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ABSTRACT 

Cocircuits of Vector Matroids 

by 

John David Arellano 

In this thesis, I present a set covering problem (SCP) formulation of the matroid 

cogirth problem, finding the cardinality of the smallest cocircuit of a matroid. Ad­

dressing the matroid cogirth problem can lead to significantly enhancing the design 

process of sensor networks. The solution to the matroid cogirth problem provides the 

degree of redundancy of the corresponding sensor network, and allows for the evalu­

ation of the quality of the network. I provide an introduction to matroids, and their 

relation to the degree of redundancy problem. I also discuss existing methods devel­

oped to solve the matroid cogirth problem and the SCP. Computational results are 

provided to validate a branch-and-cut algorithm that addresses the SCP formulation. 
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Chapter 1 

Introduction 

This thesis evaluates the accuracy and efficiency of five methods developed to solve 

the matroid cogirth problem. Solving this problem efficiently can aid in the process of 

designing sensor networks by providing the degree of redundancy of a given network. 

I present the matroid cogirth problem as an instance of the set covering problem 

and implement a branch-and-cut algorithm to solve it to optimality. Several test 

instances and numerical results are presented to validate the developed algorithm. 

Observations and possible avenues for future work are also discussed. 

1.1 Motivation 

Sensor networks play an important role in industry such as monitoring chemical 

plants [33]. Therefore, the ability to design a reliable sensor network is important. 

When designing a sensor network, the degree of redundancy of the network is a way 

to measure the reliability of the network. Measurements acquired from the network 

are redundant if they cannot only be obtained directly, but can also be obtained from 

another set of measurements. It is common practice to represent the relationship 
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between sensor measurements y and the system states u via a linear model: 

y=Hu+c:, 

where y is ann x 1 vector, u is a p x 1 vector, His ann x p (n > p) matrix with 

rank p, and c: is an n x 1 vector representing noise accumulated by linearizing the 

system [23, 31]. The rank of the matrix refers to the dimension of the column space, 

the set of all possible linear combinations of its column vectors. In the remainder of 

this thesis including the computational results, c: is considered to be the zero vector 

(the system is noise free). The degree of redundancy (DoR) of the network refers to 

the number of sensors of the network that can fail while maintaining the ability to 

obtain all the measurements [24]. Therefore, a sensor network with a high DoR would 

be more reliable than a sensor network with a low DoR. By obtaining the DoR, it is 

possible to evaluate which sensor networks are more reliable than others. 

Consider the example networks in Figures 1.1 and 1.2. In Figure 1.1, S1, ... , S5 

represent sensors and M1 , ... , M5 represent streams of information or measurements 

in the network measured by sensors to the right of them. Here, we assume that a 

measurement can be obtained by a sensor, or if a measurement to the right of it is 

known. In other words, if M5 is known, then M 4 can be obtained. The same goes for 

M1 , M2 and M 3 • If all the measurements are known, then this network has a degree 

of redundancy of 4 since each measurement can be obtained from the measurement 

directly to the right of it. In Figure 1.2, we now have six sensors, and six streams 

of information. In this example, a measurement can only be obtained from other 
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Figure 1.1 S1, ... , S5 are sensors in a sensor network. M 1 , ... , M5 represent streams 
of information in the network. This example is adapted from an example given by 
Bagajewicz and Sanchez [3]. 

measurements if all the measurements directly to the right of it are known. For 

instance, both M4 and M5 are needed to obtain M2 without using sensor 32 . If we 

assume that all the measurements are known except for M 4 , then the network has a 

DoR of 2 since M3 can be obtained from A16 , and M 1 can be obtained from M2 and 

M3 . If all the measurements are known except for M 6 , then we still have a DoR of 2 

since M2 can be obtained from M 4 and M 5 and M 1 is obtained as before. However, 

if M4 and M 6 are not known, then the DoRis 1 since only M 1 can be obtained from 

other known measurements. Different sensor network configurations may provide 

different matrices in the linear system described above. That is, the matrices may or 

may not have structure, in particular a bordered block diagonal form (BBDF) which 

is discussed in Chapter 2. However, the cases in which this structure does arise are 

still of great importance. In order to find the DoR of a network, we can describe a 

sensor failure using the matrix H. 

Removing the kth row from H simulates a failure of the kth sensor in the network. 

Considering this, the degree of redundancy is defined as: 

d* =min{ d- 1 : there exists H(-d) such that r(H(-d)) < p }, 

where H(-d) represents a submatrix of H obtained by deleting d of the rows of H , 
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Figure 1.2 : 8 1 , ... , 86 are sensors in a sensor network. M 1 , ... , M 6 represent streams 
of information in the network. This example is adapted from an example given by 
Bagajewicz and Sanchez [3]. 

r(H(- d)) is the rank of the resulting matrix and pis the rank of H. It is assumed that 

His a matrix with full column rank. The DoR of the network can be found by finding 

the cogirth of the matroid obtained from the n1atrix H. The relationship between 

the DoR of a sensor network and the matroid cogirth problem will be discussed in 

the following section. In Chapter 2, I will discuss five existing methods that attempt 

to solve the cogirth problem accurately and efficiently. 

1.2 Basic Terminology 

This section describes some basic terminology and properties from matroid the-

ory. This discussion is meant to familiarize the reader with concepts that will arise 

throughout this thesis. This discussion includes matroids, dual matroids, the cogirth 

problem and the set covering problem. The following definitions and properties are 

common in the literature. For a more comprehensive review of matroids, the reader 

is referred to Oxley [29]. For more introduction into the set covering problem, the 
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reader is referred to Nemhauser and Wolsey [28] or Wolsey [35]. Matroids were first 

introduced by Whitney [34] as a generalization of linear independence and linear 

dependence. Therefore, many of the terms and concepts may appear familiar. 

1.2.1 Matroid 

A matroid, M, consists of an ordered pair (S,I). Sis a finite set, and I is a 

collection of subsets of S satisfying the following three properties. 

(Il) 0 E I. 

(12) If I E I and J ~ I, then J E I. 

(13) If h , I2 E I and II1I < II2I, then :.3 e E I2- I1 s.t. I1 U e E I. 

S and the elements of I are referred to as the ground set and independent sets of M 

respectively. All other subsets of S not in I, S -I, are dependent sets. 

Consider the real-valued matrix given in Figure 1.3. In this example, the ground 

set, {1, 2, 3, 4, 5}, corresponds to the rows of Z, and the independent sets correspond 

to sets of linearly independent rows of the matrix. 

The matroid obtained from Z is called a vector matroid and is denoted by M [Z]. 

Note that a matroid can also be obtained by letting the ground set correspond to 

columns of a matrix and the independent sets correpsond to sets of linearly indepen­

dent columns. However, the matroid obtained by using the columns of the matrix is 

different than the matroid obtained by using the rows of the same matrix. ForM [Z], 

we have the following: 
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1 1 0 

2 0 1 

z = 3 0 0 

4 1 0 

5 1 1 

Figure 1.3: Example of a matroid M = (S,I). The ground setS corresponds to row 
indices and I corresponds to sets of linearly independent rows. 

S= {1,2,3,4,5} 

I= {0,{1},{2},{4},{5},{1,2},{1,5},{2,4},{2,5},{4,5}} 

S- I= { {3}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {3, 5}} u {X~ S: lXI 2: 3} 

A maximally independent set of a matroid M is a set J E I such that J U x is 

dependent for all x E S - J, and is referred to as a basis B of M. The collection 

of all bases of M is denoted as B(M). Consider rows 1 and 2 from Z. If you 

include any other row of Z with rows 1 and 2, then the set of rows becomes linearly 

dependent. Therefore, {1, 2} is a basis of M [Z]. The collection of bases of M [Z] is 

{ {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}} and satisfy the following two properties. Observe 

that all the bases have the same cardinality. 

(B1) B(M) =J 0. 
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(B2) If B1, B2 E B(M) and x E B1- B2, then 3 y E B2 - B1 s.t. (B1 - x) U y E 

B(M). 

A minimally dependent set of a matroid M is called a circuit C of M. A circuit 

Cis a subset of S such that C- x E I for all x E C. The collection of all circuits 

of M is denoted as C(M). The collection of circuits of M satisfy the following three 

properties. 

(C1) 0 rf_ C(M). 

(C3) If 0 1 , C2 are distinct members of C(M) and e E C1 n C2, then 3 C3 E C(M) s.t. 

C3 ~ ( C1 U C2) - e. 

The cardinality of the smallest circuit is called the girth of the matroid. Referring 

back to the example, the collection of circuits of M [Z] is { {3}, {1, 4}, {1, 2, 5}, {2, 4, 5}} 

and the girth is 1. 

1.2.2 Dual Matroid 

Given a matroid M = (S,I), we consider another matroid whose ground set is 

also S. GivenS, define the following collection of subsets of S, {S- B: BE B(M)}. 

This set, which will be denoted by B* ( M), is the set of bases of another matroid. 

This matroid denoted by M* is called the dual matroid of M. Thus, B(M*) = B*(M) 

and (M*)* = M. If B E B*(M), it is called a cobasis of M. Referring back to 



8 

the example matrix Z, recall that B(M [Z]) = {{1, 2}, {1, 5}, {2, 4}, {2, 5}, { 4, 5}}. 

Therefore, B*(M [Z]) = {{3, 4, 5}, {2, 3, 4}{1, 3, 5}, {1, 3, 4}, {1, 2, 3}}. 

Similarly, C(M*) = C*(M), and if C E C*(M), it is called a cocircuit of M. The 

cardinality of the smallest cocircuit is called the cogirth of the matroid. Referring back 

to the example, C*(M [Z]) = { {1, 2, 4}, {1, 2, 5}, {2, 4, 5}, {1, 4, 5}} and the cogirth is 

3. It should be noted that the bases and circuits of M* are the cobases and cocircuits 

of M respectively and vice versa. The next sections discuss how a solution for the set 

covering problem provides a solution for the degree of redundancy. 

1.2.3 Finding the Degree of Redundancy 

The degree of redundancy (DoR) of a sensor network provides a measure for 

the reliability of a given network. The ability to design reliable networks that are 

cost efficient is important. Therefore, it is important to find the DoR of a sensor 

network. The remainder of this subsection describes the relationship of the degree of 

redundancy (DoR) of a sensor network and the cogirth of a matroid. 

Although the mathematical defintion of the DoR of a sensor network provides 

a simple algorithm to find the DoR, the algorithm itself is by no means practical. 

Therefore, it is necessary to take a different approach towards the problem. Recall 

the linear system, y = H u + c, which is a standard description of the sensor network 

where H is an n x p matrix, n > p. Define R = { 1, ... , n} to be the set of row indices, 

SR to be the subset of rows of H removed, and d to be the cardinality of SR. The 
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cardinality of the smallest subset, SR, of rows such that the rank of the resulting 

matrix is one less than the rank of H is what needs to be computed. The DoR is 

d- 1, where d = IBRI, the cardinality of SR. Note that one could consider HT and 

remove sets of columns. Define RowS= {r1 , r 2 , ... rz} where lis the number of distinct 

bases of the row space of H and ri is a distinct basis for j E {1, ... , l}. Therefore, 

IBRI = min{IJI : J <;;; R, J n ri =f 0 Vri E RowS}. In other words, the rows of the 

resulting matrix H( -d) do not span the row space of H because the removed rows 

intersect every basis of the row space of H. Therefore, the rank of H(-d) must be less 

than the rank of H. Recall the example matrix from Figure 1.3. The row space of Z 

is ~2 . By removing rows {1, 2, 4}, which is a cocircuit of M [Z], the resulting matrix 

does not span Il~2 . Switching back to the matrix H, we can obtain a vector matroid 

M [ H] from H, where the distinct bases of M [ H] correspond to distinct bases of the 

row space of H. Based on the observation that {1, 2, 4} is a cocircuit of M [Z], one 

might think that removing rows from H that correspond to a cocircuit will reduce 

the rank of the resulting matrix. Upon this belief, in order to find the DoR, one can 

consider finding the co girth of vector matriod M [ H]. The following paragraphs build 

upon this observation, and describe why the cogirth of a vector matroid provides the 

DoR of the corresponding sensor network. 

Recall that for a matroid M = (S,I), the cobases are just the complement of the 

bases with respect to S. Since a basis, B, is maximally independent, B U x contains a 

circuit for all xES- B. This might lead one to wonder if a circuit has a nonempty 
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intersection with every basis in B(M). Oxley [29] shows that this is in fact the case. 

A hypergraph, Ghyp = (V, E), is a generalization of a graph where members of E can 

connect two or more members of V. Define G hyp,H = (V, E), to be a hypergraph where 

V corresponds to the set of row indices of H and a hyperedge f E E corresponds to 

a basis of M [H]. A transversal of Ghyp is a subset U of V such that every f E E is 

adjacent to at least one member of U. Observe that since E and U correspond to the 

set of bases and a subset of row indices respectively and U touches every hyperedge, 

U corresponds to a cocircuit of M [H]. Therefore, if we want to find the cogirth 

of M [ H], we need to find the smallest transversal of the G hyp,H. Similarly, if we 

wanted to find the girth of M [H], we would consider a hypergraph with members of 

E corresponding to cobases of M [H]. 

To provide a more illustrative example, refer back to the matrix Z. We can 

find the girth of M [Z] by considering the above mentioned hypergraph with mem­

bers of E corresponding to co bases of M [ Z]. Recall the collection of co bases of 

M [Z], B*(M [Z]) = {{3, 4, 5}, {2, 3, 4}{1, 3, 5}, {1, 3, 4}, {1, 2, 3}}. The correspond­

ing hypergraph can be seen in Figure 1.4. Notice that every member of C(M) = 

{{3}, {1, 4}, {1, 2, 5}, {2, 4, 5}} is a transversal of the hypergraph and the smallest 

transversal is {3}. Therefore,the girth of the M [Z] is 1. In order to find the mini­

mum transversal, we can turn to discrete optimization and model the problem as an 

integer program. A description of the set covering problem (SCP), and how it relates 

to the matroid cogirth problem is provided in Section 1.2.4. 
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Figure 1.4 : This figure shows the hypergraph Ghyp = (V, E) where V corresponds to 
row indices of the matrix Z and members of E correspond to cobases of M [Z] . 

1.2.4 Set Covering Problem 

It is not uncommon to construct linear and integer programs for graph theory 

problems. This section shows how the cogirth problem can be described by an integer 

prograrn. Let N = {1, ... ,n} and K = {1, ... ,k} for n,k E z+. Let N 1 ,N2 , ... ,Nk be 

a given collection of subsets of N. Each Ni is given a weight ci. D which is a subset 

of K is called a cover of N if u iED Ni = N. The weight of a cover D is I:iED Ci. The 

set covering problem (SCP) is min { cT x I Ax 2:: ]_, x binary} where A is an incidence 

matrix of {Ni I i E K}. The entries of A, aij, are 1 if j E Ni and 0 otherwise for all 

j E N. Further introduction of the SCP can be found in [10), [28) and [35). 

Recall the cogirth problern can solved by addressing a minirnum transversal prob-

lem. The problem of finding the minimum transversal can be seen as a SCP. In order 

to find the cogirth of M [H], let N = {1 , ... , n}, where n is the number of rows of 

H and let K = { 1, ... , k} where k is the number of distinct bases of M [ H]. Let Ni 

correspond to a distinct basis of Jvf [ H] with ci = 1 for each i E K. For the incidence 

matrix A, aij will be 1 if row j is a member of basis Ni and 0 otherwise. Therefore, the 
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problem now becomes min {]. T x I Ax ~ ]. , x binary}. The constraints demand that 

any feasible solution intersect every basis of M [H], which is exactly what is required. 

In order to find the girth, let k be the number of distinct cobases of M [H], and let Ni 

correspond to a distinct cobasis of M [H]. Therefore, a solution to the SCP provides 

a solution to the cogirth problem for vector matroids, which in turn provides the DoR 

of the corresponding sensor network. Since both problems are NP-hard, note that 

in general, it is possible to take a set covering problem, and model it as a cogirth 

problem for a vector matroid so that a solution to the cogirth problem provides a 

solution to the set covering problem. However, describing a clear path to do so is not 

discussed in this thesis. Further discussion of the SCP as well as methods devised to 

solve the SCP will be given in Chapter 2. 

The remainder of this thesis focuses on solving the matroid cogirth problem by 

addressing the set covering problem. A review of existing methods developed to solve 

the matroid cogirth probelm and the set covering problem is presented in Chapter 

2. In Chapter 3, a brief discussion of the branch-and-cut algorithm is given. An 

implementation of the algorithm specific to the set covering problem formulated for 

the matroid cogirth problem is also provided. Computational results obtained from 

the implementation of the algorithm on some test instances will be presented in 

Chapter 4. Chapter 5 will focus on observations from the computational results, 

some areas where there is room for improvement, and some future work. 
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Chapter 2 

Literature Review 

2.1 Solving the Cogirth Problem 

Finding the cogirth of a general vector matroid is equivalent to finding the min­

imum transversal of a hypergraph, which can be solved as a set covering problem. 

As an optimization problem, the set covering problem is NP-hard [21]. Therefore a 

polynomial time algorithm to find the cogirth of a general vector matroid does not 

likely exist. However, there have been several attempts to develop an algorithm or 

heuristic that solves the matroid cogirth problem accurately and/or efficiently. The 

first algorithm, which is fairly obvious and simple in nature, comes from the definition 

of the DoR. Recall that for a sensor network with model matrix H, the DoRis defined 

as the cardinality of the smallest set of rows whose removal from H reduces the rank 

of the resulting matrix H( -d) where d is the number of sets removed. Exhaustive 

rank testing is a brute force technique. As the definition of the DoR suggests, the 

idea is to iteratively remove sets of rows from H until the rank of H(-d) is one less 

than the rank of H. Although the algorithm is easy to understand, the number of 

possible combinations of sets of rows that are to be removed is n choose d where n 

is the number of rows of H. As d increases, so does the number of possible combina-
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tions. The singular value decomposition (SVD) is typically used to find the rank of 

matrices. However, since the computational time needed to compute the SVD of a 

matrix is dependent on the number of rows and columns of the matrix, the SVD can 

be computationally expensive on large submatrices. For practical system matrices, as 

d increases, the number of submatrices considered increases. In turn, the algorithm 

becomes computationally expensive as the number of submatrices increases. There­

fore, it would not be advantageous nor practical to do this exhaustive rank testing as 

d and the size of the matrices increase. 

Boros et al. [22] presented an algorithm to enumerate all the circuits of a matroid. 

The algorithm is based on property (C3) from Chapter 1. Let M = (S,I) be a 

matroid with ground set S. Given such a matroid, a basis, B C S, of M, and an 

element x E S\B, B U x contains a circuit C of M. Using the same B and all 

x E S\B, a collection of initial circuits is obtained. Using (C3), it is concluded that 

all the circuits of the matroid have been enumerated or a new circuit is found, and 

added to the collection. These steps are repeated until all the circuits of the matroid 

have been enumerated. In the case of vector matroids, finding a basis, finding circuits 

and using (C3) as a check is not difficult. As the algorithm is guaranteed to enumerate 

all the circuits of the matroid, it proves to be quite accurate. However, as the number 

of circuits increases, the number of pairwise comparisons using (C3) increases. The 

number of circuits may not be known, and the algorithm also requires the enumeration 

of all the circuits of the matroid before it terminates. This enumeration is unnecessary 
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Figure 2.1 : Bordered block diagonal form [13]. 

since only the ones of smallest cardinality are needed. Having to generate all the 

circuits can become quite taxing, especially if there are a large number of them. It 

would be advantageous to avoid this enumeration. 

As an alternative, Cho et al. [13] presented a branch-and-decompose algorithm. 

The theory behind this method stems from the connectivity of the matroid con­

structed from the given matrix. It is assumed that the matroid maintains a degree 

of disconnectedness. For a more detailed discussion of matroid connectivity and the 

properties used to develop this algorithm, refer to Cho et al. [13]. The most important 

observation is that for a matrix T, the cogirth of M [T] can be found by looking at 

submatrices ofT. The matrix T is transformed into bordered block diagonal form 

(BBDF), which can be seen in Figure 2.1, with a border, P, of rows. The BBDF 

matrix is a rearrangement of the columns and rows ofT. While dis small, the ex­

haustive rank test is used on the entire matrix. That is, while d < (n~~ 1 )I PI - 1 
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where nb is the number of blocks and IPI is the number of rows in the border, the 

exhaustive rank testing is used. Once d reaches this bound, the algorithm intelligently 

chooses rows and columns of the matrix to create submatrices, and implements the 

exhaustive rank test on each submatrix to compute the cogirth of the original matrix. 

This method depends on the structure of the matroid and inherently on the matrix. 

Although it has the ability to provide nice results as presented by Cho et al. [13], it 

is not guaranteed to do so for all matrices with the desired structure. In particular, 

as the number of rows in P increases, so does the number of exhaustive rank tests 

in the initial stage of the algorithm. This algorithm, although very clever, runs the 

risk of being very inefficient if the matrix and in turn the matroid does not have the 

structure illustrated by the figure above with IPI small. Other methods have made 

the attempt to solve the problem for general vector matroids. 

In contrast to the methods discussed above, Kianfar et al. [23] approached the 

problem from an optimization standpoint. They presented a 0-1 mixed integer pro­

gram (MIP) to solve the cogirth problem. Given an n x p matrix H, with n > p, 

the formulation attempts to find a nonzero vector x E null(H), the null space of H, 

that minimizes the number of nonzero inner products hix fori= 1, ... , n, where hi is 

a row of H. The assumptions are that llhilh = 1 for each row of Hand that H has 

full column rank since n > p. The following is the 0-1 MIP formulation: 



-1 + 2Zj ~ X j ~ 1, j = 1, ... , p 

L:f=lZi = 1 

17 

where Xj is a real variable for all j and qi, Zj are binary variables for all i and j. The 

first set of constraints correspond to x being in the null space of H. The second and 

third set of constraints ensure that the trivial solution x = 0 is not chosen. If the 

matrix is not full rank then another set of constraints must be added to ensure that x 

is in the row space of H. The formulation is then solved using the MIP solver CPLEX 

[1]. Computational comparisons to the exhaustive rank test and Cho's branch-and­

decompose algorithm are presented in Table 1 in [23]. In some cases presented, the 

algorithm proposed by Cho et al. performs better, but the MIP formulation is shown 

to do better in most instances, especially as the size of the matrix increases. Upper 

and lower bounds for the degree of redundancy can still be acquired when optimality 

is not achieved [23]. The 0-1 MIP formulation reported is an initial approach, and 

the investigation is ongoing. The formulation sounds promising, especially if strong 

valid inequalities can be added to strengthen the formulation. 

In order to find the cogirth of a matroid, Govindaraj [17] concentrates on the 

circuits of the dual matroid, M*, which are the cocircuits of M. Rather than enumer­

ate all cocircuits, an £0-norm minimization formulation is used to find the smallest 

cocircuits containing each element in the ground set S. For a given matrix A and a 

vector b, the following formulation will provide the minimum number of columns of 

A needed to obtain b. 



min llxllo 

s.t. Ax= b 
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It should be noted that the £0-norm is not actually a norm. It refers to the number 

of nonzeros of a vector. Rather than solve the £0-norm minimization problem, an £1-

norm minimization approximation is used. In other words, replace llxllo with llxll 1 . 

Here, llxl h refers to the 1-norm of a real-valued vector. Recall the matrix H from 

the linear system. This heuristic would be performed on Hr. The full algorithm con­

sists of computing the matrix representation of the dual matroid, which is discussed 

in Oxley [29], and then solving a sequence of £1-norm minimization problems. For 

each column, Hi, j E {1, ... , n}, of the Hr, let b =Hi and let A be the matrix HT 

excluding Hi and then solve the £1 approximation. Computational results reported 

by Govindaraj [17] indicate that the algorithm is efficient, but because the solutions 

are approximated, the algorithm is not always guaranteed to provide exact solutions. 

That being said, the inaccurate solutions still provide a good approximation to the 

true solution and the cogirth. The algorithm provides a viable option to give an ap­

proximation to the cogirth problem. The algorithm provided by Govindaraj is based 

on a technique to find an approximation to a problem that arises in compressive sens­

ing. This problem is equivalent to finding the girth of a vector matroid. Along thoses 

lines one could also consider using other algorithms that address the compressive 

sensing problem such as the Basis Pursuit algorithm [12] and the Orthogonal Match­

ing Algorithm [30], [32] as possible approximation algorithms to find the cogirth of a 
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vector matroid. In turn, the algorithms discussed above as well as the one presented 

in this paper could be considered to address the problem that arises in compressive 

sensing. 

Another possible option is given in a more general setting by Moreno Centeno 

[26]. Moreno Centeno provides an algorithm to solve an implicit hitting set problem 

(IHSP). According to Moreno Centeno, the explicit hitting set problem (EHSP) is 

"identical to the classic weighted set cover problem, except that the roles of sets 

and elements have been interchanged" [26]. The goal is to find a hitting set that 

intersects all the "circuits." Here, hitting sets and circuits are analogous to cocircuits 

and bases of the matroid M. The IHSP is like the EHSP except that the circuits are 

not explicitly known for the problem. As such, the circuits need to be generated using 

a separation oracle. As these circuits are generated, a hitting set is also generated 

to satisfy the current list of circuits. Although a list of circuits is generated, the 

algorithm tries to avoid solving the EHSP with the list of circuits if possible. When 

the EHSP is solved, it is done also using CPLEX [1]. The separation oracle used 

to generate circuits is specific to the problem being solved by Moreno Centeno [26]. 

Computational results are provided for this specific problem. Like Govindaraj [17], 

the method solves most reported test instances accurately and efficiently. However, 

there are some reported cases where the algorithm is not able to find the exact 

solution [26]. The algorithm may be a viable option to address the cogirth problem, 

but it depends on whether or not a separation oracle for the cogirth problem can be 
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developed to generate bases of a matroid efficiently. An investigation into adapting 

this method for the cogirth problem is needed. 

2.2 Solving the Set Covering Problem 

Recall the set covering problem. Let N = {1, ... , n} and K = {1, ... , k} for n, k E 

z+. Let N 1 , N 2 , ... , Nk be a given collection of subsets of N. Each Ni is given a weight 

Ci· D which is a subset of K is called a cover of N if uiED Ni = N. The weight of a 

cover Dis L:iED ci· The set covering problem (SCP) is min { cT x I Ax ~ 11., x binary} 

where A is an incidence matrix of {Ni I i E K}. The entries of A, aij, are 1 if j E Ni 

and 0 otherwise for all j EN. The decision version of the SCP was proved to be NP­

complete [21]. Posed as an optimization problem, the SCP is NP-hard. The SCP is a 

well-studied problem. There are a variety of known methods that have been developed 

to address the set covering problem. These methods include greedy heuristics, genetic 

algorithms, and other methods that implement cutting plane methods and Lagrangian 

heuristics. 

Greedy heuristics that can find near optimal solutions are discussed by Chvatal 

[15] and Johnson [20]. Greedy heuristics work by trying to gain as much as possible 

at each given step of the procedure. Given the system Ax ~ 11., with A an m x n 

matrix, the greedy algorithm would consist of the following steps. 

Set Cov = 0, Uncov = {1, ... , m}, Sol= 0 

while Uncov =f 0 do 
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Choose jth column of A and Sol= SolUj based on weights given to the columns 

of A 

fori= 1-m do 

if aii = 1 then 

Cov = Cov U i, Uncov = Uncov- i 

end if 

end for 

end while 

Sol is a solution to the SCP 

The weights given to the columns of A can be obtained in many ways. For instance, 

let C Ri be the subset of rows of A such that aii is 1 for the jth column of A. Then we 

can let the weight of the jth column,wj, be ICRil/ci, where ci is the cost of the jth 

column of A. In the SCP discussed in Chapter 2, Wj = ICRil for all columns of A since 

c = ]. . There have also been attempts to improve upon this initial greedy algorithm. 

Marchiori and Steenbeek [25) offer what they call an iterated approximation algorithm 

(ITEG). Their algorithm basically starts by finding a cover using the procedure listed 

above with the weight of the jth column Wj = ICRil· A function they call Enhanced 

Greedy tries to improve the cover by adding or removing columns from the original 

cover using criteria which is discussed in more detail in [25). The following procedure 

is performed for a specified number of iterations. Given a best solution Sbest, a 

subset of Sbest is chosen, and Enhanced Greedy is used to extend the partial cover 
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into a cover S. If Sis better than Sbest, then Sbest - S. The algorithm performs 

well on the reported instances. Another improvement on the greedy algorithm was 

introduced by Musliu [27]. As with ITEG, an initial cover is produced using the 

above procedure. A neighborhood of the current solution, S, is created. A neighbor 

of this initial cover is a cover that can be found by adding and/ or removing columns 

of A from the initial cover. A column index j is put into and saved in a "tabu 

list" for a specified number of iterations if the jth column of A has been added or 

removed from a cover in one of the recent iterations. An upper bound on the size 

of the neighborhood is also specified to limit the search time. Once a neighborhood 

is found, the best neighbor is chosen using a fitness function. For a cover D, define 

Fitnessv = number of uncovered elements + IDI. The fitness function is among 

criteria that is used to choose a new cover from the neighbors. The tabu list and 

upper bound are updated, and the procedure is repeated until stopping criteria is 

met. According to the computational results reported, the heuristic is competitive 

with ITEG. 

A genetic algorithm developed by Beasley and Chu [8], uses the idea of "survival 

of the fittest". The general idea of the genetic algorithm is to produce a population of 

solutions until a sufficient solution is found. Begin by creating an initial population of 

solutions, and evaluate the fitness of the solutions. For a solution D, Fitnessv = IDI 

since Dis a binary vector. Solutions, referred to as parents, are chosen and mated with 

each other. The children are evaluated, some or all of the population is replaced by 
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the children. The process of generating children and replacing solutions is repeated 

as needed. The actual procedure involves a little more work. What follows is a 

basic description of the algorithm. Once an initial population is generated and t is 

initialized to 0, two solutions P1 and g and mated and a child C is produced. C is 

"mutated", a random number of chosen elements of C are switched from 0 to 1 and 

vice versa, to randomize the search of solutions. If C is not a solution, a heuristic 

is used to extend it to a solution. If C is identical to a solution in the population, 

the process of producing a child is repeated, else t = t + 1 and a randomly chosen 

fit solution is replaced by C. This process is repeated until t = M for some specified 

number .A1. The fittest solution is chosen as the optimal solution. 

Algorithms and heuristics that focus on the polyhedral structure of the SCP have 

also been developed. In fact, Beasley [7, 9] has conducted further research into solv­

ing the SCP using subgradient optimization techniques, problem reduction, and tree 

search procedures. Balas and Ho [5] also discuss a class of algorithms which incor­

porate heuristics, cutting planes generated from conditional bounds and subgradient 

optimization. The heuristics are used to find feasible solutions to the SCP and feasi­

ble solutions to the dual program of the linear relaxation of the SCP. The generation 

of conditional bounds from solutions to the dual program of the linear relaxation of 

the SCP is discussed by Balas [4]. Balas and Ho ran their algorithms on several ran­

domly generated test instances. According to the reported instances, the algorithm 

works efficiently in most cases, and provides good approximations when a solution 
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cannot be found. Further computational experiments are presented by Grossman and 

Wool [18]. They discuss several approximation algorithms including several versions 

of greedy algorithms. They provide a basic description of each algorithm and provide 

results for random generated test instances as well as instances that arise from com­

binatorial questions. It was reported that the neural network algorithm performed 

the best overall, and that the greedy algorithms performed competitively in many 

instances. The best algorithm to use would depend on the test instance. 

The methods discussed above are representative of the variety of different ap­

proaches that can be taken when faced with solving a SCP. Although many of these 

traditional methods work well and are viable options to solve many set covering prob­

lems, it is not possible to use them directly to solve the SCP that arises from the 

matroid cogirth problem. This stems from the fact that for all these methods, the 

entire original system of constraints, Ax 2: ]. , must be known. In fact, at the initial­

ization of the problem of interest, no constraints are known. In the cases of Balas 

and Ho [5], and Beasley [9], primal and dual heuristics cannot be incorporated into 

an algorithm. Similarly, finding cutting planes from conditional bounds will not be 

possible without the dual formulation to the linear relaxation of the SCP. The biggest 

challenge involving the greedy heuristics and genetic algorithms is the ability to find a 

good initial solution. Although it might be possible to use genetic algorithms to gen­

erate children from an initial population of solutions, generating the initial population 

would probably be difficult without any weights to decide which columns of A are 
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better in the greedy sense. The same can be said for generating a good initial solution 

for the greedy heuristics discussed at the beginning of this chapter. However, it may 

be possible to incorporate the underlying concepts into a branch-and-cut algorithm. 

The greedy heuristics may provide some insight into obtaining feasible solutions to 

the SCP while only having knowledge of a subset of Ax ~ :n.. It may also be pos­

sible to generate other cutting planes without knowing Ax ~ :n. in its entirety. The 

developed branch-and-cut algorithm will be discussed in Chapter 3. Computational 

results and observations will be discussed in Chapters 4 and 5. 
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Chapter 3 

Methods 

3.1 An Algorithm for the Set Covering Problem 

As discussed in Chapter 2, there are several exact methods and heuristics to 

solve the set covering problem ( SCP), min { cT x I Ax ~ ]_, x binary}. However, these 

methods require knowledge of the entire system Ax ~ ]_. For the SCP formulated 

from the cogirth problem, every constraint corresponds to a basis of Row( H) and each 

variable which has a cost of 1 corresponds to a row of H. Therefore, in order to have 

the entire system Ax~]., all the bases of the Row( H) must be known. Since this is 

generally not the case, the previously discussed methods cannot explicitly be used in 

this case. Instead, I implement a branch-and-cut algorithm, which is a branch-and­

bound algorithm that incorporates cutting plane methods, to solve the SCP. I will 

first briefly discuss the branch-and-bound algorithm and why cutting planes are used. 

A branch-and-bound algorithm is designed to solve integer programs to opti­

mality. It begins by considering the linear relaxation of an integer program or 

mixed-integer program. In this case, consider an integer program min{ cT x I Ax ~ 

b, x integer}. At the root node, before the branching begins, the linear program 

relaxation min{ cT x I Ax ~ b} is solved. At this point, the solution, x, may be a 
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mixture of fractional and integral variables. If it is integral and satisfies all explicit 

and implicit constraints, then the solution is optimal. If not, then the fractional vari­

ables are selected and the branching begins. Various branching rules are discussed 

by Achterberg et al. [2]. At each branch node, a variable is chosen to bound at its 

upper and lower integral bounds, and a subproblem is created for each bound. The 

same procedure is used on all the subproblems. Subproblems are pruned (eliminated) 

if they are infeasible, or if the optimal value of the subproblem is not better than the 

current best integral solution. Since there are an exponential number of branches, it 

would be advantageous to find better optimal values early in the procedure. Branch­

ing rules can have an effect on the number of branches considered and how quickly 

optimal solutions are found. Cutting plane methods are used for linear, integer, and 

mixed integer programs. The idea is to find valid inequalities for the program that 

will reduce the feasibility region, the solution set of the problem. By reducing the 

feasibility region, an optimal solution may be found more quickly. A discussion of 

cutting plane methods can be found in both Nemhauser and Wolsey [28] or Wolsey 

[35]. However, the general cutting plane methods discussed may not be viable options 

in this case. In many of the cutting plane generation procedures discussed, the entire 

constraint set is needed. 

Referring back to the SCP that we formulated to solve the matroid cogirth prob­

lem, since no bases of Row(H) are initially known, there are not any constraints. 

Therefore, we must use a branch-and-cut algorithm to solve the SCP. The branch-
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and-cut algorithm is guaranteed to solve the SCP to optimality. A more general 

discussion of the branch-and-cut algorithm can be found in Wolsey [35]. Figure 3.1 

shows a flow chart of the basic algorithm. The implementation of the branch-and-cut 

algorithm is discussed below. The following subsections describe the intricacies of the 

algorithm. For the flow chart, min { cr x I x E X} is the initial formulation with X 

the set of feasible solutions, Pis the original formulation of the problem, z is the op­

timal value for the original formulation, x* is the optimal solution and z is the bound 

used to prune solutions. pi and Xi correspond to the formulation and solution set 

for the ith subproblem picked from the Node list. pi,k is the kth formulation for the 

ith subproblem after a cutting plane has been added to it, xi,k is the solution to the 

formulation and '!!i,k is the optimal value. Pl and Xf are subproblems created after a 

fractional variable has been chosen. 

Since no basis is initially known, the algorithm begins at the root node with no 

constraints; the constraint set, which will be referred to as Q, is empty. The initial 

solution to the relaxation, the zero vector, is not a feasible solution to the SCP. At this 

point a basis of Row(H) is found and a constraint is added to Q. A new solution, x, 

to the relaxation is found. The values of the individual variables are used as weights 

for the rows of H since each variable corresponds to a row. In other words, rows are 

compiled together one by one by minimum weight until a basis is found. A constraint 

corresponding to a minimum weight basis B is added to Q if x violates the constraint. 

That is, if the inner product between the solution x and the rows corresponding to 
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INITIALIZATION 

z = min {cTxlx E X}z = INF, x* is 

empty. Process initial problem and put on Nodelist 

l 

NODE 

r----l If Nodelist is empty, go to EXIT. Else choose and -

remove node i from Nodelist and go to RESTORE 

l 

RESTORE 

The formulation p i of the set x ·i. Set k = 1, and pi,l = pi 

l 

LP RELAXATION 

r-- Iteration k. Solve :zi ,k =min {cTxlx E pi,k} . If infeasible, ~ 

prune and go to NODE. Else solution xi ,k and go to CUT 

1 
CUT 

Iteration k. Try to cut off xi • k. If no cuts found, 
-

go to PRUNE. Else add cuts to pi,k giving pi ,k+ 1 . 

Increase k by 1, and go to LP RELAXATION 

1 

PRUNE 

r-- If 'lli,k ~ z, go to NODE. If xi ,k EX, set z = z.i ,k, update 

x* +- xi ,k and go to NODE. Else go to BRANCHING 

1 

BRANCHING 

'--- Create two or more new problems xf with 

formulations pti. Add them to the Nodelist 

EXIT 
k-----

Incumbent x* . Optimal Value z 

Figure 3.1 Flow chart of basic Branch-and-Cut Algorithm. 
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the newly found basis B is less than 1, the constraint is added. The constraint set Q 

is a subset of the system Ax ~ :D.. Because x is used as weights to find a new basis, 

it is guaranteed that a newly added constraint was not previously in Q. If it was, 

then x would have already satisfied the corresponding constraint. The idea behind 

adding constraints this way is that not all the constraints of Ax ~ :D. are needed. 

Only significant bases are used to add constraints to the system. It would not be 

advantageous to find every basis of HT since there may be a large number of them 

in general. With this in mind, it is often not the case that the optimal solution to 

the SCP will be found at the root node since a relaxation of a subset of constraints 

of the SCP is being solved in the algorithm and the polyhedron for the SCP may not 

be totally unimodular. Therefore, after adding as many constraints as possible at the 

root node, the actual branching part of the algorithm is begun. Other than branching 

on fractional elements of x, more cutting planes are added at each node of the branch 

tree. Since the system Ax ~ ]. is not known in its entirety, constraints from the 

system are added the same way they were at the root node. Other cutting plane 

methods are also incorporated to find other valid inequalities. The rest of this section 

will concentrate on cutting plane generation subroutines that were incorporated in 

the algorithm, the branching rule that was used, and a heuristic that was used to find 

feasible solutions to the SCP. 
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3.1.1 Generating Cutting Planes 

As discussed above, constraints from Ax ~ :n. are added iteratively by finding 

bases of Row(H). The algorithm attempts to add these constraints at the root node 

and at each branch node. In order to find bases, a greedy algorithm is used. Once 

a solution, x = (x1 , ... xnf, is found, the elements are sorted. The sorted solution is 

Xcr(l) :S Xcr(2) :S ... :S Xcr(n) where a is a permutation of the indices. Using the weights, 

rows of Hare added to a matrix, say H 8 , as long as they increase the rank of H 8 • The 

rows are added in order of minimum weight until the rank of H 8 is equal to the rank 

of H. Once a basis is found, the corresponding constraint is added to constraint set 

Q if it is violated by the current solution x. An initial set of bases is found by first 

finding a feasible solution to the SCP. The initial set of bases is obtained in such a 

way that they are as disjoint as possible. The method used to find a feasible solution 

is discussed in Subsection 3.1.3. Once a feasible solution, x, to the SCP is found, a 

greedy algorithm is used to find a set of bases. For each j such that xi = 1, a basis 

of Row(H) containing row j is found. The weight of each row of H is initially set 

to zero. Every time a row is added to a basis, its weight is increased by one. Rows 

with minimum weight are added to a basis first. Bases were found this way to make 

them as disjoint as possible. After this initial set of bases that are as disjoint as 

possible, bases are found based on the the solution x to the linear relaxation. All the 

constraints obtained from bases are global cuts. The algorithm also attempts to add 

valid inequalities generated from these basis constraints. 
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Balas and Ng [6] consider the set covering polytope, P1(A) := conv{x ERn I Ax 2: 

]_, x binary}. They discuss the following class of inequalities. For a subset of rows S 

of the matrix A from Ax 2: ]_, the inequality as x 2: 2 associated with S is defined by 

0 if aij = 0 for all i E S, 

s_ 
aj - 2 if aij = 1 for all i E S, 

1 otherwise. 

According to Balas and Ng [6], this class of inequalities, which will be referred to as 

CP and is valid for P1(A), can be generated using the following procedure D: 

(i) add the inequalities aix 2: 1, i E S 

(ii) divide the resulting inequality by lSI - E, 0.5 < E < 1 

(iii) round up all coefficients to the nearest integer 

It would be advantageous to incorporate inequalities from this class. Fortunately, 

Balas and Ng [6] proved the following theorem. Let x be a fractional solution to the 

Ax 2: ]., 0::; x::; ]., R be the row indices, N be the column indices, I:= {j E Nlxj = 

1 }, and R(I) := { i E Rlaij = 0, Vj E I}. 

Theorem 3.1 Let as x 2: 2 be an inequality in the class C P that cuts off x. Then 

af = 0 for all j E I; i.e, S ~ R(I) 

The theorem states that the search for the set S of rows associated with the as x 2: 2 

that cuts of x can be restricted to R(I). Procedure Dis incorporated into the branch-

and-cut algorithm at each branch node. After as many inequalities from Ax 2: ]_ 

have been added to Q, the theorem proved by Balas and Ng [6] is used to try to 
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find constraints using procedure D. Since only a subset of the original constraints is 

known, inequalities from the class C P may not always be found using this procedure. 

Further discussion of these cuts and their use in the branch-and-cut algorithm is 

discussed in Chapter 5. 

Beasley et al. [9] also discuss feasible solution exclusion constraints for the SCP. 

Suppose Tc is a set of column indices that correspond to the best feasible solution for 

the SCP. It is assumed without loss of generality that Tc- j is not a feasible solution 

for all j E Tc. Then according to Balas et al. [9], the following two constraints can be 

added to the program. 

L Xj ::; ITcl - 1 
jETe 

The idea is that if a better solution exists, it can be obtained by replacing at least 

one column in the current solution. These constraints are incorporated into the 

branch-and-cut algorithm. These constraints are only considered after branching 

has begun. After a feasible solution is found using the heuristic discussed below, a 

check is performed to see if it is better than the current best feasible solution. If so, 

then two feasible solution exclusion constraints are added. This procedure is done 

every time the best feasible solution is replaced in a branch node. As I mentioned 

earlier, Achterberg [2] discusses many possible branching techniques. The next section 

discusses which rule was used in the proposed branch-and-cut algorithm. 
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3.1.2 Branching 

Various branching rules can be incorporated into a branch-and-cut algorithm. 

The branching rule used for the proposed branch-and-cut algorithm is that the most 

infeasible variable is chosen to branch on [2]. Since 0 :::; x :::; 1, the closer a variable is 

to 0.5, the more infeasible it is. The branch-and-cut algorithm implements depth-first 

search branching, i.e. once a fractional variable, say Xk is chosen, Xk is set to zero 

and the resulting subproblem is explored before Xk is set to one. The depth-first 

branching is incorporated in a recursive manor. In order to enhance the branch-and­

cut algorithm, a method to find better feasible solutions to the SCP is also included. 

The method is discussed in the following subsection. 

3.1.3 Finding Feasible Solutions 

Recall that a feasible solution to the SCP is actually a cocircuit of the matroid 

M = (S,I) where the ground set S corresponds to the indices of the rows of H 

and I is the collection subsets corresponding to linearly independent sets of rows 

of H. Therefore, it would be beneficial to find feasible solutions as often as possible 

without enumerating all possible solutions. In order to find feasible solutions, a greedy 

algorithm is implemented. The algorithm is similar to that used to find bases. As 

before, the solution, x, to the linear program is used as weights. However, in this 

case, rows with max weight are removed from the matrix H one at a time until 

the rank of the resulting matrix is reduced by one. The rows removed represent a 
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feasible solution to the SCP. The intuition behind removing rows in this manor is 

that rows with larger weights are more significant to the current relaxed subproblem 

and may be more likely to be contained in a cocircuit of M [H]. The only way to 

ensure that a feasible solution to the SCP found this way represents the smallest 

cocircuit is to enumerate all possible feasible solutions. However, it is not practical 

for this method to be used by itself. Instead, this method is used to find feasible 

solutions of smaller cardinality if possible. In doing so, better upper bounds for the 

branch-and-cut algorithm can be found and more branch nodes can be pruned earlier 

in the branch-and-cut algorithm. This method is applied after a new solution x to 

the relaxation is found. The next section describes a procedure to arrange a matrix 

into BBDF. The BBDF is incorporated into a modification of the branch-and-cut 

algorithm. Computational results of the modified algorithm are presented in Chapter 

4. 

3.2 Rearranging Matrices into Bordered Block Diagonal Form 

Recall that part of the method described by Cho et al. [13] involved using a 

matrix that had been rearranged into bordered block diagonal form (BBDF), Figure 

2.1. In particular, Cho et al. [13] were considering sparse matrices when discussing the 

BBDF. The idea is that if a matrix T can be arranged into BBDF, then the cogirth 

of M [T] can be found by considering the blocks of the rearranged matrix BT along 
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with elements of the border, e.g the submatrices [A1 , g], [A2, P2] , ... , [A2, P2]. To put 

the matrix in this form, a set of border rows must be found. To find these border 

rows we use a method that is discussed by Cho [14]. Create a graph G = ("V, E) such 

that the members of V represent rows of the matrix T and an edge (u, v) E E if Tuk 

and Tvk are both nonzero for some column k of the matrix T. That is, an edge exists 

if rows u and v share a common column k. Once G is created, a minimum separating 

set of vertices Sv of G is found. A separating set of vertices is a set S C V whose 

removal disconnects the remaining subgraph. Menger's Theorem, which follows, is 

significant to finding the smallest separating set. 

Theorem 3.2 Let G = (V, E) be a graph and A, B ~. Then the minimum number 

of vertices separating A from B in G is equal to the maximum number of disjoint 

A- B paths in G. 

In order to find the smallest separating set, we find the maximum number of u- v 

paths for all u, v E G with u =I= v. We can do this by solving a series of max-flow min­

cut problems from another graph obtained from G. The details can be found in [14]. 

After the separating set is found the blocks of BT can be found. Let G = (V, E) be a 

bipartite graph where members of V represent rows and columns ofT. Let ( u, k) E E 

if Tuk is nonzero for row u and column k. Remove the separating set Sv from G and 

any edges adjacent to it. The resulting connected components represent the blocks 

of the matrix BT. In the following chapters, the branch-and-cut algorithm is run on 

several test instances. The computational results are presented, and a discussion of 
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possible avenues for further research is discussed. 
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Chapter 4 

Computational Results 

In this section, some computational results are run to test the branch-and-cut 

algorithm, and compare its performance to that of Kianfar et al. [23], one of the 

methods discussed in Chapter 2. The branch-and-cut algorithm performed on the 

original matrix is called Algorithm 1. The branch-and-cut algorithm that incorporates 

the BBDF is called Algorithm 2, and the 0-1 MIP approach of Kianfar et al. [23] is 

called Algorithm 3. Since Kianfar et al. [23] reported better computation times than 

Cho et al. [13], their formulation was used as a comparison. The algorithms are 

compared using computational time. 

The results are reported in Table 4.1. Test instance 1 is the same reported by 

Cho et al. [13]. Test instances 2-6 are those reported by Kianfar et al. [23]. Table 4.1 

shows the size of the matrix (n x p), the number of rows in the border,IPI, the DoR, 

d*, and the computational times for the three algorithms for each test instance. For 

the test instances in which "> 36000 sees" is seen in the computational times, the 

algorithms were unable to solve the problem of interest to optimality. The algorithms 

were stopped manually. Algorithm 2 consists of running the branch-and-cut algorithm 

on submatrices of the original matrices. In order to find these submatrices, the BBDF 

of the matrix was computed. In order to give more insight into Algorithms 1 and 
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2, Tables 4.2 and 4.3 show more detailed computational times for the algorithms. 

All three algorithms were tested on the same machine, a Dell Precision T3500 Tower 

Workstation with an Intel® Xeon® Dual Core W3505 2.53GHz processor. The 

algorithms were coded in C++, and Gurobi [19] was used to solve all the linear, and 

mixed integer program formulations created during the experiments. 

Overall, Algorithm 1 performed the poorest compared to the other two algorithms. 

According to Table 4.2, the best feasible solutions are found within seconds. For test 

instances 1, 2, and 5, the best feasible solution was an optimal solution. Although 

the best feasible solution found was not optimal for test instances 3, 4, and 6, the 

solutions found provided a bound for the optimal solution. Algorithm 2 performed 

better than Algorithm 3 in test instances 1,2 and 4. Algorithm 3 performed better 

on the other three instances. In particular, Algorithm 3 appears to perform better 

when d* :::; 4 and Algorithm 2 appears to perform better when d* > 4. This may 

indicate that Algorithm 3 is better to use when d* is small, and Algorithm 2 may 

be better to use when d* is large and the given matrix has the suggested BBDF 

structure. Unfortunately, a range for d* must be known beforehand in order to decide 

which algorithm to use. This is highly unlikely. According to Table 4.3, Algorithm 2 

found optimal solutions for most of the test instances within a few seconds. In test 

instances 3-6, the algorithm took considerably longer to finish. This may be due to 

the number of blocks that have to be considered by the algorithm. In all, Algorithms 

2 and 3 are competitive. The key components to the efficiency of Algorithm 2 appear 



40 

to be the time it takes to find the border for the BBDF, and the size and number of 

blocks that need to be solved. 

Although the methods discussed in this thesis provide good upper bounds for the 

matroid cogirth problem, when considering a minimization problem, a lower bound 

on the optimal solution is more useful than an upper bound. However, a good lower 

bound is often harder to obtain. Similarly, when considering how many sensors fail­

ures are needed to lose the integrity of a sensor network, a lower bound is also more 

useful. With this is mind, I note a relationship between the spark of a matrix and 

the girth of a vector matroid. Donoho and Elad [16] define the spark of a matrix as 

the smallest number of linearly dependent columns of a matrix. Consider a matrix F 

and M [F] with the indices of the columns as the ground set. The circuits of M [F] 

are all the sets of minimally dependent columns. Therefore, the girth, cardinality of 

the smallest circuit, of M [F] is equal to the spark of F. Also, the cogirth of M [F] is 

equal to the spark of the matrix representation of M* [F], the dual matroid of M [F]. 

Donoho amd Elad [16] provide a bound on the spark of the matrix. So, one could 

use this lower bound as a lower bound on the cogirth of a vector matroid. However, 

the hypergraph developed to describe the cogirth problem-set covering problem re­

lationship can also be used to find a lower bound for cogirth problem. Given the 

hypergraph describing the vector matroid, recall that a transversal of the hypergraph 

is a cocircuit of the vector matroid. Given a graph (hypergraph), a matching is a 

set of pairwise non-adjacent edges (hyperedges). The cardinality of a matching, is a 
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lower bound on the cardinality of the smallest transversal. Therefore, a maximum 

matching provides the highest lower bound for the transversal number. We note that 

the optimal value of the linear relaxation found during the branch-and-cut procedure 

also provides a lower bound. Table 4.4 shows lower bounds using the lower bound 

described by Donoho and Elad and a lower bound provided by the linear relaxation 

of the SCP for the matroids obtained from the test instances. The lower bounds 

obtained from the linear relaxations were obtained using Algorithm 1, and were com-

puted even when Algorithm was not able to solve the SCP to optimality. Note, that 

in each case, the LP relaxation lower bound is better than the one provided using the 

method described by Donoho and Elad [16]. 

I also considered using the formulation presented by Kianfar et al. [23] as a heuris-

tic. Instead of solving the 0-1 MIP as a MIP, for each j E {1, ... , p }, set Zj = 1 

and relax the binary constraints on qi for all i E { 1, ... , n}; i.e., 0 ::; qi ::; 1 for 

all i E { 1, ... , n}. Then, solve the resulting sequence of problems for each Zj. Let 

{zu(l), ... ,Zu(k)} be the k variables from {z1 , ... ,zp} that provide the best k optimal 

values when each of the variables was set to 1. Note k is specified by the user. Since 

~~=l Zj = 1 and Zj is binary for each j E { 1, ... , p}, only one variable is set to 1 in 

each instant. Given these k variables, k 0-1 MIP are solved with the original restric-

tion that qi is binary for all i E { 1, ... , n} and the new restriction Zu(i) = 1 for each 

j E {1, ... , k}. In other words, for each j E {1, ... , k}, solve the following problem. 

. '"'n mzn L..J i=l qi 



42 

-1 + 2Zj ~ X j ~ 1, j = 1, ... , p 

Za(j) = 1 

Table 4.5 has results for k = 5 and k = 10. For test instance 6, I set each Zj = 1 

for all j E { 1, ... , p}, left the qi binary for all i E { 1, ... , n}, and solved each problem 

as a MIP. In all, a total of 252 problems, one for each column of the matrix, were 

solved. The best optimal value found was 16, not 15 as reported by Kianfar et al. [23]. 

This was done by setting Zj = 1 for each j E { 1, ... , p} and setting q 1 , ... , qn as binary 

variables. The opimal value was given with the variable z218 equal to 1. Therefore, 

confirmation of the optimal value for test instance 6 is needed. In Chapter 5, I present 

some concluding remarks and other observations. 
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Matrix H Computation Time 

No. Size (n x p) IPI d* Algorithm 1 Algorithm 2 Alglorithm 3 

1 34 X 12 2 6 56 sees ~ 0 sees 0.08 sees 

2 66 X 27 3 7 > 36000 sees ~ 0 sees 11.59 sees 

3 154 X 72 2 4 > 36000 sees 561 sees 24.54 sees 

4 221 X 55 1 14 > 36000 sees 798 sees 10560 sees 

5 318 X 144 2 4 > 36000 sees 918 sees 54.42 sees 

6 1009 X 252 1 15# > 36000 sees > 36000 sees > 36000 sees 

Table 4.1 : Computational times for Algorithms 1, 2, and 3. #Reported in [23]. 

Matrix H Algorithm 1 Comp. Time 

No. Size (n x p) d* BFS BFS Time Total Time 

1 34 X 12 6 6 3 sees 56 sees 

2 66 X 27 7 7 14 sees > 36000 sees 

3 154 X 72 4 5 248 sees > 36000 sees 

4 221 X 55 14 16 ~ 0 sees > 36000 sees 

5 318 X 144 4 4 1 sees > 36000 sees 

6 1009 X 252 15# 20 13 sees > 36000 sees 

Table 4.2 : Break down of computational times for Algorithms 1. The time for Best 
Feasible Solution (BFS) is the time it took to find the best feasible solution. # 
Reported in [23]. 
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Matrix H Algorithm 2 Comp. Time 

No. Size (n x p) !PI #blocks d* BFS BBDF Time BFS Time Total Time 

1 34 X 12 2 6 6 6 ~ 0 sees ~ 0 sees ~ 0 sees 

2 66 X 27 3 12 7 7 ~ 0 sees ~ 0 sees ~ 0 sees 

3 154 X 72 2 20 4 4 14 sees 1 sees 561 sees 

4 221 X 55 1 12 14 14 ~ 0 sees 5 sees 798 sees 

5 318 X 144 2 38 4 4 151 sees 1 sees 918 sees 

6 1009 X 252 1 43 15# 17 ~ 0 sees 224 sees > 36000 sees 

Table 4.3 : Break down of computational times for Algorithms 2. The time for Best 
Feasible Solution (BFS) is the time the solution was found during the entire algorithm, 
not in a particular block. Except for test instance 6, the value of the BFS was equal 
to the optimal value. # Reported in [23]. 

Matrix H 

No. Size (n x p) d* Spark LB LP Relaxation LB 

1 34 X 12 6 2 3 

2 66 X 27 7 2 3 

3 154 X 72 4 2 3 

4 221 X 55 14 2 5 

5 318 X 144 4 2 3 

6 1009 X 252 15# 2 5 

Table 4.4 : Lower Bounds provided by Donoho [16] and the LP Relaxation. # 
Reported in [23]. 
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Matrix H k=5 k = 10 

No. Size (n x p) d* computed d* Comp. Time computed d* Comp. Time 

1 34 X 12 6 6 1 sec 6 1 sec 

2 66 X 27 7 7 1 sec 7 2 sec 

3 154 X 72 4 4 3 sec 4 8 sec 

4 221 X 55 14 13 9 sec 13 11 sec 

5 318 X 144 4 4 12 sec 4 28 sec 

6 1009 X 252 15# 17 298 sec 17 572 sec 

Table 4.5 : Computational times for Algorithm 3 as a Heuristic. # Reported in [23]. 
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Chapter 5 

Conclusion 

In this thesis, I proposed a branch-and-cut algorithm to solve a set covering 

problem. In turn, the solution to the set covering problem provides a solution to the 

matroid cogirth problem for a vector matroid. Although the algorithm is designed to 

find a solution for the matroid cogirth problem, it can be adapted to find a solution for 

the matroid girth problem. One simply has to flip the values of the binary constraint 

matrix A for the set covering problem. 

The results showed that Algorithm 1 did not perform very efficiently on most of 

the test instances. Some possible reasons are the following. First, as the size of the 

test matrices grew, the size of a basis for the matroid, and the number of bases grew 

as well. The number of significant bases required to solve the probems increased 

and so did the time needed to find them. Also, it was difficult to find cuts from the 

class of inequalities developed by Balas and Ng [6] discussed in Chapter 3 in both 

Algorithms 1 and 2. Therefore, it was harder to reduce the feasibility region using 

these cutting planes. However, the feasible solution exclusion constraints described 

by Beasley et al. [9] were useful in both Algorithms 1 and 2. Algorithm 2 performed 

better than Algorithm 1, but this was due to the number and size of matrices in the 

BBDF of the test matrices. A promising result is that both algorithms were able 
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to find optimal solutions quickly even though they took longer to terminate. This 

was partially due to the number of branch nodes that needed to be pruned in both 

algorithms. Therefore, the algorithms could be manually terminated after a given 

time, and used as heuristics. As I mentioned in Chapter 4, the 0-1 MIP formulation 

presented by Kianfar et al. [23] can be used as a heuristic. In fact, the suggested 

heuristic appears to be accurate for most of the test instances and more efficient than 

just solving the 0-1 MIP formulation as it was originally presented. 

The main goal of this research was to consider a well-known problem from a dif­

ferent perspective. The problem remains difficult to solve. For Algorithms 2 and 3, 

the ability to find cuts for the system of constraints faster is the biggest challenge. 

Even though both algorithms found optimal solutions within seconds, exploring as 

little branch nodes as possible in the both algorithms is also important. Therefore, 

studying and finding good branch rules is also important. The ability of Algorithms 

1 and 2 to find optimal solutions quickly points to the possibility of using them as 

heuristics. Using the 0-1 MIP formulation in a heuristic should also be considered. 

Solving the matroid cogirth problem for vector matroids using mixed integer pro­

gramming techniques appears to be a promising avenue. In any case, ongoing efforts 

to solve this problem using any sort of MIP formulation should focus on finding strong 

valid inequalities for the problem. 
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