appear 

in other sea urchins not yet sequenced. The Bra protein sequences are aligned in each 

two sea urchins, 6 pairs in total. For each pair, use PAL2N AL to calculate dN / dS, see 

Table 3.1. 

3.3 Results 

3.3.1 Evolutionary rate in hierarchy 

The dN / dS for genes in gene regulatory networks are listed in Table 3.1. The gene 

regulatory network is composed of transcription factor (TF) and non-TF proteins. Most 

TF genes are utilized for diverse interactions, and the DNA binding domains of all of 
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them are highly conserved across Bilateria. We average the dN / dB of all proteins in each 

hierarchical level, and the result is shown in Fig. 3.3. The value of dN / dB of kernels is 

significantly lower than plug-ins, I/Os and batteries, see Table 3.2 for P-value. Also, the 

regulatory gene group of kernels and plug-ins has a lower dN / dB value than group of 

I/Os and batteries (relative difference = -0.055, P-value = 0.0157 for Wilcoxon test). 

From the probability distribution of dN/dS in Figure 3.5, the distribution of kernels is 

narrow width, and the peak probability appears at a low dN/dS. 

If only TF genes are considered, kernels (dN/dB = 0.045) still evolve more slowly 

than other components. Slight increase of dN/dB from plug-ins to I/Os and to batteries 

is also observed. (dN/dB = 0.138). Interestingly, the number of organisms for which 

an ortholog was detected varies from genes to genes. For example, A. miniata is the 

least close organism to S. purpumtus compared to other sea urchins, S. purpumtus and 

Asterina miniata are in the same phylum but different orders. Four orthologous genes 

between A. miniata and S. purpumtus. Three of them are kernel genes. The orthologs 
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Figure 3.3 The ratio of the rate of non-synonymous substitutions to the rate of synony

mous substitutions for different components of the gene regulatory networks that control the 

development of animal embryos. 



45 

of kernel genes are more likely detected than other genes in far related organism, which 

is a support of slower evolution of kernels. 

The results show that if two organisms are in the same phylum, their kernel modules 

which determine the phylum level body plan are conserved. If two organisms are in the 

same class or order, their plug-ins and I/O modules are conserved since they determine 

the class and order level body plan. 

3.3.2 Generative entrenchment 

Another supporting evidence comes from the "generative entrenchment" theory by 

William Wimsatt [131, 132]. In the this model, the phenotype is considered as a gen-

erative structure. The generative structure of the system has a characteristic set of 

causal interactions which can be represented by the directed graph, see Fig. 3.1. In 

this model, nodes with more downstream connections should have slower evolution rates, 

since changes to them affect many epistatic interactions that must be accommodated 
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during the evolution. Quantitatively, we account the downstream connections for each 

gene in gene regulatory networks. For example, if gene A regulates the expression of 

gene B, we say gene A has a downstream connection. We observe that "kernels" genes 

in Fig. 3.1 have an average of 5.4 downstream connections, while the other regulatory 

genes have an average of 1.6 downstream connections. All else being equal, nodes with 

more downstream connections such as kernels here should be more conservative, because 

their activity can bring more consequences. If they are changed, it is more likely that 

something will go wrong. One model to explain this idea was proposed by Rupert Riedl 

[98]. In this model, Riedl raised the idea of "burden" which states that the evolvability 

of a character change during evolution depends on the importance of the functions and 

structures depending on it. The "kernels" of the gene regulatory networks which deter-

mine the phylo-Ievel body plan are thought to have "heavier" burden than other parts 

of gene regulatory works, since it is the base of animal body plan. So "kernels" are likely 

to be more conserved. 
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Figure 3.4 The earliest appearance time of regulatory genes for kernels, plug-ins and l/Os 

as experimental data available(Davidson et al., 2002). 
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Figure 3.5 The distribution of dN/dS for each hierarchical level. P(dN/dS) is the proba

bility of a gene with the dN/dS in specific hierarchical level. 

3.3.3 Time of appearance of regulatory genes 

As additional supporting evidence, the time of appearance of regulatory genes is 

considered during embryo development. From available experiment data, the earliest 

appearance time of regulatory genes is shown, defined as the time when a given gene is 

expressed and starts to regulate the expression of other genes. Figure 3.4 shows the 
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endomesoderm specification up to 22 hours for genes listed in Table 3.1. The x-axis is 

appearance time of genes in embryo development, and the y-axis indicates in what hierar-

chicallevel genes belong to. The kernel genes generally express earlier in endomesoderm 

than other regulatory genes, and most plug-ins genes appear earlier than I/Os genes. 

The Karl Ernst von Baer's law states that "General characteristics of the group to which 

an embryo belongs develop before special characteristics. General structural relations 

are likewise formed before the most specific appear." That is: differentiation proceeds 

from the general to particular, with taxonomically more general parts expressed earlier 

in development. In this case, we can interpret as the kernels which expressed earliest in 

development are more related to the higher hierarchical level of taxon such as phylum-

and superphylum-Ievel body plan, while others are more likely related to lower hierarchi-

cal level body plan. Genes which are expressed earlier in development are, mostly likely, 

older and more likely to be conserved during evolution, because mutations of proteins 

expressed earlier in embryo development are more likely to have larger, more pervasive, 
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and more deleterious effects on subsequent development [132]. 

3.4 Discussion 

Recently, it has been found that biological networks are not random and unstructured 

networks, instead, many are modular networks [86]. Modular network can be decomposed 

into several highly interacting modules and are particularly interesting. Perturbations 

or errors in a modular network are typically restricted to one module, and the effect on 

the whole network is limited. Modular networks can evolve by rewiring the modules. 

This rewiring capability property tends to make modular networks more evolvable [58, 

113]. A hierarchical network is an advanced modular network. In hierarchical networks, 

some modules are key modules that may relate to the core function and be resistant to 

mutation. Other modules are periphery modules that may be more likely affected by the 

environmental change [96]. Peripheral modules evolve rapidly and allow the organism to 

survive in a changing environment. 
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The origin of animal body plan is one of the central questions in developmental 

biology [13]. A long studied subject, it seems established that evolutionary rates of 

different characters and lineages are different. The results in Figs. 3.3 support Davidson 

and Erwin's theory that the hierarchical structure of the gene regulatory network has 

imposed constraints on the rate of further evolution of the most basic, and earliest-evolved 

features. The slow speed of evolution of the kernels that control the development of 

animal phylum- and superphylum-Ievel body plan characteristics is why no new phylum-

level body plans appeared after the pre-Cambrian period. The number of types of classes, 

orders, families and species is increasing, and The results show that this observation is 

surprisingly consistent with the increasing evolutionary speed from kernels to plug-ins 

to l/Os to batteries. We propose that the slow evolution of the top components and 

fast evolution of the bottom components of the hierarchy is a universal phenomenon 

in evolution, not only in the gene regulatory networks, but also in protein interaction 

networks, cell signaling networks, and metabolic networks [34]. 
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Table 3.1 Evotionary rate of regularoty genes in pairs of organisms (Org.1 and Org. 

2). Group 1 are kernels, group 2 are plug-ins, group 3 are I/O, group 4 are batteries. 

STRPU: Strongylocentrotus purpuratus, PATVU: Patella vulgata, ASTM: Asterina miniata, 

HEMPU: Hemicentrotus pulchernmus, PARLI: Paracentrotus lividus, HELER: Heliocidaris ery

throgramma, HELTB: Heliocidaris tuberculata, LYTVA: Lytechinus variegatus. 
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Hierarchy Hierarchy P-value 

Kernels Plug-ins 0.0826 

Kernels l/Os 0.0032 

Kernels Batteries 0.0092 

Kernels Plug-ins + l/Os + Batteries 0.0026 

Kernels + Plug-ins l/Os+ Batteries 0.0157 

Table 3.2 P-value of Wilcoxon test for different hierarchical levels. The hypothesis for the 

Wilcoxon test is that two independent samples come from distributions with the same median. 



Chapter 4 

Structure and Response in the World Thade Network 

4.1 Introduction 

Physical theory of evolution predicts that under certain conditions, a changing envi-

ronment leads to development of modular structure [113, 63, 76]. The prediction depends 

only on 1) the dynamics of the response to change being "slow" due to a glassy land-

scape, 2) presence of change, and 3) exchange of information between evolving agents. 

Since the trade network is an evolving system, this physics of evolution may be ap-

plied to the world trade system, previously studied by network analysis [67, 16]. We 

assume that condition 1 is satisfied for the world trade network due to the complexities 

of inter-country relationships. Condition 2 is satisfied by viewing recessions as causing 

a change of the environment for the dynamics of the world trade system. Condition 3 

is satisfied because information flow naturally results from transfer of business practices 

or material between countries. Thus, the theory of [113, 63] allows us to make three 
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predictions: decreased modular structure in the world trade network increases the sensi-

tivity to recessionary shocks, decreased modular structure decreases the rate of recovery, 

and recessions themselves spontaneously increase modular structure of the world trade 

network. All three predictions will be borne out by data. These results are general 

predictions about how the detailed structural parameters of the evolving economic sys-

tern will organize. Theory shows that the modular and hierarchical structure formed in 

response to environmental fluctuation increases the resistance to and rate of recovery 

from perturbations. The theory predicts that globalization, which reduces hierarchical 

structure, should lead to increasingly large recessions and decreased rate of recovery, in 

contrast to standard economic understanding [8]. 

To apply the physical theory of evolution that describes the spontaneous emergence of 

modularity in fluctuating environments [113, 63] to world trade, we seek a mathematical 

representation of hierarchy in the world trade network. Identification of network motifs 

or modules is an active research field in the physics of networks [113, 86, 9], with the 
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study of structure at multiple scales, i.e. hierarchy, somewhat more recent [96, 27]. In this 

chapter, we treat the world trade data as defining a geometry in trade space. We project 

the trade topology onto the best tree-like topology representing the data. The success 

of this projection in representing the original geometry is used to define the hierarchy of 

the original data. 

We apply hierarchical clustering to construct the best tree-like representation of the 

world trade network. Correlation between the distances implied by the tree construction 

and the distances defined by the original trade data is calculated. This quantity is termed 

the cophenetic correlation coefficient (CCC) [43]. We will display the general trend of 

the CCC since 1969, noting especially the increase of the CCC after each recession. The 

magnitude of the CCC will be shown to correlate with the ability of total world GDP to 

resist a recessionary shock. Theory shows that this result is, in fact, causal, not simply 

a correlation, which is a major result here. 

We focus on how global recessions, such as the 2008-2009 recession, have affected the 
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structure of the world trade network. Modular structures arises in the trade network, 

for example, because countries in a trade group trade among themselves to a greater 

extent than with others. These trade groups may interact with each other to form higher 

level groupings. The detailed reasons for an increase of hierarchy in the world trade 

network are many: perhaps protectionism for the domestic economy [10], or because 

long-distance trade seems costly during a recession. Standard arguments in economic 

theory suggest a decreased rate of recovery from recession for trade networks with more 

modular structure [8]. We will see, however, that theory predicts that greater trade 

network structure increases both the resistance to recessionary shocks and the rate of 

recovery from recessions. 

4.2 Results 

4.2.1 Measure of hierarchy by eee 

A hierarchical trade network occurs when countries with strong trade connections 

group into trade modules or regional trade clusters. A flat or non-hierarchical structure 
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occurs when countries trade evenly with all other countries, and there are no regional 

trade modules in the trade network. We use the historical trade data from United 

Nation database (Comtrade) from 1962 to 2007. We build the world trade network with 

nodes representing countries and links representing the trade value. We do not scale 

the trade volume by the GDP, because small economic units should not have the same 

weight as large economic units. First, a distance matrix is calculated from the trade 

network matrix by d ij = M* - M ij , where M* = max(Mij). Here, Mij is trade value 

between two countries. The average linkage hierarchical clustering algorithm is applied 

to the distance matrix to produce the tree-like dendrogram [43], see Fig. 4.1. In this 

figure, trade modules are marked by different colors. Only selected countries are plotted, 

because the figure becomes crowded if all countries are plotted. We define the tree-like 

structure to have the most hierarchy. Therefore, the amount of hierarchy can be measured 

by the likeness between the original data and the best tree that is produced from original 

data by hierarchical clustering. The CCC quantifies this likeness. The cophenetic matrix 
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is generated from the dendrogram. Its elements are the branch distance where two 

objects become members of the same cluster in the dendrogram: for two nodes, ij, the 

nearest common bifurcation point is located, and the branch length for this point is the 

cophenetic element of these two nodes, Cij, see Fig. 4.1 for an example. The eee is 

and d are the element and average of elements of the distance matrix, and Cij and care 

the elements and average of elements of cophenetic matrix, respectively. Hierarchical 

datasets have a high eee value, and nonhierarchical datasets have a low eee value 

[74]. 

4.2.2 Evolution of structure in world trade 

A major factor affecting the world trade network over the last 40 years has been the 

process of globalization. Qualitatively, this globalization has been expressed as a "flatten-

ing" of the world [50]. Here, we use the eee to measure how the hierarchical structure 
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Figure 4.2 The eee from 1969 to 2007. The upper right insert is the ratio of total world 

trade to world GDP. The lower left insert is the total world trade in units of US dollar. 
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of the world trade network has changed over time. Large eee values indicate higher 

hierarchy. The major trend of eee with time in Fig. 4.2 is a reduction of hierarchy as 

the "flattening" has taken place [50]. In Fig. 4.2, shaded rectangles marked the seven 

recessions. Left and right borders are positioned at the start and end of a recession, re-

spectively, according to US National Bureau of Economic Research. We notice, however, 

that the eee does not always decrease year by year. We notice that during and after 

each recession, marked on the figure, the eee value increases. The eee values at the 

year after recession are larger than that at the year before the recession (p-value = 0.003 

of Kolmogorov-Smirnov test for null hypothesis that they are from the same distribution 

with the same mean, and p-value = 0.0006 for null hypothesis that eee value before 

recession is larger than that after recession). This trend is true both for the past 3 ma-

jor recessions and for the past 4 minor recessions. The scale of increase of hierarchical 

structure depends on the severity of recession. One possible reason for this eee trend 

during recessions is the increase of trade protectionism during recessions. Also, regional 
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integrations are greatly enhanced during recessions, leading to increased regional imports 

[40], which strengthens trade modules. Free trade promotes globalization and decreases 

the hierarchy of the trade networks. But trade protectionism and regional integration, 

which is common during recessions to protect domestic or regional economies by restrain-

ing trade between countries, tends to reduce trade between countries in different trade 

modules. Thus, recessions may promote the regionalization that enhances the modularity 

of the trade network. One example is the Asian currency crisis of 1997, which lead to 

the development of independent Asian monetary systems. 

The eee is a characterization of the world trade network that is independent from the 

total amount of world trade. In the process of globalization, a country tends not only to 

increase its total trade value, but also to trade with more partners. The upper right insert 

of Fig. 4.2 shows the typically increasing ratio of world trade to GDP. Only the recessions 

of 1981, 1991, 1997 and 2001 lead to a decrease in the trade to GDP ratio, whereas the 

eee increased in all seven recessions. The increased hierarchical structure appearing 
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Figure 4.3 The trade share matrix S ij = M ij / (2.:~= 1 M im + 2.:~= 1 M jn ) after hierarchical 

clustering between countries in 2007. 
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after all seven recessions in Fig. 4.2, is therefore, a sensitive correlate of recessions, and 

independent of the trade to GDP ratio shown in the upper right insert of Fig. 4.2 and total 

trade volume shown in the lower left insert of Fig. 4.2. Measurement of globalization by 

both hierarchical structure (CCC) and total trade provides complementary information. 

The CCC quantifies the development of hierarchical structure in the trade network 

at multiple scales in an integrated way. The clustering of the world trade network shows 

the modularity of global trade, see Fig. 4.3. Several modules can be observed: North 

American+Asian+Oceanic countries, European+ North African countries, Middle and 

South Africa, Middle East, South America, and Central America. The development 

of regional trading partners occurs simultaneously with globalization. By comparing 

the structure of trade network in 1969 and in 2007, we found that the increased trade 

among Canada, United States, and Mexico as a result of NAFTA is one example of a 

regional trading group. Regional trade pacts among the Middle East countries are other 

examples of regionalization. In general, free trade markets will develop modular structure 
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at multiple geographical scales. 

4.2.3 Response of world trade to recessions 

The ability of the trade system to respond to recessionary perturbations is propor-

tional to the hierarchical structure present, i.e. increases with the eee value, according 

to the evolutionary theory of modular structure development [113, 63]. That is, the 

modular structure that exists at multiple scales affects how recessions propagate in the 

trade network, just as modular structure of person-to-person contacts affects how diseases 

spread in a population. We examine how the network structure affects the propagation 

of a recession throughout the world. For example, if there is a one percentage decrease 

of the CDP of the USA, by how much does the total CDP of world excluding the USA 

decrease due to the spread of recession from the USA? We investigate the five most recent 

global recessions including the 2007-2009 crisis. We calculate the ratio of CDP change 

(percentage) of world excluding the USA to the CDP change (percentage) of USA in each 
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recession as a function of the eee value in each recession, see Fig. 4.4(a). In Fig. 4.4(a), 

the GDP change in one recession is defined as the GDP decline from peak to trough. 

Quarterly GDP data are used to find the peak ofrecession. The quarterly GDP data for 

2001 and 2008 recessions are from DEeD Stat. Extracts (http://stats.oecd.org/). The 

quarterly GDP data for earlier recessions are estimated from annual GDP data. We 

observe that in more recent recessions with less hierarchical structure of trade network, 

a recession in the USA has a stronger impact on the rest of the world. This result indi-

cates a strong positive correlation between lack of hierarchical structure and severity of 

recession impact. 

We also perform an impulse response analysis of the vector autoregression (VAR) 

model to analyze the time evolution of recession [24, 78, 7]. We explore the possible 

underlining causal links between lack of hierarchical structure and severity of recession. 

A recession is assumed to start in the USA. The US GDP is initially reduced by the 

maximal GDP decline during the recession, e.g. the maximal quarterly US GDP decline 
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Figure 4.4 (a) The ratio of the total world excluding the USA GDP change (percentage) 

to the change of the USA GDP (percentage) in 5 recessions, F in the y axis. (b) Impulse 

response analysis of spread of recession. The world GDP change is plotted as a function of the 

eee. The reduction in the world GDP is greater when the eee value is low. Insert figure: 

The GDP recovery from recession can be well fit by the relation Y(t) '" Y(oo) - aexp(-.At). 

Yearly recovery rates, .A, are shown versus the eee. In accord with theory, the recovery rate is 

positively correlated with the eee. 
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was 5.4% S in the 2008-2009 recession [6]. The export from country i to country j, 

Xij, is updated by a factor of ratio of GDP of country j at time t, 1j(t), and t - 1, 

1j(t - 1)) [7]. Thus, Xij(t) = Xij(t - 1)1j(t)/1j(t - 1). Then the GDP of country i 

is updated by Yi(t + 1) = Yi(t) + ~(Xi(t)/ Xi(t - 1) - 1). Where Pi = XdYi is the 

ratio of export to GDP for country i. The GDP of each country decreases until steady 

state is reached, at which point the simulation is terminated. We calculate the world 

GDP change as CLi r:steady - Li r:initial)/ Li r:initial. We observe how the crisis spreads 

globally and measured the GDP loss during crisis. 

The impulse response analysis results support that the severity of the 2008-2009 

recession may be due to loss of hierarchical structure in the global trade network. Lack 

of hierarchical structure makes the world trade network less resistant to recession, as 

observed from Fig. 4.4(b). In the simulation as shown in Fig. 4.4(b), initial values are 

set to historical trade and GDP data in each year. A recession is assumed to begin in 

the USA and spread to the rest of the world. We believe this increased sensitivity is due 
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to a loss of modular or hierarchical structure in the world trade network, see Fig. 4.2. As 

an example, the impact of a recession on the GDP is more severe in 2006 than in 1968, 

by a factor of 5.7. Interestingly, after this calculation was carried out, an estimate of 

the ratio of the reduction of GDP in 2009 to the average reduction over past recessions 

equaling 6 was reported [6]. 

Evolutionary theory has shown that systems under environmental perturbation not 

only increase their modularity, but also increase their response function to perturbations 

[113, 63]. In the present context, this would imply that as trade has been globalized, and 

the eee reduced, the rate of recovery from recession should decrease. We consider this 

phenomenon in the world trade network, using the VAR model. After the system reaches 

steady state following the reduction to the USA GDP, we impose a positive impulse 

to restore the USA GDP to its initial value. The world GDP recovers, at a rate that 

depends on the hierarchical structure of the trade network. We observe that when the 

trade network has greater hierarchical structure, indicated by a larger eee value, the 
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trade network recovers more quickly from recession, as shown in the insert figure of Fig. 

4.4(b). 

4.3 Conclusion 

We have used the concept of viewing the world trade network as defining a geometry 

in trade space and the idea of projecting this geometry to the best tree-like topology 

to define the hierarchy in the world trade network. With that necessary mathematical 

prolegomena, we introduced the world trade network as an evolving system. Physics 

of evolution in changing environments was then used to predict that the world trade 

network is more sensitive and recovers more slowly from evolutionary shocks now than 

it did 40 years ago, because globalization has reduced hierarchical structure in the world 

trade network. We also predict that recession-induced change to the world trade network 

should lead to a temporarily increased hierarchical structure of the global trade network. 

These predictions, contrary to standard economic thinking, were born out by our study 
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of the world trade data since 1969. 
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Part II 

Influenza virus evolution 



Chapter 5 

Prediction of incipient dominant influenza strain by 

clustering 

5 .1 Introduction 

The recent outbreak of 2009 A(H1N1) caused immediate international attention [33, 

52,49, 111]. This new 2009 A(H1N1) virus contains a combination of gene segments from 

swine and human influenza viruses[52, 49]. Confirmed infections reached 270,000 globally 

as of September 2009[149]. The novel 2009 A(H1N1) strain was defined as a pandemic 

strain by the World health Organization(WHO) in 2009[152], and was the epidemic strain 

in the 2009 Northern winter. 

Influenza viruses are hyper-mutating viruses. It has been estimated that the nu-

cleotide mutation rate per genome per replication is approximately 0.76[37]. Influenza 

viruses escape the human immune system by continual antigenic drift and shift[48, 129, 

54, 47, 53, 85]. The quasispecies nature of influenza viruses makes the strain structure 
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complex[36]. Usually, there is one or a few dominant influenza strains circulating in the 

population for each flu season. The flu vaccine is most effective when it matches this 

dominant circulating strain[56, 55]. The degree to which immunity induced by a vaccine 

protects against a different viral strain is determined by the antigenic distance between 

the vaccine and the virus. Due to evolution of the antigenic regions of the influenza virus, 

the composition of the flu vaccine is typically modified annually[100]. However, since the 

influenza strains used in the flu vaccine are decided 6 months before the flu season, a 

mismatch between the vaccine strain and dominant circulating strain may occur if the 

virus evolves significantly. Such a situation arose for the H3N2 virus in the 2009-2010 

flu season, when A/British Columbia/RV1222/2009 emerged in the early spring[108, 2]. 

Accurate early prediction of the dominant circulating strain is an essential and important 

task in influenza research. 

There are several ways to estimate the flu vaccine effectiveness. Gupta et al. [55] 

proposed Pepitope as a measure of antigenic distance between influenza A vaccine and 
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circulating strains. The hemagglutinin protein has five epitopes. The dominant epitope 

for a particular circulating strain in a particular season was taken as that which had the 

largest fractional change in amino acid sequence relative to the vaccine strain. The value 

of Pepitope is defined as the fraction of number of amino acid differences in the dominant 

epitope to total number of amino acids in the dominant epitope. The antigenic distance 

between the vaccine strain and the circulating strain is quantified by Pepitope' By a 

metaanalysis of historical vaccine efficacy data from over 50 publications, Gupta et al. 

showed in a metaanalysis that the Pepitope between vaccine strain and circulating strain 

correlates well with the vaccine efficacy, with R2 > 0.8[55]. 

Understanding the evolution of influenza viruses has benefited from phylogenetic re-

constructions of the hemagglutinin protein evolution[lOl, 47]. In an alternative approach, 

Lapedes and Farber[79]' followed by Smith et al.[llO], applied a technique called mul-

tidimensional scaling to study antigenic evolution of influenza. Plotkin et al. clustered 

hemagglutinin protein sequences using the single-linkage clustering algorithm and found 
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that influenza viruses group into clusters[94]. 

Here, we present a low-dimensional clustering method that can detect the cluster 

containing an incipient dominant strain for an upcoming flu season before the strain be-

comes dominant. The method builds upon the dimensional projection technique used by 

Lapedes and Farber[79] and Smith et at. [110] to characterize hemagglutination inhibition 

data. Importantly, the present method requires only sequence data, unlike the approach 

of Lapedes and Farber [79] and Smith et at. [110], which require ferret hemagglutination 

inhibition assay data. In this paper, we first study the evolution of 2009 A(H1N1) by an 

evolutionary path map which leads to a suggestion for the H1N1 vaccine strain. Then, 

we introduce the low-dimensional protein sequence clustering method. We propose an 

influenza vaccine selection procedure based on this sequence clustering. The procedure 

is demonstrated and tested in detail using historical data. We show the performance of 

the method to predict the dominant H3N2 strain in an upcoming flu season using data 

solely from before the flu season, on data since 1996. We compare the results to those 
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from existing methods since 1996. In the discussion section, we discuss the relationship 

between the protein sequence clustering method and previous approaches. We discuss 

the false positive rate, as well as other challenges. 

5.2 Results 

5.2.1 Evolutionary path of 2009 A(H1N1) influenza 

We first construct the directional evolutionary path for the 2009 A(H1N1) influenza. 

We use high resolution data in sequence, time, and world spatial coordinate to construct 

this evolutionary relationship. Since its first detection, the 2009 A(H1N1) virus has been 

extensively sequenced[52, 49J. By May 1, 2009, the number of confirmed cases reported 

by WHO was 333[149J. At the same time, the sequenced hemagglutinin protein (HA) 

available in NCBI Influenza Resources Database were 312[14J; that is to say most of the 

confirmed cases at that time were sequenced. At July 1, 2009, the ratio of sequenced 

HA protein to confirmed cases by WHO was 1039/77201[149]' a number which is still 

much larger than that for seasonal flu. In addition, the Influenza Resources Database 
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contains the date of collection of each 2009 A(H1N1) virus strain. We reconstruct the 

evolutionary history of swine flu viruses with the following procedure. If strain B is 

mutated from strain A, we term strain A "founder" and strain B "F1" We align the HA 

proteins of all 2009 A(H1N1) strains. Then, for each strain, we find its founder strain 

based on the following four criteria: 1, the founder strain should appear earlier than the 

strain, as judged by collection date; 2, the founder strain should have only one amino acid 

difference in the HAl protein relative to the F1 strain; 3, the founder should also have 

the most similar nucleotide sequence relative to F1; and 4, the founder strain should have 

a large number of identical copies circulating in human population, as approximated by 

the number of different strains with identical HA sequences in the Influenza Resources 

Database. By applying these four criteria to 2009 A(H1N1) influenza, we construct 

the directional evolutionary path map, as shown in Fig. 5.1. In this figure, several 

strains are notated (Strain #1: A/California/05/2009; Strain #2: A/California/04/2009; 

Strain #7: A/California/07/2009; Strain #12: A/Texas/05/2009; Strain #28: A/New 
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York/19/2009). Strains from the Northern and Southern hemisphere are shown as red 

dots and blue dots respectively. One branch represents one substitution in the amino 

acid sequence. Two clusters are observed in Fig. 5.1 : one around A/New York/19/2009 

(#28), and another one around A/Texas/05/2009 (#12). Most new strains are from the 

Northern hemisphere, and strains from the Southern hemisphere are mainly located at the 

edge of the map, such as strain #96, #120, and #126. That the Southern hemisphere 

strains appear at the boundary of the figure provides a self-consistency check of the 

validity of the assumptions entering the construction of this figure. Geographically, we 

see many founder to F1 links are from US and Mexico to other countries, but we rarely 

see founder to F1 links that are from other countries to US and Mexico, or from other 

countries to other countries except US and Mexico (see Materials and Methods). We 

also found that strains with more F1 in Fig. 5.1 are more frequently seen in the human 

population. For example, in the Influenza Resources Database, we found 153 strains to 

be identical with A/New York/19/2009, which has 29 F1 strains, and 120 strains to be 
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identical with A/Texas/05/2009, which has 24 F1 strains. We can see in Fig. 5.1 that 

A/Texas/05/2009 is at the very upstream of the map, with downward connections to most 

of the other strains by direct or two-step links. This result agrees with the US Food and 

Drug Administration[44] recommendation of A/Texas/05/2009 as a vaccination strain. 

The alternative vaccine strain A/California/7/2009 (#7) has fewer F1 strains and it is 

not located at the center of the network. 

5.2.2 Low-dimensional clustering 

We use a low-dimensional clustering method to visualize the antigenic distance matrix 

of the viruses. We use a statistical tool called "multidimensional scaling" [43]. This 

method was used by Lapedes and Farber[79] and Smith et al. [110] to project ferret 

hemagglutination inhibition assay data to low dimensions. The influenza viral surface 

glycoprotein hemagglutinin is a primary target of the protective immune response. Here 

we project the hemagglutinin protein sequence data, rather than animal model data, to 
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Figure 5.1 The evolutionary path of 2009 A(HINl) influenza. 
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low dimensions. The HAl protein of influenza with 329 residues can be considered as a 

329-dimension space. The multidimensional scaling method is applied to rescale the 329-

dimension space to a 2-dimensional space, so that we can plot and visualize it. First, we 

do a multialignment of the HAl proteins. Then, the distance between any two proteins 

is calculated as 

(5.1) 

where Si,m is the amino acid of protein i at position m. The term 6Si ,m,Sj,m is 1 if amino 

acids of protein i and j at position m are the same. Otherwise, it is O. For the 2009 H1N1 

viruses, we consider the entire HA protein, and N = 566. For H3N2 viruses, we consider 

only the HAl protein, and N = 329, because the entire HA proteins are not completely 

sequenced in many cases. Thus, dij is the number of amino acid differences between HA 

proteins normalized by length. The multidimensional scaling produces a protein distance 

map, for example, Fig. 5.2(b). In this map, each data point represents a flu strain isolate. 
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Figure 5.2 (a) , Kernel density estimation for the protein distance map of 2009 A(HIN1) 

influenza as of December 5, 2009. (b), The protein distance map of 2009 A(HIN1) influenza. 

The Euclidean distance between two points in the map approximates the protein distance 

in Equation 5.1 between these two fiu strains (see Materials and Methods for details of 

this distance approximation procedure). Two closely located points imply two strains 

with similar HA protein sequences. 

We apply the low-dimensional clustering method to study 2009 A(H1N1). In Fig. 5.2 , 

the vertical and horizontal axes of both figures represent protein distance as defined in 

Equation 5.1. A 0.0018 unit of protein distance equals one substitution in the HA protein 
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sequence of H1Nl. The height and colors in Fig. 5.2{a) both represent the density of 

isolates. We plot the protein distance map in Fig. 5.2{b). Both A/Texas/05/2009 and 

A/New York/19/2009 are located near the center of the cluster, in good agreement with 

the observation from Fig. 5.1 that they are the founder strains for many F1 strains. 

To detect the clusters in the protein distance map, we use a statistical method known 

as kernel density estimation[43]. Kernel density estimation is a non-parametric method 

to estimate the probability density function from which data come. The kernel density 

figure is produced from the protein distance map, and it shows the density of influenza 

strains in sequence space. We plot the kernel density as the three dimensional shaded 

surface. For example, the kernel density surface Fig. 5.2{a) is produced from Fig. 5.2{b). 

The x and y axes in Fig. 5.2{a) are the same as that in Fig. 5.2{b) and are protein 

distance coordinates. The z dimension measures the density of flu strains around point 

(x, y). We use the surface height and the colors to represent z values, and the color is 

proportional to surface height. A peak in kernel density Fig. 5.2{a) indicates a cluster of 
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related flu strains in the protein distance map Fig. 5.2(b) 

There are two significant clusters in the Fig. 5.2(a), as two peaks are observed. The 

cluster on the left side contains A/Texas/05/2009. Another cluster on the right side 

contains A/New York/19/2009. The 2009 A(H1Nl) virus has evolved slowly to date. The 

greatest Pepitope antigenic distance between A/Texas/05/2009 and all sequenced strains 

is measured to be < 0.08. Values of Pepitope less than 0.45 for H1Nl indicate positive 

expected vaccine efficacy [92] , and so a vaccine is expected to be efficacious. All of the 

amino acids in all five epitopes of a strain of A/Texas/05/2009 and a strain of A/New 

York/19/2009 are the same. Multidimensional scaling predicts that A/Texas/05/2009 

will be the dominant strain in the 2009-2010 season, and that A/Texas/05/2009 is a 

suitable strain for vaccination. Our focus is on the expected vaccine effectiveness, as it can 

be judged from antisera hemagglutination inhibition (HI) assay or sequence data alone. 

We do not consider other aspects such as growth in hen's eggs or other manufacturing 

constraints. Laboratory growth and passage data are needed to address these aspects. 
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5.2.3 H3N2 virus evolution for 38 years 

We construct the protein distance map to determine the evolution of influenza A(H3N2) 

virus from 1969 to 2007. Sequences of HAl proteins were downloaded from the Influenza 

Virus Resources database[l4]. We use the multidimensional clustering method[79] to 

generate the protein distance map and corresponding kernel density estimation in Fig. 

5.3. Smith et ai.[llO] produced a similar graph using ferret antisera HI assay data. 

The figure presented here has a higher resolution, and more clusters are observed, be-

cause protein sequences data are more abundant and accurate than antisera HI assay 

data. The evolution of influenza tends to group strain into clusters. In Fig. 5.3, the 

vertical and horizontal axes of both figures represent protein distance as defined in 

Equation 5.1. A 0.0030 unit of protein distance equals one substitution in the HAl 

protein sequence of H3N2. The colors in Fig. 5.3(a) represent the time of collection 

of the isolates. The colors and height in Fig. 5.3(b) represent the density of isolates. 
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we identified 14 major clusters by setting a cutoff value of kernel density for the past 

38 years from 1969 to 2007. Each cluster is named after the first vaccine strain in 

the cluster. For example, HK68: Hongkong/1/68, EN72: England/42/72, VT75: Vic-

toria/3/75, TX77: Texas/1/77, BK79: Bangkok/1/79, PP82: Philippines/2/82, SC87: 

Sichuan/2/87, BJ89: Beijing/32/92, SD93: Shandong/9/93, JB94: Johannesburg/33/94, 

WH95: Wuhan359/95, SN97: Sydney/5/97, PM99: Panama/2007/99, FJ02: Fujian/411/2002; 

The average duration time for a cluster is therefore 2.7 years, which is also the approx-

imate duration of a vaccine. We marked each cluster by the first vaccine strain in the 

cluster. There are apparent gaps between clusters. The antigenic distance between two 

strains in two separate clusters is larger than the distances within the same cluster. The 

influenza virus evolves within one cluster before jumping from one cluster to another 

cluster. This dynamics occurs because small antigenic drift by one or a few sequential 

mutations does not lead the virus to completely escape from cross immunity induced by 

vaccine protection or prior exposure. 
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For vaccine design, when the viruses evolve as a quasispecies in the same cluster, the 

vaccine that is targeted to the cluster provides protection. This protection decreases with 

antigenic distance. When the viruses jump to a new cluster by antigenic drift or shift, 

one would want to update the vaccine to provide protection against strains in the new 

cluster. In Fig. 5.3(a), the arrows point to the exact position of vaccine strains. It can 

be seen that the positions of vaccine strains are near the center of clusters. It can be 

shown mathematically that choosing the consensus strain of a cluster as vaccine strain 

minimizes the Pepitope antigenic distance between vaccine strain and cluster strains, and 

thus maximizes expected vaccine efficacy[55]. 

5.2.4 Influenza vaccine strain selection 

We now use the low-dimensional sequence clustering method in an effort to detect a 

new flu strain before it becomes dominant. A question of interest in the influenza research 

is whether we can predict which strain will be dominant in the next flu season based on 
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Figure 5.3 (a) The protein distance map and (b) corresponding Kernel density estimation 

of influenza from 1968 to 2007. 
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the information we have at present. The WHO gathers together every February to make 

a recommendation for influenza strains to be used in vaccine for next flu season in the 

Northern hemisphere. The vaccine is expected to have high efficacy if the chosen strain is 

dominant in the next flu season. The recommendation is especially challenging to make 

when the dominant strain in next flu season has not been dominant before February of 

that year. For example, in mid-March 2009, a new H3N2 strain appeared[108, 2], which 

infected a significant fraction of the population in the Southern hemisphere. 

The current accepted influenza vaccine strain selection procedure is as follows [100]. 

Isolates samples are collected by WHO GISN and are characterized antigenically using 

the hemagglutination inhibition(HI) assay. About 10% of samples are also sequenced in 

HAl domain of HA gene. Antigenic maps are constructed from the HI assay data using 

dimensional projection technique. Examination of HI data is not dependent on analysis 

using dimensional projection, but rather, the primary HI data may carry the most weight. 

If the vaccine does not match the current circulating strains, the vaccine is updated to 
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contain one representative of the circulating strains. The emerging variant strains are 

identified. If the antigenically distinct emerging variants are judged to be the dominant 

strains in the upcoming season, the vaccine is updated to include one representative of 

emerging variants. The key issue and major difficulty is how to judge whether emerging 

variants will be the dominant variants in next season. If a fourfold difference in antisera 

HI titer between the vaccine strain and the emerging strains is observed, the emerging 

strain is to be determined to be dominant strains in upcoming season, and an updated 

vaccine is recommended to include the emerging strains [100] . 

Here, we propose a modified vaccine selection process based on clustering detection. 

First, we apply the multidimensional scaling to make a protein distance map from HAl 

sequences, instead of constructing an antigenic map from HI assay data. Then, we 

use kernel density estimation to determine the clusters of strains. If the vaccine does 

not match the current circulating cluster, the vaccine is updated to contain the current 

circulating strain. If the vaccine matches the current circulating cluster, but an emerging 
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cluster is judged likely to be the major cluster in the upcoming season, the vaccine is 

updated to contain the consensus strain of the emerging cluster. We judge whether a 

cluster is an emerging dominant cluster by two criteria. The first criterion is that this 

cluster can be detected by kernel density estimation, and is separate from the cluster that 

contains the current circulating strain or vaccine strain. A cluster that can be detected 

by kernel density estimation usually contains a central strain that has multiple identical 

copies and some Fl strains that are closely related to the central strain. An example 

is the cluster of A/Texas/05/2009(HINl) in Fig. 5.1. A/Texas/05/2009(H1Nl) is the 

central strain, which has 120 strains with identical HA protein sequences in the Influenza 

Virus Resource database[14]. A/Texas/05/2009(HINl) also has 29 Fl strains with one 

amino acid different. So, A/Texas/05/2009(H1Nl) and the surrounding strains form a 

cluster as we detected in Fig. 5.2 by kernel density estimation .. 

The second criterion is that the current vaccine strain does not match the consensus 

strain of the cluster and is estimated to provide low protection against strains in the 
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cluster. That is, an immune response stimulated by a vaccine cannot effectively protect 

against infection by sufficiently distant by new strains. The consensus strain is a protein 

sequence that shows which residues are most abundant in the multialignment at each 

position. The efficacy of current vaccine to the new cluster can be estimated from ferret 

antisera HI assay data. However, the antisera data has low resolution and has an im-

perfect correlation to vaccine effectiveness in humans[157, 55]. Instead, we use Pepitope, 

which is calculated as the fraction of mutations in dominant epitope, to estimate vaccine 

efficacy and which has a more robust correlation to vaccine effectiveness in human than 

do ferret HI data[55]. When the Pepitope between the current vaccine strain and consensus 

strain of the new cluster is larger than 0.19, expected vaccine efficacy decreases to 0 for 

H3N2 influenza, and the current vaccine cannot be expected to provide protection from 

new strains. As the examples shown below, our method can detect an incipient dominant 

strain at its very early stage, and the method appears to require about 10 sequences in 

the new cluster for detection. 
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5.2.5 Demonstration of low-dimensional sequence clustering method. 

We demonstrate the method of detecting the A/Fujian/411/2002(H3N2) strain. The 

A/Panama/2007/1999 had been the vaccination strain for four flu seasons between 2000 

and 2004 in the Northern hemisphere. The vaccine strain was replaced by A/Fujian/411/2002 

in the 2004-2005 flu season, as described in Table 5.1. The vaccine strain in the 2003-

2004 season was A/Panama/2007/1999, while the dominant circulating strain became 

A/Fujian/411/2002(H3N2). This mismatch resulted in a large decrease in vaccine effi-

cacy in the 2003-2004 flu season[55]. The vaccine efficacy is estimated to be only 12%[3]. 

We test whether our method can detect A/Fujian/411/2002(H3N2) as an incipient dom-

inant strain before it actually became dominant. We use only virus sequence data before 

October 1, 2003. We did not use any virus data collected in 2003-2004 season. Therefore, 

our prediction and results are made without any knowledge from what happened in the 

2003-2004 season. We plot the protein distance map of the 2001-2002 flu season in Fig. 
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5.4(d). To detect the clusters, we plot the kernel density in Fig. 5.4(b) for the data in 

Fig. 5.4(d). There are two separate significant clusters. The one with the largest kernel 

density on the left contains the current dominant strain A/Panama/2007/1999 and the 

widespread A/Moscow/10/1999 strain. The smaller one on the right is a new cluster, 

which contains A/Fujian/411/2002. Using the data as of September 30, 2002, we seek 

to determine whether the new cluster on the right in Figs. 5.4(b) and (d) will be the 

next dominant strain after A/Panama/2007/1999. We determine whether this cluster 

fulfills the two criteria above. First, this new cluster can be significantly detected by 

kernel density estimation. This cluster is separate from the current dominant strain, as 

we can see in figure. Second, we calculated the average Pepitope of the new cluster on the 

right with regard to A/Moscow/10/1999, A/Panama/2007/1999 and A/Fujian/411/2002 

to be 0.214, 0.1214, and 0.083, respectively. This means the current vaccine contains 

A/Moscow/10/1999 is expected to provide little protection against viruses in the new 

cluster. This result makes the new cluster fulfill the second criterion. Thus, we pre-



97 

dict based on the data as of September 30, 2002, that the cluster on the right in Fig. 

5.4(d) will be the next dominant cluster. This prediction was made on data collected 

one year earlier than when the A/Fujian/411/2002 became dominant in the 2003-2004 

season. To further support our prediction, in Fig. 5.4( c), we plot the protein distance 

map from October 1, 2002, to February 1, 2003, right before the WHO selected the 

vaccine strain for 2003-2004 season. To detect the clusters, we plot the kernel in Fig. 

5.4(a) for the data in Fig. 5.4(c). There are two separate major clusters observed in 

the kernel density estimation in Fig. 5.4(a). The left cluster has the current dominant 

strain of A/Panama/2007/1999 and also A/Moscow /10/1999. The right cluster has the 

A/Fujian/411/2002. We calculated the average Pepitope of the right new cluster with 

regards to A/Moscow/10/1999, A/Panama/2007/1999, and A/Fujian/411/2002 to be 

0.2725, 0.1811, and 0.0367 respectively. This result further supports the prediction that 

the new cluster will become dominant, and A/Fujian/411/2002, which is the most fre-

quent strain in the new cluster, will be or is very close to the next dominant strain. This 
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suggestion proceeds the vaccine component switch by 1-2 years, as shown in Table 5.1. 

5.2.6 Prediction for H3N2 influenza in 2009-2010. 

By applying our method to the 2008-2009 flu season, we predict that the domi-

nant H3N2 strain in the 2009-2010 flu season may switch. Based on the flu activity in 

the 2008-2009 flu season, the WHO made the recommendation in February 2009 that 

A/Brisbane/10/2007(H3N2) should be used as the vaccine[150]. However, a new strain 

evolved just after the recommendation was published. The British Columbia Center for 

Disease Control detected a new virus strain[108, 2] with 3 mutations in antigenic sites (two 

in epitope B and one in epitope D). Since this new strain is relatively far from the vaccine 

strain, with Pepitope = 0.095, vaccine efficacy is expected to decrease to 20%[55,33]. How-

ever, since the mutations in this new strain "do not fulfill the criteria proposed by Cox 

as corresponding to meaningful antigenic drift" [108, 28], and this strain still remained 

the minority of H3N2 viruses in July 2009, health authorities were not certain that this 
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(a) Kernel density estimation and (c) protein distance map for H3N2 viruses 

between October 1, 2002 and February 1, 2003. (b) Kernel density estimation and (d) protein 

distance map for H3N2 viruses between October 1, 2001, and September 9, 2002. A 0.0030 unit 

of protein distance equals one substitution of the HAl protein sequence of H3N2. 
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new strain would replace the current dominant strain in 2009-2010 flu season. We use 

our method to investigate whether this new strain will be the next dominant strain. We 

construct the protein distance map as shown in Fig. 5.5(c). We plot the kernel density es-

timation in Fig. 5.5(a) for data in Fig. 5.5(c). By the data up to June 14, 2009, we see two 

major clusters in Fig. 5.5(a). The larger one on the right contains the current dominant 

strain A/Brisbane/10/2007, and the left one is a new cluster which contains A/British 

Columbia/RV1222/2009. It is apparent that this new cluster is separate from the current 

dominant cluster. Thus, this cluster fulfills the first criterion. We calculated the aver-

age of Pepitope of strains in the left new cluster with regards to A/Brisbane/10/2007 and 

A/British Columbia/RV1222/2009 to be 0.103 and 0.042 respectively. The vaccine that 

contains A/Brisbane/10/2007 has an expected efficacy of 20% to the virus strains in the 

new cluster. Thus, this new cluster satisfies both two criteria, and so we predict that this 

cluster which contains A/British Columbia/RV1222/2009 will be the dominant cluster in 

the 2009-2010 season. The earliest time for us to make this prediction is March 30, 2009. 
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In Fig. 5.5{d) and (b), we already see this new cluster on the left side of figure, though 

since there are only about 10 sequences in the new cluster, the kernel density of this 

new cluster is smaller than that in the dominant cluster. This strain was mentioned as a 

concern on 5 May 2009, although by conventional methods the strain was not considered 

a potentially new dominant strain in July 2009[108]. With the method of the present 

paper, this new cluster is suggested earlier using the data as of March 30, 2009. 

5.2.7 Comparison with previous results. 

Here we present a historical test of the method. For each flu season in the North 

Hemisphere from 1996, we use only the H3N2 sequences data until February 1, before 

WHO published the recommendation for vaccine. We use the low dimensional cluster-

ing to made the prediction for the dominant strain. The conventional method as used 

by WHO is phylogenetic analysis combined with ferret antisera HI assay. In Table 5.1, 

we compare the method with the conventional method. This table includes the H3N2 
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Figure 5.5 (a) Kernel density estimation and (c) protein distance map for H3N2 viruses 

from October 1,2008, to June 14, 2009. (b) Kernel density estimation and (d) protein distance 

map for H3N2 viruses between October 1, 2008, and March 30, 2009. A 0.0030 unit of protein 

distance equals one substitution of the HAl protein sequence of H3N2. 
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vaccine strains, our prediction of dominant strains, the reported dominant circulating 

H3N2 strains[133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 

151]' and the circulating subtypes in the northern hemisphere[133, 134, 135, 136, 137, 

138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 151]. Circulating H3N2 strains are 

absent if the dominant subtype is HI or influenza B. The reported dominant H3N2 

strains and circulating subtypes data are from WHO Weekly Epidemiological Record 

(http://www.who.int/wer/en/). In the most recent 14 flu seasons, influenza subtype 

H3 was dominant in 10. The WHO H3N2 vaccine component matches the circulating 

strains in 8 seasons. Our predictions match the circulating strains in 9 seasons. In 

1997-1998 season, a novel flu strain Sydney /5/97 was found in June 1997. Because no 

similar strains were collected before February 1, neither of the two methods can pre-

dict it. In 2003-2004 season, our method predicts Fujian/441/2002 as the dominant 

strain, while phylogenetic analysis combined with ferret antisera HI assay did not. For 

all other 8 seasons dominated by influenza subtype H3, the predictions of both methods 
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matched the dominant circulating strain. The 2009-2010 influenza season was domi-

nated by H1Nl. But data from local outbreaks of H3N2 infections[108, 2] showed that 

the dominant H3N2 strain was A/British Columbia/RV1222/2009, as predicted in Table 

5.1, rather than the vaccine strain A/Brisbane/10/2007. For the 2010-2011 season, we 

recommend A/British Columbia/RV1222/2009 as a vaccine strain, and the WHO recom-

mended A/Perth/16/2009. These two strains are in the same cluster and antigenic ally 

similar with a small Pepitope = 0.048. Although these two strains are slightly different, 

the vaccine is expected to be effective. 



Flu season Vaccine strain Our prediction Circulating Circulating 

from WHO[150] H3N2 strain subtype 

1996-1997 Wuhan/359/95 Wuhan/359/95 Wuhan/359/95 H3 

1997-1998 Wuhan/359/95 Wuhan/359/95 Sydney/5/97 H3 

1998-1999 Sydney/5/97 Sydney/5/97 Sydney/5/97 H3 

1999-2000 Sydney/5/97 Sydney/5/97 Sydney/5/97 H3 

2000-2001 Panama/2007/1999 Panama/2007/1999 N/A HI 

2001-2002 Panama/2007/1999 Panama/2007/1999 Panama/2007/1999 H3 

2002-2003 Panama/2007/1999 FUjian/ 411/2002 N/A HI 

2003-2004 Panama/2007 /1999 Fujian/411/2002 FUjian/ 411 /2002 H3 

2004-2005 FUjian/ 411/2002 Fujian/411/2002 FUjian/411/2002 H3 

2005-2006 California/7/2004 California/7/2004 California/7/2004 H3 

2006-2007 Wisconsin/67/2005 Wisconsin/67/2005 Wisconsin/67/2005 H3 

2007-2008 Wisconsin/67/2005 Wisconsin/67/2005 N/A HI 

2008-2009 Brisbane/1O/2007 Brisbane/l0/2007 Brisbane/1O/2007 H3 

2009-2010 Brisbane/l0/2007 BritishColumbia/RVI222/09 BritishColumbia/RVI222/09 HI 

2010-2011 Perth/16/2009 BritishColumbia/RVI222/09 N/A N/A 

Table 5.1 Summary of results 

I-' 
0 
01 
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5.2.8 Detecting A/Wellington/1/2004 in the 2004 flu season in the Southern 

hemisphere 

The low-dimensional clustering can also be applied to influenza in the Southern hemi-

sphere. As an example, we test our method on the 2004 flu season. The recommended 

H3N2 vaccine strain by WHO used in the 2004 flu season in the Southern hemisphere was 

A/Fujian/411/2002. Data from the surveillance network suggested that the circulating 

dominant flu strain in the 2004 season in Southern hemisphere was A/Fujian/411/2002, 

and a late surge of A/Wellington/l/2004 was also observed. For example, in Argentina, 

a study showed that about 50% of infections were closely related to A/Fujian/411/2002 

and another 50% were closely related to A/Wellington/l/2004[102]. In New Zealand, the 

dominant flu strain was A/Fujian/411/2002 which caused 78% of flu infections[4]' and 

a late season surge of A/Wellington/l/2004 was also reported[l]. Therefore, the vaccine 

recommended by WHO matches the dominant strain and would be expected to have 

vaccine efficacy in the 2004 season in Southern hemisphere. 



107 

We here use the low-dimensional clustering method to detect the A/Wellington/1/2004 

strain, which is not the major dominant strain but caused significant infections in the 

2004 flu season. We plot the protein distance and kernel density estimation for the 

H3N2 viruses in Fig. 5.6(d) and (b). We use the data only as of February 1, 2004, 3 

months prior to the 2004 flu Southern hemisphere season, which is usually from May 

to September. We observed two clusters. The major cluster on the left side of Fig. 

5.6(d) is A/Fujian/411/2002-like, which was the vaccine strain in 2004 season. There is 

a new cluster in the right side of Fig. 5.6( d) which contains A/Wellington/1/2004. The 

Pepitope of A/Wellington/1/2004 with regards to A/Fujian/411/2002 is 0.118. Therefore, 

we predict that A/Wellington/1/2004 will infect a large fraction of the population, and 

the A/Fujian/411/2002 vaccine is expected to provide only partial protection against 

the A/Wellington/1/2004 virus. However, since the appearance of A/Wellington/1/2004 

was just before the the 2004 flu season, it did not have sufficient time to spread out and 

become the dominant strain in the 2004 flu season. From our observation, it usually 
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takes about 8 months or longer for a new strain to become dominant after its appearance 

in a new cluster. Therefore, the predominant flu strain in 2004 season is expected to be 

A/Fujian/411/2002 based on the data as of February 1, 2004. This result agrees with 

the dominant flu strain in the 2004 flu season. 

5.2.9 Detecting A/California/4/2004 as a future dominant strain 

As a further example of applying the low-dimensional clustering method to influenza 

in Southern hemisphere, we test the method on the 2005 flu season. The H3N2 vac-

cine strain in the 2005 flu season in the Southern hemisphere was A/Wellington/1/2004. 

Data from HI assay tests and surveillance suggest that the dominant H3N2 strain in 

the 2005 season was A/California/7/2004. In HI tests with postinfection ferret sera 

the majority of influenza A(H3N2) viruses from February 2005 to October 2005 were 

closely related to A/California/7/2004, as reported by WHO on October 7, 2005[144]. 

Surveillance data from Victoria, Australia, show that 45% of influenza A infections 
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Figure 5.6 (a), Kernel density estimation for the protein distance map for H3N2 viruses 

between 10/01/2003 and 09/30/2004. (b), Kernel density estimation for the protein distance 

map for H3N2 viruses between 10/01/2003 and 02/01/2004. (c), Protein distance map for 

H3N2 viruses between 10/01/2003 and 09/30/2004. We plot a dotted line to separate the two 

clusters. (d), Protein distance map for H3N2 viruses between 10/01/2003 and 02/01/2004. The 

vertical and horizontal axes of all figures represent protein distance. A 0.0030 unit of protein 

distance equals one mutation of the HAl protein sequence of H3N2. 
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were A/California/7/2004-like (H3), 11% were A/Wellington/1/2004 (H3) and 44% were 

A/New Caledonia /20/99-like (H1), as collected in the 2005 flu season[121]. Surveillance 

data from New Zealand also show that the dominant H3N2 strain in the 2005 flu season 

was A/California/7/2004[5]. 

We plot the protein distance for the H3N2 viruses in the 2003-2004 flu season in Fig. 

5.6(c). We only use the data as of September 30, 2004, earlier than the October 2004 

date when the WHO published the influenza vaccine recommendation for Southern hemi-

sphere. We plot the kernel density estimation in Fig. 5.6(a) for the data in Fig. 5.6(c). 

There are three major clusters in Fig. 5.6(a). The one on the left is the current domi-

nant cluster which are mostly A/Fujian/422/2002-like viruses. There is a middle cluster 

centered on A/Wellington/1/2004. The one on the right contains A/California/7/2004. 

Both the A/California/7/2004 cluster and the A/Wellington/1/2004 cluster are antigeni-

cally novel from A/Fujian/411/2002. 

When the protein distance map and kernel estimation as of February 1, 2004, is plotted 
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in Fig. 5.6(d) and (b), we still see the A/Wellington/l/2004 cluster. With these data, the 

A/California/7/2004 cluster is no longer observed. Thus, A/California/7/2004 cluster is 

a newly appearing cluster and we consider it to be the emerging strain. The new clus-

ter which contains A/California/7/2004 is separate from the current dominant cluster. 

We calculated the average Pepitope of the new cluster that contains A/California/7/2004 

with regard to A/Fujian/411/2002 to be 0.112. This makes the new cluster fulfill both 

criteria for an incipient dominant strain cluster. So we predict based on the information 

as of September 30, 2004, that A/California/7/2004 will be the next dominant strain 

after A/Fujian/411/2002 in Southern hemisphere. We further predict from these data 

that A/California/7/2004 will be the dominant strain in the following flu season in the 

Northern hemisphere. These predictions agree with the observed dominant strain in the 

2005 flu season. 
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5.3 Discussion 

The evolution of influenza virus is driven by cell receptor distributions, non-specific 

innate host defense mechanisms, cross immunity[54, 47], and other contributions to viral 

fitness. In this paper, we focused on HA protein evolution under antibody selection 

pressure. The degree to which the immunity induced by one strain protects against 

another strain depends on their antigenic distance[55]. Because the human immune 

response to viral infection is not completely cross protective, natural selection favors 

amino-acid variants of the HA protein that allow the virus to evade immunity, infect more 

hosts, and proliferate. Mutant strains surround the dominant strain and group into a 

cluster rather than evolve in a defined direction[llO, 94]. After the virus has circulated in 

population for one or more years, effective vaccines and cross immunity of the population 

drive the evolution of influenza by mutation and reassortment. This evolution increases 

the immune-escape component of the fitness of new strains, and eventually causes a new 
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epidemic. These new immune-escape strains will form a new cluster, and the old clusters 

will die out, thus starting a new cycle. This process of creating of new clusters is what 

our method detects. 

The low dimensional clustering can be used not only in genetic sequences but also 

on distances calculated from inhibition assays of antibody and antigens, as first shown 

by Lapedes and Farber[79] and Smith et al.[UO]. The inhibition assay provides an ap-

proximation of antigenic distance and is broadly used as a marker for vaccine efficacy. 

The inhibition assay suffers from low resolution of data, which multidimensional scaling 

improves, and is less able to predict the vaccine efficacy than the Pepitope method[55]. 

The genetic sequences used here are a direct description of the evolution of pathogen and 

antigenic distance of influenza. To aid vaccine selection, the low dimensional clustering 

on genetic sequences appears informative. 

Challenges may arise in application of the method described here. If two or more new 

clusters appear in one season, additional information is needed to decide which cluster 
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should be chosen for vaccine. Fortunately, it has been shown that the evolution of 

influenza is typically in one direction[47, 110]. It is rare to have two or more new clusters 

in the protein distance map in one season. As experience with the low dimensional 

sequence clustering is gained, it may be that cluster structure will allow more precise 

prediction of vaccine efficacy. Despite these issues, the method described here can assist 

the design of vaccines, and it provides a new tool to analyze influenza viral dynamics. 

We did not see any false positive results in Table 5.1. 

The current WHO method works quite well in many years. The method discussed 

here appears to offer an additional tool which may provide additional utility. 

5.4 Materials and Methods 

5.4.1 Data sources 

Influenza hemagglutinin A(H3N2) sequences before October 1, 2008, and A(H1N1) se-

quences as of December 5,2009, were downloaded from NCBI Influenza Virus Resources[14]. 

All hemagglutinin sequences used in our study are filtered by removing identical se-
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quences. Thus, all groups of identical sequences in the dataset are be represented by 

the oldest sequence in each group. This approach reduces the number of sequences by 

keeping only the unique sequences in the dataset. Influenza A(H3N2) sequences after 

October 1, 2008, were downloaded from GISAID database. 

5.4.2 Geographical spread pattern of 2009 A(H1N1) 

It is believe that the 2009 A(HINl) virus was most likely originated from Mexico[49J. 

It first spread to the neighboring country USA and then to other countries. We display 

this geographical spread pattern in Fig.5.!. We take the founder-Fl relationship from 

Fig. 5.1, and assume the virus spreads from location of founder to the location of F!. 

We consider three regions: USA, Mexico and other countries except USA and Mexico. 

Then we count the cases of spreading from one region to another region. In Table 5.2, we 

show that we observed many more paths of spreading from the USA to other countries 

than from other countries to the USA. The major path of spreading is from USA to other 
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Spreading path Number of cases 

USA to Others 32 

Others to USA 1 

Mexico to Others 1 

Others to Mexico 0 

Others to others 6 

Table 5.2 The geographical spread pattern of 2009 A(HINl). "Others" refers to other 

countries except USA and Mexico. 

countries. This result indicates our directional evolutionary map of Fig. 5.1 is in good 

agreement with the pattern of geographical spread. 

5.4.3 Multidimensional scaling 

The goal of multidimensional scaling is to represent the distance of proteins by a 

Euclidean distance in coordinate space. We calculate the distance between proteins i 

and j, dij , by the number of amino acid residue differences divided by the total number 

of amino acid residues, as defined by Equation 5.1. To do multidimensional scaling, we 

start with the distance of the proteins. The object of multidimensional scaling is to find 

the two, or p in general, directions that best preserve the distances dij between the N 
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proteins 

N 

F = L(dij - Dij)2 (5.2) 
i,j=l 

Here, Dij = IIxi - Xj II is the Euclidean distance between proteins i and j in the projected 

space, and II-II is the vector norm. The algorithm is as follows. Let the matrix A = [(aij)], 

where aij = -~4j' The eigenvalues of A are 1'1,1'2, ... , I'N and 1'1 ~ 1'2 ~ ... ~ I'N. 

Let Vel) ( (1) (1) (1)) b h . f d (2) _ ((2) (2) (2)) VI ,V2 , ... , VN e t e eIgenvector 0 ,1 an V - VI ,V2 , ... , VN be 

the eigenvector of 1'2' Let x - vIYlV(I) and y - ~V(2). The two coordinates in 

protein distance maps are x and y. The x-axis in the protein distance map is the largest 

eigenvector. We take H3N2 2008-2009 season as an example. In Fig. 5.5(c), we observe 

two clusters. One cluster is on the right side of figures with x value positive and another 

one has negative x values. We define the consensus sequence of a group of flu strains 

by taking the most frequent amino acid at each position. We calculate the consensus 

sequences both for the strains in the cluster on the right and on the left of figure. We found 
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Figure 5.7 Plot of Euclidean distances of proteins as in Fig. 5.4(d) on x-axis and plot of 

distance of corresponding proteins in y-axis. Closeness to the diagonal measures fidelity of the 

low dimensional projection. A 0.0030 unit of protein distance equals one mutation of the HAl 

protein sequence of H3N2. 

amino acids at four positions (76, 160, 172, 203) are different for these two consensus 

H3N2 strains, see Table 5.3. Interestingly, the Shannon entropy calculated from all 2008-

2009 season sequences at these four positions (0.43, 0.67, 0.59, 0.50) are the largest, which 

means the diversity at these four position are the largest. 

There is software available to run the multidimensional scaling. We use the Matlab 

function "CMDSCALE" to generate an N x p configuration matrix Y. Rows of Yare the 

coordinates of N points in p-dimensional space. The "CMDSCALE" also returns a vector 



Position in HAl protein of H3N2 76 

Amino acid in consensus strain 1 Glu 

Amino acid in consensus strain 2 Lys 

Shannon Entropy 0.43 

160 172 

Asn Lys 

Lys Asn 

0.67 0.59 

203 

Asn 

Lys 

0.50 
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Table 5.3 Consensus strain 1 is the calculated from all strains in the cluster on the right 

side of Figure 5.5(c). Consensus strain 2 is the calculated from all strains in the cluster on the 

left side of Figure 5.5(c). 

E containing the sorted eigenvalues of what is often referred to as the "scalar product 

matrix," which, in the simplest case, is equal to yyT. If only two or three of the largest 

eigenvalues E are much larger than others, then the matrix D based on the corresponding 

columns of Y nearly reproduces the original distance matrix d. We used the influenza 

H3N2 in 2001-2002 season as an example. The five largest of all 180 eigenvalues are 

0.0361, 0.0032, 0.0024, 0.0020, 0.0016. The first two largest eigenvalues contribute 70% 

to the sum of all 180 eigenvalues, which indicates p = 2. Then, we plot the the N points 

in a two-dimensional graph. Each point represents a protein. The Euclidean distance 

between any two points Dij on the graph should be equal to or close to the distance of 
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these two proteins. that is, Dij :::::: d ij . As an example, in Fig. 5.7, we show that Dij and 

dij have a strong linear relationship. A short MAT LAB program of multidimensional 

scaling is as follow. 

% Multidimensional scaling. 

% alignment.aln is a sequence multialignment file 

% generated by software ClustalW. 

clear 

Sequences = multialignread('alignment.aln'); 

distances = seqpdist(Sequences,'Method','p-distance')j 

Y = cmdscale(distances)j 

scatter(Y(:,l), Y(:,2))j 
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5.4.4 Biases in the data 

There are two biases in the sequence data. First, more isolates are sequenced in recent 

years. Generally speaking, more sequences make the vaccine selection based on low-

dimensional clustering methods more reliable. That is why we compared low-dimensional 

clustering methods with WHO results only since 1996 in Table 5.1. To avoid these biases 

in the generation of the figure of evolution history of influenza for the 40 years (Fig. 5.3), 

we choose 20 random isolates for each season, even though the database contains more 

sequences in recent years. Second, most isolates are collected in USA. We found that 

many isolates collected in USA are identical, because of the high sampling rate in USA. 

To reduce this bias, we collapse redundant strains, keeping only distinct strains. 
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Chapter 6 

Heterogeneous Diversity of Spacers within CRISPR 

6.1 Introduction 

Clustered regularly interspaced short palindromic repeats (CRISPR) has been re-

cently suggested to provide adaptable immunity to bacteria and archaea[18, 22, 35]. A 

typical CRISPR system is composed of CRISPR-associated( cas) genes and a CRISPR-

cassette[73, 20, 95]. A CRISPR-cassette is formed by nearly identical direct repeats of 

24-47 bp long nucleotides separated by similar sized, unique spacers. Repeats usually 

show some dyad symmetry but are not truly palindromic, implying the presence of a 

conserved secondary structure. Arrays of the same CRISPR are commonly followed by 

a conserved AT-rich sequence known as the leader. The leader appears to promote tran-

script ions towards the repeats, generating the RNAs that constitute the molecular base 

of the interference action. Recent studies have proposed that CRISPRs and cas genes 

function in anti-viral defense. A considerable fraction of spacer sequences are found to 
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be similar to known phage sequences, indicating that the spacer sequences may derive 

from viruses and phages[20]. Moreover, when bacteria that possess the CRISPR-Cas sys-

tern are exposed to viruses, the surviving individuals appear to have new virus-derived 

sequences at the leader-proximal end of CRISPR 10ci[18, 35]. Further, the acquisition 

or loss of CRISPR elements or of Cas protein genes has been directly correlated with 

phage and plasmid resistance or sensitivity, respectively[18, 35, 22]. The CRISPR system 

has began to attract a large amount of attention due to its potential role in restricting 

horizontal gene transfer. Because CRISPR system interference targets external DNA 

directly, it may prevent conjugation and plasmid transformation[82]. CRISPR system 

can also be used in anti-phage bacteria selection[70j. 

Recent experiments demonstrated the heterogeneous distribution of diversity of the 

spacers in the CRISPR system[122, 11]. However, the mechanism by which the phage-

bacteria interaction shapes the spacer structure is poorly understood. In this paper, we 

propose a model that describes how the newly added spacers are more diversified and the 
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old spacers are more conserved due to selective pressure on the CRISPR system. This 

model explains the underlying mechanism that shapes the spacer structure. This model 

confirmed that the diversity of CRISPR spacers is essential for the survive of bacteria. 

6.2 Results 

We describe the CRISPR-phage dynamics in the schematic representation of Fig. 6.1. 

In this figure, spacers are shown in numbers, and repeats are shown in dark squares. 

Leader sequences are directly adjacent to the short spacer-repeat units and possibly in-

volved in promoting transcription towards the repeats. The virus DNA that is recognized 

by CRISPR is represented by the letter "i." Only the CRISPR of the bacterial genome 

are shown; other parts of genome are assume to be identical in all bacteria strains. When 

bacteria are exposed to phage viruses, there are three possible scenarios: bacteria are in-

fected, viruses are defended, or bacteria acquire new spacers. In Fig. 6.1, the bacteria 

incorporate a piece of the phage DNA represented by the letter 'i' into its own genome 
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as a new spacer. New spacers are always added to the leader-proximal end[70]. To 

avoid infinite growth of CRISPR, an old spacer is dropped when CRISPR in excess of 

certain length[122]. The CRISPR system provides an immune response. After insertion 

of exogenous DNA from phages or plasmids, the CRISPR spacers are transcribed and 

processed to CRISPR RNA units. The CRISPR RNA units serve as templates to recog-

nize foreign nucleotide acids. If any of the CRISPR RNA units match the phage-derived 

sequences, the phage genetic material is degraded by bacteria. If none of CRISPR RNA 

units matches the phage-derived sequences, the bacteria are likely to be infected by the 

phage, and the phages will reproduce. When bacteria divide, the CRISPR are copied to 

the daughter cells[75]. 

6.2.1 Differential equation model 

We use a population dynamics model to describe the bacteria-virus community. We 

assume only one CRISPR locus for each bacteria individual. We first consider a simple 
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CRISPR in Bacteria Virus 

Virus killed 

Bacteria infected, 
Virus reproduces 

CRISPR with a new 

spacer 

Figure 6.1 A schematic representation to describe CRISP R-phage dynamics. 
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case in which there are no more than two spacers for each CRISPR locus. By the first 

spacer, we mean the spacer that is nearest to the leader sequences. The second spacer 

is the spacer that is t he next nearest to the leader sequences. We consider the following 

system of ordinary differential equations: 

dx " " L L ---'!:2l... = ex " " - {3 Vk x" " + {3'"V x " V " dt t ,J t,J I J,m t (6 .1) 
k:/=i,j m 

dVk L - = rVk - (3 x " "Vk(O " k + O"k) dt t ,J t , J, (6.2) 
i ,j 
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There are two variables in the above equations: Vk is the population of virus strain k, 

and Xi,j is the population of bacteria with CRISPR with spacers i and j. The first spacer 

recognizes virus strain i and the second spacer recognizes virus strain j. In the absence 

of phage infection, the bacterial growth is exponential at rate c. The term f3 'L..kfi,j VkXi,j 

represents the bacteria with spacers of type i and j infected by viruses strains other 

than i or j. Bacteria can be infected or killed when they are exposed to viruses that 

bacteria do not recognize by CRISPR. The exposure rate of bacteria to virus is f3. The 

term f3'Y 'L..m Xj,mVi represents the process of the converting other types of bacteria into 

bacteria of type i,j. When bacteria of type j, m incorporate virus of strain i into their 

own genome and add a new spacer, bacteria type j, m are converted to type i, j. The 

probability of adding a new spacer when a bacteria is exposed to a virus is 'Y. In the 

absence of resistance from CRISPR, viral growth is exponential at rate r. The term 

f3 'L..i,j Xi,jVk(Oi,k + OJ,k) represents the degradation of viruses by bacteria. If any spacers 

of bacteria of type i, j match viruses of strain k, the bacteria degrade the viruses. The 
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Kronecker delta function 8i ,k is 1 if spacer type i matches virus strain k; otherwise, it 

is O. This model is modified from the classic immune response model with antigenic 

variation[89]. In this model, we take only the essential factors into consideration. We do 

not distinguish the lysis and lysogeny cycle. Horizontal gene transfer is not considered. 

Furthermore, because viruses usually have more than one type of host to infect, viral 

growth is not limited by one specific type of target bacteria abundance[89, 11]. 

Solution of the model shows that the diversity of old spacer decreases upon challenge 

by viruses. We solve the differential equations by Matlab software using Runge-Kutta 

method. The initial value for the differential equations are naive bacteria whose CRISPR 

provide no resistance to viruses because their spacers are empty. The population of bacte:-

ria drops fast at the beginning. Some bacteria acquire spacers from viruses and therefore 

develop resistance. The population of bacteria is steadily recovered. We measure the 



diversity of spacers by the Shannon entropy: 

j j 

D2 = - I)L:: Pi,j) In(L:: Pi,j) 
j 

D, , _ Xi,j 
.r~,J - '"' 

L....m,nXm,n 
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(6.3) 

(6.4) 

(6.5) 

Here, Dl and D2 are the diversity for the first and second spacers. Because new spacers 

are always added to the leader-proximal end, the first spacer is "younger" than the 

second spacer. If there is no selective pressure on CRISPR, or CRISPR do not provide 

resistance against viruses, the diversity of spacers along CRISPR should be homogeneous, 

Dl = D2, because adding and deleting spacers is completely random. With the selective 

pressure on CRISPR to evolve resistance to phage, we observe a decline of diversity of 

the second spacer, as shown in Fig. 6.2. In this figure, the differential equation solution 

and simulation are based on the parameter values c 0.15, (3 2 X 10-6 , 'Y = 0.1, 

and r = 0.01. The viruses have four strains (length of string n = 2) with an initial 
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population ratio 6:2:1:1. The maximal population size allowed is 106 for virus and 105 

for bacteria. Diversity is measured by Shannon entropy. Other measures of diversity 

such as Simpson's index of diversity give similar results. Error bars are one standard 

error. The insert figure is solutions of differential equations with 200 different parameter 

combinations using LHS. The up branches are the first spacer, and the down branches 

are the second spacers. At the beginning, both positions have high diversity of spacers. 

With the continuous challenge of viruses and selective pressure for the effective resistance 

against viruses, the diversity of spacers at the second position decreases with time. When 

steady state is reached after some time, we observe that the diversity of spacers at the 

second position is lower than that at the first spacer. Our observation is true for a broad 

choice of parameters. Parameter space was explored by using the statistical technique 

of Latin hypercube sampling (LHS). LHS selects combinations of parameter values from 

parameter value range and probability distribution function. The parameter ranges we 

used are: c E (0.01, 0.15), (3 E (10-5,2 x 10-5), ')' E (0.01, 0.1), r E (0.01, 0.1). We used 
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Figure 6.2 Diversity of two spacers of CRISPR with time. 

200 samplings to sample parameter space . In the insert of Fig. 6.2, we observe that 

diversity of the old spacer is decreasing and the diversity of the young spacer is almost 

constant over time for all samplings. 

Selection for bacteria t hat contain t he most effective spacers decreases the diversity 



133 

of the old spacer. The bacteria randomly take virus genomes from the environment and 

incorporate a corresponding spacer. Therefore, the diversity of the first spacer approaches 

the diversity of viruses in the environment. If the spacers match the dominant virus 

strain, bacteria containing these spacers are more likely to survive, and therefore spacers 

that match dominant viruses accumulate in the CRISPR. Bacteria that contain unused 

spacer elements that provide little protective potency are more likely to be infected 

by phage. The spacers corresponding to the dominant virus strain are enhanced and 

accumulate at the second spacer position. Therefore, the diversity of the second spacers 

decreases. 

6.2.2 Stochastic simulation model 

We seek to identify finite size effects by stochastic simulation. We use a stochastic 

individual-based model (IBM) for the large bacteria and virus population by Lebowitz-

Gillespie algorithm. Each bacteria and each virus is an agent. Viruses are represented 
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as bit-strings. Each bit has two alleles, designated as a "1" or "0". In individual-based 

model, the length of virus strings are n, therefore 2n genotypes are available for viruses. 

For bacteria, we ignore other parts of genome, but consider CRISPR locus only. Each 

spacer is n bit 10ng[75], which is the same size as viruses. The simulation starts with 

a population of viruses of different genotypes and bacteria without spacers in CRISPR 

locus. Viruses infect bacteria with a contact rate f3. If any spacer of bacteria matches the 

infecting virus, the virus is killed. Otherwise, the bacteria is infected and die. Bacteria 

and viruses reproduce at rate c and r respectively. Bacteria add a new spacer with a rate 

'Y from contacting virus. In Fig. 6.2, we adopt the same parameters as used in differential 

equations. We observed the simulation results agree with the analytic results. 

We further extend our individual-based simulation to allow the CRISPR to have 

more spacers, random loss of spacers and mutation. Most CRISPR contain fewer than 

50 repeat-spacer units. For example, the average number of spacers of Streptococcus 

thermophilus is 23 per CRISPR locus in one study[71J. In our extended simulation, 
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when the array of spacers of bacteria is more than 30, a spacer is randomly deleted with 

probability proportional to its distance to the leader sequence. When viruses replicate, 

the mutation rate of each strain is c. We perform mutation by randomly flipping one bit 

of viruses bit-string from "I" to "0" or from "0" to "1". The extended simulation starts 

with a population of 150 virus genotypes and bacteria without spacers. The simulation 

runs until it reaches steady state. We run the simulation 100 times to average the 

results. After the simulation reaches steady state, we calculate the diversity of spacers 

for each position by Shannon entropy. In Fig. 6.3, the positions with a small number in 

the x-axis are leader-proximal. In this extended simulation, we use the parameters: c = 

0.15, (3 = x10-5 , 'Y = 0.1, r = 0.05, mutation rate c = 0.01, size of virus bit-string n = 10. 

Initially, there are 150 phage strains with a logarithm population distribution[122]. Other 

parameter settings give similar results. Error bars are one standard error. In Fig. 6.3, 

we observe that the "young" spacers which are leader-proximal are highly diversified and 

that the "old" spacers which are leader-distal are more conserved. 
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Figure 6.3 Diversity of spacers at different positions of CRISPR, when the system reaches 

steady state. 
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These results support the following scenario: Infection by a novel viral genotype re-

sults in the lysis or weakening of most individuals, except those that are able to capture 

and incorporate a corresponding spacer into their CRISPR locus. Resistant individuals 

rapidly gain a selective advantage, leading to the fixation of the resistant spacer. Increas-

ing polymorphism toward the leader-proximal end provides support that the CI~ISPR 

are an actively evolving and functioning phage defense mechanism. 

6.2.3 Experimental results 

This model is in agreement with recent experiment results. Horvath et al. [71 J se-

quenced the CRISPR regions of 124 S. thermophilus strains and analyzed 3626 spacers, 

926 of which are unique. We aligned the spacers of CRISPR loci 1 for 124 strains. Shan-

non entropy was calculated for each aligned position, see Fig. 6.4. Spacers at leader-

proximal positions are more diverse and spacers at leader-distal positions are highly con-

served across strains. For example, at the most leader-distal position, 34 of 124 strains 
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Figure 6.4 Diversity of spacers of CRlSPR loci 1 of S. thermophilus strains[71]. The 

positions with a small number in the x-axis are leader-proximal. 

share the identical spacer. 

Recent metagenomic studies of environmental microbial samples provide a population-

wide view of the dynamics between phage and CRISPR of the hosts[122, 11,66]. In one 

study, sequence data were assembled from biofilm community samples[122, 11]. The 

CRISPR loci of the predominant Leptospirillum species display extensive polymorphism. 
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We calculate the Shannon entropy for each position of CRISPR, see Fig. 6.5. The bacteria 

community shared spacer sequences at the leader-distal end of their CRISPR loci, while 

the leader-proximal end of the loci contained spacers that were mostly unique to each 

individuals. The decrease of diversity of spacers from leader-proximal end to leader-

distal end supports a model in which highly plastic CRISPR loci continuously respond 

to challenge from a rapidly evolving pool of phage. 

6.3 Conclusion 

To sum up, the CRISPR provide adaptable immunity to bacteria and archaea. Bac-

teria continuously incorporate nucleotide material from phage genomes into CRISPR to 

gain resistance against phage infection. Viruses continuously perform nucleotide muta-

tion and horizontal gene transfer to avoid being recognized. The coevolution interaction 

between viruses and bacteria CRISPR system has shaped the spacer structure of CRISPR 

locus. Both our model and recent experiments support the declining diversity of spacers 
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towards leader-distal end, implying that the CRISPR is an actively anti-viral system. 

Our model explored that the underlying mechanism of shaping spacer structure is the 

selection of bacteria CRISPR systems that match best with viruses in the environment, 

and the diversity of bacteria CRISPR is vital for survive. Further effort can extend our 

model to study the population dynamics of phage under the pressure of CRISPR. 



Chapter 7 

Regulated mechanism in antibody VDJ 

recombination 

7 .1 Introduction 

The adaptive immune system is one of the most well characterized, yet complex 

biochemical systems in the animal body, but we still have much to learn about its design 

and how it functions [72]. One question is how the diversity of antibody repertoire is 

created. The diversity of the antibody repertoire is achieved by both combinatorial and 

junctional diversity, followed by somatic mutation. The large diversity of the antibody 

repertoire allows the immune system to recognize a wide variety of antigens. In each B 

cell precursor, one each of the many V, D, and J gene segments recombine to form a 

heavy chain. This process is called VDJ recombination. The B cell precursor becomes a 

mature naive B cell after negative selection and is released to the blood from the bone 

marrow. When the mature naive B cell binds to foreign antigen, it is activated and gives 
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rise to plasma cells and memory cells. Therefore, the B cell antibody repertoire is mainly 

composed of two types of antibodies: the naive B cells that are not activated by antigen 

are called the naive antibody repertoire, and the plasma and memory B cells that have 

been under clonal selection are called activated antibody repertoire. 

It is commonly believed that a heavy chain is generated by randomly combining 

V, D and J gene segments [72]. However, some studies have shown that V, D, and J 

genes may be not used equally in the pre-immune repertoire and that individual V gene 

segments rearrange at different frequencies [45, 155,93]. One explanation for the unequal 

frequency of V segments is the natural variation in recombination signal sequences that 

are recognized by recombinase enzymes [46]. Previous work focuses on the individual 

gene segment usage, correlations of VDJ combinatorial usages between individuals have 

only recently been studied. 

In this study, strong correlations in the zebrafish naive antibody repertoires are ob-

served. The entire expressed VDJ repertoires from 14 zebrafish are used [130]. Previous 
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study found limited correlations between fish antibody repertoires[130]. By classifying 

the whole antibody repertoire into naive antibody repertoire and activated antibody 

repertoire, we show that the naive antibody repertoire has a strong correlation, and the 

activated antibody repertoires has almost no correlation. We further propose a stochas-

tic model of VDJ recombination in which each V, D and J segment are chosen at some 

frequency, which is conserved across individuals. Our results suggest that the VDJ re-

combination process is regulated. 

7.2 Results 

7.2.1 Correlation in the naive VDJ repertoire 

In zebrafish, there are 39 choices for the V segment, 5 for D and 5 for J, for a total 

of 975 possible VDJ combinations. Previous experiments have produced the complete 

antibody repertoire in each of 14 zebrafish [130]. The V, D and J segments of all the 

sequences are recognized by aligning the genomes. In this study, T[Jk is used to donate 

the sequence reads of VDJ combinations(type i V segement, type j D segment, and type 
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k J segment) of fish n. The naive antibody VDJ repertoire can be constructed from the 

entire antibody VDJ repertoire by removing the highly represented VDJ combinations. 

The inactive naive B cells have low copies. Once they are activated by antigen, they start 

to duplicate themselves and can increase in number by up to 1000 fold [72]. Considering 

that each B cell bears a single type of receptor with a unique VDJ combination, the 

highly expressed VDJ combinations in repertoire are very likely from the activated B 

cells. 

Strong correlation between zebrafish antibody repertoire is observed when highly 

represented VDJ combinations are removed. T[jk is ranked by their value and the top p 

percentage of VDJ combinations that have the most sequence reads are removed from 

the 975 possible VDJ combinations. The remaining VDJ repertoire has 975 * (1- p) VDJ 

combinations and is a vector in which each element TrJk records the number of reads that 

map to a particular VDJ combination. The Pearson correlation coefficient is calculated 

between the remaining VDJ repertoire vectors from different fish. The control experi-
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Figure 7.1 VDJ repertoire correlation analysis for all 14 fish. (a) Correlation of VDJ 

repertoire with highly expressed VDJ combinations removed. (b) Histogram of correlation 

of VDJ repertoire with the top 2% of most expressed VDJ combinations removed. In both 

figures, the simulation is conducted by randomly swapping the sequence reads between VDJ 

combinations. 
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ments are also constructed by randomizing the VDJ repertoire vectors. Fish were nearly 

uncorrelated in all VDJ repertoires when all VDJ combinations are considered in Figure 

7.1{a). The correlation increases when the more highly expressed VDJ combinations are 

removed, saturating at maximal value of 0.52. The activated VDJ combinations are es-

timated to account for 1 % ~ 2% of entire 975 possible VDJ combinations. The sequence 

reads are added up for the top 2% mostly expressed VDJ combinations and find that the 

activated VDJ combinations account for 57% of all sequences reads. The activated VDJ 

combinations has a small diversity and a large amount of volume in the entire repertoire. 

Note that in the human repertoire, memory B cells have at a roughly 100 times higher 

copy number and a roughly 100 times lower diversity, compared with naive B cells. The 

results here suggest the same number may hold for zebrafish. 

The correlation between fish is calcuated by removing the top 2% of VDJ combina-

tions. The correlations are significantly larger than that for simulated control experiment. 

The correlations in the naive VDJ repertoire are unexpectedly high, which indicates the 
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Figure 7.2 Naive and activated VDJ repertoire correlation analysis for all 14 fish . 
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Figure 7.3 Correlation matrix of the activated VDJ repertoire. Only fish 4 and 6, fish 12 

and 13 have strong correlations. 
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VDJ recombination is a regulated process. These results are in contrast with the com-

mon view that the VDJ repertoire is generated by a series of uniformly random molecular 

events within independent B cells [72J. 

Another method to distinguish naive antibody repertoire from activated repertoire 

is based on somatic hypermutation. When a B cell is activated by an antigen, it is 

stimulated to divide (or proliferate). During proliferation, the B cell receptor locus 

undergoes an extremely high rate of somatic mutation that is at least 105 - 106 fold 

greater than the normal rate of mutation across the genome[90J. For each sequence 

read in ref.[130]' we compare it with standard V, D, and J gene segments to find non-

junctional mutations that are considered as somatic hypermutations. Sequence reads are 

grouped into a cluster if their sequences are identical. If a sequence cluster has no somatic 

hypermutation and there are fewer than 5 sequence reads in the cluster, this cluster is 

considered as naive antibody cluster. we impose a cutoff of 5 sequence reads in the cluster, 

so that activated B cells without somatic hypermuations are excluded. If sequence cluster 
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has somatic hypermutations and there are more than one sequence reads in cluster, this 

cluster is considered as naive antibody cluster. we impose a cutoff of greater than one 

sequence reads to exclude the sequencing errors from somatic hypermuations. The naive 

VDJ repertoire Tgk(N) is calculated using sequence reads in naive antibody clusters. The 

activated VDJ repertoire 77jk(A) is calculated using sequence reads in activated antibody 

clusters. Further, correlation coefficients are calculated Cm,n(N) =< (Tm(N), Tn(N) > 

Strong correlations in the naive VDJ repertoires are observed in Figure 7.2. This is 

in agreement with Figure 7.1(b). Small correlations exist in activated VDJ repertoires. 

The activated antibody repertoire is developed under clonal selection that is correlated 

with the environment. Therefore the small correlations in activated VDJ repertoires can 

be explained that different fish see different environment and therefore their immune 

responses have different history [72]. Although most fish were uncorrelated in their 

activated VDJ repertoires, two pairs of fish are highly correlated in Figure 7.3. Detail 
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examination of these two pairs of fish reveals that they are from the same family. It is 

possible that these two pairs of fish are living in the same environment and have a similar 

disease history, and so they developed a similar antibody repertoire. 

7.2.2 Regulated model of VDJ recombination 

One question naturally arises is how the zebrafish immune system explores the large 

space of all possible VDJ combinations to find the tiny 1% rv 2% effective VDJ combina-

tions to defect antigens, see Figure 7.1. A random search in the entire space seems costly 

and inefficiently. When an antigen invades, does the immune system have pre-designed 

pathes to search for VDJ combinations with the best affinity binding the antigen? 

Here, we propose a statistical model to describe the mechanism of VDJ recombination 

and how the immune systems explore the large space of the antibody repertoire. We 

assume the frequency probability of a particular VDJ combination is the product of the 
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frequency probability of its V, D and J segments. 

(7.1) 

Here, P[Jk is the frequency of observing the VDJ combination of type "ijk" in fish n. 

Pt(V), PP(D) and Pf:(J) are the probability of selecting i type V, j type D and k type 

J during VDJ recombination in fish n, respectively. The value of Pt(V), PP(D) and 

Pf:( J) are estimated by fitting the model to the naive VDJ repertoire data by maximal 

likelihood Monte Carlo method. The initial value of probability of gene segments is 

The value of Pt(V), PP(D) and Pf:(J) is perturbed to maximize the correlation between 

model prediction and real data as defined as Dn =< PtJk' T0k(N) > 

The model is calibrated with the zebrafish data. The model can produce the naive 

VDJ repertoire similar the original data with high fidelity. The model estimation fits 

well with the original data with high correlation in Figure 7.4(a). By directly comparing 
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Figure 7.4 (a) Correlation Dn between naive VDJ repertoire TI)k(N) and model estimation 

PDk' (b) Fitting quality as illustrated by fish 5. 

the model estimation and observed data in Figure 7.4(b), the simple model predicts the 

data. From these results, the diversity of naive VDJ repertoire is likely generated by 

choosing V, D and J segments with some probability to create a VDJ combination. 

We find that the probability of choosing a particular V segment is the same across 

fish. In other words, all fish share the same probability distribution of V segments. The 

Pin(v) with n = 1,2 ... ,14, and i = 1,2, ... ,39 is shown in Figure 7.5. Heterogenous usage 

of V segments are observed. Approximately half of V segments are heavily used and the 
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other half are infrequently observed. One interesting question is whether the heavily used 

V segments in one fish are also heavily used in other fish. Intuitively, this trend can be 

observed in Figure 7.5. For examplc, V segments of type 11, 13, 20, and 21 are the most 

frequently used segments in all fish. We determine that the probability distribution V 

segments is conserved across fish with a significant average correlation of p n(v) across 

fish (R2 = 0.57). The average of Pt(V) over 14 fish is shown in Figure 7.6. 

Thc conserved probability frequency are also observed in J segments . The p!:( J) 
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Figure 7.7 P!:(J) as estimated from the model for all 5 J segments in 14 fish. Fish 10 and 

14 have distinct probability distribution. Recall in Figure 7.4(a) that the model prediction fits 

the data of fish 10 and 14 less well than the other fish . 
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is shown in Figure 7.7 and the average pr:(J) over 14 fish in Figure 7.8. Except for 

fish 10 and 14, most of other fish share a common frequency distribution of J segments. 

These results signify that the VDJ recombination is a regulated process. Each V and J 

segment is chosen with at some frequency probability, and the probability is shared across 

individuals. The unequal probability distribution seems to be the result of evolution and 

it may help the immune system to quickly explore the large space of VDJ repertoire to 

find the best antibody for an external antigen. 

7.3 Conclusion and discussion 

In summary, we have observed a strong correlation in the naive VDJ repertoires. 

A simple statistical model is proposed to describe the mechanism of VDJ recombina-

tion. The diversity of the VDJ repertoire seems to be generated by a regulated VDJ 

recombination process, in which each V, D, and J segments is chosen with a regulated 

frequency. 
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The results here suggest several experiment to exam the diversity of the antibody 

repertoire. First, experiments can be performed to sequence bone marrow antibody 

repertoire. This would provide a window to study the mechanism of VDJ recombination. 

In our study, two computational methods are used to distinguish the naive antibody 

repertoire from the activated antibody repertoire. The naive antibody repertoire could 

be directly measured by sequencing antibodies in the bone marrow from mice or kid-

ney from zebrafish [83J. Second, to understand how environment and disease affect the 

antibody repertoire, individuals from the same and different families and environments 

could be sequenced to investigate the possible feedback control from environment to VDJ 

recombination. Alternatively, an individual's antibody repertoire could be sequenced 

multiple times when its environment is changed. Third, we can sequence siblings' anti-

body repertoires at different ages to determine the genetic and epigenetic control of VDJ 

recombination. 



Chapter 8 

Conclusion 

Evidence from protein interaction, protein domain interaction, animal body plan 

development, and world trade show that hierarchy will spontaneously emerge and grow 

in evolving systems in the changing environment. The theory of modularity is a general 

law in biology and will lead to new discoveries in biology. Hierarchy in evolving systems 

is shown to increase the evolvability and robustness of the systems. 

Influenza has a high evolution rate, which makes vaccine design challenging. New 

dominant strains can be detected early by low-dimensional clustering. An influenza 

vaccine selection procedure is proposed based on this sequence clustering. The procedure 

is demonstrated and tested in detail using historical data. The performance of the method 

to predict the dominant H3N2 strain in an upcoming flu season is shown using data solely 

from before the flu season. The method was demonstrated on data since 1996. This strain 
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detection tool would appear to be useful for annual influenza vaccine selection. 

The CRISPR provide adaptable immunity to bacteria and archaea. The coevolution 

interaction between viruses and bacteria CRISPR system has shaped the spacer structure 

of CRISPR locus. Both the models and recent experiments support the declining diversity 

of spacers towards leader-distal end, implying that the CRISPR is an actively anti-

viral system. The models explored that the underlying mechanism of shaping spacer 

structure is the selection of bacteria CRISPR systems that match best with viruses in 

the environment, and the diversity of bacteria CRISPR is vital for survive. 

Naive VDJ repertoires is shown to have strong correlations in individuals. A simple 

statistical model is proposed to describe the mechanism of VDJ recombination. The 

diversity of the VDJ repertoire seems to be generated by a regulated VDJ recombination 

process in which each V, D, and J segments is choose with a regulated frequency. 
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