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Abstract

This thesis project was to write a program in C++ that solves electromagnetic scat-
tering problems for arbitrarily shaped scatterers. This was implemented by using a
surface integral formulation of Maxwell's equations, which discretizes the surface of
the scatterer into thousands of triangles. The method of moments (MoM) was ap-
plied, which calculates the Green's functions between each triangle element. A matrix
equation is obtained and solved using the Robin Hood (RH) method. The solution to
this equation gives the scattered electromangetic field. This program is first tested on
a sphere, which is compared to the analytic solution known as Mie scattering. Once
these results are confirmed, the program can be used for the KATRIN experiment to
ensure that no Penning traps occur in the electron spectrometer.
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Chapter 1

Introduction

1.1 The KATRIN Experiment and Neutrino Mass

Measurement

This thesis project was to develop a program that calculates the scattered electromag-

netic fields from arbitrary geometries. Numerical methods such as a surface integral

formulation of Maxwell's equations, the method of moments, and the Robin Hood

method are derived and explained. Once the numerical methods are implemented,

Mie scattering is introduced, which scattering off a sphere. This provides an analytic

comparison with the numerical methods to test against. Once confirmed, the numer-

ical methods can be applied to calculate scattering for any shape. It is then used to

understand the main spetrometer in the experiment KATRIN.

Observations such as neutrino oscillation suggest that neutrinos have a finite mass.

KATRIN's goal is to measure the mass of the electron antineutrino. To do so, they

measure the energy spectrum of electrons emitted from the beta decay of tritium.

Tritium decays into helium-3, an electron, and an electron antineutrino. The neutrino

only interacts through the weak force and gravity, so its presence cannot be detected.

However, the neutrino's rest mass can be inferred if one accurately measures the

electron's energy spectrum [6].

Fig. 1-1 illustrates the subtle effect of neutrino mass on the tritium beta decay
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Figure 1-1: Energy spectrum of electrons from tritium beta decay [1]. KATRIN only
needs to accurately measure the electrons with the highest energy. The zoomed in
portion gives models for the electron's energy spectrum if the neutrino had different
mass values. Note that the endpoint is actually 18.575 keV, not 18.600 keV.
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Figure 1-2: A layout of the KATRIN experiment.

spectrum. Most of the distortion occurs at the end of the spectrum. This is because

the highest energy electrons correspond to neutrinos at rest. Therefore, only the most

energetic electrons need to be measured.

The difficulty of this experiment comes from measuring the electron's energy with

precision. Tritium beta decay properties tell us that the electron and antineutrino

have a total energy of 18.6 keV. Analysis of various cosmological data such as mea-

surements of the Lyman-a forest shows that the upper bound of the sum of the

neutrino masses is 0.62 eV [7]. Since the antineutrino mass is such a small fraction

of the total energy, it is imperative for KATRIN to have very accurate sensitivity in

measuring the high energy electrons. KATRIN plans to reach a sensitivity of 0.2 eV

at a 90% CL [8].

Fig. 1-2 shows the experimental design of KATRIN. The high luminosity gaseous

tritium source provides 101 beta decay electrons. The transport system has differ-

ential and cryogenic pumping sections to suppress the tritium flow. The electrons

continue to travel through the pre-spectrometer and main spectrometer, which are

described in detail below. The electrons are detected with a multi-pixel silicon semi-

conductor detector with ultra-high energy resolution.

The electron's energy spectrum is found using the two spectrometers. Both are
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MAC-E-Filters (Magnetic Adiabatic Collimation with Electrostatic Filter). A retard-

ing electrostatic potential is created, which only allows high energy electrons to enter

the spectrometer. A magnetic field is produced by two superconduction solenoids,

which collimates the electrons towards the detector.

The pre-spectrometer acts as a high energy pass filter by repelling most of the

electrons with a fixed retarding voltage of 18.4 keV, just below the endpoint energy.

This allows only 1 out of 10 7 of the electrons to pass to the main spectrometer. The low

energy electrons are rejected to avoid pileup in the detector [9]. The energy spectrum

of the electrons can be measured by varying the electrostatic potential. If the potential

increases, less electrons will reach the detector and higher energy electrons will be

measured. Varying this potential will give data for the energy spectrum. Carefully

measuring the number of electrons detected at different potentials and comparing this

data with Monte Carlo simulations determine the neutrino mass measurement [10].

Since KATRIN needs high energy resolution, the background must be well char-

acterized. One source of background comes from Penning traps, which occur when

charged particles get stuck in electromagnetic fields. The stuck electrons ionize the

residual gas molecules, creating positively charged ions. These ions undergo further

ionization processes with the gas which produce unwanted secondary electrons. If the

positively charged ions are accelerated towards the detector, then the produced elec-

trons will be detected and create a false signal. If they are not accelerated, then they

stay trapped and produce more secondary electrons. Furthermore, photons can be

created and produce secondary electrons, which build up exponentially [4]. Penning

traps have been a problem in previous tritium decay experiments, such as Mainz [6].

To remove any electrons stuck in a Penning trap, an RF pulse is sent through the

spectrometer. This excites the electrons into the walls of the spectrometer, which

will not get detected. This process was successfully confirmed by simulations for the

pre-spectrometer. However, modeling this effect with the main spectrometer is more

challenging.

The research for this thesis project was initiated to simulate RF pulses in the main

spectrometer. If the geometry of the spectrometer is discretized, numerical methods
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can be utilized to calculate their responce to incident RF pulses. These numerical

simulation results can be compared to data experimentally obtained. It should be

found that the actual RF responses agree with simulations. This thesis derives the

numerical methods used to solve general electromagnetic scattering problems. While

the simulation is being used specifically for KATRIN, these methods are applicable

to a variety of applications.

1.2 Thesis Outline

Chapter 2 introduces Maxwell's equations and electromagnetic scattering theory. It

describes why numerical methods must be utilized to solve complicated systems and

outlines popular numerical techniques for solving electromagnetic problems. Further-

more, it provides the motivation for the method of moments and surface integral

equation formulations.

Chapter 3 derives surface integral equations from Maxwell's equations. This for-

mulation requires Green's functions to be calculated between each discretized element.

Applying the method of moments allows for the solution to be expanded in terms of

these elements and provides the basis used for obtaining a matrix equation.

Chapter 4 describes how the Green's functions and surface integrals are calculated.

Since there are singular portions in the matrix elements, a singularity subtraction

method is introduced. This allows for a closed form solution to the singular part of

the Green's functions, which can be subtracted to allow numerical integration and

then added back later.

Chapter 5 explains how the matrix equation is solved using the Robin Hood al-

gorithm, which had previously only been applied to static cases. RH is first outlined

for the simpler electrostatic case. Then, it is described how it is altered to be applied

to the derived surface integral formulation.

Chapter 6 introduces Mie scattering, which analytically calculates electromagnetic

scattering for spheres. The technique for solving Mie scattering is provided and

compared to previous Mie scattering calculations. From there, it can be compared to

17



the numerical methods developed, to ensure that RH is properly solving the surface

integral equations.

Chapter 7 discusses how the electromagnetic solver will be applied to the main

spectrometer in KATRIN to solve RF problems. Also, concluding remarks and future

research plans will be given.
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Chapter 2

Electromagnetic Scattering

Solutions and Motivation for the

Method of Moments

2.1 Solving Maxwell's Equations

Maxwell's equations are a series of partial differential equations which relate electric

and magnetic fields to charges and currents. In principle, they exactly describe any

electromagnetic interaction. While these equations were first written down in 1861,

new approaches for finding solutions are still being developed today. In principle,

one could find a unique solution given initial and boundary conditions, but many

systems do not have analytic solutions. Analytic methods provide exact solutions

which can be found from mathematical manipulations. These include introductory

electromagnetism problems, such as calculating the electric field due to a charged

sphere, cylinder, or infinite plane.

Consider the scattering of light on matter for example. Analytic solutions only

exist in systems with great symmetry, such as the sphere. Mie scattering is the solu-

tion that describes light scattering off of a homogenous sphere. Even these analytic

solutions must be expressed in terms of an infinite series. The Mie solution can be
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expanded to describe multiple spheres, coated spheres, spheroids, and infinite cylin-

ders. A derivation of the Mie solution is presented in Chapter 6. Unfortunately, there

are no analytic solutions for more complex scatterers.

It is unlikely that any new analytic methods will be found for electromagnetism

problems. However, numerical methods are still being developed to provide approxi-

mate solutions. Numerical methods find field values at specific discrete points, rather

.than continuously as analytic methods do. Fortunately, computers are well suited for

iterative numerical techniques and can handle complex discretization schemes.

There are multiple terms to characterize the success of each numerical method.

Ideally, the best method calculates an approximate solution closest to the exact so-

lution in the shortest amount of computational time. To determine the accuracy of a

method, the system can be simplified and compared to an available analytic solution.

If the method is found to be accurate, then it should apply to more complex systems

as well. A scheme is said to be stable if there are no numerical or round-off errors.

Convergence means that if the discretization length was set to zero, then the numer-

ical solution approaches the exact solution. Efficiency refers to how fast a method

determines a solution [11].

These terms can be used to discuss the advantages and disadvantages of different

methods in specific cases. For example, one may start by choosing the most efficient

method, but then realize that it does not give an accurate enough result. Another

method may not converge in all of the regimes needed.

2.2 Numerical Method Classification and Brief Ex-

amples

In general, numerical methods can be used to solve any boundary value problem,

which are differential equations with a set of boundary conditions. While many

numerical methods are similar and can be difficult to classify, they can be broken into

two groups: differential and integral methods. Since there are differential and integral
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forms of Maxwell's equations, both techniques can be used to solve electromagnetic

problems.

2.2.1 Examples of Numerical Methods: FDTD, FEM, and

MoM

Typically, partial differential equations (PDEs) which describe the boundary value

problem are converted into difference equations which can be solved by iterative meth-

ods. Differential methods typically make approximations to replace the differential

operators.

The first and simplest numerical method ever constructed was the finite difference

method (FDM). When it is applid to electromagnetism, it is known as the finite-

difference time-domain (FDTD). It approximates the differential operators in the

partial differential equations [12]. For example, the first order derivative of a scalar

potential <p would have the following approximation:

d ( p(a + h) - ((a)-() .(2.1)
dz h

This is an example of the simplest FDM. However, most partial differential equa-

tions contain more complicated differential operators, often second order derivatives.

By approximations, such as Taylor expansions, higher order operators can be ap-

proximated as well. These methods are relatively simple, but are not always useful

because an orthogonal discretization grid must be applied to space of interest. This

is not particularly useful for systems with curvilinear boundaries. Also, Maxwell's

equations in their differential form do not hold on boundaries, so neither do their

approximations [13].

The finite element method (FEM) is a variational approach where the PDE is

converted into a functional. It can be used on differential and integral equations, but

is most commonly used for differential equations. The solution is approximated by

breaking it up into multiple bases, and each basis function is given a weight. From

here, a matrix equation can be solved in terms of these bases to obtain a solution
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[12][14]. Similar to FDM, FEM discretizes the fields throughout all of space. The

functional is then minimized by guessing different weights, which determines the

approximate solution.

One advantage of integral methods is that only the scatterer needs to be dis-

cretized, rather than all of space. The method of moments (MoM) is an example

of an integral equation method, which is closely related to the boundary element

method (BEM). It is similar to FEM in that it expands the solution in terms of basis

functions. The difference is that each matrix element is calculated by performing an

integral equation involving the Green's functions between each basis [12].

The MoM reduces an integral equation into a matrix equation. Let's assume we

have Lf = g, where L is a linear operator, f is the solution to be determined, and g is

the source. Expand f as a series of functions: f = E arfn. Let each f, be known as

basis functions. The solutions that are found for electromagnetism problems would

be the current and charge distributions. Typically, an exact solution would require

an infinite number of basis functions, but an approximate solution utilizes a finite

number. From here, we have E anLfn = g. Most generally, weighting functions

wm can be introduced and the inner product of these weighting functions and each

side of the equation is performed. This gives a matrix equation of the following form:

En ae( WM, Lfn) = (wm, g), where (a, b) represents the inner product of a and b. The

matrix equation is more clearly seen making the following redefinitions:

Imnan = ig, where (2.2)

(wi, Lfi) (wi, Lf 2)

Imn = (w2 ,Lfi) (w 2,Lf 2) ... ) (2.3)

n= a 2 ) , and w= W2 . (2.4)

The weighted functions Wn must be chosen. Galerkin's method is to choose Wv =
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f,. From here, the solution can be found if the matrix Imn is invertible. The MoM

is very powerful, but can only be used if there are known Green's functions for the

studied equation [15].

2.2.2 Comparing Numerical Methods to Solve RF Scattering

Differential equation formulations are often straightforward and can be used to solve

most problems. However, a mesh must be created for the scatterer and the surround-

ing space. If the geometry of the scatterer is a complicated 3D structure, the mesh

must match this accurately, which can be time consuming. Also, if the boundary

conditions of the fields are set at infinity, the space must be truncated to become fi-

nite. This introduces unnecessary error into the boundary conditions themselves. For

the FDTD, both space and time must be discretized, since the spatial and temporal

derivatives must be replaced by difference quantities.

Integral equation formulations only discretize the scatterer, but often have higher

memory costs. It can be more difficult to calculate fields with IEs, but they tend

to deal with complex geometries better, because only the scatterer needs to be dis-

cretized. Also, boundary conditions at infinity can be accounted for. The MoM is

very accurate because the derived equations are almost exact. It is very applicable

for complex scatterers becauseit works with surface or volume discretizations of any

manner [16].

There are surface integral equation (SIE) and volume integral equation (VIE)

formulations [17]. While VIEs are easily obtained from Maxwell's equations, SIEs

tend to use less memory. This is because the number of discretizations needed for

a surface scales with the second power of the radius, while the number of volume

discretizations scales with the third power of the radius. VIEs only slowly improve

their accuracy as discretization increases. VIEs are more versatile because they are

applicable to inhomogeneous scatterers, while SIEs can only be used for homogeneous

scatterers [2][12].
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Chapter 3

Derivation of Surface Integral

Equations and the Method of

Moments

The previous chpater motivated that integral techniques are useful for electromagnetic

scattering problems because only the scatterer needs to be discretized. If the scatterer

is homogeneous, then SIEs can be employed and require less memory allocation than

VIEs. Since Green's functions can be found, the MoM can be applied to acheive

accurate solutions.

Before diving into derivation, the problem will be clearly defined. Consider some

arbitrary homogeneous 3D geometry, as shown in Fig. 3-1. Homogeneous states that

the scatterer has a constant refractive index. Maxwell's equations will be solved in

two regions. Region 1 represents the space around the geometry, and region 2 is the

geometry itself. Given an incident electromagnetic wave of a specific frequency, the

scattered electromagnetic waves are to be calculated.

To approach this problem numerically, surface integral equations will be derived

from Maxwell's equations. Next, the surface of the geometry is discretized into many

triangles. The solution of surface currents is expanded into a set of RWG functions.

Finally, the weighted coefficient for each RWG function is solved by inverting the

matrix by the Robin Hood method (RH). This chapter focuses on deriving the surface
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Figure 3-1: Region 2 represents the scatterer, while region 1 represents the space

surrounding the scatterer. S refers to the boundary of the surface between regions 1
and 2, while fi is the unit vector normal to the surface [2].

Region 1 -% /n$

J

M
/

- ~~nf

integral equations and introduces the matrix equation to be solved.

3.1 Surface Integral Equation Derivation from Maxwell's

Equations

To derive the needed surface integral equations, Maxwell's equations will be manip-

ulated to form electric and magnetic wave equations. From there, a dyadic Green's

function is introduced to generate fields from sources. Next, the electric field integral

equation (EFIE) and magnetic field integral equation (MFIE) can be derived. Once

these equations are found, the MoM is applied to give bases for defining a matrix equa-

tion. The EFIE and MFIE are then combined into a new matrix equation, which can

be solved to give the scattered fields. The derivation of this matrix equation starts

below.
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Here are Maxwell's equations in differential form using SI units:

V x H(r, t) = jj(r, t) + ' (r, t)(31)
at

V x E(r, t) - (r, t)(3.2)
at

V.B(r,t) = 0, (3.3)

V -D(r, t) = pf(r, t), (3.4)

where H is the magnetic field, E is the electric field, B is the magnetic flux density, D

is the electric flux density, jf is the free current density, pf is the free charge density,

and c is the speed of light. If we assume there are no bound charges or currents, then

D = e(r)E and B = p(r)H, where E(r) is the electric permittivity and p(r) is the

magnetic permeability. In region 1, e(r) = 6o and p(r) = po, since it is empty space.

Since a homogeneous scatterer was assumed, region 2 has spatially independent values

for s and p.

Taking a time derivative of (3.1), plugging it into (3.2), and taking a curl of both

sides gives the following wave equation for the electric field:

E(r)pt(r) 9 2E(r, t) )j(r, t)
V x V x E(r,t) + 22 (r) . (3.5)

Next, a time-harmonic electric field is assumed, giving E(r, t) = exp(-iwt)E(r). The

current density also is assumed to be time-harmonic. This allows the time derivatives

to be evaluated, giving

2

V x V x E(r) - C2 e(r)p(r)E(r) = iwpj(r). (3.6)

This is known as the vector Helmholtz equation [18]. Assuming a time-harmonic

field constrains this approach to be a frequency-based method, rather than a time-

based method. This method only calculates electromagnetic scattering for a specific

frequency. Time-based methods require time to be discretized as well. However, if

one wants to calculate broad frequency spectrum scattering effects, this method must
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be implemented multiple times for each frequency.

Similar manipulations can be done to obtain a magnetic wave equation. Noting

the wavenumber, k = w(ep)1 , and adding an index i to represent the two different

regions, the following electric and magnetic wave equations are obtained:

V xV x Ei(r) - k2Ei(r) =wpij(r), r E V, (3.7)

V x VxHi(r) - k2Hi(r) =V x j(r), r E Vi. (3.8)

3.1.1 The Dyadic Green's Function and Dyadic Properties

Next, the dyadic Green's function G(r, r') is introduced. A dyadic is similar to a

matrix, since this is made up of three vectors containing Green's functions. There is

no distinction on the difference between a row and a column for dyadics. Letting the

electric field have the following definition in terms of the dyadic Green's function,

Ei(r) = iwpi j dr'j(r') -Ci(r', r). (3.9)

This equation physically shows that a dyadic Green's function operating on an electric

current generates the corresponding electric field. It is no surprise that plugging this

into the previous wave equation gives a differential equation with a delta function:

V x V x Gi(r, r') - ki i(r, r') = 1 6(r - r'), (3.10)

where (i)ij = o6j. A solution for the dyadic Green's function can be found to have

the following form:
- VV eikiR

G+(r, r')k= 2 R (3.11)

where R = Ir - r'l. Note that the scalar free-space Green's function, Gi(r, r') = ikiR

is embedded in the dyadic Green's function [19].

Ref. [20] has extensive explanation on the properties of a dyadic. The following

properties will be used for this derivation. Dyadic analysis shows that the anterior

and posterior dot products can be defined for a vector a and dyadic M, which are
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written as a -M and M -a, respectively. This returns a vector quantity, and the two

are related by a -MT = M -a. Furthermore, the anterior and posterior cross products,

a x M and M x a, return dyadics. For vectors a, b, and dyadic C,

a - (b x C) = -b - (a x C) = (a x b) -C, (3.12)

which is an abstraction from the corresponding vector identity. The reciprocity the-

orem gives GT(r, r') = G(r', r) and (V x G(r, r'))T = -V x G(r', r) [21].

3.1.2 Deriving the EFIE and MFIE

Now that the needed properties of a dyadic are given, surface integral equations can

be derived in terms of the Green's functions and the fields, which correspond to the

EFIE and MFIE.

Taking the anterior product of Eq. (3.7) with Gi(r, r'), the anterior product of

Ei(r) with Eq. (3.10), and subtracting these two equations gives

V x V x Ei(r) - Gi(r, r') - Ei(r) -V x V x Gi(r, r')

= iwiij(r) - Gi(r, r') - Ei(r)6(r - r'). (3.13)

Using Eq.(3.12) on the first and second terms in the left-hand side of Eq. (3.13)

and taking a volume integral gives

J dVV- ([V x E (r)] x Gi(r, r')) + E (r) x [V x GO(r, r')])

VE r' EV
= f i dVj(r)- Gi(r, r') - E : r V . (3.14)

K0 : otherwise

Using Eq. (3.9) allows a simplification of the right-hand side of Eq. (3.14), allowing

the first term to represent the incident electric field Ene(r'). Eq. (A.45) in [20] gives

a vector-dyadic Green's theorem converting volume integrals into surface integrals,

which can be applied to the left-hand side of Eq. (3.14). Applying these two changes
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gives

J dSfii(r) -([V x Ei(r)] x Gi(r, r') + Ei(r) x [V x Gi(r, r')]) = En(r'), (3.15)ov

where &Vi represents the boundary surface of Vi and fii is the outward pointing normal

vector of that surface. In other words, &V2 = S and &V = Sinf U (-S). The first term

of the left-hand side of this equation can be further simplified by using Eq. (3.12),

Eq. (3.2) assuming time-harmonic fields, and reciprocity, which gives

fii(r) - [V x Ei(r)] x Gi(r, r') = ni(r) x [V x E (r)] - Gi(r, r')

= iwtt G(r', r) - [fi(r) x Hi(r)]. (3.16)

The second term of Eq. (3.15) can be simplified by Eq. (3.12) and reciprocity, giving

i(r) - Ei(r) x [V x Gi(r, r')] = [fi(r) x Ei(r)] - [V x Gi(r, r')]

= -[V x Gi(r', r)] [fn(r) x Ei(r)]. (3.17)

Now, it is convenient to introduce the electric and magnetic surface current densities

J = n2 x Hi and M = -n12 x Ei. When the MoM is performed, J and M are the

solutions that will be found. Assuming that region 2 is nonemitting gives j = 0 in

V2 , which means E in, = 0. Introducing the surface current densities, simplifying the

right-hand side, and switching r and r' gives

dS'Gi(r, r') -J(r') - j dS'[V' x Gi(r, r')] -M(r')
S JS

Ei"'(r) : i = 1 and r E V2\S

0: i = 2 and r E V 1\S

Note that the same J and M are used for both regions. This combined with the fact
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that fil = -fi 2 gives the following boundary conditions

fui x (E1(r) - E 2(r)) (3.19)

fii x (Hi(r) - H 2 (r)). (3.20)

These boundary conditions state that the tangential component of the electric and

magnetic fields are continuous across the boundary S. Since this is true, one can take

the limit of r - S for Eq. (3.18). Doing so gives the desired EFIE

( dS'Gi(r, r') -J(r') - dS'[V'Gi(r, r')] -M(r')

f (Eine(r))ta: = 1(3.21)
0: i= 2

for r E S.

Similar manipulations can be done to Eq. (3.8) instead of Eq. (3.7), which gives

the MFIE. First, the incident magnetic must be generated by the following, which is

analogous to Eq. (3.9)

H c(r') = J dV[V' x j(r)] - Ci(r, r'). (3.22)
i r JVi

Using this field generating equation and similar manipulations that obtained the

EFIE, the MFIE is found to have the following form

j dS'Gi(r, r') -M(r') + dS'[V'Gi(r, r')] -J(r'))

(H"' (r)),an : i =1 (3.23)
0: i=2

for r E S.

These EFIE and MFIE contain exactly what was desired [2]. They are surface

integral equations including the dyadic Green's function, the electric and magnetic

surface currents as a solution, and the incident fields as a source. Note that no
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approximations have been made yet, making these equations exact. Next, a method

to solve these equations is needed.

3.2 Including the Method of Moments to Solve the

EFIE and MFIE

The MoM is the numerical technique to be used to solve for electromagnetic scatter-

ing. The goal is to find solutions for J and M. From there, the scattered electric

and magnetic fields can be found. Since Eqs. (3.23) and (3.21) are surface integral

equations, it is intuitive to discretize the surface of S. The surface will be broken

into triangles, since they are simple and effective. Chapter 2 showed that the MoM

expands the solution in terms of basis functions. The most common basis functions

for triangles are RWG functions, which wil be used to expand the solution and apply

the MoM.

3.2.1 RWG Basis Functions

Once the surface is broken into triangles, RWG basis functions can be found for each

shared edge between two triangles, as shown in Fig. 3-2. For a common edge n, there

are two adjacent triangles Tnf and T-. The determination of which triangle is plus or

minus is determined by which direction is considered a positive current, so the choice

is arbitrary.

Since the electric and magnetic surface densities are vector quantities, one must

expand with a vector function. The RWG basis function takes the following form

i L_ (r - pg) : r E Tnz
fn(r) ={A (3.24)

0 :otherwise

where Ln is the length of the common edge n, A' is the area of T , and p' is the

third point of T not connected to the common edge. It will also be useful to note
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Figure 3-2: RWG basis functions: A basis is defined for each adjacent triangle edge
n. T: and T- are defined as the two triangles, where the currents flow from Tn to
T-. The points pin, p2,n, p+, and p;- refer to the vertices of the triangles shown.

P1,n

P~n P-n

P2,n

the divergence of the RWG basis function [22]

V-fn(r)={0
r E TZ

otherwise
(3.25)

Now that the basis functions are stated, the solution can be expanded to apply the

MoM.

3.2.2 MoM Formulation to Give a Matrix Equation

Expanding in terms of basis functions, the electric and magnetic surface current

densities are approximated by

N

J(r) = anfn(r),
n=1

N

M(r) = Z nf(r),

n=1

(3.26)

(3.27)

where N is the total number of edges. a, and 3, are now the solution coefficients to

be found. Galerkin's method of weighted residuals uses the same basis functions to

33



test the EFIE, Eq. (3.21), and the MFIE, Eq. (3.23). Applying this approximation

changes the EFIE to

N

dSfm(r) - (an'iT fs. dS'Gi(r, r') -fn(r') - $, fSn dS'[V' x Oj(r, r')] - fn(r'))
ism n=11{Sm dSfm(r) -E"C(r) : i= (3.28)

0 : i=2

for m = 1... N, where Sm includes T+ and T,;. Adding these basis functions allows

for the construction of the matrix equation,

Di -K1> q E (3.29)

D 2 _K 2

where D' and K' are submatrices defined as

D -=7 dSfm(r) - dS'Gi(r, r') -f,(r'), (3.30)
mJ sm J Sn

K j dSfm(r) - dS'[V' x Gi(r, r')] -f,(r'), (3.31)

where m, n = 1 ... N. The vector quantity solution is

= (ai,- . .. , aN, 1, - - - , ON , T(3.32)

and the vector quantity of initial conditions is

E fSm dSfm(r) - E ic(r) : m =1 ... N
qm = " (3.33)

0: m=N+1...2N

In the matrix equation (3.29), the matrix contains all of the information from the

Green's functions. Each element of D'm gives a correlation between the two edges

m and n. qE gives the initial conditions for the system, which is the incident electric

field at each edge. Assuming the Green's functions can be evaluated analytically, the
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solution # can be found, which has the coefficients needed to find the surface current

densities on each edge. The scattered electric field then can be calculated from the

surface current densities.

A similar matrix equation can be found for the MFIE,

zK , 2  q (3.34)K 2D

where Zi = /;j7j, and qH contains the incident magnetic field

H s S m(r) -H"C(r): m=1...N
mm ). (3.35)

0 :M = N + 1 . .. 2N

Currently, the EFIE and MFIE solve for the same coefficients due to an incident

electric or magnetic field. However, it may seem unclear how to deal with an inci-

dent electromagnetic field. This suggests to combine them into one matrix equation

that can solve for electromagnetic scattering, rather than solving for the electric and

magnetic fields separately. Assuming that identical solutions are found for the EFIE

and MFIE, the following equation is constructed

D1 +D2 -K - K2

[1+± 2 Di J D = q. (3.36)
K1 +K2 +

All that has been done is to put the EFIE in the top half of the matrix and the MFIE

in the bottom half. This is done so simply since the EFIE and MFIE have the same

solution. The initial conditions have the following form

fsmdSfm(r) -Eine(r) : m =1 ... N
q = . (3.37)

fsmN_ dSfm-N(r) -Hn(r) : m = N + 1 ... 2N

No more manipulation of the surface integral equations is needed [2]. Assuming

the Green's functions can be found, one can numerically integrate the surface integrals

needed to calculate each matrix element and the initial condition vector q. Chapter
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4 is dedicated to describing how such integrals are calculated. Eq. (3.36) can be

solved by inverting the matrix. Chapter 5 presents the Robin Hood method, which

is the algorithm used to solve Eq. (3.36). Once a and # are found, the electric

and magnetic fields can be generated from the surface current densities. Performing

similar manipulations that gave (3.18), one obtains the electric field

E (r) = -a j dS'Gj(r, r') -fn(r') - #n dS'[V' x GV(r, r')] - fn(r')

n=1n1~V

fs dSfm(r) -Einc(r) : i = and r E (3.38)
0 :i = 2 and r E V2

The magnetic field is given by

Hi(r) = -#n dS'G2 (r, r')- fn(r') + an dS'[V' x Gi(r, r')] - fn(r')

fSm dSfm(r) - Hinc(r) : = and r E V3.39)
i = 2 and r E V2

Now that the surface integral equations have been derived in matrix form and all of

the equations have been presented, the next chapter will describe the techniques used

to evaluate the Green's functions and surface integrals.
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Chapter 4

Evaluating Dyadic Green's

Functions and Surface Integrals

Recall from Eq. (3.11) that the Dyadic Green's function is the following

G(r, r') = ± + R = + Gi(r, r'). (4.1)
k?_ ikrR ___

It is clear to see that as r -+ r', or as R -+ 0, the scalar Green's function is singular.

Furthermore, the two gradients acting on it make it become even more singular. For

overlapping triangles, numerical integration would not give accurate results for the

matrix elements because of the singularities. A clever trick known as the singularity

subtraction method can be used to work around this dilemma. Hanninen, Taskinen,

and Sarvas [3] present this method, which will be described below.

4.1 Singularity Subtraction of Green's functions

The singularity subtraction method separates the scalar Green's function into a sin-

gular and smooth part. Taylor expanding the scalar Green's function allows for the

singular portion to be removed, which leaves the smooth Green's function to be nu-

merically integrated. The singular part of the Green's function must be integrated by

a closed form and then added back later to recover the full scalar Green's function.
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Taylor expanding gives

1 (iklt?+R9 1 kiR ikRGi(r, r') = -- - + iki R+ -. . (4.2)4 1 (q+1)! 47 R 2 6

The first two odd terms are the singular part. One might think only the 1/R term

needs to be removed, but the derivative of the Green's function is discontinuous at

R = 0. In principle, all of the odd terms would need to be removed. However, the

singularity only occurs as kjR -+ 0, so higher order odd terms would be negligible.

For this reason, only the two first odd terms are removed. If greater accuracy is

needed, more terms can be removed [23]. Subtracting the first two odd terms gives

the smooth Green's function

1 (eikiR -2 ?R)G1(r, r') =+ (4.3)
47 R 2

Now, this part of the Green's function can be solved using numerical integration.

Next, the two integrals needed for the matrix elements D' and Km will be

simplified in terms of the scalar Green's function. This will illustrate which integrals

are needed to determine the singular part of the Green's function. D*n has the

following integral

SmdSfm(r) - + ) j dS'Gi(r, r')fn(r')

= f ~ dSfm(r) -V dS'Gi(r, r')V' - fn(r')

+ dSfm(r) - dS'Gj(r,r')fn(r')
J Sm 

S S '
- dS[V - fm(r)] dS'Gi(r, r')V' - fn(r')

+j dSfn(r) - dS'Gi(rr')fn(r') (4.4)

The first step moves the V-operator into the integral and changes it to V' by inte-

gration by parts and applying Gauss' theorem. The same is done in the second step

to move the V-operator to act on fm.
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Similarly, Kmn can be manipulated by applying the following identity, Eq. (8.2.16b)

in [24],

V' x Gi(r, r') = [V'Gi(r, r')] x I = -[VGj(r, r')] x I, (4.5)

which allows K,, to become

Sm dSf..(r) - dS'[V' x Gi(r, r')] -fn(r')

- I dSfm(r) -f dS'[V'Gi(r, r')] x f.(r'). (4.6)
JSm J Sn

By looking at Eqs. (4.4) and (4.6), note that three types of integrals are needed.

Taylor expanding Gi in terms of kR, the following three integrals are needed to

evaluate the singular part of the Green's function

K1(fn) = j dS'RV' - f,(r'), (4.7)

Kf~a) dS' R f(r'), (4.8)

K'(fn) = dS(V'Rq) x f,(r'). (4.9)

The integrals are labelled this way to agree with Hanninen, Taskinen, and Sarvas [3].

Note that these integrals must be calculated for q = -1 and 1, or as many odd terms

are desired. The following integral will be calculated as well as an intermediate to

help compute Eq. (4.9)

Kq(fn) = dS'V'R . (4.10)

After these are found, the outer integrals in Eqs. (4.4) and (4.6) easily. Since very

small triangles are assumed, the outer integrand is evaluated at the center of the

triangle and integration is avoided completely.
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4.2 Calculating the Singular Part of Green's Func-

tions

The integrals (4.7), (4.8), and (4.9) can be evaluated in closed form with no approx-

imations. To do so, they will be reduced to the following line and surface integrals

I4 (A L)

IS(S)

= jRd',

= s RqdS',

(4.11)

(4.12)

which can be recursively generated. Using Eq. (3.25) allows for Kq to be expressed

as a constant times a surface integral

dS'RqV' - fn(r') = ± JTI dS'Rq = L I(T±).A Aq

To simplify K2, the quantity p is introduced,

p = r - fi(r')(fi(r') - (r - r')),

which has the following property involving a surface gradient

v',R 2 
- (q + 2)(r' - p)R4.

Using Gauss' theorem will allow this manipulation

(4.13)

(4.14)

(4.15)

(4.16)

where in is the unit vector pointing out of each side of the triangle and 0T+ refers to

the side of each triangle. Using Eqs. (4.14), (4.15), and (4.16), Kq can be simplified
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f dS'V'R qTk± 8 oTk
d1^nf(r )R ,



to become the following

K2(T±) = dS'R f,(r') = k f d S'R q[(r' - p) + (,p - P]

L

2A±

L
- 2A±

L2A+±

1 d S'V'Rq+2 + ( p P±) dS'R )
q+2 T

1 mii'i dl' R+2 + (P P±) T±dS' R)
q + 2 E T T

q +2 mij~ I +2(T;*) + (p - pi)Iq (T±) . (4.17)

To compute K4, the integral K' will first be found. If the gradient is broken up into

surface and normal components, then

K q(T*) = dS'V'R= dS'V'Rq + dS'V'R.
J Tk± JTk± JTk±

(4.18)

Eqs. (4.15) and (4.16) show how to reduce the surface gradient term into a line

integral. The normal gradient is simplified by the following

V' R = f(r')(fi(r') V)Rr') (r - r'))qR- 2 = -i(r')hqR- 2 , (4.19)

where h is defined as fi(r') - (r - r'). Putting these surface and normal gradient

definitions together solves for Kq in terms of line and surface integrals

(4.20)Kq(T+) = 1iiI(aTi) - hqfq- 2(T+).
3-
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Next, K' will be simplified in terms of a cross product with KI as follows

K4(T*) = dS'(V'Rq) x fa(r') = t 2A+ dSIV'R x (r' - p+)

= +2A* dSV'R x ((r' - r) + (r - p+))

L L
= 2Af dSV'R X (r' - r) -F (r - p±) x dS'V'R

2A± T± 2A+ fT,

=-Fi(r - p+) x dS'V'R= F 2A* (r - p+) x Kq(T±), (4.21)+2A± (r 2A±_

where V'Rq x (r' - r) = 0 was used to obtain the final expression.

4.2.1 Calculation of Line and Surface Integrals

Now, all of the needed integrals to calculate the singular Green's functions are ex-

pressed in terms of line and surface integrals. To evaluate these integrals, a few

quantities must be introduced. pi and P2 are the end points of the common edge

with a length of AL. r' is located on the line segment AL, which moves across the

whole segment as the integration variable. r is located on a completely different tri-

angle, which allows a correlation between all of the edges to be found. Typically, one

would integrate over every point r on the triangle and r' along the edge. However,

since the triangles are small, the center of the triangle and edge is used to evaluate the

integrands and integration can be completely avoided. A new cartesian coordinate

system is introduced with respect to the line segment as r - r' = s + t + h, as shown

in Fig. 4-1. s = (P2 - Pi)/|P2 - pil and points along the direction of the line. t is

perpendicular to s and is in the plane of the triangle. fi is perpendicular to both of

these, and therefore points out of the plane of the triangle towards r.
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Figure 4-1: The coordinate system with three orthogonal vectors: h, s, and t. r'

represents a point along the edge of the two triangles and r is on the triangles of the

other edge [3].

AA
t

The following are needed to compute I'i

t 2 + h2 = R- S2

s+ (P2 - r) - s

s (p1 - r)

R+ = }(s+)2 + R 2 = |r - p 2 |1

R- = (s-)2 + R = r - pi.

To find ILi, it is reexpressed as

1I1 (AL)= 1dl'= ds,
AL R Is- s 2 + R

where R2 > 0. In other words, r cannot be on the line L.

does occur, this integral will be cancelled out and not affect

Performing the integral gives

Fortunately, if this

the matrix elements.

I 1 (AL) = /2+Rds = In (+ + (s+)2 + R) - In s (s+)2 + RS).

(4.28)
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Figure 4-2: The solid angle dG depends on the angle a, the normal vector fn, and the
vector r - r'.

r7

dS'Q'a
do

r

Substituting in R+ and R- gives

I1i(AL) = ln R+ = In (. - (4.29)
-(R- +s-) (R+ _ s+)

Note that the denominator of either expression with the largest absolute value should

be used for the best numerical accuracy. To calculate all other odd ordered line

integrals, an upward recursion relationship will be derived later.

The lowest order surface integral needed is I 3 . Consider some flat surface S'

which will be integrated over with fi being the unit vector pointing out of the surface.

This integral is computed by considering the solid angle Q of S' seen from r. The

angle a is introduced, which is defined as cos(a) = h/R. Fig. 4-2 shows this scenario.

This allows the following manipulations

Q = fd = cos2a)dS' = hdS,' (4.30)

iJ3S) dS'-I = -0Q. (4.31)
fs, R3 h

Fortunately, h = 0 never causes a singularity because whenever LS3 is needed, another

factor of h appears in the numerator to cancel the denominator. To solve for the solid

angle of triangles, the Euler-Eriksson's formula is used [25]

1 = 2 arctan(y/x), (4.32)
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where the phase must be chosen as -7r < arctan(y/x) > 7r for x, y E R. Furthermore,

x 1+ai-a 2 +ai-a 3 +a 2 -a 3 , y = lai - (a 2 x a 3 )1, (4.33)

an = p - r n=1,2,3, (4.34)
|pn - rl

where Pi, P2, and p3 are the three vertices of the triangle. They are labelled in

positive rotation with respect to fi, which is defined as the following

(P2 - Pi) X (P3 - Pi)
n (P2 - pi) X (P3 - Pi)'|4.5

The other surface integrals will also be calculated in terms of a recursive formula,

which will be derived next.

The only integrals that are needed are of odd order q with q > -1 for the line

integrals and q > -3 for the surface integrals. An upward recursion formula can be

found that can find all of the odd terms from the integrals previously calculated in

closed form. To start, note that

Rq = R4~ 2R 2 = R- 2 (82 + r2), (4.36)

which allows IL to be written as

I(AL) / dj'R = R dl'R- 2 + d l R (4.37)
JA L JL JAL

The second term can be manipulated by using the following relationship

a
-R = qsR 2 , (4.38)
B~s

which allows integration by parts to be used to simplify the second term

dl's 2 Rq- 2 = [sR4] I d1'R = [sR4] I I. (4.39)
q 8 q AL
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From here, If can be solved, which gives the recursion relationship

Iq (A L) = q - 2 (AL) + q (s+(R+ - (4.40)
q+ q±+1

Now, the surface integral formula must be derived. To do so, a fairly complicated

manipulation must be done. Starting with the surface divergence,

7' - ((r - r')Rq) = (7' - (r - r')) RG+ (r - r') (7' -Rq)

= -2R + q(r - r') (r'- p)R -2

= -2Rq + q(r - r') - ((r' - r) + (r - p))Rq- 2

= -2R q - qR q + q(r - r') - (r - p))Rq~2

= -2Rq - qR q + qh2Rq- 2  (4.41)

Putting R on one side by itself and taking the appropriate surface integral gives

Iq(S)= dS'RG q 2  dS'R- 2 _ 2 ((r - r')R)dS'. (4.42)
fs q +2 fs q +2 f,

Applying Gauss' theorem to the last term allows it to be expressed as a line

integral, which was shown previously in Eq. (4.16). This gives

It(S) = qj 2 I- 2 (s) - q 2  rhi - (r - r')I (OSi). (4.43)

The recurisive formulae, Eqs. (4.40) and (4.43), in combination with Eqs. (4.29)

and (4.31) allow for the singular Green's function integrals to be calculated. Once

this is done, the smooth Green's function integrals can be taken using any numerical

integrator and added to singular part to obtain a well behaved Green's function. Once

this is done, all of the matrix elements giving the correlation between each triangle

edge can be calculated. From here, all that is needed to solve for electromangetic

scattering is to use an algorithm to solve the matrix equation.
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Chapter 5

Using the Robin Hood Method to

Solve Matrix Equations

In principle, once all of the matrix elements and the vector containing the incident

fields is computed, the solution should be simple to find. Inverting the matrix and

multiplying by the vector will give the desired solution. However, the matrix is

particularly large, which causes issues with memory allocation. These computational

constraints make it difficult to solve problems with geometries broken into more than

10,000 elements, since memory scales quadratically with the number of elements.

To analyze KATRIN's spectrometer, it must be broken up into about that many

elements. For this reason, the matrix must be inverted in a clever way that never

stores the whole matrix in memory.

The Robin Hood method (RH) is a matrix inversion algorithm, which was ini-

tially used to solve electrostatic problems. Recently, it has been expanded to solve

dielectric and magnetic materials problems. It is well suited for solving problems

with well-defined boundary conditions. It is particularly successful because it de-

creases the memory footprint to scale as N, rather than N 2 for typical approaches.

RH can be applied only to matrices that are diagonally dominant. Fortunately, most

Green's functions guaruntee this. The system also must be linear, which is implied

by Maxwell's equations. Furthermore, the solution must be unique.
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5.1 Robin Hood Derivation for Electrostatic Prob-

lems

The fundamental steps of RH are most clearly seen when solving electrostatic prob-

lems. It has simple boundary conditions, which allows the derivation to focus on the

details of RH, rather than other complications. Consider some metal conductor with

arbitrary shape. The goal is to calculate the charge distribution, given the constraints

on the potential 4. Gauss's law, V - E = p/eo, and applying E = V# gives Poisson's

electrostatic equation

V2 P_(5.1)
Eo

A Green's function is needed to generate the potential from the charges. Since

the surface is discretized, it makes sense to work with charge densities, which can

be specified on each element. To find the potential, the following Green's function is

introduced

#(r) = j dS'Gp(r, r')o(r'), (5.2)

where o- is the charge density, and a subscript P for Poisson is placed on the Green's

function to not confuse it with the scalar Green's function introduced in chapter 3.

This particular Green's function can be shown to have the following form

Gp(r, r') = 1 (5.3)
47rEo Ir - rj'|

Assuming infinitesimal discretization states that the charge density is constant over

each element. This allows the integral equation (5.2) to be expressed as a matrix

equation
N

#i= EIijo-, (5.4)
jwm

where qOi refers to the potential on the element i, oj refers to the charge density on
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element j, N is the total number of elements, and the matrix element Iij is

1 F dS-
I = dS r , (5.5)4Tmo Z S, Iri - rjl|

where ri refers to the center of the element i. The only other information needed to

apply RH is the boundary conditions. For a metal conductor, the potential at the

surface should be equal everywhere, which are the necessary boundary conditions.

This constrains the set of potentials #j. Since RH is designed to solve this equation,

it can be classified as a boundary element method (BEM).

Conceptually, RH does the following. A total charge Q is assumed to be spread

throughout the surface. An initial random charge distribution is assigned to each

element, which is expected to be incorrect. Next, the potential on each element is

calculated due to these incorrect charge distributions. This potential is compared to

the known potential distribution. The two elements with a potential furthest away

from the average potential are labelled as elements m and n. The charge is then

changed between the two elements to put them at the same potential. This process is

repeated iteratively until the potential is equal on every element within some specified

accuracy.

The change in charge density can be found from charge conservation

Sqt0 t = 0 = 6om Am + 6-n An (5.6)

An(#n - 4r)
m An(Imm - Inm) + Am(Inn - Imn)'

Arn(#m - On)
= An(Imm - Inm) + Am(Inn - Imn)'

since charge conservation requires the same amount of charge to be transerred between

elements and where Ai is the area of element i. The new potentials #'m and 0' can

then be found by the following equations

#' = G0m + Imrn6m + Imn6Con, (5.9)

' = # On + InnJn + InmJom. (5.10)
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Now the two potentials 0' and 0'5 are at the same value. Furthermore, the change

in charge propagates to adjacent elements, which ensures quick convergence.

A slightly different example of using RH is to solve for the charge density of each

element given a constant potential 0 which is supplied by an external source. In

this case, charge is not conserved and different amounts of charge can be distributed

between the two elements with a potential furthest away from 40 . The potentials #m

and #n are then set to be equal to 0 by distributing charges as follows [?]

jam (0 - Om)Inn - (#0 - On) Imn (5.11)
ImmInn - Imn nm

60 (#0 - #n)Imm - (0 - #m )Inm (5.12)
ImmInn - Imnlnm

The beauty in RH lies in the fact that it is very simple conceptually, yet still can

acheive accurate results with low memory costs. The algorithm's performance has

been well tested. The number of iterations increases logarithmically with the desired

accuracy. The number of iterations increases linearly and the convergence time in-

creases quadratically with the number of elements. The algorithm lends itself to be

used with parallel processors very effectively. Currently, RH has computed the most

accurate calculation on the capacitance for a cube [26].

5.2 Robin Hood Applied to Electromagnetic Scat-

tering Problems

Now that RH has been shown on the simplest example, it now can be used for solving

electromagnetic scattering problems. The previous RH formulation must be slightly

altered because the matrix equation contains complex quantities, rather than real

quantities. The complex quantities come from the electric field wave equation, Eq.

(3.6), and the Green's functions, Eq. (3.11). Furthermore, since there are electric and

magnetic coefficients, asj and #i, RH cannot allow the electric and magnetic current

densities to get switched between each other. In other words, only the ai's should

50



be switching with each other, and only the #3's should be moved between each other.

Note that RH has never been used to solve complex matrix equations previously.
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Chapter 6

Scattering by Spheres: Comparing

RH and Mie Scattering

Before applying RH with the derived surface integral equations to KATRIN's spectri-

ometer, it should be tested against a simpler system with an analytic solution. The

sphere is the simplest example of a 3D scatterer and is essentially the only with an

analytic solution, which is known as Mie scattering, or the Mie solution. For this

reason, the Mie solution must be studied to compare to the MoM formulation.

6.1 Implementation of Mie Scattering

Mie scattering is an exact solution of Maxwell's equations, which was found in 1908.

It gives various quantities for electromagnetic radiation scattering off of a spherically

symmetric particle. Mie scattering is the generalization of Rayleigh scattering, which

only applies for very small particles. This section describes the main results of the

analytic solution and shows how it was implemented to get accurate solutions. Once

the code for Mie scattering is confirmed, it can be used to compare to RH. Once these

two agree, the surface integral equations can be applied to more complex geometries.
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6.1.1 Mie Scattering Equations

Texts such as Kerker [27] and Bohren and Huffman [28] marvelously explain the

derivation of Mie scattering, so only the relevant results will be presented. When

one solves Maxwell's equations with the proper boundary conditions, the electric and

magnetic fields can be found for the incident and scattered regimes. These can be

compared to find the differential scattering cross section (.

Since the particle is a sphere, spherical coordinates are used, and the solutions to

Maxwell's equations are broken up unto a radial and angular component. The radial

solution gives Ricatti-Bessel functions (#b2(z), Xn(z), (n(z), and (n(z)). They have

the following identities

) = (-rz/2)i/2Jng (z) = Zjn(Z) (6.1)

Xn(z2)(z) ZYn(Z) (6.2)

(nZ) = #4n(z) - iXn(z) = zh0) (z) (6.3)

(a(z) = On(Z) + iXn(Z) = zhn)(z), (6.4)

where Jn(z) and Yn(z) are the Bessel function of the first and second kind, j,(z)

and yn (z) are the spherical Bessel functions of first and second kind, and h0 (z) and

hn (z) are the spherical Hankel function of the first and second kind.

Solving for the angular part of Maxwell's equations leads to the necessity of Leg-

endre polynomials: P 1'(x). Two coefficients (nr and -r) involving Legendre polyno-

mials are assigned for convenience

P(, (Cos 0)
rn (cos 0) = sin (6.5)

sin p

When considering the total solution for the scatterred part, which are broken into
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two polarization components, two more coefficients (an and bn) are convenient

O (x) ' (mX) - (67(M))' (X)
an = XV'M)-T~nM). X (6.7)

(X) 0(M) - mOn(mx) 0'(x)

b= n (6.8)
m(n(x)0n(mx) - On(mX)( (X)

where m is the complex refractive index of the spherical object, x = 27a/A, a is the

radius of the particle, and A is the wavelength of the incident light. These equations

are in the form given by Bohren and Huffman. Interestingly enough, Kerker has (s

instead of i's, but the difference produces the same results.

Assuming that the incident wave travels in the z direction and the electric field

is in the x direction, the scatterred electric field can be represented in terms of a 4

component and a 0 component. In the far field limit, the (1/r 2 ) term dies off, and

there are spherical waves falling off as (1/r). In other words,

i-kr
E0 = - Si sin4 (6.9)

kr
-ekr

E9 = S2 cos , (6.10)
kr

where Si and S2 are amplitude functions defined as the following

2n +1
Si = (anrn(cos 0) + bT(cos 0)) (6.11)

n1n(n +1)

Z 2n + 1
S2 = (1) (aTn(cos 0) + bnrr (cos 0)) (6.12)

n=1

From here, multiple quantities can be calculated. Q,ca is a scattering efficiency,

which is given by the following equation:

Qsca = E (2n + 1) ( ±an + l 2) (6.13)
n=1

This quantity is useful for comparison because multiple papers calculate it extensively.

Furthermore, the Mie solution gives scattering cross sections, which are broken
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into two polarizations

d--= A-S 2  
(6.14)dQ 47r2

d - A 2 IS212  
(6.15)

dQ 47w2

Now that all of the quantities needed for Mie scattering calculations are outlined,

a discussion will be presented on how to properly implement them.

6.1.2 Implementing and Confirming Mie Scattering

The inputs needed to characterize the problem are the real and imaginary components

of m, the particle radius a, the wavelength of the incident light A, and the point

where the fields are to evaluated. If cross sections are needed, then a scattering

angle instead of a point can be supplied. The first quantities that are calculated are

the needed Bessel functions. Since ROOT does not allow for Bessel functions with

complex arguments, all of them are recursively generated. This can be done using

upward or downward recursion relationships. A popular source of code is provided by

Wiscombe [29]. Furthermore, Du has extensive analysis on the stability and precision

of upward versus downward recursion. Typically upward recursion is quicker, but

less stable in certain cases. Du provides an equation which chooses the number of

terms needed that allows for upward recursion to be valid, which was employed. It

has problems when the imaginary component of mx is large, but this situation will

not be encountered [30].

Spherical Bessel functions are what is needed, so the recursion was initiated by
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the following

jo(z) = (6.16)
z

yo(z) = - COSZ (6.17)
z

sinz cosz (6.18)
z2  z
cosz sinz (6.19)

Yi(Z) = - n2 
(z6

Bn(z) = (2n - 1) B._i(z) - Bn- 2 (z), (6.20)
z

where Bn(z) represents both spherical Bessel functions jn(z) and yn(z). Spherical

Hankel functions of the first kind (h,1') were also calculated from jn(z) and yn(z).

Next, the coefficients rn(cosO) and T(cosO) were created in a manner described

by Matzler [31]. Once this was done, the coefficients an and bn could be calculated.

They are rewritten in terms of spherical bessel functions below

jn(mx)[xjn(x)]' - jn(x)[mxjn(mx)]'
a- (6.21)

j((mX)[Xn (X)]' - hn (x)[mxjn(mx)]'

jn n(mx)[xhn!l (x)]' - hnk (x)[mxjn (mx)]" (6.22)

where the prime denotes a derivative applied to the statement in brackets with respect

to the input of the Bessel function. Matzler gives recursion identities for all of these,

which makes them simple to calculate. Once all of this is implemented, the final step

was to compare calculated data to known values.

Three different approaches were considered for calculating all of the functions

needed. Wiscombe's approach has proved to be reliable and has been a standard

approach since 1979, but its implementation is rather complicated. Du provides a

more elegant approach which matches Wiscombe's results perfectly. It was simpler

because everything is calculated from the generated Bessel functions and the pa-

per also has results for Qm, S1, and S2. Matzler's implementation was even more

straightforward, but had no comparison with previous calculations. For this reason,

Matzler's approach was used and compared with Du's results. Table 6.1 compares the
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results obtained with Du's calculations, which all agree (except when the imaginary

component of mx is large, as previously mentioned).

6.2 Comparing MoM and RH to the Mie Solution

Now that the Mie scattering simulation is found to agree with previous Mie scattering

results, this can be used to test the surface integral formulation against a sphere. The

open-source software package VTK was used to model a sphere, which can be found

at www.vtk.org. This package allows for a sphere to be created and discretized into

triangles. Once this was done, the adjacent triangles must be found and put into

pairs. To do this, each triangle is compared and asks if the triangle has two points

in common. If this condition is met, then the two triangles are matched together

and an edge electrode can be created in KEMField, which is the electromagnetic field

simulator used by KATRIN.

Once the elements are created, the matrix containing Green's functions is con-

structed. Next, the incident fields must be specified. Since this method assumes

time-harmonic fields (F(r, t) = exp(-iwt)F(r), where F represents an electric or

magnetic field), a monochromatic plane wave must be specified. Linearly polarized

electromagnetic plane waves have the following form [32]

E(r, t) = Eoei(k-r-wt)fi, (6.23)

1 1-
B(r,t) = -Eoei(kr-st)(k x fn) = -k x E, (6.24)

C C

where k has a magnitude of the wavenumber k and points in the direction of the trav-

elling field. fi is the polarization vector. Assuming a propagation in the i direction,

a wave polarized in the :k direction, using H = -B, and removing the time depen-die

dence gives the specified incident fields to be used in the surface integral formulation
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Table 6.1: This compares the results for the developed Mie scattering code with the

work of Du, who matched the values of Wiscombe identically. Note that it only breaks

down when the imaginary component of mx is around 100. Besides those cases, the

data agrees with the accepted values within 2 significant digits.

Case I m x Qsca S1 (0) = S2 (0)
a (Du)
a (Chester)
b (Du)
b (Chester)
c (Du)
c (Chester)
d (Du)
d (Chester)
e (Du)
e (Chester)
f (Du)
f (Chester)
g (Du)
g (Chester)
h (Du)
h (Chester)
i (Du)
i (Chester)
j (Du)
j (Chester)
k (Du)
k (Chester)
1 (Du)
I (Chester)
m (Du)
m (Chester)

.1.

.75

.75

.75
.75
.75
.75
.75
.75

1.33 - 10-i
1.33 - 10- 5i
1.33 - 10-5i
1.33 - 10- 5 i

1.5 - i
1.5 - i

1.5 - i
1.5 - i
1.5 - i
1.5 - i
1.5 -i
1.5 - i

10 - 10t*
10 - 1i
10 - 10t
10 - lOi
10 - lO
10- 10i

.099

.099

.101

.101
10
10

1000
1000
100
100

10000
10000
.055
.055
.056
.056
100
100

10000
10000

1
1

100
100

10000
10000

7.41786 x 10~
7.41786 x 10-6
8.03354 x 10-6
8.03354 x 10-6

2.23226
2.23226
1.99791
2.00367
2.09659
2.09659
1.72386
1.72386

1.13169 x 10~5
1.13169 x 10-5
1.21631 x 10-5
1.21631 x 10~ 5

1.28370
1.28370
1.23657
NaN

2.04941
2.04941
1.83679
NaN

1.79539
NaN

1.81756 x 10-8 - 1.65423 x 10- 4 i
1.81756 x 10-8 - 1.65423 x 10- 4i
2.04875 x 10-8 - 1.75642 x 10- 4i
2.04875 x 10-8 - 1.75642 x 10-4i

55.8066 - 9.75810i
55.8066 - 9.75810i

499477 - 13365i
499477 - 13365i

5253.3 - 124.319'

5253.3 - 124.319i

5.01022 x 107 - 153582i
5.01022 x 107 - 153582i

7.67526 x 10-5 + 8.34388 x 10- 5 i

7.67526 x 10- 5 + 8.34388 x 10~ 5Z
8.10238 x 10-5 + 8.80725 x 10- 5i
8.10238 x 10- 5 + 8.80725 x 10- 5 i

5243.75 - 293.417i
5243.75 - 293.417i

5.01092 x 107 - 175340i
NaN

0.633248 + 0.417931i
0.633248 + 0.417931i

5177.81 - 26.3381i
NaN

5.01479 x 107 - 120600'
NaN
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in region 1

E(r)inc = Eoei(r z)kx, (6.25)

H(r) nc = Eoei(r.2)kg. (6.26)

Now Eq. (3.37) can be calculated to find q, which provide the initial conditions for the

surface integral formulation. From here, RH can be used to solve for the scattered

electric and magnetic fields. Unfortunately, results have not been obtained yet to

confirm the Mie solution, which will continue to be pursued over the summer.
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Chapter 7

Future Work and Conclusions

7.1 Applying the MoM and RH to the Main Spec-

trometer

Once the Mie solution is confirmed, KATRIN's main spectrometer is the next geome-

try to be analyzed. Fortunately, this geometry is already discretized into triangles in

KEMField. However, it is not easy to figure out which triangles are adjacent in this

framework. For this reason, Prof. Formaggio developed a new basis function, instead

of RWG basis functions. These allow for each triangle face to represent an element

which is expanded upon, rather than each edge. Before diving into simulation of the

main spectrometer, Penning traps will be discussed in more detail.

7.1.1 Simulating Penning Traps

It was discovered that background signals have been introduced due to secondary

electrons. Simulations were introduced to study and characterize this background

using Kassiopeia, the software package used throughout KATRIN. It provides a wide

variety of field calculations. From here, Monte Carlo simulations of measurements

can be simulated and compared with experimental data. These simulations were

performed to confirm the hypotheses of how and where Penning traps were being

created. They also confirmed that background production via photons occurs.
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From the start, it was known that MAC-E-Filters caused Penning traps. It was

first hypothesized that it was created in the center of the spectrometers. Asymetric

magnetic field measurements proved that the background must come from the ends

of the spectrometers. Much careful thought was put into the ground electrodes on

the ends of the spectrometers to avoid Penning traps. However, this unexpectedly

increased the background rate. From here, it was concluded that the trap must be

outside the ground electrode ring. A new electrode was designed with no end ring to

exactly adjust to the curvature of the magnetic field lines [4].

It was surprising to realize that Penning traps smaller than 100 cm 3 could produce

background rates up to many kHz. To understand why this positive feedback effect

occurred from secondary electrons, simulations of the pre-spectrometer were investi-

gated. It turned out that positive ions produced did not cause secondary electrons to

get caught in the Penning trap. The ions would go straight to the negative electrode.

Secondary electrons produced would then follow the magnetic field lines straight to

the ground electrode and away from the Penning trap.

The only other conclusion was that photons must produce this effect. It is intuitive

that photons should be unaffected by the electromagnetic fields and will travel out in

every direction. This allows for electrons all over to get created, where some can make

it back to the Penning trap. Simulations confirmed this effect. Fig. 7.1.1 depicts the

difference between the positive ions and the photons.

It was further shown through simulations that the Penning traps did not pro-

duce falsely detected secondary electrons, since they were located in positions where

emitted electrons would never reach the detector. However, photons are bouncing

all around on the inside of the spectrometer, which can then ionize and create sec-

ondary electrons. It was hypothesized and proven that these electrons were creating

the background signal [4].

Simulations were able to show that the Penning trap causes ions and photons

to be created, which then produce secondary electrons. However, only the photons

create secondary electrons that re-enter the trap as well as electrons that can reach

the detector. Now that simulations were able to determine how the Penning traps
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Figure 7-1: The left image shows how positive ions create electrons that do not re-
enter the Penning trap. The right hand side shows the contrary effect [4].

were creating background, removing the traps was investigated.

7.1.2 Electron Cyclotron Resonance Simulations

A technique called electron cyclotron resonance (ECR) was introduced to destroy the

Penning traps. ECR applies an RF field pulse tuned to the cyclotron frequency of

the trapped electrons. Fortunately, the cyclotron energy is approximately constant

over the considered energy interval. The field is created by using a high frequency

function generator, which is then amplified and coupled to electrodes to create an

electric field. Fig. 7.1.2 shows the ECR setup.

The electric field creates stochastic heating, which disrupts the trap and can re-

lease the electron in less than 10 ms. If the trap is destroyed quickly, then photons

never get created. Other trap removal mechanisms were designed, but ECR was cho-

sen mainly for its speed. The electrons are sped up to over 100 keV, which causes the

cyclotron radius to become larger than the main spectrometer. The detector cannot
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Figure 7-2: The setup for ECR is displayed below. The frequency of the pulse gener-
ated must be tuned to be near the cyclotron frequency of the electrons in the Penning
trap to ensure that they are excited [5].
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collect data when the RF pulse is on. Fortunately, it takes about 10 minutes to build

up secondary electrons, so the pulse is turned on and off every 10 minutes. [4].

Testing this with the pre-spectrometer showed that the background rate decreased

by a half by introducing the ECR method [5]. However, the main spectrometer is

larger than the pre-spectrometer and more complicated to model. While knowledge

gained from simulating the pre-spectrometer has been applied to using ECR with

the main spectrometer, no simulations have been performed to confirm and further

explore this method. The derived surface integral formulation can be used to simlulate

the main spectrometer.

Physical data was obtained for the radio-frequency response of the main spectrom-

eter. This can be used to compare to the new simulation of the main spectrometer.

If the obtained measurements and the simulation agree, then the simulation can be

used to find Penning traps. Over the summer, further analysis will be performed

to see if ECR removes Penning traps in the main spectrometer. Ideally, simulation

results will confirm that ECR can be applied to the main spectrometer to remove

background data.

7.2 Conclusions

This thesis addresses the importance of removing Penning traps from KATRIN's

spectrometers, which has been an issue in previous neutrino mass measurement ex-

periments. For this reason, an extensive simulation of the spectrometer's response to

electromagnetic pulses is studied. To do so, numerical methods must be introduced.

Surface integral formulations were motivated, which allows for only the surface to be

discretized to save memory. The desired surface integral equations were derived from

Maxwell's equations, which resulted in introducing Green's functions to describe the

generation of fields from currents. This direct derivation allows for very accurate re-

sults, since no approximations have been made to find the surface integral equations.

Once the surface integral equations were found, the method of moments was de-

rived, which approximates the surface into discretized triangles and allows for a basis
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function to be introduced. RWG basis functions were used for analyzing the sphere,

however a face oriented basis was later developed for use with KATRIN. The MoM

supplies a matrix equation, which was then solved using the Robin Hood method.

This allows for the matrix to be inverted without ever being fully stored in memory.

This allows for accurate solutions to be found for highly discretized systems.

This formulation can numerically solve electromagnetic scattering off of any ge-

ometry specified with a constant refractive index. This makes its application very

broad, including antenna performance, plasmonic systems, and finding Penning traps

in KATRIN's spectrometer. This surface integral formulation is truly a powerful

numerical method.
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