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Abstract

World water supply is struggling to meet demand. Production of fresh water from the

oceans could supply this demand almost indefinitely. As global energy consumption continues to

increase, water and energy resources are getting closely intertwined, especially with regards to

the water consumption and contamination in the unconventional oil and gas industry.

Development of effective, affordable desalination and water treatment technologies is thus vital
to meeting future demand, maintaining economic development, enabling continued growth of

energy resources, and preventing regional and international conflict.

We have developed a new low temperature, membrane-free desalination technology

using directional solvents capable of extracting pure water from a contaminated solution without

themselves dissolving in the recovered water. This method dissolves the water into a directional

solvent by increasing its temperature, rejects salts and other contaminants, then recovers pure
water by cooling back to ambient temperature, and re-uses the solvent. The directional solvents

used here include soybean oil, hexanoic acid, decanoic acid, and octanoic acid with the last two

observed to be the most effective. These fatty acids exhibit the required characteristics by having

a hydrophilic carboxylic acid end which bonds to water molecules but the hydrophobic chain

prevents the dissolution of water soluble salts as well the dissolution of the solvent in water.

Directional solvent extraction may be considered a molecular-level desalination approach.

Directional Solvent Extraction circumvents the need for membranes, uses simple,

inexpensive machinery, and by operating at low temperatures offers the potential for using waste

heat. This technique also lends itself well to treatment of feed waters over a wide range of total

dissolved solids (TDS) levels and is one of the very few known techniques to extract water from

saturated brines. We demonstrate >95% salt rejection for seawater TDS concentrations (35,000
ppm) as well as for oilfield produced water TDS concentrations (>100,000 ppm) and saturated

brines (300,000 ppm) through a benchtop batch process, and recovery ratios as high as 85% for

feed TDS of 35,000 ppm through a multi-stage batch process. We have also designed,

constructed, and demonstrated a semi-continuous process prototype. The energy and economic

analysis suggests that this technique could become an effective, affordable method for seawater

desalination and for treatment of produced water from unconventional oil and gas extraction.

Thesis Supervisor: Gang Chen
Title: Carl Richard Soderberg Professor of Power Engineering

Department of Mechanical Engineering
Massachusetts Institute of Technology
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Chapter 1 Introduction

The World Water Supply

Water is among the most vital natural resources for sustaining life on earth. Growing

human populations and standards of living have created major stresses on the supply on fresh

water which is struggling to meet demand. There are already about 2.8 billion people living in

water stressed areas [1]. At the current growth rates we will be consuming 90% of the available

fresh water by 2025, by which time the population living in water stressed areas is expected to

increase to 3.9 billion[2, 3].

The current state of water stress according to a recent study by the International Water

Management Institute (IWMI) is illustrated in the map in figure 1 [4]. Regions of physical water

scarcity are defined as parts of the world where there is naturally not enough water to support

demand. These regions are usually desert areas such as the Arabian Peninsula, Central Asia, and

the Southwestern United States. Regions of economic water scarcity are where water is naturally

present but cannot be made available to area's population due to lack of water supply and/or

treatment infrastructure. This is often the situation in the least developed regions such as sub-

Saharan Africa and parts of South Asia and Central America. Furthermore, water scarcity, is not

limited to under-developed or developing regions. High water consumption, together with energy

consumption, is a characteristic of countries with high standards of living. As such even the more

developed regions are expected to experience increasing water shortages in the near future [5].
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Figure 1. Map of World Water Stress in 2006 [6]

While fresh water stress is increasing, the oceans contain over 97% of the earth's water

[6]. This water, due to high levels of salinity, is unfit for human consumption and most industrial

and agricultural use. However, with affordable and effective salt removal techniques, the oceans

could supply this demand seemingly indefinitely [6, 7]. Development of desalination

technologies to produce fresh water from the ocean has therefore been identified as vital to

meeting future demand, maintaining economic development, and preventing regional and

international conflict. Techniques to remove salt from water have existed for centuries and the

recent years have seen significant advances in desalination technology. While the costs of

seawater desalination had reduced from over $9/M 3 in the 1950s to under $1/ m 3 by the early

2000s [8] for large scale plants, desalinated water remains considerably more expensive and
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energy intensive than fresh water from existing sources [9]. At small scales (1 - 10 in 3 / day) the

cost of seawater desalination may range from $3/ m3 to over $12/ m3 [10].

The National Research Council roadmap for water desalination sets a target of 50-80%

reduction in desalination costs by 2020 which may be difficult to achieve by incremental

improvements in existing technologies [9].

1.2 Energy Water Nexus & the Role of Unconventional Oil & Gas

Water and energy have always had a close inter-dependence which has become more

evident with increasing demand and supply of both. Energy is required for water extraction,

treatment, and transportation, while most energy production requires the use of large amounts of

water [11, 12]. Furthermore, as the global energy consumption continues to increase, and energy

extraction and production becomes more resource intensive, water and energy are getting further

intertwined[ 11, 12]. This inter-relationship is nowhere more evident than in the unconventional

oil and gas industry, where large amounts of water are required for well drilling and hydraulic

fracturing operations, which gets contaminated and thus rendered useless for recycling or

discharge [13-15].

Unconventional oil and gas is fundamentally changing the current energy landscape,

especially in North America [16-18]. The game-changing potential of these reserves has been

recently discovered and the North American reserves (Figure 2(a)) alone are estimated to contain

over 700 trillion cubic feet (tcf) of recoverable natural gas [19], and over 1.3 trillion barrels of

recoverable oil [20], the equivalent of more than 200 years of US and Canada's energy supply at

current consumption rates[21]. In the year 2000, shale gas accounted for only 1% of the US
13



natural gas supply. By 2011, it had risen to 20%. As another example, North Dakota, home of

the Bakken formation, one of the largest unconventional oil reserves, increased oil production

from 30 million barrels in the year 2004 to almost 200 million barrels in 2011 [22].

Extraction of unconventional oil and gas, however, requires hydraulic fracturing of the

deposits, which uses 2-4 million gallons of water per fracturing job [23] . Between 20 and 50%

of this water returns to the surface as highly contaminated water that is 2-8 times more saline

than seawater and which may contain heavy metals and radioactive isotopes among other solutes.

In addition, contaminated water is also "produced" during the lifespan of the well operation and

could be as saline as saturated brine. This flowback and produced water is unfit for discharge or

re-use in subsequent fracturing operations. Improper disposal of this water may negatively affect

the environment by polluting rivers or municipal water supplies. In many states, fracking has met

fierce public opposition. New York State currently has a moratorium on shale gas drilling due to

water related environmental concerns. Nova Scotia, home to large shale deposits, has also

recently banned drilling due to water contamination issues. Furthermore, large volumes of water

need to be transported to and from the fracturing sites. This increases traffic levels, pollution, and

discomfort of the local population.

Water treatment issues are thus among the greatest barriers gating the growth and

expansion of the unconventional oil and gas industry. The ability to treat and recycle flowback

water during fracturing and produced water during well operation would reduce the need to

transport fresh water to the well sites and contaminated water away from the sites. This would

translate into significant cost reduction as well as further reduce public discomfort and

opposition to hydraulic fracturing. It must be noted that due to the very high salinity of produced

14



water, desalination forms the most expensive part of the treatment process. State-of-the-art

technologies to treat flowback and produced water are recognized by the industry as being either

ineffective, uneconomical, or both. Another desirable characteristic of any produced water

treatment process is high recovery ratios. In fact, industry surveys suggest that an effective

produced water desalination system would likely be required to demonstrate recoveries greater

than 70%.

The alternative to handling this water therefore consists of transporting it away from the

well production sites and injecting in deep saltwater injection wells [24]. Contaminated water

transportation infrastructure is expensive, complicated, and often consists of transporting the

water away from the production sites in certified hazardous waste tankers. Industry surveys

revealed that these disposal costs depend on the distance of injection wells from the production

sites and can range from $2-3/ bbl. ($12-18/ in 3 ) in North Texas to over $10/ bbl. ( > $60/ M3 ) in

Pennsylvania (Figure 2(b)) Development of new desalination technologies is thus critical to

enable the continued growth of unconventional oil and gas.

$ RProducsdw sal costs, 2011

(a) (b)

Figure 2. (a) Map of North American shale basins [25] and (b) produced water handling costs
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1.3 Desalination State of the Art

Desalination technologies have witnessed significant advances in the last half a century.

As discussed earlier the cost of seawater desalination has reduced by almost nine times between

the 1950s and the early 2000s. The total capacity of seawater desalination plants worldwide has

also increased almost two hundred and fifty times in this period, from 0.110 million m3/ day to

over 28 million m3/ day by 2005 [9]. Most of this existing capacity is in reverse osmosis (RO) or

multi-stage flash distillation plants, the two most popular desalination technologies [6], [26].

Despite these advances and economic gains, water from desalination remains considerably more

expensive than that from freshwater sources [9].

Most desalination technologies can be classified as membrane processes or evaporative

processes. Reverse Osmosis (RO) is a membrane-based technique [27-30] which has rapidly

gained popularity due to better efficiency than thermal processes, the convenience of operating

electrically without heating, and the scale flexibility of operating as small scale units or large

scale plants. In the RO process the saline solution is passed through a semi-permeable membrane

which allows water to pass through but holds back the salt ions. In order to drive flow against the

natural osmotic gradient, a high pressure is required to overcome the osmotic pressure. Energy

required to raise this process is supplied electrically. Electricity is high grade energy and in this

case accounts for 44% of the process cost [9] for sea water desalination. Seawater RO electricity

consumptions have been reported to be between 3 kWh/ m3 and 8 kWh/ m3 [31-34]. As a

comparison the minimum work required for seawater desalination at about 40% recovery is 1.06

kWh/ m 3 [35]. In addition to the cost of energy, another challenge is that RO membranes are

prone to fouling and may require frequent replacement [6]. Furthermore, at very high TDS levels
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of produced water and due to the presence of other impurities, RO membranes may foul faster,

and may not be able to withstand the higher pressures need to overcome the increased osmotic

pressure. These higher pressures would also necessitate much higher energy inputs, thus

increasing the overall cost of the process.

Forward osmosis (FO) [36], [37] is a new membrane method which claims to offer better

efficiency and lower cost but is yet to be demonstrated to do either; being a membrane based

technology, FO may also be ineffective at the high TDS levels. Recent research on high-flux

membranes based on carbon nanotubes [38] can potentially reduce the energy consumption, and

on alternative electrical-based desalination technology such as ion concentration polarization in

nano-devices [39] can potentially avoid the fouling.

Electrodialysis (ED) is another electricity drive membrane-based technique wherein an

electrical potential difference is used to transport charged particles (salt ions) across an ion-

exchange membrane from saline water to relatively pure water [31], [32]. In ED, however, the

energy consumption rises quickly with increasing salt concentrations, and the process is

therefore limited to desalination of brackish waters (TDS <0.5%) [40].

Multistage flash distillation (MSF) is a thermal desalination process based on evaporating

water and condensing the vapor back into pure water [9, 10] . Evaporation requires large

amounts of energy to overcome the latent heat of water [12]. Energy consumptions of MSF

processes have been reported to be between 60 kWh/ m3 and 90 kWh/ m3 [31], [33], [34], [41-

43]. In an MSF process, heat released during condensation is re-used in the next stage, which is

at a lower vapor pressure, partially offsetting the large amount of energy required in the

evaporation process. The temperatures required are usually above 90 *C which are energy

17



intensive to attain and the thermal energy accounts for almost half of the process cost [9]. All

evaporative systems may suffer from scaling caused by evaporation of water and the resulting

crystallization of scaling agents such as calcium. This scaling can increase greatly when high

TDS water is involved and significantly reduce the system lifetime. In addition, MSF systems,

are large due to the many evacuated stages, and cannot be scaled down for produced water

treatment volume requirements.

A similar process is Multi-effect distillation (MED) [44], often regarded as the oldest

desalination process other than simple distillation [45]. MED is also an evaporative process that

operates at slightly lower temperatures (about 70'C) than MSF. The main difference between

MED and MSF is that in MED, the seawater evaporates at the heat transfer surface, whereas in

MSF the water is only preheated within the heat exchanger and evaporates from a flow of brine

in each stage [46]. Another evaporation-based technique is to condense the vapor by mechanical

vapor compression and to use the latent heat of condensation to pre-heat a part of the feed water

(MVC/ MVR) [47]. MVC systems are mostly small-scale and industry interviews suggest that

this is the only evaporation technology that is being tested for produced water treatment. Vapor

compressors, however, require electrical energy input and their costs can be prohibitive for most

applications.

Humidification-dehumidification (HDH) is a promising thermal desalination technology

which mimics the natural rain cycle. HDH has witnessed considerable development and progress

recently especially for small scale and solar driven systems [48-50]. This technology, however,

is yet to be demonstrated at a significant scale outside the laboratory.
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1.4 Thesis Outline

This thesis describes the conception, design, demonstration of concept, and further

development of Directional Solvent Extraction (DSE), a new low temperature, membrane-free

method of water desalination. Directional solvent extraction works by dissolving water from a

saline or otherwise contaminated solution into a directional solvent by increasing its temperature.

The directional solvents extract the water phase but rejects salts and other contaminants. These

salts are then separated and removed. Upon cooling back down the water precipitates out of the

solvent, is recovered as purified water, and the solvent is reused. Importantly the solvent does not

itself dissolve into water and the recovered water therefore contains a negligible amount of

residual solvent.

Chapter 2 describes the basic concept of directional solubility, introduces the directional

solvents and lays down the fundamentals of the proposed technology development. Chapter 3

explains in detail the proof of concept through a bench-top batch process demonstrating effective

desalination and accompanying calculations which show the energy and exergy consumption of

the process. Chapter 4 furthers the understanding of directional solvent extraction by describing

experiments to characterize process parameters and assessing their effects on the performance

through observations and analyses. Chapter 5 introduces a potential improvement upon the basic

process by describing the demonstration of a multi-stage directional solvent extraction method

which shows increased recovery ratios. Chapter 6 describes the design, construction, and testing

of a semi-continuous process prototype which is imperative to bringing this technology closer to

field application. Chapter 7 discusses a detailed economic analysis which suggests that

directional solvent extraction could be an economically viable technology to treat produced
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water. Chapter 8 summarizes the work, outlines major conclusions, highlights outstanding

questions, and identifies potential future directions.
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Chapter 2 Fundamentals of Directional Solvent

Extraction

2.1 Directional solubility

Ideas of solvent extraction for desalination were explored by Hood and coworkers in the

1950s who used secondary and tertiary amines as solvents [51], [52]. These solvents, however,

were limited to treatment of water with low salinities of up to 5000 ppm (seawater is about

35000 ppm, produced water can be up to 300,000 ppm) [52]. Most importantly, these were

discounted due to significant residual presence of solvents in the recovered water [53], i.e. while

the solvents dissolved water they were themselves found to dissolve in water in significant

amounts (e.g. 3-13% by weight). Furthermore, no significant understanding of the molecular

interactions of water, solvent, and salt was developed, and the progress on this subject remained

marginal for almost half a century. Lazare and the Puraq Company attempted to commercialize

solvent based desalination for two decades from the 1960s through the 1980s [54-57]. Lazare's

process, however, involved synthetic solvents (such as a copolymer of vinyl pyrrolidone and

vinyl acetate), which necessitated high costs, and also required the use of membranes to prevent

salt from mixing with the solvents. Significant development was impeded due to these factors as

well as the lack of investment and market interest [58].

The mutual solubility as discussed above is the generally expected behavior. However, in

some rare cases pairs of materials do exhibit directional solubilities where one substance

dissolves the other but without dissolving in the other. This thesis reports directional solvents
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that dissolve water while rejecting water soluble salts, and, are themselves insoluble in water.

Certain edible oils such as soybean oil and medium to long chained carboxylic acids possess this

unusual ability to dissolve water while rejecting other water soluble substances such as sodium

chloride. This solubility of water in the carboxylic acid has also been seen to increase with

temperature [59-62], another required quality for the proposed thermally driven directional

solvent extraction to function.

Carboxylic acids dissolve water due to the presence of the carboxylic acid group (-

COOH) at their chain ends. The highly polar C=O and O-H groups facilitate the formation of

hydrogen bonds with water molecules. While this chain end is hydrophilic the rest of the fatty

acid molecule is hydrophobic. As such, the reduction of chain length results in higher solubility

of water in the acid but also higher solubility of the acid in the water. The lowest carboxylic

acids, such as formic and acetic acid, are miscible with water, but as the chain length increases

the solubility of both substances in each other decreases significantly. In addition, salts such as

sodium chloride exist in solution in ionized form. A polar solvent is therefore likely to dissolve

salt ions. As the carboxylic acid chain length increases, its non-polar nature also increases, thus

reducing the solubility of salts in the acid.

Stephan Kress [63] and Tengfei Luo [64] have further investigated the theoretical aspect

and provided explanations for such directional solubility behavior. An illustration of hydrogen

bond formation between water and decanoic acid is shown in figure 3.

One way to describe the solubility behavior is by considering the solvation free energies

of water in a solvent, solvent in water, and salt in solvent and water. Solvation free energy is

equivalent to the work required to transfer a molecule from its bulk phase into a solution.
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Figure 3. Illustration of hydrogen bond formation between water and decanoic acid; carbon is
depicted by blue color, oxygen by red, and hydrogen by white

To describe solubility from this thermodynamic point of view, the free of energy of

solvation was calculated using molecular dynamics simulation and the thermodynamics

integration (TI) [64], [65] method for water-decanoic acid-sodium ion interaction and the results

are shown in Figure 4. As may be seen the solvation free energy of water decreases as it goes

from water among other water molecules to water in decanoic acid, i.e. a water molecule is more

stable in a decanoic acid solution (-8.46 Kcal/mol) than in its bulk phase (-6.33 Kcal/mol),

suggesting that water is likely to dissolve into decanoic acid. However, as the concentration of

water in the acid increases, it becomes difficult for successive water molecules to dissolve as
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seen from the increasing free energy values (4% water in acid: -7.44 Kcal/mol and 6% water in

acid: -6.03 Kcal/mol).

A water molecule in saline solution (3.5% NaCl w/w) has lower solvation free energy (-

7.13 Kcal/mol) than in pure water (-6.33 Kcal/mol) due to the extra Coulombic interaction with

salt ions. As a result, water molecules from saline droplets are expected to dissolve into decanoic

acid until equilibrium is attained when the free energy of water in saline solution becomes equal

to that of water in decanoic acid. This equilibrium state corresponds to the solubility limit of

water in decanoic acid, beyond which additional energy is required to dissolve more water. An

increase in temperature could supply this energy and allow further dissolution of water.

A decanoic acid molecule, however, is much less stable when dissolved in water (-9.82

Kcal/mol) than in its amorphous bulk phase (-16.04 Kcal/mol), suggesting that decanoic acid is

unlikely to dissolve in water. Furthermore, salt ions are unlikely to diffuse into decanoic acid

from the saline water due to the large free energy barrier (e.g. -99.60 Kcal/mol [66] for a sodium

ion in water compared to -72.44 Kcal/mol for a sodium ion in decanoic acid).
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2.2 Directional solvents

In summary, to be an effective candidate for this process a solvent must possess the

following characteristics:

Water is soluble in the solvent

Water solubility in the solvent is a function of temperature

Salts do not dissolve in the solvent

The solvent does not dissolve in water

In addition, it is ideal if the directional solvent is also non-toxic, naturally occurring,

inexpensive, and abundant.

Our first directional solvent was in fact soybean oil. Soybean oil dissolves water while

being insoluble in water [61], [62]. Soybean oil is also inexpensive, abundant, and edible. The

solubility of water in soybean oil, however, is extremely low (0.3% v/v or 0.33% w/w at 25 0C)

[61], [62]. Therefore, while soybean oil does behave as a directional solvent and an effective

desalination can be demonstrated with it, the low solubility of water, necessitates large volumes

of soybean oil to be used, thus leading to large system sizes and heating energy requirements.

Soybean oil is mainly a mixture of oleic acid (CH 3(CH 2)7CH=CH(CH 2)7COOH), alpha-linoleic

acid (C18H300 2), linoleic acid (C18H32 0 2) and palmitic acid (CH3(CH 2)14CO2H) [67].

In search of a better solvent, experiments were then conducted on hexanoic acid

(C5H1 1COOH) which dissolves about 5.5% w/w water at 20 *C and almost 10% w/w at 55'C
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[60]. Hexanoic acid, however, dissolves in water to a non-negligible extent (968 ppm w/w [68])

and is more corrosive and foul-smelling than desirable. Furthermore, hexanoic may dissolve

some salts as well due to its shorter chain length, as will be discussed in the experimental

section. Hexanoic acid thus lies at the lower end, in terms of chain length, of carboxylic acids

that form effective directional solvents.

Moving up the carboxylic acid chain, we found decanoic acid (CH3(CH 2)8COOH) to

dissolve a maximum of about 3.8% w/w water at 34 *C, increasing to 5.9% at 80 'C. Earlier

estimation by Hoerr et. al. [60] suggests the same trend and similar solubility values. Yet the

solubility of decanoic acid in water is negligible, with a theoretically predicted value of 28 ppm

at 27 'C, as described in the chapter 3.2 and reported values between 30 ppm [69] and 150 ppm

[70] at 25 *C. The batch process experiments, as discussed in the chapter 3.2, confirmed these

ranges by measuring a residual decanoic acid content of 36 ppm in the recovered water. To put

this in perspective, whole milk contains about 1300 ppm of decanoic acid [71]. Decanoic acid is

also used as a food preservative, and is relatively inexpensive, characteristics which make it an

effective directional solvent.

Another effective directional solvent is octanoic acid (CH3(CH2 )COOH), on which

extensive experimentation was conducted, and which was found to dissolve 1.8% w/w water at

25 'C increasing to almost 5.2% at 80 'C. The solubility of octanoic acid in water, however, is

only 680 ppm [68]. This level is considered non-toxic as whole milk contains over 1080 ppm of

octanoic acid [71]. Octanoic acid is also used as a food preservative and is inexpensive and

readily available. Having been found to be the most suitable for this application, decanoic acid

and octanoic acid were used as the primary directional solvents in this work.
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Thermophysical properties of water, decanoic acid, and octanoic acid are used

extensively in this work and are listed for reference in Table 1.

Table 1. Thermophysical properties of water, decanoic acid, and octanoic acid (Data from Yaw [68]
and Verschueren [72])

Density* Viscosity Specific heat* Molecular
(kg/m 3) (cP) @ 25 *C (J/ kg K) weight (g/ mol.)

Water 1000 0.89 4180 18.02
Decanoic
acid 893 5.86** 2351 172.26
Octanoic
acid 910 5.25 2200 144.21

*Density and specific heat change only slightly with temperature and are
assumed to be constant
**Viscosity at 33 'C as decanoic acid solidifies at about 29 *C

2.3 Design of the Directional Solvent Extraction process

In order to accomplish effective salt removal from saline water using directional solvents

the process cycle must consist of (1) forming a saline water-in-solvent emulsion (2) heating the

emulsion to a temperature greater than ambient so that pure water is dissolved into the solvent

(3) brine-phase settling and removal (4) cooling down the solvent to ambient temperature to

precipitate out pure water. Based on this concept an experimental directional solvent extraction

batch process was designed as illustrated in Figure 5:

(a) A directional solvent is heated in a beaker and maintained at 40 - 95 'C and the saline

solution is added while stirring. Care is taken to ensure that the temperature is higher than

ambient to facilitate recovery of water but less than 100 *C to prevent vaporization of
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water. Phase change could lead to undesired evaporation and loss of water as well as

cause excessively high energy consumption.

(b) Upon mixing the beaker turns cloudy indicating emulsion formation. The water droplets

formed within the solvent scatter light and give the contents a cloudy appearance.

(c) Upon mixing for some time, the cloudiness in the beaker reduces indicating dissolution of

some water. This is due to the water droplet sizes and numbers reducing resulting in the

reduced light scattering.

(d) After stirring is stopped, the remaining brine settles gravitationally, leaving clear solvent

and the dissolved water above. At this stage the solvent has dissolved the pure water

phase and separated it from the salts.

(e) The clear contents are decanted into conical tubes maintained at room temperature. Care

is taken to ensure that the brine or crystallized salts do not get transferred to the conical

tubes and get mixed with the pure water.

(f) Cloudiness reappears in the conical tubes as the contents cool and pure water precipitates

out resulting in the re-appearance of water-in-solvent emulsion droplets.

(g) Pure water separates gravitationally leaving clear the clear solvent above a forming a

clear water layer at the bottom.

(h) This purified water is separated from the bottom of the tube and the solvent is reused.

Again, care is taken to ensure that solvent is not lost or gets collected together with the

recovered water sample.
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The mixing and separation times throughout the process can be critical and are discussed

in chapter 4. Description of this design may also be found in peer reviewed publications [64],

[73] and US and international patents [74].

C

E

H EATING

H F COOLING

Figure 5. Illustration of the cyclic directional solvent extraction experimental batch process
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2.4 Advantages of Directional Solvent Extraction

Motivation for deeper understanding of directional solvent extraction (DSE), its

laboratory demonstration, and further development as a continuous, commercially viable process

stems from its apparent advantages as seawater desalination and produced water treatment

technology.

Membrane-free operation: By being a membrane-free process, DSE eliminates a source

of capital and maintenance cost. Membrane-based methods are also unsuitable for produced

water treatment where high TDS feed water is encountered. By circumventing the use of

membranes DSE promises to become one of the very few currently known techniques to handle

a wide TDS range up to and including saturated brines.

Low temperature thermal process: By operating at low temperatures, DSE paves way

for utilization of low grade waste heat which may reduce or eliminate the energy costs involved

with desalination. In fact, as discussed in the rest of this thesis, DSE has been shown to function

effectively with a heat source of temperature as low as 40 *C, lower than any known thermal

desalination process. It must be noted, however, that the nature of DSE does not restrict its use to

low temperatures. In case of produced water treatment on oil and gas drilling or operating sites,

where waste heat might be difficult to scavenge, DSE can be fueled by a natural gas heat source

which is often readily available.

Simple, inexpensive machinery: Perhaps the most significant advantage of DSE stems

from its simplicity as a desalination process. The concept is easy to understand, develop, and

operate. The batch process design discussed and the continuous process prototype discussed later
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in this thesis do not require the use of require the use of expensive or complicated machine. Most

the equipment needed is readily available or manufacturable using inexpensive material. These

characteristics could lead to low capital costs as well as low operation and maintenance

overhead.
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Chapter 3 Technology Demonstration

3.1 Experimental Demonstration of Directional Solvent Extraction

After iterations with soybean oil and hexanoic acid, decanoic acid was selected for the

first demonstration of concept of directional solvent extraction. Decanoic acid, as mentioned

earlier, possesses the required characteristics of a directional solvent and is inexpensive, non-

toxic, and readily available. The following section describes the experimental procedure.

Directional Solvent preparation: It is important that the solvent (decanoic acid) is

saturated with water at the lower process temperature. If pure solvent is used, water will dissolve

into the solvent upon heating, but when the solvent is cooled back down not all the earlier

dissolved water will be precipitated as some water will remain dissolved in the solvent according

to water solubility in solvent at the lower process temperature. Therefore, pure decanoic acid was

first mixed, by stirring, with excess distilled water in a beaker maintained at the lower process

temperature (34 *C in this case). Some water dissolved into the decanoic acid and the un-

dissolved water was allowed to settle to the bottom of the beaker gravitationally. The decanoic

acid was carefully decanted off the top and now, being saturated with water at 34 'C, was set

aside for use in the experiment.

Feed-water sample preparation: Seawater contains 3.5% (35,000 ppm) of total

dissolved solids (TDS) of which over 85% is formed by sodium (Na) and chloride (Cl-) ions

[75]. In addition, seawater also contains smaller amounts of biological matter. To replicate

seawater artificially to a first degree a 3.5% w/w solution of sodium chloride (Morton @ table-
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salt non-iodized) was made in distilled water by adding measured amount of salt and water and

mixing in a beaker using a magnetic stir bar.

Experimental run: 200 g of decanoic acid [CH3(CH2)8COOH, >98% Kosher, Sigma

Aldrich, St. Louis, MO] were taken in a beaker and heated on a digital heating and stirring plate

(HS 40, Torrey Pines @ Scientific, Carlsbad, CA), as shown in Figure 6.

Figure 6. Heating decanoic acid on a heating and stirring plate with feedback temperature control

Over different runs decanoic acid was heated to temperatures between 40 and 80 *C (Fig.

4A). Once the temperature of the decanoic acid became steady, 10 g of the prepared salt solution

were added to the beaker and mixed with the solvent by stirring using a magnetic stir bar rotating
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at 600 rpm. An emulsion was observed to form immediately and the clear beaker contents turned

cloudy (Fig. 4B). In this first instance, stirring was continued at the elevated temperature for 60

minutes. During this time some water dissolved into the solvent, leaving behind smaller water

droplets highly concentrated with salt. This dissolution and droplet shrinking was visually

evident as the emulsion becomes clearer (Fig. 4C).

Upon stopping the stirrer, the un-dissolved water droplets (brine), being denser than

decanoic acid (density: 893 kg/ m3 ), gravitationally separated to form a layer of brine at the

bottom of the beaker, leaving a clear layer of decanoic acid containing dissolved water above

(Fig. 4D). The brine droplets were allowed to settle over 60 minutes in this instance, even though

visual appearance suggested that the separation only took a few seconds.

The clear upper layer in the beaker was then decanted by carefully pouring off into

conical tubes maintained at 34 *C in a water bath (Fig. 4E). It must be noted at this point that

decanoic acid has a freezing point of about 30 *C [76] and the lowest process temperature was

maintained at 34 *C to stay clear of phase change issues. This freezing point in the ambient may

be considered to be a drawback of using decanoic acid as a solvent.

The cooling of decanoic acid reduces the solubility of water in it facilitating the

precipitation of pure water droplets. The contents of the conical tubes appeared to turn cloudy

again providing visual evidence of this precipitation (Fig. 4F). These tubes were allowed to stand

at 34 'C for 72 hours to allow for complete gravitational separation of the water from the acid.

Droplets of the precipitated water are expected to be on the order of 10 pm diameter in size as

shown by Kress [63]. Kress' experiments were conducted with octanoic acid as the solvent
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which has similar properties as decanoic acid. The significance of these droplet sizes and their

effect on separation time is discussed in chapters 4 and 6.

When most of the precipitated water had separated, two clear layers made of water

(bottom) and decanoic acid (top) were observed (Fig. 4G). This separated, presumably

desalinated water was recovered by piercing a hole in the bottom of the conical tubes and

carefully draining into another tube (Fig. 4H). Care was taken to ensure that no solvent was

collected along with the precipitated water.

The salinity of the recovered water was measured using an ATAGO@ salt meter (Atago

USA Inc., Bellevue, WA). This salt meter measures salinity by actually measuring the

conductivity of the solution which varies with ionic TDS content. The weights of the recovered

water,W, and of the decanoic acid (solvent), W, in the conical tubes were also recorded to

calculate yield of pure water per unit volume of decanoic acid used.

To determine the effect of TDS on water yield from the process, the saline solution was

replaced with distilled water and the above steps, except salinity measurement were repeated.

Measurement of solubility of water in decanoic acid: To obtain a baseline estimate of

solubility of water in decanoic acid at the lower process temperature (34 C), 10 g of decanoic

acid was maintained at 34 *C and while stirring distilled water was added to it in increments of

0.2 g, 0.1, and several increments of 0.01 g until no more water dissolved after stirring for 180

minutes. The solubility of pure water at higher temperatures was calculated by adding the yield

at a given temperature to the solubility limit at 34 *C.
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Measurement of residual solvent content: Samples of water recovered from the process

were collected and allowed to stand for 72 hours. These samples contained residual salt content

as well as some residual solvent. Their salt content was measured and the absolute weight of the

salt present in a given weight of the sample was thus calculated. In order to check whether any

residual decanoic acid was left in the recovered water, a small sample (137.595 mg) of water was

weighed on a UMT 2 scale (Mettler Toledo, Columbus, OH) and heated on a VWR 575 Hot

Plate (VWR Scientific, Westchester, PA) to 120 *C. This was done to boil off the water until a

brownish white residue was left behind. The remaining sample contents were weighed again.

After evaporation the remaining contents must be the residual decanoic acid and the residual salt.

Since the amount had been measured previously, the total weight of residual decanoic acid and

its fraction in the water sample was calculated. The same process was repeated with a small

sample (504 mg) of water recovered from octanoic acid and the residual octanoic acid content

was recorded.

Experiments with octanoic acid: Upon successful demonstration with decanoic acid, as

discussed in the results section, octanoic acid was tested as a directional solvent. Octanoic acid

has the advantages of having a higher solubility of water in solvent, greater change in solubility

with temperature, as well as a lower freezing point of about 15 'C. Its disadvantages include the

higher amounts in which it dissolves in water as well as slightly higher toxicity as compared to

decanoic acid. Such issues, however, may not be important if the desalination process is for

treating produced water which will be reused for drilling or other industrial uses. The

experimental procedure described for decanoic acid was repeated with octanoic acid, except that

the lowest process temperature was the lab ambient temperature of about 25 *C, and highest
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temperature was taken to 90 *C. The amount of solvent (octanoic acid) used was reduced to lOOg

per run while the feed water was kept the same at 10g, thus the feed to solvent ratio increased to

10% in the case of octanoic acid. This was done because octanoic acid dissolves more water than

decanoic acid.

A slight experimental improvement over decanoic acid runs was made by replacing the

experimental beaker covered by aluminum foil, with a conical flask capped by a rubber stopper,

as shown in Figure 7. This was done to prevent any evaporation of water which might result in

loss of water that would otherwise be recovered as product at the end of the process. It is

recommended that this setup be used if these experiments are repeated or added on to.

Figure 7. Conical flask with cork stopper used for stirring and mixing to prevent water loss due to
evaporation
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Process characterization (discussed in chapter 4) revealed that the mixing and brine

separation times used for decanoic acid were too long and they were thus reduced to one minute

each. Furthermore the gravitational separation was replaced by separation using a lab centrifuge

(Fisher Scientific @ Marathon 21000). The samples were centrifuged for 60s at relative

centrifugal force of 5000 g. The samples were centrifuged after they were allowed 60 minutes to

cool to ambient temperature. As expected, the centrifugation drastically enhanced the speed of

separation of the recovered water from the solvent. All experimental runs were repeated three

times.

Experiments with high TDS water: In order to test the effectiveness of Directional

Solvent Extraction as a method to treat produced and flowback water from unconventional oil

and gas extraction, it became imperative to use high TDS water as feed samples. Produced water

from unconventional oil and gas operations often contains TDS levels of between 60000 ppm

and 300,000 ppm, of which over 80% could be dissolved sodium and chlorides [77]. A 10% w/w

(100,000 ppm) solution of sodium chloride in de-ionized water was prepared to simulate

produced water. It must be noted that produced water may contain organics as well as residual

oils which might need to be removed in a pre-treatment process. Using these high TDS samples,

experiments were conducted with octanoic acid as the directional solvent and using the protocol

described in the preceding text.

Additionally, to test the limits of feed TDS levels that the DSE process can handle, a

saturated brine was prepared (>29%, 290000 ppm NaCl w/w), and used as feed for the

experimental process. Saturated brines were not treated experimentally in as much detail as the

other feed samples, but a first order evidence for DSE's ability to extract water from them was
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sought by looking for salt crystallization upon addition of the saturated brine to octanoic acid at

90 *C.

Experiments with field samples of flowback water: To further verify the efficacy of

DSE, actual field samples were obtained from flowback water ponds in Kennetcook, Nova

Scotia with the help of Dillon Consulting, London, Ontario. These samples were measured for

starting TDS, run through the DSE process with octanoic acid, and the recovered product water

was measured for final TDS content.

3.2 Experimental results & analysis

Product salinity: A primary process performance parameter is the salinity or total

dissolved solids (TDS) content of the product water. This product salinity for a starting feed TDS

of 3.5% (seawater) and 10% (produced water) was measured for all samples and is depicted in

Figure 8, as a function of highest process temperature for both decanoic acid and octanoic acid.

Salinity of recovered water varied between 0.07% (700 ppm) and 0.11% (1100 ppm) for

decanoic acid. Experiments with octanoic acid resulted in higher product salinities of between

0.17% (1700 ppm) and 0.32% (3200 ppm). Experiments with octanoic acid and 10% TDS feed

water resulted in even higher product salinities of between 0.37% (3700 ppm) and 0.51% (5100

ppm). According to WHO standards drinking water must not have more than 0.1% (1000 ppm)

[9] salinity while EPA standards define drinkable water as containing less than 0.05% salt (500

ppm) [78]. Other standards define up to 0.14% (1400 ppm) salinity as acceptable [53]. In theory,

given that no salt is expected to dissolve in the solvent, the final salinity of the recovered water

should be zero. The remaining salt is attributed to the possibility that not all the un-dissolved
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brine salt had separated before decantation and eventually mixed with precipitated water. The

higher degree of salinity in the product water from octanoic acid trials may be attributed to the

shorter brine separation times used in those experiments (1 min vs. 60 min). Salinities greater

than the drinking water limits may not be an issue for produced water application. Industry

surveys suggest that operators may be able to use water with salinity as 1% (10000 ppm) for

reuse and water with salinity up to 0.3% (3000 ppm) may be stored in open ponds or transported

without treating them as hazardous waste.
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Figure 8. Salinity of product water from experimental runs with Decanoic acid and Octanoic acid for
feed salinity of 3.5% and 10% (only with Octanoic)
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Water yield: Water yield for this process refers to the weight of purified product water

obtained at the end of the cycle per unit weight of the solvent used. In mathematical terms,

y = (1)Ws

Yield is thus a measure of system energy efficiency and the economics. A higher water

yield per volume of solvent implies lower energy consumption due to the smaller amount of

solvent requiring heating. In addition, higher water yield would also mean smaller system sizes

thus reducing capital costs. Water yield, however, should not be confused with the recovery

ratio,

R = (2)
Wf

which is the weight of water recovered, W, at the end of the cycle per unit weight of the

input feed water, Wf.

From the weights of product water and the solvent used the yield was calculated for the

experimental runs at different temperatures. The product water yield from decanoic acid

experiments is depicted in Figure 9. The experimental yield for both saline water and pure water

is superimposed with the yield calculated from Hoerr et al.'s solubility estimations [60]. The

lower yield for saline water (3.5% TDS) as compared to pure water are due to the strong

interactions of water with the dissolved salt and the resulting difficulty of extracting water from a

salt-water solution. As represented by the calculations depicted in Figure 4, the solvation free

energy of water in a 3.5% aqueous salt solution (-7.13 kcal/ mol) is lower than that of water in

bulk pure water (-6.33 kcal/ mol) and therefore if the water salinity is increased the yield would
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be expected to reduce further. As may also be noted, the experimental yield for pure water

conforms to that the theoretically expected yield.

The product water yield was similarly calculated for experiments with octanoic acid and

is depicted in Figure 10. In this plot the yields from 10% TDS feed water are also depicted. The

yields at various temperatures are compared with those expected from solubility measurements

done by Kress [63] as well the solubility predicted by Hoerr [60]. The data point of pure water

yield at 90 *C was not presented by Kress and was added by conducting further experiments.

Similar to results from decanoic acid experiments the yields for 3.5% TDS water are lower than

those from pure water. The yields for 10% TDS water are even lower due to even more salt

concentration in the solution. The yields from decanoic acid are also superimposed in the plot for

comparison. Octanoic acid dissolves more water and has greater absolute change in the solubility

of water in acid for a given temperature increase. Thus, as expected, it may be noted that the

product water yield from octanoic acid are almost twice of those from decanoic acid.
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Figure 9. Product water yield as function of temperature for when pure water is dissolved in decanoicacid and recovered upon cooling (open square), 3.5% TDS water is dissolved in decanoic acid and purewater is recovered (filled circle), and calculated from Hoerr's solubility estimates [60] of pure water indecanoic acid (broken line)
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Saturated brines: Upon mixing the prepared saturated brine (>290,000 ppm NaCl) with

octanoic acid maintained at 90 *C, solid salt was visually observed to crystallize out

immediately. After stirring was stopped and the solvent decanted, the white residue of sodium

chloride was observed at the bottom of the beaker as shown in Figure 11. DSE thus promises to

be the only method other than phase change that can extract water from saturated brines. This is

significant because certain oilfields, especially in the Bakken formation of North Dakota, do

produce saturated brine.
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Field produced water samples: The produced water samples obtained from

Kennetcook, Nova Scotia were measured to have a starting TDS content of 58333 ppm (5.83%).

The product water was recovered at a 72% recovery ratio and a final TDS content of 3667

(0.37%) ppm.

Figure 11. Salt crystallized out of saturated brine (29% NaCl in distilled water) upon mixing with
Octanoic acid at 90 *C

Residual solvent: From a 137.595 mg sample of product water of 0.06% w/w sodium

chloride content, 0.087 mg of residue was found to be left after boiling off the water. Since the

salt (0.06%) is expected to be about 0.082 mg, the remaining residual weight of decanoic acid is

equal to 0.005 mg. This gives a residual solvent concentration of 36 ppm by weight. This is in

the experimentally reported range of 30 ppm [69] to 150 ppm [70].
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Theoretically, the molarity of decanoic acid in a dilute solution of decanoic acid in water

is given by the following expression [79],

S =exp(-AG/RT)/V (3)

where AG is the difference in the free of decanoic acid in bulk and that of decanoic in water, R

the ideal gas constant, T the temperature and V the molar volume of bulk amorphous decanoic

acid. By taking AG=16.04-9.82=6.22Kcal/molV,,,=191.96cc/mol, and T=300K, as

calculated by Luo [64] it was found that

S = 1.6391x10-7mol/cc = 2.8192x10 5 g /cc water = 28.192ppm. This theoretically predicted

value of 28 ppm is also similar to the experimentally obtained value of 36 ppm.

A sample of water recovered from octanoic acid was similarly treated. From a 504 mg of

sample product water of 0.13% w/w sodium chloride content, 0.95 mg of residue was found to

be left after boiling off the water. Since salt (0.13%) is expected to be about 0.655 mg, the

remaining residual weight of octanoic acid is 0.295 mg. This gives a residual octanoic acid

concentration of 585 ppm by weight. This value is in reasonable agreement with reported

solubility of octanoic acid in water of 680 ppm [68].

Energy and Exergy Analysis: The energy consumption of the batch process described

above was calculated and then extrapolated to estimate the energy requirement of a continuous

industrial process at a directional solvent desalination plant. The primary energy consumption is

the heat required to elevate the temperature of the water-in-decanoic acid emulsion. It is assumed
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that heat exchangers with a typical effectiveness of 0.8 will be used to recuperate energy [80] in

the plant, thus the industrial energy requirement will be 20% of that in the laboratory.

To appreciate the benefit of using low temperature sources, it is imperative to calculate

the exergy consumption, which is the maximum theoretical work that can be extracted, at Camot

efficiency, from the heat used to fuel the process and provides for fair comparison with the

power requirements of reverse osmosis and multi-stage flash processes. The experiments were

cycled between a lower temperature of T, (34 *C for decanoic acid and 25 *C for octanoic acid)

and a varying highest process temperature (T. ). Thus, the energy consumption of the process for

heating up the decanoic-saline solution mixture per unit mass of recovered fresh water is simply

given by:

Qab =S +CW)(TH -,) (4)
Y,

where Y, represents fresh water yield and Cs and Crepresent the specific heats of the

directional solvent and water respectively.

In a continuous industrial process heat is exchanged between streams of decanoic acid,

one of which is cooling down and the other is heating up. The amount of energy lost in this heat

transfer will be determined by the effectiveness (qrE) of the heat exchanger, and the energy

requirement will then be given by:

Qind = Qlab(17 HE) (5)

In this case a practical heat exchanger effectiveness of 0.8 is assumed [80].
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The theoretical energy consumption for when pure water is used as feed is expected to

remain relatively constant. This becomes evident if equations (4) and (5) are modified for pure

water. In this case, since the solubility of water in the solvent is a linear function of temperature,

the yield Y, becomes a linear function of the difference between the highest and lowest process

temperature, and may be expressed as

Y. = K(TH -TO) (6)

where K is a constant. Equation (4) may thus be written as,

Qab = -S-+C,(T H ~T o7
K

The energy consumption thus varies linearly with increasing highest process temperature,

TH, but, >> Cw, the variation is quite insignificant.
K

The calculated thermal energy consumption for directional solvent extraction with

decanoic acid as solvent is depicted in Figure 12. The graph shows calculated energy

consumption for the experimental yield obtained for pure water in decanoic acid and 3.5% TDS

water in decanoic acid, as well for the theoretical expected yield from Hoerr's solubility

estimates [60]. As may be noted the experimental thermal energy consumption lies in the range

of 350 - 480 kWhth/ m 3. The theoretically expected energy consumption varies linearly and only

slightly between 250 kWht/ m3 and 265 kWhth/ m3 . The experimental results for pure water

experiments conform to theory. The experimental energy consumption for 3.5% TDS water is

higher than the theoretical value due to- the reduced product water yield per unit weight of the

solvent when salt is present in feed water. Thermal energy consumption values are higher than
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other thermal desalination techniques such as multi-stage flash distillation (MSF) which lie in the

range of 60 - 90 kWhth/ m3 [31], [33], [34], [41-43].
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Figure 12. Thermal energy consumption as a function of the highest process temperature for
directional solvent extraction (DSE) for when pure water is dissolved in decanoic acid and recovered
upon cooling (open square), 3.5% TDS water is dissolved in decanoic acid and pure water is recovered
(filled square), and calculated from Hoerr's solubility estimates [601 of pure water in decanoic acid
(broken line). The lowest process temperature in these experiments was 34 "C; calculations assume a
heat exchanger effectiveness of 80% [80]

Gained Output Ratio (GOR), defined by the following expression, is a parameter used for

comparing the performance of thermal desalination technologies,

GOR = rnf (8)
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where ?h is the water throughput rate of the desalination process, hfg is the latent heat of

vaporization of water and Q is the rate of thermal energy consumption. GOR indicates ratio of

the latent heat of vaporization of water to the actual thermal energy required to produce a unit

volume of desalinated water from a process. The experimental energy consumption for DSE with

decanoic acid puts its GOR value between 1.3 and 1.8, which is lower than that for MSF

generally expected in the range of 6 to 10.

To appreciate the benefit of using low temperature sources it is imperative is calculate the

exergy consumption, i.e. the maximum work that can be derived from the energy consumed. This

exergy consumption depends on the highest process temperature and is given by:

E = Qd(1 TO) (6a)
TH

Equation (6a) may be re-written as

E =(E + C,)(1 - r/HE) H oT X To (b
Y. TH

This gives the maximum amount of work that may be extracted from the heat used to fuel

the process and provides for fair comparison with the power requirements of RO and MSF

processes.

The calculated exergy consumption as a function of the highest process temperature for

decanoic acid as directional solvent is depicted in Figure 13, and compared with literature values

for reverse osmosis [31-34] and multi-stage flash distillation [31], [33], [34], [41-43]. The
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broken line represents the theoretically expected exergy consumption based on solubility of

water in decanoic acid.

Note that reverse osmosis uses electrical power and the actual heat consumption from

which this power is derived is also shown. Exergy is expressed in kWh/ m3 . Expression in kWh/

1000 gal may be found in an externally published version of this work [73]. As may be noted, the

exergy requirement of the directional solvent extraction with decanoic acid as solvent is similar

or lower than that of multi-stage flash for highest process temperatures below 70 0 C and similar

or lower than that of reverse osmosis for highest process temperatures below 50 'C. It is

important to emphasize that reverse osmosis uses electricity which is derived from a high

temperature heat source as such by burning coal or natural gas or from nuclear power. The graph

in Figure 13 also depicts the exergy of the actual heat consumed for electricity generation.

Directional solvent extraction is thus the only membrane-less process that can be fueled by very

low temperature energy sources.
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Figure 13. Exergy consumption as a function of the highest process temperature for directional solvent
extraction (DSE) with decanoic acid compared with literature values for reverse osmosis (actual
electricity consumption) [31-34], and multi-stage flash [31], [33], [34], [41-43]. Also shown is the
theoretically expected exergy consumption for decanoic acid based Hoerr's solubility estimates
(broken line) [60]. Note that reverse osmosis uses electrical power and the exergy of the actual heat
consumption from which this power is derived is also shown

Thermal energy consumption was similarly calculated for octanoic acid as the directional

solvent. Results are depicted in Figure 14. For octanoic acid as directional solvent the thermal

energy consumption is seen to lie in the range of 220 - 260 kWh/ m 3 for 3.5% TDS feed, and in

the range of 318 - 319 kWh/ m3 for 10% TDS feed. The theoretically expected energy

consumption varies linearly and only slightly between 178 kWh/ m 3 and 190 kWh/ m3 . As may

be noted the calculated energy consumption values for experiments with pure water conform
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well to the theory. For saline water the energy consumption, as stated above, is expected to be

higher due to the reduced product water yield when salt is present in the feed. The energy

consumption values are lower than those for decanoic acid but still higher than those for multi-

stage flash.

The experimental GOR for seawater DSE with octanoic acid lies between 2.4 and 2.9,

lower than MSF GOR of 6 to 10. However, given that directional solvent extraction can be run at

lower temperatures and the equipment used for a continuous industrial process may be simpler

and inexpensive, this technology promises to offer significant economic gains as is discussed in

chapter 7.
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Figure 14. Thermal energy consumption as a function of the highest process temperature for
directional solvent extraction (DSE) for when pure water is dissolved in octanoic acid and recovered
upon cooling (open square), 3.5% TDS water is dissolved in octanoic acid and pure water is recovered
(filled square), 10% TDS water is dissolved in octanoic acid and pure water is recovered (filled circle)
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and calculated from Hoerr's solubility estimates [60] of pure water in octanoic acid (broken line). The
lowest process temperature in these experiments was 25 *C; calculations assume a heat exchanger
effectiveness of 80% [80]

To appreciate the benefit of operating at lower temperatures, exergy consumption is

calculated for DSE with octanoic acid for 3.5% TDS feed as well and is represented in Figure 15.

It may be noted that the experimental exergy consumption follows the same trend as the

theoretical predictions as represented by the broken line on the plot. Here the exergy

consumption for DSE with octanoic acid is lower than that for decanoic acid. Also the exergy

consumption lies exclusively in or below the range of literature values for multi-stage flash

(MSF) distillation for all highest process temperatures tested. The values approach those for

reverse osmosis (RO) as the temperature approaches 50 'C and under. It is important, once again,

to reiterate that RO is an electrical process and this electricity is derived from high temperature

heat source often above 2000 'C.
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Figure 15. Exergy consumption as a function of the highest process temperature for directional solvent
extraction (DSE) with octanoic acid compared with exergy consumption for DSE with decanoic acid
and literature values for reverse osmosis (actual electricity consumption) [31-34], and multi-stage
flash [31], [33], [34], [41-43]. Also shown is the theoretically expected exergy consumption for
octanoic acid based Hoerr's solubility estimates (broken line) [60].
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3.3 Summary & Discussion

First demonstration of directional solvent extraction as a novel desalination technology

was completed in a benchtop batch process as describe above with decanoic acid and octanoic

acid as the preferred directional solvents.

The basic DSE cycle as experimentally demonstrated consists of (1) mixing saline feed

water with the directional solvent in a beaker using a magnetic stir bar (2) heating the beaker

contents on a hot plate to a temperature between 40 *C and 90 'C so that pure water is dissolved

into the solvent (3) allowing the un-dissolved brine-phase to settle gravitationally by stopping the

stirring but maintaining the high temperature (4) decanting the clear solvent and water solution

by pouring off into test tubes maintained at the lowest process temperature which may be room

temperature or another convenient temperature (5) allowing the test tube contents to cool and the

desalinated water to precipitate (6) separating the precipitated water from the solvent by allowing

gravitational separation over several hours or by settling centrifugally in a lab centrifuge for 1-2

minutes and (7) finally collecting the recovered water from the bottom of the test tubes and (8)

reusing the solvent.

Effective desalination was demonstrated with both decanoic acid and octanoic acid.

Starting with a feed concentration of 3.5% w/w sodium chloride, the product water concentration

was found to be between 0.07% and 0.11% w/w for decanoic acid and between 0.17% and

0.32% w/w for octanoic acid. The higher product TDS for octanoic acid was attributed to the

shorter brine separation time employed. For a starting feed concentration of 10% w/w sodium
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chloride the product water concentration was found to be between 0.37% and 0.51% w/w for

desalination with octanoic acid.

Water yield is defined as the weight of product water obtained at the end of the cycle per

unit weight of the directional solvent used. Due to the increase in solubility of water in the

solvent with increasing temperature the yield also increases as the driving temperature

difference, AT is increased. With a starting feed concentration of 3.5% decanoic acid was shown

to give a yield of about 0.6% for AT of 16 *C which increases to about 1.3% for a AT of 46 *C.

Octanoic acid, as expected, was shown to give higher yields than decanoic acid; for a AT of 25

*C, octanoic acid gives a yield of about 1% which increases to almost 4% for AT of 65*C. For

starting feed concentration of 10% octanoic acid gives a yield of 1.73% for AT of 45 *C which

increases to 2.62% for AT of 65 *C. Directional solvent extraction was also shown to be the only

method other than phase that can extract water from and crystallize salt out of saturated brines.

Thermal energy consumption for the experiments was calculated. The experimental

energy consumption for seawater concentrations (3.5%), translated to the scenario of a

continuous industrial cycle with heat recovery, was found to vary between 350 kWhth/ m3 and

480 kWhth/ m 3 for decanoic acid, and between 220 kWh/ m 3 and 260 kWh/ m 3 for octanoic

acid. These energy consumption values are higher than other thermal processes such as MSF and

MED. The benefit of using low temperature heat sources, however, is demonstrated by

calculating the exergy consumption of DSE and comparing with other desalination technologies.

It is noted that the exergy consumption for DSE with decanoic acid is less than that of MSF for

temperature below 70 *C and in the same range as RO for temperatures below 50 'C. For DSE
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with octanoic the exergy consumption is less than MSF for all tested temperatures and

approaches that of RO for temperatures below 50 *C.

In addition, the experimental energy consumption for produced water concentrations

(10%), translated to the scenario of a continuous industrial cycle with heat recovery, was found

to vary between 318 kWhh/ m3 and 330 kWhih/ m3 for octanoic acid as the directional solvent.

Through this demonstration of concept it is shown that, by using directional solvents, it is

possible to design thermal desalination processes that utilize very low to mid temperature energy

sources. This process has been shown to operate with temperatures as low as 40 - 50 *C. Sources

that could provide such temperatures are abundant and inexpensive. Although the absolute

energy consumption is high, the exergy of this energy low thus utilizing energy that would

otherwise be wasted. Further work on better understanding the phenomenon and characterizing

the process parameters became important and is presented in the following sections.
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Chapter 4 Characterization of DSE process parameters:

Effect of process step times, varying feed TDS, and recovery

analysis

4.1 Effect of process time parameters

The first demonstration of directional solvent extraction as a batch process involved very

long mixing and brine separation times (60 minutes each) and focused primarily on testing the

concept. The longer process times were used to eliminate any variability due to the kinetics of

the dissolution of water in directional solvent and those of gravitational brine separation.

However, for the process to be practically feasible and economical, the process cycle

time is critical. The faster the cycle the greater the product water throughput will be for the same

amount of solvent and for the same system size. A shorter cycle will thus mean higher

throughput rates, lower amounts of solvent in circulation, and smaller system sizes, all resulting

in increased portability, lower on-site footprint, and lower capital costs.

The rate limiting steps are (1) mixing of feed water and the solvent, (2) brine separation,

and (3) separation of the product water. The first two are experimentally characterized here and

the third is discussed quantitatively and qualitatively.

Feed-solvent mixing time: In the mixing step, feed water droplets are formed within the

solvent phase to facilitate quicker dissolution. The smaller the droplet size, i.e. the greater the

droplet surface to volume ratio, the faster the dissolution will be. Shorter mixing time may
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reduce the amount of water dissolved into the solvent and thus result in reduced yield. To

investigate the effect of mixing time on the product water yield, droplets were formed using a stir

bar rotating at 600 rpm in a 300 ml beaker and the mixing time was varied between 1 and 60

minutes. The feed water contained 3.5% TDS. Octanoic acid was used as the directional solvent

and the highest process temperature was maintained at 90 'C for all the runs. All other process

times were kept constant. Experiments for each case were carried out three times.

The product water yield was recorded for all mixing times and is depicted in Figure 16.

As seen from the plot, the product water yield does not significantly change with changing

mixing times except a slight decrease when the mixing time approaches one minute. This result

suggests that it may be possible to reduce the time under the present experimental conditions to

one minute without compromising on yield performance.
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Figure 16. Product water yield as a function of feed-solvent mixing time for octanoic acid as solvent
and 3.5% TDS feed water

Brine separation/ settling time: In the batch process experiments, brine is separated

gravitationally once the stirring is stopped. Most of the brine droplets separated within a few

seconds as was visually evidenced by the clearing up of the contents of the beaker. Some small

droplets, however, seemed to separate slowly. Some droplets had likely not separated in the

allowed separation time and mixed with the precipitated pure water, thus giving the product

water a residual salt content. Shorter separations times may therefore lead to less ideal brine

separation and higher product water TDS. To investigate this, the experimental process was

repeated with varying brine separation/ settling time between 1 and 60 minutes. Octanoic acid

was used as the directional solvent, the highest process temperature was maintained at 90 *C, and

the mixing time held constant at one minute. All other process times were kept constant.
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The product water TDS content was measured in for each experimental run and the

results are depicted in Figure 17. The plot shows that the product TDS does indeed increase with

reducing separation times. The change is insignificant when the separation time is reduced from

60 minutes to 40 minutes for which the product TDS remain in the range of 0.1% w/w. As the

separation time is reduced further the product water TDS increases to about 0.3% w/w for

separation time of one minute. This reduction in performance, however, is outweighed by the

gains due to reduction in separation time of 60 times. For produced water applications a TDS

reduction of 90% (3.5% to 0.3%) would be acceptable for most reuse purposes. For seawater

desalination applications a reduction to 0.3% TDS would make the water acceptable for certain

agricultural and industrial application or for further treatment by RO or Electrodialysis (ED)

which are extremely effective and economical at such low TDS levels. The separation kinetics of

brine droplets are also discussed in more detail in the context of the continuous DSE process in

chapter 6.
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Figure 17. Product water TDS as a function of brine separation/ settling time for Octanoic acid as
solvent and 3.5% TDS feed water

Separation of precipitated water: When the solvent is cooled back down the dissolved

water droplets precipitate out by nucleating and then coalescing [81), [82]. Droplet formation has

been investigated in detail by Kress [63]. Kress' experiments suggest that sizes of nucleating

droplets increase with decreasing cooling rate. This may be because slower cooling rates result in

primarily heterogeneous nucleation as there are existing precipitated droplets which form

nucleation sites. The probability of homogeneous nucleation, i.e. the probability of smaller

droplet sizes increases with increasing cooling rate.

For the cooling scenario in the experimental process, the solvent is cooled in test tubes by

free convection in ambient air. A simple calculation suggests that the cooling rates are on the

order of 1 - 10 *C/ min, which would mean that the samples cool from 90 *C to ambient
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temperature within an hour, as has been observed in the laboratory. For these cooling rates, Kress

showed that water droplets precipitated in octanoic acid are in the size range of 10 pm in

diameter. The gravitational settling of these droplets may be approximated as Stokes flow of a

sphere (droplet) through a viscous fluid (solvent) [83]. The terminal velocity for such a flow is

given by,

1 (pgD (9)

where p is the density of water, r/ is the viscosity of the surrounding medium, in this case

decanoic or octanoic acid, D is the droplet diameter, and g is gravitational acceleration. Taking

density of water equal to 1000 kg/ m3, gravitational acceleration 9.8 m/s 2, and viscosity of

octanoic acid to be 5.5 cP [84], the terminal velocity for 10 pm diameter droplet is expected to

be about 10-3 cm/s. For a 300 ml beaker, about 10 cm in height, used for the experiment, the

maximum time that the droplets take to settle to the bottom is expected to be about 3 hours.

As can be seen from equation (9) the settling velocity is proportional to the square of the

diameter. The settling time is therefore proportional to the inverse of the square of droplet

diameter. For 5 pm droplets this settling time would increase to 12 hours, and for 2 pm droplets

to about 75 hours. The fact that all brine droplets that not settled after 72 hours implies that a

minor fraction (<3%) of the droplets were smaller than 2 pm in size.
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4.2 Effect of feed TDS on DSE performance

DSE promises to be an effective desalination method for a wide range of feed TDS

levels. Increasing TDS levels, however, do have an effect on its performance, primarily on the

product water yield thus affecting the process energy consumption. To investigate this effect, the

experimental procedure was repeated for varying feed TDS levels between pure water (0%) and

12% sodium chloride w/w, using octanoic acid as the directional solvent, and maintaining the

highest process temperature at 90 *C. Learning from the above described process time

investigations, the mixing and brine separation times were both reduced to one minute. For all

the experimental runs, the product water yield was recorded and the results are depicted in Figure

18. As expected, the product water yield reduces with increasing feed TDS when the ratio of feed

to the solvent is held constant (10% is this case), due to the increased difficulty of extracting

water from a saline solution. As previously explained the strong salt-water interaction reduces

the free energy of water in a saline solution which reduced with increasing salt content, and thus

makes it energetically more difficult to transition to the state of being dissolved in the directional

solvent.
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Figure 18. Product water yield as a function of feed TDS for Directional Solvent Extraction with
Octanoic Acid, 10% feed to solvent ratio, and AT=65 T.

4.3 DSE Recovery ratio

The recovery ratio, an important performance parameter of any desalination process, has

not been discussed so far in the context of directional solvent extraction. Recovery ratio is the

ratio of the amount of desalinated product water recovered to the amount of feed water used as a

process input. Any water that is not recovered as product is discharged as a waste brine stream.

Recovery ratios of seawater reverse osmosis plants lie in the range of 30% to 50% [85-89],

while representative seawater MSF recovery ratios are in the range of 15-50% [89].

Higher recoveries imply smaller amount of fluid passing through the system which

translates to smaller system sizes and thus lower capital costs. Higher recoveries also imply
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lower pumping energy consumption and costs as more of the feed pumped through the system is

recovered as the desalinated product. High recoveries are thus desirable, and even more so in

produced water applications, where the uncovered brine needs to be transported to a deep

injection well as a very high cost. In fact, industry surveys suggest that an effective produced

water desalination system would likely be required to demonstrate recoveries greater than 70%.

In the above described experiments, excess feed amounts were used to eliminate any

variability due to increasing salt concentration in the brine phase as water was dissolved into the

solvent. To investigate potential recovery ratios, however, it became necessary to reduce the

amount of input feed and record the resulting changes in product water yields. The experiments

were repeated with octanoic acid, and the feed to solvent ratio was varied over different

experimental runs. For example, a first run was conducted with the above described 10% feed to

solvent ratio (lOg feed water in 1OOg solvent), and thereafter the feed amount was reduced to 9g,

8g and so on while keeping the solvent amount the same. To reiterate the product water yield is

the ratio of the weight of product water recovered to the weight of the solvent used.

Recovery, therefore, can be calculated as,

RR = -(10)
FSR

where Y is the product water yield and FSR is the feed to solvent ratio. The recovery

ratios were thus calculated from results for varying feed to solvent ratios and are depicted in

Figure 19. As expected the recovery is seen to increase with decreasing feed/solvent ratio. The

highest reported recovery in this single stage batch process was about 78% for 3% feed to
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solvent ratio. This recovery is higher than any reported recoveries from seawater reverse

osmosis, MSF, MED, MVC or ED processes.

The broken line represents the theoretically expected recovery for pure water in octanoic

acid. It may be noted that for a feed to solvent ratio of less than 4.54%, which is the change in

solubility of water in decanoic for the used AT of 65 *C, the recovery for pure water should be

100%. However, the presence of salt makes it more difficult to extract water as the salt

concentration in the brine phase increases. With higher recoveries, this brine salinity increases,

thus leading to the greater observable deviation from the pure water curve.
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Figure 19. DSE Recovery Ratio as a function of feed to solvent ratio with Octanoic Acid as directional
solvent, with AT=65 T, for 3.5% TDS feed water. The broken line represents the theoretical recovery
based on Hoerr's solubility estimates of pure water in octanoic acid [60]
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This deviation from the ideal pure water curve becomes more evident when the data is

presented in terms of product water yield as a function of feed to solvent ratio. Interestingly,

while the recoveries increase with decreasing feed/ solvent ratio the absolute product water

yields tend to decrease with decreasing feed/ solvent ratio. The yield decreases, again, due to the

increasing salinity as more water is pulled out into the solvent from the brine phase. The

recorded yield are depicted in and compared with the pure water yield for the given AT (65 'C)

which is expected to remain constant at 4.54%, for any feed to solvent ratio greater than 4.54%.

For any feed to solvent ratio less than 4.54%, the yield will be equal to the feed to solvent ratio,

since in that case the solvent will dissolve all the pure feed water.

The implication of this decreasing yield is that for lower feed to solvent ratios, while the

recovery increases, the energy consumption per unit amount of product water also increases. For

example, while the energy consumption for 38% with a 10% feed to solvent ratio is 224 kWh/

m3 , it increases to 353 kWh/ m 3 when 78% recovery is realized with a 3% feed to solvent ratio.

However, even with the increased energy consumption, higher recoveries may be desirable

depending on the application, for example in produced water treatment, and depending on the

availability of thermal energy, for example if waste heat is readily available or in scenarios

where resources such as natural gas as a combustible fuel are inexpensive and plentiful.
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Figure 20. DSE product water yield as a function of feed to solvent ratio with octanoic Acid as
directional solvent, with AT=65 *C, for 3.5% TDS feed water. The broken line represents the
theoretically expected yield for pure water in octanoic acid based on Hoerr's solubility estirnates [60]

4.4 Summary

The effects of process time parameters, the solvent-feed mixing time, the brine separation

time, and the precipitated water separation were investigated with octanoic acid as the solvent. It

was shown that the solvent-feed mixing can be reduced to 60 seconds without compromising

performance, i.e. without reducing the product water yield.

Brine separation is gravitationally driven and it was observed that the product water

salinity did not significantly change between this separation time was reduced from 60 minutes
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to 40 minutes but a slight increase was noticed upon reducing the time further to 20, 10 and 1

minute. It was, however, noted that the gains from reducing brine separation time to 60 seconds

outweigh the losses due to product water salinity increase to just 0.3% from 0.1%.

The separation of precipitated water from the solvent was modeled as Stokes flow of a

sphere through a viscous medium and the required separation times based on droplet sizes were

calculated. It was shown that 10 pm droplets are expected to settle to the bottom of a 10 cm tall

experimental beaker in 3 hours, and that this time would increase to 12 hours and 75 hours for

droplets 5 pm and 2 pm respectively.

The effect of varying feed TDS was investigated and it was shown that DSE may be used

effectively for treating high TDS waters including saturated brines. It was, however, found that

higher feed TDS resulted in lower product water yield. Upon increasing the feed TDS from 2%

to 12% the product water yield halved from about 4.4% to about 2.3%.

Recovery ratio of the DSE process, i.e. the ratio of the mass of product water to the mass

of the feed water, was shown to vary with the feed to solvent ratio. Recoveries as high as 78%

were demonstrated for a 3.5% TDS, higher than any reported recoveries from seawater reverse

osmosis, MSF, MED, MVC or ED processes. It was, however, noted that higher recoveries also

require higher energy consumption. Thermal energy consumption increases from 224 kWhth/ m3

for 38% recovery to 353 kWhih/ m3 for 78% recovery. This increased energy consumption may,

however, be acceptable in scenarios such as produced water treatment where a high value is

placed on recovery.
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Chapter 5 Multistage Direction Solvent Extraction

5.1 Introduction

Thus far, in this work, we have discussed the concept, demonstration, and

characterization of directional solvent extraction as a single stage batch process where the feed

water is fed into the system and a product water phase and a brine phase are removed as outputs.

The waste brine phase from the process naturally has a higher salinity than the feed water. DSE,

however, has been shown to be effective for higher TDS feed waters all the way up to saturated

brines. This ability opens up the possibility of reusing the brine from one process cycle as feed

for a subsequent cycle, with a view to recover even more desalinated product water. This

modification to the DSE cycle is referred to as multi-stage directional solvent extraction. A

multi-stage process may involve two or more stages, i.e. the brine from first stage is used as feed

for a second stage and the brine by-product from the second stage is used as feed for a third and

so on, until any more stages become impractical or the salt begins to crystallize out of solution.

In multi-stage flash distillation, subsequent stages are used to recover energy from

evaporated water from the previous stage, thus reducing the energy consumption of the process.

In a multi-stage DSE, the energy recovery from reusing the brine as feed in a subsequent stage,

would not be significant as the feed forms a very small fraction (<10%) of the circulating fluid,

most of which is the solvent. A minor amount of energy would still be recovered and may serve

to reduce energy consumption slightly.
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The major advantage of a multi-stage process is that it promises even higher recoveries

than those already demonstrated using single stage DSE. This could be very significant in the

produced water treatment scenario or another application where greater value is placed on high

recoveries. A multi-stage process was therefore investigated experimentally and is described

below.

5.2 Experimental procedure

Octanoic acid was used as the directional solvent to investigate multi-stage stage

directional solvent extraction. Feed water samples were making 3.5% w/w sodium chloride in

distilled water solution to simulate seawater, and 10% w/w sodium chloride solution to simulate

produced water. The octanoic acid was first saturated with water at ambient temperature (25 *C)

as explained before. Similar to the earlier experiments, 100 g of octanoic acid were taken in a

conical flask and heated on a heating and stirring plate. The acid was heated and maintained at

90 'C in all experimental runs. Both feed water samples (3.5% and 10%) were added to octanoic

acid while stirring in varying amounts between 4g and lOg (4% and 10% FSR) over different

experimental runs. Stirring was continued for one minute to allow for dissolution of the water

into the solvent. Stirring was then stopped, the flask contents were maintained at 90 *C, and un-

dissolved brine droplets were allowed to settle gravitationally for one minute. Thereafter, two

clear layers of solvent with dissolved water (top) and brine (bottom, as described in section 3)

were observed to form in the flask. The solvent-water solution was carefully decanted into

conical tubes maintained at room temperature of 25 *C.
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The remaining brine at the bottom of the beaker was then poured off into another test

tube, its weight recorded, and saved for use in the next stage. The experimental cycle was then

repeated except that the brine from the previous stage was used as feed. The second stage brine

was also collected and used as feed for a third stage.

The decanted solvent-water solution from all three stages was allowed to cool in ambient

air for about 60 minutes to room temperature (25 "C). As described earlier, the clear solution

turned cloudy indicating the precipitation of water from the solvent. These samples were

transferred to a centrifuge and centrifuged at relative centrifugal force of 5000 g for about 60

seconds. The test tubes were observed to have two clear layers of settled water (bottom) and the

solvent (top). The water was recovered by piercing a hole in the bottom of the test tubes and the

solvent saved for reuse.

The recovered water samples from all three stages were measured for weight and salinity,

and the resulting yield, product TDS, and recoveries were recorded. In most experimental runs,

except for the one with 10% first stage feed to solvent ratio, no brine was left was the end of the

third stage. Instead, salt was observed to crystallize out and was left behind at the bottom of the

beaker as a white precipitated residue.

5.3 Results & Analysis

The obtained recoveries are depicted in Figure 21. As can be seen the achieved recoveries

for seawater concentrations are in the range of 65% to 85% and those for produced water

concentration are in the range of 56% to 82%, much greater than representative RO recoveries

for seawater desalination. 3-stage recoveries are significantly greater than single stage recoveries
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and for feed to solvent ratios of over 6% the 3-stage recoveries for 3.5% TDS and 10% TDS feed

water are even greater than the theoretically expected single stage recoveries for pure water.

As noted, in most experimental runs expect for the one with 10% first stage feed to

solvent ratio, no brine was left at the end of the third stage and salt was observed to crystallize

out and precipitate. This might seem to indicate 100% recovery; yet the maximum apparent

recovery was 85%. The additional water was lost due to evaporation, lost due to the crude

recovery method of piercing a hole in the test tube, or remained bound with the hydrated salt.

Sodium chloride sometimes crystallizes as a dehydrate (NaCl.2H 20) [90] in which case about

2.16% water will remain bound to it for 3.5% TDS feed and 6.17% water will remain bound for

10% TDS feed. The likelihood of this happening is extremely low as sodium chloride has

negligible probability of forming a hydrate at 25 *C and atmospheric pressure [91]. This suggests

that most of the water loss is due to evaporation or experimental oversight.
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Figure 21. Three-stage Directional Solvent Extraction recovery ratio as a function of first stage feed to
solvent ratio for 3.5% (black solid square) and 10% TDS (red solid square) feed water with Octanoic
acid as solvent and AT=65 *C. The results are compared with experimental recoveries for single stage
3.5% TDS water (green solid square) and also with theoretically expected recoveries based on Hoerr's
solubility estimates [60] for pure water in octanoic acid (black broken line); representative seawater
RO recovery [85] (blue broken line) is also superimposed for comparison

As mentioned earlier, however, the greater recoveries come at a greater energy price. The

experimental energy consumption translated to energy consumption in an industrial scenario

where heat recovery is used, is depicted in Figure 22. As may be seen the energy consumption

range, 320 - 450 kWh! m3 for seawater concentrations and 370 - 630 kWh/ m3 for produced

water concentration, is much higher than single stage DSE or for other thermal processes. This

higher energy consumption is a result of the diminishing product water yield in every successive

stage due to reduced feed amounts and increased salinity. Actual inputs and data for one

experimental run are shown below in Table 2 to illustrate this point.
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Figure 22. Thermal Energy consumption of a 3-stage Directional Solvent Extraction process for varying
experimental recoveries with Octanoic acid as solvent and driving temperature difference AT=65*C;
calculations assume a heat exchanger effectiveness of 80% [80]

Table 2. Experimental scenario for a three-stage DSE process with 3.5% starting feed TDS

FSR TDS Recovery
Stage 1 6% 3.50% 52%
Stage 2 2.21% 7.29% 54%
Stage 3 1.14% 16.02% 65%
Overall 6% 3.50% 84%
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5.4 Discussion & Improvements

Multi-stage directional solvent extraction has been demonstrated as a desalination method

that can achieve higher recoveries than any conventional desalination method. Recoveries as

high as 85% have been demonstrated for 3.5% TDs feed water and those as high as 82% have

been demonstrated for 10% TDS feed water. However, the high recoveries are, as shown, as

achieved at much higher energy consumption than a single stage process. Such higher energy

consumptions may be acceptable in situations where high recoveries imply significantly higher

economic values. In fact, for produced water treatment a key requirement for the treatment

method is very high recoveries or zero liquid discharge.

A better method of achieving high recoveries, without significantly losing on the energy

consumption, may be to mix the brine from one stage with the source feed water and use the

mixture as feed for another stage, or in other words, recirculating the brine a prescribed number

of times depending upon the initial salinity and the maximum allowable specific energy

consumption.

An example of this scenario, with octanoic acid as directional solvent and a driving

temperature difference of 65 *C, is presented in Table 3. A feed to solvent ratio of 10% and a

starting feed salinity of 3.5% are considered. The feed salinity for subsequent stages is calculated

based on the recovery of the preceding stage and the additional feed water added to maintain the

10% feed to solvent ratio. Recoveries for different salinities are obtained from experimental

results shown in Figure 18. As shown in Table 3, over 79% recovery is achieved when the brine

is recirculated 10 times with a specific energy consumption of 291 kWhth/ m3 . In contrast, the
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experimental energy consumption, without mixing the brine with additional feed, was about 400

kWhth/m 3 for 80% recovery (see Figure 22).

Table 3. Calculated illustration of a multi-stage DSE process where the un-recovered brine is
recirculated and mixed with additional feed water such that the feed to solvent ratio remains
constant at 10%. Calculations are for 3.5% starting feed salinity, octanoic acid as directional solvent,
and a driving temperature AT=65 "C

Specific

FSR TDS Recovery energy
consumption
(kWh/m 3

Stage 1 10% 3.50% 40% 214

Stage 2 10% 4.90% 34% 249

Stage 3 10% 6.09% 32% 263
Stage 4 10% 7.21% 29% 289
Stage 5 10% 8.23% 28% 299

Stage 6 10% 9.21% 27% 309

Stage 7 10% 10.15% 26% 321
Stage 8 10% 11.06% 25% 333
Stage 9 10% 11.94% 24% 346

Stage 10 10% 12.78% 23% 361
Overall 10% 3.50% 79% 291

Another scenario for a starting feed salinity of 10% is presented in Table 4. The

calculations are similar to those of Table 3. As calculated, a recovery ratio of 76% is achieved at

a specific energy consumption of 367 kWh/ m3 when brine is recirculated 10 times. In contrast,

the experimental energy consumption, without mixing the brine with additional feed was about

480 kWh/m 3 for 72% recovery (see Figure 22). These are experimentally derived predictions for

the designed recirculating multi-stage directional solvent extraction process.
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Table 4. Calculated illustration of a multi-stage DSE process where the un-recovered brine is
recirculated and mixed with additional feed water such that the feed to solvent ratio remains
constant at 10%. Calculations are for 10% starting feed salinity, octanoic acid as directional solvent,
and a driving temperature AT=654C

Specific
energy

FSR TDS Recovery consumption
(kWh/ m3)

Stage 1 10% 10.00% 27% 309
Stage 2 10% 10.95% 26% 321
Stage 3 10% 11.86% 24% 346
Stage 4 10% 12.70% 23% 361
Stage 5 10% 13.50% 23% 368
Stage 6 10% 14.29% 22% 376
Stage 7 10% 15.06% 21% 393
Stage 8 10% 15.79% 21% 393
Stage 9 10% 16.53% 20% 412

Stage 10 10% 17.23% 19% 433

Overall 10% 10.00% 76% 367
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Chapter 6 Continuous DSE process

After demonstrating a proof of concept of DSE as a laboratory batch process, it became

imperative to design a continuously operating process and develop a prototype device to take the

project closer to field application. On-site treatment of produced water was identified as the

primary field application, given the immediate needs of the industry and the current

environmental concern surrounding them. Industry surveys suggested that unconventional oil

and gas well operators require on-site systems to treat 1-15 m3 (6 to 100 barrels) of produced

water per day. This section presents a design for a 1 m3/ day system and describes the

construction of a system with a goal of treating 1 bbl./ day (0.16 m3/ day).

6.1 Process design

A schematic diagram of the design for the continuous directional solvent extraction

process is depicted in Figure 23. The continuous desalination process must accomplish the

following tasks in the given order with the solvent flowing is a closed look and the water in an

open loop:

1. Heating of the directional solvent to the highest process temperature: This may be

accomplished by running the solvent through any heat source, which in the case on-

site oilfield operation could be a tank-less natural gas furnace. On-site gas is readily

available at oil and gas well sites and is currently used for heating other processes.

Furthermore, it would be difficult to recover waste heat from well site operations at

the first system demonstration stage.
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2. Feed water addition and mixing with the solvent: The mixing of feed water with the

solvent at high temperatures facilitates water dissolution. This may be accomplished

by a paddle wheel or a stirrer in the mixing chamber, by spraying the incoming feed

water into the solvent, or simply by using a specific flow pattern that facilitates

formation of water droplets in the solvent.

3. Dissolution of water into the directional solvent: The system must allow a short flow

time during which the water is dissolved into the solvent, while maintaining the high

process temperature. As shown earlier, a dissolution time of 60 seconds is sufficient

and a more detailed analysis is presented later in this chapter.

4. Separation of un-dissolved brine: Following the dissolution of water the un-dissolved

brine must be separated from the solvent-water solution in a first-stage separation

process. This may be accomplished gravitationally (as described in chapter 6.2) or by

using an electrocoalescer [92-96], which are widely used in the oil industry to

separate water from crude oil.

5. Cooling of the solvent and heat recovery: After the brine is removed, the solvent

stream is cooled down to facilitate the precipitation of pure water. It is important that

energy from this stream be recovered. As such the solvent stream is cooled by

exchanging heat with the returning solvent stream, preferably in a liquid-liquid plate

heat exchanger [97]. Following the heat exchanger the solvent is further cooled using

a radiator.

6. Separation of precipitated water from the solvent: This is the step where pure water is

recovered in a second stage separation process. This may be done by using an
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electrocoalescer or an in-line centrifuge, although the latter would involve high

electrical energy consumption.

7. Pre-heating: After the water is separated and recovered, the solvent stream returns to

the gas furnace via a heat exchanger where it gets pre-heated as mentioned in Step

(5), and is conveniently recycled.

Figure 23 represents a continuous directional solvent extraction system with listed energy

consumptions for a unit processing 1 in 3/ day of feed-water. Based on experiments, a recovery

ratio of 70%, a product water yield of 3.3%, and thermal energy consumption of 200 kWh are

shown. The calculations assume a heat exchanger effectiveness of 80% which is reasonable for a

balanced liquid-liquid cross flow heat exchanger [97]. More specific discussion of the

components of the continuous process may be found in an associated US patent application [98].

The continuous process will eliminate the manual processing involved in a batch, reduce

energy consumption by recovering some energy from the cooling stream, and also significantly

reduce cycle time by expediting the separation processes which are currently the rate limiting

step in the system. It is expected that the continuous process will reduce the cycle time to less

than 10 minutes, thus allowing about 150 cycles per 24 hour day.
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Figure 23. Schematic diagram of a 1m 3/day continuous DSE desalination system

6.2 Prototype design & construction

Figure 24 illustrates shows a schematic diagram of the laboratory prototype. The lab

prototype is a simplified version of the designed continuous process such that it replaces

proposed natural gas furnace with an electric heater and the electrocoalescer with an inline

centrifuge. Electric heater is convenient and practical to operate in the laboratory environment

and it was much easier to obtain a small scale in-line centrifuge than a small scale coalescer.

Individual prototype component design is discussed as follows. Prototype construction was

accomplished with the help of Michael Fowler [99] and testing was done with the help of

Maximus St. John.
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Figure 24. Schematic diagram of the constructed laboratory prototype system for the
continuous Directional Solvent Extraction process

Solvent and feed water reservoir: Octanoic acid was used as the solvent to test the

continuous process. Two five gallon high temperature plastic buckets were used as reservoir

tanks for the solvent and feed water.

Pumps: An Omega@ PHP-800 series 160W chemical metering pump was used to pump

the solvent and Prominent@ Solenoid 4W metering pump was used to pump the feed water.

Metering pumps are highly controllable and allowed for flow variations over experimental runs.

Heaters: Electrical heaters are used to raise the temperature of the solvent and the feed

water going to the process loop. Two Omega@ Flow-through heaters with resistive heating

elements of 5 kW and 1.5 kW respectively were used to heat the solvent and water respectively.

A photograph of the heater is shown in Figure 25. The current input to the heaters may be

regulated using the attached control unit.
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Figure 25. Omega flow-through heater with a 5kW electrical resistive heating element for heating the
solvent; Water heater is identical except with a 1.5 kW resistive heating element

Mixer: After passing through the heater the solvent and feed water streams enter the

mixer, which is the first component of the loop that required specific design and construction

within the laboratory. The mixer consists of three major components, a cylindrical containment

vessel, a stirrer, and a restraining stand.

The containment vessel is a capped cylinder, four inches in diameter and 45 cm in length

is final version. Removable end caps provide access to the inside of the vessel, which allows

proper cleaning and maintenance. The liquids enter and leave the containment vessel through

barbed pipe fittings attached to the caps. The first version of the containment vessel was made

out of polyvinyl chloride (PVC) plastic, as shown in Figure 26a. This was replaced by

chlorinated polyvinyl chloride (CPVC) to be able to withstand temperatures higher than 65 'C

(Figure 26b).
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(a) (b)

Figure 26. (a) PVC mixer containment vessel and stand with close up views of the top and bottom
caps; top cap has two ports for the solvent and contaminated water and a hole in the center for the
stirrer rod; the bottom cap has one port for the mixture leading to the brine separator, and (b) CPVC
mixer vessel to withstand higher temperatures with all other features remaining the same. The
wooden stand uses springs to remove vibrations and to allow for thermal expansion and contraction
of the vessel

The stirrer is a Caframo @ BDCIm digital stirrer with a shaft connected to a three-inch

diameter propeller blade at its end which facilitates the actual mixing. The stirrer speed is

controllable between 40 and 2000 rpm. The shaft is long enough that the propeller is more than
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half way down the containment vessel to ensure proper mixing. Figure 27 shows the propeller

blade being lowered into the mixer containment vessel. Figure 28 shows a photograph of the

completed mixer setup with labeled individual parts. Following construction the containment

vessel was covered with insulation to minimize heat losses during prototype operation. Heaters

were mounted on the mixer stand to minimize prototype footprint.

Figure 27. Stirring propeller blade being lowered into the mixer containment vessel
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Figure 28. Completed mixer setup with labeled individual parts; solvent and feed water enter through
fittings on the top cap, the stirrer runs a propeller blade used to mix the solvent and feed, and mixture
exits through the fitting on the bottom cap.

It is important that the residence time of the water and solvent mixture in the mixer

containment vessel be greater than the time required for water to dissolve into the solvent. The

rate of dissolution of water from the droplet into the solvent is given by [100],
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Nw = Dw/oA(CW/w-CW/oA) (10)
r

where, N, is the molar flux of water from the droplets into octanoic acid, DwoA is the diffusion

coefficient of water in octanoic acid, Cw/, is the molar concentration of water in the feedwater

droplets, CW/OA is the molar concentration of water in the octanoic acid, and r is the feed water

droplet size. This model assumes quasi-steady state diffusion from a sphere into an infinite

medium.

The diffusion coefficient of water in octanoic acid was not measured but based on

literature values of self-diffusion coefficients of water [101] and octanoic acid [102], its value is

expected to be DWoA - 10~10 m2/ s. This value is also expected from our previously reported

calculations for the diffusion coefficient of water in decanoic acid which was found to be about

0.5 x 10-10 m 2/s [64]. The larger the feed water droplets in the octanoic acid, the slower the

diffusion will be. As discussed in detail in the next section, it is reasonable to expect feed water

droplets of diameter on the order of 100 pm. According to equation (10), then a water droplet of

100 pm in size should dissolve completely in octanoic acid in about 0.6 seconds. This extremely

short time scale suggests that the water dissolves into the solvent almost instantly compared to

the process time scales.

Brine Separator: After leaving the mixer, the feed water in solvent emulsion reaches the

first separation step where the un-dissolved brine is separated. In the laboratory prototype, a

gravitational separator was found to be sufficient for brine separation, thus minimizing the

energy consumption of this separation process. A schematic diagram of the separator design is
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shown in Figure 29. The separator housing is a five gallon high temperature plastic bucket about

33 cm in height and having top diameter of 30 cm, tapering to about 25 cm at the bottom.

Two separator discs, made of acrylonitrile butadiene styrene (ABS) are placed into the

housing. The liquid mixture enters the housing through a pipe below the bottom separator disc.

This disc serves to minimize turbulence from the flow and any mixing of the brine with the

contents above the plate. This disc has notches, as shown in the photographs in Figure 30, around

its circumference to allow for the liquid to flow up, rise, and fill the separator bucket. As the

mixture enters, the brine droplets, being heavier than the solvent, begin to settle gravitationally.

Brine accumulates at the bottom of the separator and is discharged periodically into a waste tank

from the brine outlet using a siphon pump. The solvent containing the pure water reaches the top

and is extracted from the top solution outlet. The height difference between the mixture inlet and

the top solution outlet is 20 cm. The top cover disc serves to contain the liquids within the

housing and prevent splashing. This design is put into practice by constructing an insert, as

shown in Figure 30(a), which is placed inside the separator bucket to completer the setup as

shown in Figure 30(b).

92



Top Cover Disk

Top solution outlet

Turbulence
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Figure 29. Schematic diagram of brine separator design; the solvent/ brine mixture from the mixer
setup enters through the mixture inlet in the center, the solvent rises through notches in the
turbulence minimizer disc and is extracted from the top solution outlet; the brine collects at the
bottom and is discharged via the brine outlet using a siphon pump
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Figure 30. (a) Photographs of brine separator insert during construction; this insert is placed in a five
gallon high temperature plastic bucket to complete the separator setup, and (b) external view of the
completed brine separator
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As previously discussed the gravitational settling of the droplets may be approximated as

Stokes flow of a sphere (droplet) through a viscous fluid (solvent). The terminal velocity of the

falling droplets is expressed as shown in equation (9), reprinted here for convenience:

1 = pgD 2
v = -(9)

18 r7

While the droplets are settling the bulk of the liquid, the solvent, rises at it fills up the

separator bucket. The solvent containing the dissolved water is extracted at the top of this bucket.

To ensure that the brine droplets do not reach the top outlet the residence time of the solvent in

the brine separator must be greater than the time required for the brine droplets to settle through

the height of the separator,

tres > 
(

where, H is the height of the separator and v is the droplet terminal velocity.

The terminal velocity depends on the size of the brine droplets. The droplet size is

expected to change with the mixing speeds and the resulting agitation. The droplet sizes should

be smaller for higher mixing speeds. To investigate this, the droplet sizes were measured during

prototype construction by taking samples of the solvent/ brine mixture from the mixer outlet. By

the time of reaching the mixer outlet the dissolution of water is likely to have already happened

and the remaining droplets would represent the un-dissolved brine.

The mixer stirrer was run at three different speeds, 500 rpm, 1000 rpm, and 1500 rpm.

About 0.5 ml of the sample was taken, placed on a glass slide, and observed under a Nikon@
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Eclipse LV 100 microscope. Photographs were taken under bright field and at 40X magnification.

Representative microscope photographs are shown in Figure 31(a) for 500 rpm and (b) for 1500

rpm. For a stirrer speed of 500 rpm, the brine droplet diameters were found to be in the range 30

to 195 pm with about 97% of the volume contained in droplets greater than 104 pm in diameter.

For a separator height, H of 20 cm (as constructed), a residence time of greater than 169 seconds

is required to separate 97% of the brine droplets. Similarly, for a stirrer speed of 1000 rpm, the

brine droplet diameters were in the range of 11 to 59 pm with about 97% of the volume

contained in droplets greater than 50 pm in diameter. Therefore to separate 97% of the brine

droplets, a residence time of greater than 12 minutes is required. Finally, for a stirrer speed of

1500 rpm, the brine droplet diameters were in the range of 7 to 50 pm, with about 97% of the

volume contained in droplets greater than 37 pm. Therefore to separate 97% of the brine

droplets, a residence time of greater than 21 minutes is required.

The separator volume is 5 gallons (0.019 m3 ), which allows for calculation of the

maximum allowable flow rate depending on the required residence time for each stirrer speed,

Omax = V (12)
tres

where, V is the separator volume. Therefore the maximum allowable total liquid flow rates, to

ensure that 97% of the brine droplets are separated, are 0.11 liters/ s, 0.026 liters/ s, and 0.015

liters/ s for 500 rpm, 1000 rpm, and 1500 rpm stirrer speeds respectively. These calculations are

summarized in Table 5.
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(a) (b)

Figure 31. Representative microscope photographs of water droplets in octanoic acid formed in the
mixer at 500 rpm (a) and 1500 rpm (b) respectively. The photographs are taken at 40X magnification
using a Nikon Eclipse LV100 microscope

Table 5. Droplet size distribution for different mixing speeds and the associated required residence
times and maximum allowable flow rates

Mixing speed Drop size 97% vol. cutoff Required residence Max. allowable
(rpm) range (pm) size (pm) time (min) flow rate (L/s)
500 30-195 104 3 0.11
1000 11-59 50 12 0.026
1500 7-50 37 21 0.015

Chiller: After exiting the brine separator, the solvent - water solution must be cooled to

precipitate out the desalinated water. In the original continuous process design this was

accomplished in a heat exchanger. To simplify construction, heat recovery was not employed in

the prototype device, and a chiller was used instead. This component is a simple design with a

stainless steel immersion "wort" chiller placed inside a five-gallon plastic bucket as shown in

Figure 32. Stainless steel is used as octanoic acid can be corrosive to copper which would
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otherwise provide better heat transfer. Tap water is circulated through the chiller coils and used

as the heat transfer fluid. The solvent-water solution begins cooling as soon as it enters the

chiller bucket. The cooled liquid is expected to sink to the bottom of the bucket, where it is

extracted using an Omega @ PHP-800 chemical metering pump similar to the one described

earlier. It was observed that a clear liquid entered the chiller where it became cloudy upon

cooling, due to water precipitation, as was also seen in the batch process experiments.

Figure 32. A stainless steel "wort" chiller placed inside a plastic bucket to cool the solvent-water
solution; tap water is circulated through the coil and used as the heat transfer fluid

After cooling down in the chiller, the precipitated water must be separated from the

directional solvent. This separation, as discussed earlier, may be accomplished through passive

gravitational separation or accelerated through centrifugation, which increases the gravitational

force, or by using an electrocoalescer which increases the size of water droplets by coalescing

them so that they may settle faster under gravity. In every scenario, and much like the separation
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of the brine from the solvent described earlier, the separation kinetics here also depend on the

size of the water droplets suspended in the octanoic acid phase.

Samples of the solvent-water emulsion exiting the chiller were taken and observed under

the microscope to measure the sizes of the water droplets. A representative microscope image is

shown in Figure 33. The distinguishable droplets varied between 1 pm and 30 pm in diameter

with over 97% of the volume contained within droplets larger than 5 pm. This droplet size range

is in reasonable agreement with Kress' experiments [63] on water droplet formation in octanoic

acid.

Again, treating the droplets as spheres settling under Stokes' flow through a viscous

fluid, according to equations (9-11), 5 pm droplets would take over 30 hours to settle through a

30 cm height of a five-gallon bucket like the ones used as solvent and feed water reservoir. It is

therefore desirable to accelerate this separation process.
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Figure 33. Microscopic image of precipitated pure water droplets in octanoic acid from samples
collected after passing through the chiller in the continuous process prototype; images taken at 40X
magnification using a Nikon * Eclipse LV100 microscope

Centrifugal separator: A commercial in-line centrifuge, CINC@ Model V02, was

obtained from CINC industries, Carson City, NV. A detailed description of in-line centrifuge

operation may be found in the equipment manual available on the internet [103]. According to

manufacture specifications, this centrifuge is able to provide a maximum a relative centrifugal

force of 1600g. The rotor diameter for this model is 5.1 cm, which is the distance that the water
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droplets need to move through to get separated from the octanoic acid. According to equations

(9-11), at the maximum force and to separate droplets larger than 5 pm the required residence

time of the emulsion within the centrifuge is about 12 seconds. A residence time chart [103]

from the equipment manual suggests that the residence time would be greater than 12 seconds

for flow rates lower than 0.01 Us, which also becomes the upper limit for the process flow rate.

This serves to reduce the achievable throughput rates significantly.

Instrumentation: Temperature measurements were taken all along the process loop

using installed in-line thermocouples as shown in Figure 34. These in-line thermocouples are

inserted into the path of flow using T-adapters and thus provide continuous temperature readout

in a clean, automatic way without manual intervention. Temperature readouts were obtained

through an Agilent @ 34901A 20 Channel Multiplexer Module installed on an Agilent @

34970A Data Acquisition Unit.

Figure 34. In-line thermocouples inserted in the flow path for continuous temperature read-out
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The completed DSE continuous process prototype is depicted below in Figure 35. The

unit's footprint is 90 cm x 60 cm and the total height is 190 cm including the mixer setup.

Figure 35. Completed Directional solvent extraction continuous process prototype mounted on a
movable cart
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6.3 Prototype testing & analysis

The DSE prototype was run with octanoic acid as the directional solvent and a 3.5% w/w

aqueous solution of sodium chloride as feed. After significant troubleshooting all prototype

components functioned as planned and expected in the design with reasonable variation, except

the in-line centrifuge. The heaters were controllable and achieved high temperatures between 85

*C and 90 *C. The mixer met the desired performance metrics as discussed in section 6.2. The

brine separator performed extremely well at the experimental flow rates with the product water

containing very low salinities as discussed in the following text. The chiller functioned

reasonably well.

The in-line centrifuge did not perform well in separating the precipitated water from the

octanoic acid. The inlet and outlet of the centrifuge both appeared cloudy indicating the presence

of water droplets emulsified in the octanoic acid. The centrifuge did not function as expected

even at flow rates lower than 0.01 Us, suggesting that the relative centrifugal forces provided

were lower than those specified in the equipment manual. As an alternative, the samples of the

water in octanoic acid emulsion from the chiller outlet were collected, placed in conical tubes

and centrifuged in the already introduced laboratory centrifuge (Fisher Scientific @ Marathon

21000) at 5000 g for 60 seconds. This procedure was found to be sufficient for separating the

water from octanoic acid. The weights of the recovered water and the chiller outlet samples were

recorded and the yield and recovery calculated from these values. The salinities of the product

water were also measured. Thus, while the entire process loop was not demonstrated, the

performance of the continuous process was tested. The in-line centrifuge is a commercially

available component and not critical to demonstration of the concept.
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A representative once-through experimental run is depicted by the process diagram in

Figure 36. The last connection in the cycle is represented by a broken line since it was not

completed at the time of this compilation. The measured flow rates and temperatures at each step

and for each inlet and outlet are also depicted. In addition, the calculated energy inputs from the

electric heaters are shown.

319 gs

28.8 *C
COOLING

------------ -__ ____ ____ ____-___ ____ _-____ ____ __ _J' (BRINE+OA)

17.83 g/s 34 *C

Figure 36. Process diagram for a representative semi-continuous once through DSE process with
measured flow rates and temperatures listed for each step

As can be seen the prototype, in this run, operated with a feed water input of 0.77 g/s

(66.5 liters/ day) which is about 0.42 bbl./ day, containing 3.5% starting TDS. The prototype

produced desalinated water with 0.11% TDS at a rate of 0.55 g/s (47.5 liters/ day) which is about

0.3 bbl./ day, thus achieving about 71% recovery. The thermal energy consumption for this run is

about 1251 kWh/ m3 . It must be noted that this prototype does not employ heat recuperation and
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with an 80% heat recovery, as discussed in the process design, this run would have an energy

consumption of 250 kWh/ n3 .

The actual electrical energy consumption for this process, due to pumping, was about

14.5 kWhe/ M3 . It must be noted that the metering pumps used, while highly controllable, are

energy inefficient and in this case a large part of the electricity is used by the display and the

control module. In addition, the process flow path is not optimized and significant pressure

losses exist that could be avoided with better flow path design. Typical pumping energy

consumptions of industrial liquid pumping and solvent extraction processes are on the order of

0.01 - 0.04 kWh/ in 3 of fluid pumped [104-106]. In DSE, however, since the product water is

only about 3% of the total flow volume, it is expected that the pumping energy consumption of

the process, after optimizing the flow path and with using industrial centrifugal pumps, would be

about 0.3 - 1.2 kWh/ m 3 of water desalinated.

The electrical energy consumption of the centrifugal separator, even if it had functioned

as expected, would be about 30 kWh/ n 3 , indicating that this may not be a viable separation

technique in a commercial operation.

This experimental run also produced a waste stream at 1.24 g/s of which about 1.02 g/s

is octanoic acid and 0.22 g/s is water. The process, therefore, resulted in 5.4% solvent loss. This

solvent loss is a consequence of the position of the brine extraction outlet and the resulting

entrainment of the solvent with the brine. This is a major challenge that must be addressed and

potential ways of doing so are discussed in chapter 6.4. Performance parameters are summarized

in Table 6.
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Table 6. Performance summary of representative once-through DSE prototype run

Water production (bbl./day) 0.42

Recovery ratio 71%

Feed TDS 35,000

Product TDS 1100

Thermal Energy consumption (actual, kWh/ M3
) 1251

Thermal Energy consumption (with heat recovery) 250

Electrical Energy consumption (pumping, actual, kWh/ M3
) 14.5

Solvent loss 5.40%

A thermal energy balance analysis was conducted on the above described experimental

run to verify the measurements and to estimate the heat losses. The total power input to the cycle

is about 2.49 kW as represented by the electric heaters.

The two main sources of thermal losses are (1) the piping between the mixer and the

brine separator, (2) the brine discharge piping and the brine collection tank. The losses in these

sections may be calculated by doing a simple energy balance between the inlet streams and the

outlets steam as depicted in Figure 36,

AH = ?lOACOA(Tin - Tout)OA + niwCw(Tin - Tout), (13)

where, rh is the mass flow rate, C is specific heat, and T, and To, are the section inlet and outlet

temperatures respectively. The subscript OA stands for octanoic acid, and w stands for water.

The heat losses were thus calculated and found to be about 215W for the piping between

the mixer and the separator and 151W for the brine discharge piping and tank, which add up to

about 15% of the thermal power input.
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Drawing a control volume around the entire system, as shown in Figure 37, a complete

systemic energy balance analysis was conducted. The enthalpy input comes from the octanoic

acid, feed water, and cooling water inlets, the heat supplied by the electric heaters, and the work

supplied by the pumps. The enthalpy output is via the product water, returning octanoic acid, and

the waste stream outlets and the heat losses as already identified. At steady state, when the

measurements were taken, the enthalpy input and output must be the same. Using the

experimentally measured values as depicted in Figure 36, and the reference state of 0.01 "C, the

total calculated enthalpy input rate was 40,011 W and the total calculated output rate was 40,362

W; the two values are within an error of less than 1%, which most likely arises from

measurement errors, especially in the chiller water flow rates which are much higher than all

other inputs and outputs.

(N )cw,in 6N)cw'out
COOLING WATER COOLING WATER

INLET OUTLET

(h)oA,in (h)oA out
OCTANOIC ACID INLET RETURNING OA OUTLET

PRODUCTWATER OUTLET

FEED WATER INLET DSE PROTOTYPE wot

(h)fwin low u
WASTE OA OUTLET

BRINE OUTLET

LEbrineout

Qth,heaters Wpump Qth,iosses

Figure 37. Energy balance around a control volume for the DSE prototype system
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The prototype device was similarly tested over additional experimental runs with varying

temperatures, flow rates, and feed to solvent ratios. The mixer stirring speed was kept constant at

1000 rpm through all experimental runs. The prototype experimental results are depicted

graphically.

Figure 38 depicts product water salinity as a function of total liquid flow rates, which

includes the solvent and the water. As calculated in chapter 6.2 the maximum allowable total

liquid flow rate, for the brine separator to achieve 97% brine rejection give a 1000 rpm mixer

stirring speed, is 0.026 Us. Higher product salinity is therefore expected when flow rates are

higher as may be seen from the plot.

0.3%

0.2% |-

0.1% F

0.0%
0.00 0.05 0.10

Total liquid flow rate (1/s)

0.15 0.20

Figure 38. Product water TDS as a function of total liquid flow rate (both solvent and water) with feed
TDS of 3.5%; the maximum allowable flow rate for at least 97% of the brine to separate with 1000 rpm
mixer stirring speed is depicted by the broken line
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Figure 39 shows the product water yield as a function of the driving temperature

difference compared with the experimental yields obtained from the batch process. Also

superimposed is the theoretically expected yield for pure water from Hoerr's solubility estimates

[60]. As may be the prototype yields are similar to those obtained from the batch process and

follow the same trend as the theoretically expected yields for pure water. This observation

suggests that batch process experiments may be used to effectively predict yields from the

continuous process and for a real industrial scenario.

b
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40 50 60

Figure 39. Product water yield for the semi-continuous DSE process prototype, as a function of
temperature for when 3.5% TDS water is dissolved in octanoic acid and desalinated water is recovered
(filled square), compared with batch process results for 3.5% TDS water in octanoic acid (open square)
and with theoretically expected yield as calculated from Hoerr's solubility estimates [60] of pure
water in octanoic acid (broken line).
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Figure 40 depicts the obtained recovery ratios as a function of feed to solvent ratio and

for two different driving temperature differentials (50 'C and 22 *C). It must be noted that some

recoverable water was lost with the solvent loss in the waste stream. Recovery ratios adjusted for

this solvent are also depicted to give an estimate of achievable recoveries when solvent loss is

minimized. The batch process recovery ratios are depicted for comparison. Calculated

theoretically expected recoveries for pure water using Hoerr's solubility estimates [60] are

shown as well.

As seen from the plot, recoveries of over 70% were achieved for desalination of 3.5%

TDS water using a driving temperature differential of 50 'C and recoveries of about 20% were

achieved using a driving temperature differential of 22 *C. The recoveries obtained from the

prototype are similar to those obtained from the batch process experiments and follow a similar

trend to those theoretically expected for pure water.

These observations suggest that batch process experiments may also be used for

effectively predicting expected recoveries from a continuous process and for varying

temperatures.

Greater than 70% demonstrated recovery from the prototype further confirm this

significant advantage of DSE over existing desalination techniques, especially for produced

water applications.
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100%- - - Theoretical (for pure water and AT=50K)
U Prototype (actual)
0 Prototype (neglecting lost solvent)
U Prototype (actual for AT=22K)

80% 0 Prototype (for AT=21K neglecting lost solvent)
* Batch (for AT=20K)

- - - Theoretical (for pure water and AT=22K)
0 0Batch (for AT=50K)

60 - -

2 0% -

0%

U 40%

20%

20%

2% 4% 6% 8% 10%
Feed/ Solvent Ratio

Figure 40. Recovery ratios for the semi-continuous DSE prototype as a function of feed to solvent ratio
for starting feed TDS of 3.5% and for driving temperature differential of 50 T (blue filled square) and
22 T (orange filled square) and corrected for recoverable water lost with solvent loss in the waste
stream (open squares); the results are compared with recoveries obtained from the batch process
experiments for varying feed to solvent ratio and for driving temperature differential of 50 T (green
filled circle) and 22 *C (red filled circle); also shown are theoretically expected recoveries for pure
water from Hoerr's solubility estimates [60] for driving temperature differential of 50 *C (blue broken
line) and 22 *C (orange broken line)

Finally, an important process parameter, the cycle time was estimated. Cycle time may be

estimated by measuring the total functional volume of the prototype device and dividing that by

the volumetric flow rate,

tcycle - Vfunctional (14)
Qtotal
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To measure the functional prototype volume the system was purged of liquids and the

cycle loop was closed, i.e. the chiller outlet was connected to the solvent reservoir as an input.

This ensured that any liquid going into the cycle returned to the solvent reservoir. The water

reservoir was taken out of the process loop since it is a minor volume. The solvent reservoir was

then filled with octanoic acid and the solvent pumps were run at 0.01 liters/ second. As the

octanoic acid level in the solvent reservoir fell more octanoic acid was added to maintain the

level. This was continued until the octanoic acid level became steady, i.e. the inflow was equal to

the outflow, which implied that the functional system volume was then full. The pump power

was then gradually increased to 0.03 liters/ second to ensure that this increase did not change the

solvent level. The total volume of octanoic acid added then gave the functional system volume.

This volume was found to be about 32 liters.

Therefore at the flow rate of 0.018 liters/ second as demonstrated in the representative

run the cycle time was about 30 minutes and that at the maximum allowable flow rate of 0.026

liters/ second was about 20 minutes. Adding 30 to 60 seconds for centrifugal or coalescer

separation would not change these times significantly. With improved process design it is likely

that this process time would be reduced to half or less. Possible modifications to reduce this time

are discussed in the following section.

6.4 Discussion and Improvements

The design and construction of the continuous DSE prototype is discussed and its

successful operation is demonstrated. The system is shown to be most effective in producing

desalinated water up to 0.5 bbl. / day at a greater than 70% recovery ratio. For a starting feed
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TDS of 3.5% w/w, the product water was found to contain about 0.1% TDS indicating greater

than 97% salt rejection. It was shown that once heat recovery can be employed the constructed

laboratory prototype would have a thermal energy consumption of 250 kWh/ m3 which translates

to a GOR of 2.5. This thermal energy consumption is for operation between a heat source

temperature of 90 *C and an ambient temperature of 25 *C. The effect of certain process

parameters such as flow rate, driving temperature difference, and feed-solvent mixing time is

analyzed and an energy balance was conducted to verify the accuracy of temperature and flow

measurements.

As also mentioned in the preceding text, a significant shortcoming of the continuous DSE

prototype demonstration was the high solvent loss (>5%) due to entrainment which could serve

to hurt the process performance and economics. Further process and device development should

aim to minimize this solvent loss. One design modification to accomplish this could be to replace

the manual siphon pump in the brine separator with an automatic pump placed below the brine-

solvent interface and equipped with a liquid density sensor to prevent any solvent (lighter liquid)

from being extracted along with the brine.

Another key area of improvement in prototype design is reduction of the process cycle

time. A possible modification to reduce cycle time this may include optimal sizing of the brine

separator such that the flow residence time in this component is just enough to allow the brine

droplets to settle through its height; this may require the use of a shallower and wider brine

separator. Another possible medication to reduce cycle time is to reduce the size of the mixer

such the residence time in this component minimal, especially since it is observed that the water

dissolves into the solvent almost instantaneously.
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Chapter 7 Economic Analysis

An economic analysis is necessary to assess the commercial feasibility of the developed

directional solvent process. Without the likelihood of commercial feasibility it may be difficult to

finance the further development and field deployment of a DSE test facility. A detailed economic

analysis was therefore conducted and is presented in the following chapter. The analysis was

conducted for two scenarios: (1) the laboratory prototype with the actual lab costs incurred and

no heat recovery employed, and (2) for the expected pilot prototype with reduced procurement

costs and energy savings due to the use of heat exchangers. To reiterate, the current cost for large

scale seawater desalination are in the range of $1/m 3 and for small scale seawater desalination

they can be between $3/ m3 to over $ 12/ n3 . Costs of produced water handling may range from

$12/ m 3 to over $60/ m3

7.1 Laboratory prototype economics

A detailed cost estimate for the prototype raw materials, components, and construction

costs is shown in Table 7. As may be seen the full constructed system cost $22,175, including

labor, of which about 33% is the centrifuge alone and about 24% is the construction cost. This

system was shown to operate most effectively (lowest product salinity) for water throughput

rates of about 0.5 bbl. / day (0.08 m3/ day).

A cost analysis worksheet is shown in Table 8. The thermal energy consumption without

heat recovery was assumed to come from a natural gas heat source and the actual electricity

consumption of the pumps was included in the worksheet. Natural gas price was assumed to be
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at $2.28/ MMBtu, the average US wellhead price for 2012 [107], and electricity cost was

assumed to be $0.07/kWh, the average industrial price for 2012 [108]. The octanoic acid price

was assumed to be $3200/MT, the actual bulk pricing in February 2012 [109]. A typical estimate

for fixed O&M costs of desalination plants is less than 2% of the capital cost [110]. However,

since DSE is a new technology a higher annual fixed O&M of 5% of the capital cost is assumed.

A physical plant life of 5 years, a capacity factor of 90%, and discount rate of 8% are used.

As may be seen from the worksheet the total levelized cost of water desalination is about

$243/ m3 or $40/ bbl. These costs are higher than current seawater desalination plants by two

orders of magnitude but only about 4 times the cost of handling produced water in the Marcellus

region of Pennsylvania. It must be noted that these costs are for a first ever demonstration unit in

an un-optimized laboratory setting, where individual components were purchased from lab-scale

suppliers at very high prices. Additionally the lack of heat recovery in the prototype contributes

to about 5 times higher thermal energy costs as a field test unit would be expected to consume.
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Table 7. Actual incurred cost of laboratory prototype raw-materials, components, and
construction and assembly

labor costs for

Component Description Supplier Unit price Qt. Cost (USD)

Reservoir tanks

Pumps

Heaters

Mixer

Brine separator

Chiller

Centrifuge

Piping, Valves &
Fittings

Instrumentation

Solvent

Labor (Construction
& Assembly)

TOTAL

Polyethylene Buckets - 5 gallon

Bucket lids

Digital control Chemical Metering Pumps for solvent

Solenoid metering pump for feed water

1 kW electric flow-through heater

5 kW electric flow-through heater

4" CPVC Pipe - 2'

4" CPVC End caps

Digital stirrer and stand

Stirrer shaft

S tirrer propeller blade

Polyethylene bucket - 5 gallon

2' x 2' x 1/8" ABS sheet

1/2" PVC pipe - 4'

Siphon pump

Polyethylene bucket - 5 gallon

Immersion 'wort' chiller

Model V02 centrifuge and accessories

1/2" Neoprene tubing (ft)

SS Ball valves

SS Hose clamps (100 pk)

Insulation

Dther SS adapters and Plumbing fittings

In-line thermocouples with adapters

Data Acquisition Card

Octanoic acid (by kg)
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$19,775.00

Mcmaster Carr

Mcmaster Carr

Omega

Prominent

Omega

Omega

US Plastics

US Plastics

ESP Chemicals

ESP Chemicals

ESP Chemicals

Mcmaster Carr

Mcmaster Carr

Mcmaster Carr

Mcmaster Carr

Mcmaster Carr

NY BrewSupply

CINC Industries

Mcmaster Carr

Mcmaster Carr

Home depot

Home depot

Mcmaster Carr/
Home depot
Omega

Agilent

Sigma Aldrich

$18.00

$3.00

$1,431.00

$325.00

$525.00

$550.00

$24.00

$25.00

$770.00

$189.00

$75.00

$18.00

$25.00

$8.00

$4.00

$18.00

$43.00

$6,452.00

$1.28

$11.00

$10.00

$44.00

$80.00

$40.00

$490.00

$20.00

4

4

2

1

1

1

1

2

1

1

1

1

2

1

1

1

1

1

100

6

100

1

1

8

1

40

$72.00

$12.00

$2,862.00

$325.00

$525.00

$550.00

$24.00

$50.00

$770.00

$189.00

$75.00

$18.00

$50.0C

$8.0C

$4.00

$18.00

$43.00

$6,452.00

$128.0C

$66.00

$1,000.0C

$44.C

$80.0

$320.0

$490.0(

$800



Table 8. Cost analysis worksheet for DSE laboratory prototype without heat recovery and natural gas
as thermal energy source and including actual incurred costs for raw material, components, and labor

Levelized Cost Worksheet for DSE desalination plant

Inputs in blue

Capacity Solvent Octanoic

gpc 21 Product water yield 3.30%1

m3/d 0.08 Solvent/ Water Loss Ratio 0.001

bbl/d 0.5 Solvent Density (kg/m3) 9101

olent cost ($/MT) $3,200.00

Capital Cost Energy consumption

Total $ 19,775 Thermal (kWh/m3) 1251

$/g/d $ 942 Electrical (kWh/m3) 42
$/m3/df $ 264 NG price (@/MMBTU) $2.28

Elec. Price ($/kWh) $0.070

Line Capital Cost (CC)

1 Capital Cost $19,775.00i

'Yearl vOperatina Cost

21 Annual Fixed O&M - (% of Line 1- CC) 5.00%1

3 Variable O&M - Energy cost ($/m3) $12.641

4 Variable Consumable - Solvent loss ($/m3) $2.91

Capital Recoxerv Computation

5 Physical Life of Plant (Years) 51

61 Interest Rate (%) 8.00%1

Capital Amortization Factor (CAF) 0.25

Capacitv

8 Water recovered per day (m3) 0.08

9 Capacity Factor 90.00%

1o0 Water Recovered per Year (m3) 26.11

Levelized Annual Cost

11 Annual Amortization $4,952.78
.. 12 ~ Annual Fixed O&M $988.75

13 Annual Levelized Cost ($/m3) $227.52j

Total Cost Calculated

14; Annual Levelized Cost ($/m3) $227.52

15i Variable O&M ($/m3) $15.55

16 Total Levelized Cost ($/m3) $243.07

Total Levelized Cost ($/barrel) $40.51
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7.2 Projected field economics

The analysis conducted for the laboratory prototype was extrapolated to project the

economics of a DSE field unit for produced water treatment. A 25 bbl. / day (4 in 3/ day) unit is

sized and analyzed for economic performance. This size means that the unit takes 25 bbl. / day as

input and at a 70% recovery ratio, produces about 18 bbl. / day of treated water and 7 bbl. / day

of highly concentrated brine. A product water yield of 2.5% for high TDS water (100,000 ppm)

with a 65 'C temperature differential, as demonstrated earlier, is assumed. For a 100,000 ppm

feed this plant is expected to produce desalinated water of 4000 ppm as demonstrated by the

batch process experiments.

Heat exchanger and thermal energy consumption: There is a trade-off between the

heat exchanger cost and lifetime and its effectiveness which relates directly to the energy

consumption of the process. The heat exchanger is also likely to be the most expensive

component of the system. Plate heat exchangers, due to their superior performance to other

types, are the preferred configuration in desalination applications [111]. A plate heat exchanger

for the given flow rates and fluid properties was designed in Aspen Exchanger Design & Rating

(EDR) software. Its cost was estimated using specifications from manufacturer Alfa Laval (Plate

M-6) and Titanium as the material of construction. Titanium has excellent resistivity in saline

water environments and is the preferred construction material for heat transfer surfaces in

desalination plants [111-113]. It is difficult to develop a mathematical relationship between heat

exchanger cost and effectiveness as these vary significantly on a case by case basis. The optimal

effectiveness was thus found iteratively by changing designs in Aspen EDR. For this scenario a
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heat exchanger effectiveness of 77% was found to be optimal. This results in thermal energy

consumption of about 340 kWh/m 3 for treating 100,000 ppm feed water.

Electrical energy consumption: The electrical energy consumption for pumping

depends upon the pressure drop across the flow path of the system. Most of this pressure is

expected to be within the heat exchanger which has the narrowest flow channels and thus the

maximum flow restricting surface area. The pumping electricity consumption will therefore

depend upon the heat exchanger design. From the Aspen EDR heat exchanger design the total

pressure drop across it was found to be about 97 kPa. For this pressure drop and the given flow

rates the pumping energy consumption is found to be about 2.37 kWh/ in 3 . Electricity

consumption for the electrocoalescer separation is estimated to be 0.06 - 0.6 kWh/ m3 [114]. A

value of 2.75 kWh/ m3 is therefore used for total electrical energy consumption. This, however,

does not have a significant effect on the overall system economics.

A cycle time of 10 minutes, half of the prototype cycle time is assumed, which implies

that 144 cycles can be run in a 24 hour day. It was assumed that some solvent will get lost due to

dissolving in the desalinated water and brine. This is estimated to be about 0.6% (600 ppm,

slightly higher than the estimated solubility of octanoic acid in water) of the feed water flow rate.

These plant specifications are summarized in Table 9.
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Table 9. Specifications for a 25 bbl. / day DSE produced water desalination plant

Water production

Product water flow rate

Octanoic acid flow rate

Recovery ratio

High process temp

Ambient temp

Feed TDS

Product TDS
Product water yield

Heat recovery

Energy Consumption
Cycle time
Solvent loss

17.5 bbl./ day

0.033 kg/s

1.34 kg/s

70%
90 2C

25 2C

100,000 ppm
4000 ppm

2.50%
77%

340 kWht,/ma, 2.75 kWhe/m 3

10 minutes
0.6% of feed

Capital costs: Costs of manufacturing the DSE desalination plant were estimated as

follows.

The Aspen EDR generated diagram of the heat exchanger is depicted in Figure 41. The

empty weight of this heat exchanger was estimated to be 23.4 kg and the cost was estimated to

be USD 11,739.

Electrocoalescers are employed for separation of the precipitated water from the octanoic

acid at the end of the process cycle. Due to the lack of electrocoalescer use for small scale

application, it was difficult to obtain a product quote, but a price estimate from Ecofine@

Filtration Products Co. Ltd, China , suggested that a small scale coalescer could be obtained for

USD 1000 - 2000 [115]. A cost of USD 1500 was therefore used for the economic model.
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Brine separator and mixer assembly costs were estimated by using a multiple of the

laboratory prototype costs. For a system size of about 35 times the most effective range of the

laboratory prototype (17.5 bbl. / day vs. 0.5 bbl. / day'desalinated water), it is assumed that the

brine separator will cost about 10-15 times more. The lab prototype mixer, however, was

demonstrated to operate effectively even for over 10 times the most effective limit (see Figure

38). It is therefore assumed that the mixer cost for the field prototype will be less than twice of

that for the lab prototype.
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Figure 41. Plate heat exchanger design from Aspen Exchanger Design & Rating software for the 10 bbl.
/ day DSE produced water desalination plant; heat exchanger effectiveness is 0.8

Costs of fluid containers/ reservoirs are estimated to be 7 times more than those for the

laboratory prototype. The cost of the octanoic acid pump is assessed from the specifications of a

Dayton @ 10 GPM, 1 HP, chemical resistant pump, that may be obtained from Grainger for USD

805 [116]. The cost of piping was estimated to be 20% of the heat exchanger cost. The housing,

instrumentation, and control were estimated to be about 25% of purchased equipment cost [117]
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and construction and assembly costs were estimated to be about 20% of the total cost of all

materials and components [118].

In addition to the components and materials, the initial batch of octanoic acid also

comprises a capital cost. At the desalinated water throughput rate of 17.5 bbl. / day (0.0128

kg/s), 2.5% recovery, and 144 cycles per day, as discussed earlier, the system will require about

809 kg of octanoic acid in circulation which would cost USD 2589. Capital cost estimates are

summarized in Table 10. The total capital costs for a 25 bbl. / day DSE produced water

desalination plant are estimated to about USD 33,000.

Using these capital costs, the specifications in Table 9, a system lifetime of 10 years,

fixed O&M of 5%, capacity factor of 90%, and, discount rate of 8%, the total levelized costs

were calculated as depicted in Table 11. The levelized cost of water desalination was found to be

$12.20 / m 3 or about $2.03 / bbl. for 100,000 ppm feed water. It is observed that while the

estimated costs may not make this economical for seawater desalination, the economics look

extremely promising for produced water treatment.

Table 10. Capital cost estimate for a 25 bbl. / day DSE produced water desalination plant

Tanks/ fluid reservoirs $1,120
Pumps $805
Mixer assembly $2,200
Brine separator assembly $560
Heat exchanger $11,739
Electrocoalescer $1,500
Piping $2,348
Housing, instrumentation & control (25%) $5,068

Construction/ assembly (20%) $5,068

Octanoic acid $2,589

Total $32,996
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Table 11. Projected cost analysis worksheet for a 25 bbl. / day DSE produced water desalination plant
with heat recovery and natural gas as thermal energy source

ost Worksheet for DSE desalination plant

]Solvent OctanoicI
d 769 Product water yield 2. 0%
d 2.91 ISownt/ Feed Water Loss Ratio 0.0006
d 17.5 Solent Density g/m3 910
y 14 Solent cost $/M1) $3,200.00

t Energy consumption
1. $ 32,996 Thermal (kWh/m3) 342

d $ 43 Electrical (kWh/m3) 2.75

d. $ 264 NG price (@/MMBTU) $2.28

Elec. Price ($/kWh) $0.070

Capital Cost (CC)

Capital Cost $32 996

Yearly Operatinq Cost

Annual Fixed O&M - (% of Line 1- CC) 5.00%1

Variable O&M - Energy cost ($/m3) $2.84

Variable Consumable - Solvent loss ($/m3) $2.50

10

8.00%1

0.1491

2.91

90.00%1

956.63

$4,917.41

$1,649.81

$6.86

$6.86

$5.34

$12.20

$2.03

Capital Recoery Computation

5 Physical Life of Plant (Years)

6. Interest Rate

7 Capital Amortization Factor (CAF)_

Water recovered per day (m3)
Capacity Factor

Water Recovered per Year (m3)

Lewlized Annual Cost

Annual Amortization

Annual Fixed O&M

Annual Levelized Cost ($/m3)

Total Cost Calculated

Annual Levelized Cost ($/m3)

Variable O&M ($/m3)

Total Levelized Cost ($/m3)

Total Levelized Cost ($/barrel)
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Critical process parameters that affect the overall economics of DSE are product water

yield per unit volume of the solvent and the total process cycle time. A higher product water

yield (for example that with octanoic acid as compared to decanoic acid) would result in the use

of smaller solvent volumes and, consequentially, smaller system sizes and lower energy

consumption. Shorter cycle time would reduce the total solvent volume in the system, thus also

reducing the size of some components such as the solvent reservoirs but without affecting any

major components such as the heat exchanger or the energy consumption. The economic

sensitivity to product water yield and cycle time was analyzed and the observed trends are

depicted in Figure 42.

As can be seen the cost reduces rapidly as number of cycles are increased but the

economic gains diminish significantly beyond 100 cycles per day or when the cycle is shorter

than 14 minutes. As demonstrated earlier the experimental cycle is already about 20-30 minutes.

When designing a DSE device it is important to ensure that cycle time is shorter than 20 minutes.

Cycle times longer than 30 minutes may render the process uneconomical.

Additionally the plot shows that increasing product water yield can have the most

significant impact on lowering the cost of desalination. This may be achieved by discovering

new solvents. With a solvent that can provide 10% product water yield, it may be possible to

achieve costs of less than $1 / bbl. (< $6/M3) at which level DSE may become economical even

for small scale seawater desalination.
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Figure 42. Price per barrel of treating produced water as a function of product water yield and number
of cycles per day
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Chapter 8 Summary and future directions

Here, we demonstrate Directional Solvent Extraction (DSE) as a new membrane free, low

temperature method for desalination of water with applications in production of drinking water

from the oceans as well in treatment of flowback and produced water from unconventional oil

and gas extraction. DSE is demonstrated to deliver >97% salt rejection for samples of salinity

similar to seawater and >95% for salinity similar to produced water. For seawater concentrations

DSE is demonstrated to achieve recovery ratios of over 70% with a single stage process and

almost 85% with a three-stage process. It is shown that DSE could operate at low temperatures

and therefore may become an effective way of utilizing abundant and inexpensive waste heat. In

addition, it is shown that DSE has the potential of being effective and economical as a process

for desalination of high TDS waters.

Directional solvents dissolve water while rejecting water soluble salts, and, and are

themselves insoluble in water. DSE works by dissolving water from a saline solution into a

directional solvent by increasing its temperature. The directional solvents extract the water phase

but reject salts and other contaminants. These salts are then separated and removed. Upon

cooling back down the water precipitates out of the solvent, is recovered as purified water, and

the solvent is reused. Importantly the solvent does not itself dissolve into water and the recovered

water therefore contains a negligible amount of residual solvent. The directional solvents

discussed in this work are hexanoic acid, octanoic acid, decanoic, and soybean oil. These fatty

acids and oils dissolve water due to the presence of the carboxylic acid group (COOH) at their

chain ends. The highly polar C=O and 0-H groups facilitate the formation of hydrogen bonds

with water molecules. While this chain end is hydrophilic the rest of the fatty acid molecule is
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hydrophobic. The lowest fatty acids are miscible with water but as the chain length increases the

solubility of both substances in each other decreases significantly. Octanoic acid and decanoic

acid lie in the optimal chain length range and were found to be the most effective.

A proof of concept of the DSE technology is demonstrated through a bench-top batch

process which shows that the process can be operated using low temperature energy sources. It is

shown that starting with a feed solution of 35,000 ppm (to simulate seawater) DSE can deliver

product water with concentrations in the range of 500 - 1000 ppm, which meets WHO drinking

water salinity standards. DSE is also shown to be effective in desalination of high TDS water up

to and including saturated brines. With starting feed solution of 100,000 ppm the process

delivered product water with concentrations in the range of 3000 -6000 ppm, which is

acceptable in the produced water treatment application. It is shown that the thermal energy

consumption of DSE, with heat recovery, to desalt seawater would lie in the range of 350 kWhd

m3 and 480 kWhtW m3 with decanoic acid as solvent, and between 220 kWheW m3 and 260 kWhtW

m3 with octanoic acid. These energy consumption values translate to a GOR in the ranges of 1.3

- 1.8 and 2.4 - 2.9 respectively.

In addition to demonstrating the concept, the batch process is used to characterize the

effect of parameters such as feed-solvent mixing time, brine separation time, feed to solvent

ratio, and feed salinity, on the performance of the process. Higher feed salinities result in reduced

product water yield per unit weight of solvent used and higher product salinities. An analysis of

recovery ratios reveals that DSE can achieve greater than 70% recovery ratios for 35,000 ppm

feed water in a single stage process.
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A multi-stage DSE process which involves recirculation of the brine is introduced and

demonstrated. In three circulation stages recovery ratios of almost 85% with 35,000 ppm feed

and of 82% with 100,000 ppm feed are achieved. It is also observed that higher recoveries

necessitate higher energy consumption but this ability may be applicable in applications such as

produced water treatment where a significant economic value is placed on increasing recovery.

To bring this work closer to practical application a continuous process prototype is

designed and constructed. The system is shown to be effective in producing desalinated water up

to 0.5 bbl. / day at a greater than 70% recovery ratio. For a starting feed TDS of 35,000 ppm the

product water was found to contain about 1000 ppm. The actual thermal energy consumption of

the prototype was calculated to be 1251 kWht/ m3 . By incorporating heat recovery future

versions of this prototype may be expected to have thermal energy consumption of about 250

kWht/ m 3 which translates to a GOR of about 2.5. The results from the continuous prototype

device are shown to conform to those predicted by the batch process experiments. Finally, a

detailed economic analysis is conducted which reveals that DSE can be used for produced water

desalination at a cost of about $2/ bbl. with octanoic acid as directional solvent. With better

solvents and improved process design this cost could potentially reduce to less than $1/ bbl.

which might make DSE an economical choice even for small scale seawater desalination.

Clearly there remains much to be addressed before directional solvent extraction or

related technologies can be brought to practical application. One major challenge remains the

incorporation of appropriate ways to separate the product water from the solvent. Another critical

shortcoming of the demonstrated prototype is the large solvent loss which must be minimized

before the process can be put to practical application.
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A logical next step is to scale up the continuous DSE prototype to achieve throughput

capable of making an impact in the field. For produced water treatment it would be important to

demonstrate operation at scale of 6 - 30 bbl./ day (1 - 5 m3/ day). For small scale seawater

desalination it may be critical to achieve effectiveness at scales of at least 10 m3/ day. In

addition, the demonstrated system is un-optimized and component and system optimization

would be required for it to achieve better performance.

Combinatorial solvent searches could help identify new directional solvents and have a

very significant impact on the performance and applicability of DSE. Key metrics for new

directional solvents are likely to be directional solubility, salt rejection capability, product water

yield, and cost. Molecular level modeling could also help further the understanding of directional

solubility and potentially be used to computationally predict the performance of chemicals as

directional solvents.

This work demonstrates a new type of desalination approach other than membrane and

evaporative methods. DSE may be thought of as a molecular desalination process as it considers

the interaction of water with salts and contaminants at the molecular bond levels and seeks to

break those bonds by thermo-chemical means. It is our hope that this work will spur research

activity in a new field of molecular desalination which will in turn find solutions to even greater

challenges in water treatment that lie beyond the practical limits of current technology.
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