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Abstract

We perform an exclusive search for the Higgs boson to gamma-gamma decay via
vector boson fusion. We utilize the characteristic features of vector boson fusion,
such as the di-jet Ar7 and mass, as well as the di-photon PT, to search for the Higgs
boson to gamma-gamma decay via the vector boson fusion process. The theoretical
production cross section limit is analyzed over the accepted possible mass range for the
Higgs boson, 120-130 GeV/c 2 . We are able to reduce the theoretical production cross
section limit to ~ 6asM in this range by using a boosted decision tree. Comparison
to the cut based approach used by the CMS Collaboration shows no improvement in
using a BDT as opposed to a cut based approach.
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Chapter 1

Introduction

The work presented in this paper is a report of an exclusive search for the Higgs

boson created via the vector boson fusion process and decaying into two photons

(gamma-gamma decay). We will detail the motivation for such a search, as well as

the detector and tools used, and the specifics of the vector boson fusion process and

the gamma gamma decay.

1.1 Motivation

In the mid-twentieth century the standard model of particle physics was developed.

This theory, which explains the interactions of particles under the influence of the

strong, weak, and electromagnetic interactions, has predicted, over the last four

decades, the discovery of many different particles [1-3]. Although these particles

have all been correctly predicted by the theory, it also predicts one last particle,

which is yet to be discovered, called the Higgs boson. This particle is an excitation of

a hypothesized field, called the Higgs field. This field's interactions with all particles

are thought to give rise to the property of mass; as such, gluons and photons do not

interact with the Higgs field, since they are massless.

However, despite the expectation that the particle should be detectable [4-9], the

fact remains that the Higgs boson, a key part of the theory, has yet to be discovered.

Although the mass of the particle is a free parameter of the standard model, it has
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been indirectly and directly ruled out of many different mass ranges over the past

decade. A direct search at the Large Electron-Positron Collider (LEP) ruled out

all masses below 114.4 GeV at 95% confidence level [10]. The Tevatron collider

at Fermilab excluded the Higgs boson from the mass range 162-166 GeV at 95%

confidence level [11]. Individual measurements also indirectly excluded all masses

above 158 GeV at 95% confidence level [12]. Recently, the CMS and ATLAS groups

at the LHC have reported excesses of events near 125 GeV [13,14], and the CMS

group has excluded all masses above 127 GeV at 95% confidence, further motivating

the search for the Higgs boson in the vicinity of this excess. The range of available

masses for the Higgs boson is narrowing, and now stands at -115-127 GeV. It is one

of the pressing issues in particle physics to resolve whether or not the Higgs boson

exists. Using the highest-energy particle collider ever developed, the Large Hadron

Collider (LHC) at CERN, physicists hope to be able to use new data to draw a

conclusion.

1.2 The LHC and the compact muon solenoid de-

tector

The Large Hadron Collider is the most advanced particle accelerator in the world,

and is located in Geneva, Switzerland. The LHC is a proton-proton collider, and as it

stands now is capable of producing collisions with a center of mass energy of 7 TeV.

These collisions, being extremely energetic, produce a spray of different particles,

which must be recorded and analyzed by detectors. There are four main detectors

at the LHC: A Toroidal LHC Apparatus (ATLAS), Compact Muon Solenoid (CMS),

LHC-beauty (LHCb), and A Large Ion Collider Experiment (ALICE). I will focus on

the Compact Muon Solenoid (CMS) detector, shown in Fig. 1-1.

The CMS detector is comprised of four main sections: the particle tracker, the

electromagnetic calorimeter, the hadronic calorimeter, and the muon chambers. The

particle tracker is a silicon tracker, and serves to track particles paths through the

12
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Figure 1-1: 3-dimensional view of the CMS detector and its different components.
Certain statistics about the detector are also shown in the upper right corner of the
diagram.

tracker's area. This allows one to distinguish between particles which may leave sim-

ilar signatures in other areas of the detector. For example, both an electron and a

photon may deposit energy in the electromagnetic calorimeter, but the photon will

not leave a track, as opposed the the electrons track which, due to its charge, will be

curved. The electromagnetic calorimeter is designed to capture particles with elec-

tromagnetic energy, and to record their energy. The hadronic calorimeter, similarly,

is designed to capture and record the energy of any hadrons. Finally, the compact

muon solenoid, and its accompanying muon chambers, is designed to confirm the exis-

tence of any muons, and to measure their momentum. Because muons are so massive

(compared to electrons) they are not easily stopped by electromagnetic fields, and

will penetrate through most materials. The CMS detector uses a superconducting

solenoid to create a large magnetic field of 4 Tesla and the muon chambers allow

the path of the muon to traced and the resulting momentum to be determined. A

diagram of a slice of the detector is shown in Fig. 1-2.
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Figure 1-2: Diagram of a slice of the CMS detector, showing different particles paths through the detectors many layers. Of

particular interest are the paths of the photon and hadrons.
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1.3 Event reconstruction

In the LHC, with so many protons colliding every second, and the products of their

collisions decaying and so on, a major difficulty of running the LHC is reconstructing

what particles have been created and where. To determine what particles were in-

volved in a collision, final products' paths and intersections must be calculated, and

from this their parent particle's energy and momentum calculated. In this manner an

event can be reconstructed, and the paths of each of the particles determined. Various

algorithms are used to determine how to define a parent particle and its properties,

allowing a comprehensive description of the interactions. Every component of the

detector is therefore crucial to reconstructing an event and its cascade of particles.

1.4 Production cross section limits

Some particles are produced with such frequency and at such distinct mass ranges

that their signals can be easily identifiable. Some particles, like the J/ meson, have

such strong signals that they are used for detector calibration. However, the Higgs

boson is not such a particle; analysis has shown that if it exists, it is not produced with

nearly enough frequency to easily identify its signal. Thus, in addition to attempting

to refine the background and signal efficiencies to allow a discovery of the particle, we

must also prepare ourselves for the possibility that the particle does not exist. To this

end, a technique called limit setting is used. In limit setting, the amount of signal such

that the particle would be detectable is determined. This amount is then compared to

the predicted amount of signal, based on the standard model. If the required amount

of signal drops below this predicted value, and analysis fails to discover the Higgs

boson at this mass, then we conclude that the Higgs boson cannot exist at this mass.

As the Higgs boson is excluded from certain mass ranges, the search for the Higgs

boson can be narrowed to focus on the most promising remaining areas.
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1.5 Vector boson fusion process

As an exclusive search, we will only concern our search with one specific production

and decay mode of the Higgs boson. Here it is the vector boson fusion production

mechanism, and the gamma-gamma decay mechanism that we will focus on. Vector

boson fusion is a process by which two vector bosons, the W or Z bosons, fuse together

to create the Higgs boson. The W or Z bosons mediate the weak interaction as two

quarks pass by each other. Each quark radiates a W or Z boson, which come together

to create a Higgs boson. The process is shown using a Feynman diagram in Fig.

1-3. [15]

Z/W

Z/W
q

Figure 1-3: Feynman diagram of the vector boson fusion process creating a Higgs
boson (H0). Note that the two quarks are traveling in opposite directions, as they
would be in a proton-proton collision at the LHC.

The most defining characteristic of the vector boson fusion process is the large

angle between the two quarks involved in the process; this is known as a large rapid-

ity gap of the jets. When protons collide, and two quarks interact, the quarks are

deflected slightly as they radiate the vector bosons. However, they are not deflected

much, as they are traveling with large momentum. Because they are deflected, how-

ever, the detector is able to detect them. The quarks leave a defining narrow cone

of radiation due to a process known as hadronization. Since other particles, such

as quark pairs or gluons may have caused this narrow cone, the detected particle is

simply referred to as jet. The deflection angle is called ry, but is not simply measured

in degrees of radians with respect to the beam path. Instead, the variable pseudora-
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pidity is used, which is zero if the particle travels perpendicular to the beam path,

and infinity if the particle travels along the beam path, with a pseudorapidity of 1

being roughly equal to 400 from the beam path (see Fig. 1-4). [16]

n=0

0=900 88

0=450

0=10o,*11l2.44
91 =0*--+0=*

Figure 1-4: Diagram displaying the relation between pseudorapidity and angle from
beam.

1.6 Higgs to gamma-gamma decay

Although the Higgs boson can decay in a variety of different processes, we will focus

on one specific decay mechanism: gamma-gamma. As the name implies, in Higgs

to gamma-gamma decay the Higgs boson decays into two photons. The photons'

energies can be measured by the detector, and then reconstructed to calculate the

mass of Higgs boson from which they were produced. If the Higgs boson was easily

discoverable, a histogram of the reconstructed mass of all two photon events would

produce a distinguishable bump at the actual mass of the Higgs boson.

The probability of the Higgs boson to decay into a given final state is called the

branching fraction. The branching fraction is a function of the mass of the Higgs,

and is shown in Fig. 1-5. Although choosing to focus on the gamma-gamma decay

mechanism offers some advantages, a large disadvantage is the low branching fraction

for Higgs to gamma-gamma, which is on the order of 0.002, and is close to 0 for

many mass ranges. However, the branching fraction is only half of the picture; the

17



background processes are of equal importance. In low mass ranges, the background

for all processes producing two photons is quite low, and thus the small branching

fraction is made up for by the lack of background (relative to other processes). This

makes the Higgs to gamma-gamma channel an ideal channel for the discovery of a

low-mass Higgs boson.

( 1

0~

CO

0 -

10-3

lo-2

rot

160 180 200

MH [GeV]

Figure 1-5: Diagram displaying the branching fraction of the Higgs boson for Higgs
masses between 100 and 200 GeV. Note the gamma-gamma line in pink, which is
maximized around 120 GeV.
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Chapter 2

Methods

As mentioned above, if the Higgs boson were easily discoverable, it would be seen

in a histogram of reconstructed mass of two photons (or reconstructed mass of other

products of the Higgs boson). However, the lack of a distinguishable signal does not

actually rule out the existence of the Higgs boson. In order to conclusively exclude

the Higgs boson from a certain mass range, a technique called limit setting is used.

This technique determines the largest possible signal that would be undetectable,

and then compares that with the known amount of signal which should have been

received. If it is discovered that the largest possible undetectable signal is larger than

the observed amount of signal, then if no signal is observed we can conclude that the

Higgs boson does not exist at that mass (or in that mass range).

2.1 Selection criteria

We have used the terms "signal" and "background", but have failed to define them

explicitly. Loosely, a signal event is one with a Higgs boson, and a background event

is one without a Higgs boson. However, this criteria alone would produce a huge

number of background events. In order to perform some preliminary refinement of

our overall dataset, we introduce various selection criteria. Of interest here are those

selection criteria that concern photons or jets, since our analysis is most concerned

with these two particles. The main selection criteria we establish for both particles
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utilizes mainly transverse momentum and pseudorapidity.

For photons, we restrict our analysis to photons with transverse momentum greater

than 20 GeV/c. This restriction causes a much more smooth distribution of back-

ground events, since low pT photons are likely to create much more variability in the

reconstructed di-photon mass distribution. By forcing both photons to have a PT > 20

GeV/c, the possible error in the reconstructed mass distribution is minimized. We

also restrict our analysis to photons with a maximum pseudorapidity of 2.5. This

restriction is a physical one, since the acceptance of the detector for photons has

|7| < 2.5. The calculations of the properties of photons outside this range are not re-

liable enough, and so the error on all properties is minimized by this restriction. The

variable R9 is a measure of the spread of the deposition of a photon's electromagnetic

energy. It is calculated by dividing the energy deposited in one central cell by the

energy deposited in the 3x3 cell grid centered on the cell. A restriction of R9 > 0.93

ensures that the photons selected are well-defined, and decreases the occurrences of

falsely identified photons.

For jets, similar criteria are used. Restricting our analysis to jets with PT > 30

GeV/c, we are able to remove variability from the reconstructed mass of the jets. We

also require 1l71 < 5.0. Similar to the photon requirement, this criteria is imposed

by physical restriction on our ability to obtain reliable data past this requirement.

These selection criteria allow a clear determination of photons and jets and allow us

to now develop clear definitions of signal and background. A background event is

any event that passes all of the selection criteria, but is not the vector boson fusion

process creating a Higgs boson that decays into two photons. A signal event is any

event that passes all of the selection criteria and is the vector boson fusion process

creating a Higgs boson that decays into two photons.

2.2 Production cross section limits

In order to set a limit on the production cross section for Higgs to gamma-gamma

decay, we first use a combination of Monte Carlo simulations and real data to deter-
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mine what a signal would look like, and what the background would look like in our

mass region of interest. POWHEG and PYTHIA are used to model and generate

the signal and background events, with real data being found to agree well with the

background simulation. [17-19]

The method used to calculate limits is called the modified frequentist approach.

[20,21] We use fits to model the background and signal distributions of reconstructed

di-photon mass using two functions: The background is modeled by a falling expo-

nential (Eq. 2.1), and the signal is modeled by a Lorentzian (Eq. 2.2), where a and

y are constants.

Mback C-" (2.1)

*- 1
Msig ; 2 + - (2.2)

S7r x2 +,-2

These forms are chosen for their simplicity and accuracy in describing the dis-

tributions; models such as polynomials and multiple exponential forms may yield

technically better fits, but are more prone to overfitting. Additionally, the models

in Eq. 2.1 and Eq. 2.2 are very distinct. Eq. 2.1 could never describe the signal

distribution well, and visa versa.

Once the distributions of the reconstructed di-photon mass are adequately mod-

eled, they can be used to generate pseudo-experiments. If we want to determine what

the distribution of reconstructed di-photon mass woula look like with a certain ratio

of signal events to background events, then we turn the distributions into probability

density functions by normalizing. Then they are no longer simply models; they pro-

vide us with the probability of a background event producing a certain value for the

reconstructed di-photon mass.

Using the background distributions, we generate a histogram of reconstructed di-

photon mass with no signal. We then need to quantify the success of the two possible

models we have: signal and background. Although we know that there is no signal in

the histogram, any method we generate will inevitably have false positives, and we

need to account for this. We establish the form shown in Eq. 2.3 for the background
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model and the form shown in Eq. 2.4 for the signal model, where C are adjustable

constants.

fb(x) = Cie-C2X (2.3)

04 1
fs+b(x) = fb(x) +C3 C4 (2.4)-7r (X - C5)2 + C4

Proceeding to fit the histogram with both the functional forms, we generate a statistic

called q, where L signifies the likelihood of the fit in relation to the histogram, defined

by

q = -2log ((fs+b)) (2.5)

The likelihood of the fit in relation to the histogram is calculated by taking the value

of the fit function at a bin to be the mean of a poisson distribution, and calculating

the value of the distribution at the histogram bin value. This gives the likelihood

that the bin was generated from the fit, or phrased differently, the likelihood that

the fit function correctly describes the histogram. The likelihood for every bin is

multiplied together to give the likelihood that the fit function describes the histogram.

Mathematically,

C(f) = f Pois(h; f(b)) = 1 h! , (2.6)
all bins all bins

where b is the bin center location, and h is the value of the bin.

The statistic q gives a rough idea of how likely the signal fit is to find an im-

provement over the background fit. Notice that if the signal and background fits are

identical, then q = 0, and we do not expect q < 0 since the f8 +b has extra parameters

to adjust, and part of it has the same form as the fb. With no signal, we call the

calculated statistic qo, and generate a number of pseudo-experiments such that we

can have a comprehensive distribution of the possible values of qa. The previous pro-

cedure is repeated again, except that now a signal of strength p, is introduced into the

previously background-only pseudo-experiments. The calculated statistic is now la-

belled q,, and again a number of pseudo-experiments are used to create a distribution.

A typical result is shown in Fig. 2-1.
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Figure 2-1: Histograms of qo and q,, with qo in blue and q, in red. The value of q, is
also shown graphically.

The distribution of qO is then used to calculate the value of q,. This statistic is

the value for which we are very certain (3c-) that the q calculated does not come from

a pseudo-experiment with signal. The equation is shown in Eq. 2.7, where fo is the

distribution of qo.

0.997 = j fo(q) dq (2.7)

Although we know that values of q > q, are unlikely to have come from an

experiment without a signal, we would like to quantify how sure we are that an

event chosen with a q > q is generated from a pseudo-experiment with a signal. To

accomplish this, we calculate the probabilities, based on the distribution generated,

that a pseudo-experiment has q > q, given that it was generated with and without

signal, as shown in Eq. 2.8 and Eq. 2.9.

pit = P(q > q,|fy) (2.8)

po = P(q > q,|fo) (2.9)

Notice that po will be, by definition, 0.003. Defining the confidence limit statistic
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CL, as

CL, = ,y (2.10)
PO

we then see that CL, gives a measure of how sure we are that an experiment selected

at random with q > q, is from a pseudo-experiment with a signal. We are more

interested, however, in the signal strength that would give a confidence limit of 0.95.

We call this value p95%CL. Since CL, is a function of the signal strength, y must be

varied in order to determine what value of p will yield a CL, of 0.95. By calculating

p95%CL many times, we can generate a distribution for p95%CL. This allows a range

to be determined for the possible values of p95%CL. When quoting a production cross

section limit, the value of p95%CL is called the theoretical or expected limit. It is

quoted in either units of Standard Model cross sections (osAI) (hence the phrase

production cross section limit) or number of signal events. We calculate the standard

model cross sections from the accepted cross section values and branching ratios in

reference [22]. In the case of Standard Model cross sections, if the expected limit is

< lo-su, we can exclude the Higgs boson from this mass range.

2.3 Cut-based selection

Setting a production cross section limit allows us to establish how strong our signal

must be to be detected or rule out the Higgs boson's existence from a certain mass

region. Ideally the production cross section limit should be as low as possible, since

we need the standard model signal production to be greater than the 2o- limit in

order to rule out that mass region. There are multiple techniques that can be used

to increase sensitivity. The first is the simplest, and is called variable cut analysis.

Up until this point we have only examined one of the properties about the particles

available to us: reconstructed di-photon mass. However, there are many other prop-

erties, both about photons and about other particles such as jets, electrons, muons,

and more. We can use these other variables, and take advantage of their specific

distributions, in order to improve the amount of signal in relation to background.
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Specifically, the metric used is
S ,(2.11)

vS +B

where S and B stand for the amount of signal and background events, respectively.

We are looking to maximize this value, since the greater this value is, the better our

signal will be in relation to the error on the total amount of signal and background.

This will yield the most distinguishable signal, and thus will yield the lowest value of

the theoretical limit. The task then is to determine what variables are most distinct

between the signal and background events. Specifically we need to determine which

variables are connected to whether or not the reconstructed di-photon mass came

from a signal or a background event.

Once we establish a variable which we think is important, we then perform the cut

analysis. Here, we scan over the range of the variable. At each point, we only look at

events which have values of the variable which are greater or less than the value at

the point (greater or less than is chosen for each scan, not each point). By removing

some points, we see what effect that has on the ratio from Eq. 2.11. We then have

a qualitative description of how our restriction of the dataset, or our cut, affects our

signal and background. In particular, we know where to place our cut in order to

get the best signal, according to our metric. Cut analysis can be performed on any

number of variables, although most variables will be uncorrelated to the improvement

of Eq. 2.11.

2.4 Multivariate selection

Cut-based analysis is not the only way to refine a production cross section limit and

decrease the amount of data required to make a conclusion about the existence of the

Higgs boson in a given mass range. There are many different, more complicated meth-

ods which are used to take multiple variables and their correlations into account at a

time. These methods are grouped under the term "multivariate analysis", although

they can be very different. The two types of methods we will focus on are called

Boosted Decision Trees (BDT) and Multilayer Perceptrons (MLP). In each of these
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methods, the method is provided with a set of variables that we have decided are

important in distinguishing signal from background. The methods are also provided

with a sample dataset, called the training sample. Each method analyzes the train-

ing sample to determine how the variables are related, and how it can use them to

distinguish between signal and background events. Unlike cut analysis, multivariate

analyses will do more than make cuts. Each method has a different way of utilizing

the information given.

In a boosted decision tree, each input variable is analyzed separately. A cut

analysis is performed on each on in order to maximize S/v/S +B. The variable cut

that provides the greatest improvement is then chosen as the first branching point of a

decision tree. The process is repeated multiple times to create a tree that allows event

to be sorted into signal and background nodes. An example of a boosted decision tree

is shown in Fig. 2-2. [23] In order to account for the variability present in the training

sample, many different trees are created, to create a "forest" of decision trees. On an

event by event basis, the decision as to whether an event is a signal or background

event is then made by a majority vote of the trees.

Root
node

x>cl xi<cl

xj>c2 xj<c2 xj>c3 xj<c3

Sxk>c4 xk~c4

Figure 2-2: Schematic of boosted decision tree. The data begins at the root node
and is sorted by successive cuts on the most significant variable until it is suitably
separated. Here, xi, xj, and xk are different input variables.
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In a multilayer perceptron, cuts on each input variable turn the initial input

variables into groups containing one or more of the variables, with various weights

associated with each variable-to-group relation. These groups are then cut and trans-

formed in the same manner into more groups. The final output of the multilayer

perceptron is a function of groups' values being combined at the end, and each step

in the middle is called a hidden layer. An example of a multilayer perceptron is shown

in Fig. 2-3. [23]

Input Layer Hidden Layer Output Layer

Figure 2-3: Schematic of a multilayer perceptron with one hidden layer. The data
begins at the input layer, and is sorted into one or more hidden layers, and then
sorted into the output layer. Here, x1, x 2 , X3 , and x 4 are different input variables.

The output of every method is called a response function, shown in Fig. 2-4. A

response function, given the values for various selected variables, outputs a value.

Finally we again perform a cut analysis; instead of the cut being on the value of a

variable, it is on the value of the response function.
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TMVA response for classifier: BDT
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Figure 2-4: Example of a response function created using a boosted decision
Note how the signal and background distributions are quite distinct, allowing
better distinction of signal for background.
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Chapter 3

Results

The results section will focus on two main topics. The first will discuss the process

of setting a production cross section limit for Higgs to gamma-gamma in the vector

boson fusion production channel from 4.76 fb- of data. The second will focus on

optimization, as well as display its advantages over other possible methods.

3.1 Initial expected limit

Using Monte Carlo simulations, background and signal events were generated for

Higgs masses between 120 GeV and 130 GeV. The simulation data was modeled, and

the fit functions were used to generate pseudo-experiments. The results of the limit

setting procedure are shown in Fig. 3-1.

3.2 CMS cut analysis

In February 2012, the CMS Collaboration published an analysis of the data they had

gathered up to that point. In the analysis, they performed a cut analysis to refine the

vector boson fusion dataset, and obtained a signal efficiency of 0.3636 and background

rejection of 0.9949. A diagram of their result is shown in Fig. 3-2. [24]
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Figure 3-1: Initial limit on production cross section. There has been no refinement
or restriction of data. The median, la, and 2a limits are shown in black, green, and
yellow, respectively.
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3.3 Boosted decision tree theoretical limit

The first variable chosen was the difference in jet pseudorapidity, AJ. As previously

discussed, one defining characteristic of vector boson fusion is the high pseudorapidity

of the two jets created in the process. However, one of the jets will necessarily have

positive pseudorapidity, while the other will have negative pseudorapidity. Thus,

taking the difference in the two jet pseudorapidities will yield a large value for signal

events. In contrast, the background events are not inclined to produce jets in any

specific range of pseudorapidities. Further, the background events have no tendencies

to yield jets with positive or negative pseudorapidities. Therefore, the difference in

pseudorapidity for background events is clustered around 0, and then falls off to either

side. The distributions of Ayj for signal and background are shown in Fig. 3-3.

The next variable chosen was the difference in jet azimuthal angle, A4j. In vector

boson fusion the three products are a Higgs and two jets. Since the Higgs is much

more massive than the jets, it causes the jets to be ejected at similar azimuthal

angles in order to conserve momentum. Therefore, the signal distribution of A5 is

clustered around 0. For background events, there is not a massive particle created in

general) to cause the clustering of the two jets. In fact, they are inclined to be ejected

back-to-back, since most background comes from hard scattering events. Thus, the

background distribution of A#j is clustered around ±r. The distributions of Aoj for

signal and background are shown in Fig. 3-3.

The next variable chosen was the product of jet pseudorapidities, 77 - 77. As

mentioned previously, the jets created in vector boson fusion commonly enter the

front and back regions of the detector. One will have a positive pseudorapidity and

the other a negative one. Thus, the signal distribution of gy - 77 will be negative.

Meanwhile, background events have no such bias towards the forward and backward

regions of the detector. Additionally, they are not characteristically large, so their

product is likely be small. The background distribution of qj - qj will therefore be

tightly symmetric about 0. The distributions of qj -7 1 for signal and background are

shown in Fig. 3-3.
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Input variable: diJetdelEta
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Figure 3-3: Distributions of various variables for signal and background. Left to
right, top to bottom: difference in jet pseudorapidity (Ayj), difference in jet azimuthal
angle (A#k), product of jet pseudorapidity (5 -77j), reconstructed di-photon transverse
momentum (py,), reconstructed di-jet mass (mjj).
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The next variable chosen was the reconstructed di-photon transverse momentum,

PTYrY. The detector cannot detect momentum along the beam path, and thus the

measured momentum is always in the transverse direction. In Higgs to gamma-

gamma, the two photons are created by the decay of the Higgs boson. Since the

Higgs boson has a large mass, its momentum is quite large, and so the reconstructed

di-photon transverse momentum is correspondingly large. Unlike is signal events,

in background events the two photons do not have to be created by any particle in

particular. Thus, there is less constraint on their allowed momentum; specifically,

their reconstructed transverse momentum is characteristically lower than that for the

signal events. [25] The distributions of PTyy for signal and background are shown in

Fig. 3-3.

The final variable chosen was the reconstructed di-jet mass, m 3 . As mentioned

above, the Higgs boson's large mass gives it correspondingly large momentum. Given

that the di-jet momentum and Higgs boson momentum must sum to 0 transverse

momentum, the di-jet reconstructed mass must also be large. For the background

events, there is no such restriction. Thus, in general the values of di-jet reconstructed

mass are much smaller for background events than they are for signal events. The

distributions of m 3 for signal and background are shown in Fig. 3-3.

With our important variables selected, we analyzed multiple MVAs to determine

the most effective one. A plot of background rejection vs. signal efficiency, shown

in Fig. 3-4, was was used to determine the most effective one. Given the success of

the BDT method both at rejecting background and accepting signal, it was chosen

as the most successful method. The BDT analysis produced a response function with

the distributions shown in Fig. 3-5. A cut placed at 0.05 yielded the best separation

of signal and background events: 94.0% of background events were rejected, while

71.5% of signal events were accepted. In contrast, using a MLP instead of a BDT

yielded a background rejection of 83.84% and signal acceptance of 78.1%. Although

slight improvement was shown in signal efficiency with a MLP over a BDT, the more

than two-fold increase in background events made the BDT method the clearly better

choice. With the BDT applied to the dataset, the production cross section limit was

33



Background rejection versus Signal efficiency
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recalculated, with a great improvement. The result is shown in Fig. 3-6.
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TMVA response for classifier: BDT

0 0.1 0.2 0.3 0.4 0.5 0.6
BDT response

Figure 3-5: BDT response function for both signal and background. The background
distribution is shown in red and the signal in blue.
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Figure 3-6: Production cross section limit after BDT refinement. The median, 1-, and
2- limits are shown in black, green, and yellow, respectively. Notice the improvement
from the result in Fig. 3-1.
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Chapter 4

Conclusions

4.1 Discussion of results

The Higgs boson is the last remaining piece of the standard model yet to be discovered.

Many physicists have come to take for granted that one day the particle will be

discovered. However, it still eludes our searches; new techniques must developed and

more data gathered in order to finally establish its existence. Our search for the Higgs

boson aimed to search for the Higgs boson in the current mass range of interest, 120-

130 GeV/c 2 . A limit on production cross section was set to provide a benchmark,

shown in Fig. 3-1. The simulated data was refined using a boosted decision tree to

maximize S//S + B, and the BDT was used to improve the production cross section

limit. The result is shown in Fig. 3-6, and the lowest limit set was ~ 6UsM. This is

not low enough to exclude the Higgs boson from any of the masses we analyzed.

This boosted decision tree analysis was also compared to the cut analysis done by

the CMS Collaboration. Their results were compared to the results from the BDT,

and found to be better. The cut analysis performed utilized more variables than the

BDT analysis, and had better signal efficiency and background rejection. This allowed

the development of a production cross section of ~ 4USM, a clear improvement over

our limit developed using a BDT.

Our inability to display an improvement over the cut analysis is unfortunate; there

are two main reasons for this. The first reason is the larger set of variables used in the
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CMS analysis. The larger number of variables used allowed an improved distinction

of signal and background over the BDT analysis, as shown in Fig. 3-4. However,

the more important reason is that most of the variables used were uncorrelated. The

more correlated the variables used are, the worse a cut analysis will be in relation

to more complex methods. Correlations only serve to decrease the effectiveness of

a cut approach. Thus, the cut analysis was a very good method to refine the data,

and the BDT could have only generated a small improvement, if any, over the cut

analysis if the same variables had been used. It is also worth noting that the jet and

photon selection used by the CMS Collaboration was more sophisticated than the jet

and photon selection in our analysis. All these factors contributed to our inability to

improve the production cross section limit calculated by the CMS Collaboration.

4.2 Future work

In the future, more variables could be utilized in the multivariate analysis. Variables

like the Zeppenfeld variable

Z = g - (4.1)

and

AYt = 7o - 77y , (4.2)

as well as others, would only help to improve the background rejection and signal

efficiency. This would improve the limit, hopefully enough to exclude the Higgs

boson at various masses and help to further restrict our search to smaller and smaller

mass ranges.
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