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Summary 22	  

 23	  

The marine cyanobacteria Prochlorococcus and Synechococcus are highly abundant in the global 24	  

oceans, as are the cyanophage with which they co-evolve. While genomic analyses have been 25	  

relatively extensive for cyanomyoviruses, only 3 cyanopodoviruses isolated on marine 26	  

cyanobacteria have been sequenced. Here we present 9 new cyanopodovirus genomes, and 27	  

analyze them in the context of the broader group. The genomes range from 42.2 to 47.7 kbp, with 28	  

G+C contents consistent with those of their hosts. They share 12 core genes, and the pan-genome 29	  

is not close to being fully sampled. The genomes contain 3 variable island regions, with the most 30	  

hypervariable genes concentrated at one end of the genome. Concatenated core-gene phylogeny 31	  

clusters all but one of the phage into three distinct groups (MPP-A and two discrete clades within 32	  

MPP-B). The outlier, P-RSP2, has the smallest genome and lacks RNA polymerase, a hallmark of 33	  

the Autographivirinae subfamily. The phage in groups MPP-B contain photosynthesis and carbon 34	  

metabolism associated genes, while group MPP-A and the outlier P-RSP2 do not, suggesting 35	  

different constraints on their lytic cycles. Four of the phage encode integrases and three have a 36	  

host integration signature. Metagenomic analyses reveal that cyanopodoviruses may be more 37	  

abundant in the oceans than previously thought.  38	  

 39	  

Introduction 40	  

Viruses are abundant in the oceans, often outnumbering bacterioplankton by an order of 41	  

magnitude (Bergh et al., 1989; Fuhrman, 1999; Wommack and Colwell, 2000; Weinbauer and 42	  

Rassoulzadegan, 2004). Among marine bacteria, the cyanobacteria Prochlorococcus and 43	  

Synechococcus are the numerically dominant oxygenic phototrophs (Waterbury et al., 1986; 44	  

Partensky et al., 1999; Scanlan and West, 2002), and contribute significantly to global primary 45	  

productivity and global biogeochemical cycles (Liu et al., 1997; Liu et al., 1998). They coexist 46	  

with their specific viruses – cyanophage – which are believed to play a key role in maintaining 47	  
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diversity by “killing the winner” (Waterbury and Valois, 1993; Suttle and Chan, 1994; Thingstad, 48	  

2000). Moreover, cyanophage impact the evolution of their hosts by mediating horizontal gene 49	  

transfer (Lindell et al., 2004; Zeidner et al., 2005; Sullivan et al., 2006; Yerrapragada et al., 50	  

2009).  51	  

 52	  

All cyanophage isolated thus far are Caudovirales – tailed, dsDNA viruses belonging to three 53	  

families: Myoviridae, Podoviridae and Siphoviridae. Most of the cyanomyoviruses are similar to 54	  

the archetypal coliphage T4, and have genome sizes ranging from 161 – 252 kb, (Sullivan et al., 55	  

2010). Cyanopodoviruses, with genome sizes ranging from 42 kb to 47 kb, are similar in gene 56	  

content and genome organization to coliphage T7 (Chen and Lu, 2002; Sullivan et al., 2005; Pope 57	  

et al., 2007). There are fewer examples of cyanosiphoviruses (Sullivan et al., 2009; Huang et al., 58	  

2011), which have genome sizes ranging from 30 kb to 108 kb and do not share common features 59	  

with other bacteriophage (Huang et al., 2011). To date, 18 cyanomyovirus genomes (Sullivan et 60	  

al., 2005; Weigele et al., 2007; Millard et al., 2009; Sullivan et al., 2010; Sabehi et al., 2012), 5 61	  

cyanosiphovirus genomes (Sullivan et al., 2009; Huang et al., 2011), and 5 cyanopodovirus 62	  

genomes have been published (Chen and Lu, 2002; Sullivan et al., 2005; Pope et al., 2007; Liu et 63	  

al., 2007; Liu et al., 2008).  64	  

 65	  

 A hallmark characteristic of the cyanomyoviruses and cyanopodoviruses is that they carry 66	  

homologs to host genes (which we now refer to as phage/host shared genes (Kelly et al, 67	  

submitted)) whose products are thought to increase phage fitness under certain conditions. A 68	  

subclass of these genes, referred to as auxiliary metabolic genes (“AMG” (Breitbart et al., 2007)), 69	  

encode proteins involved in host metabolic pathways such as the light reactions of photosynthesis 70	  

(PsbA, PsbD, Hli, PsaA, B, C, D, E, K, J/F (Mann, 2003; Lindell et al., 2004; Lindell et al., 2005; 71	  

Sullivan et al., 2006; Sharon et al., 2009; Béjà et al., 2012)), the pentose phosphate pathway (PPP 72	  

(Sullivan et al., 2005; Thompson et al., 2011; Zeng and Chisholm, 2012)), phosphate acquisition 73	  
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(Millard et al., 2004; Sullivan et al., 2005; Sullivan et al., 2010; Thompson et al., 2011; Zeng and 74	  

Chisholm, 2012), nitrogen metabolism (Sullivan et al., 2010) and DNA synthesis (Sullivan et al., 75	  

2005), among others. It is thought that the phage carry these homologs to alleviate bottlenecks in 76	  

these key pathways after host transcription of host homologs has stopped (Thompson et al., 77	  

2011).  78	  

 79	  

Several observations reveal very tight co-evolution of host and cyanophage genomes with regard 80	  

to these phage/host shared genes. It has been demonstrated, for example, that phage AMGs are 81	  

expressed simultaneously during infection (Lindell et al., 2007) regardless of their position in the 82	  

genome, which is striking given the strict genome-order transcription normally associated with 83	  

such (T7-like) phage. In the case of phage/host shared P-acquisition genes, it has been 84	  

demonstrated that these genes are carried more frequently by phage in regions of the oceans 85	  

where cells are P-stressed (Kelly et al., submitted), and expression of the phage version of a high-86	  

affinity PO4-transport protein is actually regulated by the host PhoRB two component regulatory 87	  

system such that the phage gene is only upregulated when the phage is infecting a P-stressed host 88	  

cell (Zeng and Chisholm, 2012).  89	  

 90	  

Phage also carry genes that in the host encode high-light inducible proteins (Hlis – also called 91	  

small CAB-like proteins (Funk and Vermaas, 1999)) thought to protect the photosynthetic 92	  

complex, or possibly to be involved in a more general stress response in the host (He et al., 2001). 93	  

Photosynthesis-associated proteins (Hlis, PsbA and PsbD) found in cyanophage are related to 94	  

their respective orthologous proteins found in cyanobacterial genomes, indicating that they are of 95	  

cyanobacterial origin (Lindell et al., 2004; Sullivan et al., 2006). Interestingly, there are two types 96	  

of hli genes found in cyanobacterial genomes, referred to as single- and multi-copy hlis (Bhaya et 97	  

al., 2002). The single-copy hlis are part of the Prochlorococcus core genome while multi-copy 98	  

hlis contribute to the flexible genome and are found in highly variable genomic islands (Coleman 99	  
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et al., 2006). Cyanophage hlis are homologous to the multi-copy hlis, suggesting that cyanophage 100	  

play a role in horizontal transfer of multi-copy hlis (Lindell et al., 2004). 101	  

 102	  

Of the 5 cyanopodoviruses for which complete genomes were available prior to this study, two 103	  

are of marine origin: P-SSP7 and Syn5 from the Sargasso Sea (Sullivan et al., 2005; Pope et al., 104	  

2007), and one is of estuarine environment in Georgia (P60 -Chen and Lu, 2002). The two other 105	  

isolates, Pf-WMP3 (Liu et al., 2008) and Pf-WMP4 (Liu et al., 2007), are derived from 106	  

freshwater environment and were isolated on the filamentous cyanobacterium Leptolyngbya. The 107	  

genome of P-SSP7 is organized in three classes, similar to coliphage T7 (Sullivan et al., 2005), 108	  

the first involved in takeover of host enzymatic machinery, followed by DNA replication and 109	  

transcription, and finally viral assembly and morphogenesis (Lindell et al., 2007). Interestingly, 110	  

whereas P60, isolated from a coastal river (Chen and Lu, 2002), has a similar genetic architecture 111	  

to the freshwater cyanophage, its genes have greater homology to marine cyanopodoviruses (See 112	  

Note added in proofs).  113	  

 114	  

To expand our understanding of the diversity and evolution of cyanopodoviruses infecting marine 115	  

cyanobacteria, and to provide more reference genomes for metagenomic analyses, we sequenced 116	  

9 additional cyanopodovirus genomes (Table 1) isolated from diverse environments (Red Sea, 117	  

Sargasso Sea, Gulf Stream, and Subtropical Pacific Gyre) on host strains belonging to four 118	  

different ecotypes of Prochlorococcus (HL I, II and LL I, II), and analyzed them in the context of 119	  

the entire collection.  120	  

  121	  
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Results and discussion 122	  

 123	  

Cyanophage isolation and host range 124	  

The cyanopodoviruses reported here were isolated over a period spanning more that a decade 125	  

(1995-2006; Table 1). Diverse strains of Prochlorococcus, including representatives from both 126	  

high-light and low-light clades, were used as hosts to isolate and maintain phage stocks (Table 1). 127	  

In contrast to cyanomyoviruses, which can typically infect multiple bacterial strains (Sullivan et 128	  

al., 2003), these cyanopodoviruses have narrow host ranges, infecting only one or two strains 129	  

under laboratory conditions (Table 2).  130	  

 131	  

General features of cyanopodovirus genomes 132	  

The general features of the cyanopodovirus genomes are shown in Table 1, and include 9 133	  

genomes reported for the first time, along with 5 existing genomes that were used for comparative 134	  

analyses. The genomes of cyanopodovirus P-SSP7 and Syn5 are known to be linear, with direct 135	  

terminal repeats (Pope et al., 2007; Sabehi and Lindell, 2012), and we assume that the new 136	  

genomes are linear as well. The marine cyanopodovirus genomes range from 42.2 kbp to 47.7 137	  

kbp, and code for 48 to 68 putative open reading frames (ORFs). The majority of the putative 138	  

genes are encoded on the same strand, but phage P-RSP2 and P60 that contain an inverted region 139	  

of 1.5 kb and multiple genome rearrangements, respectively (ORF15-17P-RSP2 – Fig. 3) (See Note 140	  

added in proofs). Phage isolated on Prochlorococcus have a G+C content of 34% to 40.5%, while 141	  

those isolated on Synechococcus range from 53% to 55% (Table 1) reflecting the different G+C 142	  

content of the two hosts and the selective pressure for the phage to adapt their codon usage to that 143	  

of their hosts (Krakauer and Jansen, 2002; Limor-Waisberg et al., 2011). The ability of 144	  

cyanomyoviruses to cross-infect both Prochlorococcus and Synechococcus, despite their different 145	  

G+C content, is thought to be facilitated by the tRNAs encoded by this group of phage (Enav et 146	  

al., 2012). Only two tRNAs were identified in the cyanopodoviruses, however – one partial tRNA 147	  
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in P-SSP7 (Sullivan et al., 2005) and one glycine tRNA in P-RSP5. The latter does not 148	  

correspond to a rare codon in its host genome or to a highly used codon in the P-RSP5 genome 149	  

(data not shown), suggesting that the G+C content difference between the genomes of 150	  

cyanopodoviruses that infect Synechococcus and Prochlorococcus is probably a significant 151	  

barrier to cross-infectivity (Enav et al., 2012). 152	  

 153	  

DNA Polymerase Phylogeny and the Core and Pan Genomes 154	  

 155	  

As a foundation for the analyses that follow, we wanted to identify the core genes shared by a 156	  

defined set of cyanopodoviruses, as well as their flexible gene set. Previous work on Podoviridae 157	  

DNA polymerase diversity suggests that this gene could be an acceptable phylogenetic tracer for 158	  

Podoviridae because it is conserved among different groups of phage and shows signs of vertical 159	  

inheritance (Chen et al. 2009;  Labonté et al. 2009). Thus we used the phylogeny of this gene to 160	  

define sets of phage for the core and pan-genome analysis, and to guide our analysis of 161	  

relatedness among the phage. We first cast a broad net, including 71 DNA polymerase genes 162	  

from phage of different genera and families according to current International Committee on 163	  

Taxonomy of Viruses (ICTV) classification (Fig. 1). All cyanopodoviruses fell into the same 164	  

clade – designated the P60-like genus (Lavigne et al., 2008) – with the exception of two 165	  

freshwater cyanopodoviruses (indicated by three blue dots in Fig 1, as DNA polymerase is 166	  

encoded by two genes in one of the phage). The P60-like clade can be divided into three 167	  

subclades, supported by bootstrap values greater than 95% which exclude an outlier – P-RSP2 . 168	  

The first clade corresponds to the clade MPP-A (marine picocyanopodovirus A) established by 169	  

Chen and colleagues (2009), while the other two fall within clade MPP-B and form two discrete 170	  

clades (B1 and B2) (see the core genome phylogeny analysis section below – Figs 1 & 3).  171	  

 172	  



	  	   8	  

Using an analysis similar to that described in Tettelin et al (2005) and used in our analysis of 173	  

cyanomyoviruses (Sullivan et al., 2010), we first defined a set of core genes using only the 10 174	  

cyanopodoviruses isolated on Prochlorococcus (P-RSP2, P-HP1, P-SSP11, P-SSP10, P-GSP1, P-175	  

SSP2, P-SSP3, P-SSP7, P-RSP5 and P-SSP9 – Table 1). This core is composed of 19 genes (Fig. 176	  

2A); adding Synechococcus-specific phage Syn5 to the analysis reduces this number to 17 (Fig. 177	  

2B), and if Synechococcus phage P60 is added, the shared gene set drops to 12 (Table 3 – Fig. 178	  

2C). The significant impact of adding P60 is perhaps not surprising given its estuarine habitat. 179	  

P60’s genome also includes several frameshifts (see below) and incomplete proteins (Table 3) 180	  

(See Note added in proofs). Finally, adding the two freshwater cyanopodoviruses to the analysis 181	  

causes a precipitous drop to 3 core genes: primase/helicase, DNA polymerase, and terminase 182	  

(Fig. 2D) – consistent with the divergence of these phage seen in the DNA polymerase tree (Fig. 183	  

1).  184	  

 185	  

Of the 17 core genes shared by the 10 Prochlorococcus cyanopodoviruses and Syn5, 9 are 186	  

involved in DNA metabolism and assembly of virions, 6 encode phage structural proteins (portal 187	  

protein, MCP, tail tube proteins A and B, internal core protein, tail fiber), one encodes the 188	  

terminase, and one codes for an hypothetical protein of unknown function (Table 3; Fig. 3, blue 189	  

shading). The pan-genome of this set of cyanopodoviruses is composed of 241 clustered 190	  

orthologous groups (COGs), and the cumulative curve of unique genes is nowhere near 191	  

saturation, suggesting that vast diversity remains (Fig. 2). Each new genome contributed an 192	  

average of 15 unique genes to the pan-genome, representing 22.0% to 31.6% of the genes in each 193	  

genome. In a similar analysis of 16 cyanomyoviruses, each genome adds approximately 90 new 194	  

genes, or 27.5% to 42.8% of their gene content (Sullivan et al., 2010). In both, the percentage is 195	  

significantly higher than that observed for host strains, where each new sequenced genome added 196	  

approximately 7.3% to 11.8% of their gene content to the pan-genome (Kettler et al., 2007). 197	  

 198	  
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Genome organization 199	  

With the exception of P60 (See Note added in proofs) and the two freshwater cyanophage (Pf-200	  

WMP3 and Pf-WMP4) gene order in these genomes is roughly consistent with their relatedness in 201	  

the DNA polymerase tree and core genome analysis (Fig. 3). As in P-SSP7 (Sullivan et al., 2005), 202	  

order is highly conserved, and strikingly similar to the distantly related prototype enterophage T7 203	  

(Dunn et al., 1983), supporting the hypothesis that T7-like enterophage and cyanopodoviruses 204	  

evolved from a common ancestor, diverging at the protein sequence level (Sullivan et al., 2005; 205	  

Lavigne et al., 2008) while keeping a similar genome organization. The exception is P60, which 206	  

has multiple inversions (Fig. 3), rendering its genome architecture more similar to the freshwater 207	  

cyanopodoviruses Pf-WMP3 and Pf-WMP4 (Liu et al., 2007; Liu et al., 2008), while its protein 208	  

sequences are more similar to those of marine cyanophage (Liu et al., 2007). That is, P60 evolved 209	  

with the other marine cyanopodoviruses in terms of protein sequences, but underwent multiple 210	  

genomic rearrangements altering the T7-like genome architecture (See Note added in proofs). We 211	  

note again, that P60 was isolated from an estuarine environment – quite distinct from the open 212	  

ocean habitat of the other marine phages. 213	  

 214	  

Similar to T7 (Molineux, 2006), P-SSP7 genes are grouped into three ordered classes of genes 215	  

that are sequentially expressed over the course of infection – marked in red, green, and blue along 216	  

the P-SSP7 genome in Fig. 3 (Lindell et al., 2007). Class I genes encode primarily small proteins, 217	  

including MarR  and gp0.7, thought to be involved in redirecting transcription from the host to 218	  

the phage (Lindell et al., 2007). This region is highly variable and does not include core genes 219	  

(see below). Class II includes genes from the RNA polymerase gene up to, but not including the 220	  

major capsid protein (MCP) gene and is involved in transcription, DNA metabolism and 221	  

replication, and code for phage scaffolding proteins and structural components. Class III consists 222	  

of genes involved in phage assembly and DNA maturation (Molineux, 2006) and spans the rest of 223	  

the genome (Lindell et al., 2007). 224	  
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 225	  

Since P60 was the first cyanopodovirus sequenced (Chen and Lu, 2002) we are upholding naming 226	  

conventions for phage and referring to this as the “P60-like genus” (Lavigne et al., 2008), even 227	  

though P60 is not a ‘typical’ phage in this group with respect to gene content and organization 228	  

(See Note added in proofs).  229	  

 230	  

Phylogeny and classification based on core genomes  231	  

To further examine the phylogenetic groupings established above, the amino acid sequences of 232	  

the core genes shared by the marine cyanopodovirus genomes (Fig. 2C) were concatenated and 233	  

aligned, and a maximum likelihood analysis was applied (Fig. 3, tree on the left). Three distinct 234	  

subgroups (MPP-A, MPP-B1 and B2) emerged with a topology consistent with the DNA 235	  

polymerase tree above (compare Fig. 1 and Fig. 3), with P-RSP2 as an outlier, but still belonging 236	  

to the group. The two divergent freshwater cyanopodoviruses (Fig. 1) were excluded from this 237	  

core phylogeny analysis since they are missing most of the core genes (Fig. 2D).  238	  

 239	  

Based on the sequence analysis of the concatenated core genomes (Fig. 3), and its congruence 240	  

with the DNA polymerase tree (Fig. 1), the 12 marine cyanopodoviruses in Fig. 3 belong to the 241	  

same genus – the P60-like genus of the subfamily of the Autographivirinae. Even though P-RSP2 242	  

is divergent from the other members of the group, it clearly falls within this clade. Because P-243	  

RSP2 lacks an RNA polymerase gene, however, it would normally be excluded from the 244	  

Autographivirinae subfamily – which currently includes even very distantly related Podoviridae 245	  

(eg. T7 and phiKMV – Fig. 1, middle ring) – based on this single criterion. Although the presence 246	  

of RNA polymerase has been considered a hallmark gene for assignment of a phage to the 247	  

Autographivirinae, we argue that P-RSP2 should be included based on its similarities to other 248	  

phage in the P60-like genus (Figs. 1 & 3).  249	  

 250	  
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P-RSP2 – the outlier 251	  

P-RSP2 shares the same genome organization as the other cyanopodoviruses (with the exception 252	  

of an inverted region in the class III genes), and has the same set of core genes, but it is highly 253	  

divergent (Figs. 1 & 3). In fact, only one of its core genes (DNA polymerase – Fig. 1) shares 254	  

more than 60% amino acid identity with the other phage. That it is the only phage in the group 255	  

that was isolated on Prochlorococcus strain MIT9302 raises the question of whether there is 256	  

something unique about this phage/host relationship. As discussed above, P-RSP2 is also the only 257	  

phage in this group that lacks an RNA polymerase gene, essential for inclusion in the 258	  

Autographivirinae (Lavigne et al., 2008), which in the canonical podovirus coliphage T7 is 259	  

required for efficient transcription of class II and class III phage genes (Summers and Szybalski, 260	  

1968; Studier and Maizel, 1969; Studier, 1972).  261	  

 262	  

Since P- RSP2 does not encode its own RNA polymerase, it likely has evolved mechanisms to 263	  

use host transcriptional machinery to transcribe class II-III genes, such as additional host-like 264	  

promoters or modulation of host RNA polymerase with transcriptional regulators such as sigma 265	  

factors (Sullivan et al., 2009; Pavlova et al., 2012). In T4, for example, middle and late gene 266	  

expression is coordinated by two transcriptional activators (Brody et al., 1995), but a search for 267	  

similar activators in P-RSP2 yielded nothing. The G+C content of cyanopodoviruses prohibits the 268	  

use of computational approaches like those of Vogel et al. (2003) to search for host-like 269	  

promoters, thus the mechanism by which P-RSP2 transcribes Class II and III genes remains a 270	  

mystery. 271	  

 272	  

Comparative genomics 273	  

The Class I gene set (Fig. 3 – red under the P-SSP7 genome), is composed of very short genes 274	  

that are highly variable. The set is most conserved in the MPP-B1 group relative to MPP-B2 and 275	  

MPP-A, and consists of a genetic module of 10-13 genes that code for putative proteins mostly of 276	  
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unknown function (Fig. 3). Genes of interest include an integrase (in 4 genomes), and a protein 277	  

similar to T7 gp0.7 (a transcriptional regulator involved in the takeover of the cellular metabolism 278	  

by the phage (Molineux, 2006), found in 3 genomes). Three of the 4 genomes that have the 279	  

integrase gene have a downstream integration signature sequence, suggestive of the potential for 280	  

lysogeny (discussed in more detail below). 281	  

 282	  

Class II genes (Fig. 3 – green under the P-SSP7 genome) were among the most conserved (Table 283	  

3) across all three MPP groups. In addition to core genes, Class II also includes genes encoding 284	  

RNA polymerase (11/12 genomes), high light inducible proteins (Hli – 9/12 genomes), 285	  

photosystem II D1 protein (PsbA – 8/12 genomes) and transaldolase (TalC – 8/12 genomes). 286	  

These genes have orthologs in bacterial genomes (phage/host shared genes), and while 287	  

photosynthesis-associated genes are thought to have been derived from the host, the origin of talC 288	  

is not clear (Ignacio-Espinoza and Sullivan, 2012) (see discussion below). The genes hli, psbA 289	  

and talC, only found in MPP-B1 and MPP-B2, are common in cyanophage (Lindell et al., 2004; 290	  

Sullivan et al., 2005; Lindell et al., 2005; Sullivan et al., 2006; Chenard and Suttle, 2008; Sullivan 291	  

et al., 2010; Thompson et al., 2011; Sabehi et al.,2012) and are thought to increase phage fitness 292	  

during infection (Bragg and Chisholm, 2008; Thompson et al., 2011). 293	  

  294	  

Class III genes (Fig. 3 – blue under the P-SSP7 genome) mainly consist of genes coding for 295	  

structural components of mature virions. This class contains a highly variable region that encodes 296	  

host specificity determinants, including genes in the region downstream of the tail tube protein B 297	  

(gp31P-SSP7) and through the tail fiber protein (gp36P-SSP7).  298	  

 299	  

P-SSP2 and P-SSP3: two co-isolated phage reveal a hypervariable genomic region 300	  

Phage P-SSP2 and P-SSP3 were isolated on the same day, at the same station, from proximate 301	  

depths (120m and 100m respectively), using Prochlorococcus MIT9312 as the host. Their 302	  
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genomes share 95% overall nucleotide sequence identity, and most proteins are 100% identical 303	  

(Fig. 4). They differ in only 7 genes (Table 5), each being either significantly divergent, or absent 304	  

in one or the other. The Class I module in the two genomes includes 2 pairs of divergent genes: 305	  

gp14P-SSP2/gp55P-SSP3 and gp18P-SSP2/gp52P-SSP3, whose gene products share 76% and 66% identity, 306	  

respectively. Immediately adjacent to the latter pair, P-SSP2 encodes an additional orphan gene 307	  

(gp17P-SSP2) (Fig. 4) that does not share similarity with proteins in public databases. A second 308	  

divergent region is located at the C-terminus of the tail fiber(gp16P-SSP3 and gp57P-SSP2) (Fig. 4; 309	  

Table 5) involved in host recognition,. The P-SSP3 tail fiber gene (gp16P-SSP3) is smaller than that 310	  

of (gp57P-SSP2). Downstream of gp16P-SSP3 are two small genes - gp15P-SSP3 and gp14P-SSP3 – that are 311	  

absent in the P-SSP2 genome. The former is an orphan while the latter shares 29% amino acid 312	  

identity with genes gp40P-SSP7 (Figs. 1 & 3) – and 20% amino acid identity with gp28P-RSM4 in a 313	  

cyanomyovirus isolated on Prochlorococcus MIT9303 (Sullivan et al., 2010). Genes gp40P-SSP7 314	  

and gp14P-SSP3 are located in the same genomic region (Fig. 3).  315	  

  316	  

The N-terminal regions of all marine cyanopodoviruses tail fiber proteins are more conserved 317	  

than the C-terminal regions (data not shown). The hypervariable C-terminal regions likely help 318	  

phage adapt to host receptor diversity, and could either result from random 319	  

mutation/recombination events or through an active mechanism. The latter has been reported in 320	  

podoviruses that infect the pathogen Bordetella (Uhl and Miller, 1996), which encode a template-321	  

dependent, reverse transcriptase-mediated diversity generating mechanism (Liu et al., 2002; Liu 322	  

et al., 2004; Doulatov et al., 2004), but we could find no evidence of this in our genomes. The 323	  

counterpart of this phage hypervariable region in their hosts was studied by Avrani et al. (2011). 324	  

They found that phage resistance in Prochlorococcus was acquired by accumulating mutations in 325	  

hypervariable genomic islands coding for cell surface receptors, among others. Together, these 326	  

recent findings beautifully illustrate the ongoing evolutionary arms race between phage and their 327	  

hosts.  328	  
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 329	  

Phage/host shared genes, myo/podo shared genes, and genomic islands   330	  

One of the most interesting features of some cyanophage is the set of genes they carry that appear 331	  

to be of bacterial origin (Mann, 2003; Lindell et al., 2004; Millard et al., 2004; Sullivan et al., 332	  

2005; Lindell et al., 2005; Sullivan et al., 2006; Sullivan et al., 2010; Thompson et al., 2011; 333	  

Zeng and Chisholm, 2012) – ‘phage/host shared genes’ (Kelly et al., submitted) – 3 of the most 334	  

well studied examples being psbA, talC, and hlis. There are 66 genes in these cyanopodovirus 335	  

genomes with orthologs in Prochlorococcus and Synechococcus (Proportal 336	  

http://proportal.mit.edu/ - (Kelly et al., 2012)). They group into 12 COGs and are localized in 337	  

three regions of the phage genomes (Fig. 5A - diamonds). The first includes genes involved in 338	  

nucleotide metabolism that are found in all branches of the tree of life, and as such we don’t 339	  

consider it an island. The second contains the psbA and hli genes, and the third includes talC, 340	  

which is involved in host carbon metabolism, a nuclease-encoding gene, and a gene of unknown 341	  

function – all genes likely acquired by horizontal gene transfer. These regions, which have some 342	  

similarity to the genomic islands found in cyanomyoviruses (Millard et al., 2009), are referred to 343	  

as Island II and III (Fig. 5A).  344	  

 345	  

Island II (Fig. 3, pink shading), surrounded by core genes, is composed of up to 6 genes, 346	  

including psbA and hli and additional genes of unknown function (Table 4). Island II genes are 347	  

not present in the Syn5,  and P-RSP2 genomes,  and P-SSP9 has only the hli gene (Figs. 3 and 348	  

5A). The psbA and hli genes in this island have orthologs in cyanomyoviruses and hosts (Mann, 349	  

2003; Lindell et al., 2004; Lindell et al., 2005; Sullivan et al., 2006), so we wondered whether the 350	  

rest of the genes in this island did as well (Table 4). gp222_COG and gp30_COG, clusters of 351	  

genes coding for hypothetical proteins, have orthologs in cyanomyoviruses but not in 352	  

picocyanobacteria, while gp32_COG has orthologs only in host genomes (Table 4). While the 353	  

synteny of Island II is not present in the hosts or cyanomyoviruses (data not shown), orthologous 354	  
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genes in cyanomyovirus were often located within 15-20 genes of each other suggesting that 355	  

Island II was likely acquired in small pieces via multiple gene gain events, or as a larger insert 356	  

that underwent a series of deletions and reorganizations.  357	  

 358	  

Analysis of the phylogeny of the psbA and talC genes in this expanded set of phage genomes (Fig 359	  

S1 and S2) generally confirms the conclusions of other reports (Lindell et al., 2004; Millard et al., 360	  

2004; Sullivan et al., 2006; Ignacio-Espinoza and Sullivan, 2012) that phage psbA was not 361	  

recently acquired from picocyanobacteria (Fig. S1) and was likely acquired multiple times 362	  

(Ignacio-Espinoza et al. 2012). But while the cyanomyovirus psbA genes are closely related to 363	  

their specific hosts (Fig. S1), cyanopodovirus psbA genes form a clade distinct from those from 364	  

both cyanomyoviruses and hosts (Fig. S1). Further, cyanopodovirus psbA genes appear more 365	  

diverse than those of cyanomyoviruses, as indicated by the long branch lengths. As for talC, we 366	  

confirm that the origin of phage talC is less clear, as it differs significantly from 367	  

picocyanobacterial versions of this gene (Ignacio-Espinoza and Sullivan, 2012). In fact, phage 368	  

talC genes are more related to organisms from different phyla (Gammaproteobacteria, Firmicute 369	  

and Actinobacteria – Fig. S2). In contrast to psbA, cyanophage talC genes are highly conserved, 370	  

form a monophyletic clade, and likely were only acquired once and then diverged (Ignacio-371	  

Espinoza and Sullivan, 2012). 372	  

 373	  

It is intriguing that if a genome has any of the three genes, psbA, hli or talC, it has them all - with 374	  

the exception of P-SSP9 which has only one hli gene  (Table 3). While Island II contains psbA 375	  

and hli, and is in the middle of the genome, talC is at the extreme downstream end, making it 376	  

unlikely that this set of genes could be simultaneously acquired or lost. Yet they are linked in the 377	  

observed gene gain/loss pattern (Fig. 5A – green and turquoise diamonds in Island II, and red 378	  

diamonds in Island III) and their co-expression, despite their separation in the genome, led 379	  

Lindell et al. (2007) to argue that their physical separation might reflect “evolution in progress” 380	  
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i.e. an initial step toward the co-localization of these co-transcribed genes (Molineux, 2006; 381	  

Lindell et al., 2007). The fact that talC lies at the end of all of the cyanopodoviruses now in our 382	  

collection, however, argues against this, and suggests that there is something significant about 383	  

this positioning that still eludes us.  384	  

 385	  

We found 59 proteins (grouped into 16 COGs) shared only by cyanopodo and cyanomyoviruses – 386	  

i.e. not present in hosts – and all are of unknown function (Table 6). The majority are in Islands II 387	  

and III (Fig. 5A; Table 6) – also the location of all of the phage/host shared genes.  388	  

 389	  

The mechanisms underlying the genetic variability in islands in cyanopodoviruses are not clear. 390	  

In small lambda-like siphoviruses, rapid evolution is facilitated by structural simplicity, a small 391	  

set of core genes, and the exchange of compatible genetic modules (Botstein, 1980; Hendrix et 392	  

al., 1999; Comeau et al., 2007). T4-like myoviruses, on the other hand, have a significantly 393	  

larger, and syntenic, set of core genes, that are for the most part vertically inherited (Filée et al., 394	  

2006; Comeau et al., 2007; Ignacio-Espinoza and Sullivan, 2012). This core is involved in 395	  

replication and assembly of the viruses, often requiring complex protein-protein interactions 396	  

(Leiman et al., 2003), which reduces the probability of acquiring functional orthologs. Thus in 397	  

T4-like phage, horizontal gene transfer events are concentrated in hypervariable islands (Comeau 398	  

et al., 2007; Millard et al., 2009), while the optimal core genome is kept intact (Comeau et al., 399	  

2007). Cyanopodoviruses appear to use a strategy similar to T4-like phages, accessing the genetic 400	  

diversity thought to be involved in adaptation to their host’s metabolism and ecological niche 401	  

through genomic islands (Filée et al., 2006; Comeau et al., 2007), while conserving an optimal 402	  

core genome.  403	  

 404	  

The flexible genome positioning reveals more islands 405	  
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We explored whether the frequency of occurrence of a gene in this set of phage (Fig. 2) would be 406	  

reflected in the position of that gene in a genome, hoping that this might ultimately yield insights 407	  

into gene gain and loss mechanisms. We divided the flexible COGs into 3 groups for this 408	  

analysis: i) hyperflexible genes (found in 1-3 genomes – Fig. 5B, red diamonds), ii) flexible genes 409	  

(found in 4-6 genomes – Fig. 5B, green diamonds), and iii) conserved flexible genes (found in 7-410	  

10 genomes – Fig. 5B, blue diamonds). The hyperflexible genes are concentrated in the left 411	  

extremity of the genomes, which we name Island I, while the flexible genes are more 412	  

concentrated in Island II and the right arm of the genome (Island III). Finally, the core and the 413	  

conserved flexible genes appear more distributed along the middle, and slightly in the right arm 414	  

of the genomes.  415	  

 416	  

Assuming that these cyanopodoviruses reproduce similarly to T7 (Wolfson et al., 1972; 417	  

Molineux, 2006), in which the genome replicates as linear concatemers that are cleaved before 418	  

encapsidation, the propensity of hypervariable genes to be located in Island I could suggest that 419	  

gene gain/loss events occur primarily at the extremities of the linear genomes. An alternative 420	  

explanation is lysogeny, in which the temperate phage integrates into the host genome as a linear 421	  

fragment, and the excision of the phage genome from host chromosome may be imprecise. Two 422	  

published cyanopodovirus genomes (P-SSP7 (Sullivan et al., 2005) and Syn5 (Pope et al., 2007)) 423	  

and three reported here (P-SSP2, P-SSP3 and P-SSP9) encode a phage-like integrase gene. 424	  

Furthermore, a 40-50 bp sequence with a perfect match to a cyanobacterial host sequence is found 425	  

downstream – suggesting a possible host integration site (Sullivan et al., 2005). 426	  

 427	  

Despite indirect evidence for lysogeny in picocyanobacteria (McDaniel et al., 2002; Ortmann et 428	  

al., 2002), none of the complete marine cyanobacterial genomes examined contains an intact 429	  

prophage. This is perhaps not surprising as it is thought that lysogeny is favored when the 430	  

environment is not optimal for growth of host cells, the opposite of optimally growing laboratory 431	  



	  	   18	  

cultures (Waterbury and Valois, 1993). Recently, however, a partial prophage sequence, highly 432	  

similar to P-SSP7, was found in a genome fragment from a wild Prochlorococcus single-cell 433	  

(Malmstrom et al., 2012).  434	  

 435	  

Biogeography of cyanopodoviruses  436	  

To analyze the distribution of the cyanopodoviruses in the oceans and place it in the context of 437	  

their hosts and other cyanophage, we recruited reads from marine metagenomic datasets using all 438	  

the cyanophage genomes available (see methods) (Fig. 6-7). We first examined the relative 439	  

number of metagenomic reads recruited by cyanosipho-, podo-, and myovirus genomes in the 440	  

viral metagenome samples from the HOT212 sample (N. Pacific) and “Marine Virome”. Using 441	  

only the 3 previously published cyanopodovirus genomes to recruit, cyanopodoviruses represent 442	  

22% of all recruited reads in the HOT212 sample (Fig. 6). This jumps to 50% if all 12 genomes 443	  

are used for recruitment, and a similar proportion emerges from the analysis of the MarineVirome 444	  

database (Fig. 6).  445	  

 446	  

Analysis of the relative abundance of the three viral groups in the bacterial-fraction metagenomes 447	  

from the North Pacific (HOT), Bermuda (BATS), Mediterranean (MedDCM), and the Global 448	  

Ocean Survey (GOS) (Fig. 6) revealed the dominance of cyanomyoviruses in all samples, 449	  

consistent with the observations of others for GOS and MedDCM databases (Williamson et al., 450	  

2008; Huang et al., 2011). The significant overabundance of cyanomyoviruses in these samples 451	  

relative to those from the viral fraction (“Marine Virome and HOT212”) samples is likely due to 452	  

the larger size of cyanomyoviruses, which would cause them to be preferentially retained by 453	  

filters, either attached to cells or freely floating.  454	  

 455	  

We analyzed the geographic distribution of cyanopodo- and cyanomyoviruses in the Global 456	  

Ocean Survey (GOS) and found that cyanopodoviruses are widespread but appear to be more 457	  
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abundant in the Caribbean Sea, the Gulf of Mexico, the Eastern Tropical Pacific Ocean and the 458	  

Indian Ocean (Fig. 7B). Interestingly, abundance of Prochlorococcus recruited reads also 459	  

qualitatively corresponds to areas of relatively high cyanopodovirus counts (Fig. 7C). Thus 460	  

although quantitative assessments are not possible, the additional reference genomes for 461	  

cyanopodoviruses help document their widespread distribution, and point to some hotspots of 462	  

abundance.  463	  

 464	  

Conclusions and future directions 465	  

 466	  

The growing number of cyanophage genomes is helping us better understand their relatedness 467	  

and evolution, and their interactions with their host cells. Here we used four approaches to 468	  

explore the similarities and differences among cyanopodoviruses: DNA polymerase phylogeny, 469	  

concatenated core genome phylogeny, the presence or absence of RNA polymerase, and genome 470	  

architecture. All but the extremely divergent freshwater cyanopodoviruses would fall into the 471	  

“P60-like genus” by these criteria, except for P-RSP2, which is an outlier in the concatenated 472	  

core genome tree, and lacks the hallmark RNA polymerase gene for this group. It is also the only 473	  

phage isolated on Prochlorococcus MIT9302. Bcause its core genome architecture is similar to 474	  

the others over much of the genome, and its position in the DNA polymerase tree assigns it to the 475	  

“P60-like genus” group, we include it here.  476	  

 477	  

Cyanopodoviruses have two hypervariable island regions in which genes shared with their hosts, 478	  

and/or with cyanomyoviruses, are concentrated. The positions of hyperflexible genes – i.e. those 479	  

found in only 1 to 3 genomes – are highly concentrated in a third island at one extremity of the 480	  

genome. These islands point to interesting regions for unveiling gene acquisition and loss 481	  

mechanisms. Another hypervariable region, at a finer evolutionary scale, encompasses the C-482	  

terminal part of the tail fiber gene in the two very closely related phage, P-SSP2 and P-SSP3. 483	  
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This region may indicate an underlying diversity-generating mechanism, helping phage to adapt 484	  

to the vast diversity of host receptors found in marine environments.  485	  

 486	  

Our analysis contributes to the growing appreciation of the complexity of phage diversity in the 487	  

oceans, and the degree to which it is under-sampled. 488	  

 489	  

Materials and Methods 490	  

 491	  

Bacteriophage isolation, characterization, DNA extraction 492	  

Phage were isolated as previously described (Waterbury and Valois, 1993; Sullivan et al., 2003). 493	  

All phage used in this study were isolated by triple (or greater) plaque purification, followed by 494	  

two rounds of dilution to extinction. The phage stocks were filtered through 0.2µm and stored at 495	  

4˚C in the dark. For each phage, we used the earliest sample in our collection that still retained 496	  

infectivity, to minimize the number of infectious cycles the phage went through – and therefore, 497	  

the accumulation of mutations in the genome. Nonetheless, all of these phage went through 498	  

multiple transfers on serially transferred host cultures before the final stock was collected for 499	  

sequencing. The DNA was extracted as previously described (Henn et al., 2010).  500	  

 501	  

Genome sequencing, assembly and annotation 502	  

The genomes were sequenced by 454 pyrosequencing, and assembled and annotated at the Broad 503	  

Institute as previously described (Henn et al., 2010). The protein sequences were clustered into 504	  

orthologous groups using OrthoMCL program (van Dongen and Abreu-Goodger, 2012) (see 505	  

below) with the available cyanophage genomes on Proportal (http://proportal.mit.edu/ ). The 506	  

protein functional annotations were updated based on the information available on ProPortal.  507	  

 508	  

Comparative genomics 509	  
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For Figure 3 and Figure 4, all marine cyanopodovirus proteins were compared using the program 510	  

BLASTP (NCBI). The genomes in Figure 3 were extracted from the GenBank file using the 511	  

software BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html) and imported in Adobe 512	  

Illustrator. The comparison of P-SSP2 and P-SSP3 was done using BLASTP and the genome 513	  

maps were generated in R using the package GenoplotR (Guy et al., 2010). 514	  

 515	  

Core genome analysis 516	  

The method used for clustering cyanopodovirus proteins into homologous groups was similar to 517	  

that described previously(Kettler et al., 2007; Sullivan et al., 2010). All marine cyanopodovirus 518	  

proteins were paired using a reciprocal best BLASTP hit analysis where the sequence alignment 519	  

covered at least 75% of the protein length of the longest protein and where the percentage of 520	  

identity was at least 35%. The clusters were then built by transiently grouping these pairs. To 521	  

increase the sensitivity of the method, HMM profiles (Sonnhammer et al., 1998) were built for 522	  

each cluster from an alignment of proteins made with Muscle (version 3.7 (Edgar, 2004; Edgar, 523	  

2004). The protein database was then searched de novo using the HMM models to group proteins 524	  

with significant homology (E-value ≤ 1e-5). HMMBUILD and HMMSEARCH from HMMER 525	  

were used to build and search for motifs in the sequence database, respectively.  526	  

 527	  

Phylogeny of the core genome and of the DNA polymerase 528	  

All marine cyanopodoviruses were included for this analysis while the freshwater 529	  

cyanopodoviruses were excluded because they lack most of the core genes. For each phage, the 530	  

core protein sequences were concatenated in the same order, from the single strand binding 531	  

protein to the terminase. The concatenated protein sequences were then aligned with MUSCLE 532	  

(Edgar, 2004; Edgar, 2004) using the default parameters. The alignment was converted to phylip 533	  

format using the BioPython package (Cock et al., 2009). Phylogenetic analysis of the 534	  

concatenated proteins was performed using PhyML 3.0 (Guindon et al., 2010). The trees were 535	  
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built from the command line with the following options: -d aa -b -4 -m JTT -v e -c 4 -a e -o tlr. 536	  

Both trees are unrooted. The approach NNIs was used to search the tree topology. The initial tree 537	  

was based on the BioNJ algorithm using the substitution model JTT (Jones et al., 1992). A 538	  

discrete gamma model was estimated by the software with 4 categories and a gamma shape of 539	  

1.384 with a proportion of invariant a.a. of 0.042. The maximum likelihood was estimated using 540	  

the Shimodaira–Hasegawa–like procedure (Shimodaira, 2002). Finally, the trees were visualized 541	  

with the online tool iTOL (Letunic and Bork, 2007; Letunic and Bork, 2011). The sequences of 542	  

the DNA polymerase were retrieved from ACLAME database (ACLAME MGEs. Version 0.4 - 543	  

family_vir_proph_26 (Leplae et al., 2009)) and were aligned as described above; the tree was 544	  

built using the same approach as the core genome phylogeny analysis.  545	  

 546	  

Phage/host shared genes and hypervariable genetic islands in cyanopodoviruses 547	  

Clustering cyanopodovirus/host and cyanopodovirus/cyanomyovirus shared genes was performed 548	  

using the OrthoMCL program (van Dongen and Abreu-Goodger, 2012). The clustering was done 549	  

with a conservative value of 35% for the percent identity and an E-value of 1E-05. To avoid 550	  

clustering proteins solely on the basis of conserved domains, we pre-filtered our BLASTP results 551	  

to accept the orthologous pairs only if the sequence alignment covered at least 75% of the length 552	  

of the longer of the two sequences. The cyanophage and picocyanobacterial genomes used in the 553	  

clustering analysis are listed in supplemental Table 1. Figure 5 was generated using the python 554	  

matplotlib module (Hunter, 2007). 555	  

 556	  

P-RSP2 promoter analysis and transcriptional factor searches 557	  

The P-RSP2 genome was screened for promoters as previously described (Vogel et al., 2003; 558	  

Lindell et al., 2007). Briefly, a position-specific weight matrix was built from the -10 box of 559	  

Prochlorococcus MED4 (Vogel et al., 2003) with the Motif module from the BioPython package 560	  

(Cock et al., 2009). The phage genomes were searched for this motif. The threshold was set at 7.2 561	  
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based on the distribution of scores for the established motif for the -10 promoter box sequences. 562	  

P-RSP2 coding sequences were analyzed to detect transcription factors using InterProScan 563	  

(Zdobnov and Apweiler, 2001), Pfam (Punta et al., 2012), and CDD (Marchler-Bauer and Bryant, 564	  

2004). We were specifically looking for conserved protein domains related to transcription 565	  

factors or DNA binding domain. Except for the phage proteins known to be involved in DNA 566	  

metabolism (DNA polymerase, endo/exonuclease, DNA primase, single strand binding protein), 567	  

no DNA binding motifs could be detected nor conserved domains related to transcription factors.  568	  

 569	  

Metagenomics  570	  

Six metagenomic datasets were used in this study: four from the bacterial fraction, (The Global 571	  

Ocean Survey dataset (GOS (Rusch et al., 2007)), the deep chlorophyll max Mediterranean 572	  

dataset (Ghai et al., 2010), the Pacific Ocean datasets (Station Hawaii Ocean Time-Series – 573	  

HOT179 and HOT186 (Frias-Lopez et al., 2008; Coleman and Chisholm, 2010)) and two viral 574	  

fraction datasets (the MarineVirome (Angly et al., 2006) and the Pacific Ocean dataset (HOT212 575	  

(this study – NCBI accession:	  SRA059090)). All datasets, except HOT212, were obtained from 576	  

the CAMERA website (http://camera.calit2.net/index.shtm). Only the sites with more than 10,000 577	  

reads were used from the GOS database. The methods used were similar to those described by 578	  

Malmstrom et al (2012) , and the reference genomes used for recruitment are listed in 579	  

supplemental Table 2. Briefly, metagenomic reads were matched to reference genomes using 580	  

BLASTN (Table S1), and those with a bit score of at least 40 were compared against the NCBI nt 581	  

database to assess if there were other best hits. The number of recruited reads at a GOS site was 582	  

normalized against the number of reads in the GOS database from that site. Finally, to compare 583	  

the relative abundance of cyanopodo- and cyanomyoviruses, the normalized read counts for each 584	  

GOS site were normalized to the average genome size of each phage family – 188780 bp and 585	  

46320 bp for the cyanomyo- and cyanopodoviruses respectively. The bar graphs were generated 586	  

in R using ggplot2 package (Wickham, 2009) and the map was generated in R using ggplot2 587	  



	  	   24	  

(Wickham, 2009), maps (http://CRAN.R-project.org/package=maps), gpclib (http://CRAN.R-588	  

project.org/package=gpclib), and maptools (http://CRAN.R-project.org/package=maptools) 589	  

packages. The shapefile used to create the Galapagos Islands inset was downloaded from © 590	  

OpenStreetMap contributors (http://downloads.cloudmade.com). 591	  

Note added to proof 592	  

After this manuscript was accepted, we learned that a new version of P60 genome has been 593	  

generated (Feng Chen, pers. comm.), which contains significant changes from the published 594	  

version (Chen and Lu, 2002). We re-examined our data in the context of this revised P60 genome 595	  

and found that some of our statements need to be modified, but the main conclusions of the paper 596	  

remain the same.  597	  

 598	  

First, the revised P60 genome organization now makes it more similar to the other 599	  

cyanopodoviruses, and all the genes are coded on the same DNA strand. Further, this genome 600	  

makes P60 fall squarely in the P60-like genus as defined by Lavigne et al. (2008). The revised 601	  

sequence also affects our core gene analysis such that marine cyanopodoviruses and P60 now 602	  

share 15 core genes instead of 12.  603	  

 604	  
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Tables 864	  
 865	  
Table 1. General features of the cyanopodoviruses from this study, and of those whose genomes have been previously published. 866	  

MPP1 Phage Original host 
Host 

Clade2  
Genome 
size (kb) # ORFs 

Host 
%GC 

content 

Phage 
%GC 

content Site of origin Depth Lat. Long. 

Date 
water 

sampled Accession # Reference 
MPP-B1 P-SSP11 Prochlorococcus MIT9515  HL(I) 47039 54 30.8 39.2 BATS 100 31°48’N 64°16’W 1-Sep-99  HQ634152 This study 

 P-SSP10 Prochlorococcus NATL2A  LL(I) 47325 52 35 39.2 BATS 100 31°48’N 
 

64°16’W 
 

5-Jun-96 HQ337022 This study 

 P-HP1 Prochlorococcus NATL2A LL(I) 47536 65 35 39.9 HOTS
4
 25m 22° 45'N 

 
158°00'W 

 
8-Mar-06 GU071104 This study 

MPP-B2 P-GSP1 Prochlorococcus MED4  HL(I) 44945 53 30.8 39.6 Gulf Stream 80 38°21’N 66°49’W Aug-95 HQ332140 This study 
 P-SSP7 Prochlorococcus MED4 HL(I) 44970 54 30.8 38.8 BATS

5
 100 31°48’N 64º16’W 1-Sep-99 NC_006882  (Sullivan et al., 2005) 

 P-SSP3 Prochlorococcus MIT9312 HL(II) 46198 56 31.2 37.9 BATS 100 31°48’N 64°16’W 31-Aug-95 HQ332137 This study 

 P-SSP2 Prochlorococcus MIT9312 HL(II) 45890 59 31.2 37.9 BATS 120 31°48’N 64°16’W 31-Aug-95 GU071107 This study 

 P-RSP5 Prochlorococcus NATL1A LL(I) 47741 68 35.1 38.7 Red Sea 130 29°28’N 
 

34°55’E 
 

13-Sep-00 GU071102 This study 

MPP-A P-SSP9 Prochlorococcus SS-120  LL(II) 46997 53 36.4 40.5 BATS 100 31°48’N 
 

64°16’W 
 

31-Aug-95 HQ316584 This study 

 SYN5 Synechococcus WH8109 Syn. 46214 61 60.1 55 Sargasso Sea Surface 36°58’N 73°42’W 30-Nov-86 NC_009531  (Pope et al., 2007) 

 P60 Synechococcus WH7803 Syn. 47872 80 60.2 53.2 Satilla River6 Surface - - 12-Jul-88 AF338467  (Chen and Lu, 2002) 

- P-RSP2 Prochlorococcus MIT9302 HL(II) 42257 48 - 34 Red Sea Surface 29°28’N 34°53’E 14-Jul-96 HQ332139 This study 

- Pf-WMP3 Leptolyngbya foveolarum FC3 43249 41 - 46.5 Lake Weiming nd - - 22-Jul-03 EF537008.1  (Liu et al., 2008) 

- Pf-WMP4 Leptolyngbya foveolarum FC 40938 55 - 51.8 Lake Weiming nd - - 22-Jul-03 DQ875742.1  (Liu et al., 2007) 
1 Classification of phage genomes based on the concatenated core genes phylogeny. “–“ indicates a phage that is not classified in one of the three groups (Fig. 1). 867	  
2 Clade names for Prochlorococcus as defined in Rocap et al., (2002) 868	  
3 FC = Freshwater cyanophage  869	  
4 HOTS = Hawaii Ocean Time Series Station 870	  
5 BATS = Bermuda Atlantic Time Series Station 871	  
6 Satilla River: estuary - salinity = 30‰ – See note added in proofs.872	  
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Table 2. Host range of some of the cyanopodoviruses reported here. + indicates 873	  
successful infection; - indicates no infection. Clade designations for Prochlorococcus 874	  
refer to light adaptation properties of host cells as defined in Rocap and colleagues 875	  
(2002). [Correction added on 29 January 2013 after first online publication: P-SSP3 and 876	  
P-SSP10 were removed from Table 2 as irregularities were detected in the lysates after 877	  
publication. This does not affect the genomic data or any of the conclusions of the paper.] 878	  
    Phage 

Host strains tested 
Host 
clade P-

SS
P7

 
P-

G
SP

1 
P-

H
P1

 
P-

R
SP

5 
P-

R
SP

2 
P-

SS
P1

1 

Prochlorococcus MIT9302 HL(II) - - - - + - 
Prochlorococcus MIT9312 HL(II) - - - - - - 
Prochlorococcus MIT9215 HL(II) - - - - - - 
Prochlorococcus GP2 HL(II) - - - - - - 
Prochlorococcus MIT9202 HL(II) - + - - - - 
Prochlorococcus AS9601 HL(II) - - - - - - 
Prochlorococcus MIT9301 HL(II) - - - - - - 
        

Prochlorococcus MED4 HL(I) + + - - - - 
Prochlorococcus MIT9515 HL(I) - - - - - + 
        

Prochlorococcus NATL2A LL(I) - - + + - - 
Prochlorococcus NATL1A LL(I) - - - + - - 
        

Prochlorococcus MIT9313 LL(IV) - - - - - - 
        



	  	   32	  

Table 3. Relatively conserved genes in cyanopodoviruses. Core genes of marine cyanopodoviruses are shown in bold. Classes of 879	  
genes are as defined for P-SSP7 by Lindell et al. (2007), depicting the order of the timing of their transcription (see Fig. 3). Class II-b 880	  
genes, which include talC, are transcribed with Class II genes, even though they are positioned at the end of the genome (Lindell et al., 881	  
2007) 882	  

Gene 
Class Putative Function 

Marine cyanopodoviruses    Freshwater Cyano 
T7-like phage 

P-
SS

P7
 

P-
SS

P2
 

P-
SS

P3
 

P-
G

SP
1  

P-
H

P1
 

P-
R

SP
5  

P-
SS

P1
1  

P-
SS

P1
0  

Sy
n5
 

P-
SS

P9
 

P-
R

SP
2  

P6
0 

*   

Pf
-W

M
P3
 

Pf
-W

M
P4
 

Class II RNA polymerase gp13 gp29 gp42 gp11 gp51 gp28 gp54 gp29 gp15 gp6 - gp6   - - 
  SSB gp14 gp30 gp41 gp10 gp50 gp26 gp53 gp28 gp21 gp1 gp47 -   - - 
  Endonuclease gp15 gp31 gp40 gp9 gp49 gp25 gp52 gp26 gp22 gp52 gp46 gp16-17   - gp17 
  Primase/Helicase gp16 gp32 gp39 gp8 gp48 gp24 gp51 gp25 gp24 gp50 gp45 gp18   gp9 gp12 
  DNA polymerase gp17 gp34 gp38 gp7 gp46 gp23 gp50 gp24 gp27 gp49 gp44 gp20   gp12-14 gp19 
  Exonuclease gp19 gp35 gp37 gp6 gp44 gp22 gp49 gp23 gp29 gp47 gp42 gp21   - - 
  Rnr gp20 gp38 gp35 gp4 gp41 gp19 gp46 gp20 gp33 gp44 gp40 -   - - 
  gp34 gp21 gp39 gp34 gp3 gp40 gp18 gp45 gp19 gp34 gp43 gp39 -   - - 
  - gp22 gp40 gp33 gp52 gp39 gp17 gp44 gp18 gp35 gp42 gp37 gp28-43   - - 
  Portal gp24 gp42 gp31 gp50 gp37 gp13 gp42 gp16 gp37 gp40 gp35 gp41   - - 
  Scaffolding protein gp25 gp43 gp30 gp49 gp36 gp11 gp41 gp15 gp38 gp38 gp33 gp38-39   - - 
  Hli gp26 gp44 gp29 gp48 gp35 gp9 gp40.5 gp14 - gp38.5 - -   - - 
  PsbA gp27 gp46 gp27 gp47 gp34 gp8 gp40 gp13 - - - -   - - 
Class III MCP gp29 gp48 gp25 gp46 gp29 gp5 gp36 gp8 gp39 gp37 gp32 gp37   gp32 - 
  Tail tube A gp30 gp50 gp23 gp45 gp28 gp2 gp35 gp7 gp40 gp36 gp31 gp35-36   - - 
  Tail tube B gp31 gp51 gp22 gp44 gp27 gp1 gp33-34 gp6 gp41 gp35 gp29 gp33-34   - - 
 - gp32 gp53 gp20 gp43 gp26 gp68 gp32 gp5 gp42 gp34 - -  - - 

  Internal core protein gp35 gp56 gp17 gp39 gp19 gp65 gp27-26 gp2 gp45 gp31 gp26 -   - - 
  Tail fiber gp36 gp57 gp16 gp38-35 gp16 gp64 gp25 gp1 gp46 gp30-28 gp25 -   - - 
 - gp43 gp2 gp10 gp32 gp9 gp60 gp20 gp49 - gp23 gp16 -  - - 

 - gp45 gp4 gp8 gp30 gp07 gp59 gp19 gp48 - gp21 gp18 -  - - 

  gp49 gp47 gp6 gp7 gp26 gp5 gp56 gp17 gp46 gp49 gp18 gp11 gp70   - - 
  Terminase gp51 gp10 gp3 gp21 gp1 gp51 gp13 gp48 gp60 gp14 gp9 gp54-55   gp36 gp40 
Class II-b TalC gp54 gp12 gp1 gp19 gp2 gp50 gp14 gp46 - - - -   - - 
* See note added in proofs 883	  
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Table 4. Genes found in Island II (Fig 3, 5) – an island found in all but 3 of the 884	  
cyanopodoviruses in Fig. 3 – showing whether they have orthologs in host genomes 885	  
(Prochlorococcus and Synechococcus), and/or those of cyanomyoviruses.  886	  

Cluster 
name1 Putative function 

 
Phage  

O
rt

ho
lo

gs
 p

re
se

nt
 in

 
cy

an
om

yo
vi

ru
se

s  
O

rt
ho

lo
gs

 p
re

se
nt

 in
  

ho
st

s  

P-
G

SP
1 

P-
H

P1
 

P-
R

SP
5 

P-
SS

P1
0 

P-
SS

P2
 

P-
SS

P3
 

P-
SS

P1
1 

P-
SS

P7
 

PsbA_COG PsbA gp47 gp34 gp9 gp13 gp46 gp27 gp40 gp27 + + 
Hli_COG Hli gp48 gp35 gp8 gp14 gp44 gp29 gp40.5 gp26 + + 

gp222_COG gp2222
 

 
gp33 gp7 gp12 gp45 gp28 gp39 

 
+ - 

gp30_COG hypothetical protein 
 

gp30 gp33 gp9 
  

gp37 
 

+ - 
gp32_COG hypothetical protein 

 
gp32 

 
gp11 

  
gp38 

 
- + 

gp47_COG hypothetical protein 
    

gp47 gp26 
  

- - 
orphan hypothetical protein 

  
gp10 

     
- - 

orphan hypothetical protein 
  

gp6 
     

- - 
orphan hypothetical protein 

   
gp10 

    
- - 

orphan hypothetical protein 
       

gp28 - - 
orphan hypothetical protein 

 
gp31 

      
- - 

1 Cluster names refer to the putative function or a phage gene representing the cluster  887	  
2 gp222: conserved hypothetical protein 888	  
 889	  
 890	  
 891	  
 892	  
 893	  
 894	  
Table 5. The only genome differences between the 895	  
most closely related cyanopodoviruses, P-SSP2 and 896	  
P-SSP3, which were isolated from the same site, on 897	  
the same host. The remainder of the proteins share 898	  
≥95% identity (see also Fig. 4).  899	  

 900	  

† Frameshifts -- High similarity between the nucleotide sequences 901	  
 902	  
 903	  
  904	  

Orthologous proteins    P-SSP2 P-SSP3 % id (aa) 
 

Putative function 
gp14 gp55 76.4  Hypothetical protein 
gp17 absent -  Hypothetical protein 
gp18 gp52 66.3  Hypothetical protein 
gp32 gp39 †  Primase/helicase 
gp57 gp16 77.7 

 
Tail fiber 

absent gp15 -  Hypothetical protein 

absent gp14 -  Hypothetical protein 
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Table 6. Cyanopodovirus genes shared with (A) picocyanobacterial hosts, Synechococcus 905	  
and Prochlorococcus (“phage/host share genes”), (B) cyanomyoviruses (“podo/myo shared 906	  
genes”), or (C) both (phage/host and podo/myo shared genes”). Single-strand binding protein 907	  
(SSB, bolded) is the only core gene in this set.  908	  

   Phage 
 

Class1 Putative function P-
SS

P7
 

P-
G

SP
1 

P-
H

P1
 

P-
R

SP
2 

P-
R

SP
5 

P-
SS

P1
0 

P-
SS

P2
 

P-
SS

P3
 

P-
SS

P1
1 

P-
SS

P9
 

Sy
n5
 

A 

Class I  DNA primase - - - - - - - - - gp10 - 
 RNA polymerase gp13 gp11 gp51 - gp28 gp29 gp29 gp42 gp54 gp6 gp15 
 gp 0.72

 
gp11 - - - - - gp26 gp44 - gp4 

  SSB3
 

gp14 gp10 gp50 gp47 gp26 gp28 gp30 gp41 gp53 gp1 gp21 
Class II Unknown - - gp32 - - gp11 - - gp38 - - 
Class III Unknown - - - - gp41 - - - - - - 

 Unknown - - gp65 - gp48 gp40 - - - - - 
 Thymidylate synthase - - - - - - - - - - gp61 

              

B 

Class I Endonuclease - - - - - - - - - gp48 - 
 Unknown - - - - - - - - - - gp25 
 Unknown - - - - gp46 - - - - - - 

Class II  gp2224 - - gp33 - gp7 gp12 gp45 gp28 gp39 - - 
 Unknown - - gp30 - gp33 gp9 - - gp37 - - 

Class III Unknown gp43 gp32 gp9 - gp60 gp49 gp2 gp20 - gp23 - 
 Unknown - gp30 - - - - - gp8 - - - 
 Unknown - gp29 - - - - - - - - - 
 Endonuclease - - - gp43 - - - - - - - 
 Unknown - - - - gp43 - - - - - - 
 Unknown - - - - gp49 - - - - - - 
 Unknown - - - - - - - - - - gp61 

              

              

C 

Class II Hli gp26 gp48 gp35 - gp8 gp14 gp44 gp29 gp40.5 gp38.5 - 
 PsbA gp27 gp47 gp34 - gp9 gp13 gp46 gp27 gp40 - - 

Class III HNH endonuclease gp49 gp25 gp3 gp10 - gp44 gp8 gp5 gp15 - - 
Class IIb TalC gp54 gp19 gp2 - gp50 gp43 gp12 gp1 gp14 - - 

              1
 Class of genes as defined for P-SSP7 by Lindell et al. (2007), according to the timing of their transcription 909	  

2 gp 0.7: transcriptional regulator 910	  
3 Core gene, SSB: Single Strand Binding protein. 911	  
4gp222: conserved hypothetical protein. 912	  
 913	  
 914	  
 915	  
 916	  
 917	  
 918	  
 919	  
 920	  
 921	  
 922	  
 923	  
 924	  
 925	  
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Supplemental table 1. Cyanophage and picocyanobacterial genomes used for the protein 926	  
clustering analysis. 927	  

Bacterial or viral 
strain 

Genome 
size (kb) 

NCBI accession 
number CAMERA accession number 

Cyanophage 
   S-TIM5 152.3 JQ245707.1 - 

Syn33 174.3 GU071108.1 BROADPHAGEGENOMES_SMPL_SYN33_G1163 
syn9 177.3 DQ149023.2 - 
MED4-213 181.0 

 
CAM_SMPL_001226 

P-HM1 181.0 GU071101.1 BROADPHAGEGENOMES_SMPL_P-HM1_G1154 
P-HM2 183.8 GU075905.1 BROADPHAGEGENOMES_SMPL_P-HM2_G1155 
P-RSM1 177.2 

 
CAM_SMPL_001227 

P-RSM3 178.8 
 

CAM_SMPL_001229 
P-RSM4 176.4 GU071099.1 BROADPHAGEGENOMES_SMPL_P-RSM4_G1161 
P-SSM2 252.4 GU071092.1 - 
P-SSM3 179.1 

 
CAM_SMPL_000950 

P-SSM4 178.2 AY940168.2 CAM_SMPL_000897 
P-SSM5 252.0 

 
CAM_SMPL_000949 

P-SSM7 182.2 GU071103.1 BROADPHAGEGENOMES_SMPL_P-SSM7_G1169 
S-PM2 196.3 AJ630128.1 - 
P-RSM6 192.5 

 
CAM_SMPL_001230 

S-RSM4 194.5 FM207411.1 - 
S-SM1 174.1 GU071094.1 BROADPHAGEGENOMES_SMPL_S-SM1_G1061 
S-SM2 190.8 GU071095.1 BROADPHAGEGENOMES_SMPL_S-SM2_G1159 
S-SSM4 182.8 

 
CAM_SMPL_000897 

S-SSM5 176.2 GU071097.1 BROADPHAGEGENOMES_SMPL_S-SSM5_G1166 
S-SSM7 232.9 GU071098.1 BROADPHAGEGENOMES_SMPL_S-SSM7_G1167 
S-ShM2 179.6 GU071096.1 BROADPHAGEGENOMES_SMPL_S-SHM2_G1164 
Syn1 191.2 GU071105.1 BROADPHAGEGENOMES_SMPL_SYN1_G1160 
Syn10 177.1 

 
CAM_SMPL_001202 

Syn19 175.2 GU071106.1 BROADPHAGEGENOMES_SMPL_SYN19_G1165 
Syn2 175.6 

 
CAM_SMPL_001201 

Syn30 178.8 
 

CAM_SMPL_001200 
P60 47.9 AF338467.1 - 
P-SSP7 45.0 AY939843.2 - 
P-RSP5 47.7 GU071102.1 BROADPHAGEGENOMES_SMPL_NATL1A-7_G1172 
P-SSP2 45.9 GU071107.1 - 
P-SSP9 47.0 GU071104.1 CAM_SMPL_000899 
P-SSP10 47.3 

  P-GSP1 44.9 
 

CAM_SMPL_000948 
P-HP1 47.5 GU071104.1 BROADPHAGEGENOMES_SMPL_NATL2A-133_G1171 
P-SSP11 47.0 

 
CAM_SMPL_000947 

Syn5 46.2 EF372997.1 - 
P-RSP2 42.3 

 
CAM_SMPL_000945 
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P-SSP3 47.1 
 

CAM_SMPL_000946 
MED4-184 38.3 

 
CAM_SMPL_001191 

MED4-117 38.8 
 

CAM_SMPL_001190 
P-SS2 107.5 GQ334450.1 - 

Cyanobacteria 
   Prochlo. MED4 1657 BX548174 - 

Prochlo. MIT9313 2410 BX548175 - 
Prochlo. MIT9303 2682 CP000554 - 
Prochlo. NATL1A 1864 CP000553 - 
Prochlo. NATL2A 1842 CP000095 - 
Prochlo. AS9601 1669 CP000551 - 
Prochlo. MIT9515 1704 CP000552 - 
Prochlo. MIT9215 1738 CP000825 - 
Prochlo. MIT9211 1688 CP000878 - 
Prochlo. MIT9312 1709 CP000111 - 
Prochlo. SS120 1751 AE017126 - 
Prochlo. MIT9301 1641 CP000576 - 
Synecho. CC9311 2606 CP000435 - 
Synecho. CC9605 2510 CP000110 - 
Synecho. CC9902 2234 CP000097 - 
Synecho. WH8102 2434 BX548020 - 
Synecho. WH7803 2366 CT971583 - 
Synecho. RCC307 2224 CT978603 - 
Synecho. WH7805 2620 AAOK00000000 - 
Prochlo. MIT9202 1691 

 
MF_SMPL_P9202 

Synecho. BL107 2283 AATZ00000000 - 
Synecho. RS9917 2579 AANP00000000 - 
Synecho. RS9916 2664 AAUA00000000 - 
Synecho. WH5701 3043 

 
MF_SMPL_WH5701 

 928	  
 929	  
 930	  
 931	  
 932	  
 933	  
 934	  
 935	  
 936	  
 937	  
 938	  
 939	  
 940	  
 941	  
 942	  
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Supplemental table 2. Cyanophage reference genomes used for the metagenomic read 943	  
recruitment.  944	  

Phage 
Phage 
family 

Genome 
size (kb) 

NCBI 
accession 
number CAMERA sample accession number 

S-TIM5 Myo. 152.3 JQ245707.1 - 
Syn33 Myo. 174.3 GU071108.1 BROADPHAGEGENOMES_SMPL_SYN33_G1163 
syn9 Myo. 177.3 DQ149023.2 - 
MED4-213 Myo. 181.0 

 
CAM_SMPL_001226 

P-HM1 Myo. 181.0 GU071101.1 BROADPHAGEGENOMES_SMPL_P-HM1_G1154 
P-HM2 Myo. 183.8 GU075905.1 BROADPHAGEGENOMES_SMPL_P-HM2_G1155 
P-RSM1 Myo. 177.2 

 
CAM_SMPL_001227 

P-RSM3 Myo. 178.8 
 

CAM_SMPL_001229 
P-RSM4 Myo. 176.4 GU071099.1 BROADPHAGEGENOMES_SMPL_P-RSM4_G1161 
P-SSM2 Myo. 252.4 GU071092.1 - 
P-SSM3 Myo. 179.1 

 
CAM_SMPL_000950 

P-SSM4 Myo. 178.2 AY940168.2 CAM_SMPL_000897 
P-SSM5 Myo. 252.0 

 
CAM_SMPL_000949 

P-SSM7 Myo. 182.2 GU071103.1 BROADPHAGEGENOMES_SMPL_P-SSM7_G1169 
S-PM2 Myo. 196.3 AJ630128.1 - 
P-RSM6 Myo. 192.5 

 
CAM_SMPL_001230 

S-RSM4 Myo. 194.5 FM207411.1 - 
S-SM1 Myo. 174.1 GU071094.1 BROADPHAGEGENOMES_SMPL_S-SM1_G1061 
S-SM2 Myo. 190.8 GU071095.1 BROADPHAGEGENOMES_SMPL_S-SM2_G1159 
S-SSM4 Myo. 182.8 

 
CAM_SMPL_000897 

S-SSM5 Myo. 176.2 GU071097.1 BROADPHAGEGENOMES_SMPL_S-SSM5_G1166 
S-SSM7 Myo. 232.9 GU071098.1 BROADPHAGEGENOMES_SMPL_S-SSM7_G1167 
S-ShM2 Myo. 179.6 GU071096.1 BROADPHAGEGENOMES_SMPL_S-SHM2_G1164 
Syn1 Myo. 191.2 GU071105.1 BROADPHAGEGENOMES_SMPL_SYN1_G1160 
Syn10 Myo. 177.1 

 
CAM_SMPL_001202 

Syn19 Myo. 175.2 GU071106.1 BROADPHAGEGENOMES_SMPL_SYN19_G1165 
Syn2 Myo. 175.6 

 
CAM_SMPL_001201 

Syn30 Myo. 178.8 
 

CAM_SMPL_001200 
P60 Podo. 47.9 AF338467.1 - 
P-SSP7 Podo. 45.0 AY939843.2 - 
P-RSP5 Podo. 47.7 GU071102.1 BROADPHAGEGENOMES_SMPL_NATL1A-7_G1172 
P-SSP2 Podo. 45.9 GU071107.1 - 
P-SSP9 Podo. 47.0 GU071104.1 CAM_SMPL_000899 
P-SSP10 Podo. 47.3 

 
- 

P-GSP1 Podo. 44.9 
 

CAM_SMPL_000948 
P-HP1 Podo. 47.5 GU071104.1 BROADPHAGEGENOMES_SMPL_NATL2A-133_G1171 
P-SSP11 Podo. 47.0 

 
CAM_SMPL_000947 

Syn5 Podo. 46.2 EF372997.1 - 
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P-RSP2 Podo. 42.3 
 

CAM_SMPL_000945 
P-SSP3 Podo. 47.1 

 
CAM_SMPL_000946 

MED4-184 Sipho. 38.3 
 

CAM_SMPL_001191 
MED4-117 Sipho. 38.8 

 
CAM_SMPL_001190 

P-SS2 Sipho. 107.5 GQ334450.1 - 
S-CBS1 Sipho. 53.7 HM480106.1 - 
S-CBS2 Sipho. 73.5 GU936714.1 - 
S-CBS3 Sipho. 28.0 GU936715.1 - 
S-CBS4 Sipho. 62.9 HQ698895.1 - 
 945	  
 946	  
 947	  
 948	  

  949	  
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FIGURES 950	  
 951	  
 952	  

 953	  
Figure 1. Maximum likelihood, circular phylogenetic tree of phage DNA polymerase sequences 954	  
retrieved from ACLAME database (ACLAME MGEs. Version 0.4 - family_vir_ 14 (Leplae et al., 955	  
2009)). The bar represents 1 amino acid substitution per site and branches with a bootstrap value 956	  
greater than 80% are indicated by a black dot. Green dots indicate marine cyanopodoviruses while the 957	  
three blue dots mark DNA polymerase genes from the two freshwater cyanopodoviruses, one of 958	  
which encodes DNA polymerase with two genes. The outer, middle and inner rings respectively 959	  
indicate the phage families, subfamilies and genus when available in NCBI taxonomy database 960	  
(http://www.ncbi.nlm.nih.gov/taxonomy).  961	  
 962	  
 963	  
 964	  
 965	  
 966	  
 967	  
 968	  
 969	  
 970	  
 971	  
 972	  
  973	  
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 974	  
Figure 2. Core and pan-genome analysis using different sets of phage genomes in the analysis, as 975	  
indicated by the headers in A-D. Left panel in each pair: Number of total genes in the core- (circles) 976	  
and pan- (triangles) genomes as a function of the number of genomes included in the analysis. The 977	  
core genome is the set of genes shared by all the genomes included in the analyzed subset, while the 978	  
pan-genome is the total number of unique genes found in the same subset. All possible combinations 979	  
of genomes were analyzed; the line is drawn through the average. Right panel in each pair: The 980	  
frequency distribution of genes among the genomes, showing that genes found in only one (k=1) of 981	  
the genomes are the most common (See note added in proofs for panel C) 982	  
  983	  
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 984	  
 985	  
 986	  
 987	  
 988	  
 989	  
 990	  
 991	  
 992	  
 993	  
 994	  
 995	  
 996	  
 997	  
 998	  
 999	  
 1000	  
 1001	  
 1002	  
 1003	  
 1004	  
 1005	  
 1006	  
 1007	  
 1008	  
 1009	  
 1010	  
 1011	  
 1012	  
 1013	  
 1014	  
 1015	  
 1016	  
 1017	  
 1018	  
 1019	  
 1020	  
 1021	  
Figure 3. Alignment of the genomes of 12 cyanopodoviruses. Orthologous proteins represented in 1022	  
color other than white share 60% amino acid identity or more, while those shown in white do not. The 1023	  
core proteins shared by all cyanopodoviruses are linked by blue shading and genomic Island II (see 1024	  
Fig. 5) is highlighted by pink shading. Cyanopodovirus/host shared proteins and 1025	  
cyanopodovirus/cyanomyovirus shared proteins are designated by small diamonds and triangles, 1026	  
respectively (see also Fig. 5 & Table 6), and each different cluster is represented by a different color 1027	  
except for singletons that are represented in white. The phylogenetic tree on the left was generated 1028	  
from an alignment of the concatenated core protein sequences using a maximum likelihood method. 1029	  
Branches with a bootstrap value greater than 80% are indicated by a black dot. The phage genomes 1030	  
were classified into three groups based on the concatenated core gene phylogeny of the 12 1031	  
cyanopodoviruses (Boxes – MPP-A, MPP-B1 and MPP-B2 (MPP: Marine picocyanopodovirus) ); P-1032	  
RSP2 is an outlier based on this analysis. The bar represents 0.3 amino acid substitutions per site. 1033	  
(P60 genomes – See note added in proofs) 1034	  
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 1038	  
Figure 5. A) Position of cyanopodovirus/host shared genes (diamonds) and 1039	  
cyanopodovirus/cyanomyovirus shared genes (triangles) in cyanopodovirus genomes (symbols are 1040	  
positioned in the middle of the genes). The position of the genes is relative to the position (marked as 1041	  
0) of the ribonucleotide reductase genes (rnr). When a diamond and a triangle co-localize, the 1042	  
cyanopodovirus gene is shared by both host and cyanomyovirus genomes. Orthologs determined 1043	  
using OrthoMCL are represented in the same color. Singletons are shown in white. B) Position of 1044	  
flexible genes (Fig. 2B) in the genomes, according to their frequency distribution (see Fig. 2) Red 1045	  
diamonds indicate genes shared by 1-3 genomes; green diamonds shared by 4-6 genomes; and blue 1046	  
diamonds shared by 7-10 genomes. The histogram on top indicates the relative counts of genes in the 1047	  
various categories present in overlapping sliding windows of 500 bp. The grey shading indicates 1048	  
apparent genome islands. Island I is identified primarily by the set of the most hypervariable genes, 1049	  
occurring in only a few genomes (red diamonds, panel B), while the other two islands are evident in 1050	  
both panels A and B. The orange shading marks the region of the genome involved in DNA 1051	  
replication and transcription, which is not considered a genomic island as these genes are shared by 1052	  
all branches of the tree of life. C) Relative counts of core genes present in overlapping sliding 1053	  
windows of 500 bp. 1054	  
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 1055	  
Figure 6. Proportion of reads recruited from different metagenomic datasets by different families of 1056	  
cyanophage. The number of recruited reads was normalized to the average size of the genome of each 1057	  
phage family. “Bacterial metagenomes” refers to viral sequences found in samples that were designed 1058	  
to collect the bacterial fraction; viruses are by-catch. “Viral metagenomes” refers to samples that were 1059	  
collected specifically to capture the viral fraction. For the HOT212 sample, we compare the 1060	  
recruitment proportions obtainedusing the cyanopodovirus genomes extant before this study (3 phage: 1061	  
P-SSP7, Syn5 and P60), and those obtainedusing all marine cyanopodoviruses. 1062	  
 1063	  
  1064	  
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 1065	  
Figure 7. Normalized recruited read counts corresponding to (A) cyanomyoviruses and (B) 1066	  
cyanopodoviruses in the GOS database. Each bar represents a sampling site. The number of reads was 1067	  
normalized to the average size of the genome of each phage family and to the total number of 1068	  
sequencing reads at each of the GOS sites. (C) The relative abundance of Prochlorococcus is shown 1069	  
as a series of dots for which the size is proportional to the counts of normalized recruited reads. (D) 1070	  
Map illustrating the position of the GOS sites.  1071	  
  1072	  
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 1073	  
Figure S1. Maximum likelihood, circular phylogenetic tree of PsbA from cyanophage and marine 1074	  
picocyanobacteria ( (Kelly et al., 2012) - http://proportal.mit.edu/ ). The bar represents 0.1 amino acid 1075	  
substitutions per site and branches with a bootstrap value greater than 80% are indicated by a black 1076	  
dot. The ring indicates the origin of PsbA sequences.  1077	  
 1078	  
  1079	  
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Figure S2. Maximum likelihood, circular phylogenetic tree of cyanopodovirus TalC sequences and 1081	  
orthologous sequences extracted from Pfam family PF00923 1082	  
(http://pfam.sanger.ac.uk/family/PF00923). The bar represents 0.1 amino acid substitutions per site 1083	  
and branches with a bootstrap value greater than 80% are indicated by a black dot. The ring indicates 1084	  
the origin of TalC sequences.  1085	  
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