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Abstract

Topological insulators are a new class of three-dimensional quantum materials whose

interior or bulk is an insulator but whose surface is a conductor. Bi2Se 3 is a proto-

typical topological insulator that physicists at MIT are manufacturing and studying.

Various interesting properties of the topological insulator include the flow of pure

spin currents and topological protection.

Pure spin current, distinct from electric current, is a net flow of spin without

a net flow of charge. Recent research at MIT has revealed that shining circularly

polarized laser light on a topological insulator turns its surface's pure spin current

into a spin-polarized electrical current. The band structure of the bulk of a topological

insulator resembles that of an ordinary insulator; the conduction band and valence

band are separated, with the Fermi level falling between them. However, for Bi2Se 3 ,
the conducting surface's dispersion relation can be modeled by a Dirac cone, which

crosses the Fermi level. Electrons with opposing spins reside on opposite sides of the

Dirac cone. Illuminating a topological insulator with either left or right circularly

polarized light depopulates one side of the Dirac cone, leaving on the other side the

desired spin-polarized electrical current.

In the experiment performed for this thesis, thin films of Bi 2Se 3 were grown on

substrates of sapphire via molecular beam epitaxy (MBE). Electrical devices on a

micron scale were then fabricated on the thin film surface and used to measure surface

currents. Steps of this experiment included characterizing the surface quality of a

sapphire substrate using atomic force microscopy (AFM), making electrical devices

with Bi2Se3 via the processes of optical lithography, ion milling, and electron beam

metal deposition. Photocurrents across these electrical devices were induced by the

manipulation of optics and lasers and measured using low noise electronics.

Experimental results revealed that it was indeed possible to induce spin-polarized

electrical currents on thin films of MBE grown Bi2 Se 3 . The desired photocurrent was

observed when the laser beam spot size was enlargened to illuminate the entirety of

the Bi2 Se 3 device simultaneously. These results were not replicable when the laser was

more tightly focused onto a smaller area. Scanning the focused laser beam across the
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Bi 2Se3 confirmed that different photocurrents were being induced at different points;
these results led us to the conclude that there was something inhomogenous about
our device. The reason behind this device inhomogeneity is still under investigation.

Thesis Supervisor: Nuh Gedik
Title: Associate Professor, Department of Physics
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Chapter 1

Introduction

The topological insulator is a new electronic phase of matter which is characterized

by an insulating bulk but a conducting surface. The conducting surface states are

of particular interest because of the distinctive way in which electrons behave on

them. On the surface of a topological insulator, electrons arrange themselves into

spin up electrons traveling in one direction and spin down electrons traveling in the

opposite direction. This spin current has exciting potential applications in the area

of spintronics (electronic devices based on electron spin). [181

1.1 Overview of Sections

The scope of this thesis is to describe an experiment in which photocurrents were

measured across the topological insulator Bi 2 Se3 . Electronic devices were fabricated

on thin films of Bi2Se3 grown on sapphire substrates. Photocurrents were then induced

on the Bi2Se 3 surface by laser light. Analysis of these photocurrents shed light on the

nature of surface photocurrents of the topological insulator.

Background on the topological insulator and photocurrents are given in Chapters

1 and 2, respectively. Chapter 3 describes the design of the electronic devices used in

this experiment and their fabrication process. The layout of the experiment and the

experimental procedure is presented in Chapter 4. Chapter 5 details the experimental

results, and conclusions are drawn in Chapter 6.

15



1.2 Topological Insulator Background

In the Landau classification system, phases of matters are characterized in terms of

underlying broken symmetries. For example, crystals break continuous translational

and rotational symmetry; magnets break time-reversal symmetry.[19] In the 1980s,

the discovery of the a new phase of matter, the quantum Hall state, introduced a new

classification system based on topological order. The topological insulator, discovered

around 2006, is likewise characterized by topological order.

1.2.1 Topological Order

The name topological order is derived from the mathematical field of topology. Topol-

ogy is the study of the properties of an object which are preserved under continuous

deformation. The classic example in topology is the doughnut and the coffee cup.

Imagining that these two objects were made of clay, the doughnut can be continu-

ously deformed into the coffee cup and vice versa. Continuous deformations include

stretching the object but no tearing or gluing. The underlying reason why the con-

tinuous deformation is possible is that both the coffee cup and doughnut possess a

single hole.

The topological equivalence of the two objects is mathematically expressed in

the Gauss-Bonnet Theorem. The Gauss-Bonnet Theorem states that for any closed

surface, the surface integral

J rdA = 27r(2 - 2g) (1.1)

where n is the curvature and g is the number of holes in the object (see Figure 1-1

for an illustration). For both the doughnut and the coffee cup, g = 1 and f rdA = 0.

These two seemingly distinct objects are actually topologically equivalent because

they share the same values of g and f KdA, which are topological invariants.

Both the quantum Hall state and the topological insulator are likewise charac-

terized in terms of their topological invariants. For the quantum Hall state, the
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g=0 g=0

Figure 1-1: Illustration of the Gauss-Bonnet Theorem. Both the sphere on the left
and the central deformed sphere have g = 1 and f rdA = 47r. They are topologically
equivalent and distinct from the doughnut which has g = 1 and f rdA = 0. Image
courtesy of James McIver.

topological invariant is called the Chern number and is related to the Berry flux

and the Hall conductivity. For the topological insulator, the invariant (called the

Z 2 invariant) is more complicated, but it is essential to note that it is determined

by the material's bulk (not the surface.) In both cases, the topological invariant is

unchanged by continuous (or adiabatic) tuning of the Hamiltonian. Only a drastic

"tear," such as the closing of an energy gap in the band structure, can change the

invariant. The energy gap is analogous to the hole g in Equation 1.1.

With this understanding of topological invariance, we see that within topological

classification, the insulator and semiconductor are equivalent. These two phases of

matter are only distinguished through the difference in the magnitude of their energy

gaps, where Egp,in.iator > Egapsemiconductor-. Continuously increasing or decreasing

the energy gap transforms one state into the other. During this transition, the energy

gap never closes, so the topological invariant never changes.[10]

1.2.2 Quantum Hall State

Not all electronic states with an energy gap are equivalent, a counterexample being the

quantum Hall state, a close "cousin" of the 2-dimensional topological insulator.[10]

Discovered in the 1980s, the quantum Hall state is the simplest topologically ordered

state. Its topological order, which is manifested by the quantized Hall conductivity,

distinguishes it from a traditional insulator.[14]

The quantum Hall state is a result of the integer quantum Hall effect, a phe-
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nomenon that occurs when electrons are confined to a 2-dimensional interface in a

strong magnetic field. The magnetic field, oriented normal to the 2D surface, causes

the electrons to feel a Lorentz force, F = ev x B, where e is the electron charge, if is

the electron's velocity, and B is the magnetic field. As the Lorentz force F is directed

along the 2D surface and perpendicular to the electron velocity if, the electrons on

the 2D surface experience centripetal acceleration, moving them in circular orbits.

This circular motion is consistent with classical mechanics; however, since electrons

are quantized, quantum mechanics must be considered. In the quantum mechani-

cal picture, these circular orbits are quantized orbitals. The electrons move with a

quantized cyclotron frequency we.

Because of this orbital quantization, the electrons arrange themselves into Landau

levels; these levels are separated by energy E = hwc. Here, h = h/21r, where h is

Planck's constant; and the cyclotron frequency wc = ', where e is the electron

charge, B is the magnitude of the magnetic field, m is the electron mass, and c is

the speed of light. The structure of these Landau levels is very similar to the band

structure of an insulator. The quantized energy E = hwc forms an energy gap between

the Landau levels, just as an energy gap separates a insulator's conduction band from

its valence band. [10]

Although the quantum Hall state is thus a gapped band structure, it remains

topologically distinct from an insulator. The distinction lies in the Chern number,

discovered in 1982 by Thouless, Kohmoto, Nightingale, and den Nijs (TKNN). For a

single band, the Chern number is equal to the total Berry flux in the Brillouin zone:

1 2-nm = J (V x Am)d 2 k (1.2)

where Am = i(Um|VkIUm) and lum(k)) is the Bloch wave function. The Block wave

function describes an electron in a periodic potential. (Solids generally have periodic

potentials due to their regular arrangement of atoms.) The Brillouin zone is a single

"cell" of the periodic potential. The Bloch wave function in the Brillouin zone is

replicated identically in all the other cells because of the periodicity. In an occupied

18



band m, the the Bloch wave function lum(k)) acquires a Berry's phase while traversing

the Brillouin zone. The Berry's phase is given by the line integral around a closed

loop in parameter-space: f Amdk. As a geometric phase, the Berry's phase depends

only on the path taken by the electron and not on the elapsed time. Applying Stoke's

theorem to the line integral f Amdk yields the Berry flux in Equation 1.2. [9] The

total Berry flux gives the Chern number.

The total Chern number is the sum of the Chern number over all N occupied

bands: n = 1- nm.[10] For an insulator n = 0, and for the quantum Hall state n

is a positive integer.

The Chern number is insensitive to small changes of band structure or smooth

changes in material parameters. Since the invariant is integer quantized, it cannot

change when the Hamiltonian varies smoothly. The invariant only changes at a phase

transition where the energy gap vanishes. [14] [10] Using topological classification,

phases of matter with different Chern numbers are distinct phases.

The quantized Hall conductivity, which occurs for currents in the quantum Hall

state but not the Hall insulator, is dependent upon the Chern number. In the quantum

Hall state, when an electric field E is present, oriented parallel to the 2D surface

described above, the cyclotron orbits experince a force F = eE. The orbits then drift

along the surface, creating a Hall current. A Hall current is characterized by the Hall

conductivity o- = I-, where I is the current and V is the voltage perpendicular to it.

For the quantum Hall state, the Hall conductivity is quantized in units of fundamental

constants: o- = ni, where n is the Chern invariant, e is the electron charge, and h

is Planck's constant. [10] As n = 0 for an insulator, the quantized Hall current is a

phenomenon unique to the quantum Hall state.

The Chern number n is also equal to the number of edge states of a system. [20]

An edge state is illustrated in Figure 1-2. As the quantum Hall state exists on a 2D

surface, at the ID boundary the quantized orbitals are broken. The orbitals "bounce"

off the edge in the manner seen in Figure 1-2. The k-space figure in Figure 1-2 shows

that there is no energy gap along the edge; the gapless edge states are therefore con-

ducting. It is also significant to note that these edge states propagate in only one
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Figure 1-2: Comparison of an ordinary insulator (top) and a quantum Hall insulator
(bottom). The 2 different phases of matter are seen in real space (left) and momentum
space (right). The magnetic field B points out of the page. Image from [18]

direction. Since there are no backward moving modes, the electric current must nec-

essarily propagate forwards. The edge states are topologically protected in that they

are insensitive to disorder (impurities in the material) and cannot scatter backwards.

Therefore, edge states have perfectly quantized electronic transport, where no energy

is dissipated as heat. [18] Similar dissipationless edge states are likewise present in

the topological insulator.

1.2.3 2D TI: Quantum Spin Hall Insulator

The quantum Hall state occurs only in the presence of an external magnetic field,

which is needed to provide the Lorentz force and breaks time-reversal symmetry.[10]

In contrast, for the topological insulator no external magnetic field is required. The

topological insulator's dissipationless edge (or surface) states are protected by time

reversal symmetry, and if magnetic impurites are introduced, this protection is lost.

In the toplogical insulator, spin-orbit coupling plays the role of the magnetic field,

allowing for a topologically ordered system without the breaking of time-reversal

symmetry. Spin-orbit coupling is the interaction between an electron's spin angular

momentum S and its orbital angular momentum L. It introduces an L - S term
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into the system's Hamiltonian, which splits the band structure's energy levels. This

energy is splitting is similar to the creation of Landau levels in the quantum Hall

state. In atoms with high atomic number (such as bismuth), spin-orbit coupling is

strong. [191 Its influence on the electrons resembles that of a magnetic field. Like a

magnetic field, spin-orbit coupling provides a velocity-dependent force. The direction

of the spin-orbit coupling "field" changes with the direction of the spin. [4] [18] [2]

The 2-dimensional topological insulator (or 2D TI) is called the quantum spin

Hall insulator (QSHI). In the 2D TI, spin up and spin down electrons propagate in

opposite directions on the edge. These edge states are protected by time-reversal

symmetry. The Hall conductance of a the 2D TI is 0 due to cancelling between the

spin up and spin down electrons.[18] Figure 1-3 explains the mechanism behind the

2D TI's edge states.

E E

EF EF

Valence band Valence band

k ) rb k -

Figure 1-3: Left: Trivial insulator: between 2 Kramer's degenerate points (r. and

Tb), the edge states cross the Fermi energy EF an even number of times. These edge

states can be eliminated. Right: QSHI: between 2 Kramer's degenerate points (Ta
and Tb), the edge states cross the Fermi energy EF an odd number of times. These

edge states cannot be eliminated; they are topologically protected. Image source [14].

The 2D TI has a 2-dimensional Brillouin zone, in which there exist 4 special

momenta called Kramer's degenerate points. These points are labeled P and are

also known as the time reversal invariant momenta (TRIM). According to Kramer's

theorem, time-reversal symmetry requires that all states must come in degenerate

pairs at any one of the TRIM.[14] [6] In other areas of the Brillouin zone, the states

are nondegenerate as they have been split by the spin-orbit coupling L . S. [15]

The way in which edge states traverse between 2 TRIM, P. and Tb determines
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the value of the 2D TI's Z2 topological invariant. Edge states are those states which

traverse the bandgap of the solid. As seen in the Figure 1-3, the bandgap separates

the occupied valence band from the unoccupied conduction band. The Fermi energy

EF lies within the bandgap. In the left hand diagram in Figure 1-3, the edge state

crosses the Fermi energy twice. Such an edge state can be eliminated by "pushing"

the state out of the gap. This is contrasted by the right hand diagram of Figure

1-3, in which the edge state crosses the Fermi energy once. This edge state, which

connects the valence band to the conduction band, cannot be eliminated or pushed

out of the gap; instead it is topologically protected. [11]

More generally, if the edge states cross the Fermi energy an even number of times

between two TRIM, ra and rb, they are not topologically protected. The Z2 topolog-

ical invariant has the value v = 0, denoting that the material is a trivial insulator. If

the edge states cross the Fermi energy an odd number of times between two TRIM,

Ia and Fb, they are topologically protected. The Z2 topological invariant has the

value v = 1, denoting that the material is a 2D topological insulator. We see that

unlike the quantum Hall state, in which the Chern invariant n could take the value

of any positive integer, for the 2D TI, the Z2 topological invariant is restricted to two

values only: v = 0 or Y = 1.

The underlying reason why an edge state will cross the Fermi energy a certain

number of times is dependent upon the band strucutre. Depending on the occupied

Bloch wave functions (the electronic states in the valence band), each TRIM I, can

be associated with a value of 6a = ±1. The value of v is related to these oa by the

following equation:

(1)v = I1a=a (1.3)

This mathematical formulation can be extended to account for the topological invari-

ants of the 3D topological insulator discussed in the next section.

The first experimentally observed 2D TI were (Hg,Cd)Te quantum wells, whose

conducting edge states were measured in 2007. Quantum wells are artificial mate-

rials (i.e. they are fabricated in a laboratory and do not occur in nature). The
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(Hg,Cd)Te quantum well consists of a thin layer of mercury telluride (HgTe) "sand-

wiched" between layers of cadmium telluride (CdTe). [18] Both HgTe and CdTe are

semiconductors. CdTe, the barrier material, has the standard band progression where

the s-type band lies above the p-type band. However, HgTe, the well material, has

an inverted band progression where the p-type band lies above the s-type band.

A
E (eV)
Elevy

0.02

-0.02

-0.04

B

Figure 1-4: A) Energy of the upper and lower bands vs. quantum well thickness
d. B) The band inversion that occurs as the Z2 topological invariant changes. Left:
d > dc,,c Center: d = ditica Right: d < dit"m Image from [1]

In the (Hg,Cd)Te quantum well, when the HgTe layer is thin (d < d,tica = 6.3

nm), the CdTe band structure dominates so the s-type band lies above the p-type

band. However, if the HgTe layer has thickness d > ditic, then the 2D bands of

the quantum well invert. [1] [10] This band inversion is illustrated in Figure 1-4.

The band inversion which occurs at deitim; = 6.3 nm signifies a topological phase

transition, where the topological invariant has changed from v = 0 to y = 1. At

d = de, the energy gap between the s-type band and the p-type band vanishes,

and the system transitions between 2 topologically distinct phases of matter. This
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transition is analogous to the topological phase transition depicted in Figure 1-1,

where the hole g vanished, turning the doughtnut into a sphere.

1.2.4 3D TI

The quantum Hall state has no 3D analog, but the 2-dimensional topological insulator

has a 3D analog in the 3-dimensional topological insulator. Unlike the 2D TI and

the quantum Hall state, which are each characterized by 1 topological invariant, the

3D TI has 4 topological invariants. The 4 Z2 topological invariants are written in

the following form: vo; (vi, V2, 713). Like in the case for the 2D TI, each topological

invariant has only 2 possible values: vi = 0 or vi = 1. There are therefore 2 , or 16,

distinct classes of the 3D topological insulator. [6] The 3D Z2 topological invariants

can be mathematically expressed similarly to the 2D TI invariant (see the 2D TI

invariant in Equation 1.3). The main difference is that in the 3D case, the Brillouin

zone is 3-dimensional and there are 8 TRIM instead of 4 (see Figure 1-5).

0; (001) 0; (011) 0; (111) 1; (111)

+ + k |+ + + +-k + +k
-- I/ +I

+ z + k z k k + z k
k /kk k

(b)

Figure 1-5: 4 possible 3D TI phases. a) The 3-dimensional Brillouin zone of the 3D
TI has 8 TRIM. Each is associated with a value 6 = ±1. b) The projection of the 3D
Brillouin zone onto the surface Brillouin zone. The 4 Dirac points are separated by
Fermi arcs. Image source [6]

The Z2 topological invariants can be expressed mathematically as follows:

(-1" =f_5 (1.4)
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(-i)vi=1,2,3 = IIn 3 4=,1;ni=1
6 nin2n3  

(1.5)

Again the on, = ±1 and is determined by Bloch wave functions in the bulk of the

material. Figure 1-5 a) displays the 3D Brillouin zone for 4 different topological

insulators. The 8 corners of the cube are the 8 TRIM (F 1 _8). Each of these F points

is labeled with a '+' or '-', corresponding to 6 = +1 and 6 = -1. Figure 1-5 b) shows

the projection of the 8 TRIM onto the 2D surface Brillouin zone. If the 2 TRIM at

the same k, and ky are of the same sign, the surface TRIM is denoted by an open

circle. If the 2 TRIM are of different signs, the surface TRIM is denoted by a closed

circle. The surface TRIM in Figure 1-5 b) are called Dirac points. Again, these points

are subject to Kramer's degeneracy, as in the 2D version. [6] [5]

As seen in the 4 examples in Figure 1-5 b), an open circle Dirac point must be

separated from a closed circle Dirac point by a surface state (called a surface Fermi

state since it crosses the Fermi energy). Between two open circles or two closed

circles, there is no separating surface state. We see therefore how the values of 6 and

therefore the topological invariants vo; (v1, v2, vs) determine the number of surface

crossings between the Dirac points. The surface state crossing is analogous to the 2D

TI's edge state crossing (seen in Figure 1-3).

The most important of the 4 Z2 topological invariants is vo, which determines

whether the topological insulator is strong (vo = 1) or weak (vo = 0). The other

topological invariants (vi, v2, v3) give information on the dispersion and topology of

the Fermi surface states.

In the weak topological insulator (vo = 0), the surface Fermi arc encloses an even

number of Dirac points. 3 examples of the weak topological insulator are shown in

Figure 1-5. The surface states of the weak TI are not protected by time-reversal

symmetry and can therefore be localized in the presence of disorder. [10] Therefore,

while a perfectly clean weak TI is topologically distinct from the trivial insulator, with

disorder this distinction is effectively eliminated.[6] The weak topological insulator can

be constructed by stacking 2-dimensional TI's on top of each other.

In the strong topological insulator (vo = 1), the surface Fermi arc encloses an
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odd number of Dirac points. The strong topological insulator shown in Figure 1-5

has one Dirac point enclosed by a surface Fermi arc. This creates a Dirac cone, like

the one seen in Figure 1-6. The surface states of the strong TI are topologically

protected so that they cannot be eliminated by disorder or by chemical passivation.

The topological protection is due to the -r Berry's phase which an electron acquires

from traveling along the circular Fermi arc like the one seen in Figure 1-5. [6] Unlike

the weak topological insulator, the strong topological insulator cannot be constructed

by stacking the 2-dimensional topological insulator. Because of the dissipationless and

topologically protected metallic surface states, the strong topological insulator is well

suited for experimental study. [19] It is additionally helpful that the surface states

come from properties in the bulk of the material and therefore have no dependence

on how the material was cut. [18]

The first 3D TI discovered was the semiconducting alloy bismuth antimony BiSbi_2,

whose surface bands were mapped via angle resolved photoemission spectroscopy

(ARPES) in 2008.[13] The 2D topological insulator was studied initially with trans-

port experiments. However, it is difficult to study the 3D topological insulator using

transport experiments because of residual bulk conductivity. Ideally the topological

insulator bulk is an insulator, but in practice there is residual conductivity from impu-

rities. Currents in the bulk therefore tend to obscure the results of surface transport

experiments. [18] ARPES, however, circumvents the problem of bulk conductivity

and has yielded good experimental results for the 3D TI. [10] ARPES is a technique

based on the photoelectric effect. In ARPES, photons are fired at a material sample,

ejecting electrons from the material's surface. By analyzing the energy, momentum,

and spin of the ejected electrons, the material's band structure can be determined.

[18] ARPES experiments have successfully demonstrated that the surface states of

the strong TI are nondegenerate and spin polarized. Additionally, they have also

provided evidence for the 7r Berry's phase. [12]

Since the mapping of BixSbi., in 2008, more 3D TI's have been discovered.

Among these new discoveries are Bi2 Se3 and Bi 2Te3 . Bi 2Se 3 , Bi2 Te3 and most other

3D topological insulators are fairly standard bulk semiconductors, whose topological
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characteristics can survive to high temperatures. [18]

The topological insulator used in the experiments performed for this thesis was

Bi 2 Se 3 . Bi2 Se 3 is a strong topological insulator; it has a band inversion at k = 0

and belongs to the 1; (0, 0, 0) class. Bi2Se 3 is better suited for experimental study

than BizSbi_, was for several reasons. Firstly, Bi 2 Se3 has a larger band gap (0.3

eV) than BiSbi.. It therefore exhibits TI behavior at not only low temperatures

but also room temperature, making it easier to use for applications and experimen-

tation. Bi2 Se3 also has a simpler surface spectrum, an idealized single Dirac cone.

Furthermore, since Bi 2 Se3 is a pure compound instead of an alloy, samples can be

prepared at higher purity, which gives clearer experimental results in ARPES and

for other experimental techniques. However residual bulk conductivity, which is due

to impurity and self-doping states, remains a challenge in the experimental study of

Bi2 Se 3.[10]

1.2.5 Motivations for Photocurrents in TI's

In the edge states of the 2D TI, spin up electrons travel along one direction and spin

down electrons travel in the opposite direction. The behavior of electrons at these

edge states suggests that the momentum and spin of the electron are "locked" with

respect to each other. An electron with momentum k necessarily has spin up, while

an electron of opposite momentum -k necessarily has spin down. On the planar metal

surface of the 3D TI, the electron momentum is no longer restricted to 2 opposite

directions. However, the electron spin and momentum are still "locked;" in this

case the spin is locked perpendicular to momentum.[18] Ordinary metals are spin

degenerate, having both spin up and spin down electrons at every point on the Fermi

surface. The metallic boundary of a 3D strong TI is unique in that it is not spin

degenerate.

Time-reversal symmetry requires that the surface states at k and -k have opposite

spin. Therefore as the k vector rotates around a surface Fermi arc, like in Figure 1-6,

the spin also rotates around the surface Fermi arc. Going around a Fermi circle, the

spin rotates by 21r so the electron acquires a Berry's phase of 7r. [10] [6] More generally
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y momentum
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surface states

Figure 1-6: On the 2D metallic boundary of the 3D TI, the electron spin (red arrow) is
locked perpendicular to its momentum (blue arrow). On the left, the electron travels

in a circle in real space. In k-space, the associated 2D energy-momentum relation is
a Dirac cone structure. Image source [18].

a strong topological insulator (one whose Fermi arc encloses an odd number of Dirac

points) necessarily has a 7r Berry's phase. This Berry's phase contributes to the

topological protection of the dissipationless surface states. For most known materials

and for the weak topological insulator, which do not have topological protection, the

Berry's phase is 0. [12]

Because of momentum-spin locking, the currents which flow on the 2D metallic

boundary of the 3D TI are pure spin currents. A pure spin current is a net flow

of spin without a net flow of charge. Pure spin currents propagate in equilibrium;

when optically driven out of equilibrium, the pure spin current is transformed into

spin-polarized, net electric current. In the spin photoconductive effect, an external

voltage bias is needed to obtain spin-polarized current. In contrast, for spin-polarized

photocurrent, the irradiated sample serves as its own current source. [7] The spin-

polarized photocurrent can be controlled by variation of the incident light polariza-

tion.

As pure spin current occurs naturally on the surface of the topological insulator,

the topological insulator is well suited for experiments on spin-polarized photocurrent.

TI spin-polarized photocurrent has exciting applications in probing the dynamics of

topological insulators and for opto-spintronic devices. [16]
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Chapter 2

Polarization Dependent

Photocurrent Background

A photocurrent is an electric current that flows as the result of exposure to radiant

power. The following equation relates a photocurrent j to the incident light (or

radiation field E):

j,\= Z xA,\EvE* + E T,\EE* (2.1)

where E* = E*(w) = Ev(-w) is the complex conjugate of Eau. E = $(w) is the

electric field associated with the incident light, w is the electric field frequency, and

i is the electric field wave vector. The expansion coefficients xx,\ and TA6, are

third and fourth rank tensors, respectively. The first term on the right hand side of

Equation 2.1 represents the surface photocurrent from the photogalvanic effect. The

second term on the right hand side represents the bulk photocurrent from the photon

drag effect. [7]

In this thesis' experiment, polarization dependent photocurrent was excited and

measured on the surface of the topological insulator Bi2Se 3. However, photocurrent

has also been observed and studied in many other materials. Sections 2.1 and 2.2

provide background on photocurrent gathered from studies in quantum wells.
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2.1 Surface Photocurrent

The phenomenon responsible for the surface photocurrent, jA = E-',l XAuvE-E*, is the

photogalvanic effect. The photogalvanic effect occurs when spin-polarized electrons

are asymmetrically distributed in momentum space (k-space). (Note: while in k-space

the electrons have been asymmetrically excited, in real space the electron distribution

remains uniform.) The asymmetrical k-space distribution is optically driven (photo)

and leads to a net flow of current (galvanic). The net current flow satisfies the

system's need to return to a symmetric k-space distribution. There are two versions

of the photogalvanic effect: the circular photogalvanic effect (CPGE) and the linear

photogalvanic effect (LPGE). In the CPGE, circuarly polarized light drives the system

into asymmetry, and in the LPGE, linearly polarized light drives the system into

asymmetry.

Electrons can be optically driven into an asymmetric momentum distribution be-

cause their transitions are governed by certain selection rules. The standard selection

rules governing electron transitions are given in Equation 2.2:

Al=±1

Am, = 0, i1 (2.2)

Am, = 0

where 1 is the azimuthal or orbital angular momentum quantum number, m, is the

magnetic quantum number, and m, is the spin quantum number. The azimuthal

quantum number 1 takes values 0 < 1 < n - 1, where n is the principal quantum

number and must be a positive integer. The magnetic quantum number m, takes

values -l < m 5 1. The spin quantum number m, = ±1/2 for an electron. [9]

In addition to the standard selection rules given in Equation 2.2, electron transi-

tions are also governed by angular momentum conservation rules. Unlike the standard

selection rules given in Equation 2.2, the angular momentum conservation rules are

dependent on the polarization of incident light. These angular momentum conserva-
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tion rules are given in Equation 2.3:

0 linearly polarized light

Am3 = +1 o.+ right circularly polarized light (2.3)

-1 o-- left circularly polarized light

where mj = m, + m, and is called the total angular momentum quantum number.

The standard selection rules given in Equation 2.2 are bent (or changed) for sys-

tems subject to spin-orbit coupling. Spin-orbit coupling mixes quantum numbers ml

and m,, leading to different electron transition probabilities. In systems with spin-

orbit coupling, spin degeneracy is lifted by k-linear terms in the Hamiltonian. The

spin-dependent k-linear terms lead to a splitting of electronic subbands in k-space. A

single band which was formerly spin degenerate is divided into 2 subbands; one with

only spin up electrons and the other with only spin down electrons.

Unlike the standard selection rules, the angular momentum conservation rules

in Equation 2.3 are not changed by spin-orbit coupling. In a system with lifted

spin degeneracy, the optical transitions retain the standard polarization sensitivity.

The combination of lifted spin degeneracy and polarization dependent optical transi-

tions creates the asymmetric momentum distribution driving the photogalvanic effect.

Since bulk bands are necessarily spin degenerate, we note that the photogalvanic ef-

fect can only occur on a material's surface. The photogalvanic effect creates only

surface photocurrents.

In Equation 2.1, the surface photocurrent was expressed by the term jA = , , x

Via mathematical manipulation this can be rewritten as a sum of 2 separate compo-

nents:

3,\ =XApvEvEV

1ZJ

= S x,, {EE*} + Eyi(E x E*),

(2.4)
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where the first term on the right hand side represents the contribution from the linear

photogalvanic effect and the second term represents the contribution from the circular

photogalvanic effect. These two effects are discussed in greater detail in Sections 2.1.1

and 2.1.2.

2.1.1 Circular Photogalvanic Effect

In the circular photogalvanic effect (CPGE), incident circularly polarized light creates

an asymmetrical distribution of electrons in k-space. In the microscopic picture of

this phenomenon, angular momentum from the incident photons is transferred into

the directed motion of electrons. This transfer of angular momentum into a directed

motion is the electrical analog of the way in which the rotating wheel of a car moves

a car forward.

In Equation 2.4, the CPGE photocurrent can be rewritten as i(E x E*)=

8Pci,cE2 , where & = q~/q is the unit vector pointing in the direction of the light

propagation and Pirc is the degree of the light circular polarization (the radiation

helicity). In this formulation, we see that the CPGE photocurrent is proportional to

the square of the radiation field: j, oc E2 , [7] [17] and therefore proportional to the

radiation power. The photocurrent is also proportional to the radiation helicity Pcir,

where Pi,c = -1 for left circularly polarized light and Pirc = +1 for right circularly

polarized light.

The helicity dependence of the CPGE photocurrent can be observed experimen-

tally by reversing the helicity of the radiation. When the the radiation field changes

from o.+ (right circularly polarized light) to o- (left circularly polarized light), the

CPGE photocurrent reverses its direction because the "center of mass" of the op-

tical transitions has shifted.[7]. The CPGE photocurrent is unique in this respect

since none of the other photocurrents represented in Equation 2.1 share this helicity

dependence.

Figure 2-1 shows how optical transitions due to circularly polarized light lead to

a spin photocurrent in a quantum well. In Figure 2-1, the system is excited by right

circularly polarized light o.+. Depending on the incoming photon energy, this optical
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Figure 2-1: Microscopic picture of the circular photogalvanic effect for a) electron
transitions between the valence (hhl) and conduction (el) band and b) electron tran-
sitions between subbands el and e2 of the conduction band. Image source [8]

excitation leads to electron transitions between the valence band and the conduction

band (Figure 2-1 a)) or electron transitions between subbands of the conduction

(Figure 2-1 b)). In both cases the splitting of the bands into subbands is crucial to

the asymmetrical excitation and the generation of photocurrent. As seen in Figure

2-1, both the conduction and valence band have lifted spin degeneracy. Spin up

electrons reside on the left hand subbands (k, < 0), and spin down electrons reside

on the right hand subbands (k. > 0).

By the optical selection rules given in Equation 2.3, electrons excited by right

circularly polarized light .+ must make a transition such that that Amy = +1. In

Figure 2-1 a), electrons transition from the valence heavy hole subband hhl with ny =

-3/2 to the conduction subband el with nj = - 1/2. Because of the way in which the

bands have been split by spin-orbit coupling, the "center of mass" of these transitions

occurs not at k. = 0, but instead at kj. Electrons gather at k: in the conduction

band. To counter this imbalance of electrons (i.e. the asymmetrical distribution in

k-space), a photocurrent jx carries the el electrons back towards k2 = 0. Figure 2-1

b) shows a similar process. Electrons transition from conduction subband el with

my = -1/2 to the conduction subband e2 with nj = +1/2. These transitions create

a dearth of electrons at kj on el. Again, a photocurrent jx settles this imbalance.

[8] These photocurrents jx are all spin-polarized because they occur in electronic
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subbands of nondegenerate spin.

2.1.2 Linear Photogalvanic Effect

The second contributor to the surface photocurrent is the linear photogalvanic effect.

The microscopic picture of the LPGE is not as well-understood as the picture for the

circular photogalvanic effect.[16] However, it is known that the LPGE is caused by

asymmetry in k-space of excited electrons and the effect is dependent upon momentum

relaxation due to scattering of the free electrons. The scattering, which occurs off

phonons, static defects, and other electrons, contributes signficantly to the asymmetry

of the system.[7] Unlike the CPGE, the LPGE photocurrent is helicity-independent,

as it depends not on circularly polarized light but on linearly polarized light. If

the incident light reverses its direction of propagation, the LPGE photocurrent also

reverses its direction. [81 [17]

The linear photogalvanic effect was first observed in the 1950s and has been exten-

sively studied in bulk materials such as GaAs. The effect has already been successfully

applied as a fast detector for the degree of linear polarization. Physicists are now at-

tempting to apply the circular photogalvanic effect as a fast detector for the degree

of circular polarization.

2.2 Bulk Photocurrent: Photon Drag Effect

The bulk photocurrent is due to the photon drag effect, a phenomenon that in-

volves the the transfer of linear momentum from incident photons to excited elec-

trons as a means of generating electric current.[16] Like the linear photogalvanic

effect, the photon drag effect depends on linearly polarized light and is therefore

helicity-independent. If the incident light reverses its direction of propagation, the

photon drag photocurrent also reverses its direction. Unlike the photogalvanic effect,

however, the photon drag effect does not require an asymmetric distribution in k-

space. It also does not require lifted spin degneracy and is therefore allowed in the

spin degenerate bulk bands. In Equation 2.1, the photon drag effect photocurrent is
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given by jA = ' T The fourth rank tensor TA5, indicates that there are

no symmetry restrictions for the photon drag effect. [7]

The photon drag effect has been observed in semiconductors since as early as 1935.

[7] The photon drag photocurrent density j, as measured on a semiconductor sample,

may be modeled by the follow equation:

j = bK(w)I n" e, (2.5)
cm*

where coefficent b characterizes the fraction of the total momentum transferred from

the incident photons to the electron system, K(w) is the absorption coefficient, I is

the light intensity, n, is the refractive index of the semiconductor, c is the speed of

light, m* is the effective mass of the carrier (the electron or hole), and T, is the the

time during which the carrier retains the absorbed momentum. [7]

2.3 Polarization Dependent Photocurrent in the

Topological Insulator

The surface currents observed in quantum wells are spin-polarized photocurrents be-

cause they occur in subbands of lifted spin degeneracy. Spin-polarized photocurrents

also flow on the surface of the TI. The mechanism behind their excitation is shown

in Figure 2-2

Figure 2-2 shows the 2-dimensional cross section of a TI surface Dirac cone. As

explained in Chapter 1, on the surface of a 3D topological insulator, an electron's

momentum and spin are locked perpendicular to each other. In the blue side of the

Dirac cone, the slope is positive so the electrons propagate to the right. All these

electrons propagating to the right necessarily have their spins aligned, pointing down.

In the red side of the Dirac cone, the slope is negative so the electrons propagate to

the left. These electrons are all spin up.

In Figure 2-2 a), the system is in equilibrium. Spin up electrons propagate in

one direction, and spin down electrons propagate in the opposite direction. The red
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Figure 2-2: a) In equilibrium, pure spin current flows on the TI surface. b) When op-

tically driven out of equilibrium, pure spin current is transformed into spin-polarized

electrical current. Image source [16].

current traveling to the left cancels with the blue current traveling to the right, so

there is no electrical current. However, there is a net flow of spin. This net flow of

spin without net flow of charge is a pure spin current.

When the system is optically driven out of equilibrium, the situation shown in

Figure 2-2 b) results. In Figure 2-2 b), circularly polarized light of energy E = hw

is incident on the TI. Depending on the helicity of the light, the light will excite

either the spin up electrons or the spin down electrons. Figure 2-2 b) shows the light

exciting the spin up electrons which reside on the red side of the Dirac cone. The

spin up electrons move up to excited states; this leaves the red half of the Dirac cone

vacant and creates the k-space asymmetry characteristic of the photogalvanic effect.

The remaining electrons on the Dirac cone are all spin down and propagate to the

right. The pure spin current has been transformed into a spin-polarized electrical

current.

In Figure 2-3, we see how this same process occurs in the 3-dimensional Dirac

cone, and how the spin-polarized photocurrent can be measured with an electrical

device. Again, the electron spin and momentum are locked; the blue and pink arrows

point in the direction of the electron spin. Circularly polarized light is incident on

the TI, exciting the pink electrons but not the blue electrons. In Figure 2-3 a), the

light propagates towards the right (+x direction) and excites the electrons whose
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Figure 2-3: Spin-electrical current is excited on the 3-dimensional Dirac cone in k-
space. In real space, the current creates can be measured when it runs between 2
leads. Depending on the angle of incidence, the light will excite a photocurrent which
can be measured (a), the light will excite a photocurrent which cannot be measured
(b), or no photocurrent will be excited (c). Image source [16].

spins point in the +x direction. Half of the Dirac cone is vacated by these pink

electrons moving to excited states. The remaining blue electrons, whose spins point

in the -x direction, have momentum k directed out of the page (in the -y direction).

In real space, the electrical device has leads along the y-axis. The direction of the

spin-polarized current (shown by the black arrows) is also along the y-axis, so the

photocurrent is successfully measured by the electrical device.

In Figure 2-3 b), the light propagates in the -y direction and excites the electrons

whose spins point in the -y direction. Again, half of the Dirac cone is vacated. The

remaining blue electrons, whose spins point in the +y direction, have momentum i in

the -x direction. Since the spin-polarized current flows along the x-axis and the leads

are along the y-axis, this photocurrent is not successfully measured by the electrical

device.

In Figure 2-3 c), the light propagates in a direction perpendicular to all the electron

spins. There are no optical transitions and no photocurrent is generated.

In this thesis, we measured spin-polarized electrical currents on Bi2Se 3 electrical

devices. As mentioned in Chapter 1, in reality, residual bulk conductivity causes com-

plications in attempts to study the 3D TI's surface states with transport experiments.

However, with clever manipulation of lasers and optics, it is possible to distinguish
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the TI's surface current from its bulk current.

In the experiments performed for this thesis, a radiation beam of changing polar-

ization was shone on a Bi 2Se 3 device. The radiation beam was obliquely incident on

the xz plane, inciting a photocurrent along the y-axis (as seen in Figure 2-3 a)). The

light polarization was changed using a quarter wave plate which was rotated from

angle a = 00 to a = 1800. Over a single period, the polarization of the incident

light was changed from p-polarized (a = 00) to left circularly polarized (a = 450),

to p-polarized (a = 90*), to right circularly polarized (a = 1350), to p-polarized

(a = 1800). Analysis of how the TI's photocurrent changed with the changing light

polarization revealed that there were 4 distinct contributions to the TI photocurrent.

The photocurrent was modelled by the following 4 term equation:

j, = Csin(2a) + Lisin(4a) + L 2cos(4a) + D (2.6)

The first term on the right hand side of Equation 2.6 with coefficient C represents

the photocurrent contribution from the circular photogalvanic effect, the second term

with coefficent L 1 represents the contribution from the linear photogalvanic effect,

the third term with coefficient L 2 represents the contribution from the photon drag

effect, and the fourth term D represents a polarization-independent contribution. An

example of photocurrent data fit to the model in Equation 2.6 is seen in Figure 2-4.

[16]

The functional forms sin(2a), sin(4a), and cos(4a) in Equation 2.6 represent how

the various contributions to the photocurrent vary with the changing light polariza-

tion as the quarter wave plate is rotated. The photocurrent C from the CPGE is

modulated by the functional form sin(2a) because the the photocurrent is largest

when the light is circularly polarized and 0 when the light is linearly polarized. It

was determined through symmetry analysis that the photocurrent from the LPGE

was modulated by the functional form sin(4a). The photocurrent from the photon

drag effect is modulated by the functional form cos(4a), which indicates that the pho-

tocurrent is maximal when the light is p-polarized. This is expected since p-polarized
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Figure 2-4: Photocurrent data fit to the model given in Equation 2.6. The image
shows the photocurrent changing over 2 periods (the quarter wave plate rotates from
a = 00 to a = 360*). Image courtesy of James McIver.

light is the light absorbed most strongly by solids and the photon drag effect depends

on linearly polarized light. [16] The fourth term D has no polarization dependence

and represents a photocurrent offset from the bulk.
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Chapter 3

Sample Growth and Device

Fabrication

3.1 Sample Growth

The thin films of Bi 2Se 3 used in this thesis' photocurrent experiment were grown

on sapphire substrates via molecular beam epitaxy (MBE), a process which grows

crystals one layer at a time.

In MBE, a thin film material is heated to create an evaporated beam of parti-

cles, which is directed towards the substrate. The thin film forms by beam particles

condensing onto the substrate surface. Because of the slow deposition rate (- 1000

nm/hr), MBE must take place at high vacuum (~ 10-8 Pa) in order to maintain the

sample's purity.

Previous experiments performed in the Gedik laboratory measured photocurrents

on exfoliated flakes of Bi 2Se 3. Exfoliated flakes are fabricated by a process in which

a piece of tape is used to pull layers off a large crystal. The crystal can be as thick

as a centimeter before it is exfoliated. Although the photocurrent experiments on

exfoliated Bi2Se3 were a success, fabricating Bi 2Se 3 devices on exfoliated flakes is

very labor intensive. Furthermore, the exfoliated Bi2Se 3 devices cannot be scaled up

for technological applications.

This experiment used MBE thin films instead of exfoliated flakes since MBE thin
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films are more promising for technology. MBE thin films are also highly ordered and

have a well-defined orientation with respect to their crystalline substrates. This high

order makes them preferable for experimental use.[19] The MBE thin films used in

this experiment were grown at MIT by Dr. Ferhat Katmis.

3.1.1 Sapphire Substrates

In earlier attempts to measure photocurrent on MBE Bi2Se 3 thin films, Bi2Se 3 was

grown on silicon substrates. These experiments were ultimately unsuccessful because

large amounts of photocurrent were often inadvertently excited in the silicon, a semi-

conductor, thereby obscuring the desired Bi2Se 3 photocurrent. It was determined

that this overlap was due to the proximity of the silicon band gap (1.1 eV) to the

Bi 2Se 3 band gap (0.3 eV). Therefore in the experiments performed for this thesis,

sapphire, an insulator with a larger bandgap of 8.7 eV, was used instead of the silicon

to avoid this problem.

The sapphire substrates used for this experiment were purchased by the Gedik

laboratory from Shinkosha Co.. These substrates were cut into squares of area 1 cm

x 1 cm, with 1 mm thickness. They were then diced into 4 squares of area .5 cm x

.5 cm.

Figure 3-1: An image of the sapphire surface on a micron scale taken by atomic force

microscopy.

At the start of the experiment, the smoothness of the sapphire's surface was char-

acterized by atomic force microscopy (AFM). Figure 3-1 shows a micron-scale image
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of the sapphire surface taken by AFM. Atomic force microscopy, also known scanning

force microscopy (SFM), is a type of scanning microscopy which has resolution on the

order of fractions of a nanometer. In AFM, a cantilever with a very sharp tip on its

end is used to scan the surface of a sample. The sharp tip is typically made of silicon

and has a radius of curvature on the order of nanometers. During the scanning, the

tip is brought extremely close to the sample's surface, but without ever actually mak-

ing contact. Because of this proximity, the tip feels atomic forces from the atoms of

the sample's surface. The cantilever then experiences deflection according to Hooke's

law due to these atomic forces. These deflections are measured using laser light and

a photodiode, recording the surface image to very high resolution.

3.2 Device Fabrication

Experiments were performed on the Bi 2Se 3 thin films through electrical devices fabri-

cated on their surface. The device fabrication involved photolithography, ion milling,

and metal evaporation, processes which allow for accuracy on the nanometer scale.

For these experiments, these processes were used to create devices of micron-scale

size.

Photolithography, also known as optical lithography, is a process of microfabrica-

tion used to selectively remove parts of a thin film or a substrate. The technique can

be used to etch or engrave thin films into precise shapes and sizes. Like photography,

photolithography uses light to capture an image. In photolithography, exposure to

light transfers a geometric pattern from a template, called a photomask, to a thin

film coated with a light-senstive material called photoresist. When the photoresist is

removed from the thin film via a chemical developer, it leaves the pattern from the

photomask behind on the thin film.

The devices created for this experiment required 2 rounds of photolithography,

one positve and one negative. Figure 3-2 provides a schematic of the device at each

step of the fabrication process. In the first round, positive photolithography is used

together with ion milling to remove all Bi2Se 3 from the surface of the substrate,
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except in the select places where devices are to be made. Each device only has a thin

strip of Bi2 Se 3 at its center, as seen in Figure 3-2 a). The second round uses negative

photolithography along with metal evaporation to deposit titanium and gold contacts

on the Bi2 Se 3 strips. These contacts are shown in Figure 3-2 b). The final completed

device, seen in Figure 3-2 c), consists of the superposition of the the Bi2 Se3 layer (a)

and the titanium and gold layer (b).

a) b) c)

Figure 3-2: Schematic of a photocurrent device. a) The first round of photolithogra-

phy and ion milling leaves a thin strip of Bi2 Se 3 on the sapphire substrate. b) The

second round of photolithography and metal evaporation deposits titanium and gold

contacts on the thin strip of Bi2 Se 3. c) A completed photocurrent device.

3.2.1 Procedure

The fabrication of the devices seen in Figure 3-3 involved 4 main steps detailed

below: 1) positive photolithography 2) ion milling 3) negative photolithography and

4) deposition of titanium and gold. Steps 1), 3) and 4) were performed at MIT's

Microsystems Technology Laboratories (MTL), and step 2) was performed at MIT's

Francis Bitter Magnet Laboratory.

1. Positive photolithography is used to select the parts of the Bi2 Se3 thin film

which are not to be etched away by the ion miller in step 2). Before the process

begins, the sample is first dehydrated or "baked" on an oven at 1500 C, cleaning

water and dust from the surface. Once the surface has been cleaned, a drop of

positive photoresist, OCG825, is spun evenly across the sample's surface; the
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spinning leaves a layer of photoresist around 1 pm thick. The photoresist-coated

sample is then briefly "baked" once again before being exposed to ultraviolet

light. This light exposure is done inside a mask aligner. In the mask aligner, the

photomask, a glass sheet patterned with the device design, is placed between

the sample and a UV lamp. When the UV lamp is turned on, the photomask

therefore blocks certain parts of the sample from ultraviolet light exposure. This

process effectively transfers the pattern from the photomask onto the sample.

Post-exposure, the sample is "baked" once again before being washed in a chem-

ical developer, OCG934. The developer washes away all the UV light-exposed

photoresist, leaving most of the Bi2Se 3 thin film surface unprotected. In the

few areas where the photoresist was not exposed to the UV light and has not

been washed away, the Bi2Se 3 thin film retains a protective coating.

2. Next, an ion beam miller is used to remove the Bi2 Se 3 from all areas of the

sample which are unprotected (i.e. not coated with photoresist). In this process,

the sample is placed inside a vacuum chamber, where it is affixed to a rotating

metal disk with vacuum grease. Argon gas is then allowed to flow into the

chamber, and a high voltage is turned on across a filament at the chamber's

ceiling. The high voltage creates a beam of argon ions which are then fired at the

sample. During this process, the sample is rotated on the metal disk to ensure

uniform ion bombardment across its surface. The beam of argon ions gradually

etches away all the Bi 2 Se3 from all the surface's unprotected areas. When the

milling is finished, the sample surface is bare sapphire with a few select areas of

photoresist-coated Bi 2 Se 3 thin film. The photoresist is then removed from the

sample with acetone (CH 3 )2 CO, a cleaning solvent, leaving behind the sapphire

substrate with a few strips of the Bi2 Se 3 thin film. These strips of thin film

form the Bi2 Se 3 portion of the photocurrent devices seen in Figure 3-2 a).

3. Negative photolithography proceeds similarly to positive photolithography (de-

scribed above in step 1)) but with a negative photoresist, AZ5214, and corre-

sponding developer, AZ422. A different photomask is also used to create the
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contact pattern seen in Figure 3-2 b). For negative photolithography, the sam-

ple is exposed to the UV light twice, once with the photomask and once without.

During the first exposure, the photomask must be aligned with the the sample

so that the the contact pattern falls directly above the Bi 2Se 3 pattern, as seen

in Figure 3-2 c). After the sample has been developed and rinsed, photoresist

remains everywhere on its surface except in the select places where the contacts

are to be deposited.

4. The final step of the device fabrication is titanium and gold deposition via a

metal evaporator. As in step 2), this step takes place inside a vacuum chamber.

The vacuum ensures that all extraneous vapors are removed from the chamber

before the deposition begins. The sample is fastened to the vacuum chamber

ceiling, and crucibles containing titanium and gold are loaded into the chamber's

hearth. When the chamber is at a pressure nearing 2 x 10- Torr, a high voltage

is turned on across a filament source. Electrons are emitted from the heated

filament in a high energy beam which is directed at the crucible's center. The

electron beam's intensity is increased until the metal in the crucible begins

to evaporate. Because the chamber is at vaccum, the vapor metal particles

rise directly to the chamber ceiling without any collisions or interference. Upon

contact with the sample's surface, the particles condense back to the solid state,

leaving a uniform coating. [3]

The metal evaporation is performed twice to deposit first 10 nanometers of

titanium, followed by 100 nanometers of gold onto the sample surface. Across

the majority of the surface, the titanium and gold has evaporated onto the

photoresist. But in the few photoresist-free areas, the metals have evaporated

directly onto the actual sapphire substrate and Bi2 Se 3 thin film. When the

metal evaporation is complete, the photoresist is washed away with acetone,

removing most of the metal coating along with it. In the photoresist-free areas,

the titanium and gold remain, forming the device's contacts. A completed

device appears as in Figure 3-2 c).
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3.2.2 Device functionality

Figure 3-3: 2 completed chips: sapphire substrate with electronic devices made of

Bi2Se3 , titanium, and gold. Pictures were taken using a microscope, photo courtesy

of Hadar Steinberg.

A single completed chip has 6 devices, as seen in the 2 examples chips shown in

Figure 3-3. The 4 devices on the left side of the chip are the photocurrent devices used

in this experiment. The photocurrent devices were designed to have long horizontal

leads to allow for an experiment on the angle of incidence dependence. At large

angles of incidence where the laser beam spot would become oblate, the long leads

would still be able to absorb all the irradiating light. The remaining 2 devices on

the right side of the chip are Hall bars used by our collaborators in Professor Pablo

Jarillo-Herrero's group for experiments involving magnetism.

Once the device fabrication is finished, the completed chip is affixed to a chipholder

with silver epoxy (a thermosetting polymer). The device's gold contacts are wire-

bonded onto the metal pads found on the chipholder surface. In the experiments per-

formed for this thesis, circularly polarized light is shone on the thin strip of Bi 2Se 3 at

the photocurrent device's center. The circularly polarized light incites a photocurrent

in the Bi2 Se3 , which flows across the device and to the 2 conducting metal contacts.

These wirebonded contacts conduct the photocurrent to the chipholder, which in turn

connects to the electronic equipment used to measure the incited photocurrent. (This
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electronic measurement is further detailed in Chapter 4.)

The chips displayed in Figure 3-3 each have one functioning photocurrent device

and one functioning Hall bar. Errors in fabrication can result in shorted devices due

to scratches (as seen in the right-side photocurrent devices in chip a)) or improper

removal of titanium and gold (as seen in the upper left photocurrent device on chip

b)).
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Chapter 4

Experimental Setup

4.1 Experimental Geometry

The experimental geometry used for the photocurrent measurements taken in this

experiment is diagrammed in Figures 4-1 and 4-3, where Figure 4-1 displays the

optical setup and and Figure 4-3 displays the electronic wiring used to record the

measurements.

beam
lens lens splitter lens

pulse X4
picker iris chopper waveplate

sample

Figure 4-1: The optical setup used for the photocurrent measurements taken in this
experiment.

In the optical setup, a fast pulse train generated by a Spectra-Physics laser was

first directed into a pulse picker. A pulse picker is an electrically controlled optical gate

which extracts a single pulse from a fast pulse train; here the pulse picker transmitted

1 pulse from every 50 pulses it absorbed. The laser power was measured using a power
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meter and was varied between 600 pW and 30 mW.

From the pulse picker, the laser beam was then directed through a set of two lenses

separated by an iris. The first lens had a focal length of 10 cm and the second had

a focal length of 15 cm; the beam passed through these 2 lenses towards an optical

chopper. The 15-blade chopper wheel was synchronized with electronic equipment to

rotate at 1500 Hz. The laser beam was chopped through the rotating wheel before

reaching the polarizing beam splitter. The beam splitter separated the s-polarized

and p-polarized components of the laser light, sending the former to the left (or up

in Figure 4-1) and the latter straight ahead (to the right in Figure 4-1). Now linearly

polarized, the laser beam was sent though a quarter wave plate, an optical device

which can change linearly polarized light to circularly polarized light and vice versa.

One final lens, with focal length 10 cm, was then used to focus the now circularly

polarized beam to a specific point of the chip.

box

translation
stage

chip-holder

video
objective camera

lens

Figure 4-2: The translation stage, objective, and video camera used for the alignment
of the radiation beam on the chip sample. The box contained electrical plugs which
connected the chip sample to the electronic wiring in Figure 4-3.

The experiment required that the circularly polarized laser beam be incident on

the Bi 2Se 3 portion of one of the chip's electrical devices to incite a photocurrent.

Aligning the beam on these micron-scale devices would be exceedingly difficult to
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do by the naked eye. Therefore, the alignment setup seen in Figure 4-2 was used.

The setup consisted of an objective, a video camera, and a video monitor along

with the focusing lens (with f = 10cm) mentioned in the previous paragraph. The

chipholder was fastened onto a translation stage to further facilitate beam alignment.

The translation stage allowed for movement along all three axes (x, y and z), as well

as rotational motion. As an oblique angle of incidence was needed for the light to

incite a spin photocurrent, the stage was rotated so that the laser beam hit the chip

at an angle 450 to normal.

As mentioned in Chapter 3, the electrical devices fabricated on the chip's surface

were wire-bonded to metal pads on the chipholder. Each chipholder had ten metal

pads, which were connected to ten electrical plugs on a box as seen in Figure 4-2. This

box was built specifically for this experiment by MIT undergraduate Steve Drapcho.

The signals from the chip's devices were measured using the electrical plugs on this

box, with the setup diagrammed in Figure 4-3. To measure the current across a

photocurrent device, the device's two corresponding electrical plugs on the box were

uncapped. One plug was connected to ground through the Sourcemeter, sending the

signal through the second plug to an amplifier. The amplifer was set to a gain of

10'. The amplified signal was then sent to a lock-in amplifier. A lock-in amplifer,

also known as a phase-sensitive detector, is a type of amplifier which extracts a signal

from a very noisy environment. In this experiment, the lock-in amplifier was synced

with the optical chopper; it therefore bypassed the noise by only measuring the signal

at the frequency of 1500 Hz. The signal from the lock-in amplifier was then recorded

by a computer via a Labview program.

4.2 Quarter Wave Plate Calibration

The photocurrent measurements in this experiment were taken while the quarter wave

(A/4) plate was rotating, which varied the laser light continuously between different

polarizations. In a quarter wave plate, a birefringent material (i.e. a material with

2 different indices of refraction) is used to create a phase shift between different

51



Figure 4-3: The electronic setup used for the photocurrent measurements taken in
this experiment. The devices on the chip were connected to the electronic equipment
through electrical plugs on the box.

components of light. Light which enters the material along the "fast axis" (also called

the optic axis) passes through the wave plate more quickly than light which enters

the material along the axis perpendicular to it, the "slow axis." The component of

light traveling along the "slow" axis is retarded by 900 or a quarter wave, with respect

to the component traveling along the "fast" axis. When the incident light makes an

angle of 450 with the optic axis, then half the light travels along the "fast' axis and

the other half along the "slow" axis. The emitted light is then circularly polarized

and can excite the desired photocurrent

When paired with the polarized beam splitter used in the optical setup of our ex-

periment (see Figure 4-1), a 1800 rotation of the quarter wave plate changed the laser

light from p-polarized, to left circularly polarized, to p-polarized, to right circularly

polarized, and back again to p-polarized. The emitted light was p-polarized when

the incident p-polarized beam was aligned with either the "fast" or "slow" axis; this

was equivalent to angles of 00, 90*, and 1800 from the optic axis. When the incident

p-polarized beam was incident at angle of 450 from the optic axis the emitted light

was left circularly polarized, and at 1350, right circularly polarized.

At angles of the quarter wave plate where the light was p-polarized, minimal
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spin photocurrent was excited. As the polarization was changed, the photocurrent

increased, peaking at the angles with circularly polarized light. A full 3600 rotation

therefore gave a four peak trace, with 180* periodicity.

A single 360* rotation of the quarter wave plate required a few minutes. The wave

plate rotation was controlled by a Newport Universal Motion Controller Drive which

was accessed via the computer LabView program. This program was used to set the

wave plate to rotate several hundred times over the course of a few hours during which

photocurrent data was collected from the lock-in amplifier. The data was collected in

such a way so that averaging over the traces could eliminate extraneous factors such

as laser drift from the final data.

To calibrate the quarter wave plate before the data collection, 2 different cali-

brations were performed: a polarization intensity calibration and a laser intensity

calibration. These two calibrations are further detailed below.

4.2.1 Polarization Intensity Calibration

The polarization intensity calibration was used to align the optic axis of the quarter

wave plate with the p-polarized light from the beam splitter and also to confirm the

correct formation of circularly polarized light at the appropriate angles.

photodetector

beam XY4 mirror
splitter waveplate

Figure 4-4: The experimental setup used to calibrate the quarter wave plate.

For this calibration, the setup seen in Figure 4-4 was used. The "chopped" laser

beam was split into its s and p components by the beam splitter, as explained in the

previous section. The p-polarized light passed through the quarter wave plate and
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was reflected from a mirror, reversing the direction of light propagation. The reversed

light beam was passed back through the quarter wave plate, returning to the beam

splitter. At the beam splitter, the s-component of light was deflected towards the

photodetector, while the p-component continued straight forward.

In the first part of the calibration, the quarter plate was stepped through different

angles to find the direction of the optic axis. In this setup, when the p-polarized light

forms an angle of 0* to the optic axis, no signal is observed in the photodetector. The

quarter wave plate fails to retard any component of the light during both the forward

and back portions of its path, so the p-polarized beam returns to the beam splitter

unchanged and no s-polarized component is sent to the the photodetector. Finding

this angle of minimum detected photodetector signal thus aligns the p-polarized light

with the quarter wave plate's optic axis.

Laser Polarization Intensity vs. Quarter wave plate angle
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Figure 4-5: The trace from the polarization intentsity calibration confirmed that the
quarter wave plate was functioning properly.

During the second part of the polarization intensity calibration, the quarter wave

plate was set to continuously rotate, and a trace was taken of the photodetector

signal. The trace from one of these calibrations is shown in Figure 4-5. The signal
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is 0 whenever the p-polarized light is aligned with either the "fast" or "slow" axis.

The 4 peaks correspond to the wave plate orientations generating circularly polarized

light. For example, when the p-polarized light forms a 450 angle to the optic axis, the

quarter wave plate transforms the linearly polarized light into left circularly polarized

light. Upon reflection from the mirror, the light becomes right circularly polarized.

The quarter wave plate changes this to s polarized light. The entire beam is now

s-polarized and is entirely deflected by the beam splitter into the photodetector,

creating a maximal signal.

In a perfectly cut quarter wave plate, the calibration trace should have the form

j oc -Acos(4a). The trace seen in Figure 4-5 fits well to this form, confirming that

the quarter wave plate is functioning properly.

4.2.2 Laser Intensity Calibration

A second calibration, the laser intensity calibration was used to determine whether

there was any intrinsic shape to the the laser beam signal. The setup for this cal-

ibration was essentially the same optical setup as that used for the photocurrent

measurements, except with a photodetector in the place of the chip (see Figure 4-6).

beam
splitter lens

X74 photodetector
waveplate

Figure 4-6: The experimental setup used to take the laser intensity calibration of the

A/4 wave plate.

A trace from this laser intensity calibration (shown in Figure 4-7) revealed that

the laser beam signal did indeed have an intrinsic shape, but this signal was several

orders of magnitude less than the signal that observed from the photocurrent on the
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Bi2Se3 . Therefore, even when the photocurrent data was corrected with the intensity

calibration data, there was no significant alteration.
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Figure 4-7: The trace from the intensity calibration revealed that the laser beam had
an intrinsic shape, but the signal was small enough to be considered negligible.
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Chapter 5

Experimental Results

5.1 Exfoliated Bi 2Se 3 photocurrent

The initial goal of our photocurrent experiments on MBE grown Bi2 Se3 electrical

devices was to replicate the results of a previous experiment in which photocurrent

had been excited on exfoliated flakes of Bi2 Se 3 . The exfoliated Bi2Se 3 photocurrent

experiments had been successfully performed by members of the Gedik laboratory,

and the experimental results were published in the Nature Nanotechnology journal.

[161 Figure 5-1 shows how the shape of the photocurrent signal measured on the

exfoliated Bi2 Se3 devices varied with changing laser light polarization.

The photocurrent signal seen in Figure 5-1 changes through 2 periods of changing

photon polarization. This polarization was controlled by rotating a quarter wave

plate from angle a = 0 to a = 3600. A single period involved rotating the quarter

wave plate by 1800. During one period, the polarization changes from p-polarized at

a = 0, to left circularly polarized (o--) at a = 450, back to p-polarized at a = 900, to

right circularly polarized (o-~) at a = 1350, and back again to p-polarized at a = 180*.

As discussed in Chapter 2, the shape of the photocurrent as it changes with the light

polarization may be modeled by Equation 5.1:

jy = Csin(2a) + Lisin(4a) + L 2cos(4a) + D (5.1)
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Figure 5-1: Helicity-dependent photocurrent measured on an exfoliated Bi2Se 3 device.
The data is fit to the model given in Equation 5.1. The photocurrent changes with
the photon polarization over 2 periods. Image courtesy of James McIver.

5.2 MBE Bi 2Se 3 photocurrent

For this thesis, photocurrent was induced and measured on sapphire substrate MBE

Bi2 Se 3 devices using similar methods to those used in the previous exfoliated Bi2Se3

experiment (for a more detailed explanation of these methods, see Chapter 4).

The results of the exfoliated Bi2Se 3 experiment were successfully reproduced on

our MBE Bi2Se 3 devices. An example of the photocurrent measured on our MBE

Bi2 Se 3 devices is shown in Figure 5-2. These results were fit to Equation 5.1. Like

the exfoliated Bi2Se 3 photocurrent shown in Figure 5-1, the MBE Bi 2Se 3 photocurrent

repeats its shape through 2 periods of changing photon polarization.

The photocurrent shown in Figure 5-2 was taken at a laser power of 32 mW, with

the laser spot size enlargened to illuminate the entire Bi 2Se 3 device at once. Figure

5-4 b) shows this defocused laser spot on the device.

Having confirmed that it was possible to induce and measure photocurrent on

MBE thin films of Bi2 Se 3 , we then attempted to repeat this measurement using a

smaller spot size. A smaller spot size could be useful for technological applications

and for an experiment on the angle of incidence dependence. As explained in Chapter
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Photocurrent vs. Photon Polarization
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Figure 5-2: We successfully measured the desired photocurrent on our MBE grown

Bi2Se 3 devices. This photocurrent data is fit to the model given in Equation 5.1. The

photocurrent changes with the photon polarization over 2 periods.

3, the photocurrent devices fabricated for this experiment were designed with long

leads to allow for a focused laser beam to spread out on the device at large angles of

incidence during such an experiment.

To obtain this smaller spot size, the laser power was turned down to 600 pW,

and the laser beam was focused onto a smaller area of the Bi2 Se 3 . The laser power

was lowered to maintain the same light intensity on the device despite the decreased

spot size of the beam. The photocurrent measurements were then re-taken with this

focused beam. Surprisingly, the new photocurrent had an unexpected shape even

after extensive averaging. As seen in the data presented in Figure 5-3, the data taken

with the focused laser did not resemble the photocurrent data observed in Figures 5-1

or 5-2. The data also did not fit the mathematical model given in Equation 5.1. Even

more disconcertingly, this new data failed to demonstrate the correct periodicity.

Figure 5-3 shows the photocurrent measured over 2 periods of changing photon

polarization. We expect the photocurrent to display the same periodicity as the
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Photocurrent j vs. Photon Polarization
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Figure 5-3: When the laser spot size was decreased, the photocurrent failed to fit the
model given in Equation 5.1 and also did display the correct periodicity. The photon
polarization goes through 2 periods, but the photocurrent does not reflect this.

photon polarization but it does not. Instead the photocurrent shape in the first

period is entirely different from the shape in the second period.

The failure of the photocurrent data to reflect photon polarization periodicity

appeared to be non-physical. It was initially suspected that the problem lay in our

optics, specifically the quarter wave plate, the optic most responsible for controlling

the laser beam light polarization. However, several calibrations of the quarter wave

plate (detailed in Chapter 4) confirmed that the quarter wave plate was functioning

properly. Replacing the quarter wave plate with a newer and cleaner quarter wave

plate also failed to rectify the problem. This led us to conclude that the problem lay

not in our optics or experimental setup but was due to some property of our Bi2 Se3

devices.

Knowing that the expected photocurrent was successfully measured when the laser

spot illuminated the entire device at once, we hypothesized that the focused laser

beam was drifitng slightly on the Bi2 Se3 device and inducing different photocurrents
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at different areas on the device. Although ideally the focused laser beam should

illuminate only one specific spot on the Bi2Se 3 during the measurement process, in

reality the laser pointing actually fluctuates with time. If multiple photocurrents

were being induced on the same device during a single trace, the superposition of

their signals might obscure the photocurrent's true shape.

5.3 Scanning laser light across the device leads

To test our hypothesis that fluctuations in the laser pointing were exciting various

incongruous photocurrents on our MBE grown Bi2Se 3 device, we took 6 photocurrent

measurements with the laser beam focused at 6 different points along the electrical

device's horizontal leads. These six points are diagrammed in Figure 5-4 a). We

scanned the laser light across these 6 points by manually adjusting the translation

stage by 2 pm between each point.

Figure 5-4: a) The laser beam was tightly focused on the Bi2Se3 device and scannned
across 6 points along the horizontal leads. b) The photocurrent data shown in Figure
5-2 which displays the correct periodicity was taken with the laser beam defocused.
The spot size was enlargened to illuminate the entire Bi2Se3 device evenly.

When the laser beam was focused at positions (1) and (6) in Figure 5-4 a), no

photocurrent was observed and only noise was measured. A graph of the noise gen-

erated at position (6) is shown in Figure 5-5. This result successfully confirmed that
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no photocurrent was being generated in the sapphire substrate, which was expected

since sapphire is an insulator with bandgap 8.7 eV.

X 10- Position 6: jvs. Photon Polarization
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Figure 5-5: Position (6): when the laser beam was focused on the sapphire substrate
instead of the Bi2 Se 3 , no photocurrent was observed. This noise confirmed that
the sapphire was insulating. Noise was similarly observed with the laser focused at
position (1). The photon polarization goes through 1 period.

When the laser beam was focused on the Bi 2Se 3 device at positions (2) through

(5), the photocurrent (like the photocurrent shown in Figure 5-3) did not display the

correct periodicity. As shown in Figure 5-6, the shape of the photocurrent signal was

different at each of the 4 points.

When the laser beam spot was returned to 1 of the 4 positions along the horizontal

leads, the photocurrent generated at that position had a replicable shape, as seen in

Figure 5-7. Figure 5-7 shows that the photocurrent measured at Position 3 was

replicable over 2 traces taken during 2 different scans of the laser beam across the

device leads.

The results of Figures 5-6 and 5-7 supported our hypothesis that different compet-

ing photocurrents were being excited by our focused laser beam. Fluctuations in the

laser pointing over time excited these different photocurrents, preventing observation

of a single photocurrent with a periodicity matching that of the photon polarization.
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Positions 2, 3, 4, 5: Photocurrent
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Figure 5-6: The photocurrent shape was different when the laser beam was focused at
4 different points along the Bi2Se 3 device's horizontal leads. The photon polarization
goes through 1 period.

This problem had been bypassed when the laser spot was large because laser pointing

fluctuations did not noticeably change the device illumination in that case.
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Position 3: Photocurrent vs. Photon Polarization
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Figure 5-7: Position (3): the photocurrent shape with the laser beam focused at a
specific point along the Bi2Se 3 device's horizontal leads was replicable. The photon
polarization goes through 1 period.
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Chapter 6

Conclusions

In conclusion, we were able to successfully excite and measure polarization depen-

dent photocurrent on MBE thin films of Bi 2Se3 grown on sapphire substrate. The

measured photocurrent agreed with the results of an earlier photocurrent experiment

which used exfoliated flakes of Bi 2Se3 . We successfully fit our photocurrent data to a

model equation, showing that there were photocurrent contributions from the circular

photogalvanic effect, linear photogalvanic effect, and photon drag effect.

We were unable to reproduce our photocurrent results when we focused our laser

beam onto a smaller area. The expected polarization dependent photocurrent could

be measured only when the spot size was large enough to illuminate the entire Bi2Se3

device evenly. When a smaller spot was focused on only a part of the Bi 2Se 3 device, we

measured seemingly non-physical photocurrent. The smaller spot size photocurrent

could not be fit to our model equation and did not reflect the periodicity of the

incident photon polarization.

It was hypothesized that the seemingly non-physical photocurrent was due to

the excitation of multiple photocurrents at different points of the device. The laser

pointing fluctuated slightly with time, and therefore when the laser was tightly focused

it would illuminate different areas of the device during a single trace. The sum of the

photocurrents excited in this manner did not yield the true photocurrent shape.

This hypothesis was supported by the results of an experiment where we scanned

the laser beam horizontally across the device's leads. At each of the 4 points along
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the device, the photocurrent shape was replicable but different from the shape at the

other points. The observation of these different photocurrents led us to conclude that

there was indeed something inhomogeneous about our device.

It was suggested that this device inhomogeneity was due to the polycrystalline

nature of our MBE grown Bi 2Se3 devices. In previous experiments, photocurrent

was measured across exfoliated Bi2Se 3. In these exfoliated flakes, an electrical device

was fabricated across a single crystal of Bi 2Se 3. In our experiment, the electrical

devices were fabricated to span across multiple crystals on the Bi2Se3 surface. It

was therefore possible that when our laser beam was focused at different points of

the electrical device, multiple photocurrents propagating in different directions were

excited in these crystals. However, we are unsure of the validity of this explanation.

The crystals of our MBE thin film Bi2Se 3 are very small, so the different photocurrents

in these crystals would likely average out. Currently, the underlying reason behind

the device inhomogeneity remains under investigation.
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