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Abstract

Context in Mobile System Design:
Characterization, Theory, and Implications

by
Ahmad Rahmati

Context information brings new opportunities for efficient and effective
applications and services on mobile devices. Many existing work exploit the
context dependency of mobile usage for specific applications, and show
significant, quantified, performance gains by utilizing context. In order to be
practical, such works often pay careful attention to the energy and
processing costs of context awareness while attempting to maintain
reasonable accuracy. These works also have to deal with the challenges of

multiple sources of context, which can lead to a sparse training data set.

Even with the abundance of such work, quantifying context-dependency and
the relationship between context-dependency and performance
achievements remains an open problem, and solutions to manage the
challenges of context awareness remain ad-hoc. To this end, this dissertation
methodologically quantifies and measures the context dependency of three

principal types of mobile usage in a methodological, application agnostic yet



practical manner. The three usages are the websites that users visit, the
phone numbers they call, and the apps (i.e. purchased or preinstalled
applications) they use. While this dissertation measures the context
dependency of these three usage, its methodology can be readily extended to
other context-dependent mobile usage and system resources. This
dissertation further presents SmartContext, a framework to systematically
optimize the energy cost of context awareness by selecting among different
context sources, while satisfying system designers’ cost-accuracy tradeoffs.
Finally, this thesis investigates the collective effect of social context on
mobile usage, by separating and comparing LiveLab users based on their

socioeconomic status.

The analysis and findings are based on usage and context traces collected in
real-life settings from 24 iPhone users over one year. This dissertation
presents findings regarding the context dependency of three principal types
of mobile usage; visited websites, phone calls, and app usage. The
methodology and lessons presented here can be readily extended to other
forms of context and context-dependent usage and resources. They guide the
development of context aware systems, and highlight the challenges and

expectations regarding the context dependency of mobile usage.
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Chapter 1

Introduction

Modern mobile systems such as smartphones and tablets are already
important part of human lives. They are not only computationally powerful
but also have a rich capability to sense their external and internal
environment. Similar to the definition by Schilit et al. in [1], this dissertation
refers to the last known condition of these environments collectively as
context. Context dependency can be broadly defined as a set of strict or

probabilistic rules and relations between context(s) and the outcome [2].

Context has in the past been widely exploited to provide more usable mobile
devices and services, such as through content adaptation [3, 4], user

interaction [5], and information delivery [6, 7]. Context has also been widely

ii



exploited to provide enhanced system efficiency and performance, such as
for energy management [8, 9] and network selection [10]. These designs
exploit the context dependency of mobile usage and/or mobile resources for
specific purposes, and show significant, quantified, performance gains. The
usefulness of context has been so significant that many researchers have
designed and implemented frameworks for the specific task of sensing and

processing context [11-13].

Context aware systems often have to deal with two fundamental challenges.
First: dealing with multiple sources of context is challenging; due to the curse
of dimensionality [14], simply treating them as a multidimensional vector
results in a sparse training set. Second: liberal application of context can
quickly drain the devices battery, as some context sensors are extremely
energy hungry. To address the sparseness challenge, existing work often
limit the number of context sources, e.g. to one [8] or two [9], and/or employ
ad-hoc or expert solutions to combine multiple sources of context, e.g. [10].
To address the energy challenge, they often employ ad-hoc schemes along
one or more of these lines: reducing the frequency of accessing costly context
[15-17], avoiding them altogether [10, 15, 16], or substituting them with

other context [18-21].
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While many existing work exploit the context dependency of mobile usage
for specific purposes, and show significant, quantified, performance gains by
utilizing context, Ad-hoc and application specific approaches towards the
challenges of context awareness mean that the designers need to design and
evaluate a new solution for every context-based system. Furthermore,
existing work stop short of quantifying context-dependency itself, and there
is no clear relationship between their performance achievements and
context-dependency. This dissertation seeks to liberate the mobile system
designer from these challenges, by presenting a formal yet practical
definition of context dependency, which provides insight into the
performance of context-aware applications and services while remaining
application agnostic. This dissertation presents a methodological approach to
the challenges of using different sources of context, while managing their
energy costs by selecting among different context sources while satisfying
the system designer’s cost-accuracy tradeoffs. This work measures the
context dependency of three principal types of mobile usage, using
unprecedented real-life context and usage traces collected from 24 iPhone

users over one year. The mobile usages are websites users visit, the phone
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calls they make, and the apps they launch!. The context information is
obtained from sensors built into the phone (i.e. real-time clock, Cell ID,
Accelerometer, and GPS), as well as the phone’s last known usage states (i.e.

web, phone, and app use).

These findings not only guide the development of future context aware
systems that depend on these principal types of usage, but they highlight the
expectations one should have regarding the relationship between context
and mobile usage. Furthermore, the methodology and lessons learned can be
extended to other forms of context, and context-dependent usage and/or

system resources as well.

Studying context dependency can be extremely challenging, as it needs a
large trace collected in real life user studies. This is enabled by the LiveLab
methodology, which addresses the technical and human factors that
previously limited user studies of this duration and scope, enabling us to
collect unprecedented usage and context data from 24 iPhone users

continuously for one year. A key component of LiveLab is a reprogrammable

1 Note that this dissertation uses the word app and application differently. App is used to
refer to applications that are installed on the phones, either built-in or obtained from the
App Store. Application is used to refer to its more general meaning, i.e. use case. Similarly,
application agnostic refers to multipurpose, not dedicated to a single service or purpose.



in-device logger designed for long-term field studies with minimum energy,
usability and privacy intrusions. While extensive logging of PC usage has
been reported in past literature, privacy concerns and more importantly
battery lifetime have limited the scope of mobile phone based studies in the
past. LiveLab overcomes these challenges by its careful design and
implementation, and demonstrates that such logging, if done properly, is

indeed possible on modern mobile phones.

Towards quantifying the context dependency of mobile usage and optimizing

its cost, this dissertation makes five technical contributions:

First, it identifies estimation accuracy based on maximum a posteriori (MAP)
estimation as an application agnostic yet practical measure for context
dependency. In contrast with other theoretical metrics that are applicable
applied to multinomial data, such as entropy as a measure of uncertainty and
pseudo R square as a measure of correlation, estimation accuracy provides
practical insight into the performance of many potential applications, while
remaining application agnostic. To allow the efficient calculation of posterior
probabilities, the performance of several methods of categorizing and
binning context measurements into a limited number of categories are
presented, for both continuous and discrete context sources. Furthermore,

the challenge of data sparseness when dealing with multiple sources of
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context is addressed by presenting and comparing several prominent

classifier combination methods.

Second, using the LiveLab data set, this dissertation presents a series of
interesting findings regarding the context dependency of mobile usage, as
follows: 1) The effectiveness of different context varies based on the usage to
be estimated, as well as the number of accepted responses. Yet, combining
multiple sources of context uncovers their combined strength. 2) Even
though multiple context sources are dependent, Bayesian Combination
performs well for combining context information. 3) The context-
dependency of usage remains relatively constant even for durations of one to
three months, instead of the full 12 months. This indicates that a smaller data
set would be sufficient for context-awareness. 4) Supervised Binning can
greatly increase estimation accuracy by keeping a large number of samples in
each category or bin, while allowing fine molding of the bins. 5) Even though
users are diverse in their usage, substantial context dependency can be

observed among all of them.

Third, this dissertation presents SmartContext, a framework to dynamically
or statically optimize the cost-accuracy tradeoffs of context awareness, while
ensuring a minimum accuracy for each estimation event. SmartContext takes

advantage of the classifier combination algorithms explored in Chapter 4.2.2

vii



that have little overhead, starting with context information that is less costly.
SmartContext moves on to more costly context sources only if they are
necessary to meet the system designer’s cost-accuracy tradeoff. It is shown
that by utilizing energy hungry context only at uncertain times, SmartContext
can achieve an estimation accuracy within 1% of the maximum possible

accuracy, while significantly reducing energy costs, by 60% or more.

Fourth, this dissertation presents and evaluates several sample applications
that benefit from context dependency of mobile usage. These applications
highlight the practical value of estimation accuracy as a measure of context
dependency, and attest to the effectiveness of context for estimating usage.
The best performing methods presented here, i.e. using Supervised Binning
and Bayesian combination, consistently outperform common non-context-

based methods.

Fifth, this thesis investigates a different form of context, social context, to
measure its effect on mobile usage. To this end, the LiveLab users are
separated into two carefully selected, distinct, socioeconomic groups, and
their collective usage patterns are analyzed and compared. These findings
provide researchers and system designers with a better understanding of
how users vary, resulting in better support of a broader range of individuals

with different backgrounds, capabilities, skills and interests.
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Chapter 2

Related Work

Prior literature (e.g. [2]) refers to context dependency as a set of strict or
probabilistic rules and relations between context(s) and the outcome.
Context information itself has been referred to knowledge regarding the
location and identity of the user and its surroundings [22, 23]. A more
accurate and broad definition of context information is given by Dey and
Abowd, as “any information that can be used to characterize the situation of

an entity” [24].

Context information has in the past been widely used for specific applications
and system mechanisms. They depend on the context dependency of device

usage and resources, and show significant, quantified, performance gains by



exploiting context. The usefulness of context has been so significant that
many researchers have designed and implemented frameworks for the
specific task of sensing and processing context, and for determining user
state from context information. Each of these is covered in detail in this

section.

These designs and others depend on the context dependency of device usage
and resources, and show significant, quantified, performance gains by
exploiting context. This dissertation picks up where the above efforts stop
short; it presents a formal definition of context dependency, as well as
practical methods to calculate it, using one or multiple sources of continuous
or discrete context. This dissertation abstains from focusing on a single
application, yet provides practical insight into the relationship between
context-dependency of three principal types of mobile usage, i.e. website,
phone call, and app usage, and performance achievements of individual

applications and services.

2.1. Applications and services utilizing context-awareness

Context information has in the past been widely used for specific applications
and services. Such efforts can typically be grouped into several categories, as

below. These works often use context information to estimate certain usage,
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resources, or conditions, which can collectively be called as outcome
variables. Such work attest to the usefulness of context for various
applications and services, and show significant, quantified, performance
gains. Yet, these works often do not provide much insight into how context-
dependent is their outcome variable. Even worse, the close-to-ideal
performance gains of such applications might create a false illusion that their
dependent variable is extremely context dependent. In contrast, this
dissertation provides an in depth analysis on quantifying context-
dependency itself, in particular for three principal types of mobile usage, i.e.

website, phone call, and app usage.

2.1.1. Context-based adaptation

Context information is often used to adapt application contents and device
settings. Location based services are one of the most popular context-aware
applications that adapt their content and elements according to context. A
tourist guide is probably the most researched of location based applications.
In [7], Cheverest et al. present and evaluate a such an application that
provides navigation tools as well as traditional tourist information. In [25],
Schwinger et al. survey a number of tourist guide applications. Location
awareness enables many other applications as well. For example, in [6],

Marmasse and Schmandt present comMotion, a location based reminder
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system that provides user-defined and/or predefined content according to
the device’s location. In [26], Chen and Kotz survey many other, older,
applications, such as a virtual shopping assistant application and
infrastructure from Asthana et al. [27] in the early 1990s that utilizes the

customers location within a store.

Context-aware application and services that adapt their content and
elements according to context are not limited to location-based applications.
For example, in [3], Lemlouma et al. present semantics that allow the
adaptation of web content according to the capabilities and context of the
mobile device. As another example, in [4], Kane et al. adapt the size of user
interface elements according to the user’s motion, choosing larger elements

when the user is moving.

Adapting device settings is another application of context information.
Examples include [28], by Schmidt et al., which detects the phone’s state, e.g.
in hand, outside, on a table, and adjusts the ringer volume and vibration alert
accordingly. The Smart Actions functionality of the newly released Motorola
Droid Razr phone [29] is a commercial example. It provides built-in support
for such adaptations; the user can specify certain settings to be changed, or
apps to be run, automatically according to certain context, such as location

and time.
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2.1.2. Context-based system services

Context-based system services are often geared towards improving the
efficiency or performance of the mobile device, either automatically or by
providing information or mechanisms to individual applications. The most
common of such work focuses on network services, taking appropriate
actions based on context, such as selecting the best wireless interface, route,
or time for data transfers. Most of the research focusing on predicting
network associations and/or conditions utilizes only same network
conditions as the predictor (context). For example, in [30], Lee and Hou
utilize semi-Markov models to predict the Wi-Fi access points users will
associate to, and the duration they will remain associated, based on their
history of Wi-Fi associations. They show that utilize this predictions, it is
possible to load balance among access points, reducing the maximum access
point load of their sample traces (the association history of WLAN users at

Dartmouth college [31]) by three fold.

Nicholson and Noble also utilize Markov models [32], to predict short term
(10s of seconds) Wi-Fi performance according to location indicators derived
from visible Wi-Fi access points. They evaluate their system for streaming

media, and uploading delay tolerant content.
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Still, other work focus on estimating and predicting current and future Wi-Fi
network conditions without probing the Wi-Fi network, using other context
as predictors. In particular, the work by Rahmati and Zhong show that
selecting between cellular and Wi-Fi networks using estimated Wi-Fi
network conditions instead of measuring the conditions can significantly
improve device energy efficiency [33]. Using their field study collected traces,
they showed that context information such as time, visible cellular towers,
and motion, can produce energy savings up to 90% of the ideal case for data
transfers typical of a health monitoring application. The ideal case is defined
as if the device knew Wi-Fi conditions without any energy cost. Furthermore,
they showed that it is possible to predict Wi-Fi availability for one and ten

hours into the future with 95% and 90% accuracy [10].

There have been many other system services, beyond predicting network
conditions, presented by the research community as well. For example,
Cugola and Migliavacca in [34] show that context information regarding
mobile users, such as the location and movement, can be utilized instead of

fixed addresses to route packets.

Other researchers have focused on using context information to manage the
energy characteristics of mobile devices. For example, in [35] and [36],

Rahmati et al. studied how smartphone users interact with their limited

14



battery capacity of their devices, and found, among other things, that many
recharges happen according to the user’s context, with significant remaining
battery, challenging the conventional wisdom that a longer battery lifetime is
always desired. These finding motivated the design and implementation of
context-driven energy management in [8], by Banerjee, Rahmati, et al, where
the phone adapts its energy management policies based on each user’s
charging behaviors and remaining battery levels. It takes advantage of the
often unused battery capacity to increase the performance and usability of
the mobile device. Similarly, in [9], Ravi et al. study the use of a wider range
of context information for adapting the energy management policies of

mobile phones.

2.1.3. Determining user state using context

There has also been considerable research on determining user state from
context information. While device usage can clearly be influenced by the
user’s state, this dissertation abstains from extracting user state as an
interim stage, and instead focuses on the direct relationship between device

usage and context information.

One example of extracting user state from context information include

extracting physical activity, such as the work by Bouten et al. in [37], where
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they extract daily physical activity from accelerometer readings. Another
recent example if the work by LiKamWa et al. in [38] where they extract the
users emotional mood in terms of pleasure and activeness from context

information, with over 90% accuracy compared to self reported mood.

User state can be itself be the goal, or may be further utilized for implicit user
interaction with computers. Implicit user interaction, as defined by Schmidt
in [5], as input based on users actions that are not primarily aimed to interact
with the computer. Accordingly, Schmidt champions for an XML language to
enable implicit interaction with computers. Schmidt also presents a sample
app, a context aware notepad that adapts its display according to a user’s
context, at times increasing the contrast, font size, and/or hiding the text for

privacy.

2.1.4. Temporal analysis of context

There has been considerable research on utilizing a time series (stream) of
context, often using semi-Markov models. The stream of context is often used
to predict the next state of the context itself, or the future usage or state of
another system resource. Typically, these efforts can be seen as extracting
hidden states of the user’s mind based on a history of context. This

dissertation is orthogonal to these efforts, focusing on the current context,
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defined as the last known context of the user, irrespective of prior context

states.

The most common of such work focuses on wireless networks. For example,
in [30], Lee and Hou utilize semi-Markov models to predict the next Wi-Fi
access points users will associate to, and the duration they will remain
associated, based on their history of Wi-Fi associations. Similarly, in [39],
Laasonen predicts the order of future cellular associations using semi-
Markov models. Along the same lines, in [40], Rathnayake et al. compare
semi-Markov models with Dynamic Bayesian Networks (DBN), and show that
DBN outperforms semi-Markov models by 20% for the prediction of Wi-Fi

availability five minutes into the future.

As network conditions and location are strongly correlated, many other
similar work focus on the intersection of mobile user mobility models and
predicting future wireless network associations. In [41], Song et al. focus on
methods to predict the order of appearance of Wi-Fi access points
(irrespective of actual time) using the same traces, and show the efficacy of

semi-Markov models.

Using Markov models has its drawbacks, for example it requires exponential

processing when predicting the time for future events [42]. Consequently,
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alternatives to Markov models have been proposed and evaluated for the
prediction of stream states. In particular, Peddemors et al. in [43] offer a
through treatment of that area. In that work, the authors calculate the
conditional probability of events, in particular the time and access point of
future Wi-Fi associations, according to sensor (context) predictors. Note that
processing large stream data sets of higher orders of depths is itself a
challenge. The work in [44] by Aggarwal et al. addresses this issue, and

provides an in-depth analysis.

2.2. System implications of context-awareness

2.2.1. Frameworks for sensing and processing context

The usefulness of context has been so significant that many researchers have
designed and implemented frameworks for the specific task of sensing and
processing context. These work attest to the significance of context. One such
example is the work by Kranenburg et al. in [11], where they present a
context-processing framework that offers a single heterogeneous interface to
multiple, hierarchic context sources. ContextPhone by Raento et al. [45] also
focuses on simplifying the development of context-aware applications and
services by providing a single, uniform interface to context information

available on Symbian smartphones. Another example is the work by Wood et
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al. in [46], where they present a context processing middleware tailored for
networked entities, such as in sensor networks. Their protocols allow
distributed queries while supporting power management. Another more
recent example is the work by Lee et al. [12], where they present a generic
framework for both gathering and processing context information from a
variety of sensors. For a survey of frameworks for sensing and processing
context information, see Baldauf et al,, “A survey on context-aware systems”

[13].

2.2.2. Energy efficiency in sensing context

A number of recent research have focused on reducing the cost of acquiring
context. These work attest to the challenge of energy efficiency in context
awareness, but typically focus on single applications and/or static
configurations. They use one or more of the following three techniques to
reduce energy cost, while retaining acceptable performance. First, frequency
reduction reduces the sampling frequency of energy hungry context sensors.
Second, sensor substitution utilizes lower energy cost context instead of
energy hungry ones. Third, sensor elimination attempts to use a subset of
sensors. Chapter 6 of this dissertation takes the third approach, but provides
a generic framework for system designers to dynamically or statically

optimize the cost-accuracy tradeoffs of context awareness.
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To this end, in [17], Wang et al. attempt to reduce the frequency of sensing
for phone motion detection using accelerometer readings, and for
discovering nearby phones. They show that while user state changes are not
fully Markovian, by assuming such and using an optimal Markov policy, they

can reduce sampling frequency by 20% compared to uniform sampling.

Both Zhuang et al. in [15] and Paek et al. in [16] propose to reduce the energy
cost of GPS localization by reducing the frequency of GPS sensor readings as
well as employing network based positioning. Additionally, Paek et al. utilize
network localization to detect when the GPS is unable to acquire a lock, and
disable it entirely in those situations to avoid wasting energy. On the other
hand, Zhuang et al. utilize the accelerometer to detect device motion,

disabling the GPS when no motion is detected.

A number of recent researches have focused on sensor on sensor elimination
for specific applications. For human physical activity detection, typically
using a number of accelerometers placed on various parts of the body, in
[18], Panuccio et al. attempt to reduce the cost of using sensors with different
but fixed costs. They sequentially eliminate sensors with a high cost vs.
weight for a specific activity the system is interested in classifying, while
maintaining a preset average performance, and show a different subset of

sensors are sufficient depending on what activity the system wants to
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detecting. In [19], Zappi et al. also automatically select a subset of
accelerometers, but attempt to minimize the number of utilized
accelerometers instead. They can select a different set of sensors depending
on the activity the system wants to detect, and can cope with a changing
available pool of accelerometers to account for battery depletion, etc. In [20],
Kang et al. attack a similar problem, but instead of focusing on one activity of
interest, use a state transition model for human activities and only enable
sensors that are necessary for identifying transitions out of the human’s
current state. For the purpose of user state and activity detection using a
wider range of sensors available on mobile devices, in [21], Wang et al.
present a framework for energy efficient, hierarchical sensor access while
maintaining high accuracy. In contrast to the application specific approaches
employed in the above work, and their static sensor selection for each
classification event, this desertion methodologically addresses a more
general and fundamental problem for energy efficient context awareness, to
dynamically inform the system designer of the expected cost-accuracy
tradeoffs of classification events, and allow them to dynamically choose their

tradeoffs requirements, even during each classification event.

A more general problem of selecting the most effective subset of sensors, also

referred to as observations or predictors, has been the focus of decades of
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research in the artificial intelligence and operations research communities.
These work focus on the optimization of information, typically defined as
either joint entropy or information gain (delta entropy). It is common
practice to use the greedy (myopic) solution towards this selection problem
[47-50], due to the processing complexities of finding the optimal solution
[51-53]. Fortunately, based on the submodularity property of the
information gain from multiple observations [54], existing work prove that
greedy solutions are near-optimal, with provable constant factor
performance guarantees for both unit cost [54] and different cost sensors
[47]. SmartContext, in Chapter 6, is built upon the greedy solution provided
by Krause et al. [47], but is adapted according accordingly, in particular using

estimation accuracy instead of information gain.

2.3. Studying Mobile Usage in-situ

2.3.1. Phone Logging

There has been several research reported in literature that has focused on, or
utilized phone logging, Compared to LiveLab, they collect very limited
context information, or can only be used for shorter studies, due to privacy

concerns and battery lifetime limitations that LiveLab overcomes.

22



In [55], Froehlich et al. present MyExperience, a framework for collecting
sensor and survey data on Windows Mobile devices. The framework
supports collecting data and in-situ surveys according to context triggers,
such as time and phone use, through an XML interface. They focus on
evaluating the efficacy of MyExperience for in-situ surveys, and show a
battery life reduction of 12% with 20 surveys per day without collecting
energy consuming context data such as from Bluetooth and GPS sources. A
more limited form of in-situ surveys have been proposed earlier by Intelle et
al. in [56]. Banerjee, Rahmati, et al. have used in situ surveys in field studies
in [8]. In contrast, and orthogonal to those efforts, LiveLab focuses on
enabling long term field logging with an unprecedented amount of context
information, possibly reducing the need for in-situ survey data for some

studies.

The Reality Mining project, presented in [57] by Eagle and Pentland is one of
the largest phone data logging efforts to date, covering 100 Symbian phones
over the course of nine months. Reality Mining is in part based on
ContextPhone [45], described prior, and periodically records call logs, visible
cell IDs, visible Bluetooth devices, and charging status. The same authors
later show that device usage patterns are indeed structured and predictable

[58].
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In [59], Falaki et al. deploy a custom logging utility on the phones of 33
Android users, capturing detailed usage data regarding screen status
(on/off), app usage, network traffic, and energy drain. They also use another,
closed, dataset from 222 Windows Mobile users containing screen status and
app usage only. They find that mobile usage is indeed extremely diverse.
However, lacking further information, and in particular context
measurements, they are unable to extract order among the diversity or

capture the context dependency of mobile usage.

In [60], Rahmati et al. present a four month field study with 14 participants
from Pecan Park, an underserved neighborhood of Houston, TX. The Pecan
Park Study was based on a prior pilot study with the same phone and logger
[61]. The logging recorded comprehensive Wi-Fi, cellular, and battery traces,
but only minimal usage information for privacy reasons. Instead, the authors
relied on qualitative self reporting through focus groups for usage
information. The Pecan Park study further highlighted the challenges and
importance of long-term, holistic studies of mobile devices and services
under real-life settings. By addressing privacy concerns, building upon the
lessons learned from the Pecan Park study, and taking advantage of the

continuous improvement of smartphone hardware in terms of sensors and

24



energy efficiency, the LiveLab methodology records detailed usage data along

with even more context data.

Furthermore, to the best of the author’s knowledge, all existing smartphone
loggers in literature, including the ones reported above, employ a static
installation method and are therefore difficult to update or maintain.
However, as highlighted previously in [60], new research hypotheses
develop when data are collected from mobile users in the field. This requires
the in-device logger to be updated frequently to collect new data. LiveLab, on
the other hand, is updates itself automatically every day through an

encrypted connection, if necessary.

Finally, the author highlights that there have recently been reports of closed
source loggers, namely CarrierlQ [62] that log an unspecified amount of
usage details without obtaining users consent in multiple phone platforms,
including the iPhone. While the exact details of CarrierlQ are still unclear, the
logger apparently has been installed with the cooperation of US phone
carriers [63]. The sensitivity caused by such reports highlights the privacy
challenges of long-term logging, while the scale that it has been used

highlights the value of such data logs.
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2.3.2. Effects of Social Status on Mobile Usage

Understanding user diversity has been a central tenet of human-computer
interaction (HCI) research [64]. Previous studies have shown that
Socioeconomic Status (SES) differences are important to consider for the
design of other technologies. In [65], Goel et al. revisited the digital divide
and found, among other differences, that SES difference drove how
frequently web pages were accessed. Individuals in lower SES brackets
accessed the web more than their higher SES peers. Similarly, Tossell, C.,
along with the author, found that lower SES users of iPod Touch devices who
had less access to other technologies used their iPod Touch substantially

more for activities commonly used on PCs [66].

In contrast, Chapter 7 of this dissertation investigates social context to
measure its effect on mobile usage. It analyzes and compares the apps and
websites used by two carefully selected distinct socioeconomic subgroups,
collectively. These findings provide researchers and system designers with a
better understanding of how users vary, resulting in better support of a
broader range of individuals with different backgrounds, capabilities, skills

and interests.
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Chapter 3

Background and Motivation

Context has in the past been widely exploited for individual applications and
system services, providing improved efficiency and performance. In this
section, as a motivation, this dissertation presents the author’s prior work
that employs context and limited long term user studies. It then presents
LiveLab, our solution to collecting long-term usage and context traces from

real-world user studies.

The author’s prior work attests to the value of context by calculating and
measuring significant, quantified, performance gains by employing context
information. Yet, the fundamental question of quantifying and measuring the

context dependency remained. Furthermore, obtaining context information
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often incurs a significant energy cost. This has encouraged many researchers
to substitute lower cost context for energy hungry ones, or propose various
mechanisms, sometimes themselves context based, to reduce the frequency

of accessing context.

On the other hand, studying context dependency directly itself can be
extremely challenging, as it needs a large trace collected in real life user
studies. While extensive logging of PC usage has been reported in past
literature, privacy concerns, and more importantly, battery lifetime
limitations, have limited the scope of mobile phone based studies in the past,
making such a study on context dependency previously impossible. The
LiveLab methodology demonstrates that through the it’s careful design and
implementation, it can overcome the privacy and energy challenges on

modern mobile devices, enabling long term logging of unprecedented data.

3.1. Context Dependency of Network Resources

In Context-for-Wireless [10, 33], the author explored the context dependency
of network resources. This would, in turn, allow the system to automatically
select between cellular and Wi-Fi for any given data transfer, without having

to power up and probe the Wi-Fi network, significantly improving the energy
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efficiency of mobile Internet. The context information included prior Wi-Fi

conditions, time of day, cellular network conditions, and device motion.

Using real-life network and context traces the authors collected in a two
month user study, they devised effective algorithms to learn the conditional
probability distribution of Wi-Fi network conditions, given context
information. With the conditional probability distribution, the authors
formulated wireless data transfer through multiple interfaces as a statistical
decision problem, and showed that Context-for-Wireless can improve the
average battery lifetime of a commercial smartphone by 30 to 40% for
Electrocardiogram health reporting, close to the theoretical upper bound of
the traces at 42%. The authors further demonstrated that it is possible to
predict Wi-Fi availability for 1 and 10 hours into the future with 95% and
90% accuracy, respectively. The authors’ experimentation using a proof-of-
concept device confirmed these findings, showing a 35 percent improvement

in battery lifetime.

3.2. Context Dependency of Smartphone Usage

In addition to the traces the author collected through a field trial for Context-
for-Wireless, the author carried out a longitudinal field study over four

months with 14 teenagers from Pecan Park, an underserved community in
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Houston, TX, where an open-access Wi-Fi network is available [60]. The
authors used lessons learned from their previous user studies to devise a
logger with minimal usability and privacy issues. Consequently, the findings
and traces, while groundbreaking, were severely limited in scope. For
example, in order to satisfy privacy concerns, the logger only recorded
display on/off status as a measure of usage, instead of detailed recordings.
The authors resorted to qualitative focus groups and other forms of self-
reporting to amend the logs and enable groundbreaking results. From a then-
unprecedented amount of qualitative and quantitative data, including focus
groups, interviews, and in-device logging, the research suggested that

smartphone usage is context-dependent.

In addition to self-reports of increased usage (or the non-usage) of certain
apps in certain places and contexts, the Pecan Park study traces provided
quantitative evidence for the location dependency of app usage. The logging
software recorded visible Wi-Fi access points, and they were used to cluster
the most visited access points into unique physical areas while maintaining
user privacy. Figure 3.1 shows the average number of non-voice sessions per
hour and the average session length at each location, respectively, for ten
participants with sufficient data. It shows that most of users had significantly

different usage characteristics at each participant’s top locations, in terms of
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average session lengths and/or sessions per hour, hence their usage was

location dependent.

The Pecan Park study also highlighted the importance, and the
implementation, organization, and privacy challenges of long-term, holistic
studies of mobile devices and services under real-life settings. The findings
and lessons learned from the Pecan Park study, as well as the continuous
improvement of smartphone hardware in terms of sensors and energy

efficiency, enabled the LiveLab methodology, as will be presented next.
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Figure 3.1 - Usage patterns of the Pecan Park participants. Areas 1 to 3
denote the top three location clusters where each participant spent
their time, and were calculated for each participant separately.
Locations that could not be classified due to lack of visible Wi-Fi access
points are shown collectively as ‘No Wi-Fi’. Whiskers indicate 95%
confidence intervals.
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3.3. LiveLab: Collecting long term context in-situ

This dissertation is enabled by the LiveLab methodology, which enables us to
collect unprecedented usage and context data from 24 iPhone users
continuously for one year. LiveLab addresses the technical and human
factors that limited prior user studies of this duration and scope. The key
component of LiveLab is a reprogrammable in-device logger designed for
long-term field studies with minimum energy, usability and privacy

intrusions.

3.3.1. Participants

The 24 LiveLab participants were young college students with an average
age of 19.7 years (SD =1.1 years), and the study lasted from February 2010 to
February 2011. These 24 balanced participants were recruited from two
distinct socioeconomic status (SES) groups from a small private university at
a major metropolitan area in the USA. They all lived on campus in
dormitories. Because the university provides needs-based scholarships to
lower-income students, this information was used as a proxy to separate the
participants into two groups. 13 received need-based scholarships, and their
household income was under $60°000. 11 users did not receive scholarships

and their household income was over $80°000. Other factors, including their
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major, gender, race, PC access, and game console ownership, were balanced
across groups. All had a PC or laptop at their residence, in addition to access
to the university’s computing labs. 11 of the low SES and all high SES

participants had a personal laptop.

Every participant received a free iPhone for their participation, and was
required to use the outfitted iPhone as their primary device for the entire
year. Additionally, each participant received free service coverage, including
450 voice call minutes per month, unlimited data, and unlimited SMS during
the study. All participants were assisted in porting their phone numbers to
the iPhones. The participants were not given specific instructions on how to

use the device, other than to use it as they would normally use their phones.

3.3.2. Logger Design and Implementation

The key component of the LiveLab is an in-device, field modifiable logging

software that collects usage and context in situ.

To run the iPhone logger in the background continuously, it was necessary to
jailbreak the iPhone 3GSs and exploit a setting provided by the iOS to start
the daemon process on boot, as well as restart the daemon process anytime it
is killed. The main logger daemon is written as a bash shell script and utilizes

components written in various languages, including C, Perl, awk, SQL, and
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objective C, altogether comprising ~2000 lines of code. Furthermore, the
logger daemon is able to call built in functions, manage child processes,
install and use programs from repositories, run custom programs, and add
new features. The LiveLab logger is implemented in a modular and robust
fashion, thus new iOS releases may break individual components, but the
main functionality will not be affected. In order to monitor and update the
logger, it is programmed to report data and, if necessary, update itself every
day through an encrypted connection, via rsync [67], to a lab server. Over
the course of the study over 20 automatic updates were deployed to fix bugs,

add functionality, and conduct temporary experiments.

The logger records a plethora of context information, as shown in Table 3.1.
However, this dissertation focuses on logs regarding usage and context. The
visited websites, apps used, and phone calls are recorded by the phone’s
operating system, and the logger piggy-backs on the phone’s logs by
periodically recording them. Further, whenever the phone’s CPU is not
asleep, at 15 minute intervals, the logger records the iPhone reported
location, the cell tower the phone is associated to, and a 15 second recording
from the accelerometer at 25hz. The GPS location data is collected using
Apple’s provided framework, which reports the GPS location if available, and,

if not, the estimated location based on visible cell towers and strengths; both
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methods provide an estimated accuracy. The logger attempts to retrieve the
location until the accuracy is less than 100m, or the location has been
updated (by the framework) 3 times, in order to avoid running continuously
when a GPS lock is unavailable, yet still retrieve accurate location data. For
cell ID location, the logger queries the phone’s GSM modem using the AT
command set, returning the single, currently associated cell ID. The data is
recorded on the phones, and is transferred nightly to our servers in a secure
fashion. The logger has recorded thousands of usage samples through the

year-long study, as presented in Table 3.1 and Table 3.2.
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Table 3.1 - Usage and context data collected through LiveLab

Item Privacy method Logging Energy per
method measurement
Call logs and Address Book 1-way hashing Piggy-back 0
SMS, Email feature extraction, Piggy-back 0
hashing
Web History 1-out-of-n Piggy-back 0
Installed programs and media 1-out-of-n Piggy-back 0
Captured media, e.g. photos, videos, 1-out-of-n Piggy-back 0
and voice
battery / charging status 1-out-of-n Interrupt negligible
App. launches; changes to 1-out-of-n Interrupt negligible
foreground app.

GPS Location 1-out-of-n Interval (15 min.) 50 J to 300 J
Accelerometer reading 1-out-of-n Interval (15 min.) 1.65J
Currently running processes 1-out-of-n Interval (15 min.) negligible
Cell ID, signal strength 1-out-of-n Interval (15 min.) 1.2J
Wi-Fi Access Points 1-out-of-n Interval (15 min.) 1.5J
Network bandwidth, latency 1-out-of-n Interval variable

Table 3.2 - Number of usage data samples collected through LiveLab

Type of usage Total samples Mean samples per user
Websites visited 17,000 700
Phone calls 54,000 2,300
Applications launched 508,000 21,200
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3.3.3. Privacy Challenges

Collecting data from smartphones in the field naturally incurs privacy issues.
In order to collect valid data, these issues must be investigated and
addressed in an acceptable manner. To this end, the particular concerns of
the participants were investigated prior, and traditional as well as novel
methods were employed to address the participants’ concerns, in particular

the novel method of partitioning.

Before even beginning the deployments, we conducted several interviews
with all of the potential participants. We discussed the logger with the
participants in depth at a formal meeting in order to develop a better
understanding of their particular privacy concerns and the information they
are unwilling to have logged. Not surprisingly, we found that participants’
biggest concern was regarding their identity. That is, participants do not
want researchers to be able to associate their identities with their data.
Surprisingly, they are not concerned about some potentially sensitive data
being collected as long as the data is not directly linked to their identity. The
participants were fine with a 1-out-of-n anonymity for much of the data we
originally considered private, including GPS location and Web access history.
In contrast, they wanted more privacy regarding other items, such as the

contents of emails and messages, as well as the identities of their phone
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contacts. However, we found that they are comfortable with the on-device
feature extraction and/or hashing performed by the logger, as long as the

raw data is never stored on disk.

Based on these finding, we designed and employ the following methods to
protect user privacy while retaining relevant information for research. First,
we partitioned the research team so that the data analysis and logger
development team do not know or directly interact with the participants, in
order to avoid linking data to the actual users. A separate human factors
team acts as the interface with the participants but does not deal directly
with the logger or access the raw data. This enables us to contact the
participants in a privacy sensitive manner, which we have found to be
necessary on numerous occasions, e.g., to schedule impromptu interviews
with users who exhibit a drastic change in behavior. To the best of the
author’s knowledge, knowledge, LiveLab is the first to propose and
implement partitioning to address the privacy challenges of data logging in
user studies. Second, LiveLab performs feature extraction and one-way
hashing on the phone itself, to preserve the important information and the
uniqueness of a data entry without even storing its content. For example, by
hashing phone numbers, we can construct call statistics without knowing the

actual phone numbers. As another example, the logger extracts and stores
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statistics regarding text messages, such as their length, number of words and

emoticons, without storing their actual content.

3.3.4. Energy Challenges

Collecting data from smartphones in the field naturally incurs power
overhead and reduces battery lifetime. Significantly reduced battery lifetime
is likely to impact usage, thus the usage data would not accurately reflect
user behavior in real life [35, 60]. Therefore, we need to carefully consider
and mitigate the energy impact of the logger. The LiveLab design
simultaneously aims for improving the energy efficiency of logging, while
improving the accuracy and usefulness of the collected data. We utilize three

main concepts in this regard:

First, LiveLab minimizes the energy overhead of logging by using built-in logs
and interrupt driven data collection whenever possible. For all data
collection, we have attempted to utilize, in order, 1) built-in, always running,
logs, 2) interrupt driven logging, and 3) polling based logging. By using built-
in logs we incur only the power overhead of reporting the data. For events
that are not logged automatically by the platform, such as power state

changes and app launches, we leverage interrupt based logging. For items
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that we can’t log continuously, due to the power overhead, such as location

data and accelerometer data, we poll at regular intervals.

Second, for items that are infeasible to continuously monitor, such as location
and accelerometer data, LiveLab attempts to maximize the utility of the
collected data by only logging them when the phone’s CPU is active, i.e. the
phone is being used. This further reduces the overhead of running the logger,

since the CPU is running anyway.

Third, since the periodically logged items are energy-expensive, e.g. GPS
readings and bandwidth measurements, LiveLab optimizes the logging
interval in order to maintain a reasonable battery life. In order to find a
reasonable tradeoff, we utilize the energy measurements in Table 3.1. Based
on the iPhone battery capacity of 1200 mAh at 3.7V, we calculate the energy
capacity of the iPhone battery at 16 k]. Consequently, every time that the
logger collects the energy hungry polled data, 0.3% - 1.8% of the battery
capacity is consumed. We target an average battery consumption of 10% per
day. Therefore, we chose the 15 minute interval to achieve that target for 3-

hours per day phone usage duration.

Note that, for many purposes, such as network performance measurements,

the long duration of the field trial reduces the need for frequent
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measurements. The rationale is that a longer duration will allow the data to
be collected at more times of the day and more locations. While such data
will not be able to catch certain temporal dynamics, e.g. the location trace of a
user in a given day, they still retain key statistics regarding the user and

network behavior.

3.4. Collected Data

3.4.1. Usage

For all three principal types of mobile usage (phone calls, web usage, and app
usage), the number of usage categories that are considered are limited to
100. This simplifies data processing, and can even increase accuracy by
reducing usage cases with too few samples. The number 100 was chosen

based on the CDF of usage, covering 87%, 93%, and 99% of web, phone, and

app usage.

This dissertation considers web usage as the independent websites a user
visits, as presented by their domain names. Each visited domain is one entry,
irrespective of the number of web pages under that domain. This would
include the top level domain (TLD) and the first hierarchical subdomain, e.g.

www.example.com/url/ would be counted as example.com. For phone calls,
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while the logger does not record actual phone numbers, it records a one-way
hash that uniquely identifies each phone number. All phone calls are
considered, including ones that have a length of zero, indicating no
conversation. For app usage, this dissertation considers all apps the user
utilizes, including built-in ones and those obtained from the App Store. The
home screen, however, is not considered as an app, even though it is
implemented as an app on the iPhone platform. Note that this dissertation
uses the word app and application differently. App is used to refer to
applications that are installed on the iPhone, either built-in or obtained from
the App Store. Application is used to refer to its more general meaning, i.e.
use case. Similarly, application agnostic refers to multipurpose, not dedicated

to a single service or purpose.

3.4.2. Context

This dissertation considers several sources of context in two broad
categories; sensor context that is sensed through the phone sensors, and
usage context that is last known usage state of the phone. The sensor context
this dissertation utilizes are time&day, movement (accelerometer power),
cell ID location, and GPS location. The usage contexts this dissertation utilizes

are the prior visited website, phone call, and app.
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For time&day, this dissertation separates weekends and weekdays, but
otherwise treat days as the same. Separating weekends from weekdays not
only makes intuitive sense, but testing on the LiveLab dataset indicated that
it performed better than treating all days the same. Therefore, with a one-
minute resolution, time&day is a continuous number between 0 and 2880, to

account for a two day period (a weekday and a weekend).

For movement, this dissertation calculates the log of the power of the
accelerometer readings. The rationale of utilizing the log of power, instead of
absolute power, is the distribution of power readings that is close to the
power law. More than 99% of the log(p) entries fall between 0.1 and 10000,

and the range is therefore limited accordingly.

For GPS location, this dissertation utilizes the most accurate location
provided by the iPhone API, which is provided in the geographic coordinate
system, i.e. latitude and longitude. For cell ID location, this dissertation

utilizes the (single) cell ID reported by the iPhone’s GSM modem.
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3.5. Data Processing

Due to the extremely large size of the LiveLab logs, it is often necessary to
process them sequentially. Therefore, the tools to process them were mostly
developed by the author using the Perl language and Bash scripts. The author
also took advantage of several open source tools to help process the logs, as

follows.

The popular database, PostgreSQL, was utilized to store, access, and
preprocess the LiveLab data. PostgreSQL is an object-relational database
management system (ORDBMS) developed by the PostgreSQL Global
Development Group, consisting of community volunteers and employees

throughout the world [68].

The popular clustering package, Cluster 3.0 [69] was utilized for k-mean
clustering throughout this dissertation. Cluster 3.0 has been developed in C
by members of the Laboratory of DNA Information Analysis, Human Genome
Center of the University of Tokyo. Cluster 3.0 is based on prior efforts by
Michael Eisen of Lawrence Berkeley National Laboratory [70]. The Perl
wrappers used to interface with Cluster 3.0 were developed by John Nolan of

the University of California, Santa Cruz [70].
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Chapter 4

Quantifying Context Dependency

As previously highlighted, context dependency can be broadly defined as a
set of strict or probabilistic rules and relations between two often discrete
variables, context(s) and outcome [2]. Multiple theoretical, application
agnostic metrics exist for measuring the relationship of such variables. These
include entropy as a measure of uncertainty, and Pseudo R Square as a
measure of correlation [71]. This dissertation presents estimation accuracy,
based on maximum a posteriori probability (MAP) estimation as a formal yet
practical, application agnostic definition for context dependency. In contrast

with other theoretical metrics, such as entropy and pseudo R, estimation
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accuracy provides practical insight into the performance of many potential

applications and services, while remaining application agnostic.

Based on this definition of context dependency, this dissertation provides
practical methods to calculate the posterior probability of an outcome (g)
given context (x), or P(g|x), from one or multiple continuous or discrete
(multinomial) context sources. In order to calculate P(g|x), it is necessary to
discretize continuous context into a limited number of (multinomial) cases.
Further, discrete context may have too many possible values to efficiently
calculate P(g|x), producing too few samples per category and inaccurate
posterior probability calculations. In these cases, it is necessary to group
some categories together to reduce the number of categories. This is referred
to as binning. Clearly, the performance of the analysis will depend on how
context is discretized and/or binned. This dissertation presents and

compares several characteristic methods for binning data.

4.1. Formal Definition of Context Dependency

In order to formally define context dependency of mobile usage, this
dissertation presents mobile usage as a random variable that one is
interested in estimating, g. Without any other information but the

observations of g itself, one can only estimate g with § that minimizes the
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expected estimation error E[L(g, §)]. L(a,b) is a loss function containing the
penalty for an incorrect estimate. Similarly, this dissertation defines

estimation accuracy as 1 — E[L(g, )]

For clarity and without loss of generality, this dissertation assumes g takes
value from a finite set {gi:, gz, .., g}, and the loss function is a zero-one
function, i.e, 0 when g = g, and 1 otherwise. In this case, the optimal

estimation would be

g = argmaxP(g = i)
i

and the corresponding expected estimation accuracy is
P(g=29)

The use of context information can help reduce the expected estimation
error. Assume one can observe not only g but also concomitant contextual
information presented as a vector x=(xy, Xz, ..., X»). To estimate g, one has an
additional piece of information: the current observation of x. Assuming the
same loss function as used above, from statistical machine learning text, the

optimal estimation would be

g(x) = argmax P(g = i|x)
i
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where P(g|x) is the a posteriori probability. Now the expected estimation
accuracy is Y. P(g = g(x)|x)P(x), which should always be higher than
P(g = g), the expected estimation accuracy without the contextual
observation x. The estimation is known as the maximum a posteriori (MAP)
estimation. When g is continuous value and loss function is squared error,
the optimal estimation can be similar calculated as the expectation of g, E[g],
without the contextual observation, and E[g|x], the conditional expectation of

g when the contextual observation is available.

In applications and services that the cost of a false negative is considerably
higher than false positive, providing multiple responses (or best guesses) can
be beneficial. For example, for application preloading, the system could
preload multiple applications instead of one. This would, in turn, reduce the
miss rate, i.e. not having the next application preloaded. One can use the
same definition to allow multiple responses. In this case, the expected

estimation accuracy would be )4, P(g € g(x)|x)P(x).

4.2. Calculating Posterior Probabilities

The key to MAP estimation is the accurate calculation of the a posteriori
probability distributions. Posterior probability is the conditional probability

of the outcome, g, given certain context, x. In other words:
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P(glx)

It may initially appear straightforward to calculate P(g|x), by simply
dividing the number of times each possible outcome, g;, has occurred under
context condition x, by the number of times x has been observed in total.

Recall that g takes value from a finite set, {gs, g2, --., g}

count(g;|x)

Plgilx) = count(x)

However, if the number of times x has been observed is small, the estimates
of P(g|x) are unreliable [72]. Due to the large number of possible context
combinations, and the possibility of having few or no prior samples in a given
context, posterior probability estimates may become inaccurate or
impossible. This is true even for individual context sources, but can become
significantly worse if multiple context sources are treated as multiple

dimensions, due to the curse of dimensionality [14].

In this section, this dissertation examines several prominent methods to
address this challenge. It first examines the case when dealing with only one
context source; it employs Laplace Correction to reduce the negative impact
of too few observations under some contexts. This dissertation then

examines the case for dealing with multiple context sources. Instead of
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treating the context space as multi-dimension, each context source
determining one dimension, it explore several prominent classifier
combination techniques in order to treat each context source as a separate

single-dimensional predictor.

4.2.1. Individual Context

Under context conditions that occur infrequently, the simple estimates of
P(g|x) becomes unreliable. To reduce the negative impact of too few
observations under some context conditions, this dissertation employs
Laplace Correction. There are multiple methods in literature for Laplace

correction. For example, [73] calculates it as

count(g;|x) + 1

P(g;lx) =
(g:1x) count(x) + ¢

where ¢ is the number of possible outcomes. In contrast, to smooth the
posterior probability towards P(g;), the prior probability of outcome g;, [74]

calculates the Laplace correction as

count(g;|x) + m.P(g;)
count(x) + m

P(gilx) =

The parameter m controls the degree of regularization of the estimate. A

larger m will result in an estimate closer to P(g;). This dissertation uses a
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combination of the two methods by setting m as the number of possible
outcomes (¢ in the prior formula). Note that Laplace Correction only
smoothes out the estimate P(g|x) when there are a small number of context
samples. The effect of Laplace Correction is negligible if there are

significantly more samples than outcomes, i.e., count(x) >> m.

4.2.2. Multiple Context

As presented earlier, treating the context space as a multi dimensional space,
with each context source determining one dimension, will result in an
unacceptably sparse data set due to the curse of dimensionality. In order to
address this challenge for calculating posterior probability, i.e, P(g;|x),
where x = {xy, x5, ..., x,}, this dissertation employs classifier combination
techniques. Classifier combination techniques enable one to treat each
context source as a separate one-dimensional predictor, and combine

multiple P(g;|x) into P(g;|x;, x5, ..., X;,). In other words,

P(gilxlrxb "'an) = Combination(P(gilxl)!P(gi|x2)' :P(gllxn))

This dissertation explores three prominent classifier combination
techniques. The first is the Naive Bayesian Rule, which works under the
assumption that different sources of context are conditionally independent.

That is, P(x;|g,x;) = P(x;]g), for all i # k. The assumption that different

52



sources of context are conditionally independent does not necessarily hold.
However, Simple Bayesian is known to often perform well even without this
condition [75, 76]. We therefore evaluate the performance of Simple Bayes

alongside other methods. The Bayesian rule calculates P(g;|x) as

P(x|g:)P(g:)

P(gilx) = P(x)

Assuming individual context sources are conditionally independent, P(x|g;)

can be calculated as

P(x|g;) = P(x1,19:). .. P(xy | g1)

and P(x) can be simply treated as a fixed constant, or can be calculated as

P() = ) P(g). P(r119)- P(xal o). - P(ialgi)

Using the collected usage traces, it is straightforward to calculate P(x;, |g;),

either directly, or, again according to the Bayesian rule according to the

posterior probabilities of each individual usage:

P(g;|x;)P(x;
P(xj|gi)=%i)(x)

This dissertation calculates P(x;|g;) directly, using the training data. Similar

to Chapter 4.2, Laplace Correction is utilized to reduce the ill effects of too
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few samples, as shown below. Again, c is the number of possible categories

for x.

count(x;|g;) + c. P(x;)

P(legi) - count(g;) + ¢

The second combination technique this dissertation explores is the Maximum
Rule. The probability of each outcome is reported proportional to the
maximum probability of that outcome among all classifiers, so that the sum

of probabilities remains equal to one. Formally,

P(gilx1, X2, .., xn) < max(P(g;lx1), P(gilx2), ..., P(gilxn) )

For example, if one classifier selects outcome A with a 80% posterior
probability, and two other classifiers select outcome B with 70% and 60%
posterior probabilities, outcome A will be selected, and a posterior
probability proportional to 80% is reported. The Maximum Rule is known to
be highly sensitive to noise [77], when one classifier may be producing a high

confidence due to noisy data or too few samples.

The third combination technique this dissertation explores is the Mean Rule,
also known as the Average Rule. It calculates the probability of each outcome
as the average of the reported probabilities by each of the classifying

methods. Formally,
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P(gi|x1;x2; ""xn) = mean(P(gilxl)'P(gile)! Jp(gllxn))

The Mean Rule is known to be especially resilient to noise [78], and most
useful when the classifiers are highly correlated. There exist variations to the
Mean Rule, such as the weighted Mean Rule where the classifiers are
combined according to a weight assigned to each classifier. The weighted
mean is reasonable when classifiers are not of equal accuracy, where a higher
weight is assigned to more accurate classifiers. This dissertation explores the

equal weight Mean Rule.

4.3. Discretization and Binning of Context

Based on the definition of context dependency described in Section 4.1, in
order to calculate P(g|x), it is necessary to abstract context into a limited
number of discrete (multinomial) cases. However, often, context is available
in continuous form. In such cases, one needs to discretize the data. Other
times, context may be available in discrete form, but with too many possible
values to efficiently calculate P(g/x). In such cases, it is necessary to limit the
number of categories to prevent too few samples per category producing
inaccurate posterior probability calculations. This is referred to as binning
categorical data. Clearly, the accuracy of a posteriori probability calculations

will depend on how the data is discretized and binned. In particular, the
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number of bins chosen for any context involves an inherent tradeoff; more
bins can allow finer molding of bins and more accurate posterior probability
calculations, but at the same time would result in fewer samples per
category, increasing noise and reducing the accuracy of posterior probability

calculations.

Note that some texts use the term binning for the discretization of
continuous data. In contrast, this dissertation distinguishes between the
categorization of continuous and categorical data by calling them
discretization and binning respectively. Obviously, after discretization of

continuous data, they can be binned as well, similar to discrete data.

This section presents and compares several common methods for
discretization and binning of context data. This dissertation evaluates the
efficacy of outcome-based Supervised Binning for both categorical and
continuous context, and compares them to the more simple approach of
using the top-n categories for categorical data and simple equal frequency
categorization for continuous data. Note that there are significant variations
on the number of categories required to make efficient use of each context

source, as will be presented later in Chapter 5.
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4.3.1. Discretization of Context

Continuous sources of context inherently have a single or multidimensional
structure to them, where samples close to each other are related. Such a
structure allows for the use of unsupervised clustering techniques to
discretize them. There have been many methods in literature for
unsupervised clustering of single and multi-dimensional entries, and
consequently creating the discrete cases. Furthermore, there is often an
option of adding an equal frequency constraint, as opposed to equal width

discretization, as shown in Figure 4.1.

Both equal width and equal frequency discretization is straightforward for
one dimensional context, such as time and movement (accelerometer
power). Equal width discretization divides the range of possible values into
an arbitrary number of equal width segments. For example, to divide time-of-
day (00:00 - 23:59) into three bins, the segments would be 00:00 - 07:59,
08:00 - 15:59, and 16:00 - 23:59. Equal frequency binning divides the range
of possible values into an arbitrary number of segments (bins) so that there
are an equal number of samples in each bin. For example, if there are six
samples and three bins, the boundaries are selected to fall between samples

in such a way to have two samples per bin.
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Figure 4.1 - Equal width discretization (top) would result in more
natural boundaries. Equal frequency discretization (bottom) would use
bins more efficiently and prevent too few samples in some bins.

An equal number of samples per cluster would guarantee efficient use of
clusters, and prevent a too few number of samples in some clusters
producing inaccurate results. On the other hand, the equal sample constraint
may artificially limit the boundaries in the clustering algorithm, resulting in

inefficient clusters.

For continuous context in multiple dimensions, this dissertation refers to
clustering literature to find a suitable unsupervised clustering algorithm. The
resulting clusters would in turn become the categories. There are two
requirements for such an algorithm. First, obviously, samples close to each
other must be in one cluster. Second, in order to evaluate the effect of the
number of categories and the number of samples per category, the number of

clusters must be specifiable by us. This dissertation utilizes the popular k-
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mean clustering since satisfies its two constraints; it partitions entries into k

clusters while minimizing the Within-Cluster Sum of Squares (WCSS).

For equal frequency discretization of multidimensional context, this
dissertation proposes and evaluates an extension to k-means. Assuming m
entries and a cluster size of n (m=k.n), the algorithm works as follows. First, a
regular k-mean clustering is performed on the entries. The biggest cluster, i.e.
the one with the most entries, is then selected, and the closest n entries to the
mean are assigned to that cluster. The remaining entries are clustered again,
using the same method (i.e. m-n entries into k-1 clusters). This is repeated
until all entries are clustered. To retain meaningful results and prevent
overlapping entries to be placed into different clusters, the equal size
constraint is relaxed when two entries overlap or the resulting cluster radius
is too small (e.g. for location clustering, closer than 5 meters to the centroid

of a location cluster).

4.3.2. Binning Categorical Context

Categorical context samples can be either ordinal, where there is an inherent
structure or order in the samples, or nominal, when there is no such
structure. For ordinal categorical context, it is possible to utilize this

structure for binning. Similar to continuous context, both equal frequency
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and equal width binning would be applicable, and clustering based on a
distance metric can be applied to multidimensional context. Another
approach to binning is to utilize supervised learning based on the outcome.

This could be applied to both ordinal and nominal categorical context.

Supervised binning provides a best of both worlds solution to the inherent
tradeoff of the number of bins. Recall that more bins can allow finer molding
of bins and more accurate posterior probability calculations, but at the same
time would result in fewer samples per bin, increasing noise and reducing
the accuracy of posterior probability calculations. Supervised Binning can
identify and bin together categories that have similar outcomes. Therefore,
supervised binning can allow finer molding of bins, increasing accuracy,
without reducing the number of samples per bin that would increase noise

and reduce accuracy.

Supervised Binning can be performed on both categorical and continuous
context. For the latter, it must first be discretized into a larger number of
categories, and then binned. One must note that in order to preserve the
integrity of results in supervised binning, it is imperative to separate the

training data that is used for creating the bins, from the testing data.

There are two common approaches to supervised binning:
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The first approach is to find or create a distance metric that can calculate the
distance between any two predictors using the outcome. Consequently, one
can then utilize traditional clustering algorithms e.g. k-mean, to heuristically
bin the categories, similar to structured context. Calculating the distance
between context cases would mean calculating the 1-norm, 2-norm, cosign,
etc. distance between the outcome (usage) vectors {P(g:|x), P(gz|x), ...

P(gn|x)} of any two context entries, denoted as x.

This dissertation evaluates the efficacy of Supervised Binning using this
method. To this end, this dissertation uses k-mean clustering based on the 2-
norm distances of the normalized Laplace-corrected usage vectors. Note that
each usage vector is defined as the posterior probability of each of the
possible outcomes, i.e. {P(g:|x), P(gz|x), ... P(gio0|x)}. The result is a 100
dimension vector, to account for each of the top 100 usages. The
effectiveness of Supervised Binning for the context dependency of mobile

usage is presented in Chapter 5.

The second approach is enabled by building a classifier tree. From the
resulting classifier tree, it is possible to use the derived partitions to bin the
categories. An optimal classifier tree is in fact the Supervised Binning of
context. Note that in building the classifier tree, one is free to use any gain or

loss function they desire, such as prediction accuracy, as presented in [14].
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Unfortunately, building the optimal classifier tree may be computationally
impossible when dealing with categorical predictors and outcomes. There
are methods to simplify the calculation, as long as one of two conditions are
met. Specifically, 1) if the input (predictor) categories are ordered, or 2) if the
output (outcome) is binomial, i.e. 0 or 1. For this dissertation, neither of these
conditions hold. In the absence of such conditions, one has to resort to
heuristic methods to build (a suboptimal, but reasonable) decision tree, such
as CHi-squared Automatic Interaction Detector (CHAID), a recursive tree

classification method [79].

For the purpose of comparison, and as a baseline, this dissertation defines
Simple Binning as follows. For binning categorical context into n bins, we
simply choose the most popular n-1 categories, and group all other
categories as the n’th bin. This is especially reasonable if the distribution of
context follows the power law, which is often the case. For consistency, for
continuous context, this dissertation defines Simple Binning into n bins as

discretizing the context into n categories.
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Chapter 5

Context Dependency of
Mobile Usage

Using the LiveLab dataset presented in Chapter 3.3, and the definition of
context dependency and methods presented in Chapter 4, this Chapter
presents a series of interesting findings regarding the context dependency of
web, phone, and app usage. These findings have significant implications on
context aware application and services, several examples of which are
discussed in this Chapter. Note that context-based prediction of usage is
extremely challenging due to the distribution of all three usage types that
closely resemble the power law (Figure 5.1): the most popular usage of each

user constitutes a major proportion of their usage, and much higher than the
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Figure 5.1 - Distribution of usage resembles the power law. Therefore,
estimating usage is challenging (average for all participants)

second most popular usage, and so forth. Consequently, even given context

based evidence, it is unlikely for the posterior probability of any usage to rise

above the more common usage.

As mentioned prior, for applications and services in which the cost of a false
negative is considerably higher than false positive can benefit from multiple
responses in the form of § =g; Ug, U .. . For example, for application
preloading, the system might preload multiple applications to reduce the
chance of a miss. Accordingly, this dissertation considers the case for 3 and

10 responses as well as the single response case.
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5.1. Individual Context

This dissertation studies the performance of individual context by measuring
the estimation accuracy of web, phone, and app usage versus the number of
context bins, as shown in Figure 5.2, Figure 5.3, and Figure 5.4, respectively.
One context bin would mean no context, i.e. always returning the most likely
result(s). This section utilizes leave-out-one cross-validation (LOOCV) to
preserve the integrity of results. LOOCV removes the test sample from the
training data set used to calculate posterior probabilities. This section also
utilizes Simple Binning to keep the meaning of bins easy to understand.
Recall from Chapter 4.3.2 that for categorical context, Simple Binning utilizes
the top n-1 categories and an ‘other’ category. For continuous context, it

simply discretizes it into n bins.

The findings presented in this section are regarding the performance of each
context, as well as the effect of the number of bins. Note that different context
have a widely diverse range of effectiveness, depending on usage and the
number of acceptable responses. Also, it can be seen that more bins initially
improves performance, but after a point will hurt performance. The reason is
that even though more bins can allow finer molding of the model, hence a
more accurate calculation of P(g/x), it would result in fewer samples per bin,

increasing noise and reducing accuracy.
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An important finding not inherently obvious in the figures is that an increase
in the number of context bins is useful only as long as there are a reasonable
number of samples to reliably calculate the posterior probability of each bin.
As a rule of thumb, there should be more than ten samples per bin, even
though the ill effects of too few samples are mitigated to an extent using
Laplace correction. As shown in Table 3.2, there are on average 700 website
visits per user. Therefore, it is unsurprising that in particular for equal
cluster size contexts, there are diminishing results in going over 10-50
context bins. On the other hand, since there are over two thousand phone call
samples, increasing the number of context bins is fruitful up to 100-200 bins,
where the returns are diminished. This shows that the number of context
bins should be not preset, but dynamically adjusted by the system to ensure a

reasonable number of samples per category.

This dissertation next provide findings specific to each context type:

5.1.1. Time&Day

Recall that separating weekends from weekdays increases performance,
compared to treating all days as the same. This dissertation also found that

equal frequency discretization of time&day performs better than equal width
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discretization. The effectiveness of time&day levels off early, when the

number of bins is extended beyond ~20.

5.1.2. Movement

Similar to time&day, equal frequency discretization of accelerometer power
performs slightly better than equal width discretization. Interestingly, a
relatively high number of bins (e.g. 100) are most effective here. This is in
contrast with original expectations that a small number of bins, e.g. to
account for moving and non-moving states, would be sufficient. This finding
suggests that accelerometer power can and should be used as a signature to
classify a user’s detailed state, and not merely as an indicator for whether
they are moving or not. Previous research has shown a similar phenomenon
with ambient sound for the purpose of room level localization, i.e.

SoundSense [80].

5.1.3. GPS Location

In contrast to the single dimension contexts, location performed best without
the equal frequency cluster constraint. The author believes this is due to the
equal frequency constraint artificially breaking down meaningful clusters in
order to satisfy the sample size constraint. Interestingly, without the equal

frequency constraint, a larger number of bins do not reduce performance.
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The author believes this is due to the extra clusters mostly absorbing

outliers, instead of breaking down meaningful clusters.

5.1.4. Cell ID Location

As each cellular cell spans a large coverage area, most of a user’s life is under
a small number of cell IDs. Therefore, there is little to gain from increased
number of context bins. Note that as cell ID is already discrete, discretization

doesn’t apply here.

5.1.5. Prior usage

All three types of usage are most dependent on the prior usage of the same
type, versus other forms of prior usage. For example, phone calls are more
dependent on the prior phone call. Yet, other types of usage are also more or
less good indicators. The only exception was that prior app usage seems to

have no effect on web usage.
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Figure 5.2 - Context dependency of web usage, presented as the
estimation accuracy, for 1 (top), 3 (middle), and 10 (bottom) accepted
responses
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5.2. Combinations of Context

By observing the performance of the three types of usage, it can be sees that
combination methods are very useful when a number of meaningful context
sources are present. This dissertation finds that the max-rule consistently
outperforms the mean-rule. The mean-rule is known to perform well when
classifiers are noisy and highly dependent. Therefore, this dissertation
concludes that that different context sources are not noisy or highly
dependent. The surprising fact that Bayes often outperforms other
combinations is another indicator that our context sources are not highly
dependent and/or their dependencies are distributed evenly [76]. On the
other hand, even though Laplace Correction is utilized to reduce the impact
of data sparseness, the performance of Bayes is reduced when there are
more bins (with fewer samples and therefore more noise in each category).

Indeed, it is well known that Bayes is highly susceptible to noise.

These findings suggest that classifier combination must not be used on
sources that show little or no context dependency, and that the max-rule
should be used when there is a small context data set, but the system should
switch to Bayes when the training data set grows. This can be identified by
the system automatically, as when Bayes starts performing better than the

max-rule.
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Note that treating multiple context sources in a multidimensional manner
resulted in practically no improvement in estimation accuracy, over the non-
context case. Considering the number of samples per user in Table 3.1, the
poor performance of multidimensional treatment of context sources is
unsurprising. Even with only 10 context categories, there were significantly
less than 1% of samples for any given context. More importantly, most

samples belonged to categories with less than 0.1% of samples.

5.3. Seasonal Variation

The long-term LiveLab traces allow this dissertation to answer an important
hypothesis regarding context dependency: how significant is the effect of the
user’s seasonal variation on the prediction accuracy. In other words, whether
shorter durations may show higher context dependency, due to significant
seasonal changes in user behavior, or would fewer samples in shorter

durations reduce estimation accuracy.

The LiveLab traces indicate that while there are significant seasonal changes
in device usage, as shown by the author’s prior work [81] and highlighted in
Figure 5.5, the context-dependency of usage remains relatively stable. To this
end, this dissertation presents the same analysis as the prior section for the

Naive Bayes combination method, but instead of only calculating it for the
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entire 12 month duration of the study, it is calculated over one, three, and six
month durations as well. For each duration, the best number of bins is
selected, and results from the multiple periods are averaged, e.g. the results
from the four 3-month periods are averaged together. The findings presented
in Figure 5.6 indicate that such variations are small. Yet, the fact that the
performance is not significantly reduced for shorter durations indicates that
a smaller data set, e.g. one month or more duration, would have been

sufficient for context-awareness.
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sufficient. Estimation accuracy for with one and ten responses,
calculated on trace durations of one, three, six, and twelve months, using
the Bayes method. (averaged among all users and periods).

5.4. Supervised Binning

As presented in Chapter 4.3.2, there is in inherent tradeoff present in
choosing the number of context bins; more bins can allow finer molding of
the bins, and more accurate posterior probability calculation, but would at
the same time result in fewer samples per bin, increasing noise and reducing
accuracy. Supervised Binning has the potential to make the best of both
worlds, by identifying and binning together categories that have similar
outcomes. This dissertation studies the efficacy of Supervised Binning, and

shows it can greatly increase the accuracy of context based usage estimation.
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This dissertation applies Supervised Binning as follows. For continuous
context, it first discretizes it into ten times the categories, to allow for
sufficient freedom for the binning algorithm while avoiding overfitting. It is
computationally prohibitive to apply LOOCV for binning, as it would require
recalculation of the binning for each test case. Therefore, two-fold cross
validation is utilized, splitting the data into two six-month durations, and
using the first six months for training and the second for testing, followed by

the opposite.

Figure 5.7 shows that there is significant performance increase from
Supervised Binning. The results are calculated using the Bayes combinatory
method, since it produced the best results (Chapter 5.2). For consistency, the
Supervised Binning results are compared to the simple binning case
calculated using the same two-fold cross validation. The Supervised Binning
results are presented using the Bayes combinatory method, since it produced

the best results as shown in the previous sections.

One interesting question that is answered by this dissertation is whether it is
necessary to perform supervised binning individually per user, or are there
inherent features in context that are common between users, and can allow
the supervised binning to be performed once for all users, i.e. using data from

all users. The results in Figure 5.7 confirm the former: even for the small,
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relatively homogeneous population of this study, Supervised Binning using

data from all users fails to improve accuracy over simple binning,.
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5.5. User Diversity

The LiveLab traces allow this dissertation to analyze the diversity in the
context dependency of different users, i.e. whether some users have more

diverse usage, and whether some users’ usage is more context dependent.

To this end, Kernel Density Estimation (KDE) is utilized to present the
distribution of estimation accuracy among the participants, and compare it to
the case without context information (i.e. only one bin), for one and ten
acceptable responses, as shown in Figure 5.8. The estimation accuracy is
calculated using the best methods, i.e. Bayesian combination and Supervised

binning, and the KDE bandwidth is empirically set to 0.05.

Figure 5.8 shows that while there is considerable diversity among
participants’ usage patterns, all of them show context-dependency in their
usage. Furthermore, the top one and ten usage cases, which serve as the
baselines for context dependency, constitute a significant share of usage for
all participants. Finally, note that among the three principal usage, web usage
had a much higher diversity of context-dependency, compared to its non
context case. This shows that there is more diversity in the context

dependency of web usage, compared to phone and app usage.

80



o B N W b~ U O N
1

40%

60%

80%

100%

O B N W b~ U O
1

20%

40%

60%

80%

100%

————— 1, no context
——1, bayes

----- 10, no context
——10, bayes

o r N W M U1 O N
1

0%

20%

40%

60%

80%

100%

81

Figure 5.8 - Kernel Density Estimation (KDE) with bandwidth = 0.05
shows the distribution of estimation accuracy for one and ten acceptable
responses among the 24 participants. Web (top), phone (middle) and

app usage (bottom)



5.6. Prior Usage Context

The methodological classifier combination approach to the data sparseness
challenge of context awareness, presented in Chapter 5.2, allows the use of
prior usage context in addition to sensor context. Recall from Chapter 3.4.2
that usage context refers to the last used websites, phone calls, and apps, and
sensor context refers to the measurements of the device’s sensors, i.e.

time&day, cell ID, motion, and GPS.

This section examines the effectiveness of prior usage context in increasing
estimation accuracy. The depth of prior usage context is defined as how
many prior usages are considered and combined along with the sensor
context. A zero depth means no usage context is utilized. For the depth of
one, as was presented in the prior sections, the last used prior usage for web,
phone, and apps is used, similar to other sensor context. However, higher
depth usage context can be treated in two ways. First, n-th depth usage
context can be simply presented as yet another single dimension usage
context, which will be handled and combined similar to other context, as
described in Chapter 4. Second, is to treat each n-depth usage context as an
n-dimensional vector. Compared to the first approach, this method suffers

from sparseness, due to the curse of dimensionality.
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Figure 5.9 shows the best estimation accuracy achieved through Bayesian
combination and Supervised Binning, for different depths of prior usage
context for both of these methods. It shows that after the depth of one, the
gains start to diminish. This is due to the limitations of classifier
combination; the additional information provided by depths higher than one
cannot offset the error induced by their dependence across multiple depths.
Also, for the multidimensional treatment of n-depth context, due to its
sparseness for most of the samples, Laplace Correction simply returns the
average a posteriori probability as the conditional a posteriori probability. In
turn, this adds dependency and reduces performance. Based on these results,
this dissertation concludes that its methodology may not be directly applied
to historical usage context with a depth of greater than one. This limitation

stems from inherent limitations of classifier combination for dependent data.

In order to better support historical usage context, for depth of greater than
one, it is obvious that the dependency challenge needs to be addressed.
Therefore, for thesis proposes and evaluates the following method for
incorporating historical context: Treat usage context with a depth higher
than one as multidimensional, but for each classification event and each type
of usage, choose the highest depth that has more than m training samples.

This method is referred to as auto-depth. The constant m is the minimum
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number of training samples deemed sufficient for an accurate a posteriori
probability calculation. For the purpose of evaluation, this dissertation sets m
to 10, based on the findings Chapter 5.1 that specified it as the rule of thumb
minimum necessary number of samples per bin. The findings presented in
Figure 5.9 show that the automatic depth selection approach works well, in
terms of avoiding a performance drop, i.e. more information doesn’t hurt.
However, there is no measurably significant performance increase after the

depth of one for the measured data.
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Figure 5.9 - Automatic depth selection is necessary to efficiently utilize
prior usage context with depth greater than one. Effectiveness of prior
usage context in increasing estimation accuracy, for web (top) and
phone (bottom) usage. Best estimation accuracy achieved (through
Baysian combination and Supervised Binning), vs. depth of prior usage
context for one and ten acceptable responses, averaged among the 24
participants.



5.7. Sample Context-Aware Applications

The context dependency of mobile usage not only provides insight to the
social behavior of humans, but can be utilized in many applications and
services. In this section, a brief description of several such applications are
provided, and their expected performance gains are evaluated based on the
best performing methods presented prior, i.e. using Supervised Binning and
Bayesian combination. These applications attest to the practical merits of
context dependency, and the choice of estimation accuracy as the metric for

context dependency.

5.7.1. Web bookmarks

It is known that a few websites account for most of the typical user’s usage
[66]. Accordingly, some browsers, e.g. Opera, offer a list of favorites or home
screen that is configurable by the user or automatically generated, as shown
in Figure 5.10 (top). This would provide with access to the user’s most
common websites. Others provide a user configurable home page that is

automatically loaded when the browser is run.

A context-aware web favorites list can present more likely choices of
websites to the user, according to their context. The findings presented in

Figure 5.10 (bottom) show that a context-based solution for providing the
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user with either a single default home page, or a list of ten websites,
significantly outperforms an ideal static selection, with a miss rate of 15% vs.
25% for a list of ten websites, and 42% vs. 68% for the single home page, and
less than half the ideal static solution. Interestingly, the ideal static list of ten

favorite websites outperforms the ten most recently visited.
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Figure 5.10 - Many browsers, e.g. Opera (top), display a list of
bookmarks when launched. Others, show a single page, i.e. the home
page. The performance of a context-aware web favorites list that
presents the user with a list of most likely list of websites, or a single
most likely homepage, is presented (bottom) as miss rates.



5.7.2. Phone favorites list

In order to assist users in making phone calls, phones typically provide the
user with a redial button, a list of recent phone calls, and/or a user
configurable favorites list, as shown in Figure 5.11 (top). For example, the
iPhone used in the study provided a list of recent phone calls as well as a user
configurable favorite contacts list. A context-aware phone favorites list can
present a list of contacts the user is most likely to call, according to their

context.

On average, a static list of each user’s top ten contacts has a miss rate of 32%,
and a recent call list has a miss rate of 28%. On the other hand, a context
aware favorites list can reduce the users’ need to go through their
phonebook by approximately five fold, to 6%. Furthermore, the miss rate of a
redial button is 64%, but the context-based dial button has a miss rate of

27%, as shown in Figure 5.11 (bottom).
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performance of a context-aware phone favorites list that presents one or
a list of most likely phone numbers is presented (bottom) as miss rates.
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5.7.3. App Quicklaunch and Preloading

Most phones often have a list of apps that are more readily available for users
to run, i.e. quicklaunch, as shown in Figure 5.12 (top). The iPhone provides
room for four such apps, which are readily available on any page of the home
screen, and users can also organize their apps so the most common are
placed in the first page. A context-aware quicklaunch list dynamically
updates the quicklaunch list according to the users’ context to contain the
most likely launched apps. This dissertation shows that it would have a miss
rate of 16%, compared to the 39% miss rate of the ideal static quicklaunch,
an improvement of three times. For ten apps, the miss rate is just 4%,

compared to 13% for the static case, as shown in Figure 5.12 (bottom).

Preloading is another possible use of context, where context-based
estimation of the app to be used can enhance performance. Preloading,
including context-based methods have been widely studied in the past [82].
To this end, this dissertation has measured the app launch times on the
substantially faster iPhone 4, presented in Table 5.1. The measurements
were repeated three times for each app, and content load times are excluded
when applicable. For the case without preloading, each app’s process was

manually terminated between the runs. For the preloaded case, each app was
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Table 5.1 - Launch time for the 10 most popular applications (seconds),
measured on the faster iPhone 4

Preloaded (in Without
Application memory) preloading

SMS 0.6 22
Phone 0.6 always

Email 0.6 preloaded
Facebook 0.6 29
Safari 0.6 23
iPod 0.6 23
Alarm Clock 0.6 1.3
Settings 0.6 2.0
Maps 0.6 1.7
Notes 0.6 1.5
Average 0.6 2.0

started and closed before the measurement run. In such a case, the iPhone OS

would keep the app in memory, i.e. preloaded.

Without preloading, the average load time was 2.0 seconds (median = 2.1,
deviation = 0.5). With preloading, the load times were 0.6 seconds for all the
measured apps. These measurements show that, on average, preloading can

improve app load times over three fold. Note that the iPhone and many other
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platforms utilize a most recently used algorithm to keep multiple apps in
memory, given memory limitations. This dissertation compares the
performance of context-based estimation to the MRU algorithm, and shows
that the miss rate for ten preloaded apps is improved from 9% to 4%, as
shown in Figure 5.12 (bottom). Furthermore, for three preloaded apps, the

miss rate is reduced from 31% to 17%, almost half.
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Figure 5.12 - For easier access, a number of apps can be placed on the
quicklaunch home screen of the iPhone (top), or even better the always-
visible bottom row. Similarly, the phone can pre-load a number of apps
for faster launch times. The performance of a context-aware app list, or
applcation preloading, that estimate the most likely launched apps is
presented (bottom) as miss rates.
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Chapter 6

Cost-Aware Context Combination

The findings presented so far attest to the performance and usefulness of
context-based usage estimation. However, obtaining and processing context
information often incurs significant energy costs. Many ad-hoc methods,
sometimes themselves context based, have been employed to reduce energy
cost of context awareness, while satisfying the system designer’s cost-
accuracy tradeoff. These methods typically reduce the frequency of accessing
energy hungry context sources, or to avoid them altogether, substituting

them entirely by lower cost context sources.

In this chapter, a methodological, application agnostic framework,

SmartContext, is presented that addresses this challenge. SmartContext takes
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advantage of the methodology presented in Chapter 4, and builds upon the
general problem of budgeted observation selection in the operations
research community, to automatically optimize the energy cost of context-
based estimation, while satisfying the accuracy requirements and tradeoffs

that the designer sets for every estimation event.

6.1. Cost of Context

This dissertation focuses on energy costs of obtaining context information,
and measures them independently. However, the SmartContext framework is
applicable to other forms of costs as well, and the costs can be dependent or
independent of each other. Furthermore, the energy costs can be measured

automatically by the system in the software, as in [83].

The additional energy consumption incurred due to acquiring different forms
of context are measured and presented in Table 3.1. This thesis defines the
additional energy consumption of an activity as the extra energy
consumption of that activity, compared to that of an idle phone. The
measurements were performed on the iPhone 3GS, using the FTA22D Power
Monitor, by Monsoon Solutions, Inc. [84]. To eliminate interference from the

battery charging circuitry, we measured the power transferred to the phone
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Table 6.1 - Ranking of context sources, and their energy cost

Type of context Rank Energy cost
Prior usage, time&day 0 negligible
Accelerometer 1 1.65J
Cell ID 2 1.2J
GPS location 3 50 -300J

from its battery connection, instead of between the charger and the phone.

Each measurement was performed at least three times, and averaged.

6.2. Requirements and Operation

6.2.1. Requirements and Assumptions

SmartContext takes advantage of the methodological classifier combination
approach presented in this dissertation. It is compatible with any classifier
combination method, as long as the combination method can provide the
MAP estimate as well as the estimation accuracy, using a) any combination of
context sources, and b) with negligible processing overhead for n
calculations, where n is less than or equal to the number of context sources.

All three classifier combination methods evaluated in this dissertation have
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these features. However, this chapter utilizes the Bayesian combination

method, as it performed best.

SmartContext selects context sources in order to meet an estimation
accuracy set by context-aware applications and services for every estimation
event. SmartContext requires that the training data set be available for all
context sources, i.e. P(g;|x,) for all x and i. SmartContext requires the cost, or
the expected cost, of utilizing each context source to be known in advance as
well, as presented in Chapter 6.1. Note that the costs can be independent or
dependent on each other. Further, the costs of some context sources are
negligible. Therefore, they will be always utilized, limiting selection to

context sources with non-negligible costs.

6.2.2. Operation

SmartContext’s operation consists of two main steps. The first is determining
the ranking of context sources. In order to keep processing costs in check,
this ranking must be pre-calculated, but can be always static, or can be
dependent on the context information gained at any step. In the next section
we show that a static solution is both practical and performs well. In this
case, the ranking needs to be performed only once. The second step is the

energy aware combination of context. This has negligible overhead, and is
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performed dynamically for every estimation event according to the

requirements and tradeoffs of the context-aware application or service.

Once the ranking is determined, the energy aware combination of context
works as follows. For each classification event, SmartContext starts
combining multiple sources of context information one by one, in the
ordering determined in step one. Note that this can be done with minimum
processing overhead, and for any combination of context sources, as
explained in Chapter 4.2.2. After running the classifier combination with each
additional context source, it checks the criteria of the requesting application
or service, for that estimation event. In the evaluation presented here, a fixed
minimum estimation accuracy for every estimation event is utilized.
However, the application or service may set a different accuracy requirement
for each estimation event, or even consider the expected cost of accessing the
next context source, in determining when to settle with the current
estimation accuracy and stop accessing more context sources. SmartContext
assures the target estimation accuracy for each estimation event, as long as it
is possible to reach that accuracy, while spending no excess cost in acquiring
unnecessary context. In other words, in some conditions, no additional costly

context is used, while in more uncertain conditions, SmartContext may use
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DetermineCostPerformanceRanking (context sensors)

ForEach (sensor) in (sorted free context) do {
accuracy, usage = CombineNextContext (sensor)

}

ForEach (sensor) in (sorted costly context) do {
If AppConditionMet (accuracy, usage, costs]|[])

Exit Loop

accuracy, usage = CombineNextContext (sensor)
}
Return (accuracy, usage)

Figure 6.1 - Pseudo-code for SmartContext.

up to all the available context sources. The pseudo-code description of

SmartContext is shown in Figure 6.1.

6.3. Ranking of Context Sources

The ranking of context sources is analogous to a well studied problem in

artificial intelligence and operations research, which can be defined as

follows:
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How to select a subset, X, of possible observations (i.e. predictors or information
sources) V, that most effectively reduces uncertainty and maximizes

information gain?

6.3.1. Review of existing methods

Solutions toward this challenge are based on submodularity, an important
property of the information gain from multiple observations [54].
Submodularity is also intuitively named as the diminishing returns property.
It states that the information gain from an observation helps more if one has
a smaller set of observations so far. Vice versa, the information gain from an
observation helps less if it is added to a larger set. This can be formally

presented as follows. The set function F : ¥ — R is submodular if

F(AUX)— F(A) = F(A' UX)— F(4)

forall Ac A'cV, X & A, ie. adding X to a smaller set, 4, helps more than
adding it to a larger set, A". The general problem of maximizing submodular
functions is NP-hard [51], and general algorithms are unable to provide
guarantees in terms of processing time [52], unless there are certain
assumptions, e.g. selecting a subset among a fixed tree ordering of possible
observations [53]. However, artificially imposing such a dependency tree is

heuristic in nature and can reduce performance, e.g. in [85]. Further,
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calculating the maximume-likelihood dependence tree requires assumes pre-
measured mutual information between unit cost observations are available

[86], neither of which are applicable to the case of this dissertation.

Therefore, it is common practice to use the greedy (myopic) solution towards
this selection problem [47]. The submodularity property ensures that such
greedy solutions are near-optimal, typically with provable constant factor
performance guarantees. The greedy solution, assuming a unit cost for all
observations, selects the observation with the most information at every
step, i.e. the marginal increase F(A U X) — F(A) is maximized. For this case,
in [54], Nemhauser et al. prove that any set of equal-cost observations
selected in this manner performs, at worst, a factor of (1 - 1/e), compared to
the optimal set. More recently, the operations research community has
proved the same bound when observations have different costs. Krause et al.
prove that for independent costs, the greedy solution selects the observation
with the maximum cost-effectiveness at every step, i.e. the marginal increase
divided by cost of observation, (F(AU X) — F(A))/cost(X), is maximized
[47]. Furthermore, the same work proves that approximation algorithms are
unable to provide guarantees better than a constant factor of (1-1/e), i.e. (k.
(1-1/e)). We therefore base our work on the solution provided by Krause et

al. [47].
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6.3.2. Ranking Mobile Context

SmartContext is based upon the greedy method described in the earlier
section, guaranteeing [47] a performance bound of (1 - 1/e). However, the
performance guarantee requires two assumptions. First, the costs of context
sources (observations) must be independent from each other. Indeed, mobile
context sources typically have independent energy costs, as was the case of
this dissertation. Second, the submodularity or diminishing returns property
must hold for our utility function (estimation accuracy). While this appears a

reasonable assumption, it is necessary to verify it.

Existing work typically use entropy as their utility function, and either
assume that it is submodular [54], or prove that it is submodular under an
assumption of independence [47]. This dissertation experimentally verifies
the overall submodularity of estimation accuracy. For this purpose, it is
necessary to show that the estimation accuracy gain resulting from adding
(combining) any context source decreases if more context sources were
known (combined) beforehand. Note that since SmartContext assumes that
free context is always utilized, it is necessary to verify the submodularity
only among costly context. Figure 6.2 shows the estimation accuracy gain for

Cell ID, acceleration, and GPS location.
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Therefore, this dissertation concludes that the greedy approach works well
for context awareness. In this case, the best ordering is obtainable by ranking
the context sources according to their cost effectiveness. In this case, the cost
effectiveness of each context source is the marginal estimation accuracy
increase divided by its expected energy cost, ie., (F(AUX)— F(4))/

cost(X).

The expected energy cost can be pre-measured by the system designer, as in
the case of this dissertation, or can be measured automatically in the
software as in [83]. The energy costs of acquiring context on the iPhone 3GS
are presented in Chapter 6.1 and Table 3.1. This desertion measured the
estimation accuracy of each context source individually in Figure 6.2. Note

that assuming xj, ... Xa are context sources that have been acquired so far,
F(AuX)— F(4)
= argmax P(g = i|xq, ..., Xg, Xx )P (X1, cve) X g, Xx)
L

— argmax P(g = i|xq, .., X )P (X1, o) Xg)
i

The resulting ranking is shown in Table 6.1. Note that due to the often
significant difference in the energy cost of context sources on mobile devices,

their ranking becomes close to, or according to their energy cost.
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Finally, we note that due to the relatively limited number of costly context
sources on mobile devices, it is also possible to simply perform a thorough
search, calculating the performance of SmartContext under all possible
orderings of context sources. For the case of this thesis, there are three costly
context sources, resulting in a total of 3/ = 6 possible rankings.
Unsurprisingly, the rankings obtained using the through search under each of
the experimental cases of Chapter 6.4 are, in fact, the same as the greedy

ranking calculated in this section.

6.4. Evaluation of SmartContext

SmartContext has been evaluated using the LiveLab traces. Figure 6.3, Figure
6.4, and Figure 6.5, show, for web, phone, and app usage, how often each
context source is utilized for different (minimum) target accuracies, and how
often the target accuracy is achieved, as well as the overall average achieved
estimation accuracy. Note that SmartContext always uses time&day and
previous usages, as they are available without cost. The additional accuracy
provided by each additional context source is incremental and diminishing.
This is expected, as each individual source of context has a small incremental
value, as shown in Chapter 5.1, and as submodularity ensures diminishing

returns, as shown in Chapter 6.3 and Figure 6.2.
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Yet, this dissertation shows that significant energy savings are possible with
very little sacrifice of accuracy. For example, for web, phone, and app usage
respectively, for one acceptable response, setting the (minimum) target
accuracy to 25%, 50%, and 50%, achieves 89%, 67%, and 61% energy
saving, while providing overall estimation accuracy within 1% of the case
using all context sources. For ten acceptable responses and 75%, 80%, and
85% (minimum) target accuracies, respectively, the energy savings are 71%,
65%, and 89%, while again achieving overall estimation accuracy within 1%

of the case using all context sources.

Note that as the ordering of context, and the posterior probabilities are pre-
calculated using the training data, e.g. during charging, they do not add to the
overhead of SmartContext during regular operation. Further, the
combination algorithms require little processing, therefore SmartContext has

negligible overhead.
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Figure 6.3 - Performance of SmartContext for web usage, for 1 (top), and
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minimum accuracy target is met, and the overall average estimation
accuracy.
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6.5. Energy Aware Training

The findings presented so far attest to the effectiveness of SmartContext for
methodologically managing the energy cost of context awareness, while
satisfying the application or service designer’'s dynamic accuracy
requirements and tradeoffs by selecting a subset of context sensors to
acquire and combine, as described in Chapter 6.2. Often, gathering training
data also encounters a significant energy challenge as well. In this section,
this dissertation discusses the both the advantages and limitations of its
methodology for managing the energy costs of context awareness during the
training stage. In other words, whether and how it is possible to expand the
methodology of this thesis, and in particular, SmartContext, to selective
gathering of training data from a subset of context sources, in order to

minimize training cost while satisfying specific performance constraints.

6.5.1. Training During Classification

One of the fundamental benefits of the context combination methodology
presented in this thesis is that it inherently supports the opportunistic
collection of training data during context-based classification events, without
additional cost. This includes classification events that utilize a subset of

context sensors to save energy, i.e. SmartContext.
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The reason that such a feat is possible is that each training sample does not
require readings from all context sources to be present. Instead, the context
combination methodology of this dissertation learns the a posteriori
distribution of each context independently from other contexts, using
classifier combination methods (i.e. Bayes) to calculate the overall a
posteriori probabilities. Accordingly, as long as the ground truth outcome
(usage), g, becomes available any time after a classification attempt, it can be
used alongside the m measured contexts, x, ... xm, out of a total of n contexts,
as training samples, {g, x1} ... {g, Xm} to improve the training data set for each
of the m contexts that were utilized by SmartContext for the respective

estimation. Contexts Xm+, ..., X» are neither measured nor utilized for training.

As an example, recall the context-aware phone favorite contacts list of
Chapter 5.7.2. Assume that at one particular time that the favorites list is
launched, SmartContext utilizes only Cell ID and the free context sources to
generate the smart favorites list. After the user dials their intended party, g,
this ground truth usage is stored along with the recorded context xj, ... Xm,
The a posteriori distributions of phone calls are later updated accordingly. In
fact, after increased training observations, there is a possibility that
SmartContext may not even need Cell ID to satisfy the system designer’s

accuracy requirements for an identical case in the future.
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6.5.2. Creating the initial training set

The previous section shows that every classification event that can be
associated with an actual outcome (ground truth usage), can be utilized as a
training sample. However, this is under the assumption that the binnings of
all context sources has already been calculated. On the other hand, the
Supervised Binning of context sources, shown in Chapter 5.4 to greatly
improve estimation accuracy, requires a reasonably sized training data set of
that context source. In other words, at the very least, there should be
complete training data until an accurate binning can be formed. Chapter 5.3
suggests that as little as one month of training data can be sufficient. After
sufficient training data is obtained to form bins for each context source,

training can continue opportunistically, as described in Chapter 6.5.1.

In retrospect, the authors acknowledge that collecting readings from all
context sensors for every single classification event may be too costly for the
system. In this case, there is always the option of limiting the energy costs of
training by trading training frequency with duration. For example, by
collecting training samples only half of the times, but over twice as long a
training duration. Again, one of the important benefits of the methodology
presented in this thesis is that the system can operate, albeit with a lower

estimation accuracy, on only a subset of context sources. For example,
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training data for binning all contexts except GPS can be collected over one
month, but GPS training and binning can occur after three months, with a
third of the energy consumption. In the mean time, classifier combination
and SmartContext can simply operate using context sources other than GPS,

with slightly reduced estimation accuracy.



Chapter 7

Social Context of Mobile Usage

The previous chapters of this dissertation focused on context information
acquired from built-in sensors and the users’ prior usage. This chapter
investigates a different form of context, social context, to measure its effect on
mobile usage. To this end, the LiveLab users are separated into two carefully
selected distinct socioeconomic groups, and their collective usage patterns

are analyzed and compared.

The findings of this dissertation, as well as previously reported research
confirm that smartphone users are extremely diverse, e.g. by orders of
magnitude [59]. Understanding user diversity has been central tenet of

human-computer interaction (HCI) research [64]. Yet, little research has
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moved towards understanding these differences in more precise ways. These
findings provide researchers and system designers with a better
understanding of how users vary, resulting in better support of a broader
range of individuals with different backgrounds, capabilities, skills and

interests.

7.1. Diversity and Dynamics of Usage

This section takes a deeper look into the diversity of mobile usage by
analyzing the diversity and dynamics of app usage, in terms of adoption and

usage for both built-in and App Store apps.

7.1.1. App Usage

The 24 LiveLab participants installed over 3400 apps during the yearlong
study, of which over 2000 were unique. They also purchased almost 750
apps, of which 500 were unique, from the Apple App Store, spending over
$1300. Surprisingly, more than half (62%) of the 3400 apps installed by the

users were uninstalled during the study.

This dissertation defines the lifespan of an app as the time between its

installation and its uninstallation. Many apps have a short lifespan, e.g., 20%
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Table 7.1 - The following categories were manually assigned to
applications, in part based on genres reported by the App Store

Category Genres Notes

Games Games, Entertainment, Entertainment and media
Media consumption

Utilities Utilities and Productivity Calculators, alarm clocks, to-

do lists

Reference Books, Education, and Information resources
Reference

News News, Sports, Travel, Contemporaneous
Weather information resources

Commerce Business, Finance, Lifestyle  Shopping or financial apps
(shopping)

Social Social Networking Facebook, MySpace, Twitter

Networking

Other Health, Navigation, Only a few (162) applications
Medical, Photography

uninstalled within a single day and 31% within two weeks, indicating that

the user tried the apps but disliked them.

In order to analyze and more importantly present such a huge data set for
behaviors and trends, it is necessary to assign categories to apps, as shown in
Table 7.1. The App Store already reports 20 genres for apps, but to the

inconsistency of App Store genres and the fact that a certain app may be

117



tagged by multiple genres, this dissertation had to carefully and manually

categorize them.

The most popular app category was games, accounting for over 50% of app
installs and over 50% of money spent, and approximately 5% of app usage.
In contrast, social networking apps, mostly being free, only accounted for less
than 2% of money spent, but accounted for 8% of app usage. As expected,
there was a wide variation between users in adopting paid and free apps. The
users spent a median of $25 on 14 apps, as shown in Figure 7.1, and all but
two users purchased at least one app. Figure 7.2 shows the total number of
adopted apps during the study, broken in to built-in, free and paid apps. The
ratio of paid to free apps stays relatively constant over time, at around 20%.
Interestingly, and somewhat surprisingly, paid apps had a shorter lifespan
overall, as shown in Figure 7.3. The large number of paid apps with one day
lifespan shows that users frequently purchase apps which they quickly
determine they dislike, losing money in the process. The larger number of
paid app uninstalls in the next months can be attributed to the large number

of paid games
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Even though categorizing apps allows the analysis of app usage of the users,
there is still a significant variation between app usage duration and
frequency among different users. The significant differences between users,
even among the second and third quartiles, highlight the fact that the average
or median user alone is unable to serve as a benchmark for mobile usage.
Instead, it is necessary to consider a wide variation of users and usage.
Figure 7.4 shows the boxplot of app usage by different users, for both
frequency (Left) and duration (Right). The box indicates the second and third
quartiles among users. The whiskers indicate the maximum and minimum
values among users. The horizontal lines inside the boxes indicate the users’

median.
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7.1.2. Web Usage

Similar to app usage, each user’s web usage converges to a small set of
websites. As shown in Figure 5.1, the top website of a user accounts for 28%
of web usage (median); and the user’s top ten websites accounts for 87% of
usage. Compared to app usage, users were more inclined to explore new
websites than apps, which is intuitive since visiting a new website requires
much less commitment and time than installing an app. The key supporting
evidence is the median month-to-month Cosign Similarity of web usage was
significantly lower than that of app usage, at (0.73 - 0.94), compared to (0.85
- 0.97) respectively. To calculate the Cosign Similarities, this dissertation
defines a multidimensional web usage vector so that the magnitude of each
element corresponds to the frequency a specific website or app is launched.
The Cosine Similarity is the Cosine function of the angle between the two
usage vectors, and its output is always between 0 and 1. In mathematical
terms

A.B = ||A||||B]| cos 6
Therefore, Cosine Similarity (S48) can be calculated as

AB P ALB
lAllBI

Sap =cosbt =
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where A; and B; is the amount of usage type i for the users A and B

respectively.

While iPhone apps are developed for a smartphone environment, and are
often tailored to the specific features of the smartphone platform, it is
expected web browsing to be an extension and supplement to users’ regular
browsing. The findings in this chapter support this hypothesis, but strongly
suggest users are disappointed with their web browsing experience;
contrary to app usage, there was a significant decrease in participants’ web
usage throughout the study. This dissertation hypothesizes that the
disappointment was due to the shortcomings of the browsing experience,
and the fact that the participants had regular access to PC for web browsing.
Indeed, compared to PCs, the phone’s screen is much smaller and the web
browsing experience is significantly slower (caused by higher connection

latencies [87]).

In order to further study the decrease in web usage, this dissertation
analyzes the web content browsed by the users. The participants access both
mobile and non-mobile websites. This dissertation classifies web pages
based on URL keyword matching, e.g. URLs that "m.", "mobile."”, "iphone.", etc.

are classified as mobile. Some popular websites, such as google.com, use the

same URL for both mobile and non-mobile versions. In those cases, it is
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assumed the mobile version was used. Mobile web pages are less content
rich than their non-mobile counterparts, in terms of styles (CSS), scripts (JS),
multimedia content (IMG), and HTML size, as shown in Figure 7.5. Overall,
the phone had to download 120KB for the typical mobile page and 3 times

more, or 360KB, for the non-mobile page.

The results in Figure 7.6 indicate that the drop in web usage was due to a
drop in non-mobile website usage, while mobile website usage, presumably
better fit for mobile devices remained relatively stable through the study.
The clear message for designers is to develop a mobile-version of any content
that could be accessed through a browser. Indeed, this is more important for
users in lower SES brackets and new smartphone users as they transition

and learn how to install apps.

125



Count
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7.2. Effect of Socioeconomic Status (SES)

This section assesses the differences between SES groups in overall usage of
their iPhones. The author had expected differences to be minimal, e.g. how
much they spent in App Store purchases, as both groups lived in the same
dormitories on campus, and had no significant bias in their gender, major, PC
access, or game console ownership. Surprisingly, the findings suggest

stronger and broader differences in how they used their devices.

7.2.1. App Usage

App usage was consistently higher in the low SES users, approximately 40%
more than high SES users in terms of both frequency and duration, as shown
in Figure 7.7. For control, the differences between the low and high SES
groups were assessed over the entire study period of one year. Visits to apps
and the web were combined for each user within each quarter. A 2 (SES: Low
vs. High) x 4 (Time: quarters) analysis of variance (ANOVA) revealed that low
SES users visited apps on their smartphone 40% more than their higher SES
peers (F(1, 22) = 9.73, p = .01). A main effect for Time or interaction effect
was not found. The low SES users also consistently used a more diverse set of
apps throughout the study, as shown in Figure 7.8 by the top ten apps’

smaller fraction of usage. The diversity is in part due to the low SES
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participants’ higher variety of games used. Overall, the higher device usage
and app variety in low SES users suggests that the iPhones are used for
hedonic and utilitarian reasons by the low SES group and just the latter for
the high SES group. It appears this may be due to low SES users having fewer
or less interesting outside options, including those for entertainment or

otherwise.

Figure 7.9 is a radar chart showing app usage for each SES group, for the top
ten apps or app categories, normalized to the overall average usage of each
app or app category. Four of these apps or app categories revealed how SES
groups differed: Facebook, phone, games, and utilities. Logistic regression
confirms this statement; this desertion compared the standardized logistic
regression coefficients of each app or app category, as suggested in [88] to
find the dominant predictors of SES. The results show that the top 3
dominant apps in frequency are utilities, games and phone; and top 3 in
duration are Facebook, games and utilities, which comprise the exact same

four apps.
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7.2.2. Web Usage

By comparing the SES groups, it can be seen that Web usage was initially
much higher in the low SES group. However, the usage of both groups
dropped, and their differences disappeared through the course of the study,
as shown in Figure 7.10. Similar to the prior subsection, ANOVA was used for
URL visits. Interestingly, it revealed that there were no main effects for SES
or Time. However, a significant interaction showed that the lower SES group
accessed the web more at the beginning of the study; over time, however the
differences between SES web use attenuated, F(3, 66) = 4.60, p = .01.
Correspondingly, duration of use followed similar patterns. Low SES users
spent more time on the web early on; however, differences between SES

groups diminished as a function of experience.

While iPhone apps are developed for a smartphone environment, and are
often tailored to the specific features of the smartphone platform, it is
expected web browsing to be an extension and supplement to users’ regular
browsing. The higher initial usage for low SES participants shows that, for
them, smartphone web usage is more of an extension to their PC-based web
access. Indeed, user interviews with both groups suggest that even though
they both had access to personal and university PCs, the lower SES group

owned older and lower-quality computers.
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In contrast with app usage, both SES groups had similar diversity in web
usage, as shown in Figure 7.11. The similarity can be attributed to the

participants’ previously established web browsing habits.

7.2.3. App Store Purchases

The author had expected high SES participants to spend more on paid apps,
but was surprised to find the opposite. Low SES users spent a median of $31
on a median of 17 apps, compared to $15 on 6 apps for the high SES users. In
other words, they spent approximately twice the amount of money on three

times as many apps.

Looking deeper into the data, it can be seen that low SES users were more
money conscious and presumably more careful in their purchases compared
to high SES users. This is shown by their significantly different prices paid
per hour usage of paid apps. By dividing the total each user spent in the App
Store by the total paid app usage duration, one can calculate the cost per
hour for paid apps (i.e. price divided by duration). The low SES users had
significantly lower prices paid per hour (median: $1.0 vs. $2.6), which is
substantial even considering the increased overall usage of the low SES

USers.
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7.3. Implications of Socioeconomic Differences

The past section showed that there are clear usage differences based on SES
levels, even by controlling the user experience, i.e. the type of device,
temporal context, and other demographic factors (e.g., all students at the
same university, age, gender, etc.). This section elaborates on the
implications of the usage differences on the design and evaluation of mobile

devices and apps.

7.3.1. App Development

The findings regarding app lifespan (Figure 7.3) provide insights into
promoting third-party smartphone apps. They show that users often try out
apps for short periods, e.g. a day. Unfortunately, neither the Apple App Store
nor the Android Market offers try-before-you-buy as a universal feature.
Instead, users are typically expected to purchase apps based on reviews and
word of mouth. However, this dissertation clearly indicates that users would
benefit from a try-before-you-buy feature, such as the one introduced by the
recent Windows Phone 7 platform. This would enable users to waste less
money, as well as potentially explore and purchase more apps. Additionally,
real estate on iPhones is important and a try-before-you-buy store can

facilitate users to quickly “clean house” if an app is not useful or engaging
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Some operating systems, such as Windows Phone have already developed
this feature. The usage traces showing higher month-to-month diversity in
web usage (Figure 7.11), highlights the fact that smartphone users are more
comfortable exploring websites and web applications than downloading
apps. Indeed, it is natural for users to be more adventurous in accessing
different websites than using apps; visiting a website takes much less
commitment than installing an app. This suggests that an application
developer could reach a larger audience by providing a web service similar to
its installation-based app when appropriate, so that first-time users can more

easily assess them.

7.3.2. Designing Mobile Content

Many have envisioned feature-rich smartphones that provide cost-effective
access to information technologies and entertainment, especially for users
from underserved communities. This was one of the key motivations for
focusing on socioeconomic status (SES). The results of this chapter support
this vision: users with low SES tend to use smartphones more frequently and
for more time than high SES users (>40% more). Clearly, the web browser is
more central to supporting low SES users adopt smartphone technology.

When they first received their smartphones, low SES users seemed to use
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mental models developed through PC or laptop use. This manifested in an

increased reliance on their mobile browsers.

Over time, however, this reliance diminished in favor of app use which was
adopted earlier by their higher SES peers. In other words, low SES users, in
addition to apps, require access to the mobile web to do things that could
once only be done on PCs. Because many of these pages were not optimized
for mobile use, it appeared they relied less on their browsers as a function of
experience. Recall that low SES users accessed more non-mobile sites which
required more resources to load. The resulting page loading delays [87] have
been noted as a primary cause of web usage declines on PCs [89]. Clearly, this
is also a primary problem for the mobile web and this is especially
problematic for low SES users. Note that since only a few top websites are
most commonly used, it can be expected that predictive capabilities can be
leveraged to preload their most common resources and improve

performance.

7.3.3. Smartphone Design

Based on the results of SES comparisons, this dissertation identifies several
key groups of users that phones must cater to. This dissertation
acknowledges the observations were made from a very narrow demography

of smartphone users (college students), and that a broader user population
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likely has many more and different groups. Nonetheless, the significant
differences in such a narrow demographic strongly suggest that the one-size-
fits-all phone design paradigm fails to serve the best interest of users.
Instead, multiple mobile platforms with appropriately selected features are
more likely to compliment the needs of different user groups. While some
features can be achieved through customizations of software and/or the OS,
others require hardware modifications, e.g. hardware keyboard, game

controller buttons, and small form factor.

The low SES users had significantly higher overall usage, which places
greater requirements on the device’s battery. Their mobile web browsing
was also shown to be more of an extension to their PC experience, increasing
the value of larger screen sizes for them. Since both battery capacity and
screen size come as a tradeoff to device compactness, it can be hypothesized
that everything else equal, different users would significantly benefit from
different choices in terms of these tradeoffs, e.g. higher capacity battery and

larger displays for low SES users.

7.3.4. Field Evaluations

The findings in this chapter provide important insights into how the field

evaluation of smartphone and its service should be designed and carried out.
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First, the findings demonstrate the importance of controlling for
demographic factors to understand differences between users. Prior work on
smartphone usage was not particularly prudent in participant selection and,
not surprisingly, failed to reveal any difference [59], or failed to provide

conclusive evidence for speculated differences [60].

Second, the findings demonstrated that extraordinary care must be taken in
drawing conclusions from data collected by giving out devices and studying
them in field for a short period of time (e.g. shorter than three months). The
results show that the first months see a significantly different degree of
exploration and diversity in usage than in the remaining months (e.g. Figure
7.2, Figure 7.6, and Figure 7.8). Moreover, because usage continues to evolve
even one year into the study, conclusions drawn using data collected from a
short period of time should be generalized with care. Examples include the
seasonal variation in usage, and apps losing appeal, as is often the case with

games.

Third, the findings demonstrated the value of following the same users for a
long period of time and of being able to interview them for insights into their
behavior. This is shown both by the significant usage changes in the later
months of the study. However, this method is expensive financially and

administratively. Therefore, it can only be applied to relatively few
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participants. As a result, this method is complementary to those that gather

data from a large number of users but only sporadically, e.g., [90].



Chapter 8

Last Thoughts

8.1. Conclusion

The focus of this dissertation has been the methodological quantification and
measurement of the context dependency of mobile usage, in an application
agnostic yet practical manner. The context dependency of three principal
types of mobile usage have been measured; web, phone, and app usage.
However, the methodology of this dissertation can be readily applied to other
forms of mobile usage as well as system resources. This dissertation shows
that there is considerable context dependency in mobile usage, but it needs
to be carefully and efficiently extracted. This work is distinguished from

prior context aware work, as they typically provide ad-hoc and application
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specific solutions. In contrast, the methodological approach of this
dissertation liberates system designers from having to design and evaluate a

new solution for every context-based system service or application.

This dissertation has identified estimation accuracy as the application
agnostic yet practical measure of choice for context dependency, and has
provided a methodological approach to calculate the posterior probabilities
for MAP estimation. To this end, it has addressed the challenges of
sparseness when dealing with multiple sources of context information, and
the challenge of energy consumption for acquiring context from energy
hungry sensors. In particular, by utilizing energy hungry context only at
uncertain times, SmartContext can achieve an estimation accuracy within 1%
of the maximum possible accuracy, while significantly reducing energy costs
by half or more. The traces from LiveLab have allowed the measurements
and resulting findings to be based on real-life in-situ usage of mobile devices.
Furthermore, the LiveLab traces allow this dissertation to evaluate several
sample context-aware applications. Most importantly, these applications
highlight the practical value of estimation accuracy as a measure of context
dependency, and attest to the effectiveness of context for estimating usage.
As expected, the best performing context-aware methods consistently

outperform common non-context-based methods.
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Finally, this thesis investigates the role of social context in mobile usage, by
collectively comparing two carefully selected socioeconomic groups among
the participants. These findings highlight the significant role of social context,
even when other factors are kept similar, and provide researchers and
system designers with a better understanding of how users vary, and how to

design mobile devices, services, applications, and content.

8.2. Future directions

The methodology and findings of this dissertation opens the path for
numerous context-aware applications and research, and provide for a better
understanding of a broader range of individuals. However, there are four

specific directions for future work that are inspired by this dissertation.

First, is providing device independent system support for context awareness
on mobile devices. This dissertation provides methodologies for practical
context awareness. However, it is necessary for mobile devices to have
system-wide support for context awareness, including APIs for context-
aware applications and services to interact with. Such an implementation has
significant benefits; it can unlock additional energy savings by combining
sensor readings and training data from all context-aware applications and

services, while at the same time relieving their designers from the burden of
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individually implementing data collection, training, and context-based

estimation.

Second, this dissertation highlights that in many practical applications, MAP
based estimation accuracy may be a better measure for useful information,
compared to entropy. Therefore, operations research communities may want
to extend work using MAP based estimation accuracy as a more complicated
utility function compared to information entropy In particular, while this
dissertation showed the overall submodularity property of the LiveLab data,
it does not prove it for all conditions. A better treatment of MAP based
estimation accuracy appears necessary. For example, identifying the
mathematical requirements that can ensure the submodularity of MAP based
estimation accuracy, can help mobile designers in their choice of context

sources and their methods for handling them.

Third, the unexpected findings regarding social context highlights the need
for more carefully designed and conducted research on the human factors of
mobile computing, and on a wider range of demographics. LiveLab leads the
way to enable and simplify such research in the future. Therefore, the author
is hopeful that the hypothesis presented in this paper, as well as other effects

of social context, will be more thoroughly evaluated in the future. In turn, this
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would assist mobile and application designers and researchers from all

disciplines.

Fourth, this dissertation found that for accelerometer power readings, a
relatively high number of bins (e.g. 100+) can improve estimation accuracy
of usage. This was in contrast with the author’s original expectations that a
small number of bins would be sufficient to account for the users’ physical
state, e.g. walking, running, etc. Prior research on extracting users’ physical
or activity states using accelerometer readings also typically focus on a
relatively small number of states, e.g. as in [37]. The fact that a hundred or
more accelerometer power bins can improve estimation accuracy suggests
that accelerometer power can and should be used as a signature to classify a
user’s detailed state, and not merely as an indicator for whether they are
moving or not. Previous research has shown a similar phenomenon with
ambient sound for the purpose of room level localization, i.e. SoundSense

[80].
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