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Abstract

We demonstrate the use of a high resolution form of optical coherence tomography, termed micro-OCT (mOCT), for
investigating the functional microanatomy of airway epithelia. mOCT captures several key parameters governing the
function of the airway surface (airway surface liquid depth, periciliary liquid depth, ciliary function including beat frequency,
and mucociliary transport rate) from the same series of images and without exogenous particles or labels, enabling non-
invasive study of dynamic phenomena. Additionally, the high resolution of mOCT reveals distinguishable phases of the
ciliary stroke pattern and glandular extrusion. Images and functional measurements from primary human bronchial
epithelial cell cultures and excised tissue are presented and compared with measurements using existing gold standard
methods. Active secretion from mucus glands in tissue, a key parameter of epithelial function, was also observed and
quantified.
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Introduction

Mucociliary transport and the function of the airway surface is

an area of active study of the human respiratory system. In healthy

airways, a layer of cilia continuously transports airway mucus, a

vital mechanism for defense against particulate contamination and

biological invaders. In many respiratory diseases, however, this

mechanism weakens or fails. Perhaps the best known of these is

cystic fibrosis (CF) airway disease, in which a mutation in the cystic

fibrosis transmembrane conductance regulator (CFTR) impairs

the clearance of mucus from the lungs and airways [1,2,3].

Chronic obstructive pulmonary disease (COPD) also causes

compromised mucus flow [4], as does primary ciliary dyskinesia,

each through distinct mechanisms.

To investigate the pathogenesis, progression, or treatment of

these diseases, a tool to quantitatively characterize the functional

microanatomy of living cells and tissues without disturbing the

mucociliary mechanism is highly desirable. Relevant metrics

include the airway surface liquid (ASL) depth, the thickness of the

thin layer of liquid surrounding the cilia known as the periciliary

liquid (PCL) depth, the ciliary beat frequency (CBF), and the

velocity of mucociliary transport (MCT).

Although individual methods exist for the measurement of ASL,

PCL, CBF, and MCT, each has significant limitations. ASL can be

measured with X–Z scanning confocal microscopy, but requires

transient dyes [5,6] and is not readily performed in vivo. PCL

measurements require osmium tetroxide fixation with perfluor-

ocarbon preservation of the ASL, a technique that is destructive

and cannot be performed on living tissues. Particles and
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radionuclide labeling can be used to measure the rate of MCT in

vitro and in vivo, respectively [7,8], but the addition of exogenous

material may perturb the mucus transport itself, causing unreliable

measurement [8], and radionuclear studies do not provide cellular

level detail. High frame rate phase contrast microscopy can be

used to measure CBF [9,10,11], but can only be used in trans-

illumination geometries and therefore have limited in vivo potential.

Furthermore, each of these individual techniques involves separate

imaging equipment and contrast mechanisms, a prohibitive

impediment to the comprehensive dynamic study of mucociliary

transport, including the inter-relationships between these param-

eters, which requires the acquisition of each of these measurements

simultaneously.

Optical coherence tomography (OCT) [12,13] produces cross-

sectional images based on sample reflectance, which is well suited

for the study of airway microanatomy, since a cross-sectional view

would reveal the thicknesses of the ASL and PCL as well as

capture tissue structure simultaneously. Moreover, since imaging

can be conducted non-invasively and at video rate, functional

parameters can be derived without perturbing the airway surface.

Contrast is derived from the natural reflectance of the various

liquid and cell layers without the need for exogenous dyes, which

enables ASL, PCL, CBF, and MCT measurements simultaneously

from the same set of images. However, though macroscopic

measurements such as mucus transport rate or thick ASL depths

can be made with relatively low resolutions [14], most OCT

systems do not possess sufficient resolution to fully resolve ASL and

PCL layers in normal and CF airway epithelia [15,16,17,18], and

the ciliary layer, a requirement for accurate measurement of CBF.

ASL and PCL thicknesses are critical for maintaining normal

mucociliary clearance, since an ASL depth decrease as small as a

few microns may result in failure of the mucociliary apparatus in

HBE cultures [17], and increases as small as a couple of microns

can contribute to restoration of CF airway epithelial function

[19,20]. Since cilia provide the primary driving force for

mucociliary clearance, the ability to resolve individual cilia and

directly measure their activity including CBF and ciliary beat

pattern is of paramount importance.

The resolution of an OCT system intended for mucociliary

investigation should ideally be smaller than the height difference

between the effective stroke and recovery stroke (,2 mm) [17,21]

in order to investigate the ciliary motion pattern within the PCL

space. The stroke pattern of motile cilia [21], which entails a

complex cycle of recovery, effective forward motion, and rest,

could be revealed with sub-ciliary resolution, which would open to

study an entirely new set of previously inaccessible functional

parameters. A recent publication has indicated that the presence of

ciliary beating can be detected even with an axial resolution of

approximately 3 mm, but a direct quantitative measure of CBF

could not be made, nor was the ciliary stroke pattern imaged [14].

We have developed an OCT system with 1-micron resolution, a

technique we have named micro-OCT (mOCT). Previously

published results from human and swine coronary arteries using

our mOCT system revealed unprecedented subcellular detail in

these tissues [11]. In the present work, we demonstrate mOCT

applied to living airway epithelium, both in cultures and in tissues

ex vivo, including direct and simultaneous measurements of ASL,

PCL, MCT, ciliary stroke pattern, CBF, and glandular function

without exogenous labeling, providing a new tool to interrogate

the functional microanatomy of respiratory epithelia with

unequaled resolution.

Materials and Methods

Ethics Statement
Use of human cells and tissues was approved by the Institutional

Review Boards at University of Alabama Birmingham (IRB

#X080625002) and Massachusetts General Hospital (IRB

#2008P000178). Primary human bronchial epithelial cells were

derived from lung explants after written informed consent was

obtained from non-CF subjects with confirmed CFTR genetics.

Remnant human tissues following organ explantation were

acquired after written informed consent was obtained from non-

CF subjects with confirmed CFTR genetics. The Subcommittee

for Animal Research Care at the Massachusetts General Hospital

(IACUC 2011N000081 and 2010N000242) approved the use of

discarded swine tissue for these studies.

The mOCT system is a spectral-domain OCT implementation

[22,23,24,25] with several key improvements to standard OCT

that yield high resolution in both lateral and axial directions. The

general layout and axial resolution characterization are shown in

Figure 1. A super-continuum source (Fianium SC450) provides the

high-bandwidth, short coherence length light necessary for high

axial resolution (1.3 mm, Fig. 1B). A typical OCT system includes

an interferometer with the reference and sample arms intersecting

at a beamsplitter. The beamsplitter is replaced in mOCT with a 45

degree rod mirror, which apodizes the sample beam by

introducing a circular obscuration in the center to achieve a

balance of good lateral resolution (2 mm) and long depth of focus

(0.2 mm). Custom software is employed to control the galvanom-

eter scanning motors while acquiring spectral data from the line

camera. The system operates with user-configurable line and

frame rates and customizable scan geometry; typical settings are

32 or 40 frames per second, 512 A-lines per frame in a linear scan,

and 0.5 mm by 0.5 mm (X by Z) for a cross-sectional image. The

effective thickness of each cross-section is equal to the mOCT

beam spot size (2 mm).

Primary human bronchial epithelial (HBE) cells were derived

from lung explants according to previously described methods

[26,27]. First or second passage cells following expansion were

seeded on permeable supports for studies. At 80–90% confluency,

cells were seeded onto 1.12 cm2, 12 mm permeable Snap-well

supports (106 cells per filter; Corning Inc., Corning, New York) or

6.5 mm permeable supports (0.56106 cells per filter; Corning Inc.)

that were coated with NIH 3T3 fibroblast conditioned media.

Cells were grown in differentiating media for at least 6–8 weeks

containing DMEM/F12 (Invitrogen, Carlsbad, California), 2%

Ultroser-G (Pall, New York), 2% Fetal Clone II (Hyclone, Logan,

Utah), 2.5 mg/mL insulin (Sigma-Aldrich), 0.25% bovine brain

extract (LONZA), 20 nM hydrocortisone (Sigma-Aldrich),

500 nM Triodothyronine (Sigma-Aldrich), 2.5 mg/mL transferrin

(Invitrogen), 250 nM ethanolamine (Sigma-Aldrich), 1.5 mM

epinephrine (Sigma-Aldrich), 250 nM phosphoethanolamine,

and 10 nM retinoic acid (Sigma-Aldrich) until terminally differ-

entiated.

Normal piglet tracheas were obtained from Exemplar Genetics

(Sioux Center, Iowa). Tissue were dissected from one-day-old

piglets and shipped on wet ice in DMEM. A modified protocol

based on airway tissue handling and preparation methods

developed by Ballard et al. in [28] was employed. Tracheas were

immersed in 80 mL Ringer bicarbonate solution (KRB) baths at

room temperature and slowly warmed to 37uC. After four hours of

pretreatment, the tracheas were removed from the KRB.

Accessible mucus and liquid were aspirated from the airway

lumens and the tracheal ends were cannulated so that the serosal

surface was bathed in KRB [29] without contacting the mucosal
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surface, as previously described [28,30]. Tracheas were allowed to

equilibrate in KRB bubbled with 95% O2 and 5% CO2 at 37uC
and the luminal side exposed to conditioned air at 100% humidity

for 2 hours prior to mOCT imaging [31].

mOCT imaging was performed on HBE cell cultures with

illumination incident on the apical side of the cells. The axis of the

imaging optics is typically placed within 10 degrees of normal to

the cell plane to minimize errors in geometric measurements. ASL

and PCL were measured directly from the thicknesses of the visible

layers in the image with a correction applied for the index of

refraction in the liquid (n = 1.33). ASL and PCL were evaluated at

5 equally distributed regions of the image. CBF and MCT were

determined from a time series of images. CBF was measured by

finding the frequency of peak amplitude in the temporal Fourier

transform of the regions exhibiting oscillatory behavior. Up to 10

regions of ciliary activity per image sequence were assessed for

CBF. MCT was computed by measuring the displacement of 5 to

10 visible inclusions in the mucus through time. All image analysis

was performed with ImageJ and Matlab.

Comparisons to the standard optical methods for ASL, CBF,

and MCT measurements were performed. For all paired

comparisons, imaging was performed 1 mm from the edge of

each well. For ASL depth, the HBE cell surfaces were stained with

Texas Red dye (25 mL at 2 mg/mL in FC-70, administered

2 hours prior to measurements). Transwell membranes were

placed in a sterile glass bottom dish coated with MEM. A confocal

microscope (Carl Zeiss, Oberkochen, Germany) was used to

acquire XZ cross-sectional scans. 4 regions of interest (ROI) were

analyzed for each monolayer [32] and average ASL depth was

measured for 5 equally distributed locations in each ROI. For

CBF, cells were equilibrated at room temperature for 15 minutes,

then evaluated using Hoffman contrast microscopy as described

previously [33] to acquire images from 4–5 regions of interest in

each well at 100 frames per second. Analysis was performed with

Sisson-Avon Video Analysis (SAVA, Ammons Engineering,

Mount Morris, Michigan). For MCT rate, a 50 mL suspension

of 1 mm diamine polyethylene glycol (PEG) coated fluorescent

beads (Molecular Probes, Eugene, Oregon) was introduced to the

mucus layer. Fluorescence imaging (488 nm excitation, 519 nm

emission) was performed with an inverted microscope (Nikon

Diaphot, Melvin, New York). Images were analyzed using

Metamorph 7.0 software (Molecular Devices, Sunnyvale, Califor-

nia), and transport rate was measured for 10–15 particles per

region.

Excised porcine trachea tissue was also imaged with mOCT,

with ASL, PCL, CBF and MCT measurements acquired with the

same methods as with cultured cells. Additionally, gland ducts

exhibiting mucus extrusion were imaged, and the output flow rate

computed by multiplying velocity (measured in the same manner

as MCT) with the cross-section of the extrusion (measured

geometrically).

Finally, to demonstrate the suitability of mOCT to human tissue

in addition to swine, samples of human trachea tissue were also

imaged, derived from normal donor explant organs not selected

for lung transplantation. Lung, mainstem bronchi, and trachea

were resected en-bloc, transferred on wet ice, and large airways

excised. Airway tissues were then immersed in ice cold DMEM

following resection for transfer, then allowed to equilibrate to

room temperature prior to mOCT imaging.

Figure 1. mOCT instrumentation schematic and axial resolution. A. System diagram. RM: reference mirror. OL. objective lens. EC:
environmental chamber. AO: analog output board. G: grating. IMAQ: image acquisition board. L: camera lens. LSC: line scan camera. SMF: single mode
fiber. PC: personal computer. RAID: redundant array of independent disks. CL: Camera Link cable. B. Depth profile of mirror surface, indicating axial
full-width half maximum of 1.3 mm.
doi:10.1371/journal.pone.0054473.g001
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Results

Imaging respiratory epithelial functional anatomy in live
motion

A representative mOCT image of HBE cells (Fig. 2 A) illustrates

the resolvable features of airway epithelium culture. The epithelial

monolayer and the cilia can be visualized with a resolution

comparable to medium power histology (Fig. 2 B). Mucus and

PCL layer that together comprise the airway surface liquid (ASL)

layer can also be clearly visualized (Fig. 2 A and Movie S1). From

top to bottom, the air has no mOCT signal; the mucus layer

appears heterogeneous with high mOCT signal intensity; the PCL

gel has a low mOCT signal intensity compared with the mucus and

monolayer and includes ciliary structures. The air-liquid interface,

mucus-PCL interface, and apical cell surface are clearly defined so

that ASL and PCL heights can be directly measured with sub-

micrometer resolution. In addition to the different layers, cilia tips

can be readily detected by mOCT, as they are brighter than the

surrounding PCL and mucus. The tips maintain contact with the

deep surface of mucus blanket and lift the mucus nearby by a few

hundred nanometers during the effective stroke (Fig. 2 and Movie

S1), a finding that is consistent with previous observations made

using electron microscopy [21].

Freshly excised full-thickness airway tissue retains functional

mucociliary clearance under physiologic conditions. The mOCT

image of fresh swine tracheal tissue (Fig. 3 A) shows cilia,

epithelium and lamina propia, much as they appeared in histology

(Fig. 3B). ASL and PCL layer can be clearly visualized and directly

measured. A video (Movie S2) demonstrates the activity of the

mucociliary apparatus. Moving mucus and beating cilia are once

again clearly seen and can be readily quantified (Table 1).

In addition to animal tissue, we also imaged human tracheal

tissue acquired from a failed donor lung. mOCT images (Fig. 4 and

Movie S3) of human tissue reveal exactly the same anatomical

features as in HBE cells and animal tissues.

Label-free, comprehensive quantification of mucociliary
clearance

The high resolution and live motion capabilities of mOCT

enable accurate quantification of most of important MCC metrics

without aid of any exogenous contrast agent. Measurements of

ASL, CBF, and MCT from mOCT imaging of HBE culture were

confirmed by conventional measures of ASL depth (Fig. 5 A), CBF

(Fig. 5 B), and MCT (Fig. 5 C). Notably, transport rates by particle

tracking were significantly lower than those observed by mOCT,

due to agglomeration of mucus around the fluorescent beads [34].

mOCT MCT rates were not affected by the phenomenon, and

consequently MCT was similar to rates observed in live motion

capture from intact tracheal tissue [35].

mOCT imaging was performed on porcine trachea and the

same techniques previously employed to extract functional

microanatomy data from HBE culture were used in tissue for

the same purpose. The resulting ASL, PCL, CBF, and MCT

numbers are listed in Table 1.

Figure 2. Representative mOCT image of primary HBE culture.
A. A time-averaged (2 s) mOCT image of fully differentiated primary
human bronchial epithelial cells derived from a normal subject. From
top to bottom, air, mucus layer (mu), PCL layer (pcl; red bar), cilia (green
arrows), and epithelial monolayer (ep) are readily seen. ASL depth is
defined as the distance between the air-mucus interface and the apical
surface of the epithelium (ep). PCL depth is defined by the distance
between the ventral surface of the mucus layer and the apical surface of
the epithelium. B. H&E stained histology of HBE cells. Scale bar: 10 mm.
doi:10.1371/journal.pone.0054473.g002

Figure 3. Functional anatomy of excised swine trachea. A. mOCT
image. Yellow bar indicates airway surface liquid (ASL) depth and Red
bar indicates PCL depth. Epithelium (ep) and lamina propria (lp) are also
visible. B. H&E stained histology image illustrating cilia (c), epithelium
(ep) and lamina propria (lp). Scale bar of both images: 10 mm.
doi:10.1371/journal.pone.0054473.g003

Figure 4. mOCT functional anatomy of human trachea. A. A time-
averaged (1 s) mOCT image of human tracheal tissue shows epithelium
(ep), lamina propria (lp), gland duct (gd), mucus (m), cilia (ci) and goblet
cells (gc). Yellow bar indicates airway surface liquid (ASL) depth and Red
bar indicates PCL depth. B. Orthogonal view at the position indicated by
the dashed blue line shows the whole gland duct and the goblet cell in
A. Ciliary beat pattern and possible goblet cell nucleus are clearly seen
in the inset. Scale bars: 20 mm.
doi:10.1371/journal.pone.0054473.g004

Table 1. mOCT measured parameters from swine trachea ex
vivo.

Parameter Value 6 SEM (n = 10)

ASL Depth 9.0160.89 mm

PCL Depth 6.9660.47 mm

CBF 10.5560.12 Hz

MCT Velocity 88.961.8 mm/sec

Number of samples n refers to separate measurements from a single tissue
sample.
doi:10.1371/journal.pone.0054473.t001
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Functional data was also extracted from videos of active mucus

glands in ex vivo swine tissue. Fig. 6A and Movie S4 shows mucus

extrusion through a gland duct in 2D real-time cross-sectional

images. Additionally, 3D reconstruction of the mOCT image

allows estimation of the gland duct cross-sectional area in the

mucus transport (Fig. 6 B), so that mucus transport rates of luminal

contents can be estimated by multiplying the gland duct cross-

sectional area with the longitudinal extrusion rates of mucus

estimated from the real-time cross-sectional images. Calculated

average extrusion rate in normal swine under room temperature is

0.095 nL/min (N = 3, 6SEM = 60.006), similar to rates estimat-

ed from a previous study [36].

Visualizing ciliary motion in cross-sectional view
The high resolution and live motion capabilities of mOCT also

enable, for the first time to the best of our knowledge, visualization

of ciliary motion in cross-sectional view (Fig. 7 and Movie S5). The

cilia beat cycle can be divided into recovery and effective strokes,

illustrated schematically in the top panels of Figs. 7A and 7B,

respectively, with Fig. 7C showing the full cycle. The recovery

stroke begins with the cilium in fully forward extension (position 0),

then bending and rotating backwards in a clockwise sweep

beneath the mucus. In the effective stroke, the cilium extends

outwards towards the mucus and transcribes an approximately

110u arc in the cross-sectional plane, moving in the direction of

mucus transport [21]. mOCT images provide a means to analyze

the relative state of ciliary activity. In mOCT images, cilia tips

appear as high intensity aggregated point scatterers. During the

recovery stroke, the cilia tips appear at lower positions (3–5 mm

from the apical cell surface) than in the effective stroke when they

extend to their full length of ,7 mm (Figs. 7A and 7B, lower

panels). A time-averaged cross-sectional mOCT image shown in

Fig. 7C demonstrates a typical ciliary beat pattern seen in mOCT

images, which is characterized by an arc pattern with a peak 7 mm

above the apical cell surface (yellow arrow) and a bilobular pattern

3–5 mm above the apical cell surface and just below the arc,

indicating recovery strokes (orange arrow). In intact swine trachea,

a similar motion pattern can also be identified (Fig. 7D). An

alternative presentation for beating cilia is M-mode (Fig. 8A),

where the vertical axis is depth and the horizontal axis is time. In

this view, the beating cilia appear as a periodic intensity

modulation. The triphasic pattern [37] of ciliary motion is shown

in Fig. 8 B by decomposing the mOCT ciliary signal in Fig. 8 A

into recovery/rest phase (below 5 mm) and effective phase (above

5 mm). The signal intensity and relative duration of the effective

stroke likely reflect the strength of ciliary motion, potentially

providing information regarding the functional microanatomy of

the relative state of cilia [21].

Discussion

The high resolution of mOCT enables the straightforward

measurement of key functional parameters from airways: ASL

depth, PCL depth, ciliary beating including CBF, and MCT rate,

as well as extrusion rates of the submucosal airway glands. ASL

and PCL depths are simple geometric measurements that can be

obtained from mOCT images and can be readily discerned due to

the high natural contrast in cells and tissues. To accurately and

sensitively measure PCL, axial resolution must be a fraction of

typical PCL thickness under pathophysiologic condition, which is

approximately 7 mm in normal epithelium and ,3 mm in cell

cultures acquired from cystic fibrosis subjects [17]. The highest

resolution OCT study of airways to date had 3 mm axial resolution

[14], whereas mOCT achieves an axial resolution of 1 mm in tissue.

Additionally, the ability to resolve length scales much smaller than

the PCL itself enables the visualization of objects moving within

the PCL space, such as the beating cilia or particulates within the

mucus. Minute but physiologically significant changes in these

parameters can thus be discerned and sensitively resolved over

Figure 5. Comparison of mOCT and gold standard measurements in HBE cells. All error bars represent SEM. A. ASL depth measured with
mOCT (7.4061.82 mm, n = 5) and confocal microscopy (7.7660.87 mm, n = 6). B. CBF measured with mOCT (9.3260.27 Hz, n = 4) and Hoffman contrast
microscopy (10.1760.56 Hz, n = 4). C. MCT velocity measured with mOCT (24.22614.88 mm/sec, n = 6) and particle-tracking fluorescence microscopy
(1.9160.62 mm/sec, n = 11). Number of measurements n refers to separate wells analyzed.
doi:10.1371/journal.pone.0054473.g005

Figure 6. Mucus extrusion from single gland duct. A. A
representative frame from a mOCT video of trachea dissected from a
swine shows mucus (yellow arrow) extrusion from a gland duct (gd) in
lamina propria (lp). B. Three-dimensional reconstructed en face view
allows estimation of luminal area of the duct. In swine trachea, mucus
extrusion rate is 0.095 nL/min (N = 3, 6SEM = 60.006) at room
temperature.
doi:10.1371/journal.pone.0054473.g006
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time and space, providing the ability to monitor functional

microanatomy. With this resolution, accurate measurements of

CBF can also be obtained directly from a time-series stack of B-

mode (cross-sectional) mOCT images by measuring the peak

frequency of oscillatory behavior, as opposed to B-mode speckle

contrast techniques that do not provide quantitative measures of

actual CBF [14]. The speed of mOCT will also allow rapid

scanning of large segments of tissue, a quality that will facilitate in

vivo imaging.

As a result of the high resolution of mOCT, cross-sectional

ciliary stroke pattern can be distinguished in cross-sectional live

imaging for the first time as observed by changes in position (Figs. 7

and 8). The entire beat cycle can be captured if the imaging plane

is oriented such that the cilia tips remain within the 2 mm thickness

of the cross-sectional image through the full beat (Fig. 8).

Alteration in the duration of the effective stroke, the recovery

stroke or the resting state can reflect response to stimulation and

would be expected to confer significant changes on MCC in

addition to CBF itself, in addition to altered ciliary motility. For

example, a number of genes that alter ciliary stroke patterns have

been identified in primary ciliary dyskinesia [38]. Other physio-

logic stimuli, such as transient and local perturbations of the

airway surface microenvironment induced by pressure

[39,40,41,42] or tonicity [43] are known to alter ciliary beating,

and could be perceived by mOCT for the first time as a means to

analyze the relative state of ciliary activity in living cells and

tissues. Given the structural equivalence of cilia in all mammalian

manifestations, mOCT can also potentially be used to image any

ciliated epithelia, such as ependyma and oviduct, each affected in

significant and common human disease such as hydrocephalus and

infertility, among others.

To validate measurements made by mOCT, comparisons were

made using HBE imaging between mOCT and the gold standard

Figure 7. mOCT images of ciliary motion pattern in HBE culture
and swine trachea. A. (Top panel) 6-stage schematic of ciliary motion
during the recovery stroke; (bottom panel) a mOCT image of fully
differentiated primary HBE cells derived from a normal subject shows
cilia tips (green) 3–5 mm from the apical cell surface, indicating the
recovery stroke. Cilia and mucus are presented in pseudo-colors: green
and purple respectively. B. (top panel) 4-stage schematic of ciliary
motion during the effective stroke; (bottom panel) mOCT signal of the
same cilia after 250 ms that subtend an angle of 114u, delineating an
arc with radius of approximately 7 mm during the effective stroke. C.
(top panel) 10-stage schematic of ciliary motion during the full ciliary
beat cycle; A time-averaged (4 s) image (bottom panel) shows an arc
indicating the effective strokes (yellow arrows) and bilobular pattern of
the recovery stroke (orange arrows). D. A time-averaged (1 s) image of
normal swine trachea shows arcs indicating the effective strokes (yellow
arrows) and bilobular pattern suggesting the recovery stroke (orange
arrows) in the ciliary motion pattern. Scale bars: 10 mm.
doi:10.1371/journal.pone.0054473.g007

Figure 8. Cilia motion pattern in cultured HBE cells. Time-lapsed ciliary motion pattern can be easily identified in the M-mode image (top) of
the active epithelial area shown in Figs. 7 A–C and also Movie S5. The continuity of the sinusoidal pattern in the M-mode image indicates that the
entire beat cycle was captured. Corresponding time-lapse intensity analysis (bottom) reveals triphasic pattern of the ciliary beat cycle: the recovery
stroke (blue line), the effective stroke (orange line) and the rest phase in between the effective stroke and next effective stroke.
doi:10.1371/journal.pone.0054473.g008
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techniques previously available for ASL depth, MCT rate, and

CBF measurements. The ASL measurements were in very close

agreement (Figure 5A). The CBFs measured with mOCT and

Hoffman microscopy were also within the margin of error

(Figure 5B), though we noted the Hoffman results were

systematically elevated relative to the mOCT measurements from

the same wells, possibly as a result of a temperature increase

during prolonged microscope illumination during Hoffman

imaging. MCT rate differed significantly between mOCT and

the fluorescence particle tracking method (Figure 5C). However,

the mOCT measurement of 24.2 mm/s is much closer to published

values for bronchial mucus velocity of approximately 40 mm/s

[32,44]. We believe that the introduction of exogenous fluorescent

particles artificially depressed the mucus transport rate, as

evidenced by mucus bundling upon fluorescent imaging, which

further highlights the mOCT advantage of label-free measurement

of MCT.

In our imaging of ex vivo normal porcine trachea (Table 1), we

found functional parameters of similar magnitude to published

data. A previous study of porcine trachea reported a CBF of

12.662.4 Hz and mucus velocity of 4268 mm/s [7]. Measured

PCL depth is also consistent with the typical 7-mm height for

normal airways [17]. ASL depth in tissue is highly dependent on

sample conditions and timing, but the mOCT-derived result

appears reasonable given similar validated measurements from

HBE cells.

Measurement of the output flow rate of mucus glands was

achieved with mOCT and is another novel capability unique to

this technique. Since glandular function is a key constituent of the

function anatomy of the airway surface, is known to be perturbed

in CF airway tissues [45,46] and is responsive to physiologic

stimuli [47], the ability to measure glandular function in situ,

without microdissection, is a significant advance that could reveal

new insights into airway disease pathogenesis and response to

therapeutics.

The availability of a single imaging technology that can unify

the measurement of many functional parameters of the airway

epithelial surface opens the door for many research applications.

Any study of the response of the mucociliary transport apparatus

to a given condition or stimulus can now employ mOCT imaging

to measure these key metrics. For example, the effect of treatments

meant to restore mucus clearance in diseases with mucociliary

impairment can be rapidly measured with mOCT. Imaging of the

ciliary stroke pattern may also facilitate basic science research on

the micro-biomechanics of mucus clearance. Because the tech-

nique is rapid and non-invasive, mOCT could also be suitable for

cell-based screening of candidate pharmacologic agents that

modulate the functional airway microanatomy.

mOCT has high potential for translation to in vivo airway

imaging, both in animals and humans. Imaging results from

human tissue (Fig. 4) also illustrate that mOCT can be extended

from culture or animal models to intact human organs. Our ability

to study tissue in situ is limited only by physical access. The

interferometer optics of our present instrument can be replaced by

a fiber probe that can be inserted into an airway lumen, facilitating

endobronchial acquisition guided by fiber optic bronchoscopy, as

previously described for conventional OCT imaging [48]. Such an

advance could provide a crucial step forward in our understanding

of the cellular mechanisms of mucociliary clearance and the

response to experimental therapeutics.

Conclusion

We have developed mOCT, a high-resolution spectral domain

OCT imaging technique, and established methods and algorithms

to apply mOCT to quantitatively study functional microanatomy

of airways cells and tissue. The high resolution of mOCT allows

many functional parameters to be measured simultaneously and

directly, enabling comprehensive study of the mucociliary

clearance apparatus. Of note, mOCT provides the live visualiza-

tion of the phases of ciliary strokes, which is not achievable by any

other current method, and readily discerns the PCL depth.

Comparisons with measurements from existing techniques and

known values from the literature have validated mOCT as a

quantitative tool that is well suited for further in vitro and ex vivo

investigation, cell-based functional screening and ultimately,

translation for human use in vivo. Our future work will employ

the imaging system and methods described in this article to

compare CF vs. non-CF phenotypic characteristics and investigate

functional responses to pharmacologic stimulation.

Supporting Information

Movie S1 Representative mOCT movie of primary HBE
culture mucociliary transport. A real-time movie of cultured

HBE cells from a normal donor. See Figure 2 for detailed

explanation of anatomy. Mucus is flowing from right to left above

a layer of beating cilia protruding from the epithelium. From this

image series, MCT rate can be computed by measuring the

displacement of the visible inclusions in the mucus layer through

time, and CBF can be measured by finding the peak frequency of

the temporal Fourier spectrum of the oscillating cilia. ASL and

PCL depth can also be computed from individual frames or from

several averaged frames.

(AVI)

Movie S2 mOCT video of excised porcine tissue with
active mucociliary transport. A thin layer of mucus can be

seen transported from left to right by cilia. Anatomic layers labeled

in representative frame. From top: lumen (L), mucus (mu), cilia

and periciliary layer (PCL), epithelium (ep), and lamina propria

(lp). Scale bar: 10 mm.

(AVI)

Movie S3 mOCT video of human tracheal tissue from
failed donor lung.

(AVI)

Movie S4 mOCT video of mucus extrusion from single
gland duct in swine trachea tissue at room temperature.

(AVI)

Movie S5 mOCT video of ciliary motion. Cilia and mucus

are presented in pseudo-colors: green and purple respectively. The

ciliary pattern is clockwise as the mucus is moving left-to-right.

Scale bar: 10 mm.

(AVI)
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