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Abstract

In this thesis, I present a new technique for measuring the optical aberrations pro-

duced by a telescope, with an eye towards future use of these aberration measurements
to align wide-field telescopes. This method determines the aberrations by simulta-

neously fitting a pair of oppositely defocused images to a mostly analytic model. I
develop the model and describe its software implementation in detail, and then re-

port on the results of tests with simulated and real data. This technique is able to

extract the aberrations from simulated data rapidly and accurately, and it has been
used with mixed success to analyze data from the VISTA telescope. With the VISTA

data, the algorithm is unable to match small-scale brightness variations in the images.

However, it was able to determine aberrations with median accuracies of 0.08 um for
coma, 0.08 um for astigmatism, 0.9 um for tilt, and 0.3 um for defocus. It was also
quite fast, with an average of 34 iterations until convergence.

Thesis Supervisor: Paul L. Schechter
Title: William A. M. Burden Professor of Astrophysics

2



Acknowledgments

I have been able to complete this thesis only by the gracious help of many people.

First of all, I am deeply thankful for my incredible wife, Amanda. Without her

support and help, this thesis would certainly never have come to be. I would have

never survived the rigors of MIT without her by my side, nor would I have had nearly

as good of a time doing so.

I want to thank my advisor, Professor Paul Schechter, who has shown me much

patience and guidance during this endeavor. I have learned a lot by working with

him, both about the topic of this thesis and about research in general, and by his

influence I am certainly a much better scientist now than when I began this work.

I would also like to thank Nancy Savioli, Nancy Boyce, and all of the administra-

tors who have helped me navigate the Physics Department, both while completing

this thesis and during my entire time here as an undergraduate. It is such friendly

and helpful people that make this Department such a great place to be.

Finally, this work makes extensive use of data that I did not collect. I would like

to thank Thomas Szeifert, Andreas Kaufer and Magda Arnaboldi for arranging for

the VISTA data used in this work to be recorded.

3



Contents

1 Introduction

2 Image Model

2.1 Aberrations and Imaging

2.2 Brightness . . . . . . . . . . .

2.3 Defocus-Only Formulation . .

2.4 Background and Seeing . . . .

2.5 Zernike Coefficients . . . . . .

3 Algorithms

3.1 Computing Images . . . . . .

3.2 Fitting for Aberrations . . . .

3.3 Initial Guesses . . . . . . . . .

4 Performance of the Fit Routine

4.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 VISTA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Conclusion

A Formulas

A.1 Illuminated Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.2 Derivative of Illuminated Fraction . . . . . . . . . . . . . . . . . . . .

A.3 Hessian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

6

8

8

10

12

14

15

17

17

18

18

21

21

22

37

38

38

41

43

. . . . . . . . . . . . . . . . . . . . . .

. . . . . ... . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .



A.4 Derivative of the Brightness . . . . . . . . . . . . . . . . . . . . . . . 43

A.5 Derivative of the Defocus-Only Position . . . . . . . . . . . . . . . . . 45

A.6 Derivative of the Hessian . . . . . . . . . . . . . . . . . . . . . . . . . 47

B Software 49

B.1 Fitting Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.2 Image Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5



Chapter 1

Introduction

Wide field telescopes are very sensitive to misalignments and require frequent adjust-

ments to ensure that the collected data is of high quality. [ ] The development of fast

and accurate alignment techniques is therefore an integral part of fully utilizing the

capabilities of large telescopes. This is a particularly important concern in the weak

lensing community, as the errors caused by misalignments appear as a false lensing

signal and the lensing signal itself is very small. [ ]

To correct a misalignment, one must first measure it. The basic strategy for de-

termining misalignments has been to measure the optical aberrations of the telescope

in question, which are related to the misaligning displacements and rotations of the

mirrors. [ ] Until recently, the most common method for measuring aberrations has

been the use of Shack-Hartmann wavefront sensors [ ] [ ], however the latest gen-

eration of wide-field telescopes, such as VISTA [ ] and the upcoming LSST [ J and

DES [ ], instead rely on analyzing pairs of out-of-focus images. The VISTA collab-

oration was the first to successfully realize this technique, using an image analysis

algorithm based on comparing observed images to those simulated with ray-tracing

methods. This is time-consuming, as it can take hundreds of iterations for such an

algorithm to converge. [ ]

In this thesis, I will present an alternative method that fits out-of-focus image pairs

directly to a mostly analytic model, which promises to be a much faster technique. In

Chapter 2, I discuss the optical theory behind the model and develop the necessary
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mathematics. Chapter 3 focuses on the software implementation of the model, where

I discuss at a high level all of the principle algorithms involved. Chapter 4 discusses

the results of testing the fit procedure on both simulated data and data taken with the

VISTA telescope. Finally, in Appendices A and B, I give all of the practical details

necessary for the reader to understand the current progress of this work and be able

to develop it further. In Appendix A I derive all of the mathematical results necessary

to implement the algorithms discussed in Chapter 3, and in Appendix B I discuss my

implementation in more detail and at a much lower level than in Chapter 3.
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Chapter 2

Image Model

The goal of this chapter is to develop a model of out-of-focus images of point sources.

I begin by briefly introducing some of the theory of optical aberrations, and then use

these notions to construct a description of defocused images.

2.1 Aberrations and Imaging

The propagation of light through an optical system can be described in terms of the

surfaces of constant phase that lie perpendicular to the light's direction of travel,

known as the wavefronts. 1 While there is a wavefront passing through any point in

the light's path, of particular interest is the wavefront that passes through the center

of the optical system's exit pupil. We can parameterize this wavefront surface as a

function w(&,), where w( ,) denotes the distance between the wavefront surface and

the plane of the exit pupil at point z, on the pupil. Now, for a perfect optical system,

that is, for a system in which the light leaving the pupil is focused to a single focal

point located a distance f away from the pupil along the optical axis, the central

wavefront w(',) must be a spherical cap from a sphere of radius f centered on the

focal point. For any real optical system, the wavefront w(',) will differ from a perfect

spherical cap, and we can therefore characterize the imperfections of an optical system

'I present a very shallow treatment of wavefronts. For those interested, a thorough discussion of

wavefront optics can be found in Majahan's text Optical imaging and aberrations, part I [ ]

8



by the deviation of its wavefront from a sphere. Define the wavefront deviation to be

() = W(',) - Wsphere(Xp) (2-1)

where Wsphere(sp) is the spherical wavefront the system would have if it focused per-

fectly and w(',) is the actual wavefront. For simplicity, I will typically refer to W(s,)

as just the wavefront.

Describing the imaging process in terms of W(',) is particularly useful for two

reasons:

1. W(',) tells us where a ray that crosses the pupil at ', will eventually inter-

sect the image plane. If the image point is denoted by si, then (in Cartesian

coordinates):

si = f ,W(z,) (2.2)
Rout

where V, indicates the gradient with respect to the pupil position, f is the focal

length, and R,, is the outer pupil radius. ]

Thus, if we know the function W(',), we can use it to construct a transformation

that maps pupil points to image points. Note that the choice of f /Rt as a pre-factor

is mere convention. This allows us to both have ', be a dimensionless quantity that

is normalized to 1 at the outer pupil radius and also let W(',) be measured in units

of length.

2. We do know the function W(z,), approximately, and with seven free parameters.

For a realistic imaging system, W(s,) is well-approximated by the following

third-order polynomial:

W(x,,y , cX +C cyaX + CyXP ± cxxpy

± (d + a,)x2 + (d - a.)y2 + 2a x y,

+ tXxP + tyyp (2.3)

The seven parameters c2, cy, ax, aY, tz, ty and d are referred to as the third-order
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optical aberrations. [ ] Specifically, c, and cy are the coma, ax and a. are the astig-

matism, t, and t, are the tilt, and d is the defocus. These parameters are functions

of the physical properties of the imaging system.

Note that the above aberration parameters are not the usual Zernike coefficients.

For a conversion to Zernikes, see Section 2.5. By the conventions stated above for

the units of W(i,) and ',, all of the aberration parameters are measured in units

of length. And in particular, since they are the only dimension-full quantities in the

wavefront, we say they are measured in distance of wavefront error.

Combining Equations 2.2 and 2.3 gives an explicit transformation between the

pupil and image planes:

Xi = 3c.xx + cXy2 + 2cyxpyp + 2(d + ax)xp + 2ayy + tX (2.4)

yi = cYx + 3cyy2 + 2c.xyp + 2ayxp + 2(d - a,)yp + ty

This transformation completely determines the observed image, provided we know

the distribution of rays across the pupil. Now, if we restrict attention to the case of

imaging a distant point source, then it is reasonable to assume that the incoming light

is uniformly distributed across the pupil, and therefore the aberration parameters fix

the resulting image.

2.2 Brightness

In order to compare an observed image with the image specified by a given set of

aberration parameters, it is necessary to know the brightness of any given pixel in an

image as a function of the seven aberration parameters.

Suppose there is a pixel centered on si with a small area dAt. If a total power

dP is being delivered to this pixel, the intensity averaged over the pixel is given by

Ii(zi) = dP/dAi, and hi(zi) is proportional to the observed brightness. Now, let z, be

the pupil point 2 that maps to si via the transformation given in Equation 2.4. Since

2While in principal there could be multiple pupil points that map to one image point, I will
assume there is only one. For a physical justification of this, see Section 3.1.
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this transformation is continuous, the area dAi of the pixel will map to some small

area dA, surrounding the point , on the pupil plane, and we must have that a power

dP is crossing the area dA, as well. If we restrict attention to images of distant

point sources, then we can assume that the intensity across the pupil is constant.

Denote this constant by F, which will depend on the physical properties of the source

and imaging system, as well as weather conditions and exposure time. Now, for any

realistic imaging system, only a finite area of the pupil plane is actually illuminated

and it is possible that part of the area dA, lies outside the illuminated region. Suppose

that a fraction f of the area dA, is illuminated. Then,

dP = FfdA,

and the intensity of the image pixel is:

I (zi) =FfdAp
dA

Assuming that the areas dA, and dAi are small, then their ratio dAp/dA is just

the inverse of the Jacobian determinant of the transformation given by Equation 2.4.

Now, the Jacobian is the matrix of first derivatives of the transformation in question,

and since in this case the transformation is given by s'i = $,W(s,), the Jacobian

will consist of the second derivatives of the wavefront W(',). The matrix of second

derivatives of a function is called the Hessian and I will denote the Hessian of the

wavefront as H(',). So we have that

=W F
IXi) =e ( f (2.5)

where the right-hand side is evaluated at the the pupil point 4 that maps to zi. On

the right-hand side of Equation 2.5, F is a constant particular to the image being

recorded, H(',) will depend on , and the aberration parameters, and f(',) will

depend on , and physical properties of the telescope, such as pupil size and pixel

size. Now, 4, can be computed from Zi and the aberration parameters using the
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transformation in Equation 2.4. Thus, Equation 2.5 gives the brightness at si as

a function of only i, the aberration parameters, the total flux parameter F, and

physical properties of the telescope.

Equation 2.5 is the foundation of the defocused image model.

2.3 Defocus-Only Formulation

The purpose of this model is to fit for aberrations in pairs of images that have been

intentionally defocused. As such, the goal is to quantify the effect that the other

six aberrations, plus any additional, unintentional defocus, has on the images. The

"perfect" image in this case is not a single point, but rather a uniform annulus

(assuming that the pupil is a perfect annulus) with a distribution of rays that is

exactly the pupil brightness distribution scaled by 2d. This factor of 2d results from

Equation 2.4, which says that the position of a ray on a perfect image with all

aberrations zero except the defocus, is given by:

zg = 2dz, (2.6)

Now, the implicit picture in Equation 2.4 is that we have some ray whose natural

position is at (0, 0), but due to the presence of aberrations it is going to be displaced

to some different position zi, given by evaluating the right-hand side. But, in our

case the natural position is not (0, 0), but rather 2ds,, and so the mathematics would

be more transparent if we could arrange Equation 2.4 to give the displacement from

2ds, that a ray suffers at the hands of a non-defocus aberration. To do this, eliminate

x, in Equation 2.4 using Equation 2.6 and rearrange:

3cx c C 2 cY aX ay
Xi - Xdf = 2x3 5 + ± ± yg xd5 + ±yd +tx (2.7)

cY 2 C 2  
3 c ca ax

Yi Yd =- 2X dX+df~ + f df +

12



This is what we were after, with si representing the final ray position on the distorted

image, and zaf representing its natural, unaberrated position. This equation has two

advantages, the first being that it expresses more explicitly the question that we

are interested in answering. The second is that, since the VISTA images we will be

working with have only a few pixels of distortion (see Figure 4-1), we now know that

the right-hand side of Equation 2.7 is small, on the order of a few pixel lengths. This

is useful for solving Equation 2.7 (see Section 3.1), and it is also useful for justifying

the assumptions made in computing the illuminated fraction f (see Section A.1).

Now, at this point we can (mostly) forget about the physical telescope pupil plane.

The natural way to view Equation 2.7 is to say that we start with a defocus-only image,

which is a uniform annular image with radii r = 2dRin and rt = 2dRt, where Rn

and R,. are the radii of the physical telescope pupil. Then, each point on the defocus-

only image suffers a translation given by 2.7. This completely describes the imaging

process, up to the extent that the aberrations are small enough for the the wavefront

to be well approximated by its third-order expansion, and so from this section on I

work exclusively with the defocus-only description. Now, there still remains one more

piece of the puzzle, that being the need to find the analog of Equation 2.5 in the

defocus-only formulation. The same reasoning that led to Equation 2.5 clearly holds

again, however in this case the image brightness will be given by the inverse Jacobian

determinant of the transformation in Equation 2.7 multiplied by the brightness of

the defocus-only image and the fraction of the image pixel that is illuminated if we

displace it back to its original defocus-only position.

First, note that the Jacobian of the transformation in Equation 2.7 is inherently

the same object as the Jacobian of the transformation in Equation 2.4. If we compute

the Jacobian from Equation 2.4 and then apply the transformation in Equation 2.6

we will get the same result as if we differentiated Equation 2.7 directly. In a sense,

we are still working with the same Hessian of the wavefront, but have just made a

coordinate transformation X, -+ ' f/2d. Thus, I will continue to denote the Hessian

by H, but include the argument H(Fd) to emphasize that I am specifically thinking

of the Hessian as expressed in defocus-only coordinates.
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Second, the brightness of the defocus-only image will be the brightness of the

actual pupil F scaled by the ratio of the area of the pupil to the area of the defocus-

only image. This ratio is 1/4d2 , and so the defocus-only brightness is F/4d2 . Putting

this together, the appropriate defocus-only brightness formula is:

=F 1

I zi) - f (2.8)4d2 det H()df

2.4 Background and Seeing

There are two more practicalities that must be added to the model. The first is the

fact that the sky has an intrinsic brightness that will apply a constant background to

the images. Thus, we need to add a constant background parameter b to Equation 2.8:

Ii)=F 1
IXi) = -- 1 f + b (2.9)

4d2 det H(Ydf)

The second effect that needs to be accounted for is atmospheric seeing. For this,

apply a convolution to the unblurred model computed with Equation 2.9. For sim-

plicity, we will take the convolution to be conical, so the weight factor is given by:

N1 - -L- : r< ro
K(r) ={

0 : r > ro

where ro is the seeing radius, measure in seconds of arc. N is set such that the sum

of all elements in K is 1. The linear dimension of K can be chosen to be as small as

possible while still giving a reliable fit, though the most accurate fit will obviously be

obtained if the size of K is greater than the diameter of the weighting cone. For the

VISTA data, the seeing radius varies between about 0.6" and 1.6", which is between

about 2.5 and 7 pixels. A 7x7 kernel was used with good results.

14



2.5 Zernike Coefficients

Optical aberrations are commonly expressed not in the form of Equation 2.4, but

rather in terms of the orthogonal (on the unit disk) Zernike polynomials. If we make

the assumption that the aberrations are small enough that we can neglect higher

order terms in Equation 2.4 and terms higher than the seventh term in a Zernike

expansion, then the above seven aberration parameters can be exactly related to the

coefficents of a Zernike expansion. This approximation is very likely true given the

small distortion of the VISTA data (also, see Sections 2.3).

Following the convention used by Wilson, [ the first eight Zernike polynomials

are:

4. Z4(p-') = p2cos (2p)

1. Zi(p') = pcos (4)

2. Z 2 (p) = p sin (#)

3. Z 3(p') = 2p2 - 1

To relate these to the aberration paramete

polar form:

5. Z5(p) = p2 sin (26)

6. Z6 (p-) = (3p 2 - 2) p cos (4)

7. Z(p-') = (3p2 - 2) p sin (#)

,rs used above, express Equation 2.3 in

W (p-) = Cp3 cos (0 - 0c) + Ap 2 cos (2q - 4.) + Tpcos (4 - $t) + dp 2

where these polar aberrations are related to

in the standard fashion:

the Cartesian aberrations of Equation 2.3

c =C cos$c, c, =C sinoc

ax = A cos 45,, a. = A sin 4a

tx = Tcos $t , t, = Tsint

Using the above definitions of the polar aberration parameters, one can verify by

15
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straightforward but tedious arithmetic that Equations 2.3 and Equations 2.10 are

indeed identical. From the above list of Zernike polynomials, we can express the

spacial-dependent factors in Equation 2.10 as:

1 2 Z P) 31 2
p3 cos (#) = Z6 p) - 3Z1Op), p3sin (#) = 2Z 7 (p3 - (p

p2 = (Z3 (P) + 1)
22

p2 cos (2#) = Z4(p, p
2 sin (2#) = Z5 (p)

p cos (#) = Z1(p-), p sin (#) = Z2(p)

Using these relations in Equations 2.10 gives:

W(p= Z6 (p + SZ,(p) +a.Z 4 (p-) +ayZ 5 (p) +dZ 3 (p-) (2.11)
3 3

t - c Z1 (p)+ - c, Z 2(p)+ d

Thus, for Zernike coefficients z; defined by W(p) = _j_ ziZi(p-), we have the following

relations:

d
zo = -z4 =a

2

z1 = t -c = ay

Z2 = ty - c z6 =3

3z 7 =
2= d 37 C

16



Chapter 3

Algorithms

3.1 Computing Images

To compute an image from a set of aberration parameters I've used to following

algorithm, looping over all pixels:

1. Starting with a set of aberration parameters and an image point zi, compute

the associated defocus-only point by solving the set of Equations 2.7 using

the Newton's method routine published in Numerical Recipes. [ ] Since the

distortion in the images we are concerned with is small, the initial guess can be

taken to simply be the image point i. Equations 2.7 can, in principle, have 0,

1, 2, 3, or 4 solutions. But, since the aberration parameters are small, the conic

sections in Equations 2.7 are predominately linear and we can reliably assume

that we will only have either zero or one solution. Thus, if the solver fails to

converge, it is because no solution exists and the image pixel is non-illuminated,

so its brightness is simply set to zero. If the solver does converges, assume that

it is the only solution and continue.

2. Use zg to evaluate Equation 2.9. The two main components of this computa-

tion are the illuminated fraction f(zgdJ) and the inverse Hessian determinant,

formulas for which can be found in Appendix A.

3. Convolve the unblurred image using the kernel given in Equation 2.4.

17



Six examples computed with this routine are given in Figure 3-1.

3.2 Fitting for Aberrations

The pairs of defocused images are fit using a Levenberg-Marquardt modified from

Numerical Recipes' published version. [] In order to maximize speed, all of the

derivatives are computed analytically using the formulas given in Appendix A. The

fit contains fifteen total parameters: x-coma, y-coma, x-astigmatism, y-astigmatism,

and the seeing radius are fit simultaneously using both images, while x-tilt, y-tilt, de-

focus, total flux, and the background level are fit separately for each image in the pair.

These five latter parameters are fit separately since, as the images in an out-of-focus

pair are recorded on different detectors, [ ] their tilts, total fluxes, and background

levels are likely different. Further, the defocus parameters are certainly different, as

the detectors have been intentionally defocused to opposite sides of the focal plane.

The fit proceeds as follows:

1. Initial guesses are computed, as described in Section 3.3.

2. The Levenberg-Marquardt routine fits the images without fitting for the seeing

radius.

3. The results of the previous fit are used as initial guesses for another Levenberg-

Marquardt fit, this time with the-seeing radius included. This gives the final

parameter values.

3.3 Initial Guesses

Initial guesses are generated for the fitting routine by first making the assumption

that the coma and astigmatism parameters are zero. This is a reasonable assumption,

as the maximum coma or astigmatism in the VISTA data is about 10 microns of

wavefront error. Assuming only defocus and tilt are present, the aberrations can be

estimated by iterating several image moments.

18



(b) y-coma, cy = 4 um

(c) x-astigmatisms, a. = 10 um (d) y-astigmatism, ay = 10 um

(e) x-tilt, tG = 60 um (f) y-tilt, ty = 60 um

Figure 3-1: Defocused images exhibiting d ~ 600 pm and exactly one of the other
aberration parameters nonzero, with 1 arcsec blurring. The aberration parameters
in these images are very large so as to clearly exhibit the types of distortion that
they produce. In practice, the images analyzed by the fitting routine are much less
distorted.

19
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Suppose that we have estimates for the centroid of the image t2, and ty,n, the

constant background value bn, and the radial size of the star An, we can then update

these estimates by computing the following moments:

=yn~ (Y - ty,n) An,bn

2+1 = ((x - +x,n (y - ty,n

(I(x, y) - bn) (I - e_2n

bn+1~ ~ (1 - r/,n

where = X- ,,, = y-tV,, f = y 2 , and the moment (f (x, y))Ab is defined

to be:
f (x, y) (I(x, y) - b) e~(X 2 +Y2 )/A2

(fxy))L~b = E (I(x, y) -b) e-(X2 +y2 )/A 2

This procedure is iterated until the change in the centroid values and the change in

A is less than one pixel. Denoting the final values of this iteration with a subscript

f, the initial guesses for defocus and total flux are set to be:

d - ((X -_ t,f)2 + (y - ty,f) 2)Afbf
2 (R0 + RL)

F EZ(I(x, y) - b) L 2

r ( - Ri)

where Rou and R., are the telescope pupil radii and L is the pixel width. Finally, the

tilt and background values are simply set to be the final values of the above iteration,

and the coma and astigmatism guesses are set to zero.

20



Chapter 4

Performance of the Fit Routine

4.1 Simulated Data

Producing Simulated Data

Simulated data was produced using the algorithm given in Section 3.1. This data

exactly follows our model, and so there should be rapid convergence to the exact

parameter values. The images measure 120 by 120 pixels and were produced using

values for the pixel width, telescope radii and defocus parameter to match those

of the VISTA low-order wavefront sensor, with a focal length of 12.072 m, inner

and outer pupil radii of 0.8251 m and 1.85 m, respectively, and a defocus of about

280 microns of wavefront error, which corresponds to a 1.0 mm displacement from

the focal plane. [.] Test images were generated with all possible combinations of

zero and nonzero aberration parameters, with the values of the nonzero parameters

chosen randomly from a predetermined range of values. The range of values for each

aberration parameter was chosen empirically such that aberration values within the

range produced roughly one or two pixels of distortion in the image, which is what is

seen in the VISTA data sample.
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Fits to Simulated Data

The fitting algorithm described in Section 3.2 was tested on simulated data, and the

resulting fits converged rapidly and accurately. Initial guesses were generated using

the routine in Section 3.3. After fitting a random sample of 500 simulated images,

the longest convergence time was 20 iterations with an average of 14.53 iterations,

which was about 520 ms, to convergence. The relative error between the randomly

generated parameter values and the best fit values was on average 9.17- 10-7, and the

worst-case fit value from the entire set of images had a relative error of 4.83 - 10-6.

4.2 VISTA Data

Fit Speed and Quality

The fitting procedure was tested on 10 nights worth of VISTA wavefront-sensing

data provided by the European Southern Observatory. 1 An example image from

this dataset, as well as a best-fit image and residual, is given in Figure 4-1. This

image and the resulting fit are very typical for the VISTA dataset. The fit routine

has matched the large-scale size and shape of the image well, however there remains

small-scale variations in the brightness internal to the star. This is likely due to

the presence of unaccounted for higher-order terms in Equation 2.3. This causes a

poor reduced chi-squared, Xrea = 8.57. The fit was rapid, however, converging in 26

total iterations, with 21 belonging to the initial unblurred fit and 5 to the blurred

fit. These are typical values; over the entire dataset, the average reduced chi-squared

was 5.73 and the average total number of iterations was 34. The best-fit values of

the aberration parameters for one day (about 70 images) of the full ten day dataset

(700 images) are given in the following plots, and any notable features of the data

are discussed in the captions.

'We thank Thomas Szeifert, Andreas Kaufer and Magda Arnaboldi for arranging for the VISTA
data to be recorded on our behalf.
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Figure 4-1: An example fit to VISTA data. While the large-scale fit matches the im-

ages overall shape and size well, there are clear higher-order variations in the residual
that the model does not account for. Also, note the very high intensity in the "hole"

of the annulus on the residual image; the cause of this is currently unknown. This
drives up the Xed value to 8.6. The Xed was computed using the square root of the
photon count as the error. For this fit, the number of iterations before convergence

was 26. The fit was taken over the entire 120x120 image, all of which is pictured.

(a) Data, Positive Defocus (b) Data, Negative Defocus

(c) Best Fit, Positive Defocus (d) Best Fit, Negative Defocus

(e) Residual, Positive Defocus (f) Residual, Negative Defocus
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is the best fit x-coma, plotted over time for 1 night of observing.
correspond to about t = 4.6 days on the 10-day plots. The error
be the median discrepancy taken from Table 4.2.
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Figure 4-3: This is the best fit y-coma, plotted over time for 1 night of observing.
This time period correspond to about t = 4.6 days on the 10-day plots. The error
bars are taken to be the median discrepancy taken from Table 4.2.

25



0.4

0.2 [
0.0-E

.

-x
V)

Ifl

x

-0.2

-0.4

-0.6-

-0.8

-1.0

X-Astigmatism

0 2 4
Time [hours]

6 8

Figure 4-4: This is the best fit x-astigmatism, plotted over time for 1 night of ob-
serving. This time period correspond to about t = 4.6 days on the 10-day plots. The
error bars are taken to be the median discrepancy taken from Table 4.2.
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Figure 4-5: This is the best fit y-astigmatism, plotted over time for 1 night of ob-
serving. This time period correspond to about t = 4.6 days on the 10-day plots. The
error bars are taken to be the median discrepancy taken from Table 4.2.
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Figure 4-6: This is the best fit defocus for the pre-focal image, plotted over time for 1
night of observing. This time period correspond to about t = 4.6 days on the 10-day
plots. The error bars are taken to be the median discrepancy taken from Table 4.2.
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Negative Defocus

2 4
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Figure 4-7: This is the best fit defocus for the post-focal image, plotted over time for
1 night of observing. This time period correspond to about t = 4.6 days on the 10-day
plots. The error bars are taken to be the median discrepancy taken from Table 4.2.
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Figure 4-8: This is the best fit x-tilt for the pre-focal image, plotted over time for 1
night of observing. This time period correspond to about t = 4.6 days on the 10-day
plots. The error bars are taken to be the median discrepancy taken from Table 4.2.
Note the clumping of the data; this corresponds to the 6 dithers used by VISTA for
a given pointing. [
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Figure 4-9: This is the best fit y-tilt for the pre-focal image, plotted over time for 1
night of observing. This time period correspond to about t = 4.6 days on the 10-day
plots. The error bars are taken to be the median discrepancy taken from Table 4.2.
Note the clumping of the data; this corresponds to the 6 dithers used by VISTA for
a given pointing. [ ]
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Fit Errors

Since the X 2 values for these fits are poor, the error estimates produced by the

fit routine are not reliable and underestimate the error by a factor of 4 to 8, when

compared to the errors given in Table 4.2. Instead, I will estimate the error by looking

at the variation in the fit values extracted from very similar images. The VISTA data

consists of 120x120 pixel pieces taken from a 2Kx2K detector, and the header includes

the pixel coordinates of the lower-left pixel of the 120x120 image. From the dataset,

I selected images for which this pixel was located in exactly the same spot on the

full detector, and further, from this set I selected all of the pairs of images that were

observed consecutively. Generally, these consecutive observations were separated by

an interval of about 50 seconds, and had an integration time of 25.0 seconds. Since

these images were taken at nearly the same time, and the star did not change positions

on the detector between the images, it is reasonable to assume that the star in both

images is the same, and that the telescope did not move appreciably between the

images. Thus, the difference in aberrations should be very small and any discrepancy

between the fitted aberration values for these images can be attributed to the fitting

routine. The maximum and median of the magnitude of this discrepancy, taken over

all such pairs of images, is reported in Table 4.2 and Table 4.2. The median values can

be taken to give a typical uncertainty and the maximum values give the worst-case

uncertainty.

Another way to estimate the fitting errors is to consider the variation in time of

combinations of parameters that should be constant. The defocus parameter for each

image in a pair consists of a component due to the alignment state of the telescope

and another component due to the position of the wavefront sensor. The wavefront

sensor components for the VISTA images should be nearly equal in magnitude but of

opposite sign and it should remain fixed in time, whereas the telescope components

will be equal for each image and varying with time. Thus, the difference of these two

values will be constant. Any variation in this quantity, which is plotted in Figure 4.2,

should be attributable to the uncertainties of our measurement. From the figure, it is
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Table 4.1: This table gives statistics of the magnitudes of the discrepancies of fit values

extracted from very similar images. Aberration units are in microns of wavefront
error, flux and background are given in photon counts, and the seeing diameter is in

arc seconds. The median value gives a typical error bound, and the maximum values

an upper error bound. Note the very small discrepancies for the total flux parameters,
seeing diameters, and background level (the absolute scale of the background is about

750 photon counts), which affirms that we are looking at the same star in both

images. Also, the values for y-coma are about 3 times larger than the other coma

and astigmatism parameters.
warns that the reported error
astigmatism parameters differ
understood.

The cause of this is not yet understood, however it
for x-coma is likely too small. Finally, note that the
by a factor of 2; the cause of this is also not currently

Parameter Minimum Median Maximum

Coma x 0.0009207 0.07955 0.523
Coma y 0.001261 0.179 1.413
Astig x 0.01432 0.08325 0.4041
Astig y 0.002016 0.04104 0.1978

Seeing Diameter 0.00669 0.1539 1.37
Tilt x+ 0.007977 0.6695 4.725
Tilt y+ 0.07267 0.5656 2.57

Defocus+ 0.0102 0.2826 2.286
Flux+ 2.487e-08 4.168e-07 2.865e-06

Bkgnd+ 0.0494 4.688 43.53
Tilt x- 0.02365 0.8693 5.39
Tilt y- 0.01017 0.7276 2.593

Defocus- 0.02416 - 0.2809 2.286
Flux- 2.723e-08 4.176e-07 2.147e-06

Bkgnd- 0.2406 5.331 48.72

clear that the scatter is consistent with the uncertainty estimates given above, which

lends more credibility to the estimates given in Table 4.2. The same reasoning applies

to the x and y components of tilt, whose difference is plotted in Figures 4.2 and 4.2.

These plots are less consistent than the defocus difference, but not alarming so.
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Difference in Defocus of the Pre and Post Focal Images

28

C

0

27 -

26 -

25 -

24 -

23 -

0 2 4
Time [days]

6 8

Figure 4-10: A plot of the defocus difference, which in principle should be constant
in time. I have plotted this data with error bars set the median discrepancy taken
from Table 4.2, in order to show that the scatter over time in the defocus difference
is consistent with the median errors from Table 4.2. While there are a few obvious
outliers, the data is clearly consistent with a constant function. The units of defocus
are given in microns of wavefront error.
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Table 4.2: These are the same results as in Table 4.2,
errors in the Zernike coefficients using the conversions in
are given in microns of wavefront error.

but have been converted to
Section 2.5. All of the values

Zernike Number Minimum Median Maximum

1 0.04304 0.7554 2.675
2 0.07267 0.6947 2.574
3 0.02416 0.2809 2.286
4 0.01432 0.08325 0.4041
5 0.002016 0.04104 0.1978
6 0.0003069 0.02652 0.1743
7 0.0004204 0.05968 0.4709

Difference in X-Tilt of the Pre and Post Focal Images

-I

0 2 4
Time [days]

6 8

Figure 4-11: A plot of the x-tilt difference, which in principle should be constant in
time. I have plotted this data with error bars set the median discrepancy taken from
Table 4.2. While the the data is not rigorously consistent with a constant function,
it is very close. The units of defocus are given in microns of wavefront error.
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Figure 4-12: A plot of the y-tilt difference, which in principle should be constant in
time. I have plotted this data with error bars set the median discrepancy taken from
Table 4.2. As with the x-tilt difference (Figure 4.2), the the data is not rigorously
consistent with a constant, it is very close The units of defocus are given in microns
of wavefront error.
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Chapter 5

Conclusion

In this work I have described a new algorithm for extracting measurements of optical

aberrations from a pair of oppositely defocused images. The model was verified using

simulated data, and also applied with some success to VISTA data. The VISTA fits

were able to fit the data rapidly and provided a consistent estimate of the fitting

errors, at a reasonable scale of 0.08 um for coma, 0.08 um for astigmatism, 0.9 um for

tilt, and 0.3 um for defocus. However, but the model is also clearly unable to account

for higher-order aberrations, and probably other effects as well, that are present in

the VISTA data. As such, there is certainly room for improvement, and expanding

the model from its present state to account for at least some subset of these currently

un-modeled effects will likely result in a much more accurate determination of the

aberrations and thus a more applicable model.
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Appendix A

Formulas

In this section I will give the exact formulas that are used in the software implementa-

tions of the algorithms given in Chapter 3. In most cases, these results follow directly

from the definitions in Chapter 2 and some tedious but straight-forward computation,

in which case I will simply report the final result. However, there is some subtlety in

a few of these computations, and for those cases I provide a derivation.

A.1 Illuminated Fraction

To find the illuminated fraction of a defocus-only pixel, we need to solve the following

problem: Given a square pixel of length 1 centered on the point (xdf, yg), what fraction

# of its area is enclosed by a circle of radius R centered on the origin? The illuminated

fraction f is given by the enclosed fraction $(zdf, R) as:

{$(, 2dRou) |rg - 2dRoti <

f (Z i) = 1 - #(zg, 2dRin) |rd - 2dRin| < ' (A.1)

0 Otherwise

where rdf = zf yj. In this formula, I have assumed that the three cases are

mutually exclusive, which will be true in any realistic telescope.

To determine #, note first that because of circular symmetry, the enclosed frac-
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tion of the pixel will be invariant if we reflect the pixel across any line through the

origin. Thus, I will restrict attention to pixels with coordinates 0 xdf 5 ydf, which

significantly reduces the number of special cases that we need to consider. Second, in

any realistic telescope we will have that R > 1, and so I will approximate the circle

by its tangent line in the vicinity of (xv, ydf). The tangent is given by

y = - x + L R (A.2)
Ydf Ydf

There are five special cases to consider, two of which are trivial:

1. The pixel is inside the circle: 4 = 1.

2. The pixel is outside the circle: 4 = 0.

3. The circle crosses the left side and the bottom of the pixel.

4. The circle crosses both the left and right sides of the pixel.

5. The circle crosses the top and right side of the pixel.

We need a computational way of differentiating between these cases. To do this,

consider the quantity y, which gives the y-coordinate at which the tangent line

intersects the vertical line coincident with the right edge of the pixel:

y,= ±(xg + 1/2) + R (A.3)
Ydf Ydf

This expression can be made easier to work with by defining a dimensionless quantity

-y, which gives the distance between the top of the pixel and the intersection point y,

in units of the pixel length:

1 (
7 Ydf - Y,) (A.4)

Then the above conditions become:

1. The pixel is inside the circle: -y < 0
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2. The pixel is outside the circle: 7 > 1 + xdf/Ydf

3. The circle crosses the left side and the bottom of the pixel: 1 < -Y < 1 +xdf/Ydf

4. The circle crosses both the left and right sides of the pixel: xdf/Ydf < 7 < 1

5. The circle crosses the top and right side of the pixel: 0 <7 < xdf/ydf

All that remains is to calculate the fractional area of the pixel that lies below the

tangent line. This is straightforward geometry, and the results are:

1. The pixel is inside the circle:

2. The pixel is outside the circle:

# =0

3. The circle crosses the left side and the bottom of the pixel:

)2

4. The circle crosses both the left and right sides of the pixel:

S= + Xdf
2yg

5. The circle crosses the top and right side of the pixel:

1 Ydf -
#=1- -- 72

2 xdf
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A.2 Derivative of Illuminated Fraction

Directly from Equation A.1, the derivative of the illuminated fraction with respect to

some parameter a is:

df Ird - 2dRot <
df d 2

da = O Irr - 2dRin| <
0 Otherwise

The enclosed fraction # is a function of three variables: the defocus-only pixel

coordinates xdf and ydg, and the radius of the circle. The derivative with respect to

a is therefore:
do_ _ o aqxdf &ao ftdf co~7 MR(A

-+ -+- (A.5)
da Ox4 aa 0 ydf aa OR Oa

The defocus-only position partials are computed in Section A.5. The three partial

derivatives of p appearing in Equation A.5 are given by simply differentiating the

expressions for p derived in Section A. 1. These are most clearly expressed as functions

of xd, yg, and partial derivatives of the parameter -y with respect to defocus-only-

positions. This gives the formulas:

1. The pixel is inside the circle:

= -_- - -0
oxdf -ydf OR Oa

2. The pixel is outside the circle:

-- d = -- =-- =0
-x Oydf5 OR Oa
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3. The circle crosses the left side and the bottom of the pixel:

___ = 1 11 i-Iaxdf 2 ydf

o - Xdf1
9 Ydf 2 y 2

0 R 5a,d 1 - (

x 12

x 

- 1)

(7-1)df
Xdf

4. The circle crosses both the left and right sides of the pixel:

&4
O9Xdf

o

OYdf

005 OR
OpR Ra

_ 1 fry
2 ydf Oxgf

2yg 2y2yf OYdf

rdf R
- ocnd d

5. The circle crosses the top and right side of the pixel:

OXdf

OYdf
Ob OR

fry 1
9 Xdf Ydf

.ry. . 1

aYdf df

= Ydf

Xdf
( fY
aXdf

Ydf (ry
Kd '9Ydf±

rdf R
-d ond

1 +( x (2 ] R2 1 rg)

S)2

2y )

1

1
(2 R)

rdf
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A.3 Hessian Matrix

The Hessian matrix H is the Jacobian of the transformation in Equation 2.7. This is

given by:

H C = Ax40y +1 Cxq+ yg2d ( Xdf + Y Ydf d ±1 jXdf±+ 21yf + I

xd +±Ydf + ±Xd5 + Vys - + 1

It is useful to have an expression for det H', for use in computing H-' and for

computing the brightness. As a polynomial in the pupil position, it is given by:

1 3Cx - C2 3C2 _ C2 2CxC,
det H 4d2  df + 4d 2  Yf+ Xdf Ydf

1 'F A , CA l 1 A, CA,]
1 d dJ

A.4 Derivative of the Brightness

In order to use this model to rapidly fit for the aberration parameters of an image, it is

necessary to have an analytic expression for the gradient of a given pixel's brightness

with respect to the set of aberration parameters and the total flux F.

The brightness of a pixel is given by Equation 2.9:

F 1

Ix(z2)- Xf )+

4d2 det(H(2))|

Differentiating this with respect to a parameter a gives four terms:

I b F 1 p l s g

-. =f - -q - +b

Ba 4d 2 | det(H)I Ia 4d2 Ba det(H)|
F 1 1 1

,d 2d3 det (H) , 4g2| det(H)[ '
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The determinant derivative is:

a ( iI a_(I|det (H))

I 1 det (H) (det(H))

Idet(H)12 det(H) a(e

_ 1 Idet(H)| 'Tr H= - etH det(H) Tr H-1 HI|det (H)|12 det(H) a
_ 1 _H= 1 Tr H-1 a
Idet(H)| da

and so the full brightness derivative is:

aI F 1 Of F 1 H1 H\
a 4d2 Idet(H)Ia 4d2|det Tr H f (A.6)

F 1 1 1
2d3 I det(H)| I det(H) I

1 1 f / H 2
det(H L F - Tr H-1 F f - , cFf +6,FJ + Ea,b

4d2 de(H 18 \ a} dF ± I

Now, if f is zero then the last two terms vanish. The term af/Ba will also vanish

(see Equation A.2). This makes sense, as f = 0 corresponds to an unilluminated

background pixel. In addition, F represents the total flux through the pupil, and so

for any image it must be nonzero. Since we will therefore only evaluate the above

expression when f 0 0 and F =, 0, it does no harm to factor out a factor of f and F

to give the final formula:

0I rH 1__ 2 1 ]

a = I -Tr -H-1 + + 2, + a,b (A.7)

This is the form of the derivative that will be used by the fitting routine. Note that

while there are five terms, it is rarely necessary to evaluate all of them. Of the four

bracketed terms, the first encodes the change in brightness of an interior pixel and is

always nonzero for illuminated pixels. The second accounts for the large change in

brightness that occurs near the edge of the image due to the shifting boundaries of

the illuminated region, and it is only nonzero for border pixels. The third and fourth

44



terms include the overall change in brightness that occurs when the defocus or total

flux is varied, respectively. These terms come from the fact that the brightness of the

defocus-only image changes when the total flux or defocus is varied.

A.5 Derivative of the Defocus-Only Position

To compute the derivative of the brightness of a pixel with respect to an aberration

parameter, we need to know how the defocus-only position changes if we fix the image

position and vary an aberration parameter. The defocus-only position and the image

position are related by Equation 2.7. I will rewrite this in the more compact form:

Xi= V fW(zd) (A.8)

Since the image coordinates x and yi are fixed, differentiating with respect to an

aberration parameter a gives zero on the left-hand side. Applying the chain rule to

the right-hand side gives:

d
0 = - [V+ W(z)} (A.9)

= [VdW(')] ± 2 - Jdf (VdfW(zd)) (A.10)

where Jd(f('d)) denotes the Jacobian matrix of f(Zg) with respect to 4. But,

Jdf (VdfW(zgd)) is just the Hessian H(zg), so:

0= [VdfW(g)]+ -H(zg)

Thus the derivative of the defocus-only position with respect to a is:

taxdf a d -1()
= Oc [VdfW(z)] -- z
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Let d = (VdW(zdf)]. This vector is given by:

xf5 ±t - y25 + IXdfYdf + 5Xdf

yd + x5 ± jy5 + 2XdfYdf + Xd

Working this out, the defocus-only position derivative is:

d5df = g - H -1(zaf

+ Ay5+T± Ydf Tx

-d Ydf ± Ti']

where:

3 x2 _1 Y2
42df 4T ydf

1

-jxdfyd5

-X yg3

-$72 -f Nd Ydf

Xdf

d( 1df)( d!

d
Xdf)

(0i

0

-1)

24y + y Xdfyd +^ x + y Ydf

+( ±fx :+± Yf + Xdf Ydf+^Xdf+ydf)
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A.6 Derivative of the Hessian

The Hessian matrix is:

T

ldfXdf + -- y-Ydf A, 2d2 d

CV Xdf + C'2d2 2d2 Ydf + I

d2CY X df + 2 d-z2C -Ydf + 'd

CT + 3Cy AT, +2d Xdf 2d2 Ydf

Differentiating this is straightforward. Note that the derivative matrix will contain

some terms that will be present for any differentiation parameter a and some terms

that depend on a. It is useful to separate these two pieces, as the term that is constant

in a only needs to be evaluated once per pixel, and so I express the derivative as:

dH C + C dydf
H 22 da 2 da

da C dxdf C dy_
2 da 2 da

C dxd_ ±CT dYdf
2 da 2d2 da

C dxad 3C da /
22 da 2 da)
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1 1
Qxdf MXdf
1 3( pyXdf gYdf/

if a= Ay

if a E{TX7,Ty,

(- Xd -- Ydf -~

-yXdf ~ :Ydf - 4

C 3C A

-- Xdf - 7KYdf ± t
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Appendix B

Software

B.1 Fitting Program

The program abr_fit-image, written in C++, will sequentially fit any number of

.FITS whose filenames are passed as command-line arguments. The results of the fit

will be printed to stdout in the following order:

1. filename of target .FITS file

2. the initial guesses used by the routine

3. best fit parameter values

4. covariance matrix entires, starting with the upper left entry and working down

to the lower right entry

5. total number of iterations before convergence

6. final chi-squared value

7. total degrees of freedom

8. final value of the Levenberg-Marquardt damping factor

The convention for ordering the parameters is: c2, cy, ax, ay, s, t2+, ty+, d+, F+,

b+, t2-, ty -, d-, F-, b-, where the + and - symbols indicate a parameter that is
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applied to only either the positive or negative defocus image. Calling abr-f it-image

with the -v option will cause it to print the status of each iteration.

When abr_f it-image runs, it will first call unpack-f its-data to read from the

.FITS file, and then call compute-iniital-guesses and compute-error to generate

initial guesses and error estimates. These are used to call levmar_f it, which carries

out the fitting procedure. The following list gives all of the functions used in the

fitting procedure, along with a brief description.

" void grad-wavefrontresidual(int n, double x[], double f[],

double params[], double xim, double y-im)

Given the coordinates of a defocus-only point in the two-element array x, a

set of aberration parameters in params, and the coordinates of an image plain

point in xim and y.im, grad.wavefront-residual returns in the two-element

array f the residual vector between the given image point and the image point

produced by mapping the given defocus-only point to the image plane using

the given aberration parameters. The argument n is the dimension of x and f,

which should always be 2.

" void unpack-fitsdata(char* file-name, double flatimage[],

double image.pos[], double image-neg[], int numdata-pts)

This function reads the .FITS file with name file.name, containing a posi-

tive defocus image as the primary data array, the negative defocus image as

the first extension, and no other extensions. The images must be 120x120 ar-

rays with 16 integer values. This is the format of the data produced by the

VISTA low-order wavefront sensor. If filename is not formatted correctly, an

error message will be printed. The primary data array is stored in the one-

dimensional array image.pos, and similarly the first extension data is stored

in image-neg. flat-image is a concatenation of these arrays, with image-pos

first. num.data.pts is the total number of pixels in both images.

" void compute-error(double flat-image[], double flat-errors[],
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int numdata-pts)

Computes the statistical error in each pixel, assuming a Poisson counting ex-

periment. The number of counts reported by the VISTA low-order wavefront

sensors is 4 times the number of hits detected, [ ] so the error in a pixel with

reported intensity I is given as u = 2/VI. flatimage should contain the ob-

served data and num-data-point should be the length of flat -image. The

errors in each pixel are returned in flaterrors.

" void levmarfit(double pixel-number[], double flat_image[],

double errors[], int num.data-pts, double fit.params[],

int numfitparams, double **covarmatrix, double *chisq,

double chisqtol, int numsuccesses, int verbose)

This runs the Numerical Recipes Levenberg-Marquardt routine to fit the data

in flat-image. This array should contain the data from a pair of defocused

images concatenated into a single one-dimensional array. The data will be fit for

the parameters in fitparams, which should contain the initial guesses when

levmar_fit is called. The fitting algorithm will iterate until the change in

chi-squared is less than 0.01 for numsuccesses consecutive iterations.

" void blurred-image-model(double x-im, double y-im,

double abrparams[], int numabr.params,

double *brightness, double partials[], double pixel-width)

This function preforms the convolution. Given a pair of image coordinates

x_im and y-im, and a set of aberration parameters abr-params, the func-

tion image-model computes the convolution kernel as in Section 2.4, calls

fatimagemodel to get the unblurred brightnesses and derivatives for pixels

nearby (x-im, y-im), and then performs the weighted averages. It also com-

putes the derivative with respect to the seeing diameter parameter. To save

time, this function will store unblurred model values as it is iterated through

an image, and will then only call flat-image-model if necessary.
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" void flatimagemodel(double pixel-number, double fit-params[],

double *brightness, double derivatives[], int num_fitparams)

This is a wrapper for the function image-model that allows image-model to

be accessed as though it were a one-variable function. Given a pixelnumber,

this function determines which of the two images this pixel is located in, and

it determines the pixel's coordinate in the image plane of that image. It then

selects only those parameters from f itparams that pertain to this image, and

uses them to call image-model. The derivatives with respect to the parameters

that pertain to the other image are set to zero before the brightness and full set

of derivatives are returned. Pixel numbers for the positive defocus image are

assigned starting with 0 in the lower left corner of the image and increase as

you move across to the right and upwards, with pixel number N 2 - 1 located

in the upper right corner for an NxN image. For the negative defocus image,

pixel numbers start with N2 in the lower left and end with 2N 2 -1 in the upper

right.

" void image.model(double xim, double y.im, double abr.params[],

int num_abrparams, double *brightness, double partials[],

double pixel-width)

Given a pair of image coordinates xim and yim, and a set of aberration

parameters abr-params, the function image-model computes the brightness

and the partial derivatives with respect to each parameter in abr.params of

the pixel centered on that coordinate (x.im, yjim), according to the model

described above.

" int project-todefocusonly(double x-im, double yim,

double params[], double* x-df, double* y.df)

Using the aberration parameters in pramas, projectto-defoucsonly com-

putes the defocus-only point that maps to the image point (x.im, y.im). This

is done by finding the zero of grad-wavef ont-residual using the Numerical

Recipes Newton's method routine nrnewt. The solution will be stored in xdf
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and y-df, and the return value will indicate a failed convergence with: 0 -+

convergence, and 1 -+ no convergence.

" double inversehessiandet (double x-df, double y-df, double params[])

Returns 1/ det H(zag) evaluated at the given coordinates and aberration param-

eters.

" void inversehessian(double x-df, double y-df, double params[],

double Hinv[] [2], double Hinvdeterminant)

Computes the inverse of the Hessian matrix evaluated at (x-df, y-df) with the

aberration parameters given in params, and stores it in Hinv. Hinvdeterminant

should contain the inverse of det H(xdf, ydf) as computed by inversehessiandet.

" void grad-dfposition(double x-df, double ydf, double params[],

double Hinv[] [2], double gradx-df [], double grady-df [])

Assuming a fixed image plane point, this returns the gradient of the projected

x and y defocus-only coordinates, with respect to the aberration parameters.

This is computed using the procedure described in Section A.5.

" void grad-bulk-term(double xdf, double y-df, double grad-x-df[],

double grad.ydf[], double Hinv[][2], double params[],

double bulkterm[])

This computes the bulk term of the derivative of the pixel brightness (the first

term in Equation A.7) with respect to all of the parameters in params.

" void grad-edge.term(double xdf, double y-df, double grad-x.df[],

double grad-y-df[], double params[], double 1, double Rin,

double Rout, double edge.term[])

This computes the edge term of the derivative of the pixel brightness (the second

term in Equation A.7) with respect to all of the parameters in params. This

function calls partial-frac-belowcirclewrtdefocus and
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grad fracbelow-circle-wrt-df position in order to compute the derivative

of the illuminated fraction f,

" double ill-frac(double xdf, double y.df, double Rin, double Rout,

double pixel-length)

Returns the fraction of the area of a pixel with length pixel-length, centered

on (x.df, y-df), that is illuminated in the defocus-only image. Rin and Rout

are the inner and outer radii of the illuminated annulus of the defocus-only

image, not the radii of the pupil. This is computed as described in Section A.1,

where < is computed by calling fracbelowcircle.

" double fracbelowcircle(double xdf, double y.df, double radius,

double pixel-length)

Returns the fraction of the area of a pixel with length pixel-length, centered

on (x.df, y.df), that is located inside a circle centered on the origin with the

given radius. This is computed using the procedure described in Section A.1

and uses the approximation that pixel-length < radius.

" double partialfrac-belowcirclewrtdefocus(double x, double y,

double R, double 1, double defocus)

Computes the partial derivative of the f racbelowcircle with respect to the

defocus parameter. fracbelowcircle depends on the defocus parameter in

two ways: changing defocus will change the defocus-only position that corre-

sponds to a given fixed image pixel and it causes the radius of the defocus-only

illuminated annulus to change. This function computes the term in the deriva-

tive of fracbelowcircle corresponding only to the change in defocus-only

radius. grad-fracbelow_circlewrt_dfposition will compute the terms

corresponding to the change in the defocus-only position of the pixel.

* void grad.frac-belowcirclewrtdfposition(double x, double y,

double R, double frac-below-grad[2], double 1)
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Computes the gradient of the fracbelowcircle with respect to the defocus-

only image coordinates. The function grad-edge-term multiplies these by the

derivatives of the defocus-only coordinates with respect to the aberration pa-

rameters in order to get the derivative of fracbelowcircle with respect to

the aberration parameters.

" void compute-initialguesses(double flat-image[],

int numfitparams, int num_commonfit-params, int num.x-pixels,

int num.ypixels, double param-guesses[])

Computes initial guesses for all of the parameters except coma and astigmatism,

whose guesses are set to zero. These are computed using the procedure described

in Section 3.3. The guesses returned by this compute-iniital-guesses are

used to call levmar_fit.

" void newt(double x[], int n, int *check, double parameters[],

double ximage, double y-image, void (*vecfunc)(int, double [],

double [], double [], double, double));

This is a Numerical Recipes Newton's method solver that is used by

projectto-defocus-only to find the zeros of grad-wavefront-residual. It

has been slightly modified to allow the aberration parameters to be passed as ad-

ditional arguments, as they are needed to evaluate grad-wavef rontresidual.

This function employs the following Numerical Recipes routines: f dj ac, lubksb,

ludcmp, lnsrch, and fmin. []

" void mrqmin(double x[], double yE], double sig[], int ndata,

double a[], int ia[], int ma, double **covar, double **alpha,

double *chisq, void (*funcs)(double, double [], double *, double [],

int), double *alamda, int verbose)

This is a Numerical Recipes routine which executes one iteration of a Levenberg-

Marquardt fitting algorithm. This is called repeatedly by lev-mar_fit. This

function employs the following Numerical Recipes routines: mrqcof, gaussj,
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and covsrt. [ ]

B.2 Image Program

The program abrdrawimage, written in C++, will read from stdin 9 aberration

parameters and 5 telescope parameters, and then compute the image formed by these

parameters according to the model. Note that this does not produce a pair of defo-

cused images, but rather a single image. The primary use of this program is to test

the reasonableness of the model after making modifications, as well as to generate

synthetic data with which to test the fitting routine abr_fit-image.

abrdraw-image accepts aberration values in polar format, as opposed to the

Cartesian format used by abr_fitimage and which I have used throughout the

rest of this paper. This was done to make it easier to visualize what images will

be produced when calling abr-draw-image with a given set of parameters. The

convention for ordering the parameters is: number of pixels along x-direction, number

of pixels along y-direction, inner pupil radius, outer pupil radius, width of a pixel,

F, C, 0c, a, Oa, d, t, 9
t, and b. The resulting image will be written to stdout, starting

with the upper left pixel, then working across to the right and downwards, ending

with the lower right pixel.

The operation of abrdrawjimage is simply to loop over all pixels in the output

image, and at each pixel call the Numerical Recipes routine newt to compute the corre-

sponding defocus-only points, and then call the functions inversehessiandeterminant

and ill_frac to compute the remaining pieces of Equation 2.9. These functions op-

erate in exactly the same manner as their counterparts from abr-f it-image.
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