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Abstract

It is currently well-known how to lock an optical cavity on resonance using the Pound-
Drever-Hall technique. It is also possible to lock a cavity at a single detuned length
using an amplitude modulated laser beam. However, there are many interesting
applications, that would benefit from the use of a Universally Tunable Modulator
(UTM), because it can create any ratio of amplitude to phase modulation. The unique
transfer function of the UTM allows for cavity locking at any of the intermediate
points between resonance and about half a linewidth of detuning. In this thesis, we
construct such a UTM and verify experimentally that the modulator can indeed be
used for continuous detuning of optical cavities.
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Chapter 1

Introduction

While phase and amplitude modulators are commonly used for a wide range of op-

tical applications, there is no commercially available device that can perform both

phase and amplitude modulation in any desired ratio of modulation depths. However,

for reasons that will be explained, such a device would be useful in experiments that

incorporate detuned optical cavities, such as the ponderomotive interferometer exper-

iment currently being carried out by the quantum measurement group at MIT-LIGO

[5, 4]. This device is called a Universally Tunable Modulator (UTM) and was first

prototyped by Cusack, et al [7]. It can be continuously tuned from pure amplitude

to pure phase modulation by shifting the relative phase of two independent voltage

inputs. Another UTM was constructed at MIT-LIGO by Sarah Ackley for her senior

thesis [1]. I have worked on preparing the UTM for insertion into the ponderomotive

interferometer experiment.

1.1 Optical Cavities

A linear optical cavity is a resonator consisting of a pair of reflecting mirrors. Incident

laser light, which can be approximated as a plane wave, bounces back and forth

between the reflectors and can be resonantly enhanced when the round trip phase is

an integer multiple of 2-r. Because a laser beam is not perfectly point-like but in fact

has finite transverse width, the cavity resonant modes also have a field pattern across
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the surface of the reflector. The transverse eigenmodes of the cavity remain constant

in relative shape and relative phase after having traversed a round trip through the

cavity. Such modes are commonly referred to as the TEMoo, TEM10 , TEM11 , and

so forth, as shown in Figure 1-1. Each transverse mode has an associated set of

longitudinal modes satisfying the condition A = 21n, where 1 is the cavity length, A

is the wavelength of the light in the cavity medium (in this experiment, air), and n

is an integer. Waves that are not eigenmodes of the cavity have a very high loss, so

they radiate away quickly and contribute negligibly to the power circulating in the

cavity.

Figure 1-1: Various TEM modes. This image was created by graduate student Keenan
Pepper and is freely available under the Creative Commons License.

The properties of a cavity with flat mirrors are determined by the reflectivities

and spacing of the mirrors. The reflection coefficient of a cavity of length I is given

by

F(w) = -ri + r 2 e-i(w/c)2d

1 - rir2e-i(w/c)2d

where r1 and r2 are the amplitude reflection coefficients of the input and output mir-

rors, respectively, and w is the frequency of the incoming light. The expression wd/c

14
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can equivalently, and perhaps more revealingly, be written as 2wrd/A, but Equation 1.1

is better kept in terms of w for calculating the reflected error signal in Section 2.3.4.

Cavities are sometimes categorized as under-coupled, critically coupled, and over-

coupled based on the relationship between r1 and r2. Over-coupled cavities have a

greater amplitude reflection coefficient at the output mirror, r2 > r 2. On resonance,

essentially all of the incident light is reflected. Critically coupled cavities have equal

amplitude reflection coefficients, r1 = r 2, and reflect no light on resonance.

The transmission through a simple Fabry-Perot cavity can easily be extracted

from the reflection coefficient:

T = 1 - |F(w) 12 = I-R)( 2 (1.2)
[1 - (RIR 2)1/ 2]2 + 4(R 1 R2 )1/2 sin2 (wd/c)

where R 1 = r, and R 2 = r2 are the reflectivities of the two mirrors, and d is the

length of the cavity. The transmission is plotted for several values of R1 and R 2 in

Figure 1-2.

Two common parameters used to characterize cavities are the free spectral range,

or FSR, and the finesse, F. The FSR is the frequency spacing between adjacent

transmission peaks of a single transverse mode, and is given by

c
Af =2 Ird (1.3)

The finesse F is the ratio of the FSR to the full-width half-maximum of the trans-

mission peaks Afl/ 2 :

free spectral range c/2d 7(R1R2) 1/4(1.

full width at half-maximum Afi/ 2  1 - (R1 R2)1/ 2

Qualitatively, the higher the finesse, the narrower the transmission peaks. Some of

the properties of the flat-mirror cavity change when one or both of the cavity mirrors

become spherical. To efficiently couple the laser light into the cavity, it is necessary

to make the transverse mode of the incident laser beam match the cavity eigenmode,

as is discussed in Section 2.3.3. Flat-mirror cavities are unstable, and are rarely used
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1.2
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Figure 1-2: The transmission through a Fabry-Perot cavity, plotted for values of R 1

= R2 = 0.5, 0.7, and 0.95.

in practice. More often mirrors with spherical curvature are used to construct high

finesse optical cavities.

1.2 Pound-Drever-Hall Locking

The Pound-Drever-Hall (PDH) method is a technique that was invented to aid in

frequency stabilization of lasers [2, 8]. However, it can also be used to lock an optical

cavity at a certain desired cavity length do such that the input light of frequency wo

is at resonance in the cavity. Locking is accomplished through the use of a negative

feedback loop, such as the one depicted in Figure 1-3, which automatically adjusts for

small disturbances to the system. An input laser beam is phase-modulated at some

frequency wm and sent into the cavity, although some of it is reflected by the input

mirror; the exact amount depends on 6d = d - do, as well as the properties of the

16



cavity. The reflected light is detected on a photodiode, mixed with a local oscillator

at wm, and low-pass filtered, which allows the desired error signal to be extracted,

as shown in Figure 1-4. Some amplification of the signal or other adjustments might

be needed in order to obtain the correct actuation, so the signal is passed through

a servo amplifier. The feedback signal is finally applied to a piezoelectric crystal on

one of the cavity mirrors, which changes the cavity length towards do. Clearly, the

OEM- Modulator
Optical Cavity

p Photodiode

--------- -------- LPF ----- > 4

Local Oscillator Mixer Low Pass Filter Servo Amplifier

Figure 1-3: The signal chain for a Pound-Drever-Hall negative feedback loop.

reflected signal in Figure 1-4 changes sign as it passes through resonance, meaning

that a feedback loop that drives the error signal to zero will push the cavity length

towards do. However, there are some cases where we would prefer to lock the cavity

off-resonance. The use of a UTM, as we shall show, allows us to make a slight varia-

tion on the PDH locking method that shifts the zero-crossing in the feedback signal

so we can lock at a point slightly off-resonance such that the optical cavity is detuned.
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a.

b.

II I I|

Figure 1-4: a. The transmission through a cavity swept through resonance. b. The
corresponding reflected error signal used in the Pound-Drever-Hall method.

1.3 Application to the Ponderomotive Interferom-

eter

The quantum measurement group of MIT-LIGO works on experiments that that

explore interesting properties of optomechanical systems [5, 4]. One of the objectives

of the experiment is to cool 1 gram mirrors down to temperatures on the order of

10 nK, with the goal of seeing quantum effects in macroscopic objects [6].

Mirror cooling can be achieved with an optical trap that utilizes optical springs

[3]. When a cavity is locked on resonance, there is no force caused by radiation

pressure (to first order). However, if the cavity is slightly detuned from the reso-

nance, the radiation pressure becomes linear with respect to small changes in cavity

length. If the cavity is lengthened, the radiation pressure will push the mirror farther

away; if the cavity is shortened, the radiation pressure will restore the mirror to its

18



original position. This optical restoring force changes the resonant frequency of the

mirror oscillator, an effect that has been measured: the resonant frequency of a 250

gram mirror was shifted from 1 Hz to 80 Hz, and a 1 gram mirror oscillator's resonant

frequency was shifted from 172 Hz to 5kHz [3].

Because the cavity has some length, the fields inside actually respond to length

changes with some time delay that gives rise to a velocity-dependent damping force.

This leads to a damping force that counteracts the optical spring. Combining two

such optical springs at different detuning levels creates a stable optical trap for the

mirrors [3].
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Chapter 2

A Universally Tunable Modulator

Figure 2-1: The UTM. It is shown from the top before and after the modifications
made by Sarah for her thesis [1]. The modulating crystals are clearly visible.

The UTM was constructed by modifying a commercially available New Focus

amplitude modulator (model 4140). The original modulator consisted of two lithium

niobate crystals with their polarization angles rotated 90' with respect to each other,

driven by a single input signal. Sarah disconnected the electrical connection between

the two crystals and created a custom-made circuit board such that each crystal has

its own input, so they can be independently controlled [1]. The orientation of the two

crystals is depicted in Figure 2-2. The laser beam propagates down the z-axis, but

the voltage is applied in a direction perpendicular to thez-axis. Two identical crystals

are used to eliminate the effects of thermal drift; even if the length of the crystals

21

I



changes with temperature, each polarization component passes through equal path

lengths along both axes.

Cusack, et al derive the transfer function for the UTM in Appendix A of [7], which

is given by

~ Ei 0 o-
P= cos(-)(61 + 62),

2 2

A= sin(-7)(6 1 -6 2),
2 2

(2.1)

(2.2)

Where P and A are the strength of the phase and amplitude modulation, respectively;

-is the angle between the two polarization components exiting the UTM, and 6i and

62 are the input signals. The amount of modulation can be changed by increasing or

decreasing the magnitude of the input signals, while the proportion of amplitude to

phase modulation can be changed by adjusting the phase between the input signals.

S1

Figure 2-2: The two lithium niobate crystals lie inside the modulator box with their
polarization axes and electrode contacts rotated 90' with respect to each other. Each
crystal has its own separate input signal, 61 or 62, which in this setup are two phase-
shifted 25 MHz sinusoidal waves. The direction of light propagation through the
crystals is shown with the black arrow. The modulator is followed by a linear polarizer
which is an essential part of the amplitude modulation.

22
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2.1 The Linear Electrooptic Effect

The lithium niobate crystals are anisotropic, meaning that they have a dielectric ten-

sor e(r) which is not constant throughout the crystal, and instead changes depending

on the axis [10]. For a crystal with no external voltage applied, we can choose basis

vectors ~, y, and z such that c(f) is diagonal, and we call these vectors the principle

coordinate axes. In this basis, we have

D E, 0 0 Ex

DY 0 Cy 0 Ey

Dz 0 0 z; \Ez

Then the stored electric energy density can be easily written as

- - 2 D 2 D 2
87Ee=E-D= + + (2.3)

Ex Ey Ez

Substituting Xk= Dk/ /8irEe and n2 = ek, where nk is the index of refraction along

the k axis, we then obtain the equation for the index ellipsoid:

x2 2 z21 Y z (2.4)
n2 n2 n2x Y z

When an external electric field is applied to the crystals, it changes the principle

axes such that, in general, 6(r) is no longer diagonal in the original basis. The change

in c(f), to linear order, is called the linear electrooptic effect. We can calculate what

an applied voltage does to our crystals using the measured electrooptic coefficients rj

for LiNbO 3 from the literature, and work on the linear electrooptic effect by Pockels.

In our modulator, nx = ny = no. When an arbitrary electric field is applied to the

crystal, the index ellipsoid becomes

1 1 ± 1 E 2 E) 2 + 1 1iE)y
1 = (2 + r13Ez -- r22Ey)2 + (12 + r 22 Ey + ri1 Ez)Y2 + <2 r 33 Ez)z 2

z (2.5)
+2r42Egyz + 2r 42Exxz - 2r 22Ezxy

23



If only E. is applied to the crystal, as it is in this setup, we obtain new sets of

principle axes and refraction indices by finding the eigenvectors and eigenvalues of

the above matrix equation with E2 = Ev = 0. We can then calculate the induced

phase difference between different components of the incident light.

2.2 Amplitude and Phase Modulation

Amplitude modulation refers to a change in the amplitude of a signal. Given some

sinusoidal carrier wave c(t) = A sin(wet + #), we can modulate it by multiplying by a

modulation signal m(t) = M sin(wmt + #), yielding y(t) = AM sin(wt + #) sin(wet +

#). Plotting such a signal yields Figure 3-2a. The amount of amplitude modulation

can be characterized by the modulation depth, which is defined as M/A. In an

experiment, amplitude modulation of laser light can be observed by shining the light

on a fast photodetector.

Phase modulation refers to a time-varying change in the phase of a signal. Given

some sinusoidal carrier wave c(t) = A sin(wet + #), phase modulation is described

by adding some function in the argument, yielding the modulated signal y(t)

A sin(wet + m(t) +# ). Plotting such a signal yields Figure 3-2b. This signal is plotted

in the time domain. in frequency space, the signal at c(t) gains two sidebands at

frequency components we ± win, with a height determined by the modulation depth,

as depicted in Figure 2-4. In an experiment, phase modulation of laser light can be

observed by looking at the sidebands on the transmission through an optical cavity.

2.2.1 Universal Modulation

Universal modulation is some combination of amplitude and phase modulation in any

ratio. If the carrier signal is again given as c(t) = sin(wct), we can obtain a modulated

signal y(t) = A(t) sin(wet + m(t)). Arbitrary ratios are achieved in this experiment

through the use of the UTM's unique transfer function for the light passing through it.

A signal that can be both phase and amplitude modulated creates a useful reflected

signal from an optical cavity as we shall explore in a later section.
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Figure 2-3: a) A carrier signal with amplitude modulation. b) A carrier signal with

phase modulation.

2.3 Experimental Setup

The experimental setup is shown in Figure 2-6. A 1064 nm Nd:YAG laser first illu-

minates a half-wave plate and then passes through a polarizing beam-splitter (PBS).

This setup allows the amount of light propagating through the experiment to be con-

trolled when the half-wave plate is turned. Most of the power is dumped, but about

10 mW of linearly polarized light is allowed to propagate further. The light passes

through a quarter-wave plate, which adjusts the input polarization to the UTM. Nor-

mally we would like the light to become circularly polarized in order to distribute

power equally into the amplitude and phase modulation, as can be easily seen by the

transfer functions in Equation 2.2. The light then passes through a lens which focuses

it to a smaller waist, allowing the beam to pass through the UTM's small aperture. A

second lens placed at the output keeps the spot size constant as the light propagates

further.

25



0.1

0055 00 20 30 35 0

04O'

LL
~0.3

0.1

0

100 ISO 200 250 300 350 400 450

Frequency (Hz)

Figure 2-4: A phase modulated signal has been Fourier transformed into the frequency
domain. The large central peak is the carrier frequency. The two sidebands are located

at fc ± fm with a height determined by the modulation depth.

The electrical input to the UTM comes from a crystal oscillator at 25.23 MHz,

which is split, then amplified by two voltage-controlled ZFL-1000G amplifiers. One

of the inputs is given some phase shift relative to the other by adding a length of

cable. For example, a 1800 shift can be obtained by adding A/2, or about 4 meters,

of cable. The inputs are then passed through two resonant circuits attached to the

two inputs of the UTM.

After being modulated in the UTM, the light is again split by a PBS. Path A, as

indicated in Figure 2-6 is used to measure the amplitude modulation. A fast pho-

todiode (1811) is placed in the beam path, and the variations in light intensity are

captured. Path B goes to the cavity. It passes through a quarter-wave plate and be-

comes circularly polarized. The light then passes through two mode-matching lenses

and enters the cavity, whose length is swept using a voltage-controlled piezo-electric

crystal. A photodiode is placed at the output in order to view the transmission. Path
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Figure 2-5: A carrier signal with both phase and amplitude modulation.

C is used to look at the reflected signal from the cavity. The reflected signal travels

back along Path B, and becomes linearly polarized when it passes back through the

quarter-wave plate so that it can pass completely through the PBS and reach the fast

photodiode, another 1811. (Another advantage of this setup is that it prevents any

light from getting reflected back towards the laser.)

The AC-coupled signal is mixed with the local oscillator signal at 25.23 MHz and

low-passed so that the DC component of this signal can be viewed on an oscilloscope.

2.3.1 Resonant Circuit Construction and Measurements

After the experiment was constructed, it was still impossible to see any sidebands on

the light transmitted through the optical cavity. The V, on the modulator's crystals

is 300 V, but the maximum input electrical power is 10 W. Because the allowable

input power was relatively small, we couldn't just amplify the input voltages in order

to obtain the necessary voltages across the crystal to get an appreciate amount of

27



A2 A/4

X/4

Figure 2-6: The experimental setup. The paths of the laser beam are indicated with
the red lines. The UTM is shown with its attached electronics: The local oscillator
(LO) at 25.23 MHz, the amplifiers (AMP), phase-shifting cable (PS), and the resonant
tank circuits (blue rectangles). Components labeled PD are photodetectors, and LPF
stands for lowpass filter. We differentiate between different paths: path A is used to
measure the amplitude modulation strength, path B goes to the cavity, and path C
measures the reflected signal from the cavity. We also note point S, which is roughly
what was used as a "zero" point when doing the beam scan measurements for the
mode matching.

modulation. Instead, we created two resonant circuits, which amplified the input

voltages while keeping the power constant.

The overall circuit design, a standard tank circuit, is shown in Figure 2-7. It uses a

transformer to boost up the input voltage by a factor of the turns ratio in L1 to L 2.

The toroids were bought from a selection of toroids of a variety of sizes and materials

produced by Micrometals. The T68-17 toroids were eventually used because of their

high Q at a frequency of 25 MHz (the frequency of the input signals), and because

they were large enough to wind the necessary turns but small enough to fit in a small

Pomona box.
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The capacitance of the input ports (essentially the capacitance of the crystals) was

measured to be 50 pF using an LCR meter. Because we wanted to create a resonant

LC circuit, this input capacitance determined the value of L 2 in Figure 2-7, and thus

the required number of windings. Micrometals gives a value of 2.1 nH/N 2 for the

T68-17 toroids. Therefore

N =-~ 20 turns (2.6)
(27rx 25 MH z)2(50 pF) (2.1 nH)

An extra tunable capacitor Ctune was also soldered in parallel in order to adjust the

circuit's resonant frequency more finely, since it was too difficult to get exactly the

right inductance by winding.

The input signal passes through L 1 . To get the highest voltage gain, we would

like N to be as high as possible, so the number of windings in L 1 should be as smallN1

as possible. However, we also want the circuit to be impedance matched as closely

as possible to 50 Q, which allows efficient power transfer with small reflections. The

impedance seen by the input port is Z' =() Z, which thus constrains N1 since
2

N 2 is already fixed.

The impedance of the circuit was measured using a 4195A HP Spectrum Analyzer.

N1 was carefully adjusted to get the impedance at 25 MHz equal to 50 Q, and Ctune

was adjusted to get the resonance frequency at 25 MHz.

The two crystal capacitances were slightly different, so two different resonant

circuits were created in this manner. The resulting Q values were measured by looking

at fpeak/ 2ZAf as the spectrum analyzer swept through a range of frequencies around

25 MHz. The gain was measured by dividing the peak-to-peak output voltage by the

peak-to-peak input voltage at 25 MHz. The final design resulted in Q values of 24

and 23 for the circuits.

2.3.2 The optical cavity

An over-coupled optical cavity was designed to test the reflected signal. This partic-

ular cavity was designed to have a flat input mirror of reflectivity R 1 = 0.98, and a
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Figure 2-7: A circuit diagram for the resonant circuits.

second mirror with reflectivity R 2 = 0.995 and a radius of curvature r = 20 cm. With

a cavity length of 10 cm, the cavity has a free spectral range (FSR) and finesse (f.)

of
c

FSR 2 =1.5 GHz (2.7)
2 L

wr R1R 2F = -1R2 = 125 (2.8)
1 - R1 R2

The mount for the output mirror was constructed by epoxying three piezo-electric

crystals to a two specially machined pieces, as shown in Figure 2-8. The piezos are

elecrically connected to a voltage controller. The two mirrors were carefully placed

at the correct position on the optics table and aligned to be parallel.

2.3.3 Mode Matching

Mode matching improves the coupling of light into a cavity by shaping the input

beam such that it has a high (ideally, perfect) spatial overlap with one of the cavity's

resonant transverse modes. The fundamental mode, which has a Gaussian intensity

profile across its wavefront, is usually selected. The two parameters that can be

adjusted at the input mirror are the radius of curvature of the wavefront and the size

of the beam. Because of the shape of the cavity, as seen in Figure 2-10, we want the
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Figure 2-8: Top: The optical cavity is shown with the flat input mirror on the right
and the output mirror on the left. Bottom: A closer look at the mount and its three
piezos. They are placed in that pattern to allow the laser beam to pass through the
center of the mirror.

input beam to be flat when it enters the cavity, with a size such that its radius of

curvature matches that of the second mirror at z = d.

A beam propagating in the i-direction can be nicely described in terms of its

q-parameter, which encompasses both the radius of curvature Rc(z) and the size of

the beam, W(z) [9]:
1 _ 1 AA-

q(z) - Rc(z) rW(z) 2  (2.9)

where RC and W are given by

Rc(z) = z 1 + (2.10)

W(z) = wo (1+ (2.11)
zo

31



and zo is defined as
7rwo

zo = (2.12)

wo is the smallest radius of the beam, as indicated in Figure 2-10. We choose a value

of wo such that the equiphase surface of the beam coincides with the mirror surfaces

of the cavity. Placing the input mirror at z = 0, we then require that the radius of

curvature of the beam at the output mirror, at z = d, equal the radius of curvature

of the mirror:

Rc(d) = 20cm = d 1 + (2.13)

After solving for wo, we can then easily calculate the waist of the input beam:

A VdP( d 1064 nm 10 cm
WO= -dc(- = 10 cm x 20 cmri 1- - ~ 0. 184 mm

7r \ 7c 20cm)

(2.14)

The input mirror is flat, so we want R(0) = oc. The values for wo and R(0) enable

us to calculate the q-parameter at the input mirror using Equation 2.9.

In order to create a mode-matched input beam, it was necessary to measure the

beamwidth of the cavity input beam as a function of location on the optics table.

Finding the waist of the beam would allow us to calculate the q-parameter of the

input beam. However, the beam was well-collimated over the region where we were

measuring, so we inserted a lens and then remeasured the beamwidth at 25.4 mm

intervals beginning about 0.5 m before the input mirror at point S in Figure 2-6. A

sample set of these measurements is shown in Figure 2-9. We then fit this data to

the functional form for w(z) in Equation 2.11, obtaining the size of the waist, wo, as

well as its location z,. The fit to W(z) of this data is also shown in Figure 2-9. We

know the phase front of the beam is flat at the waist, so we can then use the fitted

value wo to calculate the q-parameter at zw.

We can then use the ABCD law for Gaussian beams [9] to back-propagate through

free space and the lens to find the q-parameter of the input beam at point S. The

ABCD law allows us to obtain the change in q as it propagates through an optical
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system:
_Aq 1 -[-B

q2 = (2.15)
Cq1 + D

where A, B, C, and D are the elements of the ray matrix for the optical system. The

ray matrix describes the transition from an input vector (xi, X') at a position zi along

the optic axis to an output vector (i2, X') at z 2 according to the equation

X2 A B z1

z'2 C D x'

where xi is the distance from the optic axis and x' = dxi/dz. The properties of the

optical system through which the beam propagates are encompassed by the parame-

ters A, B, C, and D. For example, propagation through free space over a distance d

is described by

1 d

0 1

Propagation through a thin lens of focal length f is described by

1 0

- 11

Propagation through a thin lens and then free space is described by multiplying the

two matrices in the order they were encountered. This allows us to obtain A, B, C,

and D to use in Equation 2.15. This q-parameter at S and the desired q-paramater at

the input were both entered into a mode-matching code along with a list of available

lenses. The code uses the ABCD law as described above to simulate the propagation

of the input q-parameter, and optimizes the placement of pairs of lenses such that the

propagated input q-parameter matches the desired q-parameter at the input mirror.

After we entered our parameters, the code returned a solution, specified by two lenses

and their required placement on the optical table, with an expected overlap of one

with the fundamental mode of the cavity. A convex lens of focal length 254 mm was

placed 3.3 inches from point S, and a second convex lens of focal length 76 mm was

33



placed 15.4 inches after that. The beam shape as calculated by the code is depicted

in Figure 2-11.

width2 (pum2 )

1 x

800000

600000

400000

200000

20 30 40 50 60
Distance from lens, [cm]

Figure 2-9: The measured beam widths and the corresponding fit of W(z).

2.3.4 The Error Signal

The reflected signal from the cavity can be calculated as follows. The laser beam acts

as the carrier signal c(t) = Aeiwct. The laser beam passes through the UTM, which

modulates the amplitude with some modulation depth 2B/A, and the phase with

some modulation depth y/A. Combining these two effects, we can write the incident

field on the cavity as

Eine = (A - 2B sin(wmt))ei(ct+sin(wmt)) (2.16)

We can then Taylor expand the phase modulation portion of the exponential, and
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A

I

0 Z=d

Figure 2-10: The cavity mirrors are shown along with the shape of the wavefronts for
the fundamental mode to which we are trying to mode match. wo is indicated.

rewrite the sine functions in terms of exponentials:

(A + iB(ew*t - e-wmt))(1 + Y (eiwmt - e-imt))eiwct
2

(2.17)

We can expand this expression and separate it into terms with the same frequency.

We can then compute the reflected field, Eref, by multiplying each term by the

corresponding reflection coefficient F(w). In an critically coupled cavity F(w) is given

by
2iod

r(e - 1)
1 - r2e c~i

(2.18)

However, it is important to note that in an over-coupled cavity, such as the one used

in this experiment, F(w) is instead given by

-ri + r 2 e- i(w/c)2d

1 - rir 2 e-i(w/c)2d
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Figure 2-11: The shape of the solution calculated by the mode-matching code. The
lenses and input mirror are indicated.

where r 2 > ri. Using a different cavity will result in a different reflected field, and

thus a different error signal. Note, for example, that F(w) -+ 1 on resonance, but

F'(w) -- 0. In any case, the reflected field Eref is given by

Eref = (A - iBy)F(wc)eiwct + (Ay/2 + iB)F(we + wm)ei(wc+wm)t

-(Ay/2 + iB)F(we - wm)ecomy + F(we

+ ByF(w2

+ 2wm)ei(wc+2wm)t

- 2m)ei(c-2wm)t

The reflected power is then given by Pref = E,*ef Eref.

P = E,*, Eref = [(A + iBy)F*(wc)e e + (Ay + iB)F(we + wm)ei(Wc+w.)t

Ay
2-

(2.21)
iB)e-(wm)tF*(we - wm) + 2wm terms] x [c.c.]
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The reflected signal from the cavity is mixed with the local oscillator frequency wm

and low-passed, so we can extract the terms in P that oscillate at w.

P = 2R(x1 - x 2) cos(#) - 2Q(x1 + x 2) sin(#) (2.22)

where # is the relative phase of the mixing signal, and where x1 and x2 are given by

X1 = (Ay - iB)(A - 2jBy)F(wc)F*(we + wm) (2.23)

X2 =(Ay - iB)(A - 2iBy)F(oc)F*(we - win)

Using this calculated result, we can plot various signals based on the desired ratio of

amplitude to phase modulation.

-1 -0.5 0 0.5 1

0 0.5 1
f - fm, [HZ] X Ird

0 2nT/3
1.5

0.5-

0-

-0.5-

.1

-0.5 0 0.5

=0
1

X 107

10
f - fm, [Hz]

Figure 2-12: Reflected error signals are calculated using the reflection coefficient for
overcoupled cavities for four different phase differences between the two input signals,
shown here as 0 = ir, 27r/3, r/3, and 0.
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Figure 2-13: Reflected signals are calculated using the reflection coefficient for criti-
cally coupled cavities. The signals are quite different, most importantly in the change
in offset of the amplitude modulated signal, which makes it much less useful in the
locking method we would like to use since a DC offset would need to be added.
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Chapter 3

Results and Conclusions

The shapes of the error signals measured from the cavity reflection matched the

calculated signals. The cavity reflection was measured at several different relative

phases between the input signals, corresponding to different ratios of AM to PM, as

shown below. The measured reflected signals were fit to Equation 3.1 to determine

the percentages of amplitude and phase modulation, as can be seen in Figure 3-1.

R(w) = 2A(-iMAM + Mpm) (F(w)F*(w + wi) + F(w)F* (O - Wm)) (3.1)

where, as explained previously, the reflection coefficient for the cavity is given by

-ri + ri(r + t2)e 2id/c
F(w,) = 2" I /c (3.2)

1 - ririe 2iwd/c

where ri is the reflectivity of the input mirror, 0.98, and r0 is the reflectivity of the

output mirror, 0.995. The measured data is taken with a cavity length changing at 20

Hz, and is in units of seconds, not frequency. We can do a simple change of variables:

S = 
(3.3)

27

where w is frequency, s is the scanning rate of the cavity length, and t is time. We

can then fit F(sxt/27r) to obtain A, MAM, and MPM. The fractions of amplitude and
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phase modulation are given by

MAM MPM

MAM - MPM' MAM + MPM

respectively.

Using the full-width half-maximum of the transmission peak, the x-axis of these

plots was converted from time to cavity linewidths from resonance. The measured

signals do show some inconsistency with the calculations in that they change in am-

plitude and there is a slight offset (an offset parameter was added to the fits in order

to obtain correct values for A, MAM, and MPM). The change in amplitude was im-

proved by increasing the optical power by a factor of ten. The offset was most likely

caused by RF AM, and was eliminated as described later in this section.
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Figure 3-1: The error signals reflected from the cavity after being mixed with the
local oscillator and sent through a low-pass filter. a. PAM = 100%, PPM 0% b.
PAM = 50%, PPM = 50% c. PAM = 20%, PPM = 80% d. PAM = 15%, PPM = 85% e.
PAM = 10%, PPM 90% f. PAM 0%, PPM = 100%
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Figure 3-2: a. A nice example of the transmission for the reflected error signal in
b. Pure amplitude modulation, zoomed out to include the sidebands (they are too
small to see in the transmission spectrum but they create the two extra peaks in the
reflected signal). c. A nice example of the transmission for the reflected error signal
in d. Pure phase modulation, zoomed out to include the sidebands (they are too
small to see in the transmission spectrum but they create the two extra peaks in the
reflected signal). Additionally, the optical power has been increased by a factor of ten
and the reflected signals for amplitude and phase modulation are now on the same
order of magnitude in amplitude.

The zero-crossing of the error signal in each plot was extracted and plotted in

cavity linewidths from resonance as a function of the percentage of phase modulation,

as shown in Figure 3-3. Clearly, the zero-crossing moves from about half a linewidth

off-resonance towards zero, indicating that the UTM will in fact be useful for locking

cavities off-resonance and smoothly tuning the cavity length from its largest detuning

at half a linewidth through all of the intermediate lengths until the resonant length

is reached.

Another parameter of importance is the optical gain, which is essentially the

slope of the reflected signal near the operating point (the zero-crossing). The slope
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Figure 3-3: The zero crossing of the error signal as a function of the PM to AM
ratio was extracted from the fitted plots and compared with calculated values, which
match reasonably well.

corresponds to the voltage that the servo amplifier will apply to the piezo to adjust

the cavity length by some Ad, and ideally it would be constant as the detuning

is changed. Otherwise, the servo gain has to be adjusted to compensate, which is

undesirable. We can calculate the optical gain we expect by taking the derivative of

Equation 2.22 and evaluating it at the zero-crossing. As we can see in Figure 3-4, even

the calculated optical gain is not constant, so the measurements for this curve need

to be more closely spaced than the data points we currently have. Then the curve can

be precisely mapped and the servo amplifier can be programmed accordingly. The

phase-shifting circuits, as discussed below, will be immensely helpful in this case.
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Figure 3-4: The optical gain as a function of the PM to AM ratio in a small region near
the zero-crossing was extracted from the fits of Figure 3-1. The slopes were normalized
by the fitted amplitudes, then compared to calculated values. They match reasonably
well.

3.1 Future Work

3.1.1 Offsets

These measured error signals do have an offset, which was most likely due to RF AM,

which can be eliminated through adjustment of the alignment through the UTM

and of the input polarization of the light. By turning the quarter-wave plate before

the UTM, the input polarization was adjusted and it was observed that the offset

disappeared, as can be easily observed in Figure 3-5.

However, according to the transfer function of the UTM in Equation 2.2, adjusting

the input polarization adjusts -, so any input polarization that is not circular will

favor either phase or amplitude modulation. After measuring the total amplitude

modulation both before and after the quarter-wave plate was turned, it was clear
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Figure 3-5: A phase modulated signal before and after the imput polarization was

adjusted. The offset is visible when the input is circularly polarized, but disappears

when the input polarization is adjusted.

that the amplitude modulation had been decreased, as can be observed in Figure 3-6.

It happens that the amplitude modulation lost through a change in the input

polarization can be regained through a DC bias offset applied across the modulator's

crystals. The current input polarization will be kept constant and we will explore

the consequences of the DC bias, in particular trying to find the required voltage

such that the original modulation depth can be regained. This will require the use

of a bias T placed after the resonant tank circuits, as shown in Figure 3-7, because

a DC voltage cannot be passed across a transformer. Additionally, because the tank

circuits currently use the capacitance of the crystals to fulfill the resonance condition,

new tank circuits will have to be built to account for the new input capacitance of

the bias T.
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Figure 3-6: The amplitude modulation depth decreases when the input polarization
is changed to eliminate the RF AM offset.

3.1.2 Phase Shifter

In addition to the bias T, there remains some further work to be done on this project

before it can be used in the ponderomotive interferometer experiment. Phase-shifting

with cable is tedious and makes it difficult to obtain a continuous shift of the zero-

crossing. Certainly it would be impossible to switch between various cable lengths

while trying to continuously detune a locked cavity. Phase-shifting circuit boards

have been ordered for the purpose of replacing the cables. They consist of traces on a

PCB that lengthen the path of the signal by multiples of 1/16 ns, which is .5625' at

25 MHz. The board contains multiples of 1/16 ns beween 1/16 ns and 16 ns, with a

switch that allows the signal to take the longer or shorter path in each case, for a total
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Figure 3-7: The resonant circuit, bias tee, and input crystal capacitance.

possible delay of 32 ns or 2880. The board will eventually be attached to a voltage

controller that allows the phase shifting to occur in a consistent, pre-programmed

manner. The small phase shift will allow for a more continuous measurement of

the zero-crossing and optical gain as a function of detuning. When these steps are

complete, the UTM can be optically integrated into the interferometer experiment

and will hopefully be useful in some experimental measurements.

3.2 Closing Remarks

The data sets show that the UTM can modulate the laser light in such a way that

purely amplitude modulated light, purely phase modulated light, and intermediate

steps are easily produced by shifting the relative phase of the two voltage inputs. The

zero-crossing moves smoothly from half a linewidth off-resonance to the resonance

point of the cavity. While there are still steps to be taken before the UTM can be put
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to use, it has already been shown to operate according to calculations because the

shapes of the reflected error signals at different phase shifts match the corresponding

calculated signals. The UTM provides an interesting and highly useful twist on the

original Pound-Drever-Hall locking method, which will hopefully help to produce

some new experimental results.
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Appendix A

List of Electronic Components

1. Photodiodes

(a) 1811 (3)

(b) 1811 Power Supply and DC, AC cables (3)

2. Tank Circuits

(a) T68-17 Micrometals toroids (2)

(b) Pomona boxes (2)

(c) Trim capacitors (2)

3. Cavity

(a) PZT (3)

(b) Thorlabs MDT693A 3-Axis Open Loop Controller

(c) Function Generator

4. Various Electronics

(a) Amplifiers ZFL-1000G (2)

(b) Splitters (2)

(c) Couplers (2)
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(d) Mixers (1)

(e) Local oscillator (1)

(f) DC voltage source (3)

5. Misc Useful Tools

(a) Scope Probe (2)

(b) HP Spectrum Analyzer with Impedance measurement kit

(c) LCR meter
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