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Abstract

We apply a linear relaxation procedure for polynomial optimization problems to transmission system
planning. The approach recovers and improves upon existing linear models based on the DC approx-
imation. We then consider the full AC problem, and obtain new linear models with nearly the same
efficiency as the linear DC models. The new models are applied to standard test systems, and produce
high quality approximate solutions in reasonable computation time.

1 Introduction

Static transmission system planning is a network design problem in which lines are selected from a candidate
set to meet certain physical requirements while minimizing investment and operational costs [1,2]. Linearized
or ‘DC’ power flow is a standard simplification of AC power flow [3], which is usually too computationally
intensive a representation of electrical physics for usage in optimization; only recently has this problem been
approached in full [4]. For network design problems in which the existence of a line may be a variable, even
linearized power flow becomes nonlinear, and furthermore, non-convex.

Current approaches can be divided into metaheuristics [5] and classical algorithms [1, 6], as well as
combined approaches [7]. This work falls among classical approaches, the primary focus of which is circum-
venting the non-convexity of DC transmission system planning. This has traditionally been accomplished
through linear relaxations, namely the so called transportation and disjunctive models [1].

A relaxation is an approximation to an optimization problem which always bounds the minimum below
(or maximum above), and is typically easier to solve than the original problem. Relaxed solutions such as
those from the hybrid and disjunctive models are often infeasible for the original problem, but can contain
a significant portion of the true optimal solution, thus reducing the size of the original problem, which may
be intractable when approached directly [1]. Furthermore, the distance to feasibility is often slight, and thus
the chance of obtaining an optimal or near optimal solution through modification to a relaxed solution is
higher than when attempting to solve the original problem, which may have many local minima.

In this work, we apply a general linear relaxation procedure for polynomial optimization problems [8]
to transmission system planning. The approach is broadly applicable; we employ it here with the intention
of both formulating new models and providing a tutorial in its usage for power system optimization. First,
we approach the DC power flow case and obtain a hierarchy of linear models, which includes the hybrid
transportation [9] and disjunctive [10–13] models, the latter of which we make more flexible. The relaxation
is then applied to the full AC case, yielding a linear AC model which to our knowledge is the first of its kind.

The DC and AC models are tested on several standard examples from the transmission system planning
literature. The new DC models demonstrate improved efficiency, and the AC models compare well with
existing nonlinear approaches while retaining the efficiency of linear DC models.
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2 Linear relaxations

Before applying the relaxation of [8] to transmission system planning problems, we briefly describe it through
a simple example. Consider the following bilinear optimization problem:

min
x

x1 (x2 − 1)

s.t. x1 ≥ 1, x2 ≥ 2

A second-order relaxation is formulated as follows. Add the redundant constraint (x1 − 1)(x2 − 2) ≥ 0, and
substitute a new variable y for all instances of x1x2. The relaxation is given by

min
x,y

y − x1

s.t. x1 ≥ 1, x2 ≥ 2, y − 2x1 − x2 + 2 ≥ 0

In this manner we lift polynomial problems with nonlinear constraints and objectives into higher dimensional
spaces. Approximate solutions are obtained by then projecting the optimal relaxed solution onto the original
space, which for our purposes means simply eliminating the new variables from the relaxed solution. Here,
the minima of the original and relaxed problems are both one, with x1 = 1, x2 = 2, and y = 2. Exactness
is certified by the factorability of new variables into the original ones; in this example, y = x1x2. Although
here the relaxed and actual minima are identical, it is not true in general, and usually will not be the case
for transmission system planning problems.

Substitutions of any order can be performed within this framework, and it has been shown that as larger
and larger constraint products are formed, the relaxation converges to the true optimum [14]. However,
the size of the resulting linear programs grows rapidly, and so a compromise must be made at some point
between accuracy and practicality. We exclusively consider second-order relaxations here, but do not dismiss
the potential value of higher order formulations.

In the following sections, we use the relaxation to address the nonlinear physical constraints of power
flow. We remark that this and other lift-and-project methods were originally developed for handling bi-
nary variables, which can be constrained polynomially with the equality x2 = x [15, 16]. We leave the
discrete aspect to commercial solvers, which have robust, efficient algorithms for solving mixed integer linear
programs.

3 DC power flow

In the standard DC load flow network design problem, we are given the following parameters: a line invest-
ment vector c, a vector of generation and demand p, normalized susceptances b, and normalized flow limits
f . Also given are the number of lines present in the existing network, η0, and the number of additional
lines which may be constructed, η. Let Γ denote the set of buses, Ω0 the set of existing lines, and Ω the
set of candidate lines. We follow the notational conventions that unless otherwise specified, single subscripts
denote members of Γ, double subscripts members of Ω, and i ∼ j summation over Ω0 ∪ Ω.

The nonlinear DC load flow network design problem is given by

NLDC min
θ,η,f

∑
i∼j

cijηij (1)

s.t.
∑
j:i∼j

fij = pi (2)

fij − bij(η
0
ij + ηij)(θi − θj) = 0

(i, j) ∈ Ω0 ∪ Ω (3)

|fij | ≤ (η0ij + ηij)f ij (4)

0 ≤ ηij ≤ ηij , ηij ∈ N (5)

where the variables θ are bus angles, η candidate lines, and f power flows. The main difficulty in using the
above formulation is constraint (3): it is bilinear and hence non-convex.
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We first reformulate NLDC in a way which, upon application of the relaxation of [8], leads to a class of
disjunctive models. Eliminate the variables f by substitution of constraint (3), and rewrite NLDC

NLDCS min
θ,η

∑
i∼j

cijηij (6)

s.t.
∑
j:i∼j

bij
(
η0ij + ηij

)
(θi − θj) = pi (7)

bij |θi − θj | ≤ f ij (i, j) ∈ Ω0 (8)

bijηij |θi − θj | ≤ f ijηij (9)

0 ≤ ηij ≤ ηij , ηij ∈ N (10)

(9) is required to preserve the equivalence of NLDCS and NLDC. If (8) alone was enforced over all the lines,
artificial constraints on angles would arise between buses that were not directly connected.

We derive an additional constraint set which is implicit in (8), but leads to a tighter relaxation. Consider
a line (i, j) ∈ Ω, and let sij be a path connecting i and j through Ω0. Summing constraint (8) along sij and
multiplying by bij gives

bij |θi − θj | ≤Mij (i, j) ∈ Ω. (11)

where Mij = bij
∑

(k,l)∈sij fkl/xkl. Clearly (11) is sharpest when sij is the shortest path through the graph

induced by Ω0 with edge weights fkl/xkl, (k, l) ∈ Ω0, which matches the result stated in [13]. If no path
between the nodes i and j exists in Ω0, sij can be set to the longest path through the existing and candidate
networks [13]. This however is an NP-hard calculation that contributes little accuracy; Mij can instead be
set to some sufficiently large number, e.g.

∑
(i,j)∈Ω∪Ω0

f ij/bij .

We now apply the relaxation to NLDCS with constraint (11). We develop a second-order linearization
by introducing the variable ζij = bijηij(θi − θj), and then constraining ζ with (9) and products of (8), (10),
and (11). For example, we obtain constraint (16) by multiplying Mij − bij |θi − θj | from (11) with ηij − ηij
from (10), and then substituting ζij wherever bijηij(θi − θj) appears.

We thus have the following relaxation:

LDC min
θ,η,ζ

∑
i∼j

cijηij (12)

s.t.
∑
j∼i

ζij + bijη
0
ij(θi − θj) = pi (13)

bij |θi − θj | ≤ f ij (i, j) ∈ Ω0 (14)

|ζij | ≤ min{Mij , f ij}ηij (15)∣∣ζij − bijηij (θi − θj)
∣∣ ≤Mij

(
ηij − ηij

)
(16)

0 ≤ ηij ≤ ηij , ηij ∈ N (17)

For comparison, the original disjunctive model, which only admits a binary formulation, is

DM min
θ,η,ζ

∑
i∼j

cij
∑
k

ηkij (18)

s.t.
∑
j∼i

bijη
0
ij(θi − θj) +

∑
k

ζkij = pi (19)

bij |θi − θj | ≤ f ij (i, j) ∈ Ω0 (20)

|ζkij | ≤ f ijη
k
ij (21)∣∣ζkij − bij (θi − θj)

∣∣ ≤Mij

(
1− ηkij

)
(22)

ηkij ∈ {0, 1} k = 1, ..., ηij (23)

DM and LDC are quite similar; indeed LDC can be straightforwardly transformed to a binary problem
which is identical to DM save constraint (21), which is looser than (15), its counterpart in LDC. Moreover,
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line quanta may be aggregated in any fashion, so that a particular discrete variable may represent any
number of candidate lines between one and ηij . From this perspective, DM and LDC represent opposing
ends of a spectrum, which in general becomes less accurate and more efficient as one moves from ηij binary
variables to a single integer variable per line.

We remark that if we apply the substitution ζij = bijηij(θi − θj) to NLDCS without forming any
constraint products, the flows are only constrained by line capacities, and we obtain a hybrid model [1] in
which flows in existing lines are governed by DC power flow, and in new lines by the network flow [17,18].

4 AC power flow

There has been little work to date on transmission system planning using AC power flow. A notable recent
approach is [4], in which a full AC model is solved by an interior point method in tandem with a constructive
heuristic algorithm. We now derive linear models for AC transmission system planning which are similar
in structure and size to the disjunctive models of the previous section. Solutions can be used in the same
fashion as those from linear DC models, and hence the new models mark a significant improvement in the
overall design procedure via removal of the DC approximation.

Let s, v, and y respectively denote complex powers, voltages and admittances, and let p, p, q, and q
respectively be lower and upper real and reactive power limits, e.g. if bus i is a purely real load, p and p are
both equal to the load value, and q = q = 0. The remaining notation is identical to the previous section.
The basic AC power flow model is then given by

NLAC min
η,s,v

∑
i∼j

cijηij (24)

s.t. sij =
(
η0ij + ηij

) (
viv

∗
i y

∗
ij − viv

∗
j y

∗
ij

)
(25)

p
i
≤ Re

∑
j

sij ≤ pi (26)

q
i
≤ Im

∑
j

sij ≤ qi (27)

vi ≤ |vi| ≤ vi (28)

|sij | ≤
(
η0ij + ηij

)
sij (i, j) ∈ Ω0 ∪ Ω (29)

0 ≤ ηij ≤ ηij , ηij ∈ N (30)

Note that although line variables and parameters are non-directional, i.e. ηij = ηji, sij = sji and so on,
sending and receiving power flows sij and sji are not.

We first must rewrite NLAC in terms of real, polynomial constraints so we may begin to build a
relaxation. Let y = g + jb, v = w + jx, s = p + jq, and let bs = b + bsh, where bsh is the line shunt
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susceptance. NLAC is then given by

NLACS min
η,p,q,w,x

∑
i∼j

cijηij (31)

s.t. pij =
(
η0ij + ηij

)
(bij(wixj − wjxi)

−gij(xixj + wiwj) + gij(w
2
i + x2i )

)
(32)

qij =
(
η0ij + ηij

)
(gij(wixj − wjxi)

+bij(xixj + wiwj)− bsij(w
2
i + x2i )

)
(33)

p
i
≤

∑
j

pij ≤ pi (34)

q
i
≤

∑
j

qij ≤ qi (35)

v2i ≤ w2
i + x2i ≤ v2i (36)√

p2ij + q2ij ≤
(
η0ij + ηij

)
sij

(i, j) ∈ Ω0 ∪ Ω (37)

0 ≤ ηij ≤ ηij , ηij ∈ N (38)

Constraint (37) represents a slight obstacle: although it can be expressed polynomially, fourth order
products of the original variables are involved, rendering the size of the resulting relaxation impractically
large. We instead approximate it so that p and q are involved linearly. A few options are apparent; for
example, introduce the constants τ1 and τ2, and replace (37) with

τ1ij |pij |+ τ2ij |qij | ≤
(
η0ij + ηij

)
sij (39)

Notice, for example, that by setting τ1 and τ2 to one, we obtain a more conservative constraint than (37),
which is no longer a relaxation, while by setting τ2 to zero, we relax (37) by only limiting the flow of
active power. Although we have opted to approximate (37) with a single constraint, any piecewise linear
approximation can be accommodated.

Define the new variables:

αi = w2
i + x2i

δij = ηij
(
w2
i + x2i

)
µij = bij(wixj − wjxi)− gij(xixj + wiwj)

+gij(w
2
i + x2i )

νij = gij(wixj − wjxi) + bij(xixj + wiwj)

−bsij(w2
i + x2i )

ϕij = ηij (bij(wixj − wjxi)− gij(xixj + wiwj)

+gij(w
2
i + x2i )

)
ψij = ηij (gij(wixj − wjxi) + bij(xixj + wiwj)

−bsij(w2
i + x2i )

)
Certain symmetries are present in these variables, which we use to form additional constraints. Before
showing them, we first give a brief example illustrating why they exist; Suppose yij is substituted for the
product xixj ; the implicit constraint yij = yji follows from the fact that xixj = xjxi. The following
constraints are similarly formed by taking linear combinations of (32) and (33) and performing the above
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substitutions to relate new variables from i to j and j to i:

gij(µij − µji)− bij(νij − νji)

=
(
g2ij + bijb

s
ij

)
(αi − αj)

bij (µij + µji) + gij (νij + νji)

=
(
gijbij − gijb

s
ij

)
(αi + αj)

gij (ϕij − ϕji)− bij (ψij − ψji)

=
(
g2ij + bijb

s
ij

)
(δij − δji)

bij (ϕij + ϕji) + gij (ψij + ψji)

=
(
gijbij − gijb

s
ij

)
(δij − δji)

Let Φ denote the set on which the variables µ, ν, ϕ, ψ, α, and δ satisfy these equalities. Forming
constraints containing up to second-order terms and substituting the new variables, we have

LAC min
η,µ,ν,ϕ,ψ,α,δ

∑
i∼j

cijηij (40)

s.t. {µ, ν, ϕ, ψ, α, δ} ∈ Φ (41)

p
i
≤

∑
j

η0ijµij + ϕij ≤ pi (42)

q
i
≤

∑
j

η0ijνij + ψij ≤ qi (43)

v2i ≤ αi ≤ v2i (44)

v2i ηij ≤ δij ≤ v2i ηij (45)

v2i
(
ηij − ηij

)
≤ ηijαi − δij ≤ v2i

(
ηij − ηij

)
(46)

τ1ij |µij |+ τ2ij |νij | ≤ sij (i, j) ∈ Ω0 (47)

τ1ij |ϕij |+ τ2ij |ψij | ≤ sijηij (48)

τ1ij
∣∣ηijµij − ϕij

∣∣+ τ2ij
∣∣ηijνij − ψij

∣∣
≤ sij

(
ηij − ηij

)
(i, j) ∈ Ω0 (49)

0 ≤ ηij ≤ ηij , ηij ∈ N (50)

LAC is quite similar to LDC and the disjunctive model. µ and ϕ respectively represent active power
flows in the existing and new networks, and ν and ψ similarly represent reactive power flows. Constraint (49)
is directly analogous to (16); unfortunately, it cannot be extended to lines not in the preexisting network,
because (47) does not reduce to an expression with only i and j indices when summed along paths from i to
j through Ω0.

As with the disjunctive model, we are also able to formulate a binary version which is less efficient but
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more accurate:

LACB min
η,µ,ν,ϕ,ψ,α,δ

∑
i∼j

cij
∑
k

ηkij (51)

s.t. p
i
≤

∑
j

η0ijµij +
∑
k

ϕkij ≤ pi (52)

q
i
≤

∑
j

η0ijνij +
∑
k

ψkij ≤ qi (53)

v2i ≤ αi ≤ v2i (54)

v2i η
k
ij ≤ δkij ≤ v2i η

k
ij (55)

v2i
(
1− ηkij

)
≤ αi − δkij ≤ v2i

(
1− ηkij

)
(56)

τ1ij |µij |+ τ2ij |νij | ≤ sij (i, j) ∈ Ω0 (57)

τ1ij
∣∣ϕkij∣∣+ τ2ij

∣∣ψkij∣∣ ≤ sijη
k
ij (58)

τ1ij
∣∣µij − ϕkij

∣∣+ τ2ij
∣∣νij − ψkij

∣∣
≤ sij

(
1− ηkij

)
(i, j) ∈ Ω0 (59)

ηkij ∈ {0, 1} k = 1, ..., kij (60)

Note that LAC has roughly two to four times the number of constraints of LDC, depending on the
choice of τ1 and τ2; essentially, any system that LDC or the hybrid model is applicable to is within the scope
of LAC as well. The same parity exists for DM and LACB.

5 Computational results

In this section we compare the performance of our models to existing approaches. The resulting mixed
integer linear programs were solved using the modeling language AMPL [19] and solver CPLEX [20] on a
desktop computer representative of current standards. Objectives are given in terms of relative (unitless)
values to facilitate comparison.

5.1 DC models

The main advantage in using LDC over DM is the retention of constraint (16) without the introduction a
large number of binary variables. Of course, this constraint only has influence when ηij is not too much
larger than the optimal ηij . We compare the models on the 46-bus, 79-line Brazilian system of [9, 21] and
the 24-bus, 41-line IEEE reliability test system [22]. In the original Brazilian system, line additions are
unlimited, effectively nullifying constraint (16) and reducing LDC to the hybrid model of [1]. We modify the
Brazil system so as to observe the differences in using LDC by setting ηij = 2 for all (i, j) ∈ Ω.

We give the objective value and running time of DM and LDC, as well as the hybrid model of [1] in
Table 1. In both cases, LDC achieves an objective between the hybrid model and DM, while requiring twice
the time of the hybrid model and substantially less time than DM. In practical terms, LDC has similar
efficiency to but greater accuracy than the hybrid model, and thus can be applied to much larger problems
than the disjunctive model.

Table 1: Efficiency of DC models
Model DM LDC Hybrid

Obj. Time Obj. Time Obj. Time

IEEE RTS 4.01 1.25 3.61 0.62 3.45 0.35
Brazilian 1.63 10.36 1.45 1.61 1.41 0.71
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5.2 AC models

We demonstrate LAC on two of the example systems from [4], which are AC versions of the Garver’s six bus
system with Ω0 = ∅ [23] (a variant is studied in [24] using a metaheuristic) and the Brazilian test system
of the previous section. Tables 2 and 3 show the objective value and solution reported for the nonlinear
approach in [4] (NL), and obtained by the linear model LAC with τ2 = 1 and τ2 = 0 for all (i, j) ∈ Ω.
Running times in seconds are reported for each linear model as well. In the ‘line additions’ section of each
table, the left column indicates which line a given row corresponds to, and the other columns how many
additions to that line were made by each algorithm; lines not listed where changed by none of the algorithms.
LACB performed identically to LAC on these examples, and so is not shown. Note that we do not consider
reactive power source allocation, and so our solutions for the latter two examples correspond to slightly
different scenarios than those in [4].

Table 2: Garver’s six bus system
Model NL [4] LAC, τ2 = 1 LAC, τ2 = 0
Obj. 260 190 160
Time - 0.18 0.13

Line additions
1 - 5 1 1 0
2 - 3 1 2 0
2 - 6 3 1 2
3 - 5 2 2 2
4 - 6 3 2 2

Table 3: Brazilian system
Model NL [4] LAC, τ2 = 1 LAC, τ2 = 0
Obj. 10.258 10.800 8.254
Time - 7.4 3.3

Line additions
5 - 6 2 2 0
5 - 11 0 0 2
6 - 46 1 1 0
11 - 46 0 0 1
12 - 14 0 1 0
14 - 26 0 1 0
18 - 19 0 0 1
19 - 25 1 0 0
20 - 21 1 2 2
20 - 23 0 2 1
24 - 25 1 0 0
28 - 31 0 1 1
31 - 32 0 1 1
42 - 43 1 2 2
42 - 44 1 0 0

For each system, the linear model solutions are reasonably similar to the nonlinear ones (which are
not necessarily optimal). By setting τ2 = 1, a more conservative solution is obtained, which can in fact
have a higher objective than the nonlinear solutions, whereas setting τ2 = 0 yields relaxed solutions in
considerably less time. Note that these results also suggest a certain measure of discretion must be applied
when interpreting relaxed solutions: some of the obtained solutions are likely to be infeasible, and would
require reinforcement before being implementable.

8



6 Conclusion and future work

We have applied a linear relaxation technique to transmission system planning. We obtain mild improvements
over existing linear DC models, and formulate the first linear AC model, which compares well with the more
expensive nonlinear approach of [4]. As an alternative approach, the AC model substantially simplifies
transmission system design by circumventing DC approximations.

There are multiple venues for future work in this context. The first is the development of a general
purpose software tool along the lines of the Gloptipoly [25] semidefinite relaxation suite, but which automat-
ically generates linear relaxations of a specified order and calls linear rather than semidefinite solvers. Along
these lines, mixed integer conic optimization is an active area of research [26], and may soon yield algorithms
for mixed integer second-order cone and semidefinite programming of similar sophistication to those of mixed
integer linear programming. It is a reasonable assumption that more accurate, convex models may be for-
mated in terms of second-order cone and semidefinite constraints, which are more expressive than their linear
counterparts; this will be the subject of future work. Lastly, within power system design and operation there
is an abundance of optimization problems complicated by low-order polynomial nonlinearities arising from
electrical physics, for example optimal power flow [3] and distribution system reconfiguration [27]. The scale
and often discrete nature of these problems calls for mixed integer linear and, pending further advancement,
conic programming approaches. It is the authors’ opinion that the relaxation procedure employed here is
well suited to these tasks, which is supported by the implicit role it has already played through the use of
hybrid and disjunctive DC transmission system planning models.
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