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Abstract 

High Performance Reliable 
Variable Latency Carry Select Addition 

by 

KaiDu 

This thesis describes the design and the optimization of a low overhead, high performance 

variable latency carry select adder. Previous researchers believed that the traditional adder 

has reached the theoretical speed bound. However, a considerable portion of hardware 

resources of the traditional adder is only used in the worst case. Based on this observation, 

variable latency adders have been proposed to improve on the theoretical limit, but such 

adders incur significant area overhead. By combining previous variable latency adders 

with carry select addition, this work describes a novel variable latency carry select adder. 

Applying carry select addition in the variable latency adder design significantly reduces 

the area overhead and increases its performance. This variable latency adder is faster and 

smaller than previous variable latency adders. Furthermore, this variable latency adder can 

be optimized to be faster and smaller than the fastest adder generated by the Synopsys 

Design Ware building block IP. 
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Chapter 1 

Introduction 

Addition, one of the most frequently used arithmetic operations, is employed to build ad­

vanced operations such as multiplication and division. Theoretical research has found that 

the lower bound on the critical path delay of the adder has complexity O(log n ), where 

n is the adder width. The design of high performance adders has been extensively stud­

ied [10] [15], and several adders have achieved logarithmic delays. Whereas theoretical 

bounds indicate that no traditional adder can achieve sub-logarithmic delay, it has been 

shown that speculative adders can achieve sub-logarithmic delays by neglecting rare input 

patterns that exercise the critical paths [2, 11, 13]. Furthermore, by augmenting speculative 

adders with error detection and recovery, one can construct reliable variable-latency adders 

whose average performance is very close to speculative adders [3, 6, 12, 17]. 

Speculative adders are built upon the observation that the critical path is rarely ac­

tivated in traditional adders. In traditional adders, each output depends on all previous 

(lower or equal significance) bits. In particular, the most significant output depends on all 

the n bits, where n is the adder width. In contrast, in speculative adders [2, 6, 11, 13, 17], 

each output only depends on the previous k bits rather than all previous bits, where k is 

much smaller than n. However, the cumulative error grows linearly with the adder width 

since each speculative output can independently be in error. Moreover, the calculation of 

each speculative output requires an individual k-bit adder; hence, such designs also incur 
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large area overhead and large fanout at the primary inputs. Techniques such as effective 

sharing [ 17] can mitigate but not eliminate fanout and area problems. Although the spec­

ulative adder in [ 18] can mitigate the area problem, it incurs a fairly high error rate that 

limits its application. For applications where errors cannot be tolerated, a reliable vari­

able latency adder can be built upon the speculative adder by adding error detection and 

recovery [3, 6, 12, 17]. For the vast majority of input combinations, the speculative adder 

produces correct results; when error detection flags an error, error recovery provides correct 

results in one or more extra cycles. Ideally, the average performance of the variable latency 

adder should be similar to the speculative one. However, existing variable latency adders 

have several drawbacks. When error detection indicates no error, the actual delay is the 

longer of the speculative adder and error detection. The delay of error detection is always 

longer than the speculative adder [6] [17]. Hence, the benefit of speculation is limited by 

the delay of error detection [3] [12]. Besides, the circuitry for error detection and recovery 

incurs nontrivial area overhead. Finally, variable latency adders are mostly restricted for 

random inputs [3, 12, 17]. 

This thesis first describes a novel function speculation technique, called speculative 

carry select addition (SCSA). The key idea is to segment the chain of propagate signals in 

addition into blocks of the same size. Specifically, the input bits of addends are segmented 

into blocks, and the carry bits between blocks are selectively truncated to 0. SCSA is less 

susceptible to errors, since it is only applied for blocks instead of individual outputs. A 

single individual adder is required to compute all outputs of a block instead of each output, 

which mitigates the area overhead problem. An analytical model to determine the error rate 

of SCSA is formulated, and the accurate relation between the block size and output error 

is developed. A high performance speculative adder design is presented for low error rates 

(e.g. 0.01% and 0.25%). 

Secondly, this thesis describes a reliable variable latency adder design that augments 

the speculative adder with error detection and recovery. The speculative adder produces 

correct results in a single cycle in most cases, and error recovery provides correct results in 
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an extra cycle in worst cases. The performance of the variable latency adder is close to that 

of the speculative adder. This approach has two advantages. First, the critical path delay of 

the error detection block is lower or comparable to that of the speculative adder. Second, 

the error detection and recovery circuitry incurs low area overhead by using intermediate 

results from the speculative adder. 

Finally, the previous variable latency and speculative adders are mainly designed for 

unsigned random inputs, so this thesis proposes the modified variable latency and specula­

tive adders suitable for both random and Gaussian inputs. With modified speculative adder 

and error detection block, the variable latency adder still achieves high performance when 

2's complement Gaussian inputs present. This shows that the variable latency adder design 

is feasible for practical applications. 

Simulations using 10 million unsigned random inputs are used to validate the analytical 

error model, and analytical and simulation results match well. Simulation results indicate 

that for an error rate of 0.01% (0.25% ), SCSA-based speculative addition is 10% faster 

than the Design Ware adder with up to 43% (56%) area reduction. Simulation results also 

suggest that on average, variable latency addition using SCSA-based speculative adders is 

about 10% faster than the Design Ware adder with area requirements of -19% to 16% (-16% 

to 29%) for unsigned random (2's complement Gaussian) inputs. 

This thesis is organized as follows. Chapter 2 presents the background of the specu­

lative adder and reliable variable latency adder. Chapter 3 introduces the SCSA and the 

corresponding error analysis. Chapter 4 describes the SCSA-based speculative adder de­

sign. Chapter 5 proposes the reliable variable latency adder design using the SCSA-based 

speculative adder with error detection and recovery, called variable latency carry select 

adder (VLCSA). Chapter 6 presents a modified reliable variable latency adder design suit­

able for both unsigned uniform and 2's complement Gaussian inputs. Chapter 7 validates 

above models and designs. Section 8 is a conclusion. 



Chapter 2 

Background 

Due to the importance of addition, various adders have been proposed for achieving high 

performance and low power [10] [15], such as ripple carry adder, carry select adder, carry 

skip adder, look-ahead adder, and parallel prefix adder. There is an interesting observation 

regarding adders and indeed many other designs: The critical path is rarely activated. The 

actual paths in typical cases are much shorter than the critical one. This observation indi­

cates that the traditional worst-case design methodology may require large design margin. 

Speculative adders have achieved significantly higher performance by neglecting rare input 

patterns that exercise the critical paths [2, 11, 13]. Furthermore, error-free variable latency 

adders can be constructed from speculative adders by adding error detection and recovery, 

and can achieve average performance comparable to speculative ones [3,6, 12, 17]. 

Speculative or variable latency adders fall into two main categories. The first category 

detects the input patterns that violate the timing constraint and remove these errors at design 

time. Telescopic units [4] fall in this category. However, the synthesis of an exact function 

that covers all input patterns that violate the timing constraint is expensive in practice. It 

has been shown that this problem is NP-complete [16], which limits the application of this 

technique to large circuits. The second category is called function speculation, wherein the 

original logic function is replaced by an approximate logic function. In the asynchronous 

domain, [ 14] first proposed a speculative variable latency adder. In the synchronous do-

4 
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main, it has been suggested that the complete logic function be replaced by a simplified 

logic function that provides correct results most of the time [2, 11, 13]. However, the tech­

niques in [2, 11, 13] have no error correction capability and may also suffer from large 

area and large fanout at the primary inputs. Recently, [17] proposed an error-free variable 

latency adder design wherein the speculative addition is similar to [2, 11, 13]. [6] studied 

an extension of [17] for the inputs extracted from practical benchmarks, which incurs ad­

ditional area overhead. Both [17] and [6] have the same area and fanout problems noted 

above. Furthermore, in [17] [6], the critical path delay of error detection is always longer 

than that of the speculative adder. The approach in [17] was generalized in [3], wherein 

an automatic synthesis technique that transforms a combinational design to a two-stage 

variable-latency design was described. This was extended in [12] to multi-stage function 

speculation. The design of speculation is strictly limited by error detection in [3] [12]. 

Besides, [3] [12] are both restricted for random inputs. Finally, although the speculative 

adder design proposed in [18] can mitigate the area problem, it exhibits a fairly high error 

rate that limits its application. 

Besides, other speculative designs or variable latency designs for low energy operation 

have been reported. The Razor technique [7] dynamically adjusts the supply voltage by 

detecting and correcting errors. Similar energy saving technique [8] has been proposed 

for signal processing applications. Signal processing applications can be error-tolerable, 

and do not require error detection and recovery. Besides, a non-uniform voltage scaling 

approach, called probabilistic arithmetic [5], was proposed to adjust voltage for each bit 

position in adder. This technique can achieve more energy saving due to the special treat­

ment for each bit position. 

In this thesis, we describe a novel function speculative addition, and the corresponding 

speculative adder and reliable variable latency adder. The closest approaches to our work 

are [ 18] [ 12]. Although the speculative adder design proposed in [ 18] can mitigate the area 

problem, it exhibits a fairly high error rate that limits its application. The error rate is esti­

mated by running the simulation for a 32-bit adder, which is not scalable for large adders. 
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The relation between speculation and error also remains unclear. In contrast, we present 

an analytical error model for SCSA, by which the accurate relation between speculation 

and error is formulated. In [12], a combinational adder is transformed into a multi-cycle 

variable-latency one, which requires multi-cycle timing analysis. The design is assumed to 

work for unsigned random inputs. Besides, it is difficult to incorporate this technique with 

the traditional EDA flow due to complicated multi-cycle timing constraints. In contrast, the 

SCSA-based variable latency design is suitable for both unsigned random and 2's comple­

ment Gaussian inputs, and is a simple deterministic design with 1/2 cycles of latency for 

addition. 



Chapter 3 

Speculative carry select addition (SCSA) 

Speculative carry select addition (SCSA) comes from the observation about the carry chain 

in addition. During the discussion in this chapter, we employ unsigned binary addition to 

illustrate SCSA. The input are assumed to be uniformly distributed, called random inputs. 

The addition is shown as the dot graph in Figure 3.1, where dots indicate input bits . 

•• •• •• •• •• •• •• •• •• • • • • • • 
Figure 3.1: Dot graph for addition. A dot represents an input bit. 

We represent two input numbers as A and B. The ith least significant bit of A and Bare 

represented as ai and bi, respectively. Then we define propagate and generate (P/G) signals 

at the ith bit position: 

7 

(3.1) 

(3.2) 



The sum bit, si, and carry-out (carry) bit, ci, at the ith bit position are rewritten as: 

8 

(3.3) 

(3.4) 

If Pi = 1, Ci = Ci-1· which indicates that changing the value of ci_1 directly changes 

the value of ci. This situation is defined asci depends on ci-1. written asci --+ ci_1. All 

other situations are defined as ci does not depends on ci-1. written as Ci --rt ci_1. Let us 

consider how ci depends on Ci-k· 0 < k ::::; i. If 3Pi = 0, i - k + 1 ::::; j ::::; i, Ci --rt ci-k· 

In other words, ci --+ ci-k iff V Pi = 1, i - k + 1 ::::; j ::::; i. The number of consecutive 

propagate signals Pi with value 1 is called the carry chain length. The probability P; = 1 

is 1/2, so the probability of a k-bit carry chain is 1/2k. This implies that ci may be locally 

approximated using several consecutive input bits. The average longest carry chain length 

in an n-bit addition has been extensively studied [10] [15]. Although there is no closed­

form solution, it is widely recognized that the carry chain length in the n-bit addition is 

O(logn) for unsigned uniform inputs [10] [15]. This interesting fact suggests that it is 

possible to quickly and accurately estimate the output bit using only several consecutive 

input bits. 

•• 
•• •• •• •• •• •• •• •• • • 

Figure 3.2: Input bits grouped into windows. 

3.1 Operation of SCSA 

• • • • 

Long carry chains rarely happen in addition for unsigned random inputs. In another word, 

by grouping input bits into blocks as shown in Figure 3.2, the carry chain length can be 
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cin cin cin 
n n n 

•• •• 
I I •• •• 1 ...... 1 •• •• I I • • 

• • •• •• •• •• • • •• • • • • 
......... ......... ......... ......... 

s* s* s* s* 

Figure 3.3: Dot graph to illustrate the operation of SWA. 

made comparable to the block size with high probability. In SCSA, input bits are divided 

into blocks of the same size, as shown in Figure 3.2. A block, called window, includes 

several consecutive input bits. The SCSA operation is shown in Figure 3.3: The adder 

width is n. The window size is k. The total number of windows is m = I~ l· The carry-out 

bit of the ith window is called C~ut• 0 ~ i < m. The carry-out bit of a window is speculated 

using only all k input bits of the window. Combining 1 speculative carry-in bit with k input 

bits of the window, k speculative sum bits of the window are computed. Any bit position in 

the window is affected by at least previous k bit positions. As argued earlier, the probability 

that an output bit depends on more than k previous bit positions is less than 1 /2k. However, 

the relation between the window size and error remains unclear. An analytical error model 

for SCSA is presented and provides critical guidance for the SCSA-based adder design. 

3.2 Error rate analysis 

We start from when an error occurs in SCSA. We observe that an error occurs if a window 

produces a group generate signal with value 1 and the next window produces a group 

propagate signal with value 1, as shown in Figure 3.4. 

We state this event in a rigorous way. The adder width is n. The window size is k. The 

total number of windows ism = 1~1· The group PIG signals at the Jfh bit position of the 



(i+2)th (i+ 1)th ., ...... . ,._ . . . . 
......... 

s· 

jlh . , ... . 
Cout= 1,. e e ... e e 

......... 
Gk·l:o= 1 
pk-1:0 = 0 

10 

, ....... 

Figure 3.4: Error when Gk_ 1,0 = 1 in the ith window and Pk_ 1,0 = 1 in the (i + l)th 

window. 

ith window are stated as: 

j 

c;,o = c; + Pjc;_ 1 + ... + G~ II P/, (3.5) 
l=1 

j 

P}:0 =II P/. (3.6) 
l=O 

where Pzi and Gf are the PIG signals at the zth bit position of the ith window. The group 

PIG signals of the ith window are defined as PL1,0 and GL1,0 , 0 :::; i < m. The carry-out 

bit of the ith window, c~ut' is written as: 

Ci Gi pi ci-1 1 < . 
out = k-1:0 + k-1:0 out ' - '/, < m (3.7) 

In SCSA, C~~/ is truncated to 0, and C~ut is approximated as C~~t: 

(3.8) 

As shown in Figure 3.4, the ith window has a group generate signal with value 1, GL1,0 = 

1. It is straightforward to see that: 

c~ut = 1 

p~~i:o = 1 indicates that c~ut passes through the ( i + 1 )th window, which also implies 

G~:=,11 , 0 = 0. The carry-out bit of the ( i + 1 )th window C~~1 is approximated using (3.8) as: 

Ci+h - Gi+1 - 0 
out - k-1:0-
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In contrast, in traditional addition, the correct carry-out bit of the ( i + 1 )th window c~;;;I is 

written as: 

=C~ut=1 

Thus, C~;it1 =I= C~;ith. SCSA incorrectly speculates the result if P~:!:t0GL1 ,0 = 1. 

The probability of the above event is calculated as follows. Since group P/G signals 

from two different windows are fully independent, the error probability, P(P~:!:i,0GL1 , 0 = 

1), is written as: 

i+l i i+1 i P(Pk-1:oGk-1:o = 1) = P(Pk-1:0 = 1)P(Gk-1:o = 1) (3.9) 

Besides, the probabilities that group P/G signals of the window equal 1 can be derived as: 

k-1 
i+1 II i+1 P(Pk_ 1,0 = 1) = P( Pi = 1) 

j=O 

k-1 
=II P(PJH = 1) = (1/2)k, 

j=O 

k-1 
P(GL1:0 = 1) = P(GL1 + PL1GL2 + ... + G~ II PJ = 1) 

j=1 

k-1 
= P(GL1 = 1) + P(PL1GL2 = 1) + ... + P(G~ II PJ = 1) 

j=1 

= (1/2)[1- (1/2)k]. 

(3.10) 

(3.11) 

where GL1• PL1 GL2• ... , Gb rr~:i PJ are mutually exclusive. Based on (3.10) and (3.11), 

(3.9) is computed as: 

"+1 . "+1 . P(Pk_1,0Gic_1,0 = 1) = P(Pk_ 1,0 = 1)P(Gic_1,0 = 1) 

= (1/2)k+1[1- (1/2)k] (3.12) 

The total error probability for SCSA is approximated by summing up probabilities of 



these events for all windows. The approximate total error probability is stated as: 

= I: (1/2)k+l [1 - (1/2)kl 
o~i<r1i'l-1 

12 

(3.13) 

(3.13) describes the relation between the window size and error rate for unsigned random 

inputs. 

1 

0.8 
en 
(I) - 0.6 ro 

0::: 
L... 
0 0.4 L... 
L... 

LU 

0.2 

0 
4 6 

o n=64 
* n=128 
v n=256 

~~n=512 

8 10 12 14 16 
Window Size (bits) 

18 

Figure 3.5: Predicted error rates for different adder widths (n) and window sizes. 

Based on (3.13), predicted error rates for different adder widths and window sizes are 

plotted in Figure 3.5. Figure 3.5 suggests that the error rate rapidly decreases as the window 

size increases. The error rate becomes negligible if the window size is large enough. For 

example, if n = 256, k = 16, P;rr ~ 0.01 %. In other words, a 256-bit adder is replaced 

with 16 16-bit adders for an error rate of 0.01 %. The predicted error rate is critical for 

guiding the SCSA-based speculative adder design. 
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01111111 11111111 "0" 
00000000 00000000 < 

s*: o 1111111 
01111111 11111111 "1" 
00000000 00000000 < 

S: 10 0 0 0 0 0 0 

Figure 3.6: Example to illustrate low error magnitude. 

3.3 Error magnitude analysis 

Error magnitude is defined as the ratio of the error to the correct result. For example, 

the correct result is 11001, the speculative result is 10001. The error is 11001 - 10001 = 
01000. So the error magnitude is 01000/11001 = 0.32. It is preferable to have small error 

magnitude when the speculation is incorrect. For some error-tolerable applications, the 

speculative result with small error magnitude may still be acceptable. 

In SCSA, the error magnitude is low when an error occurs. An example is shown in 

Figure 3.6. The carry-in bit of the right window is truncated as 0. Then the sum bits of 

the left window are speculated as 01111111. However, the actual carry-in bit for the right 

window is 1, and the correct sum bits are 10000000. The error magnitude is 1/27, which is 

quite small. This error affects all outputs of the left window rather than an individual output, 

which amortizes the effect of the error. In contrast, if only an individual output is incorrect, 

the error magnitude can be as large as the significance of the most significant bit in addition 

such as the speculative addition in [17]. For example, the correct result is 11111111, and 

the speculated result is 01111111. The error magnitude is 27 /(28 - 1) = 50.2%, which is 

quite large. 



Chapter 4 

SCSA-based speculative adder 

A high performance, low area overhead speculative adder can be built upon SCSA, called 

SCSA-based speculative adder. We call this adder design as SCSA for simplicity. This 

design may be used for those applications where errors are tolerable, such as data mining, 

machine learning, cryptography and signal processing. In these scenarios, the incorrect 

result generated by the speculative addition may still result in the correct final result. 

(n/k)th window 
adder 

ith window 
adder 

15twindow 
adder 

s* 0 

Figure 4.1: Speculative adder is consisted of I~ l k-bit small adders. 

Ideally, then-bit adder is segmented into several small identical window adders. How­

ever, since n%k = 0 doesn't always hold, at least one of the window adders is smaller than 

others. Specifically, this window adder has n- k( ~~ l - 1) bits. Similar to the optimization 

of the carry select adder design, this adder is placed as the 1st window adder for reducing 

14 
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the delay of the speculative adder. Other window adders all have k bits. In summary, the 

n-bit adder is almost equally segmented into ~~ l k-bit window adders, as shown in the 

Figure 4.1. 

ai 
0 

bik-1 bio ............................................................................................................................................................................... 

Si* k-1:o 

Ci* 
0 "0" 

jth window 

:. .................................................................................................................................................... ~f.l.f.l.~.r ......... . 

Figure 4.2: Window adder implementation in speculative adder. Carry-select adder struc­

ture is employed to increase performance. 

4.1 Window adder design 

Next we discuss the design of the window adder. The speculative result of the window 

adder is computed using the input bits of the window adder and the carry-in bit from the 

previous window adder. Since the window adder works as the same as the traditional adder, 

the window adder can be implemented using any traditional adder. Assume all inputs 

arrive at the same time. For the window adder, input bits arrive earlier than the carry-in bit 

provided by the previous window adder. Thus we employ the carry-select adder structure to 

increase performance. As shown in Figure 4.2, the window adder is consisted of two small 

adders, adder0 and adder1• Two small adders can be implemented using any traditional 

adder, such as Kogge-Stone or Brent-Kung adder. Kogge-Stone adder is considered as the 

possible fastest adder design in traditional adders [10]. We can employ Kogge-Stone to 



16 

further increase performance of the speculative adder. 

Figure 4.3: Tree structure for calculating the group PIG signals of Kogge-Stone adder. 

For the ith bit position of the adder, we have: 

(4.1) 

(4.2) 

where ci is the carry bit at the ith bit position, Gi_1,0 and Pi_1,0 are the group PIG signals 

at the ith bit position, eo is the carry bit at the Oth bit position, si is the sum bit at the ith bit 

position, Pt. is the propagate signal at the ith bit position. For example, the tree structure 

for calculating the group PIG signals of Kogge-Stone adder is shown in Figure 4.3. After 

calculating the group PIG signals, the sum bit is computed. 

4.2 Implementation of SCSA 

Then we how to implement SCSA. The group propagate and generate (PIG) signals of the 

ith window adder are computed. The speculative carry-in bit of the ith window adder is 

the group G signal of the (i- l)th window adder, G~-:=_11 ,0 • Then the lh sum bit of the ith 



window, s~*, is estimated as: 

i* pi = [Gi + pi ci-hl 
Sj = j IJ.I j-1:0 j-1:0 out 

Pi [Gi pi ci-1 l o < . k = i EB j-1:0 + j-1:0 k-1:0 • - J < 

17 

(4.3) 

(4.4) 

where 0~;;/* = Gt:_11:o· We employ a carry-select structure to compute two cases that 

Gt:_11:0 are 1 and 0 before c~;;/* is ready: 

s~~1 = PJ EB [G~-1:o + PJ-1:o], 

s~~o = PJ EB G~_1:o• 0 ~ j < k. 
(4.5) 

(4.6) 

One of the results above is selected and output as the speculative sum bit when 0~;;/* is 

ready, noted as c~-h in Figure 4.2. 

4.3 Time and space complexity of SCSA 

We first discuss the time complexity of SCSA. Assume we implement the small adder in the 

window adder using Kogge-Stone. The critical path of SCSA is consisted of a traditional 

adder and a multiplexer. Thus, the critical path of SCSA is equivalent to that of a k-bit 

Kogge-Stone adder plus a multiplexer. The complexity of the critical path delay of SCSA 

is O(log k). In contrast, the critical path delay of a n-bit traditional adder has at least 

complexity 0 (log n). Hence, the speculative adder can be significantly faster than the 

traditional adder. 

Then we estimate the space complexity of SCSA. At each step in SCSA, there are at 

most k times computations for intermediate group PIG signals. The total number of window 

adders is I~ l· Thus, the space complexity of a n-bit speculative adder is 0 (I~ l k log k). 

In contrast, traditional parallel prefix adders generally have larger area than the speculative 

adder. For example, the space complexity of n-bit Kogge-Stone adder is O(n logn). 

Finally, it is worth comparing SCSA with existing speculative adders. The adder in [ 17], 

one of the best state-of-the-art speculative adders, has the delay complexity O(log l) and 
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space complexity O(n log l). lis the speculative carry chain length, which is similar to the 

window size in SCSA. The window size k of SCSA is smaller than the speculative carry 

length l of the design in [17] for achieving similar error rates, which will be shown in Ta­

ble 7 .4. Our experiments will also validate that SCSA has smaller area than the speculative 

adder in [ 17] with similar performance and error rate. In summary, SCSA can be faster 

and smaller than the counterpart in [17]. 



Chapter 5 

Variable latency carry selection adder 

(VLCSA) 

For applications that error can be tolerated, the speculative adder can increase performance 

by introducing a certain level of inaccuracy. However, many applications are not error­

tolerable. The incorrect result generated by speculation will result in incorrect final result. 

For applications where errors cannot be tolerated, a reliable variable latency adder can 

be built upon the SCSA-based speculative adder by adding error detection and recovery, 

called variable latency carry selection adder (VLCSA). Error detection flags if speculation 

is correct. Error recovery produces the correct result when error detection flags an error. 

VLCSA works with one or two cycles of latency for addition, which is similar to [17]. 

Ideally, the average performance of VLCSA is close to the speculative one when error rate 

is low. In this chapter, unsigned random inputs are still assumed. 

5.1 Error detection design 

We first develop error detection in VLCSA. Error detection flags if speculation is incorrect. 

In another word, error detection flags when the speculative carry-in bit of the window adder 

is incorrect. The error detection block in VLCSA is designed to overestimate the error rate. 

19 
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Figure 5.1: Error detection implementation using 2-input AND and OR gates. 

There are two reasons: (1) Since the exact carry-in bit ofthe window is a global signal, it 

incurs nontrivial latency to wait and detect this carry-in bit. Conceptually, the advantage 

of speculation is lost if error detection requires the exact carry-in bit of the window adder. 

(2) It is crucial that all errors are detected in VLCSA. Although some correct results are 

flagged as incorrect ones, overestimation of error is helpful for detecting all errors. Besides, 

the false negative rate of error detection can be controlled under a low level. 

In Chapter 3, we discuss the analytical error model for SCSA. This error model accu­

rately describes the event that the speculative carry-in bit of a window adder is incorrect. 

Thus, we employ this model to implement error detection. The error detection signal, ERR, 

is stated as: 

ERR= '+1 . 
p~-l:OGk-1:0 (5.1) 

o:si<r7il-1 

where P~~to is the group propagate signal of the (i + 1) window adder, GL1:o is the group 
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generate signal of the i window adder. ERR flags an error if :3i, 0 :::; i < ~~ 1 - 1, Pk~~:o = 

1, Gi_1,0 = 1. In another word, ERR flags an error if GL1,0 with value 1 affects the 

carry-in bit of the next next window adder. 

The group propagate and generate signals of the window adder are computed during 

the speculative addition. So it greatly simplifies the error detection design by using these 

intermediate values from the speculative adder. Assume group propagate and generate 

signals are obtained from the speculative adder, we focus on the combination of these 

group propagate and generate signals. The error detection block is implemented using 

2-input AND and OR gates, as shown in Figure 5 .1. 

Next we discuss the time complexity of the error detection block. It takes log k steps to 

generate the group PIG signals of the window adder. As shown in Figure 5.1, it takes ad­

ditional log ~~ 1 steps to produce ERR. Therefore, the critical path delay of error detection 

has complexity O(log 1~1 +log k). In particular, we observe that log 1~1 is quite small 

in practice. For example, when n = 512 and k = 17, log ~~ 1 ~ 5. On the other hand, it 

takes several constant steps to compute sum bits after generating group PIG signals in the 

speculative adder. In VLCSA, error detection has comparable or even shorter critical path 

delays than the speculative addition. The actual critical path delay is the longer one of the 

speculative addition and error detection when error detection flags no error, so the benefit 

of speculation is maintained. 

Finally, the space complexity of the error detection block is estimated as below. At 

each step, there are at most I~ 1 computations. Besides, there are log I~ 1 steps in the error 

detection block. Thus, the space complexity of the error detection block is 0( 1~1log 1~1 ). 

This is similar to that of SCSA, but the computation only uses simple gates and requires 

low area overhead. 
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Figure 5.2: Area-efficient implementation for error recovery using intermediate results 

from the speculative adder. 

5.2 Error recovery design 

Error recovery produces the correct result when error detection flags an error. The simplest 

solution is to employ a traditional adder to compute the result when the speculation is 

incorrect. But this incurs long delay penalty and large area overhead. The area overhead 

can be larger than that of SCSA. Alternatively, we employs the intermediate results from 

SCSA to simplify the error recovery design. 

Figure 5.2 shows an area-efficient implementation for error recovery using intermediate 

results from the speculative adder. The upper part of Figure 5.2 is SCSA. The lower part 

of Figure 5.2 is a ~~ l-bit prefix adder. This prefix adder takes the group propagate and 

generate (PIG) signals of window adders as the input and computes the correct carry-out 

bits for all window adders. SCSA has computed group PIG signals at each bit position of 

the window adder. Thus, correct sum bits of all window adders are computed using the 
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outputs of this prefix adder. 

Then we discuss the time complexity of the error recovery block. For this I~ 1-bit prefix 

adder, there are log 1~1 steps in computation. Thus the time complexity of this prefix adder 

is 0 (log I~ 1 ) . The critical path delay of the error recovery block is through the speculative 

adder and the prefix adder. There are log k steps for computing the intermediate results 

in SCSA. Thus, the time complexity of the critical path delay of the error recovery block, 

through the speculative adder and the prefix adder, is 0 (log k + log I~ 1 ) . Since the error 

recovery block introduces an extra prefix adder, it incurs nontrivial delay penalty. If the 

clock cycle is chosen to be slightly longer than the delays of SCSA and the error detection 

block, we observe that the delay of error recovery can be shorter than two cycles. 

Finally, we discuss the space complexity of the error recovery block. There are most 

I~ 1 computations in each steps in the I~ 1-bit prefix adder. The total number of steps is 

logl~l Thus, the space complexity of this prefix adder is O(l~1log 1~1). The compu­

tation in this prefix adder may uses complex gates and requires nontrivial area overhead. 

The major area overhead of VLCSA comes from the error recovery block. We can employ 

synthesis tools to reduce the area overhead. 

5.3 Operation of VLCSA 

The implementation of VLCSA is shown in Figure 5.3, which is similar to [17]. When 

inputs A and B are ready, SCSA computes the speculative result, S*. If error detection flags 

no error, ERR = 0, the output signal VALID flags that the speculative result is correct. 

Then the speculative result S* is selected and output as the final result of VLCSA. If error 

detection flags an error, ERR= 1, the output signal STALL indicates that the speculative 

result is incorrect. VLCSA stalls an extra cycle and waits for the correct result generated 

by the error recovery block. The error recovery block uses the intermediate results from 

SCSA and re-computes the correct result. Then the result from error recovery, SREC, is 

selected and output as the final result of VLCSA. 
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Figure 5.3: Variable latency adder implementation, similar to [17] 

Next we discuss the timing issues in the design of VLCSA. The delay of the error 

detection block is designed to be similar to that of SCSA. Thus, we will know whether the 

speculative result is correct or not when the speculative result is ready. Then speculative 

result can be selected and output without additional delays. The clock cycle, Tctk. is slightly 

longer than the delays of SCSA and the error detection block. The speculative result and 

error detection signal, ERR, are computed in a single cycle. The error recovery block 

produces the correct result in two cycles. If ERR flags no error, the speculative result is 

correct. Otherwise, error recovery produces the correct result in an additional cycle. The 

effective cycle of VLCSA, Tave• is stated as: 

(5.2) 

where Perris the error rate of SCSA. If Perris quite small such as 0.01 %, Tave c:= Tctk• the 

average latency of the variable adder is slightly longer than the delays of the speculative 

adder and the error detection block. This indicates that the average performance of VLCSA 

is close to that of SCSA. 



Chapter 6 

Modified VLCSA (VLCSA 2) 

6.1 Motivation 

In previous chapters, speculative and variable latency adders are assumed to work mainly 

for unsigned random inputs. SCSA and VLCSA work well for unsigned random inputs. 

From the discussion, we obtain valuable insight for the design of speculative and variable 

latency adders. This is very crucial for guiding speculative and variable latency adder de­

signs. Furthermore, it is crucial to evaluate the performance of the variable latency adder 

for other inputs. Different inputs for the adder will largely affect the performance of spec­

ulative and variable latency adders. 

The key idea of speculative addition is to utilize the carry chain distribution for unsigned 

random inputs. An example of statistics of carry chain lengths for unsigned random inputs 

is shown in Figure 6.1. The adder size is 32 bits. We run 106 simulations for unsigned 

random inputs to gather records. We observe that the portion of the carry chains rapidly 

decreases as the carry chain length increases. There is a gap between unsigned random 

inputs and practical inputs: the distribution of carry chain lengths in practical applications 

may be quite different from that of the unsigned random inputs. It is meaningful to evaluate 

the carry chain distribution of the practical inputs. 
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Figure 6.1: Example of statistics of carry chain lengths for unsigned random inputs. The 

adder size is 32 bits. 

6.2 Profiling practical inputs 

We start from the difference between unsigned random inputs and practical inputs. There 

are two important observations for practical inputs [6] [9]: (1) The 2's complement repre­

sentation is widely used in practice. It's convenient to implement substraction with addition 

using the 2's complement representation. (2) Small numbers appear more frequently than 

large ones. The computations between two small numbers has a high frequency. Thus, the 

practical inputs can be quite different from unsigned random inputs. 

In [ 6] [9], the distributions of the carry chain lengths are extracted from practical work­

loads. There are nontrivial portions of carry chains with very long lengths. One example 

from [6] is employed here. They calculated the statistics of carry chain lengths in addi­

tion from a cryptographic workload, including RSA encryption/decryption (RSA), Elliptic 

curve E1Gama1 encryption/decryption over prime fields (ECELGP), Diffie-Hellman key 

exchange (DH), and Elliptic curve digital signature algorithm over prime fields (ECDSP). 



1 ~::;;;::=======,~{'---::R::S::-::A--l----------

•" ~ 
::: t------r=-==--=-=~---------
,.,. +---=;----l 
~~~---~~-~======~---------

'" .,. 
3% 

1% 

-1% 

~:~-====,~4'--=oH:--1--1--------
14"' 
12% 
10% 

8% .... .... 
"" "" 

15% 

13" 

ECDSP~ ,,. 
~ 

"' ... .... 
1" 

I I 

27 

Figure 6.2: Examples of statistics of carry chain lengths from a cryptographic workload [6]. 

The statistics of carry chain lengths for these benchmarks are shown in Figure 6.2. We 

can find that very long carry chains frequently occur in these benchmarks, and carry chains 

mainly concentrate in two ranges. This is quite different from that of unsigned random 

inputs. The speculative addition designed for unsigned random inputs is unable to handle 

those very long carry chains, and thus error rate significantly increases. This will largely 

hurt the performance of speculative and variable latency addition. 
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6.3 Approximating practical inputs 

Practical inputs can be quite different from each other, so it is impractical to capture the 

basics of all practical inputs. We target to employ the mathematical distribution to approx­

imately profile the practical inputs similar to those in [6]. In particular, we observe that 

Gaussian inputs seems able to reflect the basics of the practical workloads such as [6]. 

There are two reasons: (1) Small numbers occur more frequently than large numbers. (2) 

It is straightforward to introduce 2's complement representation for Gaussian inputs. We 

will examine this observation using several examples. The adder size is 32 bits. We run 

106 simulations for different inputs to gather records. 
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Figure 6.3: Example of statistics of carry chain lengths for 2's complement random inputs. 

The adder size is 32 bits. 

We first compare the difference between unsigned and 2's complement random inputs 

by generating the statistics of carry chain lengths. An example of statistics of carry chain 

lengths for 2's complement random inputs is shown in Figure 6.3. we observe that carry 

chains still concentrate in the range of short carry chains. As the carry chain length in­

creases, the portion of carry chains rapidly decreases, which is similar to that of unsigned 

random inputs. 
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Figure 6.4: Example of statistics of carry chain lengths for unsigned Gaussian inputs. The 

adder size is 32 bits. 

Then we produce the statistics of carry chain lengths for unsigned Gaussian inputs. 

An example of statistics of carry chain lengths for unsigned Gaussian inputs is shown in 

Figure 6.4. We see that carry chains still concentrate in the range of short carry chains. As 

the carry chain length increases, the portion of carry chains rapidly decreases, which is still 

similar to that of unsigned random inputs. 

Next we profile the statistics of carry chain lengths for 2's complement Gaussian inputs. 

This case combines both 2's complement representation and Gaussian inputs. An example 

of statistics of carry chain lengths for 2's complement Gaussian inputs is shown in Fig­

ure 6.5. we see that carry chains concentrate in two separate ranges. For 2's complement 

Gaussian inputs, a nontrivial portion of carry chains is as long as the adder size. Although 

the frequency of long carry chains in Figure 6.5 seems higher than that in Figure 6.2, the 

distribution in Figure 6.5 is quite close to that in Figure 6.2. In another word, 2's comple­

ment Gaussian inputs captures the basics of the inp"!}ts in [6]. We will propose a modified 

speculative addition and the corresponding variable latency addition for 2's complement 

Gaussian inputs as below. 
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Figure 6.5: Example of statistics of carry chain lengths for 2's complement Gaussian inputs. 

The adder size is 32 bits. 

6.4 Key idea of Modified VLCSA 

As shown in Figure 6.2 and Figure 6.5, these long carry chains significantly increases 

the error rate of speculative addition in VLCSA and makes VLCSA even slower than the 

traditional adder. Therefore, it is necessary to modify the speculative addition and the 

variable latency addition for practical inputs. In this thesis, we target to the design for 2's 

complement Gaussian inputs. The speculative adder design, SCSA, is called SCSA 1, and 

the variable latency adder design, VLCSA, is called VLCSA 1. The modified speculative 

adder design is called SCSA 2, and the modified variable latency adder design is called 

VLCSA2. 

The key idea of VLCSA 2 is to correctly speculate results when long carry chains like 

those in Figure 6.5 occur. We design VLCSA 2 based on the observation: long carry chains 

are usually triggered by the addition of a small positive and a small negative number, and 

affect the most significant bit position. The error detection in VLCSA 1 flags these long 

carry chains as errors since they are much longer than the window size. If we can detect 
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and remove these errors, the error rate will decrease to the low level. In another word, we 

target to correctly speculate results and flags no errors when such long carry chains occur. 

Gaussian inputs in the 2's complement representation are assumed for the design. 
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Figure 6.6: Window adder implementation in SCSA 2. 

6.5 Modified speculative addition 

We first describe the implementation of modified speculative addition, SCSA 2. The mod­

ified window adder design is shown in Figure 6.6. Compared with the window adder in 

Figure 4.2, an additional speculative result, Si*•1, is calculated in Figure 6.6. This specu­

lative result is selected by one of speculative carry-out bits of the previous window adder, 

cf-h, which is discarded in SCSA 1. By combining two speculative results, the specu­

lative adder can correctly calculate the result. In another word, Si*•1 is correct when the 

very long carry chains occur. However, how to select the speculative result still remains a 

challenge. We will handle this issue in the design of error detection. 

Then we discuss the time complexity of SCSA 2. The complexity of the critical path 

of SCSA 1 is O(log k). In SCSA 2, we add another speculative result Si*•1• Si*·1 has the 

complexity 0 (log k) as the same as that of Si*•0 • This indicates that no extra delay is added. 
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Finally, we estimate the space complexity of SCSA 2. Compared with SCSA 1, the 

major cost of SCSA 1 is to add an extra 2-input multiplexer in the window adder. The 

total number of window adders is 1~1· Therefore, the area overhead of SCSA 2 has the 

complexity 0 ( I~ l ) . The space complexity of a n-bit SCSA 2 is still 0 ( I~ l k log k) . 

...... ~ 
__s-t--" E R R1 

Figure 6.7: Modified error detection implementation using 2-input AND and OR gates. 

6.6 Modified error detection 

Since we target to detect those long carry chains, new error detection signal is introduced. 

We define an additional error detection signal, ERRt. for detecting long carry chains. The 

error detection signal for detecting short carry chains in VLCSA 1 is noted as ERR0• It is 

noted that the error should be detected by both ERR1 and ERRo. ERR1 in VLCSA 2 is 
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stated as: 

o::s;i<r~l-1 

where P~_1:o is the group propagate signal of the ith window, 15!:~11 : 0 is the complement of 

the group propagate signal of the ( i + 1 )th window. 

The key idea of this error detection is inspired by the discussion in [6]. Let us see 

why long carry chains can be flagged by ERR1 and errors can be detected by ERRo and 

ERR1: (1) ERR0 = 0. This means that Vi, 0 :::; i < f~l - 1, Pk~~:oGL1 :o = 0. Only 

short carry chains occur in this case. The speculative result is correct and just as the same 

as the one in VLCSA 1. It is not necessary to check ERR1. (2) ERR0 = 1, ERR1 = 0. 

:3i, 0 :::; i < f~l - 1, Pk~~:oG~_ 1:o = 1, Vi, 0 :::; i < f~l - 1, J5!:~11 :0PL 1 :o = 0. ERRo 

flags an error. It indicates that there may be carry chains longer than the window size. 

The speculative result in VLSCA 1 is incorrect. Besides, ERR1 = 0 implies that a long 

carry chain generates at a bit position and propagates to the most significant bit (MSB) 

position. The new speculative result in VLSCA 2 provides the correct result. In another 

word, if ERRo = 1, ERR1 = 0, long carry chains occur, but do not incur actual errors. 

(3) ERRo = 1, ERR1 = 1. :3i, 0 :::; i < f~l - 1, Pk~~:oGL 1 :o = 1, :3i, 0 :::; i < 

f~l - 1, J5!:~11 :0PL 1 :o = 1. ERRo flags an error. It indicates that there are carry chains 

longer than the window size. Besides, ERR1 = 1 implies that such an error occurs since 

a carry chain starts at a bit position and ends before reaching the MSB position. Both 

speculative results in VLSCA 2 are incorrect. In this case, error recovery is activated and 

produces the correct result. 

Next we discuss the time complexity of the error detection block. It takes log k steps 

to generate the group propagate signals of the window adder. As shown in Figure 6.7, it 

takes additional log f~l steps to produce ERR1. Therefore, the critical path delay of error 

detection has complexity O(log f~l +log k). In VLCSA 2, the error detection block has 

comparable or even shorter critical path delays than that of the speculative addition. The 

actual critical path delay is the longer one of the speculative addition and the error detection 
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block when error detection flags no error, so the benefit of speculation is maintained. 

Then the space complexity of the error detection block is estimated as below. At each 

step, there are at most 1~1 computations. Besides, there are log 1~1 steps in the error 

detection block. Thus, the space complexity of the error detection block is 0( 1~1log 1~1 ). 

This is similar to that of ERR0 • 

B--+-~ 

ERR STALL 

Figure 6.8: VLCSA 2 implementation. 

6. 7 Operation of VLCSA 2 

Based on the discussion, VLCSA 2 is shown in Figure 6.8. There are two speculative 

results, 8*•0 and 8*•1• 8*•0 (8*•1) is the speculative result when speculative carry-in bit 

is value 0 (1). There are two error detection signals, ERRo and ERR1• ERRo flags if 

there is any carry chain longer than the window size. ERR1 flags if there are long carry 

chains reach the MSB position. If ERR0 = 1 and ERR1 = 1, the speculative addition 

is incorrect. Then error recovery provides the correct result, which is as same as that in 
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VLCSA 1. 

In general, VLCSA 2 works in the similar way to VLCSA 1. Error detection signals, 

ERR0 and ERR1o are used to select speculative results and flag errors: (1) ERR0 = 0. 

The output VALID is 1 and STALL is 0. This indicates the speculative result is correct. 

The speculative result 8*•0 is selected and output. (2) ERRo = 1, ERR1 = 0. The output 

VALID is 1 and STALL is 0. This indicates the speculative result is also correct. The 

speculative result 8*•1 is selected and output. (3) ERR0 = 1, ERR1 = 1. The output 

VALID is 0 and STALL is 1. This implies that the speculative addition is incorrect. The 

variable latency adder stalls for an additional cycle, and error recovery provides the correct 

result, srec. 

Next we discuss the timing issue in the design of VLCSA 2. The delay of the er­

ror detection block is designed to be similar to that of the speculative adder. Thus, we 

can know if the speculative result is correct or not when the speculative result is ready. 

Then speculative result can be output without additional delays. The clock cycle, Tclk• 

is slightly longer than the delays of the speculative adder and the error detection block, 

Tc1k > max(r;·0 , r;·1 , TERR)· The speculative results and the error detection signal, ERR, 

are computed in a single cycle. The error recovery block produces the correct result in two 

cycles, TfEC < 2Tclk· If ERR flags no error, the speculative result is correct. Otherwise, 

error recovery produces the correct result in an additional cycle. The effective cycle of the 

design, Tave• is stated as the same as that ofVLCSA 1: 

(6.1) 

where Perr is the error rate of the speculative addition. Ideally, if the error rate is tiny, the 

average performance of VLCSA 2 is also close to that of VLCSA 1. 

Compared with VLCSA 1, we add new speculative result and error detection signal 

in VLCSA 2. This causes extra delay penalty and area overhead. Besides, there is no 

analytical error rate model for 2's complement Gaussian inputs. For similar adder settings, 

the error rate for 2's complement Gaussian inputs may be higher than that for unsigned 

random inputs. We will employ the experimental results for 2's complement Gaussian 
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inputs to profile the error rate. 



Chapter 7 

Results 

7.1 Simulation setup 

We have implemented C++ programs which take the adder width n and the window size k, 

and generate Verilog files for the SCSA-based speculative adder, VLCSA 1 and 2. Circuits 

are synthesized using a common standard library for UMC 65 nm CMOS technology in 

the Synopsys Design Compiler. 

We first compare the delay and area of SCSA-based speculative adder, VLCSA 1 and 

2 with the Kogge-Stone adder and the variable latency adder in [ 17]. Furthermore, we 

compare the delay and area of SCSA-based speculative adder, VLCSA 1 and 2 with the 

adder generated by the Design Ware building block IP [1], called Design Ware adder. 

7.2 Error model validation 

We verify the analytical error model by comparing it with simulation results. The sim­

ulation results are obtained by running Monte Carlo simulations for 10 million unsigned 

random inputs for different adder widths and window sizes. As shown in Figure 7.1, the 

solid lines are generated using the analytical error model for different adder widths. The 

marked points are simulation results. The analytical and experimental results fit quite well 
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Figure 7.1: Comparison of analytical error model for SCSA and simulation results for 

different adder widths (n). 

for different adder widths and window sizes. Thus, the analytical model accurately predicts 

simulation results. 

7.3 Error rates for 2's complement Gaussian inputs 

As discussed in Chapter 6, there is no analytical error model for 2's complement Gaussian 

inputs. We estimate the error rate of speculative addition by running Monte Carlo simu­

lations. For the Gaussian distribution, the mean is p = 0, and the standard deviation is 

(j = 232. 

We first discuss the speculative addition in VLCSA 1. An error occurs if the speculative 

result is different from that of the traditional addition. We also report the nominal error rate 

based on error detection, ERR. Simulation results are generated by running Monte Carlo 

simulations for 1 million 2's complement Gaussian inputs, as shown in Table 7.1. We 

observe that the error rate is clearly larger than that for unsigned random inputs. This 
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adder width window size 
Perr Perr 

(Monte Carlo) (ERR= 1) 

64 14 25.01% 25.01% 

128 15 25.01% 25.01% 

256 16 25.01% 25.01% 

512 17 25.01% 25.01% 

Table 7.1: Experimental and nominal eror rates in VLCSA 1 for 2's complement Gaussian 

inputs. 1-l = 0, a= 232 • 

implies that VLCSA 1 becomes much slower for 2's complement Gaussian inputs: every 

one out of four computations in VLCSA 1, the error recovery produces correct result and 

incurs extra delay penalty. 

adder width window size 
Perr Perr(ERRo = 1, 

(Monte Carlo) ERR1 = 1) 

64 14 0.01% 0.01% 

128 15 0.01% 0.01% 

256 16 0.01% 0.01% 

512 17 0.01% 0.01% 

Table 7.2: Experimental and nominal error rates in VLCSA 2 for 2's complement Gaussian 

inputs. 1-l = 0, a = 232 • 

Then we discuss the speculative addition in VLCSA 2. There are two speculative results 

in VLCSA 2. If either speculative result is the same as the traditional result, the speculation 

is correct. We also report the nominal error rate based on the error detection signals, ERRo 

and ERR1. The simulation results are also generated by running Monte Carlo simulations 

for 1 million Gaussian inputs, as shown in Table 7 .2. We can observe that the error rate 

is clearly smaller than that of VLCSA 1, which is similar to that for unsigned random 

inputs. In another word, the error rate effectively reduces from 25.01% in VLCSA 1 to 
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0.01% in VLCSA 2 for same 2's complement Gaussian inputs. This implies that VLCSA 

2 can successfully handle the 2's complement Gaussian inputs by introducing additional 

speculative result and error detection signal. The performance of VLCSA 2 can be close to 

that of VLCSA 1. 

7.4 Comparison with existing variable latency adders 

adder width window size carry chain length [ 17] 

64 14 17 

128 15 18 

256 16 20 

512 17 21 

Table 7.3: Parameters of SCSA and the speculative adder in [ 17] for an error rate of 0.01% 

, according to analytical error models and simulation results 

It is worthwhile to compare the proposed adders with the traditional adder and exist­

ing variable latency adders. The adder in [17], called variable latency speculative adder 

(VLSA) , is one of the best state-of-the-art variable latency adders and employed here. 

VLSA is designed for unsigned random inputs. We compare the delays and areas among 

the Kogge-Stone adder, VLSA and VLCSA 1 for unsigned random inputs. The parameters 

of speculative adders are shown in Table 7.4 for an error rate of 0.01 %. Two small adders 

of the window adder in VLCSA 1 are implemented using Kogge-Stone adder. In all cases, 

we optimize for minimal delay during synthesis. 

7.4.1 Speculative addition in VLCSA 1 VS speculative addition in VLSA 

The speculative addition in VLCSA 1 is SCSA 1. As shown in Figure 7 .2, for an error rate 

of 0.01 %, the critical path delay of SCSA 1 is 18 to 38% lower than that of Kogge-Stone 
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Figure 7.2: Comparison of delay of speculative adders and Kogge-Stone adder. 
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adder. For an error rate of 0.01 %, the critical path delay of SCSA 1 is similar to that of the 

speculative addition in VLSA. This indicates that SCSA 1 can perform quite well . 
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Figure 7.3: Comparison of area of speculative adders and Kogge-Stone adder. 

As shown in Figure 7.3, for an error rate of 0.01 %, the area of SCSA 1 is 15 to 38% 
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lower than Kogge-Stone adder. For an error rate of 0.01 %, the area requirement of the 

speculative adder in VLSA is -20 to 8%. We can observe that the area of SCSA 1 is always 

smaller than that in VLSA for different bitwidths. This is mainly because the speculation 

in SCSA 1 is on the level of the window while the counterpart in VLSA speculates on the 

level of the individual bit position. 

7 .4.2 VLCSA 1 VS VLSA 

We compare delays of Kogge-Stone adder, VLCSA 1 and VLSA. For the variable latency 

adder, there are three delays: speculative addition, error detection and error recovery. As 
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Figure 7.4: Comparison of delay of variable latency adders and Kogge-Stone adder. 

shown in Figure 7.4, the critical path delay of speculative adder in VLSA is 12 to 27% 

shorter than that of Kogge-Stone adder. However, the critical path delay of the error detec­

tion block is 4 to 8% higher than that of the speculative adder, offsetting the advantage of 

speculation. The delay of the error recovery block is less than twice of the longer of spec­

ulative addition and error detection . In contrast, error detection and speculative addition 
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in VLCSA 1 has almost the same critical path delay , both are 14 to 36% shorter than that 

of Kogge-Stone adder. The simple circuitry of error detection in our design results in the 

low latency. In general, the critical path delay of VLCSA 1 is 6 to 19% lower than that of 

VLSA when speculation is correct. The critical path delay of the error recovery block is 

less than twice of the longer of speculative addition and error detection. 
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Figure 7.5: Comparison of area of variable latency adders and Kogge-Stone adder. 

As shown in Figure 7.5, the area of VLSA is 14 to 32% larger than that of Kogge-Stone 

adder. This is due to the area overhead of the error detection and recovery blocks. On the 

other hand, the area requirement of VLCSA 1 is -6 to 17% smaller than that of Kogge­

Stone adder. In particular, the area of VLCSA 1 is 6% smaller than that of Kogge-Stone 

adder when the bitwidth is 512. In another word, VLCSA 1 can be smaller and faster than 

Kogge-Stone adder. 
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window size window size 
adder width 

Perr=0.01% Perr=0.25% 

64 14 10 

128 15 11 

256 16 12 

512 17 13 

Table 7.4: Parameters of SCSA and VLCSA 1 for the error rates of 0.01% and 0.25%, 

according to analytical error models and simulation results. 

7.5 Comparison with Design Ware adder 

The Synopsys Design Ware building block IP is a collection of highly optimized reusable 

IP blocks, which can quickly provide desirable designs during synthesis [1]. In particular, 

the Design Ware building block IP can generate high-quality adder designs for timing, area 

and power [19]. The DesignWare adder is synthesized for the minimal achievable delay, 

called Design Ware adder. We implemented a hybrid Kogge-Stone carry-select adder and 

observed that the adder generated by the Design Ware building block IP is faster than the 

hybrid one. The further details of the Design Ware building block IP can be referred to [ 1]. 

We compare SCSA, VLCSA 1 and 2 with the DesignWare adder. Note that SCSA 

stands for the SCSA-based speculative adder design. The parameters of SCSA are reported 

in Table 7.4 for error rates 0.01% and 0.25%. Two small adders of the window adder 

are implemented using Design Ware IP block. We also discuss the effect of different error 

rates. In comparison to the Design Ware adder, we target to achieve 10% critical path delay 

reduction and zero area overhead over the Design Ware adder during synthesis. 

7 .5.1 Speculative addition in VLCSA 1 vs Design Ware adder 

The speculative addition in VLCSA 1 is SCSA 1. As shown in Figure 7 .6, the critical path 

delays of SCSA 1 are 10% lower than those of the Design Ware adder for error rates 0.01% 
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Figure 7.6: Comparison of delay of speculative addition in VLCSA 1 and DesignWare 

adder. 

and 0.25 %. In another word, if a certain level of inaccuracy is acceptable, SCSA 1 is faster 

than the Design Ware adder. 

As shown in Figure 7.7, for an error rate 0.01 %, as the adder width increases, the area 

of the SCSA 1 can be 43% smaller than that of the Design Ware adder. For an error rate 

0.25%, the area of the SCSA 1 is 21 to 56% smaller than that of the Design Ware adder. 

SCSA 1 with a lower error rate has larger area than the one with a higher error rate. 

Thus, there is a tradeoff between the error rate and area. When certain application is more 

error-tolerable, the error rate may slightly increase to clearly reduce area. Similarly, there 

is a tradeoff between the error rate and delay. 

7 .5.2 VLCSA 1 vs Design Ware adder 

Next we compare VLCSA 1 with the Design Ware adder. The parameters of the speculative 

adder in VLCSA 1 also follow Table 7 .4. As the delays of the speculative adder and the 

error detection block are designed to be very close, we only show one of them for simplicity. 
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Figure 7. 7: Comparison of area of speculative addition in VLCSA 1 and Design Ware adder. 

The longer one of the critical path delays of the speculative adder and error detection block 

is stated as the "correctly speculated" delay. 

As shown in Figure 7.8 , the critical path delays of VLCSA l are 10% lower than those 

of the Design Ware adder when speculation is correct. The critical path delays of the error 

recovery block are lower than twice of the "correctly speculated" delays. 

As shown in Figure 7.9, for an error rate 0.25% (0.01 %), VLCSA l has area require­

ments of -19 to 16% (-6 to 42%) over the Design Ware adder. As the adder width increases, 

the VLCSA 2 has less area requirements over the Design Ware adder. If the error rate is 

0.25% instead of 0.0 l %, on average, we can save 17% area by increasing 0.12% average 

cycle. For example, we may choose an error rate 0.25 % to save significant area while de­

creasing a little bit performance. The tradeoff between the error rate and area is valuable 

for saving area. 
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Figure 7.8: Comparison of delay of VLCSA l and Design Ware adder. 

window size window size 
adder width 

Perr=0.01% Perr=0.25% 

64 13 9 

128 13 9 

256 13 9 

512 13 9 
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Table 7.5: Parameters of VLCSA 2 for the error rates of 0.01 % and 0.25% , according to 

simulation results. f.L = 0, () = 232 . 

7 .5.3 VLCSA 2 vs Design Ware adder 

Finally, we compare VLCSA 2 with the Design Ware adder. The error rates of the specu­

lative addition in VLCSA 2 are obtained using simulation results. The parameters of the 

speculative adder in VLCSA 2 are reported in Table 7.5. 

As shown in Figure 7.1 0, the critical path delays of VLCSA 2 are 10% lower than those 

of the Design Ware adder when speculation is correct. If the error rate is tiny, the average 
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Figure 7.9: Comparison of area of VLCSA 1 and Design Ware adder. 

performance of VLCSA 2 is close to that of the speculative adder. 
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As shown in Figure 7.11, for an error rate 0.25% (0.01 %), VLCSA 2 has area require­

ments of -17 to 29% ( 1 to 62%) over the Design Ware adder. The area overhead of VLCSA 

2 is larger than that of VLCSA 1 due to additional circuitry of speculative addition and 

error detection. As the adder width increases, VLCSA 2 has less area requirements over 

the Design Ware adder. Similarly, if the error rate is 0.25% instead of 0.01 %, on average, 

we can save 20% area by increasing 0.12% average cycle. 
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Chapter 8 

Conclusion 

In this thesis, we propose a novel function speculation technique, called speculative carry 

select addition (SCSA). We develop an analytical error model for unsigned random inputs. 

Then We develop a speculative adder design based on SCSA. Simulation results show that, 

for an error rate of 0.01% (0.25%), SCSA-based speculative adder can be 10% faster and 

43% (56%) smaller than the fastest adder generated by the Design Ware building block IP, 

called Designware adder. 

Next we present a reliable variable latency adder design that augments the speculative 

adder with error detection and recovery for unsigned random inputs, called variable latency 

carry selection adder I (VLCSA 1). Simulation results show that the critical path delay of 

VLCSA I is 10% lower than that of the Design Ware adder when speculation is correct. For 

an error rate 0.25% (0.01%), VLCSA 1 has area requirements of -19 to 16% (-6 to 42%) 

over the Designware adder. 

Furthermore, we develop a modified variable latency adder design suitable for both 

unsigned random and 2's complement Gaussian inputs, called VLCSA 2. The key idea 

of VLCSA 2 is to correctly speculate results when long carry chains occur. We re-design 

the speculative adder and the error detection block in VLCSA 2. Simulation results show 

that the critical path delay of VLCSA 2 is still I 0% lower than that of the Design ware 

adder when speculation is correct. For an error rate 0.25% (0.01 %), VLCSA 2 has area 
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requirements of -17 to 29% (1 to 62%) over the DesignWare adder. 

In summary, simulation results suggest that the proposed speculative adder can be faster 

and smaller than the DesignWare adder for very low error rates. The reliable variable la­

tency adder can outperform the Design Ware adder in both delay and area. Besides, the 

proposed speculative and reliable variable latency adders are smaller than one of the best 

speculative and reliable latency adders [17] for similar design settings. The proposed reli­

able variable latency adder is also faster than the counterpart in [ 17]. 

In future, we plan to generalize the speculative and reliable variable latency carry select 

addition for floating-point numbers, or other arithmetic operations such as multiplication 

and multi-operand addition. We also plan to apply the speculative and reliable variable 

latency carry select addition for certain applications such as digital signal processing. 
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