


 

ABSTRACT 

Uncertainty in Regional Air Quality Modeling 

by 

Antara Digar 

Effective pollution mitigation is the key to successful air quality management. 

Although states invest millions of dollars to predict future air quality, the regulatory 

modeling and analysis process to inform pollution control strategy remains 

uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the 

sufficiency of a control strategy to attain an air quality standard. A critical part of 

regulatory attainment demonstration is the prediction of future pollutant levels 

using photochemical air quality models. However, because models are uncertain, 

they yield a false sense of precision that pollutant response to emission controls is 

perfectly known and may eventually mislead the selection of control policies. These 

uncertainties in turn affect the health impact assessment of air pollution control 

strategies. 

This thesis explores beyond the conventional practice of deterministic 

attainment demonstration and presents novel approaches to yield probabilistic 

representations of pollutant response to emission controls by accounting for 

uncertainties in regional air quality planning. Computationally-efficient methods are 

developed and validated to characterize uncertainty in the prediction of secondary 

pollutant (ozone and particulate matter) sensitivities to precursor emissions in the 
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presence of uncertainties in model assumptions and input parameters. We also 

introduce impact factors that enable identification of model inputs and scenarios 

that strongly influence pollutant concentrations and sensitivity to precursor 

emissions. We demonstrate how these probabilistic approaches could be applied to 

determine the likelihood that any control measure will yield regulatory attainment, 

or could be extended to evaluate probabilistic health benefits of emission controls, 

considering uncertainties in both air quality models and epidemiological 

concentration–response relationships. Finally, ground-level observations for 

pollutant (ozone) and precursor concentrations (oxides of nitrogen) have been used 

to adjust probabilistic estimates of pollutant sensitivities based on the performance 

of simulations in reliably reproducing ambient measurements. Various 

observational metrics have been explored for better scientific understanding of how 

sensitivity estimates vary with measurement constraints. Future work could extend 

these methods to incorporate additional modeling uncertainties and alternate 

observational metrics, and explore the responsiveness of future air quality to 

project trends in emissions and climate change. 
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Chapter 1 

Introduction 

1.1. Background & Motivation 

1.1.1. Air Pollution - Overview 

Air pollution threatens human health. Concerns regarding the health effects 

of air pollution date back to the historic pollution episode - the “Great Smog of 1952” 

in London and consecutive severe smog events in New York and Los Angeles. 

Despite the continuous efforts of mitigating air pollution, large fractions of 

population all over the world are exposed to concentration levels that exceed the 

designated standards for air pollutants, the majority of which is due to ozone (O3) 

and particulate matter (PM) [USEPA, 2011; European Environmental Agency, 2011]. 

These pollutants not only damage crop yield [Feng and Kobayashi, 2009; Renaut et 

al., 2009; Grantz et al., 2003] and reduce visibility [Malm et al., 1994], but also 

adversely affect human health. These effects may range from increased respiratory 
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illness such as aggravation of asthma [Brunekreef and Holgate, 2002; McConnell et 

al., 2002; Dockery and Pope, 1994] to causing premature mortality [Bell et al., 2004; 

Ito et al., 2005; Jerrett et al., 2009; NRC, 2008; Anderson et al., 2005; Hart et al., 

2011]. Formulation of control strategies for ground-level O3 and secondary PM is 

often challenging because these pollutants are not emitted directly into the 

atmosphere, instead they are formed as a result of nonlinear interactions between 

primary pollutants. Understanding the formation, transportation and removal 

processes of these secondary pollutants in the atmosphere is therefore critical for 

efficient management of ambient air quality. The subsequent section explains the 

complexity of secondary pollutant formation through a classic example for 

tropospheric O3. 

Tropospheric Ozone  

In the troposphere, volatile organic compounds (VOCs) and oxides of 

nitrogen (NOX), which denotes the sum of nitric oxide (NO) and nitrogen dioxide 

(NO2), react to form O3 in the presence of an oxidizing agent like hydroxyl radical 

(OH) [Lin et al., 1988; Seinfeld and Pandis, 2006; West et al., 1999]. Figure 1.1 

elaborates the daytime formation pathway of O3 in the troposphere. O3 formation is 

influenced by the relative levels of NOX and VOC emissions. Due to the complex non-

linear O3-precursors relationship, reductions in NOX emissions do not always lead to 

a proportional decrease of O3 concentrations. Moreover, in regions where O3 

decreases with NOX reductions, the ozone production efficiency of NOX may vary 

with VOC concentrations, emission source, time and other meteorological factors 
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[Ryerson et al., 2001; Lei et al., 2008]. This complexity in O3-NOX-VOC relationship 

demands a strong understanding of the underlying atmospheric photochemistry in 

order to formulate effective emission control strategies. 

 

Figure 1.1 – Formation pathway for O3 in the troposphere. 

1.1.2. Air Quality Models 

Air quality models are widely used to predict changes in secondary pollutant 

concentrations as a result of various precursor emission controls [Collins et al., 

1997; Derwent and Davies, 1994; Godowitch et al., 2008; Harley et al., 1997]. These 

models predict changes in concentration of pollutant i (Ci) in time t, due to emission 

rate Ei, based on the atmospheric advection-diffusion equation as follows, 
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         +                            +         i
i i i i

C
uC K C R E

t
  (1.1) 

            Advection        Diffusion      Chemical Reaction      Emission   

 

where  u represents the wind velocity, K is the coefficient for eddy diffusivity, and Ri 

denotes the rate of chemical reaction. 

Figure 1.2 illustrates the schematic of a 3-dimensional air quality grid model 

and its key inputs. Since these models are based on simplified mathematical 

representations of the complex nonlinear physical and chemical processes in the 

atmosphere, relying on large datasets of model-estimated inputs, the resulting 

output is inherently uncertain.  

 

Figure 1.2 – Schematic showing a 3-dimensional air quality 

model and its inputs. 
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1.1.3. Uncertainties in Air Quality Modeling 

Uncertainties in air quality models affect the accuracy of the predicted O3 

concentrations and responses to emissions changes. These uncertainties primarily 

arise from uncertain model formulation (structural uncertainty) and/or uncertain 

model input parameters (parametric uncertainty) [Fine et al., 2003; Russell and 

Dennis, 2000]. The key sources of photochemical model uncertainties as identified 

by these studies are listed in Table 1.1.  

Structural Uncertainties Parametric Uncertainties 

Input Model Formulation  

(Emissions, Meteorology, Boundary 

Conditions, etc.) 

Emission Rates 

Chemical Mechanism Reaction Rate Constants 

Deposition Scheme Deposition Velocity 

Vertical Mixing Scheme Boundary Conditions 

Model Grid Resolution Meteorological Parameters 

Table 1.1 –Sources of air quality model uncertainty.  

Considerable efforts have been made in the past to characterize how 

uncertainties in model input parameters influence model estimates of O3 

concentrations and their responses to fixed levels of emission reductions [Bergin et 

al., 1999; Moore and Londergan, 2001; Hanna et al., 2001]. These studies conducted 

Monte Carlo analysis of an air quality model for various input parameter settings by 

sampling parameter values (either randomly or using stratified sampling 
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techniques) from their estimated distribution defined by specific ranges of 

uncertainty.  However, a key limitation of this type of uncertainty analysis for 

regulatory application involving numerous controls with extensive temporal and 

spatial resolution is its computational cost. A sophisticated and computationally 

efficient way to predict O3 responses to flexible amounts of emissions changes is via 

sensitivity analysis [Cohan et al., 2005; Yang et al., 1997]. The Decoupled Direct 

Method (DDM) enables direct computation of O3 sensitivity to multiple emission 

perturbations within a single model run [Dunker, 1981; Yang et al., 1997]. Further 

extension of the DDM allows predicting the non-linearity in O3-precursor 

relationship [Hakami et al., 2003]. This method facilitates assessing the impact of 

perturbations in input parameters on predicted concentrations by computing 

‘sensitivity coefficients’, which involves calculation of concentration gradient at any 

time as follows: 

1

j

j

C
S( )           (1.2) 

2
2

j 2

j

C
S( )           (1.3) 

2
2

j k

j k

C
S( )
,

          (1.4) 

where,  denotes concentration,  and  are the perturbations in parameters ‘j’ 

and ‘k’ respectively.  and  denote semi-normalized first- and second-order 
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sensitivities to parameters ‘j’, and  denotes cross-sensitivity between two input 

parameters ‘j’ and ‘k’.  

Recent work by Pinder et al. [2009] introduced a reduced form model for O3 

concentration using DDM sensitivity coefficients by jointly considering both 

parametric and structural uncertainties. Tian et al. [2010] extended that approach to 

create a reduced form of a photochemical model to study the effect of uncertainties 

in emission inputs on O3 response to various emission controls. However, neither 

study assessed the accuracy of these reduced form models.  

1.1.4. Regulatory Applications of Air Quality Models  

The Clean Air Act (CAA) necessitates the United States Environmental 

Protection Agency (US EPA) to impose standards, better known as National Ambient 

Air Quality Standards (NAAQS), on the concentration level of six criteria pollutants 

including O3 and PM, for the betterment of environmental conditions and protection 

of human health. States with ambient monitors violating these standards must 

develop air pollution control strategies in order to attain the NAAQS by a future 

date. In attainment demonstrations, states use photochemical air quality models  to 

deterministically evaluate whether an emission control strategy is sufficient to 

lower ambient pollutant concentrations below the regulatory NAAQS [USEPA, 2007]. 

However, recent studies have found that O3 health effects are observed at 

concentrations even lower than the designated standard [Bell et. al., 2006], which 

poses a serious question whether attainment of regulatory standards is fully 

protective of human health. A subsequent study by Cohan et al. [2006] reports that 
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the ranking of O3 control options may differ based on the evaluation criteria of 

regulatory attainment and resulting health impacts. Therefore, evaluation of the 

relative health benefits of control options, along with their attainment implications 

could better inform control strategy selection and optimization of net benefits 

[Chestnut et al., 2006]. 

Whether control strategies are assessed based on their relative health 

benefits or effectiveness of regulatory attainment, both assessments will largely 

depend on the accuracy of the regulatory models. However, uncertain air quality 

model results might mislead control strategy selection. Therefore, to yield results 

that are meaningful, one needs to account for these uncertainties while formulating 

air pollution abatement plans. Hogrefe and Rao [2001] suggests probabilistic 

analyses to supplement the pass/fail test of current regulatory practice. 

Probabilistic model uncertainty analysis considerers multiple model simulations 

with varying model assumptions and input data, rather than a single “best-estimate” 

model setting. However, previous works focusing on uncertainty analysis of 

photochemical models have assumed all model scenarios to be equally probable 

[Bergin et al., 1999; Moore and Londergan, 2001; Pinder et al., 2009]. A Bayesian 

inference approach could be used to prioritize model simulations based on their 

relative performance in simulating observed pollutant concentrations [Bergin and 

Milford, 2000; Deguillaume et al., 2007].  
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1.2. Scope of This Work 

Following these footsteps, this thesis introduces and validates a 

computationally efficient Reduced Form Model (RFM) to represent how the 

responsiveness of pollutants to emission reductions in the underlying 

photochemical model varies with simultaneous perturbations in multiple model 

input parameters. This RFM is then used to develop a probabilistic framework for 

estimating the likelihood that an emission control strategy will achieve an air 

quality objective in the presence of uncertainties in a photochemical model. 

Methods have been discussed to prioritize O3 control measures considering both 

NAAQS attainment requirements (considering model uncertainties) and maximum 

achievable levels of health benefits (considering uncertainties in health risk 

estimates). Finally, this thesis explores methods to constrain probabilistic estimates 

of O3 sensitivities to NOX and VOC emissions using ground-level observations of O3 

and its precursor concentrations.  

Although this research extensively demonstrates application for O3 

abatement on specific regions and episodes, the methods can also be applied for 

other geographic locations, as well. Applicability of the RFM for particulate matter 

(PM) in Chapter 1 shows that the model can also be applied for other secondary 

pollutants like inorganic PM for which the underlying photochemical model is well 

developed. 
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The outline of the thesis is as follows: 

 Chapter 2, “Reduced Form Model (RFM) to characterize parametric 

uncertainty: development and validation”, introduces two reduced form 

models (Continuum and Discrete) for efficiently representing air pollutant 

responsiveness to emissions controls under parametric uncertainty in 

photochemical models. To demonstrate the RFM, the Community Multiscale 

Air Quality (CMAQ) Model has been used, although this could be readily 

applied to any photochemical model. The accuracy and computational 

efficiency of the RFMs have been evaluated. 

 Chapter 3, “Probabilistic evaluation of ozone attainment considering 

parametric uncertainty”, presents the methodology for evaluating the 

likelihood of attaining an air quality objective in light of parametric 

uncertainty in a photochemical model. Summertime episodes of high O3 in 

the southeastern US, with particular focus on Georgia, have been considered 

as a case study. The method incorporates Monte Carlo simulations of the 

RFM to probabilistically predict the improvement in air quality due to 

emission control. 

 Chapter 4, “Prioritization of ozone abatement options considering 

health benefits”, demonstrates methods to characterize uncertainties 

influencing health-benefits estimation of O3 reduction (averted premature 

mortalities due to short-term exposure) in the Dallas-Fort Worth (DFW) 

region of Texas. The findings demonstrate that modeling of the relative 

health benefits of O3 abatement options is greatly influenced by uncertainties 
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in photochemical modeling and the choice of temporal metric for 

characterizing health response to O3 exposure.   

 Chapter 5, “Using observations to constrain probabilistic predictions of 

ozone-precursor responsiveness”, aims at reliable estimation of O3 

sensitivities to precursor emissions by incorporating uncertainties in 

photochemical modeling and evaluating model performance based on 

ground-level observations of O3 and NOX.  Weights based on a Bayesian 

inference technique, and screening based on model performance and 

statistical tests of significance are used to generate probabilistic 

representation of O3 concentrations and its response to NOX and VOCs. 

 Chapter 6 summarizes the research findings with concluding discussions 

and recommendations for future research.   

 Appendix A furnishes supplemental information to Chapter 5. 

 Appendix B and C lists all publications and presentations related to this 

research. 
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Chapter 2 

Reduced Form Model (RFM) to 

Characterize Parametric 

Uncertainty:  Model Development 

and Validation 

2.1. Introduction 

Ground-level ozone (O3) and particulate matter (PM) have long been leading 

targets of air quality management, due to their harmful effects on human health 

[Brunekreef and Holgate, 2002], natural ecosystems [Fuhrer, 2002], and visibility 

[Malm et al., 1994]. Control of these pollutants is complicated by the fact that they 

form from nonlinear interactions of multiple precursor compounds [Lin et al., 1988; 

West et al., 1999]. Accurate simulation of pollutant responsiveness to emission 

changes is critical to air quality management in the United States [Cohan et al., 2007; 

Hogrefe et al., 2008]. However, model predictions of pollutant-emission response 

Adapted with permission from Digar and Cohan, Efficient  Characterization of 

Pollutant-Emission Response under Parametric Uncertainty, Environmental 

Science & Technology, 44(17), 6724-6730, 2010. DOI: 10.1021/es903743t. 

Copyright © 2010, American Chemical Society. 
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involve significant uncertainties due to errors in input parameters like emission 

rates, reaction rate constants, and initial and boundary conditions (parametric 

uncertainty) and due to errors in model assumptions and formulation (structural 

uncertainty). Parametric uncertainty plays a relatively large role for pollutants such 

as O3 and inorganic PM for which the formation mechanism is generally well 

established but key input parameters are highly uncertain [Fine et al., 2003; Pinder 

et al., 2009; Russell and Dennis, 2000].  

Recent studies have made considerable efforts to characterize how 

uncertainties in model input parameters influence model estimates of O3 and PM 

concentrations and their sensitivities to emissions [Bergin et al., 1999; Deguillaume 

et al., 2008; Fine et al., 2003; Hanna et al., 2001]. Most of these studies used 

numerous model simulations with randomly sampled input parameters to 

characterize the probabilistic range of final outcomes. However, such an approach is 

immensely computationally intensive, making it unrealistic for characterizing 

uncertainty in regulatory applications that must consider several control measures 

at fine grid resolution for a long period of time with multiple uncertain parameters. 

Furthermore, most previous studies considered uncertainty of pollutant response 

only to fixed amounts of emission reductions. For attainment planning purposes, 

however, it may be desired to characterize the parametric uncertainty of pollutant 

response to controls of both variable size (e.g., regional sources with wide ranges of 

potential control levels) and fixed size (e.g., point sources with discrete control 

options) [Cohan et al., 2006]. The U.S. Environmental Protection Agency (U.S. EPA) 

has developed a response surface modeling approach for characterizing O3 and 
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PM2.5 response to various emission categories, but has not probed the uncertainties 

in pollutant response that may result due to input uncertainties [Hill et al., 2009; 

Hubbell, 2005].  

Cohan et al. (2005) posited that second-order sensitivity coefficients could be 

applied to adjust concentration and first-order (incremental) sensitivity estimates 

to account for error in an input parameter [Cohan et al., 2005]. Pinder et al. (2009) 

extended that approach to create a reduced form model (RFM) characterizing 

parametric uncertainty of pollutant concentrations, but not their responses to 

emission reductions [Pinder et al., 2009]. Tian et al. (2010) [Tian et al., 2010] extend 

that approach to create an RFM for O3 response to a targeted emission reduction 

while multiple emission rates are uncertain. However, no previous works has 

assessed the accuracy of the RFMs relative to the underlying models or considered 

pollutants other than O3. Gauging the accuracy of RFMs is crucial before such 

methods can be more widely adopted, given that secondary pollutant 

responsiveness could be influenced by nonlinear interactions among multiple input 

parameters.  

This chapter assesses the accuracy of new computationally efficient 

approaches for estimating both O3 and PM responsiveness to emission reductions of 

variable or fixed size while multiple input parameters are simultaneously 

perturbed. High-order sensitivity analysis is applied to develop analytical 

relationships (i.e., RFMs) between model outputs and changes in model inputs. 

These relationships characterize how the responsiveness of O3 or PM to a control 
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option varies as model inputs are perturbed. The performance of the RFMs is 

evaluated by comparing the resulting response surfaces with traditional brute-force 

simulations for both O3 and PM in a southeastern United States air pollution 

episode.  

2.2. Methods 

2.2.1. Reduced Form Models for pollutant responsiveness 

Two analytical approaches are applied here, each aimed at characterizing 

uncertainty of modeled pollutant-emission response for a particular type of 

abatement scenario: (1) a comprehensive Continuum Reduced Form Model (RFM), 

which uses local sensitivity coefficients computed by brute force or direct methods 

to develop equations that flexibly represent pollutant response to any level of 

emission reduction, analogous to the approach of ; and (2) a new simpler Discrete 

RFM, which uses brute force runs to explicitly simulate the impact of a pre-

determined amount of emission reduction. Both RFMs yield analytical equations 

that can readily be applied to estimate pollutant response under any level of 

perturbed input parameters in the underlying model. The following section explains 

each of these models in detail.  

 Continuum RFM 

Suppose an emission rate,
j

E , is perturbed by a factor 
j

ε  such that,  

'

j j j j j
E = E + ΔE = (1+ ε )E                                                                            (2.1)  
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The perturbation factor 
j

ε  can be positive or negative, though attainment 

planning typically focuses on emissions controls (i.e., 
j

ε < 0 ). It is straightforward to 

estimate the resulting changes in pollutant levels, C, by differencing concentrations 

under base (CB) and controlled (CC) conditions in two runs of a photochemical 

model. Note that C (i.e., Ci(X,t)) represents concentrations of all modeled species i at 

all modeled locations X and times t, but the notations for space and time are 

dropped for simplicity. Previous studies [Cohan et al., 2005; Hakami et al., 2004] 

have demonstrated that C can also be approximated for flexible levels of j  by 

using Taylor expansions of local first- and second order sensitivity coefficients, 

 (1)

j

j

C
S =

ε
and 

2
 (2)

j 2

j

C
S =

ε
, as shown in Equation 2.2: 

 (1) 2  (2)

B C j j j j

1
ΔC = C - C ε S + ε S + HOT

2
      (2.2) 

where HOT denotes higher-order terms (neglected here). The first- and second-

order sensitivity coefficients may be computed by the high-order decoupled direct 

method (HDDM) [Dunker, 1984; Hakami et al., 2003] or by finite differencing of 

brute force photochemical model runs. 

Predictions of pollutant response to emissions perturbations become more 

complicated when input parameters are acknowledged to be uncertain. 

Uncertainties in model inputs affect predicted pollutant concentrations and their 

responsiveness to control measures due to the nonlinearity of secondary pollutant 
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formation processes (Figure 2.1) [Cohan et al., 2005; Hakami et al., 2004; Lin et al., 

1988]. Consider a case when one or more input parameters have actual values, 
*

k
P , 

that differ from their modeled values, k
P , as described by Equation 3:  

*

k k k
P = (1+ φ )P         for k = 1,...,K     (2.3) 

where k
φ is the fractional error (negative or positive) in model input k

P and the 

asterisk (*) is used throughout this paper to denote conditions after correcting for 

errors in input parameters. The uncertain input parameters may include the base 

level of the targeted emission rate 
j

E  (Figure 2.1b). 

               (a)               (b) 

Figure 2.1 – The response of pollutant concentrations to 

reductions in emission rate Ej can change due to error in another input 

parameter (a) or in the base value of Ej itself (b). 

 

C     C * 

C 

Ej 

CB 

C

C 

* 

Ej 

CC 

C 

      Modeled Base Concentration                                            Corrected Actual Base Concentration                  

      Modeled Controlled Concentration                                 Corrected Actual Controlled Concentration 

            

        

C

B 

Ej 

C * 

Change in Pk 
Change in Ej 

C 

C 

Ej 

* 
CB  

CC  

Ej* 

C * 

CB * 

CC * 



 32 

After correcting for errors in the input parameters, the base and emission-

controlled concentrations BC  and C
C  would have error-corrected values 

*

B
C  and 

*

C
C , leading to a new estimate of pollutant response 

*ΔC (Figure 2.1). However, it 

would be computationally prohibitive to directly compute 
*ΔC for all possible values 

of the uncertain input parameters and the emission perturbation amount in the 

three-dimensional model. Instead, the continuum RFM computes first- and second-

order sensitivity coefficients, 
 (1)

jS  and 
 (2)

jS , with respect to the perturbed emission 

rate, and second-order cross-sensitivity coefficients, 
 (2) 2

j,k j kS C , involving 

the perturbed emission rate and each of the uncertain input parameters. First-order, 

second-order, and cross-sensitivity coefficients can be computed directly by HDDM 

[Hakami et al., 2003; 2004], or by finite differencing of multiple brute force runs via 

Equations 2.4(a-c): 

j j j jE - E (1)

j

j

C - C
S

2
        (2.4a) 

j j j jE B E (2)

j 2

j

C 2C C
S        (2.4b) 

j j k k j j k k j j k k j j k kE , P E , P E , P E , P (2)

j,k

j k

(C C ) (C C )
S

4
   (2.4c) 

where 
j j k kE , PC denotes concentrations when emission rate Ej is perturbed by 

fraction j  and input parameter Pk is perturbed by fraction k , with signs denoting 
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direction of perturbation. In this work, HDDM was used to compute sensitivity 

coefficients for O3, and perturbations of +/-10% were used to compute the finite 

difference sensitivity coefficients for PM, for which second-order HDDM is currently 

unavailable in CMAQ [Napelenok et al., 2006].  

The continuum RFM then uses these sensitivity coefficients in second-order 

Taylor series expansions to estimate the following terms: 
*

BC , the concentrations 

that the model would predict after adjusting for the errors due to uncertainties in 

input parameters Pk, but without specifically adjusting Ej (Equation 2.5); 
*

CC , the 

concentrations that the model would predict after adjusting for the errors in input 

parameters Pk, and with Ej perturbed by fraction j (Equation 2.6); and hence, *C , 

the error-corrected pollutant response to the targeted emission perturbation j

(Equation 2.7): 

*  (1) 2  (2)

B B k k k k

k k

1
C C + φ S + φ S + HOT

2
                                               (2.5) 

* *  (1) 2  (2)  (2)

C B j j j j j k j,k

k

1
C C S S S HOT

2
        (2.6)            

 
* * *  (1) 2  (2)  (2)

B C j j j j j k j,k

k

1
C C C S S S HOT

2
                    (2.7) 

Equation 2.7 assumes that the base level of the targeted emission rate Ej has 

no uncertainty (i.e., j K ). If the actual base emission rate Ej differs from the 
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originally modeled rate, then the error-corrected pollutant response can then be 

expressed as: 

*  (1) 2 2  (2)  (2)

j j j j j j j j k j,k

k

1
C (1 ) S (1 ) S (1 ) S HOT

2
 (2.8) 

The j(1 )  terms in Equation 8 reflect the fact that due to input error, the 

targeted fractional perturbation in emissions ( j ) will correspond to more or less 

tons of emission perturbation than originally anticipated due to j . Note that 

Equation 2.8 enables flexible estimation of *C  for any amount of emission 

perturbation j  and any level of error in each input parameter Pk. If the equation 

proves accurate, it would enable near instantaneous characterization of pollutant-

emission response over wide ranges of input uncertainty through Monte Carlo 

sampling of input parameters, as will be explored in subsequent chapters.  

Two aspects of Equation 2.8 motivate the need for accuracy testing before 

wider application is pursued. First, the equation considers only first- and second-

order sensitivity coefficients computed with respect to a base case, neglecting 

higher-order terms or discontinuities that could arise for very large perturbations in 

input parameters and/or targeted emission rates. Furthermore, the equation makes 

the simplifying assumption that the impacts of multiple uncertain input parameters 

on *C  are additive, as indicated by the summation term. Previous studies applying 

HDDM coefficients to characterize the impact of parametric error on pollutant-

emission response have considered only one uncertain parameter at a time [Cohan 
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et al., 2005]. Equations analogous to the continuum RFM for multiple input 

parameters were introduced for O3 by Tian et al. [Tian et al., 2010], but the accuracy 

was not tested.  

 Discrete RFM 

The Discrete RFM is a new approach that aims to accurately and efficiently 

characterize the parametric uncertainty of pollutant-emission response for cases in 

which the targeted amount of emission reduction is known in advance. For example, 

attainment plan options often include particular control technologies that would 

result in specific amounts of emission reduction at major point sources [Boylan et 

al., 2006; Cohan et al., 2006]. To develop pollutant response equations for this type 

of Yes/No control choice, we introduce a new parameter, the response coefficient, Fk, 

defined by Equation 2.9: 

k k k k k kP base B, P C, P B C

k

k k

C C (C C ) (C C )
F                   (2.9) 

where 
k kC, PC and 

k kB, PC denote concentrations modeled under an arbitrary small 

change k  in one input parameter Pk while the targeted emitter is at its controlled 

and base rates, respectively. In this study, k 10%  was used to calculate the 

response coefficients for the discrete RFM, to provide independence from the 

positive input parameter perturbations considered in the accuracy testing 

scenarios. 
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The Discrete RFM then scales each response coefficient by the actual amount 

of error k in each input parameter to adjust the original estimates of pollutant 

response and derive error-corrected estimates of actual pollutant response to the 

targeted emission reduction: 

*

k k

k

C C F          (2.10)         

Note that Equation 2.10 allows the user to flexibly consider a different level 

of error k for each uncertain input parameter, but that the base and the control 

emission rates of the targeted emitter must be pre-determined. This is appropriate 

for point sources such as power plants for which the base emission rates are 

accurately measured by continuous emission monitoring systems (CEMS) [Frost et 

al., 2006] and the potential control efficiencies of specific technologies are well 

characterized [Srivastava and Jozewicz, 2001; Srivastava et al., 2005]. Again, 

however, accuracy testing is crucial, because Equation 2.10 makes the simplifying 

assumptions that (1) influences of the input parameters are additive and (2) linear 

scaling of the response coefficients is sufficient to characterize the nonlinear 

impacts. 

2.2.2. Photochemical Modeling Episode 

We assess the abilities of the RFMs to represent O3 and PM concentration-

emission responses under an ensemble of uncertain inputs by considering a 6-day 

summer episode (May 29 to June 03, 2002) for a southeastern United States 
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modeling domain with 19 vertical layers of increasing thickness and 12-km grid 

resolution (Figure 2.2). The first three days were discarded for model initialization, 

leaving three days for accuracy testing. Photochemical modeling was conducted 

using CMAQ v4.5 [Byun and Schere, 2006] with the Chemical Bond 4 mechanism 

[Gery et al., 1989] with aerosol and aqueous updates, to match the modeling used in 

recent Georgia SIP modeling. Meteorological conditions were taken from 5th 

generation Mesoscale Model (MM5) [Grell et al., 1994] simulations conducted by the 

Georgia Environmental Protection Division (GA EPD) for its recent State 

Implementation Plan (SIP) modeling; emissions were taken from the Visibility and 

Improvements State and Tribal Association of the Southeast (VISTAS) year 2009 

projections (projected from a 2002 base inventory), with updates to Georgia 

emissions projections based on GA EPD SIP modeling. Details on VISTAS specific 

model set-up, execution and evaluation are documented elsewhere [MACTEC 

Engineering and Consultancy, 2008; Morris et al., 2008; Olerud and Sims, 2004]. 

 

Figure 2.2 – The 12-km resolution modeling domain (left) and 

the targeted Georgia emission regions (right).  
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2.3. Results and Discussion 

2.3.1. Reduced Form Model evaluation 

The accuracy and computational efficiency of CMAQ-HDDM for calculating 

first- and second-order sensitivities of O3 to a single input parameter have been 

reported elsewhere [Cohan et al., 2005; Napelenok et al., 2008] and was confirmed 

for the current episode. Cohan et al. (2005) introduced methods for adjusting 

pollutant-emission response based on changes in a single input parameter, but did 

not test its accuracy. Here we focus on the ability of the continuous and discrete 

RFMs (Equations 2.8 and 2.10, respectively) to predict the responses of pollutant 

concentrations to targeted emissions reductions in the presence of multiple 

simultaneous input parameter perturbations in the underlying model. Since the 

emissions reductions and input parameter perturbations cannot be directly realized 

in the real world, pollutant response to altered inputs in the underlying CMAQ 

model is the ultimate benchmark available for accuracy testing. 

Case studies for accuracy testing were developed by considering scenarios of 

potential relevance to O3 and PM attainment planning in Georgia. The Atlanta region 

exceeds federal standards for ambient levels of O3 and fine PM. Most of the modeling 

domain is characterized by forests with high levels of biogenic VOC emissions 

[Guenther et al., 2000], resulting in predominately NOx-limited O3 formation 

conditions that are relatively insensitive to VOC emission perturbations [Hagerman 

et al., 1997; Sillman et al., 1995]. Sulfate, ammonium, and nitrate are major 

components of PM in the region [Solomon et al., 2003], and their formation 
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processes are thought to be better characterized in air quality models than those for 

the other leading component of PM, organic carbon [Fine et al., 2008]. Thus, our 

accuracy testing focuses on the ability of the RFMs to represent O3 response to NOx 

emission controls, and inorganic PM responses to SO2 emission controls, while 

multiple input parameters are uncertain. 

2.3.1.1. Selection of uncertain parameters 

To develop scenarios of input parameter perturbations, a literature review of 

previous parametric uncertainty studies [Bergin et al., 1999; Deguillaume et al., 

2008; Fine et al., 2003; Gao et al., 1996; Hanna et al., 2001; Russell and Dennis, 2000] 

was conducted to identify key uncertain input parameters that are likely to affect O3 

and PM responsiveness to emission perturbations. In order to select parameters for 

the uncertainty analysis, we specifically focused on three Monte Carlo studies that 

characterized the relative importance of individual parameters in contributing to 

uncertainty in ozone and its sensitivity to emissions [Bergin et al., 1999; Gao et al., 

1996; Hanna et al., 2001]. The 19 parameters selected for analysis (Table 2.1) have 

each been found by at least one of those studies to be among the leading 

contributors to uncertainty. All photolysis reactions are considered jointly because 

of their shared dependency on actinic flux. We then used the most recent reported 

estimates of the uncertainty factors of those parameters [Beekmann and Derognat, 

2003; Deguillaume et al., 2007; Hanna et al., 2001; Sander S P, 2006] as detailed in 

Table 2.1. 
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HDDM cross-sensitivity coefficients were computed to assess the relative 

impact of each of the 19 targeted input parameters on O3 sensitivity to Atlanta NOX 

emissions. The impact factor, 
(2) (1)

j,k jS S , denotes the fractional change in first-order 

sensitivity due to a 1σ change in each input parameter. Results are presented for the 

maximum 8-hour average in the “nearby” (3x3 array centered on the monitor) cells 

surrounding Confederate Avenue monitor (the grid-cell with worst ozone for the 

episode), averaged over the episode (Table 2.1). Uncertain domain-wide (both 

biogenic and anthropogenic) VOC emissions and photolysis rates (positive impact), 

and uncertain domain-wide NOX emissions (negative impact) generate several times 

more uncertainty in O3 response to Atlanta NOX controls than any other parameter 

(Table 2.1). 
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Parameter 
Reported 

Uncertainty1 

Factor of 
Uncertainty 

L-N (1 )2 
Sigma3 Reference 

Cross-
sensitivity4  

(ppb) 

Impact  
Factor5  

Emission Rates: 
 

  
 

  

Domain-wide NOX  40%  (1 ) 1.40 0.336 [Deguillaume et al., 2007] -32.92 -0.762 
Domain-wide 

Anthropogenic VOC 
 40%  (1 ) 1.40 0.336 [Deguillaume et al., 2007] 4.70 0.109 

Domain-wide Biogenic 
VOC 

 50%  (1 ) 1.50 0.405 [Deguillaume et al., 2007] 17.58 0.491 

Reaction Rate Constants: 
 

  
 

  

All Photolysis Frequencies Factor of 2 (2 ) 1.41 0.347 [Hanna et al., 2001] 16.45 0.393 

R(All VOCs+OH)  10%  (1 ) 1.10 0.095 
[Hanna et al., 2001], 

[Deguillaume et al., 2007] 
8.24 0.054 

R(OH+NO2)  30%  (2 ) 1.14 0.131 [Sander S P, 2006] -9.30 -0.084 

R(NO+HO2)  10%  (1 ) 1.10 0.095 [Deguillaume et al., 2007] 5.48 0.036 

R(HO2+HO2)  10%  (1 ) 1.10 0.095 [Deguillaume et al., 2007] -0.86 -0.006 

R(NO+O3)  10%  (1 ) 1.10 0.095 [Hanna et al., 2001] -9.39 -0.061 

R(NO3+NO) Factor of 1.8 (2 ) 1.34 0.294 [Hanna et al., 2001] -0.10 -0.002 

R(RO2+HO2)  30%  (1 ) 1.30 0.262 [Deguillaume et al., 2007] -0.54 -0.010 

R(RO2+NO)  30%  (1 ) 1.30 0.262 [Deguillaume et al., 2007] 0.40 0.007 

R(HCHO+NO3) Factor of 1.8 (2 ) 1.34 0.294 [Hanna et al., 2001] 0.00 0.000 
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Parameter 
Reported 

Uncertainty1 

Factor of 
Uncertainty 

L-N (1 )2 
Sigma3 Reference 

Cross-
sensitivity4  

(ppb) 

Impact  
Factor5  

R(C2O3+NO) Factor of 1.4 (2 ) 1.20 0.182 
[Hanna et al., 2001], 

[Deguillaume et al., 2007] 
1.98 0.025 

R(C2O3+HO2) Factor of 1.8 (2 ) 1.34 0.294 [Hanna et al., 2001] -0.67 -0.014 

R(PAN decomposition)  30%  (1 ) 1.30 0.262 [Deguillaume et al., 2007] 1.33 0.024 

Boundary Conditions: 
 

  
 

  

Boundary Cond. O3  50%  (2 ) 1.23 0.203 [Deguillaume et al., 2007] 0.41 0.006 

Boundary Cond. NOY Factor of 3 (2 ) 1.73 0.549 [Deguillaume et al., 2007] -0.10 -0.004 

Others: 
 

  
 

  

Dry deposition velocity 
(all gaseous species) 

 25%  (1 ) 1.25 0.223 
[Beekmann and Derognat, 

2003] 
-2.42 -0.037 

 
1
All distributions are log-normal;

2
Uncertainties converted to the same unit (expressed as Factors); 

3
For 1  L-N distribution, 

sigma=ln(Factor); 
4
Cross-sensitivity of O3 to Atlanta anthropogenic non-EGU NOx emissions and each uncertain parameter, 

evaluated at the grid-cell with maximum daily 8-hour average O3 in a 3x3 array centered on the Confederate Avenue monitor, 

averaged over the episode; 
5
Impact factor: The fractional change in first-order sensitivity of ozone to emissions, due to a 1σ change in 

an input parameter. Computed as Impact Factor = 
(2) (1)

j,k jS S
, where 

(1)

jS
is the 1st order sensitivity of O3 to Atlanta NOX and 

(2)

j,kS
is 

the cross sensitivity of 
(1)

jS
with an uncertain parameter. 

 

Table 2.1 – Uncertainties in selected photochemical model input parameters reported by previous 

published studies.  
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2.3.1.1. Evaluation of RFM in simulating transition regimes under a 

homogeneous uncertainty scenario  

For O3 sensitivity to NOx emissions (Table 2.1), analysis using HDDM 

coefficients identified three of 19 parameters considered to be leading contributors 

to uncertainty: domain-wide (1) NOX, (2) VOC emission rates, and (3) all photolysis 

frequencies. Therefore, we selected these three parameters to be the focus of 

accuracy testing of the RFMs for ozone. For inorganic PM and its sensitivity to SO2 

emissions, we consider uncertainty in domain-wide (1) SO2, (2) NH3 emission rates, 

and (3) all photolysis frequencies. We consider three distinct scenarios for accuracy 

testing of the continuum and discrete RFMs: 10%, 30%, and 50% simultaneous 

increases in all the selected input parameters (Table 2.2), with the upper levels 

roughly corresponding to the 1σ input uncertainties reported by previous studies 

(Table 2.1). Although for illustrative purposes we choose uniform perturbations 

across the parameters, the RFMs (Equations 2.8 and 2.10) can flexibly consider any 

combination of perturbations in inputs and targeted emission rates.  

The continuum RFM is designed for cases in which a flexible range of 

percentage emission reductions may be under consideration. This is similar in 

attainment planning to the multiple control options that may be available for 

controlling regional emission rates. Thus, for studying O3-NOX and inorganic PM-SO2 

responses, the continuum RFM is applied and tested for the Atlanta region (defined 

as the 20-county O3 non-attainment region). For analysis purposes, uniform 

emission reductions of 10, 30, and 50% were considered, and were paired with 
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corresponding percentage increases in the selected uncertain input parameters 

described above (Table 2.2). For the continuum model only, we applied the 

percentage increases in the uncertain domain-wide input parameters to the base 

and controlled levels of the targeted regional emission rates. In other words, for a 

base regional emission rate of X tons, the (+50% error in domain-wide emissions, -

50% control of targeted regional emissions) case would consider the impact of 

reducing regional emissions from 1.5X tons to 0.75X tons (Equation 2.8). 

The discrete model is intended for cases in which a predetermined large 

amount of emission reduction is targeted. As a case study for the discrete model, we 

consider the decision by Georgia Power to repower its coal-fired McDonough power 

plant with natural gas, which is expected to reduce that facility’s NOx emissions by 

85% and its SO2 emissions by 99.8% below the levels originally modeled for 2009 (J. 

Boylan, Georgia EPD, personal communication). These targeted emission reductions 

are considered with the same scenarios of error in selected input parameters as 

described above (Table 2.2). Whereas in the continuum model we assume that the 

tons reduced for a given percentage regional emission reduction depended on the 

input parameter adjustments, in the discrete model we assume that both the 

percent and tons of emissions reduction at the power plant are known because the 

base emission levels are well-established by point source CEMS measurements 

[Frost et al., 2006]. Alternate assumptions could be applied readily if desired. 

Pollutant responses *C predicted by the continuum and discrete RFMs (via 

Equations 2.8 and 2.10) are compared to the actual (brute force) response of the 
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underlying photochemical model, computed in Equation 2.11 as the difference 

between two simulations in which the targeted emitter is set at base and controlled 

levels while the perturbations are applied to the uncertain input parameters: 

k k k k

*

BruteForce B, P C, PC C C       (2.11) 

Statistical analysis is conducted by comparing the RFMs and Equation 2.11 

results for each grid-cell-day over the entire domain and episode, after excluding the 

initialization days (Table 2.2). The O3 response results are evaluated based on 

changes in daily 8-hour average mixing ratios from 10 a.m. to 6 p.m. (computing O3 

results on a peak, rather than fixed, 8-hour basis would introduce slight additional 

error, because the peak 8-hour time interval can shift as emission rates and other 

input parameters are perturbed), and PM sulfate results are evaluated based on 

changes in 24-hr average concentrations, corresponding to temporal metrics of 

interest for attainment planning [US-EPA, 2007]. Normalized mean bias (NMB) and 

normalized mean error (NME) in the predictions of pollutant impact were computed 

(Table 2.2).  
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Pollutant 
Metric 

Targeted 
Emission 

Source 

Change 
in 

Targeted 
Emission 

Uncertain 
Input 

Parameters 

Change in 
Input 

parameters 

 

Impact of 
Control 

Statistical 
Analysis 

Linear Regression 
Analysis 

 Bias 
(NMBb) 

Error 
(NMEc) 

R2 Slope Intercept 

C
o

n
ti

n
u

u
m

 R
F

M
 

8-hr O3 
Atlanta 

Region NOx 

(316 tpda) 

-10% 
Domainwide 

ENOx, EVOC, 
and Jphot 

+10% 0.07 ppb 1.6% 7.5% 0.993 1.002 1.0E-06 

-30% +30% 0.27 ppb 3.2% 8.0% 0.993 1.012 5.0E-06 

-50% +50% 0.55 ppb 6.0% 9.7% 0.992 1.034 1.0E-05 

24-hr SO4 
Atlanta 

Region  SO2 
(57 tpda) 

-10% 
Domainwide 

ESO2, ENH3, 
and Jphot 

+10% 15.92 ng/m3 -2.5% 2.5% 1.000 0.997 -3.0E-04 

-30% +30% 61.65 ng/m3 -3.3% 3.5% 1.000 0.998 -2.0E-03 

-50% +50% 129.09 ng/m3 -2.9% 3.7% 1.000 1.002 -4.1E-03 
 
 

D
is

cr
e

te
 R

F
M

 8-hr O3 

Plant 
McDonough 

NOx 
(10 tpda) 

-85% 
Domainwide 

ENOx, EVOC, 
and Jphot 

+10% 0.0095 ppb 0.3% 1.8% 1.000 1.008 -5.0E-08 

+30% 0.0093 ppb 1.5% 6.5% 0.997 1.039 -2.0E-07 

+50% 0.0091 ppb 3.3% 13.1% 0.993 1.083 -5.0E-07 

24-hr SO4 

Plant 
McDonough 

SO2 

(55 tpda) 

-99.8% 
Domainwide 

ESO2, ENH3, 
and Jphot 

+10% 14.73 ng/m3 -0.1% 0.9% 1.000 0.998 2.0E-05 

+30% 15.93 ng/m3 -0.5% 2.4% 0.999 0.993 3.0E-05 

+50% 17.10 ng/m3 -0.7% 3.9% 0.998 0.990 4.0E-05 

 

 

Table 2.2 – Performance of the RFMs in predicting the impacts of emission reductions on 8-hour O3 

mixing ratios (10 a.m. – 6 p.m.) and 24-hr average PM sulfate concentrations, evaluated against brute force 

differencing of CMAQ runs.  

a 
Average tons per day for the episode,  

b 
Normalized mean bias = , c Normalized mean error =   
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The continuum RFM predicts the O3 impact of a 50 percent reduction in 

Atlanta NOx, while input parameters (domain-wide photolysis frequencies and NOx 

and VOC emissions) are perturbed upward by 50 percent, with 6.0% NMB and 9.7% 

NME (Table 2.2). Linear regression analysis of the continuum model against finite 

differenced brute force results shows an R2 of 0.992 and a slope of 1.03. 

Performance statistics were slightly better for cases with smaller emissions 

reductions and input parameter perturbations. Errors do not converge to 0% due to 

imperfections in the HDDM coefficients [Cohan et al., 2005; Napelenok et al., 2008] 

and because the impact magnitude declines with the targeted perturbation. 

Spatially, the continuum model accurately represents the “plume” of O3 reductions 

resulting from reductions in Atlanta NOx emissions (Figure 2.3). The high levels of 

accuracy are achieved even though the continuum model for O3 uses only HDDM 

sensitivity coefficients generated from within a single base simulation of the CMAQ 

model.  

The continuum model achieves even better accuracy for simulating PM 

sulfate response to 50 percent reductions in Atlanta SO2 emissions (NMB = -2.9%, 

NME = 3.7%, R2 = 1.000), again with 50 percent perturbations in relevant input 

parameters (Table 2.2). Slightly more scatter occurs in simulating the response of 

PM ammonium to SO2 emission reductions (Table 2.3). Both the concentrations of 

PM nitrate and its response to changes in SO2 emissions are modeled to be very 

small during this episode, so statistical comparisons are not meaningful.  
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                  Brute Force (BF) Differencing                             Continuum RFM  
                                    of CMAQ runs                             incorporating uncertainty                      Difference Plot (RFM - BF) 

 

 

Figure 2.3 – O3 reduction (10 a.m. – 6 p.m.) due to 50% reduction 

in Atlanta NOX (top) and 24-h average PM sulfate reduction due to 

99.8% McDonough SO2 control (bottom).  

 

Note: For O3 simulation, domain-wide NOx, VOC emissions and photolysis 

rates are assumed to be uncertain by + 50%, and for PM, domain-wide SO2, NH3 

emissions and photolysis rates are increased by +50%. The left hand plots show 

results from brute force (a, d), the middle plots show continuum RFM results (b, e) 

and the right hand plots show the differences in reults (c, f). Results are shown for 

June 3. 
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Pollutant 
Metric 

Targeted 
Emission 

Source 

Change in 
Targeted 
Emission  

Uncertain 
Input 

Parameters 

Change in 
Input 

parameters 

*

BruteForceC  

Impact of 
Control 

Statistical 
Analysis 

Linear Regression 
Analysis 

Bias 
(NMBb) 

Error 
(NMEc) 

R2 Slope Intercept 

24-hr NH4 

Atlanta 
Region  

SO2  
(57 tpda) 

-10% 

Domainwide 
ESO2, ENH3, 
and Jphot 

+10% 
15.92 
ng/m3 -2.5% 2.5% 1.000 0.997 -3.0E-04 

-30% +30% 
61.65 
ng/m3 -3.3% 3.5% 1.000 0.998 -2.0E-03 

-50% +50% 
129.09 
ng/m3 -2.9% 3.7% 1.000 1.002 

-4.1E-03 
 
 

Plant 
McDonoug

h SO2  

(55 tpda) 

-99.8% 
Domainwide 

ESO2, ENH3, 
and Jphot 

+10% 3.14 ng/m3 -0.0% 2.9% 0.999 1.004 -1.0E-05 

+30% 3.36 ng/m3 0.2% 8.1% 0.992 1.012 -4.0E-05 

+50% 3.55 ng/m3 1.1% 13.3% 0.981 1.026 -5.0E-05 

a Average tons per day for the episode, b Normalized mean bias, c Normalized mean error 

 

Table 2.3 – Performance of the RFM in predicting the impacts of Atlanta regional emission reductions on 

24-hr average PM ammonium concentrations, evaluated against brute force differencing of CMAQ runs. Results 

compared over all grid-cell-days in the episode.   
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The discrete RFM achieves similar performance statistics (Table 2.2), despite 

simulating even larger percentage reductions in a single point source. The discrete 

model does show slightly more degradation in performance as the size of the input 

parameter perturbations are increased, most likely reflecting the fact that its 

computations are extrapolated from response coefficients computed for only -10% 

changes in each input parameter.  

For both the regional and point-source emission controls, by correcting for 

input errors the RFMs yield far more accurate predictions of pollutant-emission 

response than if those errors had been neglected (Figure 2.4-Figure 2.7).  
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        Brute Force       RFM w/o uncertainty               Difference Plot                 

 

 

Figure 2.4 – O3 reduction (10 a.m. – 6 p.m.) due to 50% reduction 

in Atlanta NOX (top) and 24-h average PM sulfate reduction due to 

99.8% McDonough SO2 control (bottom).  

                                    

Note: For O3 simulation, domain-wide NOx, VOC emissions and photolysis 

rates are assumed to be uncertain by + 50%, and for PM, domain-wide SO2, NH3 

emissions and photolysis rates are increased by +50%. The left hand plots show 

results from brute force (a, d), the middle plots show continuum RFM results 

neglecting parametric uncertainty (b, e) and the right hand plots show the 

differences in reults (c, f). Results are shown for June 3. 
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                                                 Brute Force Result 

 
                                RFM w/o uncertainty           RFM w/ uncertainty 

 

Figure 2.5 – Ozone reduction due to 85% reduction in Plant 

McDonough NOx, while domain-wide NOx and VOC emissions and 

photolysis rates are increased by 50%, as simulated by brute-force (a), 

the discrete RFM neglecting (b) and accounting for (c) input parameter 

uncertainty. Results shown for 10 a.m.-6 p.m. on June 3. 

  

(a) 

(b) (c) 
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                                                Brute Force Result 

 
                                RFM w/o uncertainty           RFM w/ uncertainty 

 

Figure 2.6 – PM sulfate reduction due to 50% reduction in 

Atlanta SO2, while domain-wide SO2 and NH3 emissions and photolysis 

rates are increased by 50%, as simulated by brute-force (a), the 

discrete RFM neglecting (b) and accounting for (c) input parameter 

uncertainty. Results shown for 24-hour average on June 3. 

  

(a) 

(b) (c) 
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                                                 Brute Force Result 

 
                                RFM w/o uncertainty           RFM w/ uncertainty 

 

Figure 2.7 – PM ammonium reduction due to 50% reduction in 

Atlanta SO2, while domain-wide SO2 and NH3 emissions and photolysis 

rates are increased by 50%, as simulated by brute-force (a), the 

discrete RFM neglecting (b) and accounting for (c) input parameter 

uncertainty. Results shown for 24-hour average on June 3. 

  

(a) 

(b) (c) 
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2.3.1.2. Evaluation of RFM in simulating transition regimes under a 

heterogeneous uncertainty scenario  

The primary accuracy tests described above consider homogeneous levels of 

perturbation in the input parameters and a base scenario that was dominated by 

NOx-sensitive ozone conditions. An additional test was developed to ensure that 

similar performance is achieved under heterogeneous parametric uncertainty and 

in transitional conditions between NOx- and VOC-limited ozone chemistry. The 

testing scenario described below applies heterogeneous perturbations 

simultaneously to 6 input parameters, with perturbation magnitudes roughly 

comparable to the 1σ uncertainty levels described in Table 2.1. 

 Perturbations to uncertain input parameters 

o Atlanta NOX (ANOX) is 40% more than modeled 

o Atlanta VOC (AVOC) is 50% less than modeled  

o Rest-of-domain (i.e., domain – Atlanta) NOX (RNOX) is 30% more than 

modeled 

o Rest-of-domain VOC (RVOC) is 40% less than modeled 

o All photolysis frequencies (Rphoto) are 1.4 times more than modeled 

o R(NO2+OH)  is 15%  more than modeled 

 Targeted emission reduction: 12% reduction in Atlanta NOx 

In absence of the above uncertainties, O3 is found to be sensitive to Atlanta 

NOX (Figure 2.8(a)); however, by increasing baseline NOX and decreasing baseline 

VOC, these perturbations shift the model to predict NOX-saturated (Figure 2.8(b)) 
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and VOC-limited (Figure 2.8(c)) conditions in the innermost Atlanta counties, 

surround by NOx-limited conditions elsewhere.  

This provides an especially rigorous test, because the targeted emission 

reduction (and hence ozone impact) is small compared to the input perturbations 

and the RFM relies solely on sensitivity coefficients computed under starkly 

different base-case conditions. Nevertheless, the RFM successfully simulates the 

spatial patterns and magnitudes of the resultant O3 impact and captures the correct 

flips in O3-precursor sensitivities in the transition regimes as the input parameters 

are perturbed (Figure 2.9; normalized mean bias (NMB) = 7.3%, normalized mean 

error (NME) = 19.3% and R2 = 0.964), bolstering confidence that the RFM can be 

reliably applied over heterogeneous input parameter and ozone chemistry 

conditions. 
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O3 sensitivity to Atlanta NOx  

without parametric uncertainty 

 

Corrected O3 sensitivity considering parametric uncertainty 

 

                         Sensitivity to Atlanta NOx           Sensitivity to Atlanta VOC 

 

Figure 2.8 – O3 sensitivity coefficient without any parametric 

uncertainty (a) and adjusted coefficients when 6 input parameters are 

uncertain (b, c) (ANOX: +40%, AVOC: -50%, RNOX: +30%, RVOC: -40%, 

Rphoto: factor of 1.4, and R(NO2+OH): +15%). Results are shown for 10 

a.m.-6 p.m. in the urban regions of Atlanta on June 3. 

  

(a) 

(b) (c) 
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                       Brute Force              Reduced Form Model 

O3 reduction due to 12% control in Atlanta NOX in absence of parametric 

uncertainty 

 

O3 reduction due to 12% control in Atlanta NOX under parametric uncertainty 

 

Figure 2.9 – O3 reductions due to 12% control in Atlanta NOX in 

absence of parametric uncertainty (a, b) and when 6 input parameters 

are uncertain (c, d) (ANOX: +40%, AVOC: -50%, RNOX: +30%, RVOC: -

40%, Rphoto: factor of 1.4, and R(NO2+OH): +15%), as simulated by 

brute force finite differencing (left) and the reduced form model (right). 

Results are shown for 10 a.m.-6 p.m. in the urban regions of Atlanta on 

June 3. 

 

  

(a) 
(b) 

(c) (d) 
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2.3.1.3. Evaluation of RFM in simulating pollutant responsiveness in 

different ozone regimes 

So far, we have applied the RFM to a single region characterized mostly by 

NOx-limited conditions, apart from the testing case above that pushed conditions to 

be VOC-limited in the Atlanta urban core. To evaluate whether similar performance 

would be achieved elsewhere, we also applied the RFM to a Houston, Texas region 

characterized by transitional conditions between NOX- and VOC-limited ozone 

chemistry.  

We apply the RFM to the 4-km modeling of a TexAQS-II (Texas Air Quality 

Study-part 2) episode during August - September 2006, from Rappengluck et al. 

(2009) [Rappengluck, 2009]. Results are evaluated for three days (September 1-3) 

following two model initialization days. The continuum RFM is tested for assessing 

ozone responsiveness to a 50% reduction in NOX and VOC emission from Harris-

Galveston-Brazoria (HGB) area when domain-wide NOx and VOC emissions and rate 

constants for all photolysis reactions and the termination reaction (NO2+OH) are 

considered to be 50% more than reported. NMB of -9.6% and -9.1%, NME of 7.4% 

and 13.2% and R2 of 0.994 and 0.973 were obtained for simulating the ozone impact 

of controlling NOX and VOC respectively. Figure 2.10 shows the performance of the 

RFM for this TexAQS-II case study, demonstrating a strong spatial match between 

RFM and brute force results.    
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                       Brute Force           Reduced Form Model 

 

 

Figure 2.10 – Reduction in ozone due to 50% reductions in NOX 

(top) and VOC (bottom) emissions from HGB area in Texas, as simulated 

by brute-force (left) and the continuum RFM (right). Results are shown 

for 10 a.m. to 6 p.m. on September 2, 2006, when domain-wide NOX, 

VOC, Rphoto and R(NO2+OH) is +50% more. 
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2.3.1.4. Evaluation of RFM in simulating pollutant impact under multiple 

controls 

Since the RFMs accurately simulate the underlying model’s responsiveness to 

isolated reductions in regional or point source emissions under parametric 

uncertainty, it may be asked whether those impacts can be summed to predict the 

overall benefits of a combined strategy. Additional simulations were conducted to 

test the accuracy of the RFM equations in estimating the pollutant responsiveness to 

multiple control strategies applied simultaneously under parametric uncertainties. 

We define a new region, “Rest-of-Georgia” consisting of all Georgia counties 

excluding both the Atlanta ozone non-attainment region and the seven counties 

centered on the city of Macon (Figure 2.2). We evaluate RFM predictions for ozone 

responsiveness as a result of the combined effect of NOx reductions in Atlanta and 

Rest-of-Georgia, under the same +50% parametric uncertainties considered earlier 

(domain-wide NOx, VOC and photolysis rates).  

A summation of the 8-hour ozone responses to NOx controls from each region 

predicts the joint effect with a high degree of accuracy even for a 50% change in 

each term (Figure 2.11(b), NMB = -0.85%, NME = 8.6%, and R2 = 0.985, comparing 

all grid-cell-days for the episode). In theory, it would be expected that accuracy 

could be improved even further by incorporating a term for the cross-sensitivity of 

ozone to emissions from each region (i.e., 
2

3 1 2j jO ) into the Taylor expansions, 

especially for a case such as this in which the plumes have substantial opportunity 

to interact. However, the incorporation of a cross-sensitivity term between the two 
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controls (RFMx) does not significantly improve the accuracy of results for the case 

examined here (Figure 2.11(c), R2 = 0.985, NMB = 0.97%, and NME = 8.2%). Further 

testing would be needed to examine the importance of cross-sensitivity interactions 

in other cases.  

             Brute Force                          RFM                               RFMx                 

 

Figure 2.11 – Reduction in ozone due to joint 50% reductions in 

NOx emissions from both Atlanta and “Rest of Georgia”, as simulated by 

(a) brute-force, (b) summing the continuum RFM-predicted impacts for 

each region and (c) summing the continuum RFM-predicted impacts for 

each region with cross-sensitivity of O3 sensitivity to emissions. Results 

are shown for 10 a.m. to 6 p.m. on June 3. 

2.3.2. Computational efficiency and applicability of RFMs 

The computational efficiency of the RFMs is a key motivator for their use as 

substitutes for traditional brute-force methods in parametric uncertainty 

characterization. The computational requirements of the RFMs can be described by 

considering a case in which it is desired to characterize pollutant responses to J 

control options while K input parameters are uncertain. A traditional Monte Carlo 

Latin Hypercube Sampling (LHS) method would require sufficient sampling (say, N 

samples, typically N=10 x input dimension [Loeppky et al., 2009]) of photochemical 

(a) (b) (c) 
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model simulations from this (J x K) parameter space to characterize pollutant 

responsiveness to all the Ej’s, likely requiring (1+J) x 10K model runs [Bergin et al., 

1999; Hanna et al., 1998; Rodriguez and Dabdub, 2003]. On the other hand, the 

continuum RFM requires 2J sensitivity coefficients (
 (1)

jS and 
 (2)

jS ) to the targeted 

emissions, plus J x K cross-sensitivity coefficients (
 (2)

j,kS ) between the targeted 

emissions and the uncertain parameters. If HDDM is available, then this total of 

J(K+2) sensitivity coefficients can be computed within the base model itself. 

Depending on the capabilities of the computer and the size of the modeling domain, 

dozens of HDDM sensitivity coefficients may be computed within a single 

simulation, albeit requiring much more time than a base simulation (see [Koo et al., 

2007a; Koo et al., 2007b; Napelenok et al., 2008; Yang et al., 1997] for examinations 

of the computational efficiency of DDM and HDDM). The comparison of CPU time 

needed for the continuous RFM-Monte Carlo analysis against the traditional Monte 

Carlo LHS technique of the base model is presented in Table 2.4.  
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Number of 
parameters1 

Description 
of uncertain 
parameters 

Number2 of 
Monte 
Carlo 

(LHS3) 
Simulations 

Monte Carlo (LHS3) of RFM   
Monte 
Carlo 

(LHS3) of  
Air Quality 

Model 
(minutes) 

Required 
number of 
sensitivity 

coefficients4 

CPU time 
using HDDM 
to compute 
sensitivity 

coefficients 
(minutes) 

CPU time 
using Brute 

Force to 
compute 

sensitivity 
coefficients 
(minutes) 

j = 1; k = 2 2 emission rate 
20(base)  

+ 
20(control) 

3 (4) 156 275 1568 

j = 1; k = 10 

3 emission, 2 
boundary 

conditions,  
1 deposition 

velocity and 4 
reaction rates 

100(base)  
+ 

100(control) 
11 (20) 436 1530 7840 

j = 2; k = 34 

6 emissions, 
25 reaction 

rate constants, 
3 deposition 

velocities  

340(base)  
+ 

340(control)  
+ 

340(control) 

68 (100) 2177 10271 39984 

1
j denotes number of control scenarios and k denotes number of uncertain parameters; 

2
We assume that the sample size needed for LHS is 10 

times the input dimension [Loeppky et al., 2009]; 
3
LHS stands for Latin Hypercube Sampling; 

4
number in parenthesis denotes the total number 

of sensitivities that HDDM needs to compute in order to compute the required number of sensitivity coefficients required by the RFM. 

Note: Time is calculated on the basis of a single-day simulation period for a 12-km CMAQ grid with 98x95 cells, using an Intel Xeon 5150 

processor (CPU speed - 2.66 GHz, FSB speed - 1333 MHz, and system RAM - 8 GB). 

Table 2.4 – Estimated computational time for Monte Carlo uncertainty analysis using continuum RFM or 

Brute Force for predicting pollutant response to emission controls under parametric uncertainty. 
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Modelers may also choose to compute sensitivity coefficients by brute force, 

if HDDM is unavailable or if a slightly higher level of accuracy is desired. Calculation 

of the J x K cross-sensitivity coefficients by Equation 2.4 requires 4(J x K) brute force 

model runs, along with the 2J+1 simulations needed to compute coefficients 
 (1)

jS and 

 (2)

jS by brute force. While more computationally burdensome than HDDM, this 

approach still requires much fewer model simulations than would typically be 

conducted for Monte Carlo sampling of the input parameter space (Table 2.4). The 

ability to apply the RFM methods in the absence of HDDM is important, because it is 

highly time-consuming to implement and update HDDM in air quality models, and 

many regulatory modelers lack experience in its application. Brute force methods, 

on the other hand, can readily be applied in any air quality model.  

However the continuum RFM is applied, the result is an analytical equation 

expressing pollutant response to targeted emission reductions as a function of the 

fractional changes in targeted emissions and in input parameters. The equation 

allows near instantaneous calculation of a virtually unlimited number of 

combinations of perturbations to the targeted emission rates and the input 

parameters, enabling efficient characterization of parametric uncertainty. 

The discrete RFM operates only by brute force, and requires a total of J(K+1) 

perturbed simulations to compute the required response coefficients. This easy-to-

apply method may be useful in attainment planning if the size of the targeted 

emission reduction is known in advance, while a flexible range of input parameters 

is desired for uncertainty analysis. Like the continuum model, it enables near-
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instantaneous Monte Carlo characterization of pollutant-response, although in the 

discrete model only the uncertain input parameters (and not the targeted amount of 

emission reduction) can be varied. 

The high level of accuracy demonstrated for both RFMs lends confidence to 

their application for scientific and air quality management purposes such as 

parametric uncertainty analysis and the development of attainment strategies. 

Despite significant nonlinearities in O3 and inorganic PM formation, the responses of 

each pollutant to large emission reductions can be well-characterized over large 

perturbations in multiple important input parameters using only first- and second-

order sensitivity relationships from the base model. The RFM analytical equations 

can hence serve as effective surrogates for far more complex photochemical models, 

of course with the crucial caveat that their results can only be as accurate as the 

underlying model itself in representing pollutant-emission response. Subsequent 

chapters explore the application of the RFMs to characterize the parametric 

uncertainty of secondary pollutant responses to emission reductions and to assess 

the likelihood that an attainment plan will achieve a desired pollutant reduction 

target. Future research could also consider the role of meteorological uncertainties 

together with the parametric uncertainties considered here. 
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Chapter 3 

Likelihood of achieving air quality 

targets under model uncertainties 

3.1.  Introduction 

The United States Environmental Protection Agency (U.S. EPA) sets national 

ambient air quality standards (NAAQS) for ozone (O3) and other criteria pollutants. 

States with ambient monitors violating those standards must develop State 

Implementation Plans (SIPs) for attaining the NAAQS by a future date. Recent 

proposed rules to tighten the NAAQS for O3 and fine particulate matter (PM2.5) will 

likely prompt a wave of new SIP development [USEPA, 2010; March, 2010].  

In order to demonstrate future attainment, States use photochemical models 

to simulate the response of ambient pollution to projected reductions at emission 

sources. The current framework for SIP attainment demonstrations applies a bright-

line test to deterministically evaluate whether an emission control program is 

Adapted with permission from Digar et al., Likelihood of Achieving Air Quality 

Targets under Model Uncertainties, Environmental Science & Technology, 45(1), 

189-196, 2011. DOI: 10.1021/es102581e. Copyright © 2011, American Chemical 

Society. 
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sufficient [USEPA, 2007]. In this process, photochemical models simulate pollutant 

concentrations under ‘controlled’ (future-year) and ‘base’ (base-year) emission 

rates, applying identical base-year meteorological episodes in each case. The ratio of 

future to base pollutant concentrations is termed the relative reduction factor 

(RRF). This process enables the use of model results in a relative rather than an 

absolute sense. The RRF is then multiplied by the measured base-year design value 

(DVB) for each monitor to estimate the future design value (DVF), which determines 

whether the monitor is projected to attain the NAAQS with the considered set of 

control measures [USEPA, 2007]. Although U.S. EPA also advocates consideration of 

other “weight of evidence” factors in close cases, the deterministic bright-line test 

forms the core of most SIP attainment demonstrations. 

However, photochemical model results are known to be uncertain due to 

uncertain model formulation (structural uncertainty) and uncertain input 

parameters (parametric uncertainty) [Fine et al., 2003; Pinder et al., 2009; Russell 

and Dennis, 2000]. Thus, RRFs computed by photochemical models will be uncertain 

[Jones et al., 2005]. Moreover, future meteorology will differ from the past, and those 

changes will impact pollutant concentrations [Cox and Chu, 1993]. Whether a given 

control strategy will be sufficient is thus a probabilistic rather than a deterministic 

question, but the current bright-line test fails to quantify the likelihood that 

attainment will actually be achieved. In fact, many regions have failed to attain 

NAAQS by the targeted year despite SIP modeling that predicted attainment [USEPA, 

2011]. 
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Hogrefe and Rao (2001) suggested that probabilistic analyses should 

supplement the pass/fail test of current regulatory practice [Hogrefe and Rao, 

2001]. However, most previous efforts to characterize the probabilistic response of 

air pollutants to emission controls have relied upon numerous Monte Carlo 

photochemical model simulations [Bergin et al., 1999; Deguillaume et al., 2008; 

Hanna et al., 2001], which is impractical for extensive SIP modeling. New methods 

would be needed to enable States to objectively characterize the attainment 

likelihood of various potential control packages in a computationally efficient 

manner.     

This chapter introduces methods for estimating the likelihood that a given 

level of emission reductions will achieve a targeted improvement in air quality, in 

light of parametric uncertainties in the photochemical model. Two types of targeted 

pollutant reduction are considered: a fixed amount of air pollution reduction needed 

at a monitor, and a flexible function acknowledging that unknown future 

meteorology and uncertain projections of emission trends generate uncertainty in 

how much additional improvement is needed. The new methods are applied to 

recent attainment modeling from the Atlanta, Georgia, 8-hour O3 SIP to assess the 

likelihood that additional emission controls would achieve targeted amounts of air 

quality improvement. 
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3.2. Methodology 

3.2.1. Reduced Form Models 

Recent work has shown that high-order sensitivity analysis of a 

photochemical model can be applied to construct reduced form models (RFMs) that 

represent how perturbations in multiple input parameters (e.g. emission rates, 

reaction rate constants, boundary conditions, and deposition velocities) influence 

the responsiveness of pollutant concentrations to precursor emissions [Digar and 

Cohan, 2010; Tian et al., 2010]. These RFMs provide analytical representations for 

the amount of ambient pollutant reduction that would be achieved as a function of 

the fractional changes ( jε ) in targeted emission rates j = 1, 2,...., J , and the 

fractional perturbations kφ  needed to adjust uncertain parameters k =1,2,....,K  to 

their ‘actual’ values. Digar and Cohan (2010) introduced methods for efficiently 

computing the impacts of emissions perturbations while input parameters are 

perturbed [Digar and Cohan, 2010]. The Continuum RFM considers adjustable 

fractional perturbations in emissions, while the Discrete RFM is applicable when the 

tonnage of emission perturbation is pre-determined (e.g., a specific control 

technology at a point source). 

For the Continuum RFM, the change in concentrations ( *ΔC ) resulting from 

fractional emission perturbation ( jε ) while input parameters Pk are perturbed by 

fractions kφ
 is given by, 
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k k k k j j k

* (1) 2 (2) (2)
φ P φ P ,ε E j j j j j j,k

k

1

2
ΔC C -C ε S + ε S +ε φ S    (3.1a) 

where 
k kφ PC denotes concentrations under the input perturbations and 

k k j jφ P ,ε EC
 
are 

the corresponding concentrations when emission rate Ej is perturbed by fraction jε

. 
j

(1)
j

C
S and 

2

2

j

(2)
j

C
S are the local first- and second order sensitivity 

coefficients of ‘ C ’ to the targeted emission rate, and 

2

j k

(2)
j,k

C
S  is the cross-

sensitivity between parameter j  and k . These coefficients are computed using the 

high-order decoupled direct method (HDDM) [Dunker, 1984; Hakami et al., 2003], 

except for (2)
j,kS  involving deposition velocities, which is computed by finite 

differencing of model runs. If the targeted emission rate Ej is also uncertain then eq 

1a can be re-written as  

2
* (1) 2 (2) (2)

j j j j j j j j k j,k
k

1

2
ΔC 1+φ ε S + 1+φ ε S + 1+φ ε φ S    (3.1b) 

The 
j1+ φ terms accounts for the influence of the uncertain emission 

inventory on the amount of tons controlled by fractional perturbation 
j

. For our 

analysis, jε  represents emission control (i.e. j < 0ε ), so 
k k j jφ P ,ε EC

 
is typically less 

than 
k kφ PC and positive values of *ΔC  indicate pollutant reduction. Extensive testing 

of eq 1 (a and b) showed that *ΔC is accurately predicted (normalized mean bias  
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6%, normalized mean error  10%) even for 50% emission controls under 50% 

simultaneous perturbations in 3 parameters [Digar and Cohan, 2010].  

The Discrete RFM allows accurate (normalized mean bias  3% and error  

13% for 50% perturbations in 3 input parameters [Digar and Cohan, 2010]) and 

efficient estimation of concentration response under input uncertainty when the 

magnitude of the emission reduction is pre-determined. It computes the error-

adjusted concentration response *ΔC  to an emission control by computing a 

function kF , that represents how concentration response to targeted emission 

change jjEε
 
varies with change kφ  in parameter k [Digar and Cohan, 2010]:  

k perturbed base kF = ΔC ΔC φ                 (3.2) 

where 
k k k k j jφ P φ P ,ε Eperturbed (ΔC = C C ) and 

j jε Ebase baseΔC (= C C )
 

represent 

concentration response under perturbed and base input conditions, respectively. 

Finite differencing of model runs with 10% input perturbations k 0.1)(φ
 was used 

to compute kF . *ΔC is then calculated by the following Discrete RFM, 

*
base k k

k

ΔC ΔC + φ F        (3.3) 

in which input perturbations can be set by Monte Carlo sampling of kφ . 
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3.2.2. Probabilistic Framework and Reduction Targets 

The Continuum (eq 1) and Discrete (eq 3) RFMs are analytical equations that 

can be evaluated readily for any perturbations kφ  in uncertain parameters k , in 

contrast to direct Monte Carlo simulation of a photochemical model [Bergin et al., 

1999; Deguillaume et al., 2008; Hanna et al., 2001]. Here, we conduct Monte Carlo 

simulations of these RFMs, treating each input parameter as an independent log-

normally distributed random variable with 1  uncertainty listed in Table 3.1 based 

on earlier studies [Beekmann and Derognat, 2003; Deguillaume et al., 2007; Digar 

and Cohan, 2010; Hanna et al., 2001; Sander et al., 2006]. The basis for selecting the 

input parameters is explained later. One million Monte Carlo sampling of kφ  are 

made to generate a probability distribution of the concentration reduction resulting 

from each targeted emission perturbation jε  (Figure 3.1). 

 

Figure 3.1 – Probabilistic framework for characterizing ozone response 

to a control strategy under model parametric uncertainty. 
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Parameter 

Uncertainty 
in 

parameter1  
(1 ) 

Cross-
sensitivity2 

(ppb) 

Impact on 
O3 

sensitivity3 

Emission Rates: 
 

  

Domain-wide NOX 0.336 -32.92 -0.762 
Domain-wide Biogenic VOC 0.405 17.58 +0.491 

Domain-wide Anthropogenic VOC 0.336 4.70 +0.109 

Reaction Rate Constants: 
 

  

All Photolysis Frequencies 0.347 16.45 +0.393 
R(OH+NO2) 0.131 -9.30 -0.084 
R(NO+O3) 0.095 -9.39 -0.061 

R(All VOCs+OH) 0.095 8.24 +0.054 

R(NO+HO2) 0.095 5.48 +0.036 
R(C2O3+NO) 0.182 1.98 +0.025 

R(PAN decomposition) 0.262 1.33 +0.024 
R(C2O3+HO2) 0.294 -0.67 -0.014 
R(RO2+HO2) 0.262 -0.54 -0.010 
R(RO2+NO) 0.262 0.40 +0.007 
R(HO2+HO2) 0.095 -0.86 -0.006 
R(NO3+NO) 0.294 -0.10 -0.002 

R(HCHO+NO3) 0.294 0.00 +0.000 

Boundary Conditions: 
 

  

Boundary Cond. O3 0.203 0.41 +0.006 
Boundary Cond. NOY 0.549 -0.10 -0.004 

Others: 
 

  

Dry deposition velocity  
(all gaseous species) 

0.223 -2.42 -0.037 
1
All distributions are log-normal [Beekmann and Derognat, 2003; Deguillaume et al., 2007; 

Digar and Cohan, 2010; Hanna et al., 2001; Sander et al., 2006];  
2
Cross-sensitivity of O3 to Atlanta anthropogenic non-EGU NOX emissions and each uncertain 

parameter, evaluated at the grid-cell with maximum daily 8-hour average O3 in a 3x3 array centered on 

the Confederate Avenue monitor, averaged over the episode;  
3
Impact factor:

 
The fractional change in first-order sensitivity of ozone to emissions, due to a 

1σ change in an input parameter. Computed as Impact Factor = 
(2) (1)

j,k jS S , where 
(1)

jS is the 1
st
 

order sensitivity of O3 to Atlanta NOX and 
(2)

j,kS is the cross sensitivity of 
(1)

jS with an uncertain 

parameter. 

Table 3.1 – Selection of uncertain input parameters for Monte Carlo 

analysis based on the impact analysis by Digar and Cohan [2010]. 
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Our goal is to estimate the probability that a control strategy would actually 

achieve an air quality target in light of parametric uncertainty in the photochemical 

model. In this study, two types of pollutant reduction targets are considered:  

A fixed reduction target ( fixedT ) which assumes that the amount of additional 

pollutant reduction needed for achieving the air quality improvement target is 

perfectly known, and only the impact ( *ΔC ) of the control measures is uncertain due 

to input uncertainty. Thus, likelihood of attainment ( fixedL ) is simply the probability 

that *ΔC  is greater than or equal to fixedT , i.e., 

*
fixed fixedL = p ΔC T                    (3.4) 

A flexible reduction target ( flexibleT ) which recognizes that the needed 

amount of ambient pollutant reduction ( *ΔC ) cannot be predicted perfectly because 

factors such as future weather and emission trends are unpredictable. In this case, 

likelihood of attainment ( flexibleL ) is assumed to be a function that increases with 

the amount of pollutant reduction ( *ΔC ) that is achieved. Though various target 

functions could be posited, for analysis purposes we define a target function, 
*C )T(

,  based on a cumulative distribution (cdf) of a Gaussian function as follows, 

*

*

C

C )T( = N x  dx                  (3.5) 



 76 

76 
 

where, 

2

2

x μ

2σ
1

N x = e
σ 2

. The mean reduction target  (at which a strategy 

would have 50% likelihood to be sufficient) and standard deviation  can be 

assigned values depending on the case under consideration. In this study, an 

uncertainty of  3 ppb (95% confidence interval) has been used, because current 

EPA methodology requires weight of evidence analysis if the deterministic 

attainment modeling results are within 3 ppb of the standard [USEPA, 2007]. 

Moreover, uncertainties in O3 DVFs have been estimated to be 3-5 ppb due to 

variation in emission inventories and photochemical models [Sistla et al., 2004] and 

2-4 ppb due to variability in meteorology and chemical mechanisms [Jones et al., 

2005]. The final likelihood of attainment ( flexibleL ) for given emission controls under 

parametric uncertainty with the flexible reduction target (Figure 3.2) can then be 

calculated using the probability density as, 

* **
flexible T ΔC   dΔCL = P ΔC        (3.6) 
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Figure 3.2  – Probability distribution of the O3 impact at Confederate 

Avenue monitor due to a 12% reduction in Atlanta NOX emissions and the 

likelihood that it will attain a flexible reduction target. 

3.3. Application 

3.3.1. Photochemical modeling episode 

We demonstrate this method by applying it to reconsider attainment 

modeling from a recent 8-hour O3 SIP for Atlanta, Georgia [Georgia Department of 

Natural Resources, 2009]. Modeling is conducted for an 18-day summer episode 

(May 30 to June 16, 2002; first three days discarded for model initialization) for a 

southeastern U.S. modeling domain with 12 km grid resolution and 19 vertical 

layers of increasing thickness, covering Alabama, Georgia, Mississippi, South 

Carolina, Tennessee, and parts of Kentucky, North Carolina and Florida. The episode 

is a subset of the full ozone season simulated for the Georgia SIP. Otherwise, 



 78 

78 
 

modeling methods mimicked those of the Georgia SIP, including use of the 

Community Multiscale Air Quality (CMAQ) Model v4.5 [Byun and Schere, 2006] with 

Carbon Bond 4 (CB-IV) mechanism [Gery et al., 1989] with aerosol and aqueous 

updates; input meteorological conditions from the 5th generation Mesoscale Model 

(MM5) [Georgia Department of Natural Resources, 2009; Grell et al., 1994; Olerud 

and Sims, 2004] simulations; and input emissions from Visibility and Improvements 

State and Tribal Association of the Southeast (VISTAS) year 2009 projections 

(projected from a 2002 base inventory) [MACTEC Engineering and Consultancy, 

2008; Morris et al., 2008], with updates to Georgia emissions projections based on 

GA EPD SIP modeling [Georgia Department of Natural Resources, 2009]. Accuracy of 

O3 predictions for the 2002 base case was thoroughly tested in Georgia SIP modeling 

and found to be well within U.S. EPA benchmarks [Georgia Department of Natural 

Resources, 2009]. 

3.3.2. Control Strategies  

Ozone in Georgia is predominantly sensitive to NOX emissions because of the 

dense forest cover leading to high biogenic VOC emissions [Guenther et al., 2000]; 

our modeling showed O3 in the region to be at least an order of magnitude more 

sensitive to NOX than to VOCs, consistent with earlier studies [Cohan et al., 2005]. 

Hence, for the selection of control options, NOX emission reductions were 

emphasized. For simplicity, Georgia is divided into three broad regions (see Figure 

3.3): Atlanta (the 20 county O3 non-attainment region), Macon (5 counties), and the 

Rest of GA (= Georgia – Atlanta – Macon).  
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Figure 3.3 – Point sources and emission regions in Georgia considered 

for control strategy analyses. 

Our analysis sought to identify scenarios of control measures that could be 

implemented at the state level within a SIP time frame. These scenarios were 

constructed by applying AirControlNET v. 3.2 [E. H. P. Associates, 2005] to identify 

potential control options for the emission inventory. [A limited list of control 

technologies and associated control efficiencies obtained from AirControlNET is 

furnished in Table 3.2. Additional potential measures were also incorporated as 

described in Table 3.3]. The maximum percent emission reduction from applying all 

identified control options in each region is tabulated in Table 3.2.  
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Source Control Measures 

Efficiency 
of 

Emission 
Reduction  

Internal Combustion Engines - Gas L-E (Medium Speed) 87% 

Industrial NG/Coal/Oil Combustion RACT to 25/50 tpy (LNB) 31% 

Iron & Steel Mills - Reheating LNB + FGR 77% 

Residential/Commercial NG 
Water Heater + LNB Space 

Heaters 
7% 

ICI Boilers - Coal/Wall/Stoker/Coke/Natural 
Gas/Residual Oil/Process Gas;  
Cement Manufacturing – Dry; 

Lime Kilns; 
Sulfate Pulping - Recovery Furnaces; 

Ammonia - NG-Fired Reformers 

SCR 80 - 95% 

Rich Burn Internal Combustion Engines - Oil NSCR 90% 

In-Process; Bituminous Coal; Cement Kilns SNCR - Urea Based 50% 

Nitric Acid Manufacturing SNCR 98% 

In-Process Fuel Use; Natural Gas LNB 50% 

Combustion Turbines - Natural Gas SCR + Steam Injection 95% 

Process Heaters - Natural Gas/Process Gas LNB + SCR 88% 
# 
Cost and effectiveness assumptions in AirControlNET are documented by E. H. Pechan & Associates. AirControlNET 

Version 3.2 documentation report. Prepared for U.S. EPA. 2003. 

 

List of abbreviations: 

LNB = Low NOX Burner 

ICI = Industrial, Commercial and Institutional 

L-E = Low-Excess Air 

RACT = Reasonably Available Control Technologies 

FGR = Flue Gas Recirculation 

SCR = Selective Catalytic Reduction 

NSCR = Non-Selective Catalytic Reduction 

SNCR = Selective Non-Catalytic Reduction 

Table 3.2 – NOX control measures from AirControlNET# (based on the 

most stringent option available for each source).  
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Source Control Measures 
Emission 

Reduction 
Reference/ 

Source 

    
Power Plants: 

  

Scherer 
Yates 

Hammond 
Branch 

 
SCR 

 
50% of EGU NOX 
80% of EGU NOX 

63.7% of EGU NOX 
80% of EGU NOX 

GA EPD 
analysis using 

EPA IPM 

McDonough 
Convert from Coal to 

Natural Gas + SCR 
85% of EGU NOX GA EPD 

Others: 
 

Locomotives 

 
Low-Sulfur Diesel;  

Genset Locomotives 

78-98% of mobile 
NOX 

[1] 

 
Vehicles 

 
Inspection & Maintenance 

6% of mobile NOX [1] 

Truck Stops Truck Stop Electrification 
2.6% of heavy-

duty vehicle 
emissions 

[1] 

Diesel Engines Retrofit Incentives 13.2 tpd* NOX [2] 

Light-duty 
vehicles 

Distance-based car 
insurance pricing 

10% of light-duty 
vehicle emissions 

[3] 

Table 3.3 – Additional NOX control measures considered.  

Power plant emissions are excluded from the regional categories and 

considered separately. Specifically we consider five large coal-fired power plants, 

which are among the largest NOX point-sources near Atlanta and lacked selective 

catalytic reduction (SCR) control for NOX when the Georgia SIP was being 

developed. Potential emission reductions at the power plants were computed by 

applying control efficiencies from U.S. EPA Integrated Planning Model methodology 

[USEPA, 2006a] to the inventoried emission rates, accounting for pre-existing 

control technologies where applicable (Table 3.4). Note that power plant controls 
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are based on fixed tonnage reductions, whereas regional emission controls are 

based on percentage reductions. 

Control 
Scenario 

Description 
Emission 

Controlled1 

      Regional Sources:                                                                            
Fixed % 

reduction of total 
emission 

ATL(12) Maximum available anthropogenic NOX control in Atlanta 12% (42.7 tpd2) 

ATL(6) Half of available anthropogenic NOX control in Atlanta   6% (21.3 tpd) 

MAC Maximum available anthropogenic NOX control in Macon 20% (10.7 tpd) 

REST 
Maximum available anthropogenic NOX control in Rest of 

Georgia (i.e. Georgia – Atlanta – Macon) 
15% (81.5 tpd) 

   

     Point Sources (EGU):                                                                                       
Fixed tonnage 

reduction 

EGU(M) Convert Plant McDonough from coal to gas plus SCR 10.0 tpd (85%) 

EGU(S) Add SCR3 at Plant Scherer 26.5 tpd (50%) 

EGU(Y) Add SCR at Plant Yates 29.8 tpd (80%) 

EGU(H) Add SCR to units 1-3 at Plant Hammond 11.6 tpd (63%) 

EGU(B) Add SCR at Plant Branch 51.7 tpd (80%) 
1
The basis for emission control estimates is explained in Table 3.2 and Table 3.3;  

2
tpd – tons per day; 

 
3
SCR – Selective Catalytic Reduction. 

Table 3.4 – Hypothetical NOX emission control options in Georgia.  

3.3.3. Parameters for Uncertainty Analysis 

Table 3.1 shows the input parameters that were targeted for uncertainty analysis 

due to the following reasons. Uncertainties in domain-wide NOX and VOC emissions rates 

and in boundary conditions of O3 and total reactive nitrogen (NOY = NOX and its oxidation 
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products) have been shown to substantially influence the sensitivities of O3 to NOX 

emissions [Bergin et al., 1999; Deguillaume et al., 2008; Fine et al., 2003; Gao et al., 1996; 

Hanna et al., 2001; Russell and Dennis, 2000]. Past studies have also shown that reaction 

rates for NO2+OH [D'Ottone et al., 2005; Hippler et al., 2006; Tonnesen, 1999] and the 

photolysis reactions [Cohan et al., 2010; Jin et al., 2008] and several other uncertain 

reactions [Deguillaume et al., 2007; Hanna et al., 2001] can also significantly influence 

ozone sensitivity (Table 3.1). We also consider dry deposition velocities of all gaseous 

species jointly as an uncertain input parameter [Wesely and Hicks, 2000]. 

Chapter 2 evaluates the relative impacts of the 19 input parameters in Table 2.1 on 

estimates of O3-precursor sensitivity in this region [Digar and Cohan, 2010]. For this study, 

we consider 10 of the 19 uncertain parameters marked in bold in Table 3.1, limiting the 

uncertain reaction rate constants to the four that most influenced O3 sensitivity.  

3.4. Results and Discussion 

Based on the standard U.S. EPA attainment demonstration methodology [USEPA, 

2007], Georgia’s 2009 SIP modeling predicted that one monitor (Confederate Avenue, AIRS 

ID: 13-121-0055, for location see Figure 3.3) would exceed the 1997 8-hour O3 NAAQS of 

85 ppb (Ref. Table 6-1 on page 133 of [Georgia Department of Natural Resources, 2009]). 

The SIP reports additional modeling and weight of evidence analyses to argue that 

attainment would actually be achieved. However, it can be computed that an additional 1.5 

ppb reduction in modeled 2009 8-hour O3 would have been needed to reduce the relative 

reduction factor (RRF) in the Georgia SIP (Ref Table 6-1 on page 133 of [Georgia 
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Department of Natural Resources, 2009]) sufficiently to demonstrate NAAQS attainment 

using the standard methodology. Hence for this study, we consider the hypothetical 

scenario that an additional 1.5 ppb of improvement is necessary at this monitor, and 

explore various control scenarios available in Georgia for reaching that target.  

3.4.1. Likelihood to Achieve a Fixed Target 

We first assess the likelihood that each control scenario will achieve at least 1.5 ppb 

reduction in 8-hour O3 at the grid-cell corresponding to the Confederate Avenue monitor, 

averaged over the six days with O3 in the base year 2002 exceeding 80 ppb (Table 3.5). The 

deterministic results are from the base model ( kφ = 0 ), with the standard deviation of the 

daily O3 reductions shown as an indicator of the variability in results due to day-to-day 

changes in emissions and meteorology. The probabilistic results reflect 1 million Monte 

Carlo samplings of the input kφ ’s for the RFMs. A Continuum RFM was constructed to 

predict the impact of each regional control scenario and a Discrete RFM for each power 

plant option, under parametric uncertainties in the 10 selected parameters from Table 3.4. 

Impacts of jointly controlling NOX from multiple regions or power plants were assumed to 

be additive. This is a conservative assumption that may slightly underpredict joint impacts, 

since controlling NOX in one place makes O3 more sensitive to NOX from elsewhere [Cohan 

et al., 2005]. The error caused by this assumption is small for controls of these magnitudes 

[Digar and Cohan, 2010]. 

These ranking reversals occur in part because the parametric uncertainty analysis 

methods applied here show regional NOX controls to have more uncertain O3 impact than 
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power plant-only controls (as indicated by the 90% confidence intervals for O3 reduction in 

Table 3.5) for three reasons. First, the tonnage reduced is assumed to be perfectly known 

for the power plants (whose baseline emissions are well-established by continuous 

emission monitors [Frost et al., 2006]) but to vary with uncertainty in domain-wide NOX for 

the regional controls, which are set on a percentage basis. Second, power plant controls 

have a consistently positive impact on O3 reduction at a faraway monitor because aged, 

diluted NOX plumes produce O3 under a wide range of input parameter conditions. By 

contrast, local emissions can have a titrating or inhibiting effect on urban O3 under certain 

input perturbations, especially if domain-wide NOX emissions are much larger than 

originally modeled (Figure 3.2). 
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Control 
Strategy1 

Description 
Deterministic  
O3 reduction2 

(ppb) 

Day-to-day 
variation ( ) of 
deterministic 
O3 reduction3 

(ppb) 

O3 reduction under 
parametric 

uncertainty,  
mean  

(5th, 95th percentiles)4  
(ppb) 

Likelihood 
to Achieve 

Tfixed
5 

Likelihood 
to Achieve 

Tflexible
6 

C1 ATL(6) 1.1  0.4 1.0 (-0.7, 2.1) 19.6% 37.5% 

C2 EGUs (B, S) 1.2  1.1 1.2 (0.7, 1.7) 4.4% 41.1% 

C3 ATL(6) + MAC + REST 1.4  0.4 1.2 (-0.4, 2.5) 37.1% 44.9% 

C4 ATL(6) + EGU(M) 1.7  0.8 1.5 (-0.6, 3.2) 57.8% 52.5% 

C5 EGUs (B, S, H) 1.7  1.7 1.7 (1.2, 2.3) 77.9% 56.1% 

C6 ATL(6) + EGUs (B, S) 2.2  1.3 2.1 (0.1, 3.6) 78.4% 63.5% 

C7 ATL(12) 2.3  0.8 2.0 (-1.2, 4.5) 71.7% 62.6% 

C8 EGUs (M, B, H, S) 2.3  1.1 2.4 (1.5, 3.3) 94.4% 70.6% 

C9 ATL(12) + MAC + REST 2.6  0.8 2.3 (-0.9, 5.0) 78.0% 67.8% 

C10 ATL(12) + EGU(M) 2.8  1.2 2.7 (-1.1, 5.6) 79.9% 71.9% 

C11 EGUs (M, B, H, S, Y) 2.9  2.8 2.9 (1.2, 7.6) 99.9% 81.7% 

C12 ATL(12) + EGUs (B, S) 3.4  1.6 3.2 (-0.3, 6.0) 86.6% 79.0% 

C13 ATL(12) + EGUs (B, H, S) 4.0  2.1 3.7 (0.3, 6.4) 90.3% 84.5% 

C14 ATL(12) + EGUs (M, B, H, S, Y) 5.1  3.2 5.0 (1.1, 8.1) 94.0% 91.5% 

1In ascending order based on deterministic O3 reduction; 2Mean of the impacts among the high ozone days in episode; underlining indicates O3 
reduction  1.5 ppb; 3Standard deviation of the daily impacts within the high O3 days of the episode; 490% confidence intervals; 5Fixed reduction target 
of 1.5 ppb; 6Flexible reduction target of 1.5 ppb with 3 ppb uncertainty (95% confidence). 

Table 3.5 – Reduction in 8-hour ozone at Atlanta Confederate Avenue monitor due to each emission 

control package. 
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Finally, the likelihood calculations considered uncertainty in model 

parameters but not in meteorology, and used results averaged over all high O3 days 

of the episode. Distant power plant plumes have greater day-to-day variability in 

impacts (indicated by standard deviation in column 4 of Table 3.5) than regional 

sources because fluctuating wind fields determine whether the plume reach the 

monitor. For example, the C5 strategy controlling three distant power plants 

exhibits more than twice the day-to-day variability of C7, which controls only local 

Atlanta emissions. Longer episodes with classification and regression tree analysis 

[Breiman et al., 1984] could be used to ensure that a representative range of high O3 

meteorological conditions have been modeled. 

3.4.2. Likelihood to Achieve Flexible Target 

The impacts of the control packages are re-assessed for a flexible air 

pollutant reduction target, corresponding to eq 3.6 and Figure 3.2, to reflect the fact 

that meteorological variability and other factors may make the needed amount of 

improvement uncertain. The results in Table 3.5 and Figure 3.4 show that when the 

reduction target is not accurately known, the chances of attainment are less 

responsive to the amount of emission control. For example, strengthening Atlanta 

NOX controls from 6% to 12% (strategies C1 and C7) increases the fixedL  by 52 

percentage points, but increases flexibleL  by only 25 percentage points (Table 3.5). 

Similar trends can be seen in the flatter lines of Figure 3.4(c) than Figure 3.4(b). This 

occurs because a flexible reduction target blurs the distinction between strategies 
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that achieve just more or just less than 1.5 ppb of reduction. However, the results 

approach the fixed target results as the σ used to define  flexibleT  is narrowed.  

The likelihood rankings remain largely consistent under the flexible and fixed 

reduction targets, but with some exceptions (Table 3.5 and Figure 3.4). For example, 

strategy C8 (four power plant controls) ranks second under the fixed reduction 

target but only sixth under the flexible reduction target. The relatively narrow 

uncertainty of power plant control impacts, modeled to occur for reasons explained 

above, is more helpful in achieving a fixed than a flexible reduction target, provided 

that the mean impact is above 1.5 ppb.   
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Figure 3.4 – Predicted future O3 design values (a) and likelihood 

of achieving a fixed (1.5 ppb) (b) or flexible (1.5 ± 3.0 ppb, 95% CI) (c) 

reduction target at Confederate Avenue monitor as a function of the 

percentage of Atlanta NOX that is controlled under various scenarios for 

reducing NOX emissions from other sources. 
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3.4.3. Relevance of Results  

The approaches introduced here enable probabilistic prediction of the 

likelihood that a control package will be sufficient to achieve a fixed or flexible air 

quality improvement target in the presence of parametric uncertainties in the 

photochemical model. Both targets may usefully inform environmental decision-

making, depending on how the policy issue is framed. The fixed target is apt if the 

needed amount of additional ozone reduction is clearly defined; for example, if 

regulatory approval of an attainment plan depends on demonstrating an additional 

increment of ozone abatement. A flexible target, meanwhile, is more attuned to 

predicting the likelihood of future attainment at monitors, which increases with the 

amount of control but is also influenced by external factors such as meteorological 

variation. Although the flexible target may obscure the distinctions between relative 

efficacies of control strategies, it avoids unrealistic expectations that a State’s 

control choices could be so determinative of future attainment at monitors. 

Results from these approaches could be linked with control cost estimates to 

maximize the likelihood of attainment, subject to practical or budgetary constraints, 

or may supplement deterministic approaches to inform the prioritization of control 

strategies [Cohan et al., 2006]. Actual selection of control measures depends upon a 

whole host of practical, economic, and political considerations, but our approaches 

could usefully inform strategy selection. Probabilistic approaches may also be used 

as additional ‘weight of evidence’ analyses in attainment demonstrations. However, 

probabilistic approaches are unlikely to supplant deterministic bright-line tests as 
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the primary arbiter of attainment plan sufficiency, because to do so would require 

subjective judgments about which model uncertainties to consider, the form of the 

target function, and what likelihood of attainment is sufficient.  

Although only 8-hour O3 attainment was considered here, this method can 

also be applied for assessing control strategies for other pollutants. Application to 

particulate matter (PM) would need to account for differences in model 

performance among PM species and use an alternative method to compute 

sensitivity coefficients, since high-order DDM is currently unavailable for PM in 

CMAQ.  

This analysis represents an important yet incomplete step towards 

comprehensive likelihood assessment because it considered uncertainties only in 

the photochemical model parameters and in the reduction target. The specific 

flexible target considered here is just one of many ways that such a target could be 

formulated. Structural uncertainties in the photochemical model, uncertainties in 

the meteorological inputs, and the representativeness of the meteorological episode 

were overlooked. Additional important uncertainties include control measure 

effectiveness (i.e., the percent or tons of emissions actually reduced by the 

abatement measures) and the accuracy of predicted baseline emission trends (e.g., 

due to economic and population growth, vehicle fleet turnover, etc.). Future work 

could incorporate these uncertainties into the likelihood assessments and explore 

alternate formulations of the target functions.  



 92 
 

92 
 

Chapter 4 

Uncertainties influencing health-

based prioritization of ozone 

abatement options 

4.1. Introduction 

Tropospheric ozone (O3) causes threats to human health such as aggravating 

asthma and other respiratory illness. Several studies, including a review by the 

National Research Council (NRC) have found statistical associations between short-

term O3 exposure and premature mortality [Bell et al., 2004; Ito et al., 2005; Jerrett 

et al., 2009; NRC, 2008]. For the protection of public health, which is the primary 

objective of air quality management, control policies are formulated to mitigate O3. 

This is often challenging because O3 is a secondary pollutant formed as a result of 

complex nonlinear chemistry between various primary pollutants. Photochemical 

Adapted with permission from Digar et al., Uncertainties Influencing Health-Based 

Prioritization of Ozone-Abatement Option, Environmental Science & Technology, 

45(18), 7761-7767, 2011. DOI: 10.1021/es200165n. Copyright © 2011, American 

Chemical Society. 
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models are therefore used to predict the relative impacts of controlling various O3 

precursor emissions for regulatory attainment purposes.  

Most studies of control strategy optimization [Shih et al., 1998; Wang and 

Milford, 2001; Yang et al., 2006] or the relative impacts of O3 control options [Digar 

et al., 2011] have focused on attainment of standards at ambient monitors, in line 

with the standard regulatory practice for attainment demonstrations in the United 

States [USEPA, 2007]. However, attainment of regulatory standards may not be fully 

protective of human health, since effects have been observed at low levels [Bell et 

al., 2006]. Evaluation of the relative health benefits of control options along with 

their attainment implications could better inform strategy selection and 

optimization of net benefits [Chestnut et al., 2006], because the ranking of controls 

options on health and attainment bases may differ [Cohan et al., 2006].  

Various studies have quantified the health benefits of O3 abatement by 

linking O3 concentration-response (C-R) relationships from epidemiological studies 

with baseline health incidence data, population distributions, and model estimates 

of O3 reductions [Hubbell et al., 2004; Ostro et al., 2006]. Health benefits estimation 

may be uncertain due to (a) photochemical uncertainty - the uncertainty of the air 

quality models used to compute the O3 concentrations and sensitivities to emission 

changes, and/or (b) epidemiological uncertainty - the uncertainty in the magnitude 

and form of the C-R relationships. Photochemical model predictions of O3 response 

to emission changes are known to be uncertain [Fine et al., 2003], and recent studies 

have introduced efficient methods for characterizing these model uncertainties 
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[Digar and Cohan, 2010; Pinder et al., 2009; Tian et al., 2010]. However, not much 

effort has been made to study the effect of these uncertainties on the estimation of 

health benefits. Most studies that have presented confidence intervals for O3-health 

impacts have considered uncertainty only in the C-R functions, not in the 

photochemical modeling of O3 changes [Bell et al., 2007; US-EPA, 1999; Zhou et al., 

2010].  

Moreover, apart from the uncertainty in the magnitude of C-R relationships, 

there is also the question of which temporal metric of O3 concentrations (e.g. 1-h or 

8-h daily maximum, or 24-h average) is most determinative of health responses 

[NRC, 2008]. The U.S. EPA has modified the metric of O3 health-based regulations 

from the 24-h to the daily 1-h maximum to the 8-h maximum in response to 

epidemiological evidence on which metric is most associated with health. 

Epidemiological meta-analyses of O3 health effects convert these metrics using 

standard conversion ratios, in order to draw from a larger pool of C-R results 

reported on disparate temporal metrics [Bell et al., 2005a; Ito et al., 2005]. Such 

scaling has generally been deemed a reasonable approach for estimating the health 

impacts of total O3 concentrations, despite some variations in temporal ratios with 

season and location [Anderson and Bell, 2008]. However, converting across temporal 

metrics may be more problematic for O3 sensitivity to controls, since diurnal 

patterns of responsiveness can differ sharply depending on the emission that is 

targeted [Cohan et al., 2005]. Bell et al. [2005b] showed that the choice of temporal 

metric can strongly influence overall rankings of air pollution policies.  
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This manuscript characterizes how uncertain photochemical modeling and 

uncertain C-R relationships influence predictions of the relative health benefits of O3 

precursor emission control options in the Dallas-Fort Worth region of Texas. 

Although idealized abatement options have been considered here, this method can 

be easily extended for actual O3 abatement strategies and may serve as a tool for 

prioritizing control options. While the main results are presented based on the 

standard 8-h O3 metrics, efforts have also been made to explore the effects of 

alternate temporal metrics. 

4.2. Methods 

4.2.1. Air Quality Modeling 

The high-order decoupled direct method (HDDM) [Dunker, 1984; Hakami et 

al., 2003] within the Comprehensive Air Quality Model with Extensions (CAMx) 

v5.32 developed by ENVIRON Corporation [ENVIRON, 2010] is used to compute O3 

sensitivities to its precursor emissions. The modeling domain (Figure 4.1) used for 

this study was taken from the Texas Commission on Environmental Quality’s 

(TCEQ) O3 SIP modeling for the Dallas-Fort Worth (DFW) region [TCEQ, 2011a], 

which consists of a 36-km coarse grid covering the eastern US, with a nested 12-km 

grid covering eastern Texas and a 4-km grid centered on the DFW 9-county region 

(Collin, Dallas, Denton, Tarrant, Parker, Johnson, Ellis, Kaufman and Rockwall). The 

12-km domain contains 89x89 grids with a total population of 32.5 million (Figure 

4.2). The 74x65 grid cells of the 4-km sub-domain comprise about 20% of this total 
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population. Model simulation was conducted for a full month, May 31 to July 02, 

2006, within the summer O3 season. The first three days of the episodes were 

discarded for model initialization. Input meteorological conditions for the model 

simulations were taken from the MM5 mesoscale model [Dudhia, 1993] using 

simulations developed by TCEQ for its actual attainment modeling [Emery et al., 

2009]. Detailed performance evaluation of the June 2006 meteorological modeling is 

documented in Appendix A of TCEQ report [TCEQ, 2011a]. Input emissions for the 

anthropogenic sources obtained from EPA MOBILE6.2 emission factor model and 

EPA’s National Mobile Inventory Model (NMIM) / the Texas NONROAD (TexN) 

mobile source models, were processed by TCEQ using version-3 of the Emission 

Processing System (EPS3) [ENVIRON, 2007]. The biogenic inventories for the Base 

Case modeling were generated using Global Biosphere Emissions and Interaction 

System (GloBEIS, v3.1) [Yarwood et al., 1999]. Details of model set-up can be found 

in the TCEQ attainment demonstration and its progress report.[TCEQ, 2011a; b]  

We compare the relative benefits of controlling emissions from the following 

sources within the DFW 9-county region: anthropogenic NOX (ANOX), 314.24 metric 

tons per day (tpd), subdivided as surface NOX (SNOX), 301.50 tpd, and elevated NOX 

(ENOX), 12.74 tpd; and anthropogenic VOC (AVOC), 300.72 tpd. To facilitate 

comparisons between emission control options, the change in O3 concentrations (

C , in ppb) per one incremental tpd of emission reduction is computed by dividing 

the semi-normalized sensitivity coefficients output from CAMx-DDM[Dunker et al., 

2002] by the size of the emission category. 
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Figure 4.1 – CAMx Modeling Domain used for the study. [Source: TCEQ] 

 

Figure 4.2 – Population density in the study region. 
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4.2.2. Health Benefit Estimation 

To estimate health benefits that result from reductions in O3 concentrations, 

we use the C-R function developed by Bell et al. (2004) for all-cause short-term 

premature mortality [Bell et al., 2004], by which the actual number of averted 

mortalities, ,C tM , due to reduction in O3 concentration, C over a time period, t , 

can be estimated as, 

,
exp ( ) 1 tC t

CM I
      

(4.1) 

In this study, we address averted mortalities from reduced O3 levels; 

however, alternatively eq 4.1 could be expressed as additional mortalities for an 

increase in O3. No threshold concentration is applied, because epidemiological 

studies have found a continuous association between daily mortality rates and O3 

even down to very low O3 concentrations [Bell et al., 2006]. tI  denotes the baseline 

number of health responses per year. Bell et al. [2004] quantified the health risk 

estimate, , based on the change in mortality associated with short-term exposure 

to ambient O3 for 95 large cities in the U.S. from 1987-2000. The baseline incidence 

rates are obtained from U.S. EPA’s Environmental Benefits Mapping and Analysis 

Program (BenMAP) [Abt Associates Inc., 2005] database, which provides county-

level mortality rates for the years 2000 through 2050 projected from the rates 

reported by U.S. Centers for Disease Control for the years 1996-1998. Area-

weighted averaging is used to map the county-level incidence data to the air quality 
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model grid. Finally ,C tM  is integrated over the Eastern Texas TCEQ modeling 

domain as shown in Figure 4.2 (total effect over the 4-km sub-domain where the 

control is applied, plus the total downwind effect in the area outside the 4-km 

domain but inside the 12-km domain) and averaged over the episode to estimate 

the net overall health benefits in eastern Texas. Health benefits are assumed to 

accrue for five summer months (May to September) but not in other seasons when 

O3 concentrations tend to be lower and less responsive to emission controls; thus, 

,C tM  is scaled by 153/365 to determine total benefits per summer season.  

4.2.3. Characterization of Uncertainty  

From eq 4.1, it can be seen that uncertainty in ,C tM  can arise from 

uncertainty in C  (photochemical uncertainty) and/or  (epidemiological 

uncertainty). Photochemical uncertainty arises due to uncertain model formulation 

(structural uncertainty) [Pinder et al., 2009] or uncertain input parameters 

(parametric uncertainty) [Fine et al., 2003; Russell and Dennis, 2000].  

4.2.3.1. Structural Uncertainty 

We apply an ensemble method to address the structural uncertainty in the 

photochemical modeling. Screening was conducted to test the relative impacts of 

alternate choices for biogenic emission model, chemical mechanism, vertical 

deposition scheme, and global model for boundary conditions. The screening 

revealed that the greatest impact on O3 sensitivities came from the choice of 
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chemical mechanism and biogenic emission model. Here, we construct an ensemble 

of three structural scenarios regarding choices of mechanisms and inputs for the 

CAMx model: 

 ‘BASE CASE’ which uses the RADM dry deposition scheme [Wesely, 1989], 

the Carbon Bond 5 (CB-05) chemical mechanism [Yarwood et al., 2005],  

boundary conditions from the MOZART global model [Brasseur et al., 1998], 

and GloBEIS-generated biogenic emission inventory [Guenther et al., 1995; 

Yarwood et al., 1999].  

 ‘MEGAN’ which substitutes a biogenic emission inventory provided by the 

Model of Emissions of Gases and Aerosols from Nature (MEGAN) [Guenther et 

al., 2006] (all other inputs same as the BASE CASE). 

 ‘CB-6’ which substitutes the Carbon Bond 6 chemical mechanism [Yarwood 

et al., 2010], using an updated rate constant for the reaction NO2+OH  

HONO2 [Mollner et al., 2010].  

4.2.3.2. Parametric Uncertainty 

To study the effect of parametric uncertainties within each of these members 

of the structural ensemble, lognormal probability distribution functions (PDF) with 

uncertainty ranges described in Table 4.1 are assigned to specific model input 

parameters selected based on their strong contributions to uncertainty in O3-

emission sensitivities [Digar and Cohan, 2010; Digar et al., 2011]. Domain-wide NOX 

and VOC emission rates, and the rate constants for all photolysis reactions, 
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(NO2+OH), (NO+O3), and all (VOC+OH) reactions were found to most influence O3 

sensitivity to DFW ANOX. For O3 sensitivity to AVOC, the boundary condition for O3 

was also found to be important, so this was considered in addition to the afore-

mentioned emission and reaction rates (Table 4.1).  
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Parameter1 
Uncertainty2 

(1 ) 
Reference 

Impact3 on O3 
sensitivity to 

ANOX 

Impact3 on  
O3 sensitivity  

to AVOC 

Range of 
perturbations4

1 k  
used in this study 

Emission Rates: 
 

    

Domain-wide NOX 0.336 50 -0.463 0.496 0.60 to 1.67 
Domain-wide biogenic 

VOC 
0.405 50 0.216 -0.319 0.56 to 1.80 

Domain-wide 
anthropogenic VOC 

0.336 50 0.073 -0.150 0.60 to 1.67 

Reaction Rate Constants: 
 

    

All photolysis frequencies 0.347 49 0.401 0.091 0.59 to 1.69 
R(OH+NO2) 0.131 52 -0.057 0.029 0.79 to 1.26 
R(NO+O3) 0.095 49 -0.058 -0.024 0.84 to 1.19 

R(All VOCs+OH) 0.095 50 0.021 0.014 0.84 to 1.19 

Boundary Conditions: 
 

    

BC (O3) 0.203 50 0.006 -0.042 0.71 to 1.41 

  
    

1
Parameters selected based on the impact analysis by Digar and Cohan (2010);[Digar and Cohan, 2010; Digar et al., 2011]  

2
All distributions are assumed log-normal, with uncertainties based on [Beekmann and Derognat, 2003; Deguillaume et al., 2007; Digar and Cohan, 

2010; Hanna et al., 2001; Sander et al., 2006]; 
3
Impact factor: The fractional change in first-order sensitivity of O3 to emissions, due to a 1σ change in an input parameter. Computed as Impact Factor 

= σSj,k
(2)

/Sj
(1)

 where Sj
(1)

  is the first-order sensitivity of O3 to emission j (either ANOX or AVOC) and Sj,k
(2)

 is the cross sensitivity of Sj
(1)

  with an 

uncertain parameter k.  

 
4
Uncertainty factors based on  2  (i.e., 95%) confidence interval. 

Table 4.1 – Uncertainties assumed in the input parameters for Monte Carlo analysis. 
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Cohan et al., [2005] introduced a method to use HDDM second-order 

sensitivity coefficients to adjust a baseline estimate of per-ton O3 sensitivity to 

emission j ( (1)
js ) to account for a fractional perturbation k   in uncertain input 

parameter k:  

(2)
,

(1)* (1)
k j kj j sC s s

       
(4.2) 

where (1)*
js denotes the adjusted value of the sensitivity (1)

js , corrected for the 

perturbation in parameter k, and (2)
,j k

s  is the cross-sensitivity of O3 to parameters j 

and k. We extend this method to adjust (1)
js  for perturbations in multiple input 

parameters k (which may include j) by assuming that the influences are additive, as 

shown in eq 4.3: 

(2)
,

(1)* (1)

k
k j kj j sC s s       (4.3) 

Eq 4.3 is found to be highly accurate in predicting actual modeled first-order 

O3 sensitivities directly calculated by HDDM (normalized mean bias <2%, and 

normalized mean error <10%, when compared against sensitivities computed by 

brute force method) up to +2  level of simultaneous perturbations in all the 

uncertain input parameters considered here.  



 104 
 

104 
 

4.2.3.3. Epidemiological Uncertainty 

Uncertainty in epidemiological estimates of health risk ( ) are reported in a 

variety of forms including an estimated standard error, ( ) . Bell et al., [2004] 

reports  with ( )  in parenthesis for daily (i) 1-h max: 3.33E-04 ( 6.32E-05), (ii) 

8-h max: 4.22E-04 ( 7.76E-05), and (iii) 24-h average: 5.18E-04 ( 1.25E-04). We 

assign a Gaussian PDF to  based on its range of standard errors for alternate 

temporal metrics. Finally, combining eqs 4.1 and 4.3, we can estimate health 

benefits as follows, 

(2)
,

(1)
,

exp 1
k

k j k tjC t
sM s I     (4.4) 

We apply Monte Carlo to randomly select 10,000
 k ‘s (from log-normal PDF 

of input parameter k within a range of +/-2σ) and ‘s (from PDF of ) in eq 4.4 to 

characterize the probability distribution of 
,C t

M . Each of the three structural 

scenarios is assumed to have equal probability of occurrence (sample size = 3 x 

10,000). 

4.3. Results and Discussion 

The Monte Carlo results show that the health benefits of O3 reduction (eq 

4.4) are more strongly affected by uncertainties in model inputs ( ) than by 

uncertainties in health risk estimates ( ). As seen in Figure 4.3, PDFs of 8-h O3 
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health benefits exhibit a wider spread when only C is uncertain than when only 

 is uncertain. Moreover, inspection of results shows that uncertainty in health 

benefits is driven primarily by uncertainty in NOX and VOC emission inventories and 

in photolysis rates. Variations in the formulation of emission inventories and 

chemical mechanism strongly influence O3 responses to emission changes. The 

MEGAN inventory estimates higher rates of biogenic VOC emissions and lower rates 

of soil NO than the base (GloBEIS) [Carlton and Baker, 2011], making O3 more 

sensitive to anthropogenic NOX in scenario B (Figure 4.4).  

 

Number of averted mortalities due to 1 tpd of emission reduction during May-September  

Figure 4.3 – Probability density of averted premature mortalities 

per ozone season per ton per day reduction in anthropogenic NOX or 

VOC emission from DFW under uncertain phi and/or beta. Modeling 

results are shown for 8-h O3 metrics, averaged over the episode and 

integrated over the domain for the base-case simulation. 
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Figure 4.4 – Max 8-h O3 sensitivity to DFW emission and health benefits (averted mortalities) per ton of 

reduction in NOX or VOCs for each of the 3 structural model scenarios when inputs are considered to be 

perfectly known. Episode average results are shown for the 4-km DFW sub-domain. 
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In most of the Monte Carlo simulations, more 8-h O3 benefits are obtained 

per ton of NOX control than per ton VOC control, but the benefits from NOX control 

are more uncertain (Figure 4.5). Figure 4.6 shows the cumulative likelihood 

distribution for the ratio between the per-ton impact of 8-h O3 for pairs of control 

options when the photochemical model assumptions (structural scenarios) and 

inputs (parametric estimates) are simultaneously considered uncertain. The 

uncertainties in health risk estimates ( ) considered here do not affect ratios of per-

ton impacts, since they affect each control option proportionally. Benefit-ratios 

computed by this method can be compared with cost-ratios of emission controls 

(benefit-cost-analysis) to select options that are most cost-effective. This will help to 

better inform the prioritization and ranking of emission control options [Cohan et 

al., 2007]. For example, deterministic modeling in DFW shows per-ton reduction of 

NOX emission from low-level sources to be 1.42 times as beneficial as controlling 

per-ton emission from elevated NOX sources. Under this condition, surface NOX 

control would be preferred provided its per-ton control costs are less than 1.42 

times the cost of controlling elevated NOX sources. Incorporating uncertainties via 

the Monte Carlo analysis shows 96% likelihood that the per-ton benefits of surface 

NOX controls will exceed those of elevated NOX controls (Figure 4.6a). Similarly, 

comparing benefits of total anthropogenic NOX and VOC controls, the deterministic 

modeling shows 9.23 times as much health benefit from NOX controls as from VOC 

controls. However, the Monte Carlo analysis finds a 5.7% probability that the per-

ton benefits of VOC control will surpass those of NOX control, including the 2.8% of 
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cases in which NOX controls turns out to be unfavorable as it causes additional 

mortalities (Figure 4.6b).  

 

Figure 4.5 – Health Impacts of 8-h O3 reduction due to NOX and 

VOC controls from DFW (9-county), considering uncertainties in 

photochemical modeling and in the health response relationship. 

While the comparisons in Figure 4.6 are evaluated on an 8-h daily maximum 

basis, consistent with the form of the health-based U.S. ambient O3 standards, it may 

be asked how prioritization of control options would differ under alternate 

temporal metrics. As noted in the Introduction, some epidemiological meta-analyses 

have used scaling factors to interchangeably consider overall O3-health 

relationships reported on a variety of temporal metrics [Anderson and Bell, 2008; 

Bell et al., 2005a], but the choice of metric may influence the rankings of control 

strategies [Bell et al., 2005b]. If control measures display dissimilar temporal 

P
ro

b
a

b
il

it
y
 d

e
n

s
it

y
 (

a
v

e
rt

e
d

 m
o

rt
a

li
ti

e
s

-1
) 



 109 
 

109 
 

signatures in influencing O3 concentrations, then estimates of their relative health 

benefits may depend on the choice of temporal metric. 

 

Figure 4.6 – Relative health benefits from 8-h O3 reduction due to 

(a) surface NOX vs. elevated NOX controls, and (b) total anthropogenic 

NOX vs. VOC controls from DFW (9-county), considering uncertainties in 

photochemical modeling. The red dot denotes results from the 

deterministic modeling and pink regions represent negative impacts. 

(a) 

(b) 
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Diurnal profiles indeed show distinct temporal signatures for the first-order 

sensitivities of O3 to the source categories (Figure 4.7), consistent with those 

reported in earlier studies [Kim et al., 2009]. O3 sensitivities to VOCs typically peak 

in the morning, before biogenic VOC emissions (which peak in early afternoon) push 

photochemistry toward more NOx-limited conditions; O3 sensitivities to NOx peak in 

the afternoon coincident with hours of peak O3 concentrations, and turn negative at 

night.  

 

Figure 4.7 – Diurnal profile of ozone concentrations and 

sensitivities for DFW sub-domain. Results are averaged over domain 

and episode. 
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Thus, NOX controls appear more effective on the 1- and 8-h metrics, while 24-

h averaging favors VOC controls (Figure 4.8). Also, NOX from elevated sources 

(smokestack of power plants and other chemical facilities) are emitted above the 

shallow nocturnal planetary boundary layer (PBL) and do not titrate surface O3 at 

night. As such, based on the 24-h metric, controlling ENOX emission is better than 

SNOX controls. 

 

Figure 4.8 – Averted mortalities per O3 season due to 1 tpd 

reduction in NOX or VOC emissions from various sources in DFW when 

both air quality model inputs (phi) and health risk estimates (beta) are 

uncertain. Results are averaged over the episode and integrated over 

the inner two modeling domains. 
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The results show health-based prioritization of O3 control measures to be 

highly sensitive to uncertainties in photochemical modeling and to the choice of 

temporal metric for O3 exposure. However, in this study we considered equal 

probability for the alternate structural assumptions in the photochemical O3 

modeling. Future work could explore whether the photochemical uncertainties 

could be narrowed by applying Bayesian approaches to constrain the relative 

likelihood of the Monte Carlo cases between individual structural simulations 

[Bergin and Milford, 2000]. Rankings using the max 1- and 8-h metrics are quite 

similar, but differ dramatically on the 24-h metric that includes nocturnal periods of 

disbenefit from NOX controls. This highlights the need for further epidemiological 

research to clarify which temporal metric is most determinative of health responses 

to O3. While only mortality impacts were considered here, similar uncertainties in 

control measure rankings would likely be found for other health endpoints such as 

hospital admissions or respiratory incidents, for which associations with O3 have 

been reported in C-R functions of similar form to eq 1. Future research could 

consider morbidity impacts of O3 as well as the non- O3 health consequences of O3 

precursors (VOCs and NOX), which have their own suite of adverse health effects and 

influence secondary particle formation. 

Although there are challenges in incorporating stochastic results rather than 

deterministic modeling into environmental decision-making, the novel approaches 

introduced here for characterizing the uncertainty of relative health benefit ratios 

could be linked with other analyses to usefully inform the selection of control 
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strategies. For example, health benefit probability distributions such as those 

depicted in Figure 4.8 could be linked with control cost estimates to assess the 

likelihood that a given control measure would be more cost-effective than another. 

Such analyses could be further linked with modeling of impacts at regulatory 

monitors to enable joint optimization of control strategies for health and attainment 

objectives. 
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Chapter 5 

Using observations to constrain 

probabilistic predictions of ozone-

precursor responsiveness 

5.1. Introduction 

Secondary air pollutants like ozone (O3) are formed as a result of complex 

nonlinear chemistry between various primary pollutants emitted directly into the 

atmosphere due to anthropogenic and natural activities.  Understanding the 

responses of ambient pollutant concentrations to emission changes is therefore 

crucial for the development of effective pollution abatement strategies. 

Photochemical models are used to estimate the sensitivity of secondary air 

pollutants to their precursor emissions, and thus serve as useful tools for 

determining the amount of emission reduction needed to attain ambient air quality 

standards and informing the selection of control strategies.  
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Models for informing air quality management are typically run 

deterministically with a single best-available setting for model formulation and 

inputs. However, there has been a growing interest in probabilistic representations 

of model results that account for model uncertainty [Dennis et al., 2010; Hogrefe and 

Rao, 2001]. Uncertainties in pollutant-emission response (sensitivity) can arise from 

choices of numerical representations of atmospheric processes such as chemical 

mechanism, vertical mixing scheme, and emission model (structural uncertainty), 

and/or from the values of input parameters such as emission rates, reaction rate 

constants, boundary conditions and deposition velocities (parametric uncertainty) 

[Deguillaume et al., 2008; Fine et al., 2003; Pinder et al., 2009].  

Recent work by Digar and Cohan [2010] and Tian et. al. [2010] introduced 

efficient Monte Carlo techniques for characterizing parametric uncertainties in O3 

and PM responses to emission controls. Pinder et al. [2009] jointly considered 

parametric and structural uncertainties to develop probabilistic estimates of O3 

concentrations. However, none of these studies evaluated the relative likelihoods of 

the various Monte Carlo cases. 

Previous work by Bergin and Milford [2000] had shown that a Bayesian 

inference approach can weight the relative likelihood of each Monte Carlo model 

formulation based on its performance in simulating observed concentrations and 

thus yield probability distributions for predicting the actual values of pollutant-

emission sensitivities as well as model inputs. That study used a simplified 2-

dimensional trajectory model, and only a handful of studies have applied Bayesian 
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Monte Carlo approaches to characterize O3 responsiveness in more computationally 

intensive 3-dimensional regional models [Beekmann and Derognat, 2003; 

Deguillaume et al., 2008]. 

The aim of this study is to develop probabilistic representations of O3 

responsiveness to emission changes constrained by actual measurements of 

pollutant concentrations. The Monte Carlo Reduced Form Model approach of Digar 

and Cohan [2010] has been used to generate a large ensemble of model predictions 

of O3 concentrations and responsiveness to emission controls in the Dallas-Fort 

Worth (DFW) region of Texas, which is currently a nonattainment area for the 1997 

8-hour O3 National Ambient Air Quality Standard (NAAQS) [USEPA, 2011]. The 

simulated concentrations of O3 and its precursor nitrogen oxides (NOX  NO and 

NO2) are compared against observations to yield adjusted (a posteriori) probabilistic 

representations of photochemical model inputs and output predictions. Use of both 

Bayesian and non-Bayesian statistical techniques allow us to evaluate the 

consistency of our results across various observational metrics and methods of 

comparison. Sections 5.2 and 5.3 describe the modeling and measurements used for 

this work and section 5.4 describes the statistical methodology and metrics 

considered here. Important findings are elaborated in the results and discussion 

section (Section 5.5), followed by conclusions. 



 117 
 

117 
 

5.2. Photochemical Model description 

5.2.1. Base Case Modeling 

The Comprehensive Air Quality Model with Extensions (CAMx) v5.32 

[ENVIRON, 2010] is used here to study a 2006 summer episode in DFW spanning 

from May 31 to July 02, which includes numerous days with meteorological 

conditions favoring O3 formation. Results for the first five days were neglected for 

model initialization. This period was identified by the Texas Commission on 

Environmental Quality (TCEQ) based on its prevalence of observed 8-hour daily 

maximum O3 concentrations exceeding the 8-hour O3 1997 NAAQS of 84 ppb [TCEQ, 

2011a; b]. Sensitivity of O3 to its precursor emissions is computed using the High-

order Decoupled Direct Method (HDDM) [Dunker, 1984; Hakami et al., 2003] within 

the CAMx model. The modeling domain covers an area of 4896 km2 in the Eastern 

U.S. with a horizontal grid resolution of 36 km, encompassing nested finer domains 

of 12 km (East Texas – area 2136 km2) and 4 km (DFW subdomain - area 556 km2) 

spatial grid resolution (Figure 5.1). The vertical configuration for the model domain 

consists of 28 layers of varying thickness (for details see Table 2-2 of [TCEQ, 2011a], 

Appendix C), sufficient enough to examine the effect of vertical mixing within the 

typical planetary boundary layer height.  
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Figure 5.1 –Modeling domain used in the study [TCEQ, 2011a]. 

The CAMx model inputs (emissions, meteorological conditions, initial and 

boundary concentrations, chemical mechanism and deposition scheme) were taken 

from the TCEQ’s Base Case Modeling for the 8-hour O3 SIP in DFW [TCEQ, 2011a]. 

The mobile emission (on-road and non-road) inputs obtained from EPA MOBILE6.2 

emission factor model, EPA’s National Mobile Inventory Model (NMIM) and the 

Texas NONROAD (TexN) mobile source models, were processed to a model-ready 

format by the Emissions Processing System version 3 (EPS3) [ENVIRON, 2007]. Base 

case biogenic emissions were derived from the Global Biosphere Emissions and 
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Interactions System (GloBEIS3.13.1) model [Yarwood et al., 1999]. The Fifth 

Generation Meteorological Model (MM5 version 3.7.4) [Dudhia, 1993] was used to 

generate the meteorological inputs to CAMx including wind speed, wind direction, 

temperature, humidity, etc. [Emery et al., 2009]. Details regarding the 

meteorological and emission modeling and their performance evaluations can be 

found in Appendix A and B of [TCEQ, 2011a]. The Base Case model uses the Carbon 

Bond version 05 (CB-05) chemical mechanism [Yarwood et al., 2005], a dry 

deposition scheme based on the works of Wesely [1989] and Slinn and Slinn [1980], 

and the global Model for Ozone and Related Chemical Tracers (MOZART) to 

generate episode-specific boundary condition concentrations for the coarse-grid (36 

km) modeling domain [ENVIRON, 2008].   

5.2.2. Model Uncertainty Scenarios 

This study jointly considers uncertainties in both model formulation 

(structural uncertainties) and in model input parameters (parametric uncertainties).  

5.2.2.1. Structural Scenarios 

Structural scenarios were constructed by choosing either the Base Case 

setting explained above (section 5.2.1) or the alternate setting described below for 

each of four features: chemical mechanism, biogenic emissions model, dry 

deposition scheme, and boundary conditions model. 
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Alternate chemical mechanism (CHEM): In this setting, the 5
th

 version of the 

Carbon Bond chemical mechanism (CB05) in the BASE model is  replaced by the 6
th

 

version (CB6) [Yarwood et al., 2010]. In CB6, several long-lived, abundant organic 

compounds namely propane, acetone, benzene and ethyne (acetylene), are added 

explicitly to improve oxidant formation from these compounds as they are oxidized 

slowly at the regional scale. Compared to the CB05 mechanism, CB6 increases the 

number of model species (from 51 to 76) and the number of reactions (from 156 to 218). 

We adjust the rate constant for the reaction (OH+NO2) in CB6 to be consistent with the 

most recent findings of Mollner et al. [2010] (CB6 also includes several updates for 

organic and inorganic aerosol chemistry). Detailed discussion of the differences between 

CB05 and CB6 is provided by Cohan et. al., [2011]. 

Alternate biogenic emissions (BIO): The GloBEIS-derived biogenics 

inventory is replaced by alternate biogenic emissions from the Model of Emissions of 

Gases and Aerosols from Nature (MEGAN) [Guenther et al., 2006], which employs 

updated land cover data based on satellite and ground observations. Guenther et al. 

[2006] reports that the global annual isoprene emission, as estimated by MEGAN, 

approximately ranges from 500 – 750 Tg. Strong differences (about a factor of 2) 

between biogenic emission estimates from BEIS and MEGAN have been documented by 

Carlton and Baker [2011]. For our study region and episode, MEGAN estimated about 

60% lower NOX emissions and 20% higher non-methane volatile organic compound 

(NMVOC) and carbon monoxide (CO) emissions than GloBEIS (for detailed difference 

see [Cohan et. al., 2011]).  
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Alternate dry deposition scheme (DEP): The original BASE case that uses 

land use inputs and a dry deposition scheme based on the work of Wesely [1989] and 

Slinn and Slinn [1980] is replaced here by an updated approach [Zhang et al., 2001; 

2003]. The Zhang scheme incorporates vegetation density effects via leaf area index 

(LAI), possesses an updated representation of non-stomatal deposition pathways, has 

more land use categories, and has been tested extensively through its use in daily air 

quality forecasting. 

Alternate boundary conditions (BC): Here, the MOZART boundary 

conditions used in the BASE case model are replaced by alternate boundary conditions 

from the GEOS-Chem global model [Schubert et al., 1993; Bey et al. 2001] that exhibit 

higher O3 concentrations (0.7 to 8 ppb) than MOZART at all model layers [Cohan et. al., 

2011].   

5.2.2.2. Parametric Uncertainties 

For parametric uncertainties, we target the model input parameters 

identified by Digar and Cohan [2010] as most likely to influence model predictions 

of O3 concentrations and their sensitivities to NOX and volatile organic compound 

(VOC) emission controls. These parameters include specific emission rates, reaction 

rate constants, and boundary conditions (Table 3.1).  

Sections 5.4.1.1 and 5.4.1.2 describe additional screening that was conducted 

to further narrow the structural cases and input parameters that most influence O3 

concentrations and sensitivities for the episode considered here. 
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5.3. Ground-level Measurements of Ozone and its Precursors 

Measurement data were obtained from the U.S. Environmental Protection 

Agency’s (EPA) Air Quality System (AQS) database for ground-level concentrations 

of O3 and NOX. These monitors record hourly concentrations of ambient air 

pollutants through a nationwide monitoring network 

[http://www.epa.gov/ttn/airs/airsaqs/index.htm]; the monitors in Texas are operated by 

TCEQ. The raw data were then post-processed to obtain daily maximum 8-hour O3 

and 24-hour average NOX concentrations at all the monitors that fall within the nine-

county DFW nonattainment area (based on 1997 8-hour O3 NAAQS) – Denton, 

Collin, Parker, Tarrant, Dallas, Rockwall, Kaufman, Johnson and Ellis Counties. We 

considered 11 monitors that measure both O3 and NOX concentrations (Figure 5.2). 

Measurements of O3 are conducted by well-established techniques, and thus 

instrumental error is relatively small [US EPA 2006]. However, due to lack of direct 

measurement technique for nitrogen dioxide (NO2), NOX measurements tend to have 

significant instrumental bias and monitor interferences [Demerejian, 2000; Dunlea 

et al., 2007]. NOX concentrations are therefore bias-corrected for interference with 

other nitrogen species. We apply a bias-correction factor ( ) adapted from [Lamsal 

et al., 2008] computed using modeled species concentrations to correct reported 

NOX observations, 

2

2 3 2 5 3

NO NO

NO NO 0 95 PAN 0 35 HNO N O PNA HONO NO. .
(5.1) 

http://www.epa.gov/ttn/airs/airsaqs/index.htm
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where PAN is peroxy acetyl nitrate and PNA is peroxy nitric acid. 

 

Figure 5.2 – Map showing the locations of the monitoring sites 

used in this study. The size of the circles are proportionate with their 

2006 8-hour O3 Design Values given in Table A.2 (Appendix A). 

5.4. Method 

5.4.1. Model Uncertainty Analysis 

In this section, we detail the methodology adopted for incorporating 

structural and parametric uncertainties in the photochemical air quality modeling.    
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5.4.1.1. Screening for Structural Uncertainty  

To assess the effect of model structural uncertainty, we first run the 

photochemical model with the base-case scenario (BASE), and then with each of the 

alternate assumptions of atmospheric processes detailed in section 5.2.2.1. To recap, 

these include alternate chemical mechanism (CHEM), biogenic emission inventory 

(BIO), dry deposition scheme (DEP), and boundary conditions (BC). Figure 5.3 

shows how the diurnal patterns of O3 sensitivities change with each of these 

different model assumptions. Afternoon ozone in DFW is primarily NOx-limited in all 

of the structural cases, with O3 about an order of magnitude more sensitive to DFW 

anthropogenic NOX (ANOX) than anthropogenic VOC (AVOC). In general, use of 

MEGAN biogenic emission increases O3 sensitivities to ANOx (
XNOS ) and decreases 

sensitivity to AVOC ( VOCS ) relative to the base case during daytime because of its 

stronger biogenic VOC emissions. The alternate CB-6 chemical mechanism also 

affected daytime O3 sensitivities but in the opposite direction, yielding stronger 

sensitivities to AVOC, though conditions remain predominantly NOX-sensitive under 

either structural configuration. The alternate BC case did not significantly affect O3 

sensitivities, and DEP affected sensitivities mostly during night. 

In order to select the most important structural factors that influence 

predictions of O3 concentrations, we compare each structural scenario against the 

observations. For screening scenarios that most strongly affect O3 sensitivities, we 
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compare each alternate scenario against the base-case simulation results. The 

statistical measures that serve as the bases for the comparisons are detailed below: 

N
2

j j
j 1

Y O

Root Mean Square Error (ppb), RMSE
N

( )

    (5.2) 

N

j j
j 1

1
Mean Bias (ppb), BIAS Y O

N
( )       (5.3) 

N

j j
j 1

N

j
j 1

Y O

Normalized Mean Bias (%), NMB 100

O

( )

%     (5.4) 

N

j j
j 1

N

j
j 1

Y O

Normalized Mean Error (%), NME 100

O

| |

%     (5.5)

 

where N is the number of observations (site/days) and ‘ j
Y ’ denotes each of the 

model structural cases considered above. For screening considering concentrations, 

‘ j
O ’ represents the observations and for sensitivity, ‘ j

O ’ represents the BASE case 

simulation results.  

The comparison results (Table 5.1) show that alternate chemical mechanism 

(CB6 vs. CB-05) and biogenic model (MEGAN vs. GloBEIS) most strongly influence 

the predicted O3 concentrations and sensitivities. Therefore, we build an ensemble 

of models with the following structural members – (1) BASE, (2) CHEM, (3) BIO, and 
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(4) a combination of alternate chemical mechanism (CB6) and biogenics (MEGAN) 

(hereafter abbreviated as CHEM + BIO). Figure 5.4 shows the spatial plots for O3 

sensitivities to each of these four structural members. NOX-limited conditions for 

daily maximum 8-hour O3 persist even in the urban center regardless which 

structural scenario is considered. 
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Figure 5.3 – Diurnal profile of ozone sensitivities to DFW ANOX (left) and AVOC (right) emissions, 

averaged over the episode and the grid-cells covering the DFW region. 
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 STRUCTURAL CASES 

 Base CHEM BIO DEP BC 

Comparison of each structural case against the observations for 8-hour O3 concentration in DFW 

RMS (ppb) 13.01 13.21 13.63 12.95 13.01 

BIAS (ppb) -0.61 4.59 -1.06 1.88 0.02 

NMB (%) -1.04 7.83 -1.82 3.22 0.04 

NME (%) 17.79 16.88 18.85 17.08 17.76 

Comparison of each alternate case against the Base case for 8-hour DFW O3 sensitivity to DFW ANOX 

RMS (ppb) - 0.79 1.37 0.12 0.16 

BIAS (ppb) - -0.40 0.75 -0.01 -0.09 

NMB (%) - -12.07 22.81 -0.25 -2.81 

NME (%) - 15.35 26.08 2.13 2.83 

Comparison of each alternate case against the Base case for 8-hour DFW O3 sensitivity to DFW AVOC 

RMS (ppb) - 0.44 0.17 0.02 0.02 

BIAS (ppb) - 0.26 -0.08 -0.00 0.01 

NMB (%) - 63.35 -19.33 -0.80 1.88 

NME (%) - 63.45 21.90 2.04 2.14 

Table 5.1 – Screening test for the selection of uncertain model structural assumptions. 
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Figure 5.4 – Sensitivity of 8-hour O3 to anthropogenic NOx and VOC emissions from DFW for different 

structural model scenarios under default settings of input parameters. Episode average results are shown for 

the 4-km resolution domain. 
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5.4.1.2. Screening for Parametric Uncertainty  

Uncertainties in input parameters (parametric uncertainties) are 

characterized by Monte Carlo analysis, where values of input parameters are 

selected randomly from the probability distribution assumed for each input based 

on their standard deviations. For computational efficiency we use a Reduced Form 

Model (RFM) to compute adjusted concentrations ( C* ) and sensitivities ( 1

j
S( ) ) 

based on the uncertainties in input parameters using the relationships given by 

Cohan et al., [2005] and Digar and Cohan [2010], 

1 1 2 2 2 2 2

0 j j k k j j j k k k j k j k
j k j k j k

1 1
C C S S S S S

2 2
* ( ) ( ) ( ) ( ) ( )

, , ,
,

 (5.6) 

1 1 1 2

j j j j j k j k
k

S 1 S S S( ) ( ) ( ) ( )

,       (5.7) 

where 0
C  is the concentration modeled under default setting of the parameters, j  

and k  are the perturbations in parameters ‘j’ and ‘k’ respectively. 1

j

j

C
S( )  and 

2
2

j 2

j

C
S( )  denote semi-normalized first- and second-order sensitivities of 

concentrations to the parameter ‘j’. 
2

2

j k

j k

C
S( )
,  

denotes cross-sensitivity between 

two input parameters ‘j’ and ‘k’. In the RFMs, the value of each  is restricted to 
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within a 2-sigma range for that parameter to avoid extreme values of input 

parameters. 

As discussed in section 5.2.2, we use a suite of uncertain model input 

parameters listed in Table 5.2. Each parameter was assumed to have a lognormal 

probability distribution, characterized by the uncertainty value (1 ) reported in the 

table. To screen parameters that strongly influence O3 concentration (C) and 

sensitivity to emission (S(1)), we perform an impact analysis where relevant ‘impact 

factors’ were evaluated as follows, 

1

j

C

S
Impact Factor (IF) for the influence of parameter j  on C IF

C

( )

‘ ’ ‘ ’ :
  

(5.8) 

2

j k1

j S 1

j

S
Impact Factor (IF) for the influence of parameter k  on  S : IF =

S

( )

,( )

( )
‘ ’

 

(5.9) 

Although there was considerable overlap in the selected parameters, there 

were also some differences in those found to have a greater impact on 

concentrations and the two sensitivities (Table 5.2). Domain-wide NOX and biogenic 

VOC emissions (ENOX and EBVOC), photolysis rates (h ), and the reaction rate 

constants R(NO2+OH) and R(NO+O3) significantly impacted all three categories. 

Meanwhile, boundary conditions (BC) of NOY (= NOX + HNO3 + PAN + HONO + N2O5) 

were not major influences on any of the results.  However, the BC(O3) parameter 

significantly impacted concentrations and sensitivity to VOC but not to NOX, 

whereas anthropogenic VOC emissions (EAVOC) impacted sensitivities but not 

concentrations. 
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Parameter1 
Uncertainty2 

(1 ) 
Reference 

Impact3 on O3 
concentration 

Impact3 on O3 
sensitivity to 

ANOX 

Impact3 on  
O3 sensitivity  

to AVOC 

Emission Rates: 
 

    

Domain-wide NOX 0.336 

Deguillaume, 
2007 

0.105 -0.463 0.496 

Domain-wide 
biogenic VOC 

0.405 0.026 0.216 -0.319 

Domain-wide 
anthropogenic VOC 

0.336 0.006 0.073 -0.150 

Reaction Rate 
Constants:  

    

All photolysis 
frequencies 

0.347 Hanna, 2001 0.091 0.401 0.091 

R(OH+NO2) 0.131 Sander, 2006 -0.017 -0.057 0.029 

R(NO+O3) 0.095 Hanna, 2001 -0.023 -0.058 -0.024 

R(All VOCs+OH) 0.095 
Deguillaume, 

2007 
0.003 0.021 0.014 

Boundary 
Conditions:  

    

BC (O3) 0.203 

Deguillaume, 
2007 

0.036 0.006 -0.042 

BC (NOX) 0.549 0.002 -0.001 -0.001 

BC (HNO3) 0.549 0.001 -0.000 -0.000 

BC (PAN) 0.549 0.008 -0.003 -0.002 

BC (HONO) 0.549 0.000 -0.000 -0.000 

BC (N2O5) 0.549 0.000 -0.000 0.000 
1
Parameters selected based on the impact analysis by Digar and Cohan [2010] and Digar et al. [2011]; 

 
2
All distributions are assumed log-normal; 

3
Impact factor: The fractional change in concentrations and first-order sensitivity of ozone to 

emissions, due to a 1σ change in an input parameter as detailed in Section 4.1.2.; Uncertainty factors 

based on  2  (i.e., 95%) confidence interval. 

Table 5.2 – Screening test for the selection of uncertain input 

parameters. 
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5.4.1.3. Joint consideration of structural and parametric uncertainty 

We construct an ensemble consisting of the four targeted structural 

members based on the screening test in Table 5.1 (BASE, CHEM, BIO and 

CHEM+BIO) each coupled with 1000 Monte Carlo samplings from the probability 

distributions for the selected model input parameters underlined in Table 5.2. Total 

sample size of the final ensemble was therefore 4000. The final set of parametric 

factors considered in this study are summarized below, 

For O3 concentration: ENOX, EBVOCs, photolysis frequencies, R(NO2+OH), R(NO+O3) 

and BC(O3); 

For O3 sensitivity to anthropogenic NOX emissions: ENOX, EBVOCs, EAVOC, photolysis 

frequencies, R(NO2+OH), R(NO+O3), and R(all VOCs+OH); 

For O3 sensitivity to anthropogenic VOC emissions: ENOX, EBVOCs, EAVOC, photolysis 

frequencies, R(NO2+OH), R(NO+O3), R(all VOCs+OH) and  BC(O3). 

5.4.2. Constraining Model Predictions using Measurements 

A key limitation of the traditional Monte Carlo analysis of the model 

ensemble [e.g. Pinder et al., 2009; Digar et al., 2011] is the assumption that each of 

the cases is equally likely. This study uses actual observations to prioritize cases 

that show good agreement with measured concentrations over those that do not 

perform well. Figure 5.5 shows the framework of the observation-constrained 

Monte Carlo analysis, where initially 4000 Monte Carlo simulations are conducted to 
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develop the a priori distribution of O3 and NOX concentrations at all the DFW 

monitors, where the prior probability of each simulation is assumed to be 1/4000. 

We then compare concentration estimates from each simulation with actual 

measurements at the monitors to evaluate the adjusted (a posteriori) probability 

distribution of the ensemble. Various techniques are used to weight (Bayesian) or 

screen (model performance and hypothesis testing) the best-performing model 

cases to construct adjusted (observation-constrained) posterior distributions. The 

methods and observation metrics used in this study are elaborated below. 

 

Figure 5.5 – Flowchart for the observation-constrained Monte Carlo 

analysis. 
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5.4.2.1. Metric 1 (M1): Bayesian Analysis 

A Bayesian inference approach [Bergin and Milford, 2000; Deguillaume et al., 

2007] is applied to assign relative weightings to each case based on its performance 

in simulating observed O3 and NOX. For evaluating the likelihood of model 

prediction ( ,m nC ) for the mth simulation of the nth observation (n = 1, 2,..., N, where N 

denotes total number of observations), a Gaussian likelihood function is used (as 

defined by Bergin and Milford, [2000]). Errors ( ) in the interpolated observed O3 

and NOX concentrations at all monitor/days are assumed to be independent and 

normally distributed with mean zero. The likelihood of model prediction ,m nC  given 

observation nO
 can be expressed as, 

2

,

, 2

( )1 1
( | ) exp

22

n m n

m n n

O C
L C O     (5.10a) 

The total likelihood for all observations can then be computed by the product 

of likelihoods of individual simulations, that is, 

2

,

2
1

1

( )1 1
( | ) exp

2
2

N
n m n

m NN
n

n

O C
L C O   (5.10b) 

( | )mL C O  is computed for both O3 and NOX and are then multiplied together 

to get the overall likelihood based on both the observational constrains. Finally, 
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Bayes’ theorem is applied to compute the a posteriori probability distribution ( 'p ) 

from the a priori probabilities ( 1p M ).  

1

( | ) ( )
'( | )

( | ) ( )

m m
m M

m m

m

L C O p C
p C O

L C O p C

       (5.11) 

The mean ( ' ) and standard deviation ( ' ) of the resulting posterior 

ensemble distribution can be computed by, 

1

M

j j

j

Y p        (5.12) 

M
2

j

j=1

= jY p       (5.13) 

where jY  denotes jth value of the simulation and jp  denotes the respective 

posterior probability for that iteration (obtained from eq 10) and M is the total size 

of the ensemble (= 4000).  

An aggregated observation metric is used for the Bayesian analysis following 

the works of Bergin and Milford [2000], and Deguillaume et al. [2008]. Episode 

averages of the daily 8-hour O3 and of the 24-hour NOX concentrations at each of the 

11 monitors were considered (N = 11). The consideration of episode-average 

concentrations on a site-by-site basis tests the ability of each model case to simulate 

overall levels and spatial patterns in O3 and NOX, even if errors in simulating 

meteorology or emissions variability may have obscured day-to-day comparisons. 
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Errors and uncertainty in applying measurement data to evaluate model 

results can arise from instrumental error and from the use of a point measurement 

to represent a model grid-cell average concentration. The resulting uncertainty can 

be quantified jointly by examining the variability between pollutant concentrations 

measured by multiple monitors within the same grid cell. Analysis using five years 

(centered on our base case model year 2006, i.e. 2004 – 2008) of data for the 

summer O3 season (May to September) showed that the error ( ) characterizing the 

standard deviation of differences between observed 8-hour O3 values at three pairs 

of sites falling in the same grid-location ranged from 3.0 to 7.2 ppb; for bias-

corrected 24-hour NOX observations, sigma ranged from 2.2 to 8.2 ppb. Since these 

estimates are based on a limited number of site pairs, to be conservative we choose 

the maximum values for sigma (i.e.  = 7.2 ppb and 8.2 ppb for 8-hour O3 and 24-

hour NOX respectively).  

5.4.2.2. Metric 2 (M2): Screening Based on Model Performance  

An alternate approach to developing posterior distributions is to retain only 

cases that meet specified performance criteria [e.g. Mallet et al., 2006]. Since the 

base modeling used here was developed for a SIP attainment plan, we formulate a 

new metric (M2) that screens the 4000 cases based on the three model performance 

evaluation criteria recommended by EPA [1999; 2007] for determining the 

acceptability of an O3 SIP model (Table 5.3). This metric uses all available valid 

observations of daily 8-hour O3 at each monitor (N = 289). To ensure meaningful 

results, Mean Normalized Bias (MNB) and Mean Normalized Gross Error (MNGE) 
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were computed for model results (Model) when O3 observations (Obs) were greater 

than the recommended threshold of 60 ppb [USEPA, 2006b]. The screened cases 

were assigned equal weights to develop the a posteriori distribution. 

Performance Statistics Formula Screening Criteria 

Mean Normalized Gross Error 
(MNGE) 

N

1

Model Obs1
100

N Obs
%

 

-5% < MNGE < +5% 

Mean Normalized Bias (MNB) 
N

1

1 Model Obs
100

N Obs
%

 

MNB < 30% 

Unpaired Peak Accuracy 
(UPA) 

Model Obs
100

Obs
max max

max

%

 

-15% < UPA < +15% 

Note: MNGE and MNB were computed for model results (Model) when O3 

observations (Obs) were greater than the recommended threshold of 60 ppb 

[USEPA, 2006b]. 

Table 5.3 – Statistics for evaluating model performance in Metric 2 

[USEPA, 2006b].  

5.4.2.3. Metric 3 (M3): Screening Based on Nonparametric Test 

Statistical nonparametric tests of significance like the Cramér-von Mises 

criterion and the Kolmogorov-Smirnov test have been used in the past to test for 

general differences in predicted and observed distributions of air quality data 

[Holland and Fitz, 1982; Taylor, Simpson and Jakeman, 1987]. The Cramér-von Mises 

(CvM) criterion [Anderson, 1962] provides a non-parametric test of the null 

hypothesis (H0) that two samples are drawn from the same (unspecified) 
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distribution. In the CvM two-samples test, the test statistics ‘T’ is computed as 

follows: 

A B 22

A i B i A j B j2
i 1 j 1

AB
T F x G x F y G y

A B( )
      (5.14a) 

where FA(x) and GB(y) are the empirical distribution functions of the two samples 

1 2 A
x x x x, , ....,

 

and 1 2 B
y y y y, , ....,

 
of size A and B respectively. Note that 

B i
G x  

denotes the relative frequency that the observed concentration is at most i
x  (i.e. 

sum of all the elements in the sample less than i
x , divided by the sample size B) and 

A j
F y  denotes the relative frequency that the modeled concentration is at most j

y . 

The null hypothesis is rejected when T is large, indicating that the two samples are 

significantly different. For our case, the two samples represent the modeled (x) and 

observed distribution (y) of pollutant concentrations, and the sample size for the 

two distributions are equal here (i.e. A = B = N, where N denotes total number of 

observations). Therefore, equation (5.14a) reduces to the form,  

     

N N 22

A i B i A j B j
i 1 j 1

1
T F x G x F y G y

4
   (5.14b) 

  The test statistic ‘T’ is computed for each of the 4000 members of the model 

ensemble, separately for available 8-hour O3 (N = 289) and 24-hour NOX  (N = 303) 

concentrations using equation 5.14b. Next, we compute the p-value associated with 

each test statistic (T), defined as the probability of observing a test statistic greater 
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than or equal to T, if H0 is true. A small T will result in a large p-value, indicating that 

there is NOT significant evidence to reject the null hypothesis (H0). Screening is then 

applied to select Monte Carlo cases that generate p-values greater than the 10% 

significance level, i.e.  = 0.1, below which we reject the null hypothesis. We select 

only those cases that satisfy this test for both of the observational constraints (O3 

and NOX). 

The advantage of this method is that it assesses whether there are any 

differences in the modeled and observed probability distributions, not just 

differences in the means of the two samples (e.g. differences in the variance and/or 

the tail of the samples). Thus a ‘well-performing’ ensemble will have a small T value, 

since this indicates that the ensemble prediction is truly consistent with the 

recorded observations. However, this metric (unlike the other two metrics) does not 

compare model predictions and ambient observations paired in space and time. 

Because future meteorology is unpredictable, actual wind fields may be different 

from model assumptions, which may result in slightly varying (both spatially and 

temporally) pollutant plume trajectory. Therefore, this metric provides a 

supplementary test to evaluate the model’s ability to predict concentrations 

irrespective of its location (grid-cell against monitor) in the DFW nonattainment 

area defined by the 9 counties, and day during the one-month study episode.  
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5.4.3. Adjusted Ozone Sensitivity 

To characterize adjusted O3 response to emission changes, we use the 

Reduced Form Model (RFM) given in equation (5.7) to generate the a priori (equal-

weighted) probability density of O3 sensitivity to any emission ‘j’ for each of the 4 

structural case based on the 1000 parametric distribution of input parameters j and 

k (= 1, 2, 3, …, 1000). Since pollutant sensitivities cannot be directly evaluated, the 

observation-constrained O3 sensitivities for the full ensemble (all 4000 cases) are 

estimated based on the model’s performance in reproducing observed 

concentrations. Therefore for Metric 1, we assume that the a posteriori probabilities 

estimated for O3 concentrations by equation (5.11) can also be applied to adjust the 

a priori probability distribution of O3 sensitivities; for Metrics 2 and 3, we select 

sensitivity values for the simulations that passed the screening test.  

5.5. Results  

In this section results for input parameter values, O3 concentrations, and 

sensitivities to emissions are presented to show how the a posteriori probability 

distributions generated by application of the three observational metrics differ from 

the a priori (equal-weighted) distribution. The evaluation of the quality of the final 

three a posteriori model ensembles is provided in Appendix A. 

Application of Metric 1 (Bayesian weightings) to our ensemble of 4000 

simulations assigns half of the total weight to the 496 best-performing model 
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simulations. Most of the spread in weightings results from evaluation against O3 

observations rather than against NOX observations (Figure 5.6); however, the 

multiplication of weightings by equation 5.10b leads the joint weightings to differ 

substantially from those that would have resulted from considering O3 alone (Table 

5.4).   

 

Figure 5.6 – Weights assigned to the 4000 members of the full ensemble 

under the Bayesian Metric 1 using only 8-hour O3, 24-hour NOX and both (O3 

and NOX) as the observational constraint.  
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Metrics Method 

Constrained 
by 

Measurements 
of  

Base CHEM BIO CHEM+BIO 

Metric 1 Bayesian O3 and NOX 19.37% 35.37% 16.14% 29.12% 

- Bayesian O3 25.68% 29.55% 21.66% 23.10% 

- Bayesian NOX 25.44% 24.73% 25.17% 24.66% 

Metric 2 
EPA 

Performance 
O3 16.14% 33.69% 17.99% 32.19% 

Metric 3 CvM Test O3 and NOX 12.92% 37.08% 16.97% 33.03% 

- CvM Test O3 15.65% 34.60% 18.84% 30.91% 

- CvM Test NOX 25.32% 25.32% 24.70% 24.66% 

Table 5.4 – Posterior probability of the structural ensemble members.  

Metric 2 screened 1134 cases that satisfied all three of EPA’s recommended 

model performance criteria detailed in Table 5.3. This selection was mainly 

restricted by the bias term (MNB), which was satisfied by 1137 cases. The other two 

criteria, namely the Unpaired Peak Accuracy (UPA) and Mean Normalized Gross 

Error (MNGE), selected nearly all of the 4000 cases, rejecting only 15% and 1% of 

cases respectively. Metric 3, which selects cases based on the CvM two-sample test, 

selects only 766 model cases that satisfies the test for both O3 and NOX observations. 

Screening based on only O3 or NOX observations would have selected 1003 and 

2457 cases, respectively.  

Accuracy of the ensemble-mean prediction is tested by evaluating the 

normalized mean bias (NMB), the normalized mean error (NME), the correlation 
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and the regression coefficients of the ensemble mean with 8-hour O3 observations 

for all site and days (N = 289) in the DFW region (Table 5.5). Figure 5.7 shows the 

difference between the ensemble mean and the observed 8-hour O3 and 24-hour 

NOX concentrations for all site/days in DFW.  

Statistics 
Base Case 

(deterministic) 

Bayesian 
(Metric 1) 

Non-
Bayesian 

(Metric 2) 

Non-
Bayesian 

(Metric 3) 

(a posteriori) 

NMB (%) -6.08 -0.690 4.52 1.03 

NME (%) 17.74 15.76 15.84 15.73 

Correlation 0.704 0.720 0.716 0.714 

R Square 0.495 0.518 0.513 0.510 

Table 5.5 – Performance of the posterior model ensemble-mean against 

8-hour O3 at all site and days in DFW.  
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Figure 5.7 – Boxplot evaluating performance of model ensemble mean against 8-hour O3 and 24-hour 

NOX observations at each site-day within DFW.  
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As expected, the model performance improves when the ensemble is 

constrained based on the observations. All the observational metrics help to 

minimize the model bias and error, and to some extent increase the overall 

correlation and regression (Table 5.5). The base case model underpredicts O3 

concentrations by 6%. The non-Bayesian metrics on the other hand tend to 

slightly overpredict O3, although they reduce the overall error by 11%.  

To further evaluate the performance of the ensemble in simulating 

episode-average conditions (similar to the scenario used in Metric 1) at a 

given location, results for observation-constrained O3 concentrations are 

probed for the Denton monitor (Table 5.6). This monitor recorded the 

highest 8-h O3 design values (DVs) among all the DFW sites in 2006. Figure 

5.8(a) shows the probability density functions (PDFs) of episode-average O3 

concentrations at Denton. The blue curve in the figure depicts the a priori 

(equal-weighted) probability density. The other solid curves show the final a 

posteriori distributions resulting from joint consideration of the full 4000 

case ensemble under the 3 observational metrics. The deterministic model 

(BASE) is found to underpredict (62.0 ppb) the recorded episode-average 

daily 8-hour O3 observation of 70.1 ppb at Denton during the study period. 

The a priori equal-weighted ensemble predicts a mean concentration of 65.5 

ppb with a standard deviation of 7.3 ppb (Table 5.6). Application of each of 

the 3 metrics narrowed the spread of the ensemble predictions, as can be 

seen by the curves in Figure 5.8(a) and the smaller standard deviations in 
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Table 5.6, indicating greater confidence in the ensemble. Metric 2 and 3 

yielded ensemble-mean predictions of episode-average O3 that more closely 

matched observations at Denton. Similar trends were observed for the other 

sites in DFW as well (Appendix A).  

However, to examine the applicability of this method for regulatory 

purposes, it is necessary to test whether these posterior ensembles are 

capable of successfully predicting concentrations at sites that has not been 

previously considered for constraining the prior ensemble. As such, the a 

posteriori ensembles are re-generated withholding Denton. In other words, 

we exclude observations from Denton and constrain the a priori results 

based on daily observations from the remaining 10 monitors. The posterior 

ensemble thus generated is then used to probe concentrations at the 

withheld monitor – Denton (Figure 5.8b). Comparable results suggest the 

reliability of this method for regulatory attainment demonstration at 

ambient monitors. 
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Figure 5.8 – PDFs for episode-average 8-hour ozone concentration at Denton (a)when observations from 

Denton were used to constrain the a priori results and (b) when observations from Denton were withheld. 
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Metric 

O3 Concentration (ppb) 
Obs = 70.11 ppb 

SANOx (ppb) SAVOC (ppb) 

a priori  
(   ) 

a posteriori  
(   ) 

a priori  
(   ) 

a posteriori  
(   ) 

a priori  
(   ) 

a posteriori  
(   ) 

Metric 1 

65.51  7.33 

65.53  2.16 

6.79  2.59 

6.98  2.19 

1.09  0.81 

1.03  0.54 

Metric 2 69.04  2.03 6.67  3.01 1.35  0.74 

Metric 3 68.85  1.87 6.49  2.83 1.28  0.69 
 and  denotes mean and standard deviation respectively. 

Table 5.6 – Comparison of prior and posterior episode average 8-hour ozone concentrations and 

sensitivities at Denton.  
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Although each of these metrics uses different criteria and methods for 

comparing pollutant concentrations, they each yield similar allocation of 

posterior probabilities among the structural scenarios (Table 5.4). For the 

study region and episode, application of each metric tends to prioritize 

model cases that use the CB6 chemical mechanism. For example, under 

Metric 1, 384 of the 496 highest-weighted cases used CB6, lending to 64% of 

overall weight being placed on CHEM and CHEM+BIO scenarios (Table 5.4). 

The CHEM and CHEM+BIO scenarios were also favored relative to their CB-

05 counterparts by Metrics 2 and 3. The metrics do not show a consistent 

preference between the MEGAN and GloBEIS biogenic inventories.  

Application of the three metrics also generated a posteriori 

probability distributions for the scaling factors (1+ ) for the model input 

parameters listed in Table 5.2. Figure 5.9 shows the probability density 

functions (PDFs) for some of the key parameters. The a priori PDFs are 

derived from the 1000 Monte Carlo cases randomly sampled from the 

truncated lognormal probability distributions assumed for each input 

parameter, and the a posteriori PDFs are generated by applying the same 

weightings (Metric 1) and screenings (Metrics 2 and 3) used for constraining 

O3 concentrations. No significant differences were observed in the a priori 

and a posteriori distributions of model input parameters, except for ENOX. 

Adjustment under each metric tended to prefer higher levels of NOX 
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emission, as indicated by the clear positive shift in the a posteriori PDFs, 

especially for Metrics 2 and 3.  

 

Figure 5.9 – Prior and posterior distributions of selected model 

input parameters. 

Figure 5.10 shows results when O3 and NOX are used separately as 

observational constraints. Constraining the ensemble based only on O3 

observations favors higher levels of NOX emission, since this helps correct the 

base model’s tendency to underpredict O3 concentrations during this episode 
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(Figure 5.10a). On the other hand, adjustments based on only NOX 

observations reduce the spread in the NOX emission scaling factors and 

favors cases near the original estimate, except for Metric 1 that slightly favor 

lower ENOX (Figure 5.10b) to compensate for the extreme over-prediction of 

episode-average concentration at the Fort Worth Northwest (FWMC) 

monitor (Figure 5.11). This implies that the higher levels of NOX emission in 

the combined results (Figure 5.9) is primarily due to model predictions being 

constrained based on O3 observations.  

 

Figure 5.10 – Probability density function of NOX emission scaling 

factor showing results when only O3 (left) or only NOX (right) are used 

as observation constraints. 
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Figure 5.11 – Comparison of  8-hour O3 (top) and 24-hour NOX (bottom) predictions against daily 

observations at all sites (left) and episode-average concentrations at each site (right). 
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We now examine how the relative sensitivities of O3 to NOX (
XNOS ) 

and to VOC ( VOCS ) change when the uncertainties in photochemical modeling 

are considered. The base case model (without incorporating uncertainties) 

predicts that at Denton, 
XNOS is 6.56 ppb and VOCS  is 0.83 ppb, indicating that 

ANOX controls are approximately 7.9 times as effective per ton as AVOC 

controls for reducing episode-average 8-hour O3 concentrations (Figure 

5.12). The equal-weighted a priori ensemble yields a distribution of O3 

sensitivity results and indicates 93% likelihood that O3 is more sensitive to 

ANOX than to AVOC, and a 2.3% chance that reducing local ANOX emission 

may actually increase O3 concentrations in the region. A sharp negative 

correlation is observed between O3 sensitivities to NOX and VOC, which leads 

to a large variability in the ratio of these two sensitivities. This reflects the 

tendency of changes in model inputs to push the O3 formation regime 

towards being more NOX-limited or more VOC-limited, and hence less 

sensitive to the other precursor. 

The observational metrics also yield a posteriori distributions of O3 

sensitivity to ANOX and AVOC emissions. Metric 1 narrows the spread in the 

sensitivity predictions but does not substantially change the mean estimate 

(Figure 5.13 and Table 5.6). However, applications of Metric 2 and 3 shift O3 

sensitivity toward slightly higher VOCS  and slightly lower 
XNOS  than in the 

equal-weighted ensemble (Figure 5.13 and Table 5.6). This is also seen in the 
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shift toward lower values of :
XNO VOCS S  under Metrics 2 and 3, even as 

predictions remain primarily NOX-limited (Figure 5.13). This is because most 

of the cases accepted by the Metric 2 and 3 screenings used the alternate 

(CB6) chemical mechanism and higher NOX emissions (Table 5.4 and Figure 

5.9), each of which makes O3 slightly more sensitive to VOC compared to NOX 

(Figure 5.3 and Figure 5.4). Metric 1 favored cases with CB6 (Table 5.4) but 

gave low weightings to cases with high NOX emissions (Figure 5.9). 

 

Figure 5.12 – A priori episode-average 8-hour ozone sensitivity 

results at Denton. 
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Figure 5.13 – CDFs for the sensitivity of ozone at Denton monitor for the three metrics. Results are 

averaged over all days of the episode.  
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5.6. Discussion 

In this study, measurements of O3 and NOX have been used to adjust model 

estimates of O3 concentrations and responsiveness to NOX and VOC emission 

changes in the Dallas-Fort Worth (DFW) region. Three distinct observation-based 

approaches have been applied to weight or screen an ensemble of model 

simulations that employ alternate model assumptions (structural uncertainty) and 

model input values (parametric uncertainty).  

Screening analysis of structural uncertainties led to a focus on scenarios 

involving alternate choices for the biogenic emissions model and chemical 

mechanism.  For parametric uncertainties, impact analysis identified the specific 

emission rates, reaction rate constants, and boundary conditions that most 

influence O3 concentrations and their sensitivities to NOX and VOC emissions. Some 

parameters such as O3 boundary conditions were found to impact concentrations far 

more strongly than sensitivities, whereas the converse was true for some other 

parameters such as anthropogenic VOC emissions.  

Deterministic use of a single model formulation with a single set of input 

parameters yields a false sense of precision that the air quality impacts of emission 

controls are perfectly known. Traditional Monte Carlo analysis of uncertain inputs 

or model ensembles yields probabilistic (a priori) estimates of model outputs, but 

naively assumes that each of the scenarios is equally likely. This paper has explored 

three of the many Bayesian and non-Bayesian approaches that could be used to 
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adjust these a priori estimates by evaluating each case against observations. All 

three metrics tend to favor the CB6 chemical mechanism for this region and episode, 

and two of the metrics favor scaling up NOX emission rates. This resulted in 

enhanced O3 responsiveness to VOC emission and dampened sensitivity to NOX, 

although the region still remained predominantly NOX-limited.  

A key assumption of this study is that performance of a model case against 

observed concentrations provides an indicator for the reliability of the input choices 

and of the output sensitivity predictions associated with case. Since ambient 

monitors observe concentrations but not sensitivities, that assumption is both 

necessary and yet unverifiable. Dynamic evaluation of how pollutant concentrations 

respond to emission changes over weekly (i.e., weekday vs weekend) or inter-

annual (e.g., before and after a major emission trend) time scales can provide a 

proxy for ground-truthing sensitivity estimates [Dennis et al., 2010; Gilliland et al., 

2008; Pierce et al., 2010].  

The Bayesian analysis considered in Metric 1 multiplies together individual 

likelihoods from each simulation. Multiplying a large set of data with small 

likelihood values may favor cases that slightly outperform the rest. This restricted 

us from considering likelihood based on all the site/days; instead we focused on 

only average concentrations over the episode to lower the sample size over which 

the product of likelihoods is computed. This helped to yield a broader distribution of 

posterior weights, but failed to capitalize upon the spatial and temporal resolution 
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of the available data. Further research is needed to refine the choice of Bayesian 

likelihood metric.   

Future work could consider observations taken aloft by aircraft, sondes and 

satellites. Other model constraining methods like Bayesian Model Averaging 

[Raftery et al., 2005] may be explored to consider both errors in model as well as 

measurements. Additional structural uncertainties such as use of alternate 

meteorological inputs or model formulations could expand the ensemble considered 

here, which tended to be underdispersive in predicting day-to-day variability in O3 

concentrations [Cohan et. al., 2011]. 
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Chapter 6 

Conclusion 

This thesis presents computationally efficient methods to probabilistically 

estimate responses of secondary pollutants to emission controls acknowledging that 

regulatory air quality models are uncertain. This chapter summarizes major findings 

and presents recommendations for future work. 

6.1. Major Findings and Contribution 

6.1.1. Key factors influencing ozone-precursor responsiveness 

This research characterizes how uncertain assumptions in model formulations 

(structural uncertainty) and input parameters (parametric uncertainty) influence 

predictions of nonlinear responsiveness of O3 to its precursor controls. Two separate 

studies focusing on the 8-hour O3 non-attainment regions in Georgia and Texas 

showed that among the model input parameters that are reported to be uncertain in 
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existing literatures, NOX and biogenic VOC emission rates, photolysis frequencies 

and the reaction rate constants R(NO2+OH) and R(NO+O3) were found to be the 

leading contributors to uncertainty in O3 concentration and sensitivity to 

anthropogenic NOX and VOC emissions. Interestingly, anthropogenic VOC emissions 

only impacted sensitivities but not concentrations, and boundary conditions of O3 

impacted O3 concentrations and sensitivity to man-made VOCs much significantly 

compared to O3 sensitivity to anthropogenic NOX emissions.    

6.1.2. Computationally efficient characterization of model uncertainties 

Characterization of air quality model uncertainty for regulatory attainment 

demonstration is computationally challenging. To greatly reduce the computational 

burden of formal model uncertainty analysis, this thesis contributes two Reduced 

Form Models (RFMs) that efficiently characterize the impact of uncertainties in 

model input parameters on O3 response to precursor emissions within a single base 

model run. These two RFMs were targeted specifically for ‘fixed’ (analogous to 

installing a device at a point source) and ‘flexible’ (corresponding to percentage 

changes in area or mobile sources) amounts of emission reductions. The accuracy 

and applicability of these RFMs has been tested by validating their results against 

the underlying photochemical model. The RFMs proved to be extremely accurate in 

predicting O3 and PM (sulfate and ammonium) response to large amounts of 

emission reductions (50% from area-sources and 85%, 99.8% from point-sources) 

in the presence of model uncertainties. For all test cases, extremely low bias (<10%) 

and error (<15%), and high regression coefficients (>99%) were observed, 
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indicating high confidence in the RFM’s performance in reproducing results similar 

to that of the underlying model. 

6.1.3. Probabilistic framework for ozone attainment 

Chapter 2 demonstrates how Monte Carlo analysis of these validated RFMs 

could reliably predict the likelihood that an emission control measure will yield 

regulatory attainment considering models to be uncertain. Application of this 

method to 8-hour O3 non-attainment regions in Georgia shows that under uncertain 

conditions, the ranking of the predicted effectiveness of control strategies may differ 

between probabilistic (considering model uncertainties) and deterministic 

(neglecting model uncertainties) analyses.  

The framework is expanded to incorporate both model and epidemiological 

uncertainties to study how control measures could benefit public health. A case-

study for assessing averted premature mortalities due to short-term O3 exposure in 

the Dallas-Fort Worth (DFW) region shows that uncertainty in photochemical 

modeling greatly influences health-based prioritization of O3 control options. The 

effectiveness of control measures is also found to vary with the duration of O3 

exposure (1-hour / 8-hours / 24-hours).    

Irrespective of the basis of air pollution control evaluation (i.e. regulatory 

attainment or health benefits), the probabilistic approach enables more confident 

selection of control strategies by considering uncertainties in air quality model 

inputs. This probabilistic approach is further extended to incorporate the effect of 
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uncertainties in model formulations on O3-precursor response predictions. A model 

ensemble with varying structural and parametric assumptions is simulated using an 

observation-constrained Monte Carlo technique to generate probabilistic 

distributions of pollutant concentrations and sensitivities at each monitor in the 

DFW region. Realizing that air quality impacts of emission controls cannot be 

directly evaluated, we assume that the model simulations that are capable of 

replicating observed concentrations can be used to adjust sensitivities and input 

parameter values as well. Hence, each concentration value in the resulting 

distribution is evaluated against observations, and the ‘best-performing’ simulations 

are used to constrain model inputs and pollutant response to emission reductions. 

This method of constraining model results based on observations generated a 

posteriori distributions with smaller standard deviations indicating precise 

prediction with greater confidence in the ensemble. This type of probabilistic 

evaluation of pollutant-precursor responsiveness can serve as a supplementary test 

to the deterministic approach used for developing secondary air pollutant control 

strategies.   

6.2. Recommendations for Future Research 

Our contributions of air quality model uncertainty analysis in this thesis open 

potential avenues for further research. 
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6.2.1. Additional Uncertainties 

Future meteorology is unknowable and therefore prediction of future air 

quality involves great uncertainties that need to be explored for reliable control 

strategy development. This thesis presents methods to jointly consider parametric 

and structural uncertainties in photochemical modeling for regulatory attainment 

demonstration. Analysis of uncertain scenarios beyond the ones considered here, 

such as using alternate meteorological models, and uncertain meteorological inputs 

(like wind speed, sea breeze circulation, ambient temperature, rainfall, cloud cover, 

boundary layer height, etc.), could be explored. Chapter 3 employs a simple way to 

investigate the effect of hypothetical meteorological uncertainties on the likelihood 

of NAAQS attainment. Other creative and more comprehensive approaches such as 

dynamic evaluation of models  [Dennis et al., 2010; Gilliland et al., 2008; Pierce et al., 

2010] studying the model’s ability to predict air quality changes as a result of 

changing emission sources over temporally varying meteorological episodes could 

also be explored in the future. The sensitivity results obtained from these dynamic 

model evaluations could be used as alternative basis for constraining model 

simulations. 

6.2.2. Observation-constrained Model Predictions  

In this research, we use ground-based measurements of O3 and NOX 

concentrations to constrain model simulations. Observations recorded at higher 

altitudes (ozonesonde and aircraft) and in space (satellite) could be used in the 
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future to adjust model predictions. Moreover, the a posteriori estimates of emission 

inputs obtained from our study could be compared with the adjusted emission 

inventory based on model inversion techniques like Kalman Filter and adjoint 

methods. 

6.2.3. Economic Evaluation for Control Strategy Selection 

Regulatory attainment for ground-level O3 is a headache for many states. 

With the enforcement of more stringent federal standards, development of cost-

effective O3 abatement will remain to be an intriguing field of research. This thesis 

demonstrates how the ratio of O3 control effectiveness varies with uncertainty in 

regulatory modeling.  These results could be considered jointly with the cost of 

these controls to optimally choose the most cost-effective option. In addition, 

uncertainty in control costs could also be considered for such analysis.     

6.2.4. Applicability  

Although our research primarily focuses on ground-level O3 pollution, the 

methods and models presented here could be readily applied to other secondary 

pollutants as well, because the RFMs can successfully predict the non-linearity in 

pollutant-precursor responsiveness. In Chapter 2, we show that the RFM is capable 

of accurately characterizing parametric uncertainty for inorganic PM (sulfate and 

ammonium) responsiveness to changes in SO2 emissions. The sensitivity coefficients 

that the RFM uses may be computed by HDDM or by brute force method. Also we 

found that second-order approximation of the Taylor expansion was sufficient for 
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representing O3 and inorganic PM responses to emission changes, and assumed the 

impacts of multiple emission controls to be additive. One could also validate and if 

needed adjust the RFM accordingly for other pollutants depending on the capability 

of the underlying model. 

The regions for our O3 case-analysis were primarily NOX-sensitive.  

Photochemical uncertainty analysis in regions with a mix of NOX- and VOC-limited 

conditions may yield insightful results on how pollutant responses change with 

drastically different O3-formation regimes. Since we were studying O3 sensitivities, 

we purposefully looked at summer episodes, as O3 is observed to be high during this 

season. O3 tends to be more VOC-limited in other seasons and on non-peak days 

with lower biogenic VOCs. It will be interesting to extend this study for other 

seasons as well to see how the O3-precursor responsiveness changes over temporal 

scales. Moreover, to address PM pollution, it might be meaningful to consider winter 

conditions.    

6.2.5. Valuable Extension 

The ranking of O3 controls based on the likelihood of NAAQS attainment in 

Chapter 2 only considers model parametric uncertainties. It would be interesting to 

know how these rankings might change as a result of inclusion of structural 

uncertainties highlighted in Chapter 5 and beyond.  

Findings from Chapter 4 show that the propensity of O3 controls to save 

human lives (avert mortality) vary with the duration of exposure. This demands 
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further epidemiological research to understand which temporal metric (1-hour, 8-

hours or 24-hours) is most determinative of human health responses to O3 

exposure.     

6.3. Closing Remarks 

To conclude, my PhD research presents a promising approach to efficiently 

characterize uncertainties in regulatory air quality planning and management, with 

particular focus on the mitigation of ground-level O3 pollution. Results from this 

work provide important insights on the prioritization of O3 abatement efforts in 

urban regions of Georgia and Texas, where elevated O3 concentrations still remain 

to be an issue of grave concern. These methods could be readily applied for other 

regions and for other pollutants as well.  
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Appendix A 

SUPPLEMENTARY INFORMATION TO CHAPTER 5:  

USING GROUND-BASED OBSERVATIONS TO CONSTRAIN 

PROBABILISTIC PREDICTIONS OF OZONE-PRECURSOR 

RESPONSIVENESS 

A1. Ensemble Quality 

Brier Score & Sharpness: 

The quality of the final a posteriori model ensembles is evaluated by 

computing two properties that are often used to assess probabilistic forecasts: the 

Brier Score (which is a combined measure for the forecast Reliability, Resolution and 

Uncertainty), and the Sharpness. The Brier Score is the mean squared error of the 

probability forecast and can be expressed as “Reliability – Resolution + Uncertainty” 

as explained in Wilks [2006]. Reliability represents the conditional bias of the 

forecast ensemble and Resolution is a measure of the degree to which the ensemble 

sorts observed events into groups that are different from each other. Sharpness is an 

indication of the variance (or spread) of the predicted ensemble density and is 

independent of the observations. Therefore, for both Brier Score and Sharpness, a 

lower value implies better performance of the ensemble. 
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Table A.1 reveals that although the base model, by definition, has the 

maximum Sharpness, the adjusted ensembles have relatively lower Brier Scores (for 

predicting 8-hour O3 concentrations to exceed a threshold of 75 ppb) than the base-

case deterministic model, thereby indicating a good-performing ensemble, 

particularly for attainment demonstration.  

Statistics 
Base Case Model 
(deterministic) 

Adjusted a posteriori ensemble 

Metric 1 Metric 2 Metric 3 

Brier Score 
for predicting 

8-hour O3 > 75 ppb 
0.253 0.195 0.204 0.205 

Sharpness 
in predicting 

8-hour O3 > 75 ppb 
0 0.049 0.041 0.033 

Table A.1 – Comparison of prior and posterior episode average ozone 

concentrations and sensitivities at Denton.  

Rank Histogram: 

The Talagrand diagram, popularly known as the rank histogram [Talagrand 

et al., 1997], is a statistical tool to assess the measure of differences in the ensemble 

predictions (spread). The ensemble is distributed into (M + 1) bins, where M = 

number of ensemble predictions (4000). For each of the N observations (site and 

days), the ensemble predictions are ranked along with the observed value to find 

out the bin in which the observation is falling. A rank histogram is then constructed 

by tallying over these N observed dataset and plotting the frequency of the rank of 
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the observation. A rank histogram therefore evaluates whether the model-ensemble 

is able to predict the actual observations such that the occurrence of the observation 

within each bin is equally likely, and a flat rank histogram would indicate that the 

ensemble has the correct spread (rank uniformity).  

The ensemble used in this study has an underforecasting bias, reflected in the 

preponderance of observations that fall on the right of the rank histogram (Figure 

A.1, a), above the majority of the model cases. The rank histogram also shows the 

prior ensemble spread to be too narrow (underdispersive), as reflected in the U 

shape. Note both the large first bin, which shows that many observations fall below 

most or all of the model cases and the large bins toward the right.  

For the a posteriori ensembles, the U shape of the rank histograms (over-

confidence) becomes even more pronounced (Figure A.1, b-d). Although these 

metrics (especially Metrics 2 and 3) strive to make majority of the distribution 

uniform (central bins), they fail to adjust the extreme bins that were present in the 

prior ensemble. Thus, the bulk of each ensembles lie above some observations 

(leading to the large left-most column), and below other observations (leading to 

the large right-most column).  
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Figure A.1 – Rank histogram for the prior and the posterior ensembles. 
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A2. Ensemble Performance 

The ensemble-mean predictions for episode-average 8-hour O3 

concentration at all the 11 DFW sites considered for our study are listed in Table 

A.2. In an effort to adjust the prior underprediction of the base model (Figure 5.7 

and Figure 5.11), the ensemble prefers higher NOX emissions (Figure 5.9), which 

results in an overall increase in 8-hour O3 concentrations at all sites. Therefore, the 

posterior adjustments improved the prediction accuracy for the sites that had large 

underpredictions in the base-case modeling (Table A.2).  
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Site 
2006  

DV 
(ppb) 

Episode-average 8-hour O3 concentration (ppb) 

Observation 
Base-Model 
Prediction 

a priori 
(   ) 

a posteriori 
(   ) 

Metric 1 Metric 2 Metric 3 

DENT 93.33 70.11 61.98 65.51  7.33 65.53  2.16 69.04  2.03 68.85  1.87 

GRAP 90.67 68.79 63.20 66.62  7.21 66.76  2.21 70.02  2.17 69.98  2.03 

FWMC 89.33 59.54 62.42 66.10  7.17 66.23  2.22 69.50  2.17  69.43   2.01 

DALN 85.00 62.34 60.52 64.09  7.00 64.25  2.11 67.42  1.99 67.36  1.84 

REDB 85.00 64.91 59.26 62.73  7.07 62.75  2.09 66.13  1.91 65.94  1.74 

ARLA 83.33 65.51 61.63 65.12  7.27 65.12  2.17 68.61  2.01 68.43  1.86 

DHIC 81.67 61.70 59.53 63.08  6.75 63.33  2.09 66.27  2.04 66.26  1.88 

MDLT 80.50 62.03 56.57 59.77  6.76 59.77  2.00 63.01  1.91 62.77  1.75 

MDLO 75.00 57.68 55.96 59.23  6.50 59.35  1.94 62.32  1.82 62.19  1.71 

GRVL 75.00 61.02 53.96 57.04  6.70 56.96  2.10 60.29  2.11 59.96  1.79 

KAUF 74.67 58.04 55.22 58.31  6.88 58.20  2.14 61.64  2.14 61.29  1.81 

Table A.2 – Comparison of episode average 8-hour ozone concentrations at the DFW sites.  
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