
Computer Rrt and Creatiue Tool Making

by Yuan-Lin Mao
B.A., Brandeis University
May 1982

Submitted to the Department of Architecture in partial
fulfillment of the requirements for the degree of
Master of Science in Visual Studies at the Massachusetts
Institute of Technology

June 1985

© Yuan-Lin Mao 1985

The author hereby grants to M.I.T. permission to reproduce
and distribute publicly copies of this thesis document in
whole or in part.

Sig Vture of Author, Yuan-Lin Mao, Department of Architecture,
May 13, 1985

Certified by Muriel Cooper, Asoctate Professor of Visual
Studies

C(rtified by Nicholas Negroponte, Chairman, Departmental
Committee for Graduate Students

MASSAygg TUTE

MAY 31 198

L.

Table of Contents

b stra ct .. .

Introduction .. . 2

Chapter 1: Digital Painting With Predesigned Personal Brushes
Background of the Project 8
Breaking Down the Desired Product Into Easy to Render Parts. . 14
Summary of Digital Painting and Brush Design Package 20
The User Interface 22
Package Outline.. 26
Scenario of Pattern Editing Functions 29
Scenario of Dynamic Painting.............................. 38

Chapter 2: Comparison to Related Methods of Uisual
Representation

Introduction... 4 1
Chinese Painting... 43
Other Modular Methods of Generating Images 49

Chapter 3: Program Design and Implementation
Introduction... 55
System Environm ent 56
Programming Support Routines 56
Description of Significant Software 59

Conclusion .. 92

RppendiH: User's Guide
Components of the User Interface 94
Components of Brush Design Mode 102
Components of Paint Mode................................ 115

Foo tno tes .. 12 3

Bibliography .. 124

Rcknow ledgem ents..127

Computer ert and Creative Tool Making

by Yuan-Lin Mao

Submitted to the Department of Architecture on May 13,
1985 in partial fulfillment of the requirements for the
degree of Master of Science in Visual Studies at the
Massachusetts Institute of Technology

Abstract

A digital paint package has been developed which places
attention on the design of personal "brush" patterns. The user
generates an image by iterating these pattern modules on the
raster display. During the application of a pattern, it can grow,
shrink, and change in opacity level under the user's control. This
method of digitally creating images was developed in light of the
problem of representing visual characteristics effectively while
"painting" with a computer graphics system. Allowing the user
to design personal brush patterns, which can be stored in a
library of patterns, and to make marks by repeating them,
expands the potential visual qualities of the image as
demonstrated by sample images included in this thesis.
Software functions are provided for creating and editing
patterns through a menu of selections. These functions treat
individual shapes and colors in a pattern as separate entities
that can be manipulated. Shapes can be manipulated individually,
or as a selected group. The manipulation functions include the
following: move, copy, scale, and delete. Software functions are
also provided for the editing of color components. One method
allows a color's red, green, and blue components to be adjusted.
And the other allows its hue, lightness, and saturation levels to
be adjusted.

Thesis Supervisor: Muriel Cooper
Associate Professor of Visual Studies

I

INT RODUCT ION

Introduction:

With the development of computer graphics in recent years,

yet another medium for visual communication is being provided

to artists. The general term "computer graphics" describes a

wide range of applications and techniques for generating images

by means of a computer. This thesis concentrates on the

application of computer graphics in the area of digital painting

and addresses the problem of representing visual phenomena

effectively.

Digital painting, just as the traditional sense of painting, is

the interactive process in which the artist makes marks to a

surface in order to render an image. Unlike traditional paint

media, the necessary supplies, brush, pigment, and painting

surface, are not material substances which are governed by

physical rules, but are products of digital information stored in

the computer's memory, and are governed by rules that a

computer scientist prescribes. Though the prescription of rules

for controlling the medium is a favorable attribute of using the

computer tool, digital painting shares with traditional paint

media the age-old problem of visual representation, in addition

to the device problems peculiar to the computer system. Digital

painting, as defined in this thesis, incorporates an electronic

input and pointing device, such as a mouse or a stylus, which

2

I NTRODUCT I ON

behaves as the mark making tool, and a table of digital values

stored in the computer's memory which define the possible

colors that can be assigned to pixels in a raster image. This table

of values is analogous to an artist's palette of colors. Painting,
in this context, is the interactive process by which the user

assigns color values from the color table to pixels in the raster

image by selecting the locations of the pixels with the input

device.

This method of "painting" is not adequate for the rendering

of visually interesting or complex images, if the user is not

provided with additional software tools that operate on a

selection of pixels that the user is pointing at with the

electronic mouse or stylus. Without these tools, the user must

indicate color values for each and every pixel in the image, which

is a trying task for a medium or high resolution image of over

200,000 pixels. Software tools which allow the user to apply

marks to the image, that suggest the visual characteristics of

physical media, such as charcoal or watercolor, have been

developed in some digital paint systems. These tools do increase

the potential for a user to "paint" visually satisfying images,

however the potential of the digital medium should be explored

beyond the production of tools which simulate physical media.

Because the digital paint medium is developed from

software which instruct its behavior, routines can be developed

which allow the user to define the characteristics of the mark

3

INTRODUCT ION

being applied. This would expand the variety of marks or

patterns to "paint" an image with. In addition, the user is

contributing to the image quality, not only by deciding the

composition of the image, but also by defining the

characteristics of personal patterns which build the image. In

traditional media, the artist's only personal contribution to mark

making is the manner in which he/she controls the implement

that applies the pigment to the picture through gesture. The

quality of the mark applied is a product of the user's gesture, the

surface of the image, and the quality of the material which

provides pigment, such as oil paint or charcoal. In digital

painting, though the gesture of the artist may not be possible to

communicate through the input device, the user can personalize

his/her image by defining the characteristics of tools, if

effective editing software are provided. Focusing on a particular

class of tools for the user to create, and providing effective

editing software has guided the research of this thesis.

The rendering of visual characteristics, particularly of

nature, has been a non-trivial problem throughout the history of

painting. This has been a contributing factor to the development

of various schemata and styles amongst different cultures and

people through the ages in attempts to describe the world.

Identifying the visual elements of an object's appearance prior to

the rendering of it onto an image surface, can be observed in the

rigid methods of Chinese brush painting, as well as the

4

INTRODUCTION 5

experimental methods of the Impressionists. For rendering

objects, the goal of the methods developed by the Chinese

painters was to convey the essence of what is being visually

described in a minimum of brush strokes and colors. The

impressionists, however, juxtaposed dabs of high-toned primary

colors of varying intensities as the means to render what they

considered the unifying elements of a picture, the interplay of

light and colors.

In digital painting, considering the problem of representing

visual phenomena poses the question of what tools and software

should be developed for a paint system which would allow users

to generate images effectively. Unlike traditional media, many

graphics systems do not have mark making devices that allow the

user to control the applied mark through the gesture or pressure

he/she applies to the tool. The system that this thesis project

was developed on is one such example. An optical mouse with

three buttons for user input is the interactive device that the

user employs to apply pigment to the image. The software and

hardware associated with this device allows only its location

and status of its buttons to be read. Though this is a limiting

factor of systems which do not have gesture or pressure

sensitive devices, computers overall are efficient at tedious

tasks such as repetition of instructions and managing a large

memory of digital information.

In light of the problem of representing visual phenomena in

INTRODUCT ION

digital painting, and attributes that a computer graphics system

possesses, the digital paint package developed here focuses on

the design of pattern modules by the user. These patterns are

the basic components which are later iterated by the user to

produce images. During the application of a pattern, it can grow

shrink, and change in opacity level under the user's control.

This manner of building an image by the repetition of

similar parts of various scales can be seen in other

methodologies of picture rendering, though their parts are not

defined as patterns, per se. This method of rendering images can

be compared with the traditional methods of Chinese painting.

Here, the applied characteristics of the brush stroke to the

paper through gesture control form the "pattern" of repetition.

In Chinese painting, an artist must first master the prescribed

brush strokes for representing an object before he/she attempts

to render it on the image surface. Leonardo DaVinci had also

practiced repetition of forms. For example, in his illustrative

studies on the impact of water falling on water, whirlpools are

drawn in similar swirling lines, that suggest its form, as

smaller eddies and whirlpools contained in it are drawn. Here,

the swirling motions being suggested are the elements of

repetition. It is no coincidence that the repetition of parts have

been incorporated by various methods of representing natural

phenomena. If we examine the visual characteristics of natural

phenomena, we can notice that many of them are built on visual

6

INTRODUCTION

elements which are similar to each other. If we look at a flower,

for example, we notice that it is composed of many petals which

are similar to each other.

This thesis demonstrates that repetition of sub-images

whose visual characteristics are defined by the user is an

adequate method for controlling the visual qualities such as

tone, contrast, color, and patterning in local areas of the image,

which expands the type of images that the user can produce

through digital painting. This methodology can be expanded in

the future to allow the user to define potentially all attributes

of the digital painting environment, such as suggested image

surface quality, and the outcome between the "contact" of the

digital "brush" and the digital "surface".

figure 1

7

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Chapter 1: Digital Painting With Predesigned Personal Brushes

Background of the Project

The design and implementation of the software for the

project developed from a culmination of observations that I

experienced as a painter using traditional paint media (oils,

pastels, and charcoal), and as an artist and computer scientist

using routines which generated brush patterns on a computer

graphics system.

While painting with traditional media, the realistic

rendering of objects and people fascinated me. During the act of

painting any object, such as an apple, a table, or a person, I

noticed visual attributes about the object in local areas of its

surface which I was unaware of or took for granted in my

everyday life. I felt that the whole object could only be rendered

faithfully if I satisfactorily rendered its parts. Besides

rendering the color, luminosities, and shadows of particular

areas of the object's surface, the object's texture also had to be

dealt with. The rendering of different textures each involved

particular instruments and techniques, ranging from a variety of

charcoal densities and thicknesses, brush qualities and sizes,

manual gestures and pressures to the application tool, and

8

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

materials for applying or manipulating the pigment onto the

surface, such as paper towels, palette knives, and my palm and

finger tips.

From my experience with programs on computer graphics

systems which allow the user to "paint" images, the tools

provided were limiting in respect to the images I could generate

with the brush patterns that were available. One program

provided brush shapes of three rectangular sizes. A brush shape

could only contain one color, however its opacity could be

adjusted prior to its use. Another program provided an

alternative method of choosing the brush. It allowed the user to

specify a rectangular area of the image on the screen to use as a

brush pattern. The limitations of these digital painting routines

included the static application of the same size pattern at the

same opacity level during the process of applying a continuous

sequence of marks to the image, and the selection of brush

shapes and patterns that the user could specify, in addition to

the lack of tactile interaction which I had become accustomed to

with traditional media.

An ancient expression in Chinese painting, "wu pi" (not

having brush), appropriately describes the limitations I was

experiencing. It describes the occasion when an artist knows

how to outline the object in question, but does not know the

strokes for modeling it. In terms of my digital painting

experience, the patterns were not there. In reaction to the

9

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

limitations described above, I designed and implemented

programs which generated interesting patterns for digital

painting. One such program allowed the user to indicate the

rectangular size of the pattern and to indicate the extreme

colors for the top line of the pattern and the bottom line of the

pattern. The program, then, interpolated these colors to generate

the adjacent horizontal lines which lay between the top line and

the bottom line of the pattern. The colors of these lines differed

incrementally from the color of the bottom line to the color of

the uppermost line. The following are example brushes:

Later additions to the program included a means for the user to

control the change in opacity level and size of the pattern as

he/she is iterating the pattern onto the image. The user

controlled these changes by clicking buttons on the mouse.

In using this "shaded" brush program, I experienced an

important observation which directed my digital painting

exploration from that point on. The iteration of the patterns

over and over onto the image produced a great feeling of depth in

the image which I had not experienced in either traditional media

or in digital painting. (See figures 2 and 3)

10

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

figure 7

11I

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

figure 3

12

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

In addition to this observation, I noticed that selecting a

portion of the image generated by this type of digital brush, and

scaling and copying it over parts of the image helped render

objects which I was satisfied with as being complete and

faithful to my intentions. It appeared that the repetition of

patterns in various scales could suggest realistic qualities of an

object. The variable factors of colors in the pattern and size of

the pattern provided enough control for the user to suggest a

wide variety of visual phenomena. The pattern's colors and shape

in conjunction with the user's application of the pattern onto the

image surface seemed to be sound components for suggesting an

image of realistic visual qualities, or an interesting abstract

image that demonstrates aesthetic qualities of digitally painted

images which could not be easily rendered in traditional media.

Being able to adjust the colors contained in the brush patterns

allowed the user to determine the tonal, textural, and contrast

qualities of the image.

This method of repeating patterns of various scales

immediately from a click of a button is an advantageous quality

that the digital medium provides. This is difficult or impossible

to execute using traditional paint media.

The project developed and described here demonstrates that

predesigning patterns and applying them at various scales and

opacity levels allows a digital painter to generate a variety of

image qualities which are tedious to produce in traditional media

13

D16011 AL PAINI ING WITH PREDESIGNED PERSONAL BRUSHES

as well as in other existing digital paint systems. Unlike the
"shaded" brush program described above, this package allows

users to design patterns of various shapes and colors and to set

up a library of patterns to choose from during the actual picture

making process. The means for allowing the user to design

patterns takes advantage of the computer's capability for

recording a vast amount of information, and its efficiency in

evaluating and processing stored information. The software

developed allows the user to treat each constituent shape and

color of the pattern as individual items that can be manipulated.

This allows patterns to be quickly and easily generated and

modified.

Breaking Down the Desired Product Into Easy to Render Parts

-Example Images and Brushes

Obviously, a different problem now arises for rendering

images with the method of predesigning its constituent parts.

Here, a naive user of this method is in a situation of "wu pi" (not

having brush). Whereas the artist using the method of Chinese

painting is aware of a vocabulary of brush strokes to master, the

artist using this method of digital painting must concentrate on

designing an appropriate pattern that will yield the faithful

production of the image he/she has in mind.

The artist must now abstract an adequate set of

14

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

characteristics which make up the desired object to render. For

example, in order to generate the texture of the bark of the tree

in figure 4, I assumed that designing pattern 1 with the

configuration of squiggly fat lines of different tones of brown

would be an adequate set of shapes, which, when scaled down and

iterated would suggest the appearance of bark.

In generating the quality of the figure's clothing, I decided

that since the clothing has folds and wrinkles in it, a pattern

composed of solid circles of varying degrees of beige should be

designed (pattern 2). The outer rings of the pattern are

specified as darker tones of beige in order to suggest shadows of

the folds, and the inner rings are lighter to suggest highlights of

the material. The technique of suggesting texture through

highlights and shadows is widely known by artists of all paint

media. ihe significant characteristic of generating the clothing

with this type of "inking" method in this paint package is that

both shadow and highlight are rendered at the same time, and

there is a continuous flow of pigment.

15

DIGITAL PAINT ING WIT H PREDESIGNED PERSONAL BRUSHES

patterns
4

0

0

figure 4

16

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

When iterating the pattern using the "Dynamic Draw" routine

in the package, the user is not constrained to repeating a static

pattern. The user controls whether the pattern is shrinking,

growing, or staying the same size, and whether it is becoming

more opaque, more transparent, or staying at the same opacity

level. With this in mind, I was able to "paint" the tree in figure

5 by iterating a pattern of lines (pattern 3), which represented
needles of the tree, and controlling its change in size. Notice

that the needle patterns at the tips of the "branches" are smaller

than the ones at the top of the tree.

17

DIG^ AL PAINTING Wil H PREDESIGNED PERSONAL BRUSHES

patterns

+

0

figure 5

18

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Figure 6 represents an aerial view of clouds, trees, and a

beach. The trees were generated by pattern 4, the clouds were

generated by pattern 5 and the water was generated by pattern

6.
pat rns

...............

figure 6

19

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

It is not too difficult to decide on the patterns to design,

since we are all able to identify various visual phenomena in

reality. We have stored in our memory for each category of

things or members of categories, which we have encountered

earlier, a set of visual characteristics which aid us in

recognizing the type of object. In generating a particular visual

quality of reality, the user should concentrate on designing an

adequate set of shapes from the characteristics stored in

his/her knowledge about the particular visual quality.

Summar e of Digital Painting and Brush Design Package

This project was developed in light of the following

concerns: 1. allowing the user to easily generate a vast number

of visual effects while painting with a digital brush pattern, 2.

allowing the user to easily create and edit personal brush

patterns, 3. providing the user the ability to control the change

in size and opacity of a brush pattern during its application to

the image, 4. implementing methods of applying brush marks to

the image which are unique to the computer.

Software developed for creating brush patterns include

rubberband rectangle, polygon, circle, and line routines, a

freehand draw routine, and a routine which allows the user to

select a group of shapes from any pattern on the work surface

and to iterate the group a number of times onto the current

20

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

pattern being edited. Rectangles, polygons, and circles can be

either filled or hollow. For hollow shapes, the user selects the

line width of the edges. The user also selects the line width for

the freehand draw and the rubberband line routines. The user

selects the color of a new shape from the color bar.

Software developed for modifying brush patterns include

routines to move, copy, scale, and delete individual shapes or

groups of shapes selected by the user. The user can also place

shapes or groups of shapes in front of or behind other shapes.

The user can also edit colors in the color table in order to change

the color(s) of a pattern. Two methods of editing colors are

provided. One allows a color's red, green, and blue values to be

modified, and the other allows it's hue, lightness, and saturation

values to be modified.

Software developed for generating images include the static

and dynamic paint routines, and a routine which allows a

selected rectangular area of the picture to be scaled and copied

onto another portion of the image. While using either the static

or dynamic paint routines, the user has the option to paint by

iterating the brush pattern on top of all pattern marks on the

picture, or to paint underneath certain colors that are in the

picture. In dynamic painting, the user first specifies the

limiting sizes that the brush pattern can grow or shrink to, and

the change in transparency or opacity factor. While dynamically

painting, the user has control as to whether the brush is

21

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

shrinking, growing, staying the same size, becoming more

transparent, becoming more opaque, or staying at the same

opacity level while he/she is painting with it.

Software developed for the user interface consists of

subroutines which set up a hierarchical menu of commands, read

commands from that menu, set up and read items from a

scrolling menu of mini-images of brush patterns, interact with

the cursor icon and the mouse, set up and read color selections

from a scrolling color table, display pop-up menus, and set up

windows on the work surface in which brush patterns are created

and edited in. Since the mouse is used a great deal by the user

for communicating with the package, there is a mouse legend

displayed on the screen continuously indicating the current

functions of the three mouse buttons,

The User interface

The design of the user interface was a major concern in this

project. The user interface is the means in which the user

communicates with the paint package. Since this system

possesses only one display screen, menus are displayed in the

same surface in which the picture is generated. The paint

package consists of two modes of interaction, EDIT and USE. In

order to use the limited space efficiently, the hierarchical

command selection menu is displayed at the bottom edge of the

22

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

screen, and displays only one level of the menu at a time.

Immediately above this area is the color bar, which displays 20

of the 220 colors that the user can select or edit. This is a
disadvantage to the user to only be able to see a small selection

of the color palette, however it does use the area efficiently.

Button arrows are provided at either side of the color bar to

allow for scrolling to the left or right in order to display other

colors in the palette. The library of patterns which the user has

stored onto disk is displayed vertically at the rightmost edge of

the screen. The images displayed in this menu are icons of the

actual patterns. A pattern is scaled to fit into the rectangle slot

representing it. Button arrows are provided at the top and

bottom of this menu to allow for up and down scrolling in order

to display other patterns in the library. The rest of the surface,

which is a rectangular area functions as the work surface in the

EDIT mode where up to 10 patterns can be created and edited

simultaneously. In the USE mode, this area is the surface in

which the image is generated from the iteration of patterns.
Except for commands which prompt the user to input the

name of an image or color table, the user interacts with all other

command operations solely with the optical mouse and its
buttons. To provide for a more continuous flow of actions, the

pattern and color editing functions, as well as functions which
allow the user to create shapes, do not return the user to the

command selection menu after the operation is complete, but

23

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

allows him/her to continue applying the selected operation until

he/she indicates otherwise.

The process of editing patterns and colors in the palette is

simple and direct. Shapes behave as individual entities. They

can be manipulated individually or as a selected group. If the

user moves an item or group of items, any shapes that it covers

are immediately revealed. Shapes are selected by pointing the

cursor on them and clicking a button on the mouse. These are

then the active shapes for the current operation. The user is also

able to UNDO the current operation, and the pattern will be

immediately displayed as it appeared prior to the operation.

A positive feature of the color bar is that whenever the

cursor is placed in there for the user to make a color selection,

he/she has the option to edit a color prior to its selection. For

editing colors, two methods are provided to the user. One allows

the user to modify the red, green, and blue color components of

the color by adjusting sliders which represent each component.

The other allows the user to modify the hue, lightness, and

saturation levels of the color, A dial is provided for the hue

adjustment, in which the user can continuously reposition the

pointer on the dial to adjust the hue value. Sliders are provided

for lightness and saturation adjustments. In both methods the

scalars can be continuously adjusted until the user is satisfied

with the current color that is displayed.

Though the package functions with a one screen system, the

24

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES 25

design of the display does not slow the application much. In

fact, it is a positive feature in that the user focuses all his/her

attention on one working environment. Using a multi-screen

system would mean that the user would have to constantly shift

his/her attention from one screen to another, which breaks up a

smooth application of tasks. The disadvantage of a one screen

system, however, is that the user can only see a limited set of

items in the menus at a time.

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Package Outline

I. Components of User Interface

A. Hierarchical Command Selection Menu

B. Scrolling Brush Image Menu

C. Brush Editing Windows

D. Work Surface
1. edit mode - area where editing windows exist
2. paint mode - area where Image Is painted

E. Scrolling Color Table

F. Pop Up Menus

6. Cursor Routines

H. Mouse Legend

1I. Components of Brush Design Mode

A. Window Management
1. New Brush - select or create a window to design a

brush in.
2. Copy Brush - make a copy of a window and its

enclosed image.
3. Move Brush - move a window.
4. Clear Brush - erase a window's enclosed image.
5. Delete Brush - delete a window and its image from

the work surface.
6. Test Brush - create a temporary window to test the

use of a brush pattern.

26

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

B. Creating Shapes
1. Freehand draw
2. Box
3. Polygon
4. Circle
5. Line
6. Copy Shapes - select a shape or group of shapes from

a window (another or current brush
editing window) and repeat the pattern
in the current editing window.

C. Color Table Management
1. Edit Colors - edit color items in the color table.
2. Blend Colors - interpolate between two colors in the

color table.
3, Load Colors - load a color table which has been saved

on disk.
4. Save Colors - save the current color table onto disk.

D. Shape/Object Manipulation
1. Move Item/Group
2. Copy Item/Group
3. Scale Item/Group
4. Delete Items

E. Brush Images on Disk
1. Save Brush - save a brush image onto disk.
2. Erase Brush - erase a brush image from disk.

II1. Components of Point Mode

A. The Image
1. Paint - repeat a brush pattern onto the picture

surface
2. Dynamic Paint - repeat a brush image that can grow,

shrink, become more transparent, and
become more opaque onto the picture
surface.

27

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES 28

3. Clear Pic - clear the picture surface to a selected
color.

4. Save Pic - save the picture onto disk.
5. Load Pic - load a picture from disk.

B. Color Management
1. Fill- fill a specified region of the image with a color

selected from the color table.
2. Edit Colors
3. Blend Colors
4, Load Colors
5: Save colors

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Scenario of Pattern Editing Functions

Creating Shapes:

filled box and hellom box:

some more shapes:

29

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Moving an Individual Item:

before:

after.

30

DIGIT AL PAINT ING WITH PREDESIGNED PERSONAL BRUSHES

Moving a Group of Items:

before:

after:

3 1

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES 32

Copying an Individual Item:

before:

after.

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Copying a Group of Items:

before:

after.

33

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Copy Group into Another Window:

before:

after.

34

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Scaling an Item:

before:

after.

35

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Scaling a Group of Items:

before:

aften

36

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Deleting Items:

before:

after.

37

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Stennroulof D7namicPalting

Initial Marks:

Brush Pattern Growing:

38

DIGITAL PAINTING WITH PREDESIGNED PERSONAL BRUSHES

Brush Shrinking:

Brush Staying the Same Size and Becoming More Transparent:

39

DIGITAL PAINT ING WITH PREDESIGNED PERSONAL BRUSHES

Brush Growing and Becoming More Opaque:

40

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 41

Chapter 2: Comparison to Related Methods of
Uisual Representation

Introduction

Methods for rendering objects of nature range from the

experimental to the rigid practices. This can be seen in both the

traditional media of painting and the electronic medium of

computer graphics. A scientific exploration into the visual

attributes of nature has been a contributing factor in the

development of methods by various artists. During the

Renaissance period, Leonardo DaVinci, for example, had made

many scientific studies in attempts to understand nature, and

the outcome of his studies can be seen in many sketches and

works of art that he produced. The Impressionist painters of the

late 19th century rejected conventional painting procedures of

their time and explored new methods of effectively rendering

reality from their own direct observation of nature. The

research of optics by scientists at that time had a great

influence on their painting methodology. A painter of that

period, John Constable, made the following remark:

"Painting is a science, and should be pursued as an
enquiry into the laws of nature. Why, then, may not
landscape painting be considered as a branch of natural
philosophy, of which pictures are but the
experiments?" I

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 42

In the medium of computer graphics, research into the

analytic description of nature has directly affected the

formulation of algorithms, which instruct the generation of

images by the computer. In raster images, ray tracing

algorithms, which calculate the color value of each pixel in the

object being rendered from the directions and intensities of

specified light sources and the surface quality of the object is

comparable to the methodologies of the Impressionist and the

Neo-Impressionist painters, who considered the interplay of

light and colors to be the unifying elements of a picture. Another

class of algorithms for generating images with computers have

evolved from a mathematical analysis of nature known as fractal

geometry. Fractal geometry describes aspects of nature as being

self-similar, that is, varying details of a phenomenon are of

different scales, but are all geometrically similar to the whole.

With respect to following rigid methods, which do not place

the artist in a position of scientific enquiry, the style of Chinese

painting is a prime example of rendering images with predefined

brush strokes. In the schools of Chinese painting, the objective

is for the artist to convey the essence of an object in a minimum

of brush strokes. Before attempting to render an object of

nature, the painter must first master the brush strokes for the

painting of the object, whicT were developed and standardized by

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 43

Chinese painters in the past.

The methodologies described here share a common strategy.

Though the styles and images rendered by each differ

procedurally and visually, each places primary concern on

rendering the characteristics of the fundamental parts as a

means to generating an image. In Chinese painting and

fractal-based rendering of images, as well as the technique

explored in this thesis, it is the repetition of similar patterns or

"strokes" at various scales which suggests the quality of the

final visual phenomenon.

Chinese Painting

The style of Chinese painting through its history has placed

significance on the materials and methodologies employed for

the rendering of images. The materials used, brush, ink,

inkstone, and paper, are refered to as the four treasures.

Brushes, which are simple in appearance, are flexible for the

marking of a variety of brush strokes, however they are very

difficult to use. Brushes come in a variety of shapes, sizes, and

pliability, and are constructed from a variety of animal hairs,

such as wolf, goat, and rabbit hairs. These characteristics

influence the quality of brush strokes that a brush can help

produce.

Vocabularies of brush strokes had been developed and

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 44

standardized by painters in various schools of Chinese painting.

Painters had to master the rendering of particular brush strokes

before they could attempt to paint a picture. The brush strokes

used in Chinese painting are similar to the strokes used in

Chinese calligraphy. There is a legend that the origin of Chinese

painting and calligraphy was not created by man, but originated

in the language of Heaven, and the brush strokes, which were

abstractions of the language, were brought to man by a divine

sea-tortoise. Calligraphy used the abstract lines to develop the

written form of Chinese language, while painting transformed

these lines to represent visual essences of nature. In brief,

brush strokes used in painting described the following marks:

spread out hemp fibers, entangled hemp fibers, sesame seeds, big

ax cuts, small ax cuts, closed heads or thunderheads, raindrops,

eddy or whirlpool, veins of a lotus leaf, lumps of alum, skull

bones, wrinkles on a devil's face, raveled rope, brushwood, hair

of cattle, horse's teeth.2

In Chinese painting, the characteristics of brushes and ink

do not allow for artists to correct, change, or trace over a stroke

without damaging effects to the image. This means that manual

coordination of the brush and mastering of strokes is essential.

COMPARISON TO RELATED METHODS OF VISUAL REPRESENT ATION 45

Here is an example of rules for applying brush strokes to

render an orchid:

"In painting the orchid the first stroke is (the
arc-shaped stroke) called pieh The brush should be
handled through the wrist with agility. Brushstrokes
should not be equal in length. When the leaves grow in
bunches, crisscrossing, bending, and drooping, they
should have sh/b (style and structural integration).
Bending over or facing up, each has a special aspect;
distinction, moreover, should be made between forms in
the foreground and those in the background. There
should be a variety of ink tones. Flowers and more
leaves should be added, also the sheath that covers the
base. The flowers should first be drawn in light ink;
soft and pliant, they are supported by their stems.
Differences between the inside and outside of petals
should be shown, each Form being delicate. The stem
should be wrapped in fine young leaf. Flowers gain
distinction when their stamens are dotted with dark
ink. In full bloom a flower stands erect with face
upwards. The mood is that of a fair and happy day.
When flowers are painted in the breeze, they should
seem to be weighted with dew. Buds are closed as
though they were firmly holding fragrance. The five
petals of the flower should not be arranged like fingers
of an outstretched hand. They should be like fingers,
though with one or two curled and one or two straight.
The stem of the marsh orchid should be strong and
upright, its leaf strong and vibrant, the leaves spread
out on all sides more than the ordinary orchid. Flowers
hang from tips of the stems; their subtle fragrance can
be conveyed by the movement of the wrist. Through
brush and ink it is possible to transmit their essence."

(see figures 7, 8, and 9 for a process of rendering the orchid)4

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 46

In the drawing of flowers, each should have five
P] p -*j-*s 4 20 petals. The larger petals are straight and broad, the

smaller and narrower petals curl. Use dark tones of
+ ,ink to dot the stamens. When the stamens are in the

93 Acenter among the petals, the flower is facing front.
&1 '{ E When shown on either side of the middle petal, as

though in its armpits, the flower is being viewed from
the back. When the stamens are dotted in on the side,
the flower is being seen from the side.

Left column:
Flowers front view and in bud.

Right column:
Flowers front view.

figure ?

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 47

21

Buds beginning to open.

(Flowers at the same stage.) I

1. As in original edition.

figure 8

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION

22
Examples of dotting the heart

The form of the three dots (of the stamens) in the
heart of the orchid is like ; (shan). Whether the
flower is straight, turned over, leaning to one side, or
facing upward, the dotting of the stamens in these
various positions depends on the position of the
petals. This is a fixed principle. In addition to the
three dots of stamens, a fourth is sometimes added,
because petals are often mingled and, among a group
of flowers, one should avoid being repetitious. This
does not violate the rules. The same kind of dotting
is used for the marsh orchid.

Right column:
Correct forms of the three dots.

Mid column:
Examples of the three dots with a fourth added.

Left column:
More examples of four dots.

AA

4*

figure 9

46

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 49

In contrast to the techniques of Chinese painting, which

contains a vocabulary of brush strokes for the artist to master,

the methodology developed in this thesis requires the user to

develop his/her own selection of brush patterns to render images

with. In addition, no manual gesture is involved for manipulating

the pattern's application with this method. The size change and

amount of pigment applied for sequences of the pattern is

consciously controlled by the user through button interactions of

the mouse input device. In Chinese painting, the artist

determines the particular brushstroke to render by selecting an

appropriate type of brush, and by controlling the motion and

pressure of the hand and wrist. In the methodology developed in

my system, the artist determines the visual characteristics of

the "brush" pattern prior to its use. Here the pattern is a

pre-made sub-image of the whole to be generated through

iteration of the pattern.

Other Modular Methods of Generating Images

The building of a visual phenomena from parts which are

geometrically similar to the whole can be demonstrated by

artists of traditional media, as well as by artists employing

algorithms based on fractal geometry in computer graphics

systems.

Leonardo DaVinci in the 15th century had made countless

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 50

studies on the motion of water and air. DaVinci, in addition to

his artistic pursuit, was also an engineer, physicist, and

cosmologist. With respect to his studies on water, he produced a

vast amount of illustrations, some of which possess an aesthetic

quality of the typical sense, and others which appear more like

scientific diagrams. He had studied the impact of water falling

on water and this is illustrated in some of his drawings.

Examining some of these pictures, we can sense parts which are

similar to the whole. In his picture, Impact of Water on Water

(1507-9), shown in figure 105, we can notice the suggestion of

swirling whirlpools and eddies within the whole of the swirling

pool which is being agitated by a cascade. The swirling lines

suggesting the whirlpools and eddies appear similar in form to

each other and to the whole of the phenomenon being illustrated,

In computer graphics, the application of fractal geometry to

algorithms which instruct the rendering of visual phenomena

produce images whose parts, at any detail of observation is

geometrically similar to each other and to the whole. A position

of research in fractal geometry is the study of phenomena whose

dimensions cannot be adequately measured by Euclidean

geometry, but can be determined by the rules of fractal

geometry. Algorithms based on these measurements can produce

striking textures which suggest realistic qualities, The

regularity of texture production can be controlled, and for the

images representing phenomena, which are generated by

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 51

algorithms with stochastic variables, the random application of

their similar parts in conjunction with the formulas which

describe them, demonstrates visually that these methods are

adequate for rendering the irregular appearances of nature. (See

figure 11)6.

COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 52

-771

Ar

~~~4

- *-

. -- (

'pq

"6'? - - -~
- 1 -- qa" /

* O*pobh Mrp a x)haenM

, pow A * '4-A n

figure 10



COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 53

figure 11



COMPARISON TO RELATED METHODS OF VISUAL REPRESENTATION 54

The methodology developed in this thesis has overlapping

traits with the stochastic modeling of texture. In pictures

generated using these tools, patterns are repeated and

concatenated at various sizes and pigment saturation levels to

suggest an overall texture. In the images described by

fractal-based algorithms, they also contain a repetition of

patterns at various scales, however, the characteristics of the

patterns are similar to the texture of the whole and they are

constructed on patterns which are also similar to them and the

whole, and this can be observed to the smallest detail of texture

which can be rendered in the image. In the methodology

described in this thesis, it is not the computer which determines

the position of constituent marks, but the user by positioning the

pattern at each application of it.

An interesting and possibly enlightening methodology that

should be researched in the future is a synthesis of the technique

described in this thesis with fractal-based algorithms that

describe visual characteristics. One possibility is to allow the

user to edit patterns by adjusting parameters of a function that

describes forms in terms of fractal geometry. Then the form of

the pattern, in addition to being repeated on the image surface,

can contribute to the overall form of the visual structure being

built. Here, the user indicates the locations where the pattern is

to be repeated, however the computer manipulates the overall

form based on the parameters selected for the fractal function.



PROGRAM DESIGN AND IMPLEMENTATION

Chapter 3: Program Design and Implementation

Introduction

The digital painting and brush pattern design package is a

menu-driven system. The software developed can be divided into

supporting six major components of the system. These are the

user interface of the package, the creation and direct

manipulation of shapes by the user, the production of an image by

the user, color table management and editing of individual color

items, storage and retrieval of image and color table data to and

from disk, and miscellaneous utility functions.

The main subroutine which drives the package first calls on

initialization routines which set up the graphics display screen,

the initial default color table, the hierarchical command menu,

menu of patterns previously saved on disk, mouse legend display,

and the speed and boundary parameters of the mouse. Then its

sole purpose is to continuously read selections that the user

makes from the hierarchical command menu and to call on the

appropriate subroutine to execute the selected command.

This chapter describes the design and implementation of

significant software pertinent to the main concerns of this

thesis. Software concerned with manipulation of individual

shapes as well as a group of shapes, and software concerned

with dynamic iteration of patterns will be the main focus of

55



PROGRAM DESIGN AND IMPLEMENTATION

discussion. A high resolution display processing unit with an

invisible as well as a visible frame buffer and operations for

bit-boundary block transfer of pixel values are requisites for the

implementation of the routines described here.

System Enuironment

This package was developed on an IBM XT personal computer

with 512 k of core memory. The display unit includes a high

resolution red, green, blue color monitor, experimental graphics

board which supports an 8-bit frame buffer with a visible area

of 640 x 480 pixels and an invisible area of 640 x 336 pixels, and

graphics support routines. Up to 256 different colors can be

displayed at a time from a set of 16,777,216 possible colors.

The value of a pixel ranges from 0 to 255 and is an index to the

color lookup table of 256 items. Each item in the color lookup

table is composed of red, green, and blue values, each of which

are represented by eight bits of memory. The primary input

device is an optical mouse with three buttons. This package was

written in Lattice C on the DOS version 2.0 operating system.

Programming SuRnort Routines

These routines were provided with the graphics system and

are written in microcode. The operations are entirely performed

in the image domain on areas refered to as pixel maps. These are

56



PROGRAM DESIGN AND IMPLEMENTATION

rectangular volumes defined by the programmer in the image

space. The image space includes the visible and invisible areas

of the frame buffer and also areas of host memory which the

programmer may allocate to hold additional image data. Each

pixel map in image space is defined by the x,y, and z coordinates

of its origin in that space, and the extent of its width, height,

and depth. The depth of the pixel map (0 - 7 bit planes)

determines the range of values that can be assigned to each pixel

in the map. Each pixel value indexes to a color item in the color

lookup table. This package uses pixel maps which are all defined

to be 8-bits deep in order to allow pixels to index any of the 256

color items in the color lookup table.

Defining pixel maps and applying bit-boundary block

transfer (BitBit) operations to them has been a very effective

and powerful technique throughout all the routines which

comprise this package. BitBIt operations perform on each pixel

in the source and destination pixel maps, replacing the

destination pixel with the value that results from it and the

source pixel in its corresponding relative position.

The invisible area of the frame buffer which is 640 x 336

pixels has proven to be a useful area for temporary storage of

sub-images, and intermediate graphics operations. Pop up

menus, cursor routines, painting routines, and routines which

allow the user to directly manipulate shape objects are some of

the major routines which could not have been smoothly

implemented without this region of the frame buffer.

57



PROGRAM DESIGN AND IMPLEMENTATION 58

The following list describes programming support routines

which were provided:

- set up the initial pixel maps which describe the visible

and invisible areas of the frame buffer.

- clear pixels of a given pixel map to a single pixel value.

- define a pixel map in host memory.

- define a pixel map inside an existing pixel map.

- load a new or modified color lookup table.

- calculate the red, green, and blue components of a color

which has been described in hue, lightness, and saturation

values.

- calcuate the hue, lightness, and saturation components of a

color which has been described in red, green, and blue

values.

- set a pixel value to be the current transparency pixel

value.

- BitBlt, copying the source pixel map to the destination

pixel map.

- BitBlt, replacing only the pixels in the dcstination pixel

map whose values are higher than their corresponding

pixels in the source pixel map.

- BitBlt, copying the source pixel values excluding the

transparency pixel value into the destination area.

- read a pixel value from a given pixel map.

- assign a value to a pixel in a given pixel map.

- draw a line of a specified color and width between two



PROGRAM DESIGN AND IMPLEMENTATION

given endpoints in a given pixel map.

- draw a series of lines of a specified color between given

vertices in a given pixel map.

- display a solid polygon of a specified color given a set of

vertices in a given pixel map.

- draw an unfilled circle of a specified color in a given pixel

map.

- draw a filled circle of a specified color in a given pixel

map.

- write a string of characters of a given color into a given

pixel map.

Description of Significant Software

Reserved Colors in the Color Table:

220 colors are provided to the user of the package to use

and edit. The remaining colors in the color table are reserved for

use in various parts of the package. Color items indexed 5, 6, and

7 in the color table are reserved for displaying red, green, and

blue respectively. Color item 1 is reserved for displaying the

background color of the package display. Color item 2 is

reserved for displaying the boundary color of the command

selection menu and the brush pattern menu. Color item 3 is

reserved for text color. Color item 4 is reserved for the

highlight color of slots in the command selection menu. Color

59



PROGRAM DESIGN AND IMPLEMENTATION

item 8 is the current erase color. Color item 252 displays grey.

Color item 255 displays black. Color item 251 displays white.

Color item 253 is the current rubberband color for the routines

which allow the user to create shapes interactively. It displays

either white or black, depending on the color of the background.

Color items 240 to 249 are reserved for the

background/transparency color values of patterns that the user

generates.

Manipulation of Individual Shapes and Groups of Shapes:

These subroutines are divided into five parts:

1. subroutines which record descriptive values into

two structures for each shape created.

2. subroutines which evaluate information in the data

structures in order to redraw a shape at a specified

location.

3. subroutines associated with a user-selected shape,

or user-selected group.

4. subroutines associated with repositioning a shape

or group of shapes.

5. subroutines which execute the shape manipulation

functions: move, copy, scale, delete.

Data Structures:

The following type of record is created for each new shape

60



PROGRAM DESIGN AND IMPLEMENTATION

produced by the interactive functions which generate freehand,

rectangle polygon, circle, and line elements. Upon the creation of

each, values are recorded in this type of record in order to

describe the shape. Coordinate values are recorded to lie within

the local coordinate space of each shape. This method of

description allows for efficient representation of a shape which

may be displayed in several locations in various sizes in the

actual space of the image. Here, the attributes of the shape is

described in only one record, yet can be addressed by any number

of items from a linked list data structure, which describes its

actual location relative to the image space (this data structure

is described later). From calculating the amount of memory

needed for a data structure of this type and of the type which

addresses it, one can easily discern that this method is more

memory efficient than a list of structures which define each

shape, without concern that some are duplicates or scaled

versions of other shapes in the image.

struct objects (

int shape-type;

int width;

int height;

int number-of-times-being-displayed;

union (

struct (

int number-of-vertices;

int vertices[20][2]; /* 20 vertices max */

61



PROGRAM DESIGN AND IMPLEMENTATION

int color;

int width-of-edgesjif-hollow;

) polygon;

struct (

int lower-x;

int lower-y;

int upperx;

int upper-y;

int color;

int width-of-edges-f..hollow;

) box-or-ine;

struct (

int color;

int center-x;

int center-y;

int radius;

) circle;

struct (

int transparency/background color;

int name[l10;

) freehand;

) type;

62

);



PROGRAM DESIGN AND IMPLEMENTATION

The following data structure is a symmetrically linked list

of records which describe the actual location of a shape relative

to the image space (pixel map containing the particular pattern).

Each pattern image is represented by an independent linked list

of this type. Each record in the list also contains a parameter

which describes the scale type of the shape being addressed, a

pointer to the address of the object record (described above), a

pointer to the preceding record in the list, and a pointer to the

succeeding record in the list. If a record has either no preceding

element or no succeeding element in the list, the respective

pointer is set to the NULL value. A record is created or updated

when a shape has been either newly positioned, repositioned,

copied, or scaled. A record is removed from the list and the list

reconnected when a shape is deleted from the image space. By

re-addressing pointers, appropriate records in the list are

reorganized in the instance that a shape is repositioned either

behind or in front of a designated shape. Though it is not always

visually perceptible, such as when the locations of shapes in the

x-y plane do not intersect, the records in the list are sorted so

that each succeeding record describes a shape which lies on top

of the one described by the preceding record.

struct attach (

int lower-xin-image-space;

int lower-y-in-image-space;

int upperx inimage-space;

int upper.yini-image-space;

63



PROGRAM DESIGN AND IMPLEMENTATION

int scale-type;

struct attach "previous-record;

struct objects "shape-pointer;

struct attach *next-record;

The following are each pattern's pointers to the first item

and last item of the symmetrically linked list associated with it.

These are used to access the linked list from either end.

struct attach *first-item-pointer [NUMBERLOFPATTERNS];

struct attach *lastitem-pointer [NUMBEILOF.PATTERNS];

The following are arrays of pointers which address

particular items in a pattern's linked list. These arrays,

together, manage shapes which have been grouped together for an

operation.

struct attach *mark-the-tems [201;

struct attach *group-the-items [201;

Scenario of Flow of Control:

sample pattern:

item 4
item 1 00v"1

1te 2
Item i AM I it item 3

64



PROGRAM DESIGN AND IMPI FMENTATION

diagram of associated data structures:

hollow fil
object records + sqae ci

described de

ikedfist , tiLL Item I Item 2
unscaled unscaled

1. New polygon created

item 1

itemn 2
item 5
new polygon created

Call newvpolygon routine. Pass it the number of

vertices, coordinates of vertices, color, type of polygon (filled or

hollow), and width of edges if it is hollow. New-polygon

creates a new record for the shape and sets appropriate values in

the record. This routine calls new-shape...attached which adds

a new record to the end of the pattern's linked list.

New-shape-attached also assigns to the record the lower x,

lower y, upper x, and upper y coordinates of the area that the

65



PROGRAM DESIGN AND IMPLEMENTATION

shape occupies, a value indicating that the new shape is not

scaled, and the proper addresses of the pointers. It updates

lastitem-pointer to address this new record in the list.

hollo tilled filled
jectrecord s r cirle y

linkedlist -L itemI item2 item3 item4 itefml5
unscled scaled wmncled usa

pointer pointer

2. The user wants to select a group of items to copy into

another area of the pattern.

Copygroup routine is executed. It calls selecLtgroup

routine to read the items that the user selects for a group.

Select-group marks these items by assigning their addresses to

*mark...the-items pointers. After the group is selected,

orderthe-items is called. This routine uses markthe-items

66



PROGRAM DESIGN AND IMPLEMENTATION 67

pointers to order the selected items into group.the.items array,

where items of lower indices lie behind items of higher indices.

items
selected
for roup

object recwnk+

lif*edlist 0--

7VUP-NWUitQ

Prepare-group routine is called. It draws the group into a

pixel map in the invisible frame buffer. This temporary image

behaves like a cursor in the pattern space. It is repeatedly

copied and erased in the pattern space, following the current

location of the mouse. The lower left corner of the group image



PROGRAM DESIGN AND IMPLEMENTATION

in the pattern space, at any instance, coincides with the location

of the mouse.

Designate a temporary area in the invisible frame buffer to

save the portion of the pattern image which is currently being

replaced by the group pattern. As the group image is moved

around the pattern space, the saved sub.image is copied back

into its proper space, and the new area that the group image

draws over is copied into this temporary area. This process

continues until the user has selected a location in the pattern

space for the group of shapes.

4----- saved image

... 4----- group image

pattern image suLtimage region

OD copy sub-image to saved image area.

(D copy group to sub.mage location .

(Dcopy saved image back to its proper location.

The user has decided to place this group behind a shape. A

temporary pointer is assigned the address of the record in the

68



PROGRAM DESIGN AND IMPLEMENTATION

linked list which is associated with the selected shape that the

group will be placed immediately behind of. All the shapes lying

behind the selected shape are redrawn in the invisible frame

buffer and then copied together into the pattern space. This

method of copying the collection of shapes at the same time

rather than redrawing each shape into the pattern space is more

appealing to the eye. Redrawing each shape elicits a sense of

disorder and may unnecessarily prompt the user to wonder why

his/her pattern image is being disrupted even though it is for a

short instance. Copying the collection of shapes is quick and

minimally, if at all, noticeable to the eye. In this way, the

mystery of how the group of shapes is placed between other

shapes is not revealed to the user.

After the collection of preceding shapes are displayed, the

selected group is copied into the pattern space. And then the

selected shape that the group lies behind and the collection of

shapes that succeed (lie on top) of it are redrawn in the invisible

frame buffer and copied together into the pattern space.

redrawn shapes ..
in the Invisible + +
frame buffer

bottom layer inserted layer top layer

69

pattern Imnage



PROGRAM DESIGN AND IMPLEMENTAT ION

Once the location of the group has been determined, the

linked list data structure of the pattern image is updated to

include the new group of shapes.

hollow filed ffied
SQUare drcle polyoN

dno descri dsal

lk*ed Itemin Iten2 Item3 items4 It5 Item6 item?
list Umcd meed mscal melacd seded WSWd used

" ..... .....

first Iteu ist Iten
power .pointer i

newcopiediies fonner1items3,4, id5respecvely

Subroutines Which Record Descriptive Values into Data

Structures for Each Shape Created:

Each of the following routines allocates memory to create a

new record of the type struct objects and assigns values to this

record which describe the new. shape just created. Shape-type

item in the record is assigned an integer value according to the

following key:

1 = unfilled box

2 = filled box

3 = line

4 = unfilled polygon

70



PROGRAM DESIGN AND IMPLEMENTATION

5 = f illed polygon

6 - unfilled circle

7 = filled circle

8 = freehand line

The value of shape-type determines which conditional part of

the record is assigned values. The record contains four

conditional parts, each of which is a sub-record: polygon,

box-orJine, circle, freehand. Shape-type also indicates to

subroutines concerned with this, the type of shape to redraw.

newjbox(box-type, x 1, y l, x2, y2, color, width, half-width).

After this routine completes its computations, it calls the

generic routine new-boxor-line.

new-iine(xi, yl, x2, y2, color, width, half-width). After

this routine completes its computations, it calls the generic

routine new-box-or-fine.

new-box-or-fine (boxior-line-type, lower-x, loweryy,

upperix, upper-y, il, yl, x2, y2, color, width). This routine

assigns the appropriate values to the new record of type struct

objects. It then calls new-shape-attached.

newvpolygon(polygon-type, number-of-vertices, array-of_

coordinates.of-vertices, color, width, halfwidth). This routine

assigns the appropriate values to the new record of type struct

objects. It then calls nev.shape-attached.

newvcircle(circle-type, center-i, center-y, radius, color).

This routine assigns the appropriate values to the new record of

71



PROGRAM DESIGN AND IMPLEMENTATION

type struct objects. It then calls new-shape-attached.

new-freehand(freehand-pattern, lower.i, lower-y, upper-

x, upper-y, transparency/background-value). This routine

assigns the appropriate values to the new record of type struct

objects. It also saves onto disk the image, freehand _pattern.

The reason why a freehand drawn shape is recorded in this

manner is that it is more memory efficient than recording all

attribute values to describe it. Stored in the new record is the

name of the temporary file in which the patlern is stored in.

This routine then calls new-shape- attached.

new-shapeattached(lower..x, lower-y, upper-x, upper.y,

objectpointer). Object-pointer, which addresses the new record

of type struct objects, is passed to this routine. This routine

creates a new record of type struct attach which describes the

actual location of the newly displayed shape in the pattern image

space. The location that its pointer, *shape.pointer, addresses is

assigned the value of objecLpointer. This routine also assigns

values to pointers that address the previous record in the linked

list and the NULL value. It also assigns the appropriate pointer in

the previous record to address this new one. Since this program

records each newly generated shape as lying on top of all shapes

in the pattern, this pattern's *IasUtemnpointer is updated to

address this recent addition.

72



PROGRAM DESIGN AND IMPLEMENTATION

Subroutines Which Evaluate Information in the Data

Structures in order to Redraw a Shape at a Specified

Location:

draw-object(destinationspace, pointer-to-record-in_

linked-list, low-x-of-shape in destination space, low-y-of-shape

in destination space). This routine first checks if the record in

the linked list describes a scaled shape. If it does not, it checks

the type of shape in the struct objects record that it addresses

and calls the appropriate subroutine to redraw the shape. If the

shape to be drawn is scaled, this routine calls

draw-scaled-shapes.

draw-box(destination-space, low-i-of-shape in destination

space, low-y....of-shape in destination space, pointer-to-struct-

objects-record). This routine reads the parameters in the struct

objects record to draw a rectangle relative to the coordinates

passed to this routine. This is called from draw-object.

draw -polygon(destination-space, low-x-of-shape in

destination space, low-y.ofshape in destination space, pointer

_to-struct-objectsArecord). This routine reads the parameters in

the struct objects record to draw a polygon relative to the

coordinates passed to this routine. This is called from

draw-object.

dir aw-circle(destination space, low-x-of-shape in

destination space, low-yof-shape in destination space, pointer_

tostruct-objectsrecord). This routine reads the parameters in

73



PROGRAM DESIGN AND IMPLEMENTATION

the struct objects record to draw a circle relative to the

coordinates passed to this routine. This is called from

drawvobject.

draw-freehand( destination-space, lowx-of..shape in

destination space, low....y-ofoshape in destination space, pointer

_to-struct-objectsrecord). This routine reads the parameters in

the struct objects record to access the file on disk that the

freehand pattern is temporarily being saved in. This pattern is

copied relative to the coordinates passed to this routine. This is

called from draw-object.

drawline(destination...space, lowLx.of-shape in destination

space, low.y.of-shape in destination space, pointer-to-

structobjects-record). This routine reads the parameters in the

struct objects record to draw a line relative to the coordinates

passed to this routine. This is called from draw...object.

drawscale(destination-space, low....xLofshape in

destination space, low-y-of.shape in destination space, pointer_

to-struct-objects_ record). This routine checks if the scaled item

is either a freehand drawn shape or a circle. If it is either of

these shapes, there are not sufficient coordinates recorded, if at

all, to use the matrix scale function. For a circle or a freehand

shape, robt-scale is called. For a rectangle, line, or polygon

shape, mathscale, which multiplies coordinates with a scale

matrix, is called.

robL-scale(destination...space, low....x-ofshape in

destination space, low-y-of-shape in destination space, pointer....

74



PROGRAM DESIGN AND IMPLEMENTATION

to-struct-objects-record, width-of-.scaled.shape, height-of_

scaled-shape). This routine scales the shape described in the

struct-objects record into the location indicated by the

coordinates, and the values for width.ofLscaledshape and

height-of-scaledshape passed to this routine. This routine first

calls either draw.freehand or draw-circle to generate the

unscaled shape into a source pixel map, then uses a scan-line

based method of scaling the source image to generate the scaled

image in the proper area of the destination space.

mathscale(destination-space, pointer-to-struct-objects_

record, height-scale-factor, width-scaleJactor, centerr-of_

shape, center-y-of-shape, new-centerx, newcenter-y). This

routine first calls matrix routines which perform matrix

multiplication operations to set up the correct scale matrix.

Then it calls trans-box-or-Aine if the shape is either a

rectangle or a line, or it calls trans-polygon if the shape is a

polygon. The computed matrix is passed to the appropriate

routine.

trans-box-or-line(destination-space, scale-matrix, pointer

-to-struct-objects-record). This routine multiplies the coordinate

pairs of the vertices/endpoints with scale-matrix to calculate

the new location of these points in the scaled version of the

shape. If the shape is a line or a hollow box, it connects the new

points with edge(s) of the correct line-width and color as

defined in the struct-objects record. If the shape is a filled

rectangle, it connects the new points and fills the shape with the

75



PROGRAM DESIGN AND IMPLEMENTATION

correct color.

transpolygon(destination-space, scale-matrix, pointer-to-

structobjects-record). This routine multiplies the coordinate

pairs of the vertices with scale-matrix to calculate the new

location of these points in the scaled version of the shape. If the

polygon is hollow, it connects the vertices with edges of the

correct line-width and color as defined in the struct.objects

record. If the shape is a filled polygon, it connects the vertices

and fills the shape with the correct color.

Subroutines Associated with a User-Selected Shape or

User- Selected Group:

prepare-surface(pointer-to-record in linked-ist). This

routine calls draw-object to redraw every shape composed in

the pattern image, except the selected shape. It redraws them in

a pixel map in the invisible frame buffer, and then BitBIts it to

the pattern image area.

*find-.selected-shape(x, y). This function returns a

pointer to the calling routine. The pointer addresses the struct

attach record in the linked list that corresponds with the

selected item. This routine searches backwards through the

linked list until it finds the first record where the x, y

coordinates, which are passed to this routine, lie within the

bounding coordinates defined in the record. It then calls verify

to check that the x, y coordinate is actually lying on the shape.

Sometimes the x,y coordinate is contained within the hole of a

76



PROGRAM DESIGN AND IMPLEMENTATION

hollow shape. Also, since the bounding coordinates represent a

rectangular area, the x, y coordinate may be at a point that is not

part of the shape. If verify returns a false value, this function

keeps searching through the list until it finds the next record

whose bounding coordinates encompass the selected point. If the

whole list is searched and no shape is found, the NULL value is

returned to the calling routine, else the pointer to the address of

the determined item in the linked list is returned.

verify(pointer....to-possibly..found-itemainthe-linked-list,

boolean variable, x, y). This routine temporarily draws the shape

in question into the invisible frame buffer, and samples an area

of 3 x 3 pixels around the (x, y) point. If none of the pixels

sampled are of the shape's color, the boolean variable returns

FALSE to the calling routine, else it returns TRUE.

selecLtgroup(buttonvalue). For each selection of a shape

for the group, this routine marks the shape by setting a pointer

of the mark.the-IteMs array equal to the pointer returned by

find...selected-shape. It also draws a rectangle around the

shape selected. There are two ways for the user to finish

selecting. One, click a button to indicate that the selection is

done, or two, click a different button to indicate that the

selection has been terminated and the shapes should not be

grouped together. Button-value returns to the calling procedure

the value of the button was clicked.

prepare-group.surfaceo. This routine calls

draw-object to redraw into a temporary pixel map in the

77



PROGRAM DESIGN AND IMPLEMENTATION

invisible frame buffer those shapes that were not grouped and BitBits

this to the pattern image space. To check which shapes were selected,

it calls is-it-marked to test each record in the linked list, starting

with the first item, to see if a mark-the-items pointer is

addressing it. If a pointer is addressing the record, it calls

push-object in order to assign the next group-the-items pointer

in the array to point at this record. Group-the-items array is

automatically sorted from the shape lying at the bottom of the group

to the shape lying on top of the group.

is-it-marked(pointer-to-the..record in.question, boolean

variable). This just checks to see if pointer-to-the-record-in-

question is equal to any of the mark-the-Atems pointers. If it is,

boolean.variable returns TRUE, else FALSE.

push-object(pointerto-record-in linked list). This routine

sets the next group-the.items pointer in the array equal to

pointer-to-record-in-linkedlist.

order-the-itemso. This routine scans through the linked list

from beginning to end calling is-itmarked to determine if a shape

has been selected for a group, and if it has, it calls push-object.

Subroutines Associated With Repositioning a Shape or Group

of Shapes:

place -after(pointcr-to-record-in-linked-list, x-location, y_

location, width-of-inserted-image, height-of-inserted-image, inserted

- image). This routine redraws into a pixel map in the invisible

78



PROGRAM DESIGN AND IMPLEMENTATION

frame buffer all the shapes associated with the records preceding

pointerto-record-in-linked-list, and then the shape associated with

pointer-to-record-in-linked-ist. Then it BitBlts the inserted-image

to this pixel map. Finally, it redraws all the shapes associated with

the records succeeding pointer-to.record-in-linked-list into this

area. Then it copies this pixel map to the pattern image space.

prepare-object( pointer-to-record-in linked-list, brush_

pattern-number, shape-image, saved sub-image). This routine

defines pixel maps in the invisible frame buffer for shape image and

saved-sub- image. Shape-image contains the selected shape. This is

the image which follows the mouse location in the pattern image

space. Saved-.,sub image is the space where the portion of the pattern

currently being covered by shape image is saved. When shape-image

is moved to a new location, saved-sub-image is copied back to its

proper place.

prepare-4roup(group-image, saved-sub-image, group-width,

group-height). This routine defines pixel maps in the invisible frame

buffer for group-image and saved-sub-image. Drawn into

group-image is each of the shape of the selected group. This is the

image which follows the mouse location in the pattern image space.

Saved-sub-image is the space where the portion of the pattern

currently being covered by group-image is saved. When group-image

is moved to a new location, saved-sub.image is copied back to its

proper place.

init-shape(s)-cursor(pattern-image, initiaLx, initiaLy, shape/

79



PROGRAM DESIGN AND IMPI FMENTAT ION

group-width, shape/groupJheight, shape/group-mage, saved-sub_

image, transparency-value). This routine places shape/group-image

into an initial position in pattern-image. Prior to copying this to the

initial location, it saves the to-be replaced portion of the pattern-

image into saved-sub-image).

aove-and-read-shape(s)_location(location-x, location-y,

button-state, shape/group image, saved-sub image). This routine

first reads the location of the mouse and calls move-shape(s)

cursor to copy shape/group-image to the current location. Then it

reads the state of the mouse buttons. It returns to the calling routine

the value of button-state and the current location of the mouse.

move..shape(s)_cursor(locationix, location-y, shape/group_

image, saved-sub-mage). This routine first copies the contents of

saved-sub-image back to its proper place in the pattern image. Then

it copies the portion of the pattern image at the current location of

the mouse to saved-sub-image, and replaces that portion with a copy

of shape/group-image.

Subroutines Which Execute the Shapc Manipulation

Functions, Move, Copy, Scale, and Delete:

move-ItemO. This routine is executed when a user selects to

move a shape in the pattern. Find-.selected-shape is called to

determine the shape selected and to locate the associated records

which describe it. If a shape is found to have been selected,

prepare-surface and prepare-object are called. Then init_

80



PROGRAM DESIGN AND IMPLEMENTATION

shape(s)-cursor and move-and-read-shape(s)_Aocation is

called to allow the user to move the selected shape around the

pattern space. Once a position for the shape is chosen, the user can

decide to place it either behind or in front of a selected shape (note:

its location on the x-y plane will not change). If the user decides on

either of these options, place-after is called, and pointers of the

relevant records in the linked list are repositioned to reflect this

change. Upon the final positioning of the shape, the bounding

coordinates of the record in the linked list associated with it are

updated with the bounding coordinates of the new location.

movegroupo. This routine is executed when a user wants to

move a selected group in the pattern. Selectgroup is called to

determine the shapes selected and to mark the associated records

which describe them. If a group has been formed, prepare-group

surface and preparegroup are called. Then initLshape(s)-

cursor and move-and-read-shape(s)_Aocation is called to allow

the user to move the selected group around the pattern space. Once a

position for the group has been chosen, the user can decide to place

the group either behind or in front of a selected shape (note: the

group's location on the x-y plane will not change). If the user decides

on either of these options, place-after is called, and pointers of the

relevant records in the linked list are repositioned to reflect this

change. Upon the final positioning of the group, the bounding

coordinates of each record in the linked list associated with the

shapes involved are updated with the bounding coordinates of each

81



PROGRAM DESIGN AND IMPLEMENTATION

shape's new location.

scale-itemO. This routine is executed when the user wants to

scale an individual shape. Find-selected3shape is called to

determine the shape selected and to locate the associated records

which describe it. If a shape is determined to be selected, a

rubberband rectangle scalar is provided to the user to indicate the

size and location of the scaled shape. Then the user decides whether

or not the source shape is to be wiped from the pattern space. If not,

a new record, which is to be attached to the linked list, is created. If

the selected shape is either a polygon, box, or line, math-scale is

called, else robt-scale is called. After the scaled shape is generated,

the user can decide whether to place it behind or in front of a

selected shape in the pattern. If the user decides on either of these

options, place-after is called, and pointers of the relevant records

in the linked list are repositioned to reflect the change. When the

scaling and positioning of the shape is done, the parameters in the

record associated with it are assigned new values. The bounding

coordinates are assigned the extreme coordinates of the scaled

shape's location. Scale-type is assigned the value of 2, which

indicates to the drawing routines that the addressed shape is to be

scaled into the location described by the bounding coordinates of the

record.

scale-.groupO. This routine is executed when the user wants to

scale a selected group. Selectgroup is called to determine the

shapes selected and to locate the associated records which describe

82



PROGRAM DESIGN AND IMPLEMENTATION

them. If a group was formed, a rubberband rectangle scalar is

provided to the user to indicate the size and location of the scaled

group. Then the user decides whether or not the source group is to be

wiped from the pattern space. If not, new records, which are to be

attached to the linked list, are created. Then each shape in the group

is scaled relative to the scale size of the entire group. If the shape is

either a polygon, box, or line, math-scale is called, else robtscale

is called. After the scaled group is generated, the user can decide

whether to place it behind or in front of a selected shape in the

pattern. If the user decides on either of these options, place....after is

called, and pointers of the relevant records in the linked list are

repositioned to reflect the change. When the scaling and positioning

of the group is done, the parameters in each record associated with

shapes in the scaled group are assigned new values. The bounding

coordinates are assigned the extreme coordinates of the scaled

shape's location. Scale-type is assigned the value of 2, which

indicates to the drawing routines that the addressed shape is to be

scaled into the location described by the bounding coordinates of the

record.

copy-itemO. This routine is executed when a user selects to

copy a shape in the pattern. Find-selected-shape is called to

determine the shape selected and to locate the associated records

which describe it. If a shape is found to have been selected,

prepare-object is called. Then init-shape(s)_cursor and

miove-and-read-shape(s)_Aocation is called to allow the user to

83



PROGRAM DESIGN AND IMPLEMENTATION

move the copied shape around the pattern space. A new record for this

copied shape is created and attached to the linked list. Its record

addresses the same struct object record as the source shape. Once a

position for the shape is chosen, the user can decide to place it

either behind or in front of a selected shape (note: its location on the

x-y plane will not change). If the user decides on either of these

options, place-after is called, and pointers of the relevant records

in the linked list are repositioned to reflect this change. Upon the

final positioning of the copied shape, the bounding coordinates of the

record in the linked list associated with it are updated with the

bounding coordinates of the new location.

copy-groupo. This routine is executed when a user selects to

copy a group of shapes in the pattern. Select.group is called to

determine the shapes selected and to locate the associated records

which describe them. If a group was formed, prepare-group is

called. Then init.shape(s)-cursor and move-and-read-shape(s)

_location is called to allow the user to move the copied group around

the pattern space. A new record for each shape in the copied group is

created and attached to the linked list. These records address the

same struct object records that the records associated with the

source group address. Once a position for the group is chosen, the

user can decide to place it either behind or in front of a selected

shape (note: its location on the x-y plane will not change). If the

user decides on either of these options, place-after is called, and

pointers of the relevant records in the linked list are repositioned to

84



PROGRAM DESIGN AND IMPLEMENTATION

reflect this change. Upon the final positioning of the copied group,

the bounding coordinates of their records in the linked list are

updated with the bounding coordinates of the shapes' new locations.

deleteitemuO. This routine is executed when the user wants to

delete shapes from the pattern. Find-selected._shape is called. If

a shape was selected, the pointers of the records immediately

preceding it and succeeding it in the linked list are re-addressed to

point at each other. The memory allocated to the structattach

record in the list is released into the memory pool. If the

struct-objects record, which defines the shape, is not being

addressed by other items in the linked list, it is also released to the

memory pool.

copy-shapesO. This routine is executed when a user wants to

iterate a group of shapes from one pattern into another.

Select-group is called to determine the shapes selected and to

locate the associated records which describe them. If a group was

formed, prepare-group is called. Then init-shape(s)tcursor and

move-and-read-shape(s) -location is called to allow the user to

move the copied group around the pattern space. The group is iterated

each time the user clicks a button on the mouse. A new record for

each copied shape is created and attached to the linked list. These

records address the same struct object records that the records

associated with the source group address. After the user is done

iterating the shapes, the bounding coordinates of their records in the

linked list are updated with the bounding coordinates of the shapes'

85



PROGRAM DESIGN AND IMPLEMENT AT ION

new locations.

Dynamic Iteration of Patterns:

This algorithm is divided in the following manner:

1. prompt the user for the extreme sizes that a pattern

can grow and shrink to.

2. prompt the user for the change in transparency and

opacity factors. This factor determines the amount

of change in opacity or transparency when the pattern

is sequentially iterated.

3. interpolate and generate the patterns which occur

between the two specified extreme sizes.

4. create the opacity and transparency veils which are

merged with the current pattern being iterated.

5. apply the appropriate operations on the current pattern

of the sequence as determined by the user's control of

the pattern's application.

86



PROGRAM DESIGN AND IMPLEMENTATION

Invisible Frame Buffer During Dynamic Paint:

44
51

current mark being copied to screen. If the pattern is to
opacity, this image is being redrawn continuously.

be changing in size or

2 opacity strip of current pattern. If the pattern is becoming more transparent
then each pixel in the veil is determined by the following operation:

veil pixel value = max (transparency pixel value, veil pixel value).
If the pattern is becoming more opaque then each pixel in the veil is determined
by the following operation:

veil pixel value = min (opacity pixel value, veil pixel value).

3 transparency veil

4 opacity veil

5 interpolated brush patterns

Scenario and Description of the Algorithm:

1. The user selects a pattern from the brush pattern menu. The

El

87



PROGRAM DESIGN AND IMPLEMENTATION

pattern is retrieved from the disk and copied into an area of

the invisible frame buffer.

2. Set the background color of the pattern as the transparency

value, so that when BitBIt with the transparency option is

performed on the pattern, these pixel values will not be copied

into the destination image. The transparency values for patterns

in this program have been selected to index color items greater

than 240 in the color lookup table.

3. Prompt the user for the two extreme sizes that the pattern can

grow and shrink to.

4. Prompt the user for the amount of change in opacity and

transparency factor.

5. Determine the number of patterns, two which are of the extreme

sizes and the ones that occur between them, that can be

generated and stored sequentially in the invisible frame buffer.

6. From the number of patterns that can be generated and the

differences in height and width of the two extreme sizes,

calculate the difference in height and the difference in width

between adjacent patterns of the sequence.

7. From the values determined in 5 and 6, above, generate the

sequence of patterns into the invisible frame buffer.

8. Def ine a region for the transparency veil and a region for the

opacity veil, both of which lie in the invisible frame buffer.

Clear all the pixels in the transparency veil to the first item (0)

in the color lookup table. Clear all the pixels in the opacity veil

88



PROGRAM DESIGN AND IMPLEMENTATION

to the transparency/background color of the pattern (a value

greater than 240).

9. Define a region for the opacity strip, which later merges with a

solid pattern to change its opacity or transparency. The width

of this strip is I/7th the width of the opacity or transparency

veil. The height is the same as both. When a pattern is to

become more transparent, a strip of pixels of the transparency

value is copied into here. When a pattern is to become more

opaque, a strip of pixels of the f irst color item value (0)

is copied into here.

10. Calculate the density of transparent and opaque pixels that

should be assigned in the respective veils by multiplying the

number of pixels contained in each veil with the change in

transparency/opacity factor that the user selected.

I1. With a random number generator determining the location of

target pixels, which total the amount calculated in 10, above,

assign the transparency value (value greater than 240) to target

pixels in the transparency veil, and assign the value of the first

item (0) in the color lookup table to target pixels in the opacity

veil.

12. Divide the veils into seven initial strips. The transparency and

opacity veils are constantly divided into six or seven vertical

strips. After a complete set of strips in a veil has been used, the

location of the strips are shifted horizontally a difference of one

pixel. This allows efficient change for a pattern becoming either

89



PROGRAM DESIGN AND IMPLEMENTATION

continuously more transparent or more opaque. In either case,

strips of one veil is repeatedly being copied into the opacity

strip of the pattern. Shifting the strips, when a set has been

used, expands the range of opaqueness that the opacity strip

can possess.

13. Now the user is ready to iterate the interpolated set of patterns

onto the image surface. The intial states of the brush is as

follows: a pattern of one of the two extreme sizes is the current

pattern being applied, the brush is being applied with no size

change and no opacity change.

14. The program repeats a while loop of instructions, which, first,

interprets from the user how the current pattern is to be applied,

and then applies the appropriate operations to access, modify,

and apply the current pattern to the image.

a. While the middle button or right button is being depressed

by the user, the change in size state, and the change in

opacity state is evaluated, The value of the parameters

describing the change in size state and the change

in opacity state can each have a value of -1, 0, or 1.

of -1, 0, or 1. For the change in size, the state toggles

between growing, staying the same size, and shrinking.

For the change in opacity, the state toggles between

becoming more transparent, staying at the same opacity

level, and becoming more opaque.

b. Each of the patterns in the interpolated sequence has a

90



PROGRAM DESIGN AND IMPLEMENTATION

number associated with it, The first pattern has a value

of 0, and the last pattern has the value of (number of

patterns -1). The current pattern in the sequence is

accessed by its value. If the value of state of size change

is either -1 or 1, this value is added to the value which

indexes the pattern to be applied, in order to access

the previous or next pattern in the sequence.

c. If the value of state of opacity change is -I, pixels of

the transparency value from a strip in the transparency

veil are copied into the brush pattern's opacity strip. If the

value of state of opacity change is 1, pixels of the

value 0 from a strip in the opacity veil are copied into

the brush pattern's opacity strip.

d. If either of the above described states are not 0 (static),

the current pattern (could be the same, previous, or next)

is copied into the pixel map designated for the current

pattern to be applied. Then the opacity strip is overlapped

into this area. The strip is repeatedly copied next to each

other until it covers the full width of the pattern.

e. The user indicates the current state of size change and

opacity change, by clicking buttons on the mouse.

91



CONCLUSION

Conclusion:

The impetus for the research involved in this thesis is the

situation of "wu pi" (not having brush) that can be experienced in

digital paint systems. For the digital medium, I have altered the

meaning of this ancient Chinese expression to describe the

situation in which the artist knows visual characteristics of the

image that he/she would like to render, but is not provided with

adequate digital marking functions to effectively generate it.

The digital paint package developed in this thesis project

reduces the occurences of "wu pi". This is demonstrated in the

sample images, which were digitally painted with this package.

Allowing the user to design personal brush pattern modules

is an effective means to "painting" personal images of various

visual qualities. Personal brush patterns, however, is only a

particular class of tools that I have focused on. Future research

should explore other aspects of the digital paint medium that the

user should be able to define. If the user is provided more and

more control of the medium, the occurences of "wu pi" may

diminish completely, and in the digital medium which is governed

by software, this could potentially happen. The following is a

list of potential aspects of a digital paint system which the user

should be able to define: 1. defining the fluidity of the digital

"brush" and the fluidity of the image surface and the

92



CONCLUSION

characteristic of the mark that is the product of the two (the

mark does not have to simulate the result that would occur with

physical materials), 2. defining transformations of the brush's

physical features as it is being applied to the image surface (for

example, change colors when it is applied over certain colors),

3. defining the characteristics of the image surface (for

example, wavy, bumpy, curved, cracked, prickly, wet, etc.). The

potential visual effects to digital images which a computer paint

medium could provide is an issue which still needs to be further

explored.

93



USER'S GUIDE

appendin: Users Guide

Components of User Interface

Screen Display

The display is divided into five major sections: hierarchical
command selection menu, scrolling brush pattern menu,
scrolling color bar, mouse legend, and work surface. In the
edit brush pattern mode, the user creates windows in the
work surface. Brush patterns are created and edited in these
windows. In the use/paint mode, the work surface functions
as the area in which the image is generated.

Edit Mode

94



USER'S GUIDE

Use Mode

X sCast...semmed preelusme ) p

Hierarchical Command Selection Menu

I - -

The command selection menu at any time displays a single
level from a tree structure of commands. The user traverses
the menu by either selecting a command which identifies a
group of commands at the next level of the tree, or by
depressing the right button on the mouse which brings the
user back to the previous level. A command box is highlighted
whenever the cursor lies inside of it in order to give visual
feedback to the user of the current command item being

95



USER'S GUIDE

touched. The user selects a command with the middle button
of the mouse.

Hierarchical Menu Structure

LEUELI LEUEL 2

---------- > WINDOWS -------- >

--------- > SHAPE ----------- >

EDIT----

---------- > COLORS ---------- >

---------- > TRANSFORM ------ >

---------- > DISK ------------ >

NEW BRUSH
COPY BRUSH
MOVE BRUSH
CLEAR BRUSH
DELETE BRUSH
TEST BRUSH

FREEHAND
BOX
POLYGON
CIRCLE
LINE
COPY SHAPES

EDIT COLORS
BLEND COLORS
LOAD COLORS
SAVE COLORS

MOVE
COPY
SCALE
DELETE

SAVE BRUSH
ERASE BRUSH

%6



USER'S GUIDE

LEUEL 1. LEUEL 2

---------- > IMAGE ----------- >

US ----

---------- > COLORS ---------- >

LEVEL 3

PAINT
DYNAMIC PAINT
SCALE PIC
CLEAR PIC
SAVE PIC
LOAD PIC

FILL
EDIT COLORS
BLEND COLORS
LOAD COLORS
SAVE COLORS

QUIT

Scrolling Brush Image Menu

This menu displays on the screen at a time eight of the brush
patterns saved on disk. An arrow button is located on the top
of the menu list and another at the bottom to allow for
scrolling of the menu. When the top button is selected, the
menu scrolls up one item and when the bottom button is
selected, it scrolls down one item. When an item is to be
selected from this menu, the cursor is bound inside this menu

97



USER'S GUIDE

until the user has made a selection.

Scrolling Color Bar

This menu displays on the screen at a time 20 of the 210
colors available to the user in the color table. Arrows are
located to the right and left of the color bar to allow for
scrolling of the menu. The user can select to scroll the menu
either a color item at a time or 20 color items at a time.
When an item is to be selected from the color bar, the cursor
is bound inside it until the user has made a selection. While
in the color bar, the user can edit any of the color slots in the
color table. Two methods of editing colors are provided. One
allows a color's red, green, and blue values to be modified,
and the other allows it's hue, lightness, and saturation values
to be modified. The user is also able to save a color table
onto disk or load one from disk.

Mouse Legend

< -z X -e-z-m X -ac)

This legend is located directly above the color bar. It
contains three oval shapes that correspond to the three
buttons on the mouse. Displayed inside each oval is a
description of it's button's function at that time. This legend
is continuously displayed in order to alleviate the confusion
that a user may experience when keeping track of button
functions which vary depending on the application.

98



ISER'S GUIDE

Work Surface

This is the large area on the screen in which the user does
most of his/her work. In the edit mode, the user creates and
edits brush patterns in windows on this surface. In the
use/paint mode, the image is generated on this surface. When
the user has edited patterns, then generates a picture in the
use/paint mode, and then goes back to the edit mode, the
windows and patterns reappear on the surface in the same
state that the user had left them. When leaving the use/paint
mode and entering the edit mode, if the user has generated a
picture, the program prompts the user to choose whether the
picture should be saved or not, since the image will be
replace by the editing windows.

Brush Editing Windows

The user creates and edits brush patterns inside these
windows. The user is provided functions to manage these
windows in the work surface. Windows can be moved, copied,
cleared to a single color, or deleted from the work surface.
At any time, only one of the windows is active for editing. To
work in a different window, the user either selects a point in
an existing window on the screen, or selects a point on the
work surface not currently being occupied by a window. When

99



USER'S GUIDE

the latter case occurs, the program allows the user to create
a new window by using a rubberband box.

POD UD Menus

QT1~~~F4 - ON~.EL~

Pop up menus are displayed in most cases where a function
needs the user either to set certain parameters or to make a
decision from a selection of options that the function can act
on. The instances that a user would need to input through the
keyboard is when he/she is naming a color table to be saved
or loaded, and when he/she is naming an image to be saved or
loaded from disk.

Mouse

The primary means of user input to the package is through an
optical mouse with three buttons, A "+" shaped cursor is
constantly displayed on the screen at the current location of
the mouse. The cursor is always bounded in the current area
of the screen display in which the user is either working or
making a selection. For example, the cursor is bounded to the

100



USER'S GUIDE 101

work surface area when the user is painting a picture, and is
bounded to a pop-up menu when the user has to make a
selection.



USER'S GUIDE

Components of Brush Design Mode

DIT USE IIT

This mode provides utilities to create and edit brush
patterns. Each pattern is created and edited in its own
window. If there are no windows on the work surface when
the user selects a function to create a shape, he/she will be
forced to create one before the selected function is
executed. Each window has a background color that the user
selects. A window's background is not part of the brush
pattern. Assigning a color to the window's background
merely allows the user to see how a brush pattern looks on a
potential image background color. The user makes all item
selections by pointing the cursor at the location of the item
on the display screen and depressing the middle button on
the mouse.

Window Management

wvINw[Sj SHAPE I COLORS ITRANSFORM I DISK

SCOPY RUH I MOVE BRUSH I CLEAR BRUSH IDELETE BRUSH TEST BRUSH

NEW BRUSH allows a user to select the current window to
work in. The user points at a location on the work surface
with the cursor and clicks the MIDDLE BUTTON on the mouse.
If there is a window at this location, it becomes the current
window to work in and the user is returned to the command
menu. If there is not a window here, the user creates a new

102



USER'S GUIDE

window with a rubberband rectangle, using the selected
point as one corner of the window. The user drags the
diagonal corner of the rectangle with the cursor and clicks
the MIDDLE BUTTON when he/she is satisfied with the size
of the window. Then the cursor is popped into the color bar
and constrained there until the user selects a background
color for the new window (see section on color bar
described in COLOR TABLE ROUTINES for description of user's
options in the color bar). At any time in the work surface
the user can quit the function by clicking the RIGHT BUTTON.
This will return the user to the command menu. If this
occurs when a new window is being created, the window
will disappear. All operations which create new shapes or
allow the user to manipulate existing shapes will constrain
the user to the current editing window.

B' IS CLEAR BWIEEMWW _ MRUS 10910EBUHCERBUHDLT RS TEST BRUSH

COP BRUSH allows the user to select an existing window
and copy it and its contents. The user selects the source
window by placing the cursor inside of it and clicking the
MIDDLE BUTTON. After a window has been chosen, a copy of
it appears and the user drags this window by moving the
mouse until he/she has located a place for it on the work
surface. The user clicks the MIDDLE BUTTON when he/she has
decided on the new location of the copy. The copied window
now becomes the current window to edit in. At any time in
the work surface, the user can click the RIGHT BUTTON to
quit this function.

NEW BRUSH ICOPY BRUSH t1OVE CLEAR BRUSH IDELETE BRUSH ITEST BRUSHI

MOUE BRUSH allows the user to select an existing window
and move it and its contents. The user selects the window
by placing the cursor inside of it and clicking the MIDDLE

103



USER'S GUIDE

BUTTON. After a window has been chosen, the user drags it
by moving the mouse until he/she has selected a new
location by clicking the MIDDLE BUTTON again. At any time
in the work surface, the user can click the RIGHT BUTTON to
quit this function.

NEW BRUSH CoPV BRUSH MOVE BRUSH E DELETE BRUSH TEST BRUSH

CLERR BRUSH allows the user to erase the contents of an
existing window and to select a new background color for it
from the color bar (see section on color bar described in
COLOR TRBLE ROUTINES for description of user's options in
the color bar). The user selects the window by placing the
cursor over it and clicking the MIDDLE BUTTON. Clicking the
RIGHT BUTTON, instead, will quit this function.

NEW BRUSH COPY BRUSH I MOVE BRUSH CLEAR BRUSH iELTE TEST BRUSH

DELETE BRUSH allows the user to delete a window and its
contents from the work surface. The user selects the
window by placing the cursor over it and clicking the MIDDLE
BUTTON, Clicking the RIGHT BUTTON, instead, will quit this
function.

NEW BRUSH ICoPY BRUSH I MOVE BRUSH I CLEAR BRUSH IDELETE BRUSH 'L"

TEST BRUSH allows the user to test paint a selected brush
from the work surface. First the user selects a brush
pattern by placing the cursor over its window and clicking
the MIDDLE BUTTON, Then he/she creates a temporary test
window on the work surface by using a rubberband rectangle.
The test window may cover any area on the work surface.

When the user is done with this routine, whatever items the

104



USEfWS GUIDE I

test window covered will reappear on the work surface
unchanged. Diagonal corners of the temporary window are
selected by clicking the MIDDLE BUTTON at each location.
The user then selects a color from the color bar to clear the
test window with (see section on color bar described in
COLOR TRBLE ROUTINES for description of user's options in
the color bar). Then the cursor is constrained inside the test
window. Depressing the MIDDLE BUTTON will iterate the
brush pattern at the current location of the cursor. The user
can drag the pattern by keeping the MIDDLE BUTTON
depressed and moving the mouse. Depressing the RIGHT
BUTTON allows the user to iterate or drag the pattern under
certain colors. Colors in the pattern which have higher
color table index values than the colors of the image at the
current location of the pattern, do not replace those colors
in the image. This gives the illusion of painting under a
certain layer of colors. The user clicks the LEFT BUTTON
when he/she is done. The test window disappears, and the
user is returned to the command menu.

Creating Shapes

WiNDOWS lSHE.A COLORS |TRANSFORM| DISK_

POP UPs are automatically displayed and the cursor
constrained in it when the routine needs the user to make a
decision.

105



USER'S GUIDE

FILLED/UNFILLED/UNDO POP UP allows the user to indicate
the outcome of the shape just created. The user is able to
see the options before he/she makes a decision. When the
cursor lies in the "filled" button, the shape becomes filled
with a default color. When it lies in the "unfilled" button,
the outline of the shape is displayed, and when it lies in the
"undo" button the new shape disappears. The user makes a
choice by placing the cursor in one of the buttons and
clicking the MIDDLE BUTTON on the mouse.

examie window
with new rectangle
shape -- >

led. filled filled

uWilled unfilled
undo undo ndo

LINE THICKNESS POP UP allows the user to adjust the
thickness of a line. Placing the cursor in the opened arrows
button, and clicking the MIDDLE BUTTON thickens the line.
Placing the cursor in the closed arrows button, and clicking

106



USER'S GUIDE

the MIDDLE BUTTON slims the line. As the user is adjusting
the line width, the line in the right-hand box displays the
current line thickness. A click of the LEFT BUTTON finalizes
the line width and returns the user back to the routine.
FREEHAND, LINE, unfilled BOX and unfilled POLYGON use this
pop up.

BOX POLYGON CIRCLE LINE COPY SHAPES

FREEHRND allows the user to hand draw a shape. The user
first selects a color for the pen from the color bar (see
section on color bar described in COLOR TABLE ROUTINES for
description of user's options in the color bar). He/she then
selects the line width for the pen using the LINE THICKNESS
POP UP. The user keeps the MIDDLE BUTTON depressed when
drawing. A click of the LEFT BUTTON completes the routine
and returns the user back to the command menu. A click of
the RIGHT BUTTON erases the just drawn shape and returns
the user back to the command menu.

I FREEHAND X POLYGON CIRCLE LINE COPY SHAPES

B01 allows the user to create a rectangle shape using a
rubberband rectangle. The user selects two diagonal corners
by locating each with the cursor and clicking the MIDDLE
BUTTON. After the user selects the second corner, the
FILLED/UNFILLED/UNDO POP UP appears. The user makes a
selection. If he/she chooses UNFILLED, the LINE THICKNESS
POP UP appears and he/she adjusts the thickness for the
edges of the rectangle. The user selects a color for the
filled or unfilled rectangle from the color bar. The user is
then returned to the brush window and the routine is ready
for the user to create another rectangle if he/she chooses
to. A click of the LEFT BUTTON returns the user to the

107



USER'S GUIDE

command menu.

FREEHAND BOX L CIRCLE LINE COPY SHAPES

POLYG6N allows the user to create a polygon shape by using
a series of connected rubberband lines. The user selects
vertices by locating each with the cursor and clicking the
MIDDLE BUTTON. A rubberband line becomes fixed between
the current vertex selected and the previous vertex
selected. The current vertex selected is an endpoint for the
next rubberband line. When the user is done selecting
vertices, he/she clicks the LEFT BUTTON. The routine
automatically connects the last vertex with the first. Then
the FILLED/UNFILLED/UNDO POP UP appears. The user makes
a selection. If he/she chooses UNFILLED, the LINE THICKNESS
POP UP appears and he/she adjusts the thickness for the
edges of the polygon. The user selects a color for the filled
or unfilled polygon from the color bar. The user is then
returned to the brush window and the routine is ready for
the user to create another polygon if he/she chooses to. A
click of the LEFT BUTTON returns the user to the command
menu.

FREEHAND BOX POLYGON E$ LINE COPY SHAPES

CIRCLE allows the user to create a circle shape by selecting
the center point and a point on the circumference. The user
locates the center point with the cursor and clicks the
MIDDLE BUTTON. He/she then moves the cursor, and the
circle is continuously redrawn with the cursor lying on the
circumference. The user sets the circle size by clicking the
MIDDLE BUTTON, Then the FILLED/UNFILLED/UNDO POP UP
appears. The user makes a selection. The user selects a
color for the filled or unfilled circle from the color bar. The
user is then returned to the brush window and the routine is

'108



UcSER'S GUIDE

ready for the user to create another circle if he/she chooses
to, A click of the LEFT BUTTON returns the user to the
command menu.

[ HND BoX I POLYGON CIRCLE COPY SHAPES

LINE allows the user to create a line by using a rubberband
line. The user selects the two endpoints by placing the
cursor at each location and clicking the MIDDLE BUTTON.
Then the LINE THICKNESS POP UP appears and the user
adjusts the thickness of the line. The user selects a color
for the line from the color bar. The user is then returned to
the brush window and the routine is ready for the user to
create another line if he/she chooses to. A click of the
LEFT BUTTON returns the user to the command menu.

EEHAND BOX POLYGON CIR E

COPY SURPES allows the user to select a shape or group of
shapes from a brush pattern window and iterate the item(s)
into any brush pattern window. The user selects the source
window by placing the cursor over the window and clicking
the MIDDLE BUTTON. The cursor then selects the shapes by
placing the cursor ontop of each shape and clicking the
MIDDLE BUTTON. He/she clicks the RIGHT BUTTON when done
selecting. Then the user selects the destination window by
placing the cursor over the window and clicking the MIDDLE
BUTTON. Each click of the MIDDLE BUTTON in the destination
window creates a copy of the item(s) at the location of the
cursor. The user clicks the LEFT BUTTON to return to the
command menu. If the user wants to undo this current
operation, he/she clicks the RIGHT BUTTON and the copied
items will disappear. This will also return him/her to the
command menu.

109



USER'S GUID E

Color T able Routines

WINDOWS SHAPE .otoRSJ TRANSFORM DISK I

POP UPS

blue

+-- full lightness and saturation level

u__ +- minimum lightness and saturation level
green red

hue lightness saturation adjustment scalars

HUE, LIGHTNESS, SATURATION COLOR ADJUSTMENT POP UP
allows the user to edit a color item in the color table by
modifying the hue, lightness and saturation values of the
color. The user selects this method of editing by placing the
cursor over the color to be modified and clicking the LEFT
BUTTON. The pop up then appears and the cursor is
constrained inside it. The user adjusts the hue scalar by
placing the cursor along the hue dial and clicking the MIDDLE
BUTTON. The pointer inside this dial will adjust itself to the
new hue location. To adjust either the lightness or saturation
levels, the user places the cursor at the respective bar and
clicks the MIDDLE BUTTON. The top of the bar will adjust
itself to the cursor location. As the scalars are being
adjusted, the solid circle in the middle of the hue dial is
constantly displaying the adjusted color. When the user is
finished editing he/she clicks the LEFT BUTTON.

110



USERS GUIDE

-- ful value

4- minimum value

red green blue adjustment scalars

RED, GREEN, BLUE COLOR ADJUSTMENT POP UP allows the user
to adjust a color item in the color table by modifying its red,
green, and blue components. The user selects this method of
editing by placing the cursor over the color to be modified and
clicking the RIGHT BUTTON. The pop up then appears and the
cursor is constrained inside it. To adjust the red, green, or
blue values, the user places the cursor at the respective bar
and clicks the MIDDLE BUTTON. The top of the bar will adjust
itself to the cursor location. As the scalars are being
adjusted, the color item in the color table is constantly
displaying the adjusted color. When the user is finished
editing he/she clicks the LEFT BUTTON.

CoLR BAR

sallr4t wYonleft

The cursor is constrained inside the color bar whenever a
routine needs the user to select a color. There are 210 color
items available to the user, however only 20 are displayed at
a time. While in the color bar, the user can edit each color
item using either of the methods described above. To select a
color for a function, the user places the cursor over a color
item and clicks the MIDDLE BUTTON. The user can also bring to
view color items which are not currently displayed by

111 '



USER'S GUIDE

selecting either of the arrow buttons. Placing the cursor over
the lef t arrow button and clicking the MIDDLE BUTTON scrolls
the items to the right and displays the next adjacent item to
the left. Clicking the LEFT BUTTON over this arrow replaces
the items in the color bar with the next 20 adjacent items to
the left. Placing the cursor over the right arrow button and
clicking the MIDDLE BUTTON scrolls the items to the left and
displays the next adjacent item to the right. Clicking the
RIGHT BUFTON over this arrow replaces the items in the color
bw w ith the next 20 adjacent items to the right.

COgLOSBLEND coLoRS LOAD coLORS ISAVE coLoRS

EDIT COLORS allows the user to access the color bar and edit
any color items in it, He/she places the cursor over the color
item to be modified and selects one of the color editing
methods described above. To return to the command menu, the
user clicks the MIDDLE BUTTON. (note: color items can always
be edited when the cursor is constrained in the color bar. The
cursor is placed in there whenever a routine needs the user to
select a color. This routine gives the user a means to edit
colors without having to select a function which needs a color
value.)

i EDIT COLOs ||||LENDcoLoRs LOAD COloRS SAVE coLoRS

BLEND COLORS interpolates between two selected color items
in the color bar. The in between color items differ in even
gradations from one selected color to the other selected
color. The user selects each color item by placing the cursor
over it and clicking the MIDDLE BUTTON. If the user modifies
a color with one of the above methods, the modified color is
automatically selected. The user is returned to the command
menu when the interpolation is completed.

112



1SER'S GUIDE

ET) COLORS BLEND COLORS LtAD COLORS) SAVE COLORS

LOND COLORS allows the user to completely replace the
current active color table with one that was previously saved
onto disk. When this command is selected, the PC monitor
will prompt the user for the name of the color table to be
loaded. The user enters the name through the keyboard.

EDIT cND COLORS LOAD coLORSAvECORS

SRUE COLORS allows the user to save the complete color table
onto disk. When this command is selected, the PC monitor
will prompt the user for the name of the color table to be
saved. The user enters the name through the keyboard.

Pattern Editing / Manipulating Shapes

IWKS ISHAPE I COLORS TRANSFORMij

POP UPS

GROUP/IT1EM POP UP prompts the user to indicate whether a
single shape or group of shapes is to be manipulated. The user
places the cursor over the desired choice and clicks the

DISK I-9

113



U3SERS GUIDE

MIDDLE BUTTON. If ITEM is selected, the user selects the
shape by placing the cursor over it and clicking the MIDDLE
BUTTON. If GROUP is selected, the user selects each shape by
placing the cursor over it and clicking the MIDDLE BUTTON. To
indicate that the group selection is done, he/she clicks the
RIGHT BUT-TON. Clicking the LEFT BUTTON will abort grouping
and return the user back to the command menu.

UNDO/BEHIND/ONTOP/DONE POP UP appears after an item or
group of items have been moved, copied, or scaled. Selecting
UNDO puts the pattern back to its previous state. Selecting
BEHIND allows the user to place the item or group of items
behind a selected shape in the window, The user selects the
shape with the MIDDLE BUTTON. Selecting ONTOP allows the
user to place the item or group of items in front of a selected
shape in the window. The user selects the shape with the
MIDDLE BUTTON. This pop up keeps reappearing until the user
selects DONE. Selecting DONE returns the user back to the
window. All choices in the pop up are selected by placing the
cursor over it and clicking the MIDDLE BUTTON.

LEAVE OLD
WtPE OLD

LEAVE OLD/WIPE OLD POP UP appears after an item or group of
items has been selected for scale, Selecting LEAVE OLD
leaves the source item(s) in place, Selecting WIPE OLD
erases the source item(s) from the window. The user places
the cursor over the desired choice and clicks the MIDDLE

114



USER'S 6UIDE

BUTTON.

COPY SCALE DELET

MODE allows the user to relocate a shape or group of shapes
inside its window. GROUP/ITEI POP UP appears. The user
makes shape(s) selection accordingly. The user moves the
shape(s) by moving the mouse. When he/she is satisfied with
the new placement he/she clicks the MIDDLE BUTTON. The
UNDO/BEHIND/ONTOP/DONE POPUP appears. The user makes a
selection and then acts accordingly as described above. After
the user has selected DONE, the cursor is placed inside the
window and the routine is ready for the user to select more
item(s) to move. At this point, a click of the LEFT BUTTON
returns the user to the command menu.

1v Y. 'OPYk; SCALE DELETE

COPY allows the user to copy a shape or group of shapes
inside the window. GROUP/ITEM POP UP appears. The user
makes shape(s) selection accordingly. The user moves the
copied shape(s) by moving the mouse. When he/she is
satisfied with a location for the copied shape(s), he/she
clicks the MIDDLE BUTTON. The UNDO/BEHIND/ONTOP /DONE
POPUP appears. The user makes a selection and then acts
accordingly as described above. Af ter the user has selected
DONE, the cursor is placed inside the window and the routine
is ready for the user to select more item(s) to copy. At this
point, a click of the LEFT BUTTON returns the user to the
command menu.

1OVE COPY F'CE, DELETE

115



USER'S GUIDE

SCRLE allows a user to pick a shape or group of shapes as
source item(s) to be scaled. GROUP/ITEM POP UP appears. The
user makes shape(s) selection accordingly. Then the user uses
a rubberband rectangle to indicate the new size and location
of the modif ied shapes. Then the LEAVE OLD/WIPE OLD POP UP
appears. The user makes a selection. The source shape(s)
is/are then scaled to fit the new size at the new location.
The UND(/BEHIND/ ONTOP /DONE POPUP appears. The user
makes a selection and then acts accordingly as described
above. Af ter the user has selected DONE, the cursor is placed
inside the window and the routine is ready for the user to
select more item(s) to scale. At this point, a click of the
LEFT BUT TON returns the user to the command menu.

MOVE coPY ScALE ()ELETE

DELETE allows the user to erase shapes from a window. The
user places the cursor over the shape and clicks the MIDDLE
BUTTON. Clicking the RIGHT BUTTON will put back the just
deleted shape. Clicking the LEFT BUTTON will return the user
back to the command menu.

Brush Images on Disk

[INoW SHAPEI COLORS TRANSFORM plIS

AVE BRUSH ERASE BRUsj

SNUE BRUSH allows a user to save a brush pattern onto disk.
The user places the cursor over the desired pattern to save in
the work surface and clicks the MIDDLE BUTTON. If the user

116



USER'S GUIDE

chooses to quit the function, instead, a click of the RIGHT
BUTTON will return him/her back to the command menu. The
cursor is then placed inside the scrolling brush menu (see
section on THE IMRGE in Components of Paint Mode to get
further detail about the scrolling brush menu). Here he/she
indicates whether the pattern should replace an existing one
on disk or be added to the end of the list If the user decides
the latter, he/she places the cursor over the WHITE SLOT at
the bottom of the brush menu and clicks the MIDDLE BUTTON.
If the user decides to replace a pattern, he/she places the
cursor over the image of that pattern and clicks the MIDDLE
BUTTON. The following pop up appears:

OVERWRITE
RESELECT

The user makes a selection with a click of the MIDDLE
BUITON. If RESELECT Is chosen, the cursor is placed back
inside the brush menu for the user to select another slot.

SAVE BRUSH RASE B

ERRSE BRUSH allows the user to erase a brush pattern from
disk, The cursor is placed inside the scrolling brush menu
where the user selects the brush pattern to be erased by
placing the cursor over its icon and clicking the MIDDLE
BUTTON (see section on THE IMRGE in Components of Point
Mode to get further detail about the scrolling brush menu).
Then the following pop up appears to make sure the user
wants to erase this pattern from disk:

IFORET IT
DO IT

the user places the cursor over the desired choice and clicks
the MIDDLE BUTTON.

1137



USER'S GUIDE

Components of Paint Mode

EDIT IT

This mode provides routines to generate images in the work
surface.

The Image

I1MGE~f COLORS

BRUSH IMAGE MENU

Scroll one item down

-Scroll one item up

The cursor is constrained inside the brush image menu when
a routine needs the user to select a brush pattern that has
been saved on disk. The limit for the number of brush
patterns that can be saved depends on the available memory
oR disk. This menu displays at a time eight of the saved
brtishes. To select a brush, the user places the cursor over

i1i8



USER'S GUIDE

11-s sri1od clicks the MIDDLE BUTTON. While in this menu,
the user can bring into view brushes which are not currently
displayed by selecting either of the arrow buttons. Placing
the cursor over the top arrow button and clicking the MIDDLE
BUTTON scrolls the items down and displays the next item
above. Placing the cursor over the the bottom arrow button
and clicking the MIDDLE BUTTON scrolls the items up and
displays the next item below.

~PA1M DYNAMIC DRAW SCALE PIC CLEAR PIC SAVE PlC LOAD PlC

PRINT allows the user to create an image by iterating a
brush pattern over the work surface. The cursor is placed in
the brush image menu where the user makes a selection as
described above. Upon selection of the brush, the cursor is
placed inside the work surface. To iterate the pattern ontop
of all colors in the work surface, the user clicks the MIDDLE
BUTTON. Dragging is possible if the user keeps the button
depressed. To iterate the pattern "beneath" certain colors in
the image, the user clicks or keeps depressed the RIGHT
BUTTON, In this type of application only colors in the brush
whose index into the color table are lower then the index of
colors at the current location of the brush on the work
surface are copied, A click. of the LEFT BUTTON returns the
user to the command menu.

PANT YNIC DPA SCALE PIC CLEAR P1C SAVE PlC LOAD PIC

BDNRMIC DRRW allows the user to create an image by
iterating a brush pattern, which the user can control the
change in size and opacity of, over the work surface. The
cursor is placed in the brush image menu where the user
makes a selection as described above. Then the following

I1 9



USER'S GUIDE 

pop ups appear:

The user first adjusts the two extreme sizes that the brush
can grow and shrink between using the pop up on the left.
Two rectangles are provided to represent the sizes. The
user places the cursor over either side of the pop up and
adjusts a size by placing the cursor at a new location for
the upper right corner of the rectangle and clicking the
MIDDLE BUTTON. When the adjustments are done, the user
clicks the LEFT BUTTON. Then the pop up on the right
appears. Placing the cursor at a new level of the slider and
clicking the MIDDLE BUTTON adjusts the change in
transparency and opacity factor. When the adjustments are
done, the user clicks the LEFT BUTTON. The cursor is then
placed inside the work surface. To iterate the pattern ontop
of all colors in the work surface, the user clicks the MIDDLE
BUTTON. Dragging is possible if the user keeps the button
depressed. To iterate the pattern "beneath" certain colors in
the image, the user clicks or keeps depressed the RIGHT
BUTTON (see PAINT for more detail). Clicking the LEFT
BUTTON TWICE at various instances toggles between the
brush growing, shrinking, or staying the same size during
the next application of it. Clicking the LEFT BUTTON and
then the MIDDLE BUTTON at various instances toggles
between the brush becoming more opaque, becoming more
transparent, or staying at the same opacity level during the
next application of it. A click of the LEFT BUTTON and then
a click of the RIGHT BUTTON returns the user to the
command menu.

LAINT I DYNANIC DRAW C LEAR PICI SAvEP3 LOAD PIC

120



USER'S GUIDE

SCRLE Pit allows the user to select a source area and a
destination area in the image in which the portion of the
image in the source area is copied and scaled into the
destination area. The user first selects the source area
using a rubberband rectangle, He/She selects two diagonal
corners by placing the cursor over each location and clicking
the MIDDLE BUTTON, This same process is done to select the
destination area. Then the source image is copied and
scaled into the destination area and the user returned to the
command menu.

PAINT YNAMIC DRAW SCALE PIC (CLEAR PI SAVE PIC LOAD PIC

CLERR PIC allows the user to clear the work surface to a
single color. The cursor is constrained inside the color bar
until the user selects a color (see section on color bar
described in COLOR TRBLE ROUTINES in Components of
Brush Design Mode for description of user's options in the
color bar).

PAINT [DYAMIC DRAW SCALE PlC CLEAR PiC -AvE Pl LOAD PIC

SRUE Pit allows the user to save the current image in the
work surface onto disk. When this command is selected, the
PC monitor will prompt the user for the name of the image
to be saved, The user enters the name through the keyboard.

L PAIT EYNAMIC DRAW I SCALE PIC I CLEAR PIC SAVE PIC oAD PlC?

LORD Pit allows the user to load onto the work surface an
image which has been previously saved onto disk.. When this
command is selected, the PC monitor will prompt the user
for the name of the image to be loaded. The user enters the
name through the keyboard.

121



U. ER's (UIDE 122

Color Table Routines

IMAGE '{{t01S3

ILL$$$ EDIT COLORS BLEND COL oADC S SAVE COL

FILL allows the user to select a region of the image to fill
with a different color. The user locates a point on the
image with the cursor and clicks the MIDDLE BUTTON. Then
he/she selects the fill color from the color bar. The routine
will replace all the neighboring points which have the same
color as the selected point with the fill color. It terminates
when all adjacent points to the filled area are of a different
color than the source point. The user can stop the fill before
its done by clicking the RIGHT BUTTON. After a region has
been filled, the cursor is placed inside the work surface so
the user can continue to select more regions to fill. A click
of the LEFT BUTTON returns the user to the command menu.

[ FILL IDhTCOLEND COLORS .OAD COLORS VECOLORS

See Color Table Routines in Components of Brush Design
Mode for descriptions.



FOOTNOTES

Footnotes:

1Stephen Bann, Experimental Painting (New York, 1970), p. 10.

2Mai-Mal Sze, The Tao of Painting (Princeton, 1963), vol. 2, p. 27.

3Mai-Mai Sze, The Tao of Painting (Princeton, 1963), vol. 2,
p. 328.

11ai -Mai Sze, The Tao of Painting (Princeton, 1963), vol. 2,
pp. 349-351.

5E. H. Gombrich, The Heritage of Apelles (Ithaca, 1976), plate 82.

6Benoit Mandelbrot, The Fractal Geometry of Nature
(San Francisco, 1982), plate C13.

123



BIBLIOGRAPHY

Bibliographg:

Bann, Stephen, Experimental Painting. New York: Universe Books,
1970.

Baumgartner, Victor, GraDhic Games: From Pattern to
Composition. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1983.

Bearden, Romare and Carl Holty, The Painter's Mind. New York:
Garland Publishing, Inc., 1981.

Benthall, Jonathan, Science and Technology in Art Today. New
York: Praeger Publishers, 1972.

Brooks, Leonard, Oil Painting: Basic and New Techniques. New
York: Van Nostrand Reinhold Company, 1971.

Dondis, Donis A., A Primer of Visual Literacy. Cambridge, Mass.:
The M.I.T. Press, 1973.

Foley, James D. and Andries Van Dam, Fundamentals of
Interactive Computer Graphics. Reading, Mass.: Addison-Wesley
Publishing Company.

Fournier, Alain and Don Fussell, "Computer Rendering of
Stochastic Models," Communications of the ACM, vol. 25, no. 6
(June, 1982), 371-384.

Gombrich, E. H., Art and Illusion. Princeton: Princeton University
Press, 1972.

Gombrich, E. H., The Heritage of Apelles. Ithaca: Cornell
University Press, 1976.

124



BIBLIOGRAPHY

Gombrich, E. H., The Story of Art. Oxford: Phaidon Press Limited,
1972.

Hardwick, Martin, "Graphical Data Structures," Computer
Graphics, vol. 15, no. 4 (December 1981), 376-404.

Lewis, John-Peter, "Texture Synthesis for Digital Painting,"
Computer Graphics, vol. 18, no. 3 (July, 1984), 245-252.

Lieberman, Henry, "How to Color in a Coloring Book," ComDuter
Graphics. vol. 12, no. 3 (August, 1978), 111-116.

Mandelbrot, Benoit B., The Fractal Geometry of Nature. San
Francisco: W. H. Freeman and Company, 1982.

Mandelbrot, Benoit. B., Fractals: Form, Chance, and Dimension.
San Francisco: W. H. Freeman and Company, 1977.

McDermott, J., "Geometrical Forms Known as Fractals Find Sense
in Chaos," Smithsonian, vol. 14, no. 9, 1983.

Newman, William M. and Robert F. Sproull, Principles of
Interactive Computer Graphics. New York: McGraw-Hill Book
Company, 1979.

Norton, A. "Generation and Display of Geometric Fractals in 3-D,"
Computer Graphics. vol. 16, no. 3 (July, 1982), 61-6 1.

Owen, Peter, Painting; The Appreciation of the Arts/5. London:
Oxford University Press, 1973.

Pool, Phoebe, Impressionism. New York: Oxford University Press,
1979.

Rowley, George, Principles of Chinese Painting. Princeton:
Princeton University Press, 1959.

125



BIBLIOGRAPHY

Silbergeld, Jerome, Chinese Painting Style. Seattle: University
of Washington Press, 1982.

Standish, Thomas A., Data Structure Techniques. Reading, Mass.:
Addison-Wesley Publishing Company, 1980.

Sze, Mai-Mai, The Tao of Painting.
University Press, 1963.

Princeton:

Thompson, d'Arcy Wentworth,
Cambridge University Press, 1952.

On Growth and Form. Cambridge:

Whitted, Turner, "Anti-Aliased
ComDuter GraDhics.

Stephen, "Computer

Extrusion,"
151-156.

Wolfram,

Line Drawing Using
vol. 17, no. 3 (July,

Software in Science and
Mathematics," Scientific American (Sept, 1984),. 188-203.

"ColorPaint, PCPaint, and PC Paintbrush."
(May, 1985), 98-102.

Popular Computina.

Princeton

Brush
1983),

126



ACKNOWLEDGEMENT S

Hcknowledgements:

I dedicate this thesis with love to my parents, Bertrand and
Yu-Chen Mao, for their continuous support, guidance, and love,
and credit to them all accomplishments that I have made or will
make in my life.

I would like to thank my sisters, Pei-Pei, Sandi, and Lisa, for
their support and humor, my friends, Steve Simon and Jan Cutro,
for their companionship, as well as for looking after my well
being during my toiling hours of work, and all my friends for
their conversation, encouragement, and humor. I am grateful to
Frank Chu, Scott Lichtman, and Dimitry Rtischev for their
contribution to the software development of this thesis project,
to Brian Swift for helping me select a thesis topic, and to my
colleagues, Susan Wascher, Liz Rosenzweig, and Debra Adams for
sharing and pulling through rough times together. I would like to
thank Professor Muriel Cooper and Ron MacNeil for providing me
the opportunity to merge my interests in art and computer
science.

The research for this thesis project was partly supported by
HELL GMBH of Kiel, Germany.

127


