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Abstract 

Finite Element Nonlocal Technique Based on 
Superconvergent Patch Second Derivative Recovery 

by 

Xiaoge Gan 

This dissertation proposes a finite element procedure for evaluating the high order 
strain derivatives in nonlocal computational mechanics. The superconvergent second 
derivative recovery methods used are proven to be effective in evaluating the Laplacian 
of the equivalent strain based on low order (linear) elements. Current nonlocal fmite 
element techniques with linear elements are limited to structured meshes, while the new 
technique can deal with unstructured meshes with various element types. Other 
superconvergent patch recovery (SCP) based nonlocal approaches, such as the patch 
projection techniques only utilize nodal based patches to evaluate the first derivatives of 
the strain. The SCP technique has not yet been used for recovery of higher order strain 
derivatives. The proposed technique is capable of evaluating the Laplacian of the 
equivalent strain and has the potential for even higher order derivative recovery. The 
same patches can be easily utilized for error estimation and adaptive meshing for 
nonlocal problems. 

We employ two super-convergent patch options: the element based patch with all 
neighbors or only facing neighbors. The nonlocal strain derivatives can be recovered 
through either a mesh nodal averaging process or directly at the patch element quadrature 
points after the patch least square fitting problems are solved. Numerical examples for 
both strain gradient damage mechanics and strain gradient plasticity problems are given. 
In summary, the new fmite element nonlocal computational technique based on the 
superconvergent second derivative recovery methods is proven to be robust in evaluating 
the high order strain derivatives with low order element unstructured meshes. 
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Chapter 1 

Introduction 

The past several years may probably have witnessed some of the most devastating 

disasters in human's history: 2008 Sichuan earthquake (8.0 Magnitude) in China; 2011 

Tohoku earthquake (9.0 Magnitude) and tsunami in Japan; 2011 Tuscaloosa tornado in 

U.S.A., etc.. Facing nature's rampage, our infrastructure has become unprecedentedly 

vulnerable. Structure safety is now a prior concern. To prevent failure and improve 

structure integrity, the very first step is to use effective failure analysis approaches to 

identify the root cause of likely failures. It has been discovered that the failure of the 

structures usually initiates from highly strain localized zones. The strain localization 

usually accompanies a softening material behavior and is studied with nonlocal 

continuum mechanics. Nonlocal continuum mechanics prevents the numerical difficulties 

caused by the loss of ellipticity and also incorporates the material length scales to bridge 

the material micro and macro scales. A one-dimensional benchmark problem is first 

given to illustrate the idea of the loss of the ellipticity. 
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1.1. One-dimensional benchmark problem 

The simulation of materials with softening behavior, including damage 

mechanics, softening plasticity, etc., is generally a challenging topic. Classical 

continuum mechanics fails in this regard when the ellipticity of the governing equations 

is lost. This loss of the ellipticity of the equations results in a physically meaningless 

post peak unloading behavior, i.e., mesh dependent finite element results. 

The loss of ellipticity is best illustrated by a one-dimensional bar tension example as in 

de Borst (2001). As shown in Figure 1.1, a one-dimensional bar is fixed at the left end 

and is pulled horizontally at the right end. The bar is divided into m elements. The 

stress-strain relationship is assumed to be elastic at first. When the tensile strength .ft is 

reached, any further loading will cause a linear decrease in the tensile strength of the 

material until it reaches zero. 

a 

h 

~--L-------------~~--e 
Ko Ku 

Figure 1.1 One-dimensional bar tension problem 
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Since it is one-dimensional, the stress-strain relationship is defmed by the axial stress and 

strain of the bar as, 



U=l 
e::;; le0 

leo::;; e::;; leu 

leu::;; e 

(1.1) 

where E is the Young's modulus, Ko is the strain corresponding to the tensile strengthft, 

and Kt is the strain when stress reaches zero. The linear hardening/softening modulus h is 

then expressed as, 

h= (1. 2) 

The center element, shown in grey in Figure 1.1, is weakened by assuming a 10% 

reduced tensile strength as compared to that of the other elements. The axial force along 

the bar needs to be balanced, which means the stress is equal among all the elements. 

Therefore, upon loading, the weakened element reaches its tensile strength ahead of the 

other elements and is the first to enter the softening stage. From Eq. 1.1, the strain in this 

element em is obtained as, 

(E-h)(a- t,) e = -'-----'-'-----'~ 
m Eh (1. 3) 

The other m-1 elements experience elastic unloading while the weakened element is 

further softened. Therefore, they have the same strain em-I as, 

The average strain e is given as 

(j 

e =­m-l E (1.4) 

3 

1 J a E-ha-/, e=-[(m-l)e 1 +e =-+----1 

m m- m E Eh m 
(1.5) 

Equation 1.5 shows that the average strain along the bar is actually dependent on the 
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number of the elements in the bar. That is to say, the discretization of the bar changes the 

loading-displacement curve obtained for this bar tension problem. When the mesh is 

refined, as m goes to infinity, the area where damage or softening initiates disappears 

from the problem and the bar tension problem incorrectly becomes purely elastic. 

- a e ~- as m~oo 
E 

(1.6) 

The result is plotted in Figure 1.2. It shows spurious post-peak mesh dependence, which 

is unacceptable. 

The mesh dependence shown in the benchmark example here is also discovered in two-

dimensional or three-dimensional problems. Mathematically speaking, this is caused by 

the loss of the ellipticity of the governing equations. During the post-peak stage, the 

slope of the stress-strain curve is usually negative. In general, the tangential stiffness is 

no longer positive definite but negative definite. This means the elliptical problem 

becomes hyperbolic. Therefore, the solution may not be unique and becomes unstable. 

Consequently, the classical continuum mechanics fails in this regard, showing spurious 

mesh dependence and giving physical meaningless solutions. As a remedy, the nonlocal 

approaches are introduced and proven to be mesh independent. 



5 

a 

Figure 1.2 Stress against average strain curve shows mesh dependence 

1.2. Literature review 

Classical continuum solid mechanics usually refers to the local formulations. In 

continuum solid mechanics, the state variables (i.e., stress, strain, etc.) at each material 

point depend only on the current status and the history at that point, i.e., loading, 

deformation, etc. The continuity of the state variables is satisfied globally on the level of 

the equilibrium of the governing equations, which are derived from the underlying 

thermodynamics. The treatment of material as a general continuum has its limitations, 

since it overlooks the microscopic characteristics of the material. On the other hand, as 

shown in the benchmark problem, because of lacking microscopic information, the 

numerical implementation of the local continuum models shows spurious mesh 

dependence for certain softening material behaviors, which is unacceptable. The 

mathematical explanation for this mesh dependence is called the loss of ellipticity of the 
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governing differential equations. 

Historically, Cosserat or micropolar continuum theories (Mindlin 1964, Eringen 

and Suhubi 1964a, 1964b, etc.) were among the first attempts that were introduced in the 

early 1980s to include information on the material micro scales. Cosserat or micropolar 

continuum theory is not included in the nonlocal formulations discussed in this 

dissertation. Discussion on this topic is reviewed in Bazant and Jirasek (2002). Most 

nonlocal continuum models are either of the integral types such as Bazant and Jirasek 

(2002) or on the gradient types such as Pamin (2005), Jirasek and Rolshoven (2009a, 

2009b ), etc. The review given hereafter will mainly focus on the finite element 

implementations for both integral and gradient type nonlocal methods. 

1.2.1. Integral type nonlocal formula 

In an integral type formula, the nonlocal form F(x) of a local state variable f(x) is 

expressed as, 

(1.7) 

where a(x, O is the spatial weight function defined in the three-dimensional Euclidean 

space n. It must satisfy, 

fna(x,(kf~=l for xEQ (1.8) 

This is achieved by normalizing the original weight function a0 (x, 0, 



7 

(1.9) 

(1) Nonlocal stiffness matrices 

Eringen and Edelen (1972) are among the pioneers who study the nonlocal 

elasticity theories. In those theories, a nonlocal elastic constitutive relation is developed 

such that the strain at any point is obtained by a weighted integral average of the strains 

at all the points in the body. The implementation of such theories in finite elements 

always involves the construction of the nonlocal stiffness matrices. 

Bazant and Chang (1987), Pijaudier-Cabot and Bazant (1987) propose an imbricate finite 

element procedure for the simulation of the strain-softening materials. The idea is to use 

a set of overlapping elements, called the imbricated elements, to include the nonlocal 

interactions from the other elements into the current element. However, the imbricated 

elements can fail because of zero energy modes instability. 

Addessi et al. (2002) develop a plastic nonlocal damage model that also implements the 

same idea of a spatial integral averaging process. Addessi and Ciampi (2006) later 

introduce an elastic-plastic predictor and damage-corrector process, which could be used 

in the incremental solution of the damage-plastic coupled problems. 

Most recently, Pisano et al. (2009) implement similar nonlocal elasticity theory to 

inhomogeneous materials. The nonlocal stiffness matrices are obtained through a cross-
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stiffness by a set of elements within an influence distance. 

(2) Nonlocal yield function or loading-unloading function 

Another way to implement the integral type nonlocal formula is through the 

introduction of a scalar nonlocal variable, i.e. nonlocal equivalent stress and strain, etc., 

into the yield function or the loading-unloading functions. Similarly, both de Vree et al. 

(1995) and Stromberg and Ristinmaa (1996) propose a way to obtain the nonlocal field 

through a spatial averaging process. The weighted integral is evaluated through the 

numerical integration of each finite element. 

Similarly, Jirasek and Marfia (2005) also advocate a way to calculate the nonlocal 

quantity through a weighted spatial averaging process through the neighboring 

integration points in the mesh. 

Nap 

F(x*) = L w1J1a(x*,x1)f(x,) (1.10) 
I= I 

With the normalized weight function evaluated as, 

a(xk,xi)= Nap ao(llxk-x,ll) 

L wnJnao(llxk -xnll) 
(1.11) 

n=l 

where w1 and J1 are the integration weights and element Jacobian at the Gauss point Xt. 

Theoretically, the weighted integral should consider the whole space; however, it is not 

realistic in practice. Then the numerical integration would take all the NGP integration 

points in the body. To avoid that, an approximate weight function with a cut off radius 

needs to be used to improve the efficiency, such as, 
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(1.12) 

In their study, they also choose the displacements to be nonlocal averaged instead of the 

commonly used strain-like quantities. However, this averaging process requires a fast 

distance checking algorithm to find all pairs of the integration points for larger problems. 

Later, Grassl and Jirasek (2006, 2006) apply this averaging technique to concrete failure 

analysis with a plastic-damage model. The mesh bias problem in the concrete fracture 

simulations is studied in Jirasek and Grassl (2008). 

Ricci and Brunig (2007) propose an integral type nonlocal damage model describing the 

anisotropic damage caused by the micro defects in ductile materials. 

(3) Error estimations 

Error estimations in integral type nonlocal finite element models are studied by 

Rodriguez-Ferran and Huerta (2000), who introduces a residual type error estimator. 

Comi and Perego (2004) also study the mesh refinement criteria for an integral type 

damage model by introducing energy based nonlocal error estimators. 

1.2.2. Strain gradient type nonlocal formula 

The strain gradient formula is also considered nonlocal, since the gradient terms 

generally reflect the interaction of the surrounding material points. The strain gradient 



forms originally refer to the equations obtained from the Taylor expansion of a weighted 

averaged strain, as in Peerlings (1999). It gives the explicit or implicit forms of the 

nonlocal strain, 

Explicit: e(x) = e(x) + l2V2e{x) 

Implicit: e(x) -l2V2e{x) = e(x) 
(1.13) 

In general, any formula that involves the gradients of the state variables is considered a 

nonlocal strain gradient formula, such as the strain gradient enhanced plasticity, etc. 

(1) Additional nodal parameter 

Another branch of the research on nonlocal formulas focuses on the gradient­

enhanced formula. Compared to an integral averaging type, the gradient-enhanced 

formula is nonlocal in a broad sense. The nonlocal interactions are brought in by the 

gradients of the variable field. The gradient-enhanced nonlocal methods have two types, 

explicit and implicit types. In explicit types, the nonlocal variable can be explicitly 

expressed by the local variable and its gradient terms. While in the implicit types, the 

nonlocal variable and its gradients satisfY a Helmholtz type equation. It is proven by 

Peerlings (1999) that implicit gradient type models are equivalent to the integral type 

models if using Green's function as the weighting function and with suitable boundary 

conditions. 

In recent years, much attention has been given in the numerical implementation of the 

gradient enhanced models. One of the main reasons for introducing gradient terms into 

the local models is the regularization of the softening models. The gradient terms keep 

10 



the ellipticity of the governing equations and thus, no pathological mesh dependence 

occurs during material's post peak behavior. Other regularization tools, such as the 

localization limiters, have the similar ideas as to regularize the local models that are 

studied in Larsy and Belytschko (1988), Belytschko and Larsy (1989). De Borst (1992), 

de Borst and Pamin (1996) are among the first to implement gradient-enhanced formula 

in finite element methods. In their methods, usually a scalar nonlocal variable is treated 

as an additional nodal parameter. Hence, an additional equation with the appropriate 

boundary conditions is combined with the local governing equations to be solved as a 

coupled finite element formula. For plasticity problems, the additional equation usually 

comes from the consistent condition of a strain gradient dependent yield function. The 

main difficulty faced by a coupled formulation is to define an appropriate boundary 

condition for this additional equation. That boundary is a moving boundary, which is at 

the intersection between the localized plastic zones and the elastic zones. This topic is 

discussed in Peerlings (2006). 

Much research focuses on the coupled finite element formulations of the implicit gradient 

types, since they are considered "true" nonlocal as the integral forms. Peerlings et al. 

(1996) applies the gradient-enhanced damage models to quasi-brittle materials. 

Ramaswamy and Aravas (1998) develop a nonlocal finite element plasticity model based 

on gradient dependent yield functions. Askes and Sluys (2002) later study the higher 

order (fourth order) derivative terms and compare them to the second order derivative 

terms. Zervos et al. (2002) and others argue that C1 continuous displacement elements are 

needed for a gradient-enhanced formulation. While Simone et al. (2003) states that in 
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coupled formulations, the additional nonlocal equation is satisfied in a weighted residual 

sense, therefore, a C0 continuous element suffices for the gradient formulation. Simone 

et al. (2004) also reports some possibilities of incorrect failure initiations predicted by 

both gradient and integral types nonlocal models. Other implementations of a coupled 

finite element formulation include: Engelen et al. (2003), Geers (2004), Cesar de Sa et al. 

(2005), Mediavilla et al. (2006), Dorgan and Voyiadjis (2006), Samal et al. (2008), Bui 

(2010) etc. They all focus on the implicit type gradient-enhanced plasticity or damage 

theories for a softening material behavior. D'hers S. and Dvorkin E. (2011) study the ]z 

plasticity and damage coupled problems by introducing strong discontinuous modes into 

a coupled finite element formulation. 

(2) Additional internal variable 

12 

For coupled formulations, the additional boundary condition is always hard to 

satisfy since it is a moving boundary; therefore, that boundary condition is usually 

relaxed to be set at the external boundary of the whole body, as in Simonet al. (2004). In 

order to overcome this difficulty, Abu Al-Rub and Voyiadjis (2005) propose a way to 

evaluate the nonlocal variable through a so-called super element. Their idea is to 

evaluate the strain gradients at each integration point by least square fitting the local 

strains at a structured set of neighboring integration points. A structured set of 

integrations points in a super element is shown in Figure 1.3. 

Later, Abu Al-Rub and Voyiadjis (2009) successfully apply this technique to an 

anisotropic damage model for the concrete fracture analysis. However, this method is 



limited to a structured mesh. 
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Figure 1.3 Super element based on structured mesh- Abu AI-Rub and Voyiadjis (2005) 

Han et al. (2007) propose a finite element approach which can recover the derivatives of 

the strain tensor from nodal based patches. This patch projection technique is very close 

to that used in the super-convergent patch recovery methods. The patch least square 

fitting process is conducted to obtain the nodal nonlocal values. It is shown in Figure 1.4 . 

• • • • 
• • • • 
• • • • 
• • • • 
Boundary node 

• • • 
• • • 
• • • 
• • • 

Inner node 

• 
• 
• 
• 

• Node 

• Integration point 

Element 

Boundary 

Figure 1.4 Patch projection technique- Han et al. (2007) 
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The benefit of this method is that it is no longer limited to structured meshes however , , 

only the nodal based patches are built in this method and it has so far only been utilized 

to evaluate the first derivatives of the strain. Also, no unstructured mesh examples are 

tested. However, it shows the potential of SCP technique in the implementation of 

nonlocal gradient-enhanced formulations. 

(3) Element free method 

One thing to mention here is the increased interest in the implementation of 

nonlocal models in the element free or meshless methods. A moving least square fitting 

process suggested in the element-free Galerkin method can be easily used for the 

evaluation of higher order gradients, which are not available from linear C0 elements in 

finite element methods. Researchers in this field include: de Borst (200 1 ), Askes and 

Aifantis (2002), Pamin et al. (2003), Pan and Yuan (2009, 2010), etc. 

1.2.3. Material length scales 

A major motivation for the development of the nonlocal continuum models is the 

need to incorporate the material length scales into the classical continuum models. The 

introduction of the length scales bridges the material micro and macro scales. Therefore, 

nonlocal continuum models are capable of capturing the size effects widely discovered in 

the experiments. For example, particulate reinforced composites show a higher strength 

with a decreasing particle size (Lloyd 1994; Zhu H. and Zbib H. 1995). The micro 

indentation tests used to measure the length scales for strain gradient plasticity theories 
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show that the material hardness increases with a decreasing indent size (Begley and 

Hutchinson 1998). Micro-bending tests also suggest that a higher bending moment is 

required to bend a thinner high purity nickel foil (Stolken and Evans 1998; Lou J. et al., 

2006). 

The material length scale is an intrinsic material property; however, its physical meaning 

is still not yet fully understood. Much work has been conducted on the theoretical study 

of the underlying relationship of the physical meaning of length scales to the strain 

gradients in a higher order strain gradient theory. The higher order strain derivatives are 

introduced in mechanism-based theories to incorporate the density of the statistically 

stored and geometrically necessary dislocations at the micro scale (Gao et al. 1999; 

Huang et al. 2000; Gurtin 2002; etc.). Those theories are based on the Taylor dislocation 

models (Gao and Huang 2001, Abu Al-Rub and Voyiadjis 2006), where the density of the 

geometrically necessary dislocations is obtained through a nonlocal integral of the strain 

field. Another similar idea is to incorporate the micro stresses, which depend on the 

higher order derivatives of the strains. The systematic development within the continuum 

framework in this study is given by (Gurtin and Anand 2005a, 2005b). 

As reviewed in the section 1.2.1-1.2.2, the material length scales are also studied through 

the numerical implementations of the nonlocal continuum models. Typically, in an 

integral type formula, it appears as the nonlocal interaction radius R in Eq. 1.12; while in 

a strain gradient type formula, it is the coefficient 1 before the high order gradient terms 
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in Eq. 1.13. In order to correctly regularize the softening problems to be solved, the 

material length scales are usually calibrated from ofthe experimental results. 

1.2.4. Super-convergence Patch Recovery 

Han et al. (2007) show the super-convergent patch's potential as an effective tool 

to recover the nonlocal strain gradients. This dissertation proposes a nonlocal un­

structured finite element technique that is based on the super-convergent patches. 

Therefore, a review on the related SCP techniques is also given below. 

Zienkiewicz and Zhu (1992a, 1992b, and 1992c) are among the first to introduce the idea 

of obtaining a smooth variable field utilizing patches of elements in the finite element 

method. For each patch of elements, the discontinuous variable field is sampled at the 

super-convergent points inside each element and a set of local least square fit nodal 

variables are obtained to yield the continuous variable field. They show that this process 

is numerically effective in its applications in a posteriori estimates. Wiberg and 

Abudulwahab (1993), Wiberg and Li (1994), Wiberg et al. (1994) improve the SCP 

technique by least square fitting higher-order derivatives at the superconvergent points. 

They show a higher accuracy of the first derivative recovery than Zienkiewicz' s approach 

by using one order higher polynomials. 

Most recently, Jefferson (2001) and Akin (2005) further extend the SCP technique to 

recover the second derivatives. Various element based patches are evaluated. Error 
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estimations and adaptive element methods are also developed to achieve the second 

derivatives recovery. This method is incorporated in a Fortran90 code, MODEL, which 

is described in detail in Akin (2005). 

1.3. Objective and outline 

This thesis systematically studies the implementation of the super-convergent 

patch in the finite element analysis of the nonlocal continuum mechanics models. The 

study proposes a new nonlocal finite element technique based on the second order 

derivatives. A focus is given on the nonlocal strain gradient approaches only; the 

implementation of the integral type approaches with SCP is not yet conducted. 

As mentioned before, so far, only nodal based patches have been utilized in nonlocal 

approaches and the order of the derivatives recovered is no higher than the first order. 

Thus, this study utilizes the element based patches for the derivative recovery in nonlocal 

approaches for the first time. It shows a robust and accurate recovery of the second 

derivatives of the interested variable with only C0 elements. 

The recovery procedure involved in a traditional SCP recovery process usually takes two 

steps. First, the least square fit results for the derivative components are stored at the 

element nodes. Then the interpolation of those nodal values in each element is conducted 

for the recovery. This procedure is also utilized for the recovery of the derivatives of the 

equivalent strain for the nonlocal approaches. Similarly, the least square fit results of the 

17 



equivalent strain are obtained, and then the derivatives of the equivalent strain are 

recovered at the element nodes, which are followed by a nodal averaging process. 

This study also proposes another recovery option, which is inspired from the moving 

least square fit process for a mesh free method. The least square fit results for the 

equivalent strain are obtained first as before. Then the results are utilized to recover the 

strain derivatives at the integration points of the patch-centered element. For this option, 

no further nodal averaging process is required. Both recovery options are tested and 

compared herein. 

The algorithm developed in this thesis is coded into a Fortran90 program library -

MODEL that is originally developed by Akin (2005). The new version not only inherits 

the error estimators from the old MODEL, but also supplies the capability for the 

implementation of most strain gradient type nonlocal approaches. It is successfully 

applied to solve for both a nonlocal damage mechanics and a strain gradient plasticity 

problem. The simulations for those problems are assumed small deformation with static 

loadings. 

The layout of the dissertation is outlined as follows, 

Chapter 2 introduces the preliminary knowledge related to the nonlocal finite element 

technique developed in this dissertation. 
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Chapter 3 discusses in details about the implementation of the nonlocal finite element 

technique in the MODEL library. 

Chapter 4 applies the newly developed algorithm to the nonlocal damage mechanics 

theory. Numerical results are given and compared. 

Chapter 5 further applies the newly developed algorithm to the strain gradient plasticity 

theories. Two different strain gradient formulas are evaluated and numerical results are 

given and discussed. 

Chapter 6 summanzes the dissertation and gives the conclusions. Future possible 

extensions are suggested. 
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Chapter 2 

Nonlocal finite element technique 
preliminaries 

2.1. Finite element method 

The finite element method is now a standard numerical approach for most 

engineering design problems. Before we introduce the nonlocal finite element technique, 

a short summary on the general finite element process for a two-dimensional boundary 

value problem is given first. Assuming small deformation, the governing equations of a 

two-dimensional boundary value problem are given as follows, 

Equilibrium equations: v . (J + b = 0 in n 

Traction (N atural)boundary conditions: u·n=t on It (2.1) 

Displacement (Essential)boundary conditions: u=u 

where n is the domain of computation, t is the traction applied on the natural boundary It 

of n, n is the normal of Jt, and u is the displacement applied on the essential boundary ru 
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of fl. If an is the boundary of .0, then It n ru = 0 and It U ru = a.n. In Voigt notation, 

{a}= {ax O"y Txy}T is a vector ofthe stress. Defme a differential operator matrix [L] 

as follows, 

a 
0 ax 

L= 0 
a 

(2.2) ay 
a a 
ax ay 

Then, strain is also defined as a vector as {E} = {Ex Ey Yxy Y, then, the strain-

displacement relation can be expressed as, 

e=[L]{u} (2.3) 

Defming the tangent stiffness matrix as, 

(2.4) 

In linear elastic problems, tangent stiffness matrix [Dtang] is the same as the elastic 

stiffness, defined as [De]. For nonlinear material problems, the tangent stiffness matrix is 

usually evaluated from the rate form of the constitutive equations, which is application 

dependent. 

Using the principle of virtual work, the equilibrium equations are satisfied in a weak 

sense as, 

(2.5) 

The finite element displacements are approximated by the linear combination of shape 
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functions on the elementary levels, and so are the virtual displacements, 

u=[N(x,y)]{d} 8u=[N(x,y)]{8d} (2.6) 

where { d} and { 8d} are the nodal displacements and nodal virtual displacements, 

respectively. 

Define the strain-displacement matrix as the differential operator acting on the shape 

functions as[ B] = [ L ][ N(x,y)], and then the strain displacement relationship is 

{e}=[B]{d} (2.7) 

Substituting Eq. 2.6-2. 7 into Eq. 2.5 gives, 

fv { 8d}T[B][ D~an8 ]( B]{d}dV = 

Ir,{8dY[Bt {i}dr+ Jrv {8dY[Bt {b}dV 
(2.8) 

where the global stiffness matrix is obtained through the assembly process as in Akin 

(2005), 

[K]= ffv· {8deY[ Ber[ Dtang][ Be]{de}dv (2.9) 
e=l 

The global force vector is obtained in the same way as, 

Equation 2.5 is solved as the linear algebra problem, 

[K]{d} ={q} (2.11) 
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2.2. Two-dimensional C0 elements 

One of the benefits of the nonlocal finite element technique developed in this 

thesis is that, only C0 elements are required. C0 elements have only tangential inter-

element continuous derivatives. The definitions and interpolation functions for C0 

elements are available from most FEA text books, i.e., Zienkiewicz (2000), Akin(2005), 

etc. Therefore, detailed discussions on C0 elements are omitted here. Only those 

elements used in this study are introduced as follows. 

Two-dimensional C0 elements can be built from one-dimensional Lagrange interpolation 

functions. The Lagrange interpolation family in one dimension for the i-th node of n 

nodes is, 

(2.12) 

Therefore, for rectangular elements, the interpolations at node (i,j) of each element are 

obtained as the tensor product of these one-dimensional functions, 

Nij(r,s) = L7(r)L7(s) (2.13) 

where Ny(r,s) is the shape function associated with node (i,j) in local·coordinate system 

(r,s), n and m are the node numbers on each direction of the rectangular element. 

Interpolation functions for C0 triangular elements are also well known, Zienkiewicz 

(2000), but are not be repeated here. 

The elements to be used for the mesh are triangular elements (T3 and T6), quadrilateral 
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elements (Q4 and Q8). The patches (which will be discussed in details in Section 2.4) are 

built as elements that have non-zero second derivatives. Therefore, at least quadratic 

patches are required. In this study, the patches are either Q9 quadrilateral elements or T6 

triangular elements. 

T3 
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Figure 2.1 2D Pascal triangle 

Figure 2.1 shows two-dimensional Pascal triangles and the interpolation polynomials for 

each element type. It is shown that the T6 elements give a complete second degree 

polynomial Pr6 and the Q9 elements give an incomplete forth degree polynomial PQ9, as 

shown in Eq. 2.14, 

PT6 = { 1 ,X ,y ,xy ,xz ,yz} 
PQ9 = { 1 ,X ,y ,xy ,xz ,yz ,xzy ,xyz ,xzyz} 

(2.14) 



The shape functions and their derivatives for a Q9 element are shown in Figure 2.2. The 

second derivatives in the Q9 elements are quadratic functions. The interpolation functions 

and their derivatives for a T6 element are plotted in Figure 2.3. It is shown that the 

second derivatives are piecewise constant in the element. 
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Figure 2.2 Q9 interpolation functions and their first and second derivatives 
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Figure 2.3 T6 interpolation functions and their first and second derivatives 

2.3. Displacement control 

For nonlinear material problems, an incremental-iterative Newton-Raphson (NR) 

solution scheme is often used. For certain problems with a softening material behavior, a 

force controlled NR iteration scheme can fail because of the loading limit existing in a 

softening material. Therefore, a displacement controlled NR iteration scheme is adopted. 

From a NR process as follows, 

(2.15) 

{ dn+l } = { dn} + { ~d} (2.16) 

(2.17) 

{ q} = {fexr }-{~ut}-[ K]{ dn} (2.18) 
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where [K] is the global stiffness matrix. {dn} is the nodal solution vector of interation n 

while {dn+l} is for the next iteration n+ 1. Uintl is the internal force vector and lfextl is 

the external force vector. Omitting the superscript, the final equations to be solved in 

each iteration is the same as Eq. 2.11 for an elastic system, 

[K]{d}={q} 

Partition the global stiffness equations into two parts as follows, 

[ ;~ :: ]{ ;. }={ :~ } (2.19) 

where subscript f means 'free' and subscript p means 'prescribed'. Prescribed 

displacements are referring to the nodes on the essential boundaries, where displacement 

is known as { d P} . Therefore Eq. 2.19 is reformulated as 

(2.20) 

In Eq. 2.20, the blocks in the stiffness matrix corresponding to the prescribed 

displacements are set to be identity matrix I, diagonal blocks are set to zeros, and the 

loading vector is modified to include the prescribed displacement. If reaction forces are 

desired, then the lower partition of Eq. 2.20 must be saved before enforcing the 

prescribed displacements. 

The Newton-Raphson scheme can achieve a quadratic convergence rate given that the 

initial guess is close enough to the solution. When a NR scheme fails to converge for the 

displacement controlled softening problem, we can either tum to path-following schemes, 

27 



such as arc-length technique, or simply use an incremental scheme and solve the problem 

in an explicit way. If the incremental scheme is used, a small enough step length should 

be set to ensure the accuracy of the solution. 

2.4. Construction of a patch element 

The underlying idea of the nonlocal approaches in continuum mechanics is that 

the state variables at any material point are also dependent on those of the neighboring 

points. Therefore, for the numerical implementations of the nonlocal approaches, how to 

correctly incorporate the information from neighboring points is critical to its finite 

element implementation. One option to implement nonlocal approaches is to use higher 

order inter-element continuity, such as C1 (inter-element continuous first derivative) or C2 

(inter-element continuous second derivative) elements. In this way, one could directly 

estimate the higher order derivatives at the element level. 

The second option is to recover the state variables from a group of neighboring elements 

from a least square fitting process. In this regard, C0 elements suffice. A group of 

neighboring elements is gathered to construct a patch or a patch 'element', since the 

patch has its own interpolation functions and nodes, just like a larger size element. This 

patch idea is utilized in the super-convergent patch recovery technique as in Zienkiewicz 

and Zhu (1992), Akin (2005), etc. Zienkiewicz and Zhu (1992) verify that the above 

mentioned least square fit process gives a fust derivative estimation that is accurate at 
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least to the order ofO( hp+l)' where h is the size of the element and p is the order of the 

interpolation function. Therefore, this patch recovery process is widely known as the 

super-convergent patch recovery. The patches can be constructed based on nodes as well 

as on elements. Figure 2.4 shows the three types of Q4 element groups that can be used to 

construct a patch. 

29 

The selection of the patch element shape is based on the shape of the parent element of 

the current patch. For example, if the element is a 4 node quadrilateral element, its patch 

is bounded by a quadrilateral and with at least 9 nodes (bi-quadratic). If the element is a 

three node triangular element, its patch is bounded by a triangular and with six nodes. 

This idea is shown in Figure 2.5. 

The patches are constructed such that their local coordinate systems are parallel to the 

global coordinate system. For example, as shown in Figure 2.5, the sides of the 

quadrilateral patch are parallel to the global axis x andy respectively. Such an alignment 

of the patch elements offers a linear mapping between the local coordinates and the 

global coordinates. The patch Jacobian is constant and diagonal in that case. 



• Parent element of this patch 

e Parent node ofthis patch 

(b) Element-based patcb 

(a) Unst ructured inite element mesh 

(c) Face-based patch 

Figure 2.4 Element and node based patches 

2.5. Patch least square fit 

(d) Node based patcb 

A local least square fit process of the stress cr is introduced as follows. Assume a 

patch is constructed on a group of elements as shown in Figure 2.4. A polynomial 

approximation in two-dimensional spaces is as follows, 

{a* }={P(~,7J)}[a] (2.21) 

where { cr *} 1s the smoothed stress from the approximation. ~ and 11 are the non-
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dimensional coordinates. Here [a] is a rectangular array with as many columns as 

components in {cr*}. {P(,, '1)} is the polynomial used for the patch, Here, a triangular 

patch uses the same polynomials as in a T6 element, a quadrilateral patch uses the same 

ones as in a Q9 element. 

If Eq. 2.21 is rewritten to be expressed with the interpolation of the values evaluated at 

the patch nodes, it is as follows, 

(2.22) 

where Hi(~' 11) ( i = 1 ... n) are the patch shape functions associated with the patch nodes 

and n is the number of nodes of the patch. Here [ d] is the rectangular array that contains 

the patch nodal values of the stress components. Suppose {a} is the sampled stress in 

the patch, which are calculated at several different internal points in the patch, usually at 

the quadrature points of all the elements inside the patch. For example, assume {a} is 

proportional to the strains that are evaluated from the physical derivatives of elementary 

nodal solution { ue} as 

(2.23) 

* To get the smoothed solution { 0' } from the associated nodal values [ d], we want to 

minimize the function written as Eq. 2.24, 



(a) 9-node quadrilateral patch 

(b) 6-node triangular patch 

L X 

Global coordinates 

0 -Element nodes * -Quadrature points of patch parent element 

,& - Quadrature points of patch elements 

+ -Patch nodes 

- - Element based patch 

lL JJ -Patch parent element 

Figure 2.5 Construction of an element based patch 

(2.24) 

where M is the total number of the quadrature points or the super-convergent points in the 

patch, and the subscript j refers to the value sampled at the j-th point. 
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For a patch of total npe elements with nq quadrature points each, substituting Eq. 2.22-

2.23 into Eq. 2.24 gives, 

F([d])= 

ii([n]j[d]-{ue}~[ BeJ[ Dtanglf ([n]Ad]-{uer[ BeJ[ Dtangl) 
e=l j=l 

(2.25) 

Equation 2.25 shows that we seek a least square fit by M = npe x nq sampling points in a 

two-dimensional patch area. To get the patch nodal solutions, it is required that the 

number of the sampling points must be no less than the number of the patch nodes. The 

standard least square minimization reduces Eq. 2.25 into a linear algebraic problem as in 

Eq. 2.26, 

[S](D]=[C] (2.26) 

where, 

[c]= f,I,[ H(~j.11j)r {ueY[BeJ[ntangl 
e=l j=l 

The equations are solved for every local patch. We adopt the constant Jacobian patch 

element that is discussed in the next paragraph. This is critical to an efficient and reliable 

mapping from the physical coordinates to the non-dimensional coordinates of a location 

in the patch. The constant Jacobian implemented actually employs a diagonal Jacobian 

matrix, which also benefits the second derivative recovery process discussed in the next 

paragraph. 
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2.6. Hessian matrix 

For nonlocal strain gradient approaches, the derivatives of the local strains are 

recovered by the least square fitting process. In general, for a two-dimensional space, the 

Laplacian of the local scalar equivalent strain is usually of interest. This indicates that 

the smoothed approximation of the equivalent strain obtained from the least square fit 

should be at least quadratic to give the information on the second derivatives. To 

calculate the second derivatives from a patch, we need to calculate the Hessian matrix. In 

a two-dimensional space, the relations between the first parametric derivatives and the 

first physical derivatives are obtained as, 

a ax ay a - -
a~ a~ a~ dx 

(2.27) = a dx dy d 
-

dTJ dTJ dTJ dy 

where (~ 1'/) are the coordinates for the parametric space and (x, y) are those for the 

physical space. The Jacobian is 

dx dy 

1= 
d~ d~ 
dx dy 

(2.28) 

-
aTJ dTJ 

Take one more derivative of Eq. 2.27 to get the relationship between the second 

parametric derivatives to the second physical derivatives, 
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()2 a2x a2y (~~r (~J 2 ax dy a2 
a;z a;2 a;2 

li I+ 

a; a; ax2 
a2 a2x a2y 

(~~r (~J 2 dx ay a2 (2.29) 
aTf2 = aTf2 aTf2 dy2 aTf aTf 
a2 a2x a2y ax ax dydy ax dy ax dy a2 

--+--
a;aTf a;aTf a;aTf a;aTf a; aTf aTf a; a; aTf axdy 

From Eq. 2.29, it is seen that the Hessian matrix is usually nonsymmetrical. If the patch 

has a constant Jacobian, the first rectangular matrix on the right hand side is zero. If in 

addition, the Jacobian is diagonal, then, 

dX dy 
-=-=0 
dTJ ag (2.30) 

In that case, Equation 2.29 is simplified as follows, 

a2 (~)' 0 0 a2 
ag2 dX2 
a2 

0 (~)' 0 
a2 

(2.31) 
d1J2 = dy2 
a2 

0 0 
dx dy a2 

--
d§JTJ ag dTJ dXdy 

Then, we just need to calculate the inverse of the diagonal square matrix on the right 

hand side to obtain the physical second derivatives. Since we are interested in obtaining 

the Laplacian and the patches are constructed as shown in Figure 2.5 in order to be able 

to utilize Equation 2.31. The computation of the Hessian matrix is fmally simplified as, 
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(~~r2 0 

= (2.32) 

0 (:~r2 



3.1. Introduction 
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Chapter 3 

Nonlocal finite element 
implementation 

The super-convergent patch recovery process is now a routine procedure for 

several commercial fmite element codes. Useful and robust SCP algorithms serve as the 

fundamental tools for error estimations, h-adaptive and p-adaptive finite element 

methods, etc. 

The present work in this thesis establishes a new nonlocal fmite element technique that is 

based on the SCP recovery technique for the second order derivatives. The algorithm is 

implemented in an F90 program - library MODEL, Akin (2005). The MODEL library 

was originally developed to include the super-convergent patch recovery process and the 

error estimators. The current version developed here inherits the functionalities of the 

above mentioned versions of MODEL library and is modified to have the new capability 

of the nonlocal strain gradients recovery. All the new nonlocal capabilities are enabled 

by the newly developed subroutines and additional keyword inputs into the MODEL 
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code. They will be introduced in detail in this chapter. Input control keywords are 

usually italic lower-case and subroutines are named in UPPER-CASE. Arrays, matrices 

and binary data files are in BOLD UPPER_CASE. Integers and real numbers are in 

ITALIC BOLD UPPERCASE. 

Two second order derivative recovery options are available for the nonlocal finite 

element technique based on the SCP process. 

(1) Recovery by mesh nodal averaged equivalent strain derivatives (Nodal averages) 

(2) Recovery by least square fitted equivalent strain derivatives at the patch-centered 

element (LSF) 

The two recovery options are introduced in Section 3.2.3. Their performances are 

compared and discussed for the numerical examples in Chapter 4 and Chapter 5. 

3.2. Super-convergent patch recovery of the nonlocal strain gradients 

The SCP recovery method implemented in the MODEL library is actually the 

third version of the SCP algorithm as compared to Wilberg (1994), Zienkiewicz and Zhu 

(1992). Most of the available SCP recovery algorithms are limited to a single element 

type. The MODEL library is written in a modular fashion that allows unstructured 

meshes with a mixture of different element shapes with interpolation functions of 

different polynomial degrees, i.e., linear, quadratic, or cubic. 
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The new version of MODEL is developed to include the capability for the 

implementation of strain gradient type nonlocal methods. The second derivatives of the 

scalar equivalent strain are recovered from the same super-convergent patches built for 

the error estimation. The recovery technique introduced in this thesis allows an 

unstructured mesh with arbitrary element types and arbitrary, but compatible patch 

degrees. 

3.2.1. Implementation of the element patches 

The main idea of this dissertation is to recover the nonlocal strain derivatives 

through the local groups of the finite elements, or the so called patches. Usually, the 

patches are defined as groups of neighboring elements who share a common internal 

node or are adjacent to a boundary node in the mesh. Our choices of the element based 

patches are previously defined in Section 2.4. The same patches are proven to be efficient 

in the evaluation of the second or even higher order derivative recoveries (Jefferson and 

Akin 2001), which is also implemented in MODEL. Three types of the element patches 

are implemented and the user choice can be made by using different keyword inputs as 

listed in Table 3.1 on the next page. 

In the current MODEL, element-based patches are kept as the default option if the strain 

gradient recovery is required for the task. For each type of the patch selected, a list of the 

neighboring elements is required. Establishing such neighboring lists can be expensive 

for large problems, however, it is beneficial to have those lists since they can be used for 
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multiple purposes, including the SCP process error estimations. Furthermore, they are 

only built once before at the preliminary stage for the problem to be solved. The number 

of the elements in each neighboring list may vary, for example, an interior patch may 

have more neighboring elements than one at the boundaries. For research purposes, we 

choose to store the entire neighboring lists as a rectangular array for increased speed, but 

at the cost of memory storage space. Other data structures such as linked lists could be 

considered for larger problems. 

Keyword Patch type Definition 

scp _neigh __pt Node-based patch 
Elements sharing a particular node. 
(Most widely used in SCP techniques) 

scp _neigh _el Element-based patch 
All elements sharing any of the nodes 
of a particular element. 

A subset of the element-based patch. In 
two-dimensional, they are the elements 

scp _neigh Jace Face-based patch 
share a common edge with a particular 
element. In three-dimensional, they are 
the elements share a common face with 
a particular element. 

Table 3.1 Keyword inputs for element patches 

A patch element (as shown in Figure 2.5) is considered as a larger element with the 

interpolation polynomial P. The degree of the patch polynomial can be chosen to be the 

same as the elements or one to two orders higher than the element polynomial. Even 

higher order patches can also be set in the code but their accuracy is not yet studied. If 

the implementation of a nonlocal method involves the recovery of the Laplacian of the 

strains, then at least a quadratic patch polynomial is required. The patch polynomial 

degree is set as the same as that ofthe elements by default. To invoke higher degree 

patch polynomials, keyword scp _ deg_inc is to be used. 
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Element patches are built to have a constant and diagonal Jacobian (as shown in Figure 

2.5) which means their local axes are parallel to the global axes. This is done by 

obtaining the maximum and minimum coordinate components of the nodes of the all the 

elements in the neighboring list. This is achieved by the subroutine named 

DETERMINE SCP BOUNDS. In practice, a J% margin is added to the maximum and 

minimum coordinates to avoid ill-shaped patches. As introduced in Section 2.6, the 

constant Jacobian is diagonal and greatly simplifies the evaluation of the second 

derivatives ofthe equivalent strains. 

3.2.2. Patch recovery options 

So far, the patch element shape and interpolation polynomials are all set. We need 

to make one more choice of how the derivatives of the equivalent strains are recovered 

after solving the patch least square fitting problem. This version of MODEL gives the 

users two least square fitting options for the second derivative recovery. 

(1) Recovery by mesh nodal averaged equivalent strain derivatives (Nodal 

averages) 

This is a process similar to the SCP error estimation process where the recovery 

of the smoothed strains from the local strains is conducted during the post processing 

element loop after all the patches are processed. After the patch loop, each mesh node 

would receive multiple smoothed strain values which need to be averaged before being 

used for other purposes. This is also true for the nonlocal strain gradient recovery 



process if the nodal averaging recovery option for higher derivatives is selected. The 

difference is that at all mesh nodes the derivatives of the strains are to be smoothed 

instead of strains. A global rectangular array SCP _AVERAGES is built to receive the 

nodal values of the equivalent strain derivatives from the patch least square fit loop. 

Generally, during the patch loop, three main tasks are performed as follows, 

1) Solve the local least square fitting problem to obtain the patch nodal 

equivalent strain results 

2) Evaluate the gradients at each element's node inside the patch, by using 

the derivatives of the patch interpolation function and the patch nodal 

equivalent strain results. 
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3) Add the recovered element nodal equivalent strain gradients to the 

rectangular array SCP _AVERAGES, increase each integer counter by 

one. 

After looping over all the patches, average the accumulated element nodal equivalent 

strain derivatives, i.e., divide each row of the rectangular array SCP _AVERAGES by the 

integer counter of the number of elements connected to that node. 

To recover the equivalent strain derivatives from the nodal averaged ones at the element 

quadrature points, there are also two options available, 

1) Evaluate the strain derivatives at the nodes of all the elements in this 

patch, this is the default option, no keyword required. 



2) Evaluate the strain derivatives at the nodes of the parent element only, use 

keyword scp _center_ only. 

Generally, the second option is preferred in the analysis of a nonlocal problem, since the 

recovery of gradients at all the nodes tends to give a smoother and more averaged result. 

This usually will over-smooth the higher derivatives needed in the nonlocal model. 

The rectangular array SCP _AVERAGES has the following structure. The first four 

columns of the SCP _AVERAGES are reserved for error estimation purposes. 

Therefore, the nonlocal derivatives are stored in the later columns. The element nodal 

results are retrieved from the SCP _AVERAGES through location vector 

ELEM_NODES as, 

SCP_AVERAGES (ELEM_NODES, i), (i = 5, 6, 7, 8) 

For two-dimensional nonlocal strain gradient problems, the terms of interest are 

a2 Jax2 ' a2 _fal , a _fax and a _jay . They are stored from the fifth column to the 

eighth column of SCP _AVERAGES. However, the gradient terms to be recovered are 

not limited to the above four terms. Additional gradient terms such as ()2 Jaxay and 

a2 Jayax can be included. 

(2) Recovery by least square fitted equivalent strain derivatives at the patch­

centered element (LSF) 

The second option is to directly recover the derivatives of the equivalent strain, 

within a patch, at the quadrature points of the parent element. A smoothed equivalent 
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strain field is obtained for each patch after the least square fitting process. The strain 

derivatives are evaluated directly at the quadrature points of the parent element in the 

patch using the above mentioned smoothed equivalent strain fields. This option is similar 

to the moving least square fitting process used in the mesh free methods. The difference 

is that the approach implemented here recovers the strain derivatives at all the quadrature 

points of the parent element at once instead of later averaging them at the nodes and 

interpolating back to the quadrature points. 

Generally, for this option, there are also three tasks performed during the patch loop as 

follows, 

1) Solve the local least square fitting problem to obtain patch nodal 

equivalent strain results 

2) Evaluate the derivatives of the equivalent strains at the quadrature point, 

by using the derivatives of the patch interpolation functions and the patch 

nodal results. 

3) Store the strain derivatives at quadrature points for updating the state 

variable in the following element loop 

Compared to the recovery option by nodal averages, this option does not require further 

averaging process after the patch loop, since each quadrature point of the mesh only 

receives strain derivative results once during the loop. However, this option requires a 

random access data structure to store the equivalent strain derivative results for later use. 
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3.2.3. Data preparation and transfer 

The nonlocal strain evaluation process will generally require three loops over the 

elements and one loop over the patches. The first loop is the element loop for 

constructing the stiffness matrix. After solving for the nodal solutions, the second 

element loop is required for obtaining the derivatives or the local strains from the nodal 

displacements. The third loop is the patch loop for evaluating the nonlocal strain 

derivatives from the local strains. The last loop is the element loop for updating the state 

variables using the nonlocal strains. The reuse of certain data at the integration points or 

the element levels is frequent among the loops. Therefore, to save computational cost 

and increase efficiency, certain data should be properly stored and transferred among 

them. 

During the patch loop, the local least square fitting processes are conducted. Therefore, 

data are sampled within the patch, usually at the element integration points. In the SCP 

process, those points are very close to the super-convergent points in each element where 

the derivatives are most accurate for a certain polynomial degree. Therefore, SCP 

recovery usually takes the minimum required quadrature points in each element for the 

locations to evaluate the derivatives of the strains. It is reasonable to also use Gaussian 

quadrature points as the sampling locations for the recovery of the nonlocal strain 

derivatives. 

While we loop over all the elements to build the element stiffness matrices, we need to 

store the information from those quadrature points for later access. For the stress analysis 
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with the implementation of the nonlocal strain gradient methods, information that are 

frequently needed are listed in Table 3.2, 

Variable Definition Purpose 

XYZ 
Quadrature point's Evaluate interpolation 
physical location functions, element Jacobian 
Quadrature point's 

Obtain derivatives from 
B differential operator 

element nodal solutions 
matrix 

E 
Element constitutive 

Evaluate stress increments 
matrix 

LT_QP 
Quadrature point counts 

Quadrature point loops 
for this element 

Table 3.2 Frequently used data for nonlocal strain gradient recovery 

The information in Table 3.2 could be recorded in a sequential file in the element loop, 

which means that information is also read in the same sequence. For an unstructured 

mesh, the number of the elements in the list for each patch is a random number. 

Therefore, the local strains are sampled in a random style depending on the elements 

defining that patch. After the displacement solution, the strain derivatives obtained are 

also stored in a random style, which indicates a random access file is needed to store 

them. 

For this purpose, two different data files are declared, the sequential file U_FLUX and 

the random access file U_SCPR. All the data are stored in binary format to minimize 

storage. In order to access the data unit for a specific quadrature point, the user needs to 

find the record number indicating the location for that piece of data, then followed by the 

other actions such as read, write or rewrite. The length of each data record will also need 

to be declared. Since a record length is hardware dependent, we use the F ortran90 

intrinsic function INQUIRE (IOLENGTH) to compute the length for each data record. 



Finally, the general outline of the data structure building and transfer process for the 

nonlocal strain gradient problems, are given in Figure 3.1. The element loop at the 

preliminary stage to build the element neighboring lists is also included, the logic of the 

patch loop shown in Figure 3.1 is discussed in the next section. 

3.2.4. Nonlocal strain gradient recovery via SCP 

The implementation of the nonlocal strain derivative recovery using the super­

convergent patches is incorporated into an extension of the prior subroutine for obtaining 

smoother local strains: CALC_ NONLOCAL _STRAIN_ GRADIENTS. This subroutine 

loops over all the patches in the mesh. It is called to fmd the neighboring elements and 

construct the patch, then to solve the local least square fitting problem by singular values 

decomposition method. Subroutine CALC_ NONLOCAL _STRAIN_ GRADIENTS calls 

EVAL GRADIENTS AT PATCH NODES to recover the derivatives at all the element 

nodes in this patch. Then, subroutine EVAL_GRADIENTS_AT_PATCH_NODES calls 

EV AL_PT_GRADIENTS_IN_PATCH to recover the strain derivatives at the quadrature 

points of the parent element. Eventually, the resultant smoothed field of the equivalent 

strain is used to recover the nonlocal strain derivatives either by a nodal averaging 

process or directly through the least square fitted equivalent strains at the quadrature 

points within that patch. 

The logic ofthe subroutine CALC_NONLOCAL_STRAIN_GRADIENTS is outlined in 
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Figure 3.2. Figure 3.2 gives the main flowchart of the subroutine, depending on the 

choices of the recovery option. Two subsidiary flowcharts of the recovery processes 

given in Figure 3.3 and Figure 3.4 are called separately. 
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Element Iooe: Preliminary 
- Build lists of element neighbors 
-Open the sequential file unit U_FLUX 
- Open the random access file unit U SCPR 
- Estimate record length for u_sciR. 

~ 
Element looe: Stiffness matrices 

-Save element LT_QP to U_FLUX 
QPioop: 

-Save XYZ, E and B to U_FLUX 

HRewind U_FLUXI 

Element looe: Calculate local strains 
-Read LT_QP from U_FLUX 
- Recover element type 
-Gather nodal DOFs of this element 

QPioop: 
-Read XYZ, E and B from U_FLUX 
- Calculate local strains or other derivatives 
- Save the above results to U_SCPR 

HRewind U_FLUXI 

Patch looJ!: Calculate strain 2l'lldients 
Element loop: 

-Read LT_QP from U_FLUX 
- Recover element type 
-Gather nodal DOFs of this element 

~Piooe: 
-Read XYZ, E and B from U_FLUX 
- If Nodal averages 

Save strain gradients to SCP _AVERAGES 
else if Direct LSF 

Save strain gradients to U_ SCPR 
eml 

+ 
Element Iooe: Update state variables 

-Read LT_QP from U_FLUX 
- Recover element type 
-Gather nodal DOFs of this element 

QPiooe: 
-Read XYZ, E and B from U_FLUX 
-If Nodal averages 

Read strain gradients to SCP _AVERAGES 
else if Direct LSF 

Read strain gradients to U_SCPR 
end 

- Update state variables 

Figure 3.1 Data structure building and data transfer between element and patch loops 



'SUBROUTINE: CALC_NONLOCAL_STRAIN_ GRADIENTS 

Loop: Element-based patches: 

Gather information and construct the patch: 

I. Extract its element neighbors to define the patch 
n. Find the spatial boundaries for this patch - m. Find the total number of quadrature points in this patch 
IY. Determine the parent element type and thus the patch element type 
v. Allocate storage for the least square fit arrays 
VI. Set fit matrices row number to zero 

1--Loop: Elements in this patch: 

H Find the element type and quadrature rules for this element I 
1---Loop: Quadrature points in this element: 

Prepare data for the least square fitting, assemble [S}[DJ=[CJ (Eq. 2.28): 

I. Increment the row number of Eq. 2.28 by one 
IT. Recover the random record number for this quadrature point 

(Use fimction SCP _RECORD_ NUMBER) 
ill. Read the physical corrdinates and the equivalent strain from random access 

r- file U_SCPR by that recorde number 
cal location to the IY. Use the constant Jacobian of the patch to convert the physi 

corresponding non-dimensional coordinates in the patch 
v. t Insert it into Evaluate the patch interpolation polynomial at the local poin 

the left hand side of this row of the coefficient matrix [S}. 
VI. Substitue the equivalent strain into the right hand side data 

same row. 

~ End Loop: Quadrature points in this element 

~ End Loop: Elements in this patch 

H Solve [S}[D}=[C} (Eq. 2.28) by SVD I 
IF to be recovered by the nodal averaging process (Nodal averages) 

THEN goto Box J.l(b) 
r-- ELSE IF to be directly at the quadrature points of the parent element (LSF) 

THEN goto Box J.l(e) 
END IF 

'-- . End Loop. Element-based patches 

IF to be recovered by the nodal averaging process (Nodal averages) 
Averaging the nodal equivalent strain gradients by using the integer counter 

END IF 

matrix[C}, in the 

Figure 3.2 Logic ofsubroutine CALC_NONLOCAL_STRAIN_GRADIENTS 
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Box 3.2 (b)-/ EVAL_STRAIN GRADIENTS AT PATCH NODES/ 

Loop: Element nodes in this patch: 

I. Use the constant patch Jacobian to convert the node coordinates 
to non-dimensional coordinates of the patch 

II. Evaluate the patch interpolation matrix SCP _ H at each node points 
III. IF First gradients of the flux are to be recovered 

THEN 
Calculate the ftrst derivatives of the patch interpolation matrix SCP _ DLH 
Use patch Jacobian to convert it to its physical coordinates SCP _ DGH 

END IF 
IV. IF The Laplacian of the equivalent strain is to be recovered 

THEN 
Calculate the second derivatives of the patch interpolation matrix SCP _ DlLH 
Use patch Jacobian to convert it to its physical coordinates SCP _ DlGH 

V. Compute the gradients of the equivalent strain at the node by the matrix product of 
SCP _ DGH and SCP _DlGH seperately with the continuous gradients at the patch 
node[DJ. 

VI. Increment the nodal counter for patch contributions by one and scatter the equivalent 
strain gradients to the rectangular system nodal array SCP _AVERAGES. 

End Loop: Element nodes in this patch 

Figure 3. 3 Logic of recovery by nodal averaging process 

Box 3.2 (c)- j EVAL_PT_GRADIENTS_IN_PATCH / 

Loop: Quadrature points of the parent element: 

I. Retrieve the record number for writing to U_SCPR 
II. Use the constant patch Jacobian to convert the physical coordinates to non-dimensional 

coordinates of the patch 
III. Evaluate the patch interpolation matrix SCP _ H at the quadrature points. 
IY. IF First gradients of the equivalent strain are to be recovered 

THEN 
Calculate the first derivatives of the patch interpolation matrix SCP _DLH 
Use patch Jacobian to convert it to its physical coordinates SCP _DGH 

END IF 
V. IF The Laplacian of the equivalent strain is to be recovered 

THEN 
Calculate the second derivatives of the patch interpolation matrix SCP _DlLH 
Use patch Jacobian to convert it to its physical coordinates SCP _D2GH 

END IF 
VI. Compute the gradients of the equivalent strains at the quadrature point by the matrix 

product ofSCP _DGH and SCP _DlGH separately with the continuous gradients at 
the patch node {Dj. 

VII. Rewrite the recovered equivalent strain gradients to the same location of U_SCPR 

End Loop: Quadrature points of the parent element 

Figure 3.4 Logic of recovery directly by least square fitted equivalent strains 
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3.3. Discussion of the recovery process 

The recovery procedure of the strain derivatives based on the super-convergent 

patch recovery technique is introduced. Here are some comments on its implementation. 

To solve the local least square fitting problem for each patch and to avoid the possible 

numerical ill-conditioning, we choose to use an equivalent but more powerful process 

called singular value decomposition (SVD). The SVD process first factorizes the patch 

least square fitting matrix into the multiplication of two rectangular matrices and a 

diagonal matrix of the singular values (in subroutine SVDC_FACTOR), and then 

recovers the rectangular array of local continuous patch nodal flux values (in subroutine 

SVDC _BACK_ SUBT). The solution of this algorithm gives us the patch nodal values. 

We use the patch interpolation functions to interpolate from the patch nodal values back 

to the element nodal values or directly to the quadrature points within the current patch 

center element. 

Generally, the patches are overlapping each other in the mesh; each node may receive 

multiple nodal equivalent strain gradients after processing all the patches. Therefore, a 

logical way to get the final unique flux and flux gradients at each node should be decided. 

In MODEL, this is achieved by simply mathematical averaging calculation at each node. 

The times each node receives a equivalent strain gradient estimates are recorded in an 

integer counter. The final results are saved in SCP _AVERAGES for the later usage. 

For nonlinear softening material problems, such as nonlocal damage mechanics and strain 

gradient enhanced elasto-plasticity, the nonlocality is usually introduced by including the 
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gradients of a scalar equivalent strain into a scalar type equation, i.e., yield function, 

loading-unloading functions, etc. The gradient dependent consistency conditions 

obtained from those equations are evaluated in a least square fitting sense in the above 

mentioned procedure for each patch. A scalar equivalent strain is used as the local fluxes 

to be fitted. In a Newton-Raphson solution scheme, this recovery procedure is conducted 

at every incremental or iterative step. 
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Chapter 4 

Nonlocal damage mechanics via SCP 

4.1. Review on local damage mechanics 

Considering an isotropic damage model for a typical softening continuum, the 

stress-strain relationship is defmed as, 

(4.1) 

where u is the stress tensor, £ is the strain tensor, De is the elastic stiffness tensor. m is 

the damage density, which is a never decreasing variable ranging from 0 (undamaged) to 

1 (totally damaged). The growth of the damage density m is expressed as a damage law, 

(4.2) 

The loading function is 

(4.3) 
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where g(K") is the damage evolution function, eeq is a scalar type equivalent strain. JC is 

called the damage threshold which is an internal variable usually representing the 

maximum equivalent strain level reached in the loading history. 

(4.4) 

Whether there is a further damage growth or not is controlled by the loading-unloading 

conditions, 

f(e,K")~o i~o f(e,K")i=O (4.5) 

For quasi-brittle material, the equivalent strain eeq can be defined as in Mazar (1984), 

which assumes damage occurs more easily under a tension state rather than a 

compression state. 

(4.6) 

where, e1 {1 = 1,2,3) are the principle strains, the positive operator (e1) is defmed to only 

use the positive part of e , 

(4.7) 

The damage evolution function g(K") can be directly identified from the uniaxial stress-

strain curves. It can represent a linear softening behavior as, 

0 

El (t-Eo) 
£1 -£0 1C 

(4.8) 

1 

or an exponential softening behavior as, 
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g(IC) = (4.9) 

A softening problem needs to be solved iteratively through a Newton-Raphson process. 

Therefore, the rate form of constitutive law is to be developed. 

(4.10) 

(4.11) 

If there is a damage growth, then 

(4.12) 

The rate form of the stress-strain relationship is obtained as, 

(4.13) 

The integration of the rate constitutive equation from tn to tn+l = tn + llt is conducted to 

develop a time discretization algorithm as 

(4.14) 

It gives incremental form of the constitutive law for the elasto-damage mechanics as 

ll.a =(1-m )De: ll.e- (De : E )g'(IC )ll.e (4.15) 

4.2. Review on nonlocal damage mechanics 

So far, we have developed the constitutive laws for the classical or local damage 

mechanics approach. The nonloca1 damage mechanics model is developed by introducing 
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the nonlocal equivalent strain into the loading function (Eq. 4.5). The integral type of the 

equivalent strain is defmed as a weighted spatial average of the local ones as 

(4.16) 

where the weighting function a(x,~) is only dependent on the distance between a source 

point x and a target point~ in the infinite Euclidean space. To keep the uniform field 

unaltered by this spatial weighted averaging process, the weighting function is 

normalized as 

(4.17) 

The weighting function can be chosen to be the Gaussian function, a bell shaped quartic 

polynomial approximating the Gaussian function, or a Green's function such as 

(4.18) 

where l is the material length scale describing the material microscopic structure. 

The gradient type of the nonlocal equivalent strain can be obtained either from an explicit 

form, 

(4.19) 

or an implicit form, 

(4.20) 

It has been proven in Peerlings (1999) that, the solution to the Helmholtz-type differential 

equation (Eq. 4.20) with a boundary condition 



(4.21) 

set on the entire boundary r of the whole domain V, is exactly the integral type Eq. 4.16 

with the Green's weighting function Eq. 4.18. Substituting the nonlocal equivalent strain 

Eeq (X) into the loading function and the loading-unloading COnditions gives, 

f(e,K) = Eeq(x)-K 

Eeq(x)-K:5;0 1(-~0 [eeq(x)-K ]K-=0 

(4.22) 

(4.23) 

For the numerical implementation, Eq. 4.19 and Eq. 4.20 are more useful in their 

incremental forms for the Newton-Raphson process. The incremental explicit and 

implicit nonlocal strain gradient forms are 

Explicit form: 

(4.24) 

Implicit form: 

(4.25) 

4.3. Evaluation of the strain gradients at SCP 

The gradient type nonlocal damage mechanics involves the evaluation of the 

second derivatives (Laplacian) of the equivalent strain. Here, it is obtained through the 

same patch recovery process as proposed in Chapter 3. The patches are constructed 

based on a group of neighboring elements. For each patch, a local least square fitting 

problem is solved either for the explicit form or the implicit form, 
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or (4.26) 

The incremental nonlocal equivalent strain ~ceq(x) is approximated from the 

polynomials of the patch element. However, this recovery process will yield an over-

smoothed result for the nonlocal equivalent strain, which is not able to initialize a 

localized behavior. Therefore, the least square fitting process is only used to evaluate the 

derivatives of the local equivalent strain. For example, in a two-dimensional problem, the 

patches are utilized to construct an smooth surface ..1€eq(x,y) fitting the local equivalent 

strains by approximating the continuous equivalent strain field from the patch 

interpolation functions [H(x,y)] times its nodal values{d} of the patch fitted equivalent 

strain increments, 

(4.27) 

Therefore, instead ofEq. 4.26, the local least square fitting problem to be solved is 

(4.28) 

The local equivalent strain increments are sampled at all the quadrature points in the 

patch as 

(4.29) 

The local equivalent strain increments ..1E~q (q = 1 ... nqp) are calculated and recorded 

in the U SCPR random file. 
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Substituting Eq. 4.27 and Eq. 4.29 into Eq.4.28, the normal equations can be developed 

as, 

fn([H(x,y)J[H(x,y)J){d}dil= fn[H(x,y)J {a}dQ (4.30) 

or it can be expressed as the summation over the quadrature points in the patch, 

(4.31) 

And the patch nodal solution is obtained as, 

(4.32) 

This part of the calculation is done in the subroutine POST_ PROCESS_ GRADS and in 

LIST_ELEM_FLUXES. This process implies that the local and nonlocal Laplacian 

V2ileeq(x) and V2ileeq(x) are evaluated from the continuous surface obtained from the 

patch least square fit of the local equivalent strain increments. Since the local equivalent 

strain increments are identical for both the implicit and explicit forms for each loading 

increment, the fitted surface is the same for both forms. Therefore, the least square fitting 

process is the same for the implicit and explicit forms at each local patch. That is to say, 

for each patch, 

(4.33) 

where 

(4.34) 
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The second derivatives of the equivalent strain calculated from the patch loop are stored 

through one of the two recovery options available in MODEL. To calculate the 

Laplacian, two second partial derivatives are required and thus saved, they are 

(4. 35) 

For recovery by nodal averaging approaches, the two second derivative components are 

saved in the rectangular matrix SCP _AVERAGES containing all the nodal values of the 

second derivative components. During the post processing element loop, the strain 

derivatives are recovered by the element interpolation function, [N(x,y}], multiplying the 

nodal vectors of this element in SCP _AVERAGES (ELEM_NODES, 5) and 

SCP _AVERAGES (ELEM_NODES, 6), which are retrieved from the global matrix 

SCP _AVERAGES (See Section 3.2.3). Therefore, 

with 

a2!~eq =[N(x,y)J{scP_AVERAGES( ELEM_NODES , 5 )} 

a~:~eq =[N(x,y)J{scP_AVERAGES( ELEM_NODES , 6 )} 

(4. 36) 

Then, the Laplacian of the equivalent strain increments is calculated and added to the 

local equivalent strain increments to get the nonlocal equivalent strain increments 

according to Eq.4.24. 
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For the second recovery option, the two second derivative components Eq. 4.35 are 

stored directly at the quadrature points of the parent element of each patch, which means 

they are stored into the corresponding locations in the U_SCPR file. Then, during the 

post processing loop, the second derivative components are recovered by reading the 

U SCPR file. The rest of the steps are the same as for the other recover option. 

Finally, for each loading increment or iteration, the flow chart for the above mentioned 

recovery process of the nonlocal equivalent strain increments is plotted in Figure 4.1. 

I At the end of each increment, known Ae, E •• , w, K , o at time t I 

I Element loop: calculate Ae,., save to U_SCPR 

Hu_scPR I 
Solve miniiAe •• - Ae •• ~ (4.28) 

Patch loop: 
Evaluate il Ae,. and il A£ •• (4.34) 

ax' ay' 

Recover by LSF ? 

I U_SCPR 

I Save to U SCPR I I Save to array SCP AVERAGES ] 

!Recover Laplacian V' Ae •• from U SCPR ll Recover Laplacian V' Ae, using ( 4.35) I 
Element loop: I 

+ 
I Calculate nonlocal equivalent strain increment Ae •• (4.24) I 

l 
I Update e •• , w, K, o I 

Figure 4.1 Flow chart for nonlocal equivalent strain recovery process 
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4.4. Three point bending of a beam 

To test the new nonlocal flnite element technique, a nonlocal damage mechanics 

problems is solved. The same example is analyzed by Jirasek (2007) with an integral 

type nonlocal damage mechanics model. Here, the problem is solved with the current 

strain gradient type model instead of Jirasek's integral model. 

The simulation is conducted on the three point bending test of a concrete beam with and 

without a notch. The beam tested has a square cross section area of JOOxJOO mm. The 

span of the beam is 450 mm. The notch is set at the center of the beam throughout the 

beam thickness. The notch is 5 mm wide and 50 mm deep into the beam. Figure 4.2 

shows the two-dimensional plane stress model used for the simulation. The Young's 

modulus E = 20 GPa and Poisson's ratio y = 0.2. Assume an exponential softening 

material with a stress strain curve that is defined in Eq. 4.9 with parameters eo= 1.2e-4 

and ef = 7e-3. 

4.4.1. Local damage mechanics 

The bending test simulations are flrst run on the notched beam case. Three 

different meshes with the element size of 5 mm, 2. 5 mm and J. 6 mm are built. The 

element type used is the bi-linear four node quadrilateral element (Q4) with a standard 

2x2 Gauss quadrature rule. The meshes are shown in Figure 4.3(a). The unnotched beam 

is also simulated with the same element type. Again, meshes with three different element 

sizes are built as 15 mm, 7.5 mm and 5 mm. The meshes are shown in Figure 4.3(b). The 



meshes for both cases are all constructed in an unstructured fashion and the meshes are 

refmed around the middle region for both beams. 

- d 

L/2 

..4~ 

L 
h 

..4 ~ 

.4., 

~t. 

L=450mm 

h= lOOmm 

d=5mm 

E=20GPa 

r =0.2 

£0 = 120 X 10-6 

e1 =7xl0-3 

Figure 4.2 Three point bending of notched and unnotched beam 

As expected, the results obtained from the local damage mechanics model show spurious 

mesh dependence in the post-peak stage of the simulation for both cases. The loading 

displacement curves for the notched beam and the unnotched beam are plotted in Figure 

4.4 and Figure 4.5. It is shown that for a set of the fixed material properties, if the 

element size gets smaller, the loading peak reached is lower and so is the total dissipation 

energy (areas under the loading displacement curve). The post-peak behavior is totally 

mesh dependent and physically meaningless for both the notched beam and unnotched 

beam. For the notched beam test, the coarse mesh (5 mm) results show a loading-

displacement curve that is closest to the experimental results. 
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Figure 4.3 Beam unstructured Q4 mesh with different minimum element sizes, (a) Notched, (b) 
Unnotched 

65 



(b) Mesh facts of unnotched beam 
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Figure 4.3 Beam unstructured Q4 mesh with different minimum element sizes, (a) Notched, (b) 
Unnotched (Contd.) 
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Figure 4.4 Loading-displacement curves of notched beam obtained from the local damage mechanics 
model 

4.4.2. Nonlocal damage mechanics 

The same three point bending experiments of the notched and unnotched beams 

are then simulated with the nonlocal formulation. The nonlocal formulation uses a strain 

gradient form as introduced in Section 4.2. The nonlocal equivalent strain is calculated 

and updated as in Figure 4.1. The exponential damage law used in the nonlocal tests is 

modified to calibrate the numerical results to the experimental results. Therefore, the 

fitted parameters are eo = 9.0e-5 and q = 7e-3. Since the strain gradient methods are 

used instead of the integral type methods, the length scales used are different from those 
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used by Jirasek. For integral type methods, the length scale is given as the cut-offradius 

R of the spatial weighting function. According to Jirasek (2007), it is assumed that R = 4 

mm for the notched beam and R = 8 mm for the unnotched beam. In this study, the 

length scale las defined in Eq.4.24 and Eq. 4.25, is set to be 2 mm for the notched beam 

and 8 mm for the unnotched beam. The choice of the material length scale l is made 

based on the calibration with the experimental results. Since this study focuses on 

showing the robustness and efficiency of the proposed technique in the implementation of 

nonlocal formulations, the question of the physical meanings of the length scales is not 

further discussed in this dissertation. 
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Figure 4.5 Loading-displacement curves of unnotched beam obtained from the local damage 
mechanics model 



In the MODEL library, the elements used are set to be Q4 bilinear quadrilateral elements, 

therefore, the patches are constructed as bi-quadratic Q9 quadrilateral elements (user 

control scp _ deg_inc 1 ). The gradient recovery method is chosen to be the nodal 

averaging process. The averages are only saved at the nodes of the parent element in 

each patch (user control scp _center_ only). 
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Finally, the loading-displacement curves obtained from the nonlocal tests are plotted in 

Figure 4.6 for the notched beam case. The experimental results and Jirasek's result are 

also plotted in the same figure. It is seen that the regularized loading displacement curves 

behave similarly during post peak stage, the peak loads reached are almost the same 

regardless of the mesh sizes and are all converged to center area of the experimental 

results. The dissipation energy is also conserved for different mesh results. Compared to 

the experiments, the results obtained from this study are closer to the experimental data 

than Jirasek' s result. 

The unnotched beam's loading-displacement curves obtained from the nonlocal tests are 

plotted in Figure 4. 7. The length scale I = 8 mm used for the strain gradient formulation 

is kept the same as the cut-off radius R used in Jirasek (2007). Again, the patch 

smoothed nonlocal finite element technique implemented in this study successfully 

presents a mesh independent loading-displacement curve for the unnotched beam 

simulation. As compared to the nonlocal integral formula, the strain gradient formula 

implemented here shows the similar results. However, as compared to Jirasek's result, 



the simulation gives a higher peak loading value for the same length scale, but for 

different mesh refmements, the loading-displacement curves are quite uniform. 
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Figure 4.6 Loading-displacement curves of notched beam from the non local damage mechanics 
model (I= 2mm) 

4.4.1. Comparison of the local and nonlocal damage contours 

The exaggerated deformed meshes are plotted in Figure 4.8 for the notched beam and in 

Figure 4.9 for the unnotched beam. It is seen that the nonlocal strain gradient models 

implemented give a proper localized deformation for both beams. The fmal damage 
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contour at the middle area of the notched and unnotched beams, shown as the dashed box 

in Figure 4.8 and Figure 4.9, are plotted through Figure 4.10 to Figure 4.15. 
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Figure 4.7 Loading-displacement curves of the unnotched beam from the nonlocal damage mechanics 
model (I= 8mm) 

The damage density contours of the notched beams for the three different meshes are 

shown in Figure 4.10-4.12. The contour plots on the left are from the local model while 

the contour plots on the right are from the nonlocal model. It is seen that the evolution of 

the damage density is localized to single elements in the mesh for the local model. The 

damage area initiates from the stress concentration point at the notch and is restricted to a 
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narrow strip, of which the width is limited to the size of a single element. The damage 

area can not propagate properly to adjacent elements when using a local formulation. 

The same damage density contour plots for the unnotched beam are plotted in Figure 

4.13-4.15. Again, the damage density contours obtained from the local model are plotted 

on the left and those from the nonlocal model are on the right. For unnotched beams, the 

damage initiates at the bottom edge of the beam and is localized into a strip-like area that 

is limited to the size of a single element from the local damage model. The loss of the 

ellipticity again causes the localized damage area to fail to propagate properly, which 

explains the occurrence of the mesh dependent loading-displacement curves shown in 

Figure 4.4 and Figure 4.5. 

Next consider the final damage density contours obtained from the nonlocal model as 

shown on the right in Figure 4.10-4.12 for the notched beam and Figure 4.13-4.15 for the 

unnotched beam. The final damage areas obtained are all very similar for difference 

mesh sizes. The damage area is no longer localized to the size of a single element size 

but is now localized to certain areas of a similar size. 

4.4.2. Recovered strain gradient results 

The Laplacian of the equivalent strain can be easily visualized with the nodal 

averaged results. It would be helpful to see the one-dimensional case before plotting the 

Laplacian surface in two-dimensional space. In one-dimensional case, as shown in 
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Figure 4.16, a spike shaped continuous function f(x) is shown in solid line, while its 

Laplacian is obtained as the dashed line. Typically, the Laplacian is negative at the peak 

of the spike and is positive at the diminishing bounds of the spike. 

I ------------------------J 

Figure 4.8 Exaggerated deformed mesh - notched beam from nonlocal model 

r------------------------...... - . ...... . . . . . . . . ... .. . . .... . 
I · 
I ' 

I · 

I 
I 
I 
I ------------------------J 

Figure 4.9 Exaggerated deformed mesh- unnotched beam from nonlocal model 

For the nodal averagmg recovery method, the recovered Laplacian of the equivalent 

strain increment is plotted in Figure 4.17 for the fmal loading stage. To avoid 

redundancy, the recovered Laplacian is plotted in only one mesh resolution for each case. 
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The contours of the localized normal strains in the x-direction are also plotted. As 

indicated from a one-dimensional case, it is noted as expected that the Laplacian is 

positive at the edge and is negative at the center of the localized strain zone. The SCP 

nodal averaging process used to recover the second derivatives of the equivalent strain 

creates a good approximation to the Laplacian profile, thus helps the proper propagation 

of the localized zone and keeps the ellipticity of the original problem. 
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Figure 4.10 Notched beam damage contour (element size= Smm): local (left), nonlocal/ = 2mm 
(right) 
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Figure 4.11 Notched beam damage contour (element size= 2.5mm): local (left), nonlocal/ = 2mm 
(right) 
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Figure 4.15 Unnotched beam damage contour (element size= Smm): local (left), nonlocall = 8mm 
(right) 

4.4.3. Choices of the recovery options 

So far, the equivalent strain derivatives recovered from the SCP process are all 

evaluated from the first recovery option, which is the recovery by the nodal averages. In 

next example the equivalent strain derivatives are recovered only at the parent element of 

each patch. This choice is regarded as the most efficient and reliable way to recover the 

strain gradients for the nonlocal damage mechanics problem simulated here. It avoids the 

over smoothing caused by the nodal averaging process and also supplies a legitimate 

estimation of the Laplacian required. 
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Figure 4.16 A one-dimensional continuo~-; function and its Laplacian (Dorgan 2006) 

However, remember from Chapter 3, a second recovery option is also proposed as to 

recover the equivalent strain derivatives directly at the quadrature points of the parent 

elements from the least square fit. This option is also tested here. For the notched beam, 

for the same mesh size, the two options give similar loading-displacement curves as 

shown in Figure 4.17. While for the unnotched beam test of the same mesh size ( 15mm ), 

the second option shows a loading-displacement curve with a more gradual slope as 

shown in Figure 4.18. This indicates that the direct recovery by LSF method may 

introduce an over-smoothed gradient recovery process for a regular geometric problem 

without any stress concentration point. This might be caused by using a too coarse mesh 

for a regular domain where no stress concentration points exist for damage initiation. 

That also explains why the two recovery options give similar results for the bending of a 

notched beam while different ones for the bending of an unnotched beam. Therefore, the 

nodal averages method seems to be more reliable even when the mesh is coarse. 
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However, the choices of the recovery options are problem dependent. A further study on 

the LSF method is conducted in Chapter 5 for the strain gradient type plasticity problems. 
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Figure 4.17 Equivalent strain and its recovered Laplacians: (a) Notched beam (b) Unnotched beam 
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4.1. Discussion 

The algorithm for the implementation of a strain gradient type nonlocal damage 

mechanics was developed and tested. Unstructured meshes were constructed and tested. 

The effectiveness of the SCP patches for the recovery of the second derivatives of the 

equivalent strains was proven. The numerical results for a three point bending problem 

for both a notched and unnotched beam were obtained from the proposed algorithm and 

compared to the experimental results as well as Jirasek's results. The nonlocal models 

implemented yield mesh independent loading-displacement curves. The dissipation 

energy or the areas under the loading-displacement curves are quite uniform regardless of 

the mesh resolution tested. The peak stress values obtained are all within the 

experimental range. The unnotched beam shows a more mesh independent result than 

that of the notched beam. 

The nonlocal damage models evaluated only involve the recovery of the second 

derivatives of the equivalent strain. Also, the unstructured mesh consists of only one type 

of element, the linear quadrilateral elements (Q4). Multiple types of elements and higher 

order C0 elements are not tested for the algorithm. These tests will be conducted in the 

Chapter 5 for the strain gradient plasticity problems. 

For the nonlocal damage mechanics model, the recovery by the LSF method shows 

overly smoothed effects, judging from the loading-displacement curves, when the mesh is 

too coarse and no stress concentration points exist to initiate damage. The performance 



of the two recovery options, Nodal Averages and LSF, is not fully compared here and 

further studies are conducted in Chapter 5. 
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Chapter 5 

Nonlocal strain gradient plasticity via 
SCP 

5.1. Review on nonlocal strain gradient plasticity 

5.1.1. Local softening plasticity 

The rate-independent elasto-plastic problem is first reviewed in this section 

assuming a linear isotropic softening behavior, where the tangential modulus h < 0. The 

rate form of the stress-strain relationship is given first then is integrated to obtain the 

incremental form for the numerical implementation. 

Applying the standard additive decomposition of the total strain rate e into its elastic 

part ee and the plastic part eP, the Cauchy stress rate ci" is given as 

(5.1) 
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Integrate Eq. 5.1 from time tn to tn+l gives the incremental constitutive equation as 

liu = D · lie = D · (lie -lie ) e • e e • p (5.2) 

where liu = J' ... • &dt, De is the elastic stiffness tensor. The yield function is defined as a 
'· 

Von-Mises (J2) type as, 

J=J3}; -Y=O 

with J 2 = .!.r : 1: , where 1: is the deviatoric part of the Cauchy stress tensor 
2 

I 
r=u-p/, p=-(rr11 +U22 +U33 ) 

3 

(5.3) 

(5.4) 

Here, Y is the yield strength that is a function of the initial yield strength u 0 with a linear 

isotropic softening behavior, 

(5.5) 

where h < 0 is the softening modulus, and p is the total equivalent plastic strain. 

(5.6) 

The flow rule assumed is the associate plasticity, 

. . df 
e =A.n, n=-

P du 
(5.7) 

where n is the normal direction of the yield surface f The growth of the plastic strain 

satisfies the Kuhn-Tucker conditions as 

i~o f$.0 it=O (5.8) 

In Voigt notation, the incremental consistency condition is given as 

41 = { n} r { liu}- hll.A. = 0 (5.9) 
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with !leP = !l.A. , substituting Eq.5.2 into Eq.5.9 gives, 

(5.10) 

Therefore, substituting Eq.5.10 into Eq.5.2 gives, 

(5.11) 

where [ Dep J is the consistent constitutive matrix, 

(5.12) 

5.1.2. Nonlocal strain gradient plasticity 

The local form of a linear isotropic softening elasto-plasticity model is introduced. 

Next, the strain gradient enhanced softening elasto-plasticity model is developed. The 

general idea of strain gradient enhancement is to introduce the gradient terms of the 

equivalent plastic strain into the yield function. This has been regarded as the most 

efficient and convenient way to regularize the softening problem. The strain gradient 

terms automatically disappear in a homogeneous field but they have a huge influence in 

the areas where high strain gradients are present. Numerically speaking, for each 

incremental or iterative step, a gradient dependent consistency equation is solved which 

requires the evaluation of the strain derivatives. Two gradient dependent plasticity 

theories are introduced below. 



The first kind of the strain gradient enhanced plasticity models suggests that the strain 

gradient dependent plasticity model should incorporate the implicit averaged strain. 

Therefore, the Laplacian of the plastic strain is introduced into the yield function. De 

Borst (1996) and Engelen (2003) are among the pioneers for the research on this type of 

model. De Borst's strain gradient model is introduced as below. The gradient dependent 

yield function is 

(5.13) 

where p is the nonlocal equivalent plastic strain. The consistency condition is obtained 

as 

4f ={n}r {llu}-hlli =0 (5.14) 

where, lli is the nonlocal effective plastic strain multiplier. The first kind of gradient 

plasticity model is developed to explicitly express LU. as 

(5.15) 

Substitute Eq. 5.2 and Eq.5.15 into Eq. 5.14, it gives, 

(5.16) 

The second kind of the gradient enhanced plasticity models is summarized as those 

developed by Aifantis (1984). He similarly advocates that the yield function greatly 

depends on gradients of the equivalent plastic strain. However, he introduces not only 

the Laplacian but also the first derivatives of the plastic strain. The nonlocal strain 

gradient plastic strain multiplier lli is expressed as 

(5.17) 
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Substituting Eq.5.17 into Eq.5.14 gives, 

(5.18) 

5.2. Strain gradient evaluation from SCP 

The implementation of the strain gradient type plasticity models with the super-

convergent patches is quite similar to that is discussed for the nonlocal damage 

mechanics (Chapter 4). Two issues need to be clarified here. First, it should be noticed 

that Eq. 5.16 and Eq. 5.18 are both implicit type equations. As discussed in the last 

chapter, a patch least square fitting process for the equivalent strain gives the identical 

strain derivative evaluations for both implicit forms and explicit forms. Therefore, 

Eq.5.16 and Eq.5.18 can be solved explicitly in a least square fit sense, and then the nodal 

solutions for the equivalent strains are utilized to evaluate the strain derivatives. The 

equivalent strains to be sampled at the quadrature points are the right hand sides of the 

Eq.5.16 and Eq.5.18 as in a general sense, 

lie=( }nY[ve] J{!ie} 
{n} [De]{n}+h 

The local fluxes are approximated by the patch element as 

LU=[H(x,y)]{d} 

where { d} is obtained from the local least square fit, 

(5.19) 

(5.20) 

(5.21) 
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After the nodal solutions of the equivalent strain { d} are obtained, the norm of the first 

order strain derivatives is evaluated as 

(5.22) 

The second derivatives are obtained as 

(5.23) 

where, [V2H(x,y)] is defmed in Eq. 4.34. 

Again, the local equivalent strain defined in Eq.5.19 are calculated and stored through 

subroutines POST PROCESS GRADS and LIST ELEM FLUXES in the random - - - -

access file U_ SCPR. The length scale used to recover the nonlocal strains are equivalent 

to the coefficients appearing in Eq.5.16 and Eq.5.18 as follows, 

De Borst: 

(5. 24) 

Aifantis: 

(5. 25) 
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with l = ( hi J and l - ( hz2 J 
1 {nf[De]{n} 2 - {nf[De){n} 

The difference between the two strain gradient enhanced plasticity models is whether the 

first derivative terms of the plastic strain multiplier is to be recovered. In the MODEL 

code, this choice is achieved by the input control keyword aifantis, which refers to the 

models where the first derivative terms are also need to be recovered. The MODEL code 

by default only considers the Laplacian of the plastic multiplier. The flow chart for the 

nonlocal strain gradient type plasticity problem is developed in Figure 5.1. 

5.3. Shear band simulation 

A shear band is known as a highly localized plastic zone that generally follows a 

straight line. This problem is one of the most studied cases for the strain gradient 

plasticity theory. To illustrate the robustness and efficiency of the strain gradient SCP 

recovery technique in its application to a nonlocal strain gradient plasticity problem, a 

shear band compression problem is again studied here. 

A two-dimensional plane strain problem of a concrete plate in axial compression is 

simulated. The plate is compressed by two smooth rigid planes. One point on either the 

upper edge or the bottom edge was fixed to avoid rigid body motion in the horizontal 

direction. The plate geometry, boundary conditions and material properties are shown in 

Figure 5.2. A weakened area with slightly lower yield strength is assigned at the right 



bottom comer of the plate to initiate the shear band from that location. A vertical 

displacement is applied on the top edge ofthe plate ofv = 0.15 mm. 

Element loop: 

At the end of each increment, known A£,p,£,a at timet 

Element loop: 

SCP _AVERAGES 

RecoveriVMI ,V2Mfrom U_SCPR 

Calculate nonlocal equivalent plastic strain increment M (5.24) 
(If Aifantis is used, use Eq.5.25 instead) 

Update state variables: £,£, ,p,a and D,p (5.1-5.12) 

Figure S.l Flow chart of strain gradient plasticity via SCP 
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5.3.1. Analysis with linear C0 elements 

The elements simulated first were linear T3 triangular elements, which have zero 

second derivatives. The patches constructed have one order higher interpolations, and 

thus are complete quadratic T6 triangular elements. In order to get enough sampling 

points for the SCP process, three quadrature points are used for each element. Two 

structured meshes with 24x48 (coarse), 60x120 (fme) elements, as shown in Figure 5.3, 

are investigated. 

v = 0.15 mm 

B=60mm 

H=120mm 

Thickness: T = 1 mm 

Weakened square W = 10 

Young's modulus: 

E=2.0x1010 Pa 
Poisson's ratio: 

v=0.49 
Initial yield stress: 

ayo = 2.0 x 107 Pa 
Initial yield stress: 

h = -2.0 x 109 Pa 

Weakened area: 

aY0 = 1.8 x 107 Pa 

Figure 5.2 A plate in axial compression 
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The amplified deformed mesh obtained from the local plasticity models are plotted in 

Figure 5.4 on the next page. It is seen that the shear band takes as small an area as 

possible in the mesh, and is limited to the element size. The results are mesh dependent 

and thus are of little value to us. 

Figure 5.3 Coarse (24x48) and fine (60x120) T3 meshes 

(1) De Borst's nonlocal model 

Next, the same problem is studied utilizing nonlocal models. The first nonlocal 

strain gradient plasticity model evaluated only includes the Laplacian of the strain in the 

yield function, which is same as the model developed by de Borst (1996). The SCP is 
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Figure 5.4 Deformed mesh obtained from local plasticity model: (a) coarse mesh and (b) fine mesh 



only utilized to recover the second derivatives of the equivalent strain, as are used 

previously for the nonlocal damage models. 

Both second derivative recovery methods are investigated. The direct recovery by least 

square fit of the equivalent strain at the integration points within the patch shows better 

results. Compared to the local model results, the shear band is no longer localized to a 

single element in the mesh, but localized to a finite width that is highly coupled to the 

length scale l. The length scales used are calibrated from the experimental results from 

Pamin (1994), where the material length scale of concrete is around 2 mm to 5 mm. 

Therefore, in order to show the size effects controlled by the length scales, shear bands 

are simulated for the same fine mesh, but with the length scales varying from 2 mm, 3 

mm to 4 mm. Figure 5.5 shows the equivalent plastic strain contour obtained from the 

directly recovery of the strain derivatives by least square fit. It shows that the width of 

the shear band also varies in the same trend as the length scale does. 

The nodal averages of the equivalent strain recovery option were also evaluated. The 

final shear bands obtained for that option are plotted in Figure 5.6 for both the coarse and 

fine meshes. The length scale l = 5 mm is kept the same for both meshes. It also shows a 

shear band with a finite bandwidth. The equivalent strain contour of the fme mesh shows 

an oscillating contour profile that would be expected from a plasticity model that includes 

the Laplacian terms, see Figure 4.16 for the one-dimensional case. The fmal Laplacian of 

the plastic strain multiplier recovered by the nodal averaging process is plotted in Figure 
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5.7. The Laplacian of the plastic strain multiplier becomes more oscillatory when the 

mesh is refined. 
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Figure 5.5 Shear bands for different length scales on the fine mesh, recovered by strain gradient least 
square fit (de Borst's model) 
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Figure 5.6 Recovered effective plastic strain by nodal averaged method (I= Smm): coarse mesh 
(upper left) and fine mesh (lower right) 
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As we saw in the last paragraph, the recovery of the Laplacian of the plastic strain 

multiplier obtained by direct least square fit outperforms that obtained from the nodal 

averaging process. Although the shear band bandwidth obtained for both recovery 

methods is very close for the same length scale used, the nodal averaging process gives a 

shear band profile that is oscillating. The true second derivatives at a localized area 

usually change signs, i.e., positive at the edge and negative at the center as shown in 

Figure 4.16. Therefore, the SCP recovered second derivatives of the plastic strain 

multiplier should also oscillate around the strain localized zone. 

(1) Aifantis' nonlocal model 

Next, we will illustrate an enhanced Aifantis' strain gradient model, which also 

introduces the first derivatives into the yield function. How the introduction of the first 

derivatives affects the recovery options are evaluated. The equivalent plastic strain 

contours are plotted in Figure 5.8. The shear band obtained from Aifantis' model is less 

oscillatory because of the introduction of the first order derivatives. It shows that plastic 

strain obtained from the nodal averaged recovery of the plastic strain gradients shows less 

oscillation along the shear band. That is because of the introduction of the norm of the 

first derivatives of the plastic strain multiplier as in Eq. 5.18. The norm of the first 

derivatives and the Laplacian of the plastic strain multiplier are plotted in Figure 5.9 for 

both coarse and fme meshes. 
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Figure 5. 7 Recovered Laplacian of the effective plastic strain (I= 5mm): coarse mesh( upper left) and 
fine mesh (lower right) 
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Figure 5.8 Equivalent plastic strain contour (Aifantis' model) by recovered by nodal averages (l = 

Smm), coarse mesh (upper left) and fine mesh (lower right) 
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Figure 5.9 Recovered norm of the first derivative and Laplacian of the equivalent plastic strain 

5.3.2. Analysis with mixed quadratic C0 elements 

The numerical simulation of the shear band is repeated with the quadratic C0 

elements. Two types of unstructured meshes were created as shown in Figure 5.10. The 

first mesh contains only T6 elements, while the second mesh consists of a mixture of bi-

quadratic Q8 and complete quadratic T6 elements. For Q8 elements, a 9-point quadrature 

rule is used. For T6 elements, a 4-point quadrature rule is used. The deformed 
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Figure 5.10 Meshes of quadratic elements 
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mesh obtained from a local model is plotted in Figure 5.11. With second order elements 
' 

the localization of a shear band is shown within a strip of elements initiated from the right 

bottom corner at an angle of about 45 degrees. 
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Figure 5.11 Deformed mesh from local model (Exaggerated) 

Shear bands are next simulated with strain gradient plasticity models on the quadratic 

meshes in Figure 5.10. The material length scales used are kept as 5 mm which is the 

same as used for linear meshes. De Borst's model is first utilized, the plastic strain 

contours obtained from their nodal averages are plotted in Figure 5.12. The right bottom 

corner of each mesh is where the shear band initiates. Therefore, those areas have the 
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most distorted elements where the maximum plastic strain occurs. Except in those areas, 

the plastic strain obtained from different meshes has very similar values and the 

bandwidth of different shear bands obtained are quite uniform. No oscillating behavior 

of the shear bands, as shown for linear element results (Figure 5.6), is observed in this 

case. 

The Aifantis' model is also studied on the four meshes shown earlier in Figure 5.10. The 

plastic strain contours obtained from their nodal averages are displayed in Figure 5.13. 

Because of the norm of the first derivatives of the plastic strain is introduced in this 

method, the shear bands obtained are more constant than those from the de Borst model 

shown in Figure 5.12. Again, no oscillating shear band profiles are observed from the 

results. 

The de Borst's and Aifantis' models are then repeated with the LSF recovery methods. 

The resultant plastic strain contours are plotted in Figure 5.14 and Figure 5.15, 

respectively. The bandwidth and the magnitudes of the shear bands obtained are very 

close to those obtained from the nodal averages option. Figure 5.14 shows a bandwidth 

difference within 22% and an averaged plastic strain magnitude around 0.0030. Figure 

5.15 shows a bandwidth difference within 12% and an averaged plastic strain magnitude 

around 0.0035. The magnitude is measured at the center of the shear band except the 

lower right comer. 
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Next, the norm of the first derivatives and the Laplacian of the equivalent plastic strain 

obtained from the nodal averages are plotted in Figure 5.16 and Figure 5.17, respectively. 

For coarse meshes, the norm of the first derivatives recovered is more smooth than those 

recovered by the fine meshes. The Laplacian values also show the same behavior. 
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Figure 5.12 Plastic strain contour(/= Smm), de Borst's model- Recovered by nodal averages 
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(a) T6 and Q8 coarse mesh (max= 0.010834) 
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Figure 5.13 Plastic strain contour (1 = Smm), Aifantis' model- Recovered by nodal averages 
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(a) T6 and Q8 coase mesh (max= 0.0086873) (b) T6 and Q8 fine mesh (max= 0.0079562) 
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Figure 5.14 Plastic strain contour(/= 5mm), de Borst method- Recovered by LSF method 
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(a) T6 and Q8 coarse mesh (max= 0.013112) (b) T6 and Q8 fine mesh (max= 0.01267) 
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Figure 5.15 Plastic strain contour(/= 5mm), Aifantis' model- Recovered by LSF method 
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Figure 5.16 Norm of the first derivative of plastic strain 

5.4. Discussion 

0.03 

0.02 

0.015 

The shear band simulation was conducted as a two-dimensional plain strain 

problem. Simulations have been conducted utilizing linear triangular T3 elements, 

quadratic triangular T6 elements, and bi-quadratic Q8 and triangular T6 elements. The 

Laplacian of the equivalent plastic strain recovered through nodal averages shows the 

expected oscillating behavior around the shear band area while those recovered through 

LSF methods do not. 
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Figure 5.17 Laplacian of the plastic strain contour 
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For simulations using quadratic elements, the meshes were constructed in an unstructured 

way. Shear bands are successfully initiated and propagate properly. The LSF recovery 

method gives better shear band results as compared to the nodal averaged recovery 

method with regard to the elimination of the inappropriately initiated shear bands for 
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coarser meshes. To sum up, the strain gradient plasticity problems are simulated through 

the proposed nonlocal finite element approach. The shear bands recovered reflect the 

effects of the introduced length scale. 
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Chapter 6 

Conclusions 

This dissertation developed a nonlocal finite element technique based on the 

superconvergent patch recovery methods for second derivatives. The technique enables 

the recovery of the second derivative of the equivalent strain with the unstructured mesh 

only of C0 elements. The idea of the element based patches is utilized for the recovery of 

the first and second derivatives (Laplacian) of the equivalent strain. A local least square 

fit process for the equivalent strain is conducted for each patch to recover a smoothed 

continuous field of the equivalent strain. Then the derivatives are recovered from the 

patch smoothed equivalent strain by two options. The first choice is to recover at the 

element nodes in the patch and is later averaged at each element node, named as the 

nodal averages recovery. The other choice is to recover the derivatives at the integration 

points of the parent element in each patch, named as the least square fits (LSF) recovery. 

Both recovery choices are tested and the results are compared. 
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Numerical simulations have been conducted on two famous nonlocal continuum 

mechanics problems. One is the nonlocal damage mechanics and the other is the strain 

gradient plasticity. The results show the efficiency and robustness of the newly 

developed finite element technique. The results are mesh independent and controllable 

with the length scales. 

For the nonlocal damage mechanics, a three point beam bending test is simulated with 

linear quadrilateral C0 elements. The resultant loading-displacement curves show a good 

match to both the experimental results and Jirasek's numerical results obtained from the 

integral type formula. 

For the strain gradient plasticity problem, a benchmark shear band test is simulated based 

on two strain gradient theories. An extensive study on various mesh combinations of the 

C0 elements is conducted for this example. For linear C0 elements, the recovered 

nonlocal strain show oscillated behavior at the localized areas from the nodal averages 

recovery, however the oscillated behavior is not shown in LSF recovered results. For 

quadratic elements, the oscillated shear bands are not shown. For Aifantis' gradient 

enhanced plasticity model, the strain derivatives recovered from a direct least square 

fitted plastic strains at the integration points within the patch is more reliable than those 

recovered from the mesh nodal averages in terms of eliminating inappropriate initiation 

of the shear bands. 

The numerical implementation of the nonlocal continuum mechanics is still an intriguing 
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topic. Following the work done in this thesis, future work may include extending the 

current two-dimensional cases to three-dimensional problems. The MODEL library 

already includes solid elements in the error estimator and second derivative recovery. 

Only the material constitutive law in the nonlocal mechanics and plasticity would need to 

be expanded to include additional components. 

In conclusion, this thesis proposed and implemented a robust nonlocal finite element 

technique based on the superconvergent patch second derivative recovery methods. 

Numerical simulations are conducted and the results are discussed and evaluated. Further 

improvements are also pointed out. 
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