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Abstract
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Chapter 1

Introduction

Gauge/gravity duality [3, 4, 5] has in recent years become one of the most important

tools for investigating the behavior of strongly coupled field theories and various

classes of non-Fermi liquids that elude description by other methods. In such models,

the properties of a d-dimensional conformal field theory (CFT) with a global U(1)

symmetry are examined through the properties of its d + 1-dimensional AdS gravity

dual (for examples, see [6], [7]). The classic example of a theory to which this method

has been applied is .A = 4 super-Yang-Mills (SYM) theory in d = 4 [8], but many

other theories can be studied. Thus, a wide range of systems can be evaluated in

this manner, from the quark-gluon plasma created in highly relativistic collisions at

accelerators like the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron

Collider (LHC) to the low temperature behavior of metals and other substances.

Our understanding of low temperature metals and liquids has been dominated by

Landau's Fermi liquid theory for over fifty years. This theory describes the behavior

of interacting fermion systems in terms of quasiparticle excitations about the Fermi

surface. In doing so, it provides simple ways to understand the low temperature

properties of the system, and has been extremely successful in describing the behavior

of most observed metallic states, from liquid 3He to heavy fermions in rare earth

compounds.

However, in recent times a number of metallic compounds have been discovered

whose low-temperature thermodynamic properties differ significantly from the pre-
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dictions of Fermi liquid theory [9, 10]. For example, an understanding of the strange

metal phase of the high Tc cuprates is considered essential for a description of the

mechanism for high Tc superconductivity, but has resisted all theoretical attempts

for more than twenty years. While photoemission probes on the strange metal phase

do reveal a Fermi surface, anomalous effects such as the "marginal Fermi liquid" [11]

form of the spectral function and linear-T resistivity seem to suggest that the quasi-

particle description no longer applies to its low energy excitations near the Fermi

surface. Other so-called non-Fermi liquids exhibit similar (and sometimes different)

anomalous behavior.

Thus, to describe these systems, a low energy theory exhibiting a Fermi surface but

no quasiparticles is necessary [12, 13]. AdS/CFT techniques have recently been used

to describe a type of non-Fermi liquid [14, 15] which contain low energy excitations

governed by a nontrivial infrared (IR) fixed point with nonanalytic scaling in the

time direction. The behavior of the low energy excitations about the Fermi surface is

governed by the scaling dimension v of the fermionic operator in the IR fixed point.

For v > } there exists a Fermi surface with well-defined quasiparticles but a scaling2

energy generally different from that of the Fermi liquid; for V < . there is a Fermi2

surface without quasiparticles. For v = j, one finds the marginal Fermi liquid, which

can be used to describe the strange metal phase of cuprates.

In this paper, we evaluate the effect on the boundary theory of zero sound excita-

tions in the gravitational bulk. Zero sound waves, originally predicted by Landau in

1957 [16, 17], are propagating distortions of the Fermi surface at low temperatures.

They are distinct from normal sound waves because they do not represent changes

in density, but rather oscillations of the entire Fermi surface which change its shape

but not its size and are restored by attractive interactions between the quasiparticles.

Since such modes are present in fermionic theories with quite general interactions,

they should be present in the fermion species inhabiting the bulk representation of

most AdS/CFT theories. Thus, the duals of these modes in their boundary theories

may describe interesting features of non-Fermi liquids or other theories of importance.

We shall explicitly calculate the quantity corresponding to zero sound fluctuations in
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the bulk in the simplest case of constant AO24 fermionic interaction, and show that a

pole results in the correlation functions of gauge fields living on the boundary. This

shall be done by summing over "ladder diagrams" in the bulk theory. We shall argue

that similar results will occur in theories with more complex interactions.

The organization of the paper is as follows. In Chapter 2, we will discuss the

Landau theory of Fermi liquids, and derive results for zero sound excitations in flat

space. In Chapter 3, we will outline the AdS/CFT correspondence, and describe the

geometry of the charged black hole that inhabits its bulk. In Chapter 4, we will

compute the I-loop contribution to the boundary gauge correlator, drawing from the

discussion in [1]. Finally, in Chapter 5, we will evaluate the sum of the ladder dia-

grams, and derive the expression governing the corresponding poles of the boundary

Green's function.
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Chapter 2

Fermi Liquids and Zero Sound

Waves

A system of interacting spin j Fermi particles is described by Landau's theory of the

Fermi liquid[2]. The theory is based on the assumption that the excitation spectrum

of the liquid follows the same principles as that of a Fermi gas. That is, in the ground

state of a Fermi gas at T = 0, the particles occupy all quantum states with momentum

less than or equal to some limiting value PF, the Fermi momentum, with

PF (3r2N 1 3  (2.1)

The occupied states then form the Fermi sphere, with the boundary between occupied

and unoccupied states referred to as the Fermi surface. Excited states are formed

by moving one or more particles from their positions below the Fermi surface to

open states above it - this creates a state which differs from the ground state by the

presence of "particles" with p > PF and "holes" with p < PF- The particles have

energy with respect to the Fermi surface of

2 2
P 2m V( -P (2.2)
2m 2m
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with v = pF/m is the "Fermi velocity," and the holes have energy

2 2

2m 2m

The theory of the Fermi liquid states that even in interacting fermionic systems this

basic principle still holds: the low energy excitations of the liquid still take the form

of particles and holes which appear and disappear in pairs - these basic units of

excitation are referred to as quasiparticles. Further, the location of the Fermi surface

depends on the fermion density in the same way as in the Fermi gas. However, due

to interactions between the fermions, the excitation spectrum of a Fermi liquid can

be quite complicated, leading to complex behaviors such as superfluidity. Since the

fermions can interact with each other, the quasiparticles are not fully stable states, but

can decay into other quasiparticles of lower energy. The probability of decay increases

with the energy of the excitation. Thus, it makes sense to talk about elementary

excitations of quasiparticle states only very near the Fermi surface. However, near

the surface, there can often exist long-lived, stable, propagating states.

The propagation of sound waves in a Fermi liquid has several interesting features

not found in Bose liquids. In particular, at ordinary temperatures sound behaves

simply according to ordinary hydrodynamics, with attenuation proportional to the

time r between collisions. As the temperature decreases, the collision time increases as

T-2, and when r reaches the order of w- 1, where w is the frequency of the wave, sound

ceases to propagate at all. However, Landau predicted that when the temperature is

lowered still further sound will eventually be able to propagate again, albeit generally

with a different velocity. This phenomenon is known as "zero sound."

Zero sound waves cannot be described as simple waves of compression and rar-

efaction - they are not disturbances of density as are ordinary sound waves. Instead,

they represent oscillating distortions of the Fermi surface that change its shape but

not its size (see Figure 2-1). We will now derive the equations governing zero sound.

The low temperature energy distribution of the quasiparticles in momentum space

14



Figure 2-1: (Exaggerated) possible oscillations of the Fermi surface in a) ordinary
and b) zero sound waves.

can be represented perturbatively as

e(p, a) = E(0)(p, a) + 6E(p, a), (2.4)

where E(0) is the equilibrium energy and a refers to the spin state of the particle. We

can write oE in terms of generalized interactions with the surrounding particles as

follows

6E(p, a) = f f(p a; p', a')Jn(p', a') d' (2.5)
at(21r)

3 (25

where f(p, a; p', a') is a function corresponding to the interaction between two quasi-

particles with states (p, a) and (p', a'), and n = n(O) + n is the number density of the

system. f is in essence the interaction potential, and characterizes the long-distance

interactions of the particles.

To study the propagation of sound, we now turn to the Boltzmann transport

equation

iBn
+ V,-n - VE - Vpn - V, = I(n) (2.6)

where I(n) is the collision integral. Note that this can also be written in the perhaps
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more familiar form

On p On
-+V,n - - + Vn - F = - , (2.7)

Ot M at IColl'

with F the force field experienced by the particles, since Vc = V( = and

F = -V,.c. Now let us assume that our disturbance takes the form of a propagating

wave, so

on oc ei(k-r-wt) (2.8)

In the low temperature limit, the time between collisions r is very large. Since the

collision integral I(n) is of order 6n/r, it is negligible compared to g in this limit.

Since from equation 2.5 we have

V.eZ fV,.n' ,dp (2.9)
fVn/(27r) 3 1 29

equation 2.6 takes the form

(v -k - w)6n - (v - k) '(r )3 dp = 0 (2.10)

using V E = v and V n = 4nV 9 ~~ i v. If we now define v such that
P P 86P 81E

on = v, (2.11)

this becomes

(v -k -w)v + (v -k) ( F(x)vE' = 0 (2.12)

where F = fr since () ~ -6(c - p), with p the chemical potential. Then, taking

k to be the polar axis and denoting the velocity of wave propagation as ii = w/k,
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equation 2.12 becomes

(s - cosO)v(9, 0, -) = cos F(X)(V', ' d (2.13)

with s = ii/v. This equation illustrates the essential difference between ordinary and

zero sound: in the latter, the Fermi surface does not remain spherical, but acquires

some changing angular dependence. In ordinary sound, of course, the radius of the

Fermi sphere may grow or shrink, and its center may oscillate about p = 0, but its

shape remains the same. In zero sound, the distortion of the Fermi surface is governed

by the function v in equation 2.13.

It is interesting to consider the simplest case, of interactions described by a con-

stant function F(X) = (D. From equation 2.13 we see that

cosO
V = const - cos9 e(k-'rwt). (2.14)

S - coso

Substituting this ansatz back into 2.13 and integrating, we find an equation for the

propagation speed of the zero sound waves:

-ln - = - (2.15)
2 s-1

We see that if s is real (i.e., the waves are undamped), then s must be larger than

1. This means that ii > v, for any 1. Also, the speed of ordinary sound in a weakly

non-ideal Fermi gas is given by u ~ ', so the speed of zero sound waves can exceed

that of normal sound by a factor of vf/5 or more.

2.1 Calculation of zero sound pole in flat space via

ladder diagrams

In this section, we will show how the equations of zero sound can be derived from

quantum field theory in the case of A@ 4 interactions between the fermions, ie, for a

17



system with the action

S = d4x (i($ - m)0 + Ai# #)) (2.16)

The one-particle Green's function for the quasiparticles is given by

G(x, x') = -i < T(4(x)?f (x')) >, (2.17)

where 4 represents the wavefunction of the quasiparticles in the Heisenberg represen-

tation and is given by

7P(r, t) = ~=apei[P''-'(P)t (2.18)

with ap the appropriate creation operator. Assuming the system is homogeneous and

isotropic, we can substitute 2.18 into 2.17 to obtain the free-field correlator, noting

that in the ground state all levels with IpI < po are occupied and those with Ipl > po

are empty.

G(0 )(x) = _ 3 e " 1 - nP for t>0, (2.19)

V 1 -n, fort<0,

where

( 1 for Ipj < po, (2.20)
0 for |p| > po.

We can then move to momentum space as follows

G(x - x') = G(p, w)eP-Tr')-w(t-t')] (4 (2.21)I ~(27r)4 (.1
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where

G(O)(p, w) = -i {9(|P| - PO) j eiw-*O)(p)Itdt - O(po - |p|) j e--'i(O)(P)Itdt}

(2.22)

with 0 the Heaviside step function. Now, integrals of the form fO* es*t dt can be

expressed via the limit

lim 0 eisnttdt = i lim 1 (2.23)
6-++0 0 6-+0 S + i6

Thus, we find that

GC )(p, ) - +(Ii' - PO) O(Po - IPI
W - E(O)(p) + 6 ± - E(0)(p) - io (2.24)

w - (0)(p) + i6sgn(|p| - po)'

The change of sign in the denominator comes from the time-ordering of the @bs, and

characterizes the way the poles are integrated over in the Feynman propagator. Near

the Fermi surface, the G-function can then be expressed to lowest order as

G(p, w) = a(2.25)
w - v(|p| - po) + i6sgn(|p| - po)

where Ipl ~ po, w ~ 0, we take the limit J -+ 0, and a is a positive constant. v is the

Fermi velocity, the velocity of excitations at the Fermi surface, and is equal to po/m*,

where m* is the effective mass of the quasiparticles.

Zero sound modes can be seen by examining the properties of the effective 4-vertex

F(PI, p2; pi + k, p 2 - k) =F(pi, p 2; k), where the momentum transfer k = (w, k) is

a small 4-vector with Iki < po, |wl < p. The three possible I-loop diagrams for

this vertex are shown in Figure 2-2. While diagrams (a) and (b) are well-behaved for

k = 0, the poles of the two Green's functions converge in diagram (c). As we shall see,

this causes singularities to appear in F. If we denote by F() the set of all diagrams

which do not contain singularities in the form of G(q)G(q + k) lines, we can see that
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pI q p,+k P, q+P2-Pr-k p 1+k p, q+k pk

P2 p1 +p:-q p2k prk q p2 P1 +k q pI

a) b) c)

Figure 2-2: 1-loop diagrams making up the vertex r.

the exact F is obtained by summing over the "ladder diagrams" shown in Figure 2-3.

To first order, this sum can be computed by approximating F(1) = A. We will now

++

Figure 2-3: Series of ladder diagrams making up F.

perform this calculation. The 1-loop

to the vertex of

diagram (c) of Figure 2-2 gives a contribution

(2.26)F(P, P2; k) = -iA2 (2r) tr[G(q + k)G(q)]

Each additional loop adds a factor of the form

E= -iAJ (2 dtr[G(q + k)G(q)], (2.27)

so the sum of all ladder diagrams can be expressed as the sum of a geometric series

(including the tree level diagram):

F(p1, p2; k) =
1 - E(k)

(2.28)

To evaluate the integral in E, we note that since the arguments of the G-functions are
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very close together, we can divide the integral into a part due to the pole structure of

the integrand and a part due to a "distant" integration in which k is set to 0. Basic

contour integration tells us that the poles will only contribute if they are located on

opposite sides of the real axis. From Equation 2.25, we see that this requires that

|ql < po, Iq + k| > po or |qf > po, Iq + kI < po. Since k is small, this implies that

|ql ~ po and c ~ 0, with q = (c, q). Thus, G(q)G(q + k) can be replaced by a term

proportional to 6(e)J(jq - po) in the "near" integral. The integral can be carried out

by using Cauchy's integral formula and multiplying by v - k to represent the range

of q values for which the poles lie on opposite sides of the real axis, with v a vector

directed along q and equal to v in absolute value. This gives us the result

f ddq [2iri 2 vk
= -iA ](() 2 v - k J(E) 6 (Iql - po) + G(q)2 , (2.29)

(27r) . v w -v- k

where the G(q) 2 term represents the "distant" integration. From (2.25) we see that

the distant integration is just 0, and so (2.28) gives us

1 2 d-2 "' (2.30)v(2r)-1 f df2v (30

Note that if we define

n-k
_(pi) = (Pi P2; k) (2.31)

w - vn - k

where n is a unit vector directed along pi, Equation 2.30 can be rearranged as

a2 d-2 v k
F(p, p2; k) = A + AL'(p, p 2 ; k) Pr - d-kk

v(22)d w-vk (2.32)

(w - vn -k)v(p1 ) = An - k a2 px7- J dQv(q).

This equation is identical to Equation 2.12 with F = 2a 2pd2 . Thus, we have demon-

strated that the system experiences zero sound waves with a constant interaction

form factor.
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If we carry out the integration further, we find that

A A

1 A "20 2 f dQ VK 1- A a2-p2 f dQ iolinicoso
v(2ir)--1 J --.__ W-VIliICOsO (2.33)

A

1 - A a2r1 3-3 fE d(cos)" 4 -csO

Specializing to d = 4, we find that

A
1 - AV' 2 fhij dx (2.34)

This implies that I = 0 for 0 < w < vjkI, since the integral in the denominator

diverges. For w > viki, the stable undamped modes are given by the singularities of

this expression, that is, by the zeroes of the denominator. In this domain, the integral

has solution

/ s+1dx = -2 + sn , with s (2.35)
f-1 s - X S - 1 vjk|

Then, defining <} = A p, the singularities of the expression are the solutions to the

equation

<D' s±+1
1 -- (-2 + sn )= 0 (2.36)

2 s 1-

s s +1 1
-In- - 1 = . (2.37)
2 s- 1 <b

This is exactly Equation 2.15! Thus, we have derived the equation governing the

propagation speed of the zero sound waves, in terms of A and po, and the free fermion

propagator.
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Chapter 3

AdS/CFT and Black Hole

Geometry

The AdS/CFT correspondence[18] is one of the most significant developments of

string theory, and, indeed, all of modern physics. It refers to a set of dualities between

gauge theories without gravity and gravity theories of one greater dimension, and is

thus sometimes referred to as the gauge-gravity correspondence. The original and

most famous example, conjectured by Maldacena in 1997[3], is the exact equivalence

between type IIB string theory compactified on AdS5 x S' space and four-dimensional

N = 4 supersymmetric Yang-Mills theory (here, AdS 5 refers to five-dimensional anti-

de Sitter space, and S' denotes a five-sphere). Remarkably, these two apparently very

different theories have exactly matching symmetry groups. More, in the low energy

limit of the gravity side, which corresponds to the large N and gyyN limit on the

gauge theory side, the equivalence between the two theories has been well tested. It

is more difficult to prove the full, general equivalence, but it is thought to be true as

well.

One of the most interesting aspects of AdS/CFT is its relation to the holo-

graphic principle. The holographic principle originated in the work of Bekenstein

and Hawking[19], which showed that the entropy of a black hole is proportional to its

surface area via S = A/4G, where G is Newton's constant. Since a black hole rep-

resents the state of highest entropy for a given volume (adding information-carrying
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matter to a region of space will eventually turn it into a black hole, but adding matter

to a black hole will just make it bigger), this implies that the maximum information

encoded by a region of space in any theory that contains gravity is proportional to its

surface area rather than its volume - a tremendously non-intuitive result. This leads

to the holographic principle, proposed by 't Hooft and formalized by Susskind[20],

which states that any volume of space can be described by an encoding on its bound-

ary. The AdS/CFT correspondence is an explicit realization of this principle: a

d+1-dimensional bulk gravity theory is equivalent to a d-dimensional gauge theory

living on its boundary.

3.1 Black Hole Geometry

In the presence of a finite density state of the boundary CFTd, the gravity side

acquires a charged black hole sitting in d+1-dimensional anti-de Sitter spacetime.

Essentially, this is because a finite chemical potential p in the gauge theory imposes

an energy cutoff, which corresponds to a cutoff on the radial direction in the gravity

theory. Following [1], we consider the case of a non-zero chemical potential for a U(1)

global symmetry. The conserved current J,, of the boundary global U(1) is dual to a

bulk U(1) gauge field Am, under which the black hole is charged. This results in a

non-zero classical background for the electrostatic potential At(r).

The action for the vector field Am in AdSd+1 geometry can be written:

d d(d - 1) R 2

S = d+, g _ R2 2 F"y 31

with the black hole metric

ds 2  -gttdt 2 + grrdr2 + giidz 2

r2 R 2 dr 2  (3.2)
= R-hdt 2 +d2 r2 h
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with

Q2 M
h=l+r2-2 rd

r d-2 r (3-3)
At y 1 -2

where Q is the charge of the black hole and M is its mass.

From the resulting equations of motion, one can consider small fluctuations in

the gauge field 6Ao = ao and calculate their corresponding effect on the boundary

current Jo in the form of a bulk-to-boundary propagator KA(r; 2). This is necessary

to explicitly compute the boundary current correlator which occupies our discussion.

However, as we will see, the explicit form of KA is not necessary for the examination

of the zero sound modes, and so we will not derive it here. For the interested reader,

it is calculated in detail in [1].
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Chapter 4

1-loop diagram

We wish to compute the contribution to the correlation function of the time compo-

nent of the gauge field from a series of loop diagrams similar to those described in

Chapter 2. In general, loop diagrams in black hole geometries are quite tricky. This

is because of issues integrating over the volume of the black hole, as well as dealing

with diagrams such as that in figure 4-1, where a loop is cut in half by the horizon.

A standard strategy is to compute the correlation function in Euclidean signature,

Figure 4-1: Diagrams in which the fermion loop goes into the horizon, corresponding
to the decay of particles falling into the black hole[l].

which avoids these problems, and then obtain the Lorentzian expression via analytic

continuation:

GR (An) =GE(ifl = 0 i6, n) (4.1)

27



However, this requires a precise understanding of the Euclidean correlation function,

which we do not have. Therefore, modelling our work off of [1], we will adopt a hybrid

approach: write down an integral expression for GE(iQl, N) in Euclidean signature,

and then perform analytic continuation 4.1 to Lorentzian signature inside the integral.

In this section, we will perform this calculation at the I-loop level, which is very similar

to the conductivity calculation performed in [1]. In the next, we will analyze the sum

of 2-loop and higher ladder diagrams, and extract from them the zero sound pole.

The 1-loop diagram we wish to evaluate is shown in Figure 4-2. We will neglect

DE(k+)

A(K) A(-K)

r1  DE(k) 2

Figure 4-2: I-loop contribution to the sum of ladder diagrams making up the zero
sound excitations.

a number of complications (spinor indices, gauge-graviton mixing, etc) which are

unnecessary for the spirit of the calculation. Also, we will omit some details which

can be found in [1].

We consider a spinor field living in the spacetime of the charged black hole of

(3.2). It is governed by the action

S - - J dd lVY(pFMDM~p _ m *~) (4.2)

where = 9tfi and

1
Du = am + WabM pb - iqAM. (4-3)

4

Here M, N, ... are curved space indices, and a, b, ... and underlined indices refer to the
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tangent space. That is,

r= pa ef pr = ,g7L(4.4)

with ea the frame field basis vectors. We consider a small perturbation in the time

component of the gauge field, ao = 6Ao. The correction to the Dirac action from this

perturbation is given by

6S[ao, Vb] = -i dd+lx--x,7(-iqaort)(

= -q J d+1x /Zyao%@

This can be written in momentum space as

6s = -T2 J (2 d-1 d 1 /drvT-g(r; iom + iQ,, k + r.)B(r; if2, K)'O (r; iwm, k)

(4.6)

where the kernel B contains the dependence of gauge fluctuations as

B(r; in ) = -qao(r; iG , n)LPt (4.7)

In general, if the gauge field under discussion is the field with which the black hole

is charged, we must also consider its coupling to the graviton field. This will slightly

change the form of B by adding in terms related to the metric fluctuation h". However,

this difference is not particularly significant for the characteristics we are interested

in (and not necessary for the extraction of zero sound), so we will assume that we are

calculating the correlator for a current distinct from the charge of the black hole.
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This means that the term in the effective action corresponding to Figure 4-2 is

[ = ddd1 k dgd1 Jd d 2 \

x tr (DE(rl, r2 ; iWm + I7l, k + r)B(r2; Qi, .)DE (r2, r1 ; Win, n)B(ri; - Q, -n))

(4.8)

We can now express B in terms of the momentum space Euclidean boundary-to-bulk

propagator, using

ao(r; i~j, K) = KA(r; if2, r)Ao(iQi, r), (4.9)

where AO is the source of the boundary conserved current and KA the propagator

that takes the current from the boundary to a point on the interior. Thus, we can

define B in a way that explicitly separates its dependence on the boundary current:

B(r; i, .) = Q(r; iQi, n)Ao(iQj, r.) (4.10)

where Q is a new operator given by

Q(r; i~z, n) = -qKA(r;iQK)F t  (4.11)

We can extract the correlation function from the effective action (4.8) by taking two

functional derivatives with respect to A0 . We find:

GE(iQ, K) = -T 1 ()d dr V 9(1)dr2 9(r2)

x tr [DE(r1, r 2; iQ -± iwn, k ± K)Q(ri; iQi, K)DE(r2 , r1 ; iw, k)Q(r 2; -iQl, -)]

(4.12)

where DE (rl, r 2; iw, k) is the Euclidean spinor propagator and with KA the boundary-

to-bulk propagator for the gauge field and Ft the 0-th Dirac gamma matrix. We can
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perform the Euclidean frequency sum using the spectral representation of the Eu-

clidean Green's function,

/ dw p(ri, r2 ; w, k)
DE (r1, r2; iwm, k) = W .~ ,2 , (4.13)

(27r) zum, - w

where p(ri, r 2 ; w, k) is the bulk-to-bulk spectral density. As discussed in great detail

in [1], p(ri, r 2 ; w, k) can be written in terms of the boundary theory spectral density

pB(W, k) as

p(ri, r2 ; w, k) = @(ri; w, k)pB(w, k)Vk(r 2; w, k) (4.14)

where O(r) is the unique normalizable spinor wavefunction solution to the Dirac

equation in the Lorentzian black hole geometry. This result is non-trivial and we will

not derive it here, but it is extremely important because it means that the bulk-to-

bulk spectral density factorizes in the radial direction. This allows us to separate its

radial degree of freedom from those in the boundary, and to perform calculations on

them separately. As we will see, this makes it possible to compute the loop diagrams

we want as though we were performing calculations in the boundary space, with

effective vertices determined by integrals over the radial direction.

Substituting 4.13 into 4.12, we can perform the Matsubara frequency summation

using the identity

T 1 1 f(w1) - f(w2) (4.15)
i(Wm + I) - W1 iWm W2 Wi - iQ, - W2

with

f(W) = (4.16)

Here the Matsubara summation refers to summing over values of Wm = 2 with m

a half integer for fermions and an integer for bosons (of course, in our discussions we

are speaking of fermions) and # = -. Similarly, Q, = f. Also, the upper sign is
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used for fermions and the lower for bosons.

This leads to the expression for the Green's function, using , = (iQj, r.),

GE (K) / dwi dW2  
dd- 1 k f(w) - f(w2)

2 2- J(2)d-1 w Q - w 2  (4.17)

x tr [pB(wi, k + n)A(wi, 72, , k)pB(w2, k)A(w2, W1, -k)]

where

A(wi,w 2 ,iji,,k) = drVj/ /(r; wi, k + n)Q(r; i42, n)#(r;w2, k) (4.18)

Here we have absorbed the entire radial dependence into the effective vertex A, al-

lowing us to express the Green's function purely in terms of the boundary spectral

function PB.

We can then obtain the retarded Green function for the currents by analytically

continuing GE(iQl, K) to Lorentzian signature with

GR(, n) = GE(iQl + iC, K) (4.19)

Suppressing the ic in the function arguments, we find

GR(Q )~ / dwdW2  dd-k f(w1) - f(w2)
2w 2w I(2)d-1 w1 - Q -W2 - iC (4.20)

x tr [pB(wi, k + K)A(wi,w 27 Q, K, k)PB(w 27 k)A(w27 W1, , -K, k)]

where both A(wi, w2 , ±iQ,, K, k) analytically continue to A(wi, w 2 , , K, k), since KA(-iQl, .) =

KA(i~j, K). One can simplify this further by explicitly specifying the form of PB near

the Fermi surface and carrying out the integrations, but we will not do this here

because this schematic form is sufficient to guide us in our analysis of the 2-loop

and higher diagrams. We will wait until our discussion of zero sound modes to delve

deeper into the composition of the spectral function.
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Chapter 5

Sum of Ladder Diagrams

Suppose now the bulk fermion species has some two-particle interaction characterized

by a constant vertex element A as in Chapter 2. Then the boundary gauge propagator

will receive additional corrections arising from intra-fermionic interactions. As we did

in the flat space case, we can organize these corrections into a series of ladder diagrams

containing "anomalous" fermion loops, where the loops are connected by an effective

4-vertex composed of "non-anomalous" diagrams which can be approximated as A

to first order in the interaction. The difference from the flat space case is that our

spacetime is no longer isotropic; the radial direction behaves differently from the

others. Thus, we must use the analysis of the last section to package the diagrams in

terms of boundary quantities and effective vertices, at which point we can carry out

a calculation analogous to that of Chapter 2.

The ladder diagrams we wish to evaluate are shown in Figure 5-1. The contribu-

Figure 5-1: Sum of ladder diagrams that make up the first-order contribution to the
zero sound pole of the boundary gauge field correlation function.

tion of the 1-loop diagram is given by Equation 4.20. Since the interior 4-vertices do

33



not depend on momentum, we can separate integrals over the loop momentum in the

2-loop diagram, which gives it the form

GR(Q K) = -A/ dwi dW2 dd-iki f(wi) - f(w 2)
27r 27r (27r)d-1 i Q - W2 - i

/ ds d-4 f dd-1k 2 f(W3)- f (W4)

27r 27r J (27r)d-1 3 - Q W4 - iE

x tr [PB(w1, k1 + K)A(w1, W2 , Q, K, k1)pB(W2, kl)]

x J drv ",75aI(r;W2 , k1)@)b(r; w, k 1 + n)/(r; w 4 , k 2 )#I(r; w3 , k 2 + K)

x tr [pB(w3, k2 + K)pB(W4, k 2 )A(w 4 , W3 , , -K, k 2 )]

(5.1)

where all terms that depend r, the radial coordinate of the interior point, have been

grouped together in a ?ffr/$ factor in the middle of the expression. Near the Fermi

surface, the wavefunctions can be approximated by their value at the Fermi momen-

tum, and thus 7P can be viewed as roughly constant in w and k. We see that, in this

case, the momentum integrals for each loop separate cleanly. More, as more loops are

added to the diagram, they each add only another integral over an "empty" loop, that

is, a loop which does not contain a A vertex. Thus, the n-loop term of the correlator

can be expressed as

G(= x (5.2)

where

dwi dw2 f(Wl) - f ( 2 ) dd-lk
2r 27r w1 - Q - w 2 - iC (21r)d-[PB( ,k±K)A(,2, 7 k)PB(W27k)]

dwi dw2 f(W1) - f (W2) f dd-lk
S2w 2w wi - - 2- ie (2r)d1tr [pB(wi, k + K)pB(W2 , k)A(W2 , Wl, -, k)]

x = A dr /gr)(r)(r) (r)'k(r)

Sdwi dw2 f(W1) - f(W 2 ) dd-lk
2(( w)- - c_ (2 ~1tr [pB(wi, k ± n)pB(w 2 ,k)27r 2-7r Wi - Q - W2 - i (27r)(

(5.3)
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where O(r) denotes 7P(r; 0, kF)-

Written in this form, we can extract the zero sound singularity by considering the

sum of 2-loop and higher diagrams as a geometric series. This sum is given by

G(s.) =(5.4)
=1 - ((s)X

which means that the zero-sound pole occurs at 1 - (()X = 0.

Near the Fermi surface and near T = 0, the bulk fermionic Green's function can

be expressed as

Gik(w,k) = a
W VF(k ~ kF) -(W)' (5.5)

where F is the quasiparticle self-energy and represents its decay rate through inter-

actions. In a traditional Landau Fermi liquid, such as the fermion bath in the bulk,

F ~ iW2. (5.6)

At low frequency, we can bundle the w term in the denominator into kF to get a

frequency-dependent Fermi momentum:

G R hi
GR (w, k ) = k- kF(w) - E(W)' (5.7)

where kF(W) = kF -1w, hi = -a/vF, and E = -F/VF-

The spectral function can be obtained from this through

R ~2hi ImE (w)
pB(W, k) = 2ImGRl =hIX~w (5.8)' k" =21m(|ki - kF(w, T) - ReE(W)) 2 + (ImE(W))2 -

We can also write this as

pB(w k) = -i (i - (5.9)
| k| - kF(W) - E(w) ~ k| kF{(W) ~ -,0)
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Thus, using the second form, is

f dw1 dW2 f (W1) - f (W2) d dk

27r 27r W1 - -w2 - i (27r)d-1

hi hi (510)

k + -kI - kF (W1) - W . - kF(W11

x hi hi

k| - kF(w 2 ) ~(W2) kl2 - kF(W2) - E*(W2))

In the limit Q -+ 0, we can combine the w integrals into a single integral, replacing

f (W1)- f (W2) Of(W) Oa 1 )e1w
W1 - - W2 Ow aw eflw + (eflw+ 1)2

and taking w1 -+ w + Q and w2 - w. Also, we split the k integral into its angular

and radial components. We find:

() fdwaf (w) 4 h 2 k~T [dkda
2( 2 hw l(27r)d-1

1 1xk +Ks - kF (W) EK Cos - kF(W+ ) - E'{* + )

J Of f(W)4h 2 (2)2 OwkT dkdf~a

1x ( w±2VF(k±+ I i-lIcosO - kF) +±VFE*(W±+ Q)

x VF(k± + l.cosO - kF)+ F(+Q)

1 1
(-kk) +*() W VF(kkF)VF(W)

(5.12)

The factor k d-
2 outside the integral assumes that ReE is small compared to the Fermi

momentum. Note that here d~a is not a frequency, but refers to the integration over

the angular phase space of the vectors k and i'i. Also, 0 is the angle between the two.

We can perform the k integral by multiplying out the parentheses and applying

standard contour integration to each individual term. Only two of the terms con-
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tribute, since only products with one pole on each side of the real axis have non-zero

contour integrals. We get:

dw af(w) 2k-2 fdQ ( 1
2wr o 2 (2 7r)d-1 I IcosO - V + E*(w+ Q) - E(W)

(5.13)

Thus, the poles of the Green's function corresponding to zero sound modes in the

bulk are given by the equation 1 - ((s)X = 0, where (.) is given by 5.13 and x by

5.3.
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Chapter 6

Conclusion

We have demonstrated that quite general AdS/CFT theories possess zero sound waves

in the bulk fermionic species which correspond to stable propagating excitations in

the gauge field correlators of the boundary theory. We have explicitly calculated

the poles corresponding to these waves in the case of a constant Ai/ vertex - more

general interactions will lead to similar, if more complicated, results. We motivated

these findings by performing an analogous calculation in flat space, and see that the

zero sound waves produced follow a similar form, with the exact coefficients in the

AdS case determined by an effective vertex which represents an integration over the

radial direction.

Thus, zero sound poles such as the ones we have described will be present in a wide

variety of non-Fermi liquids and other systems described by the AdS/CFT correspon-

dence, since they require only a general two particle scattering interaction among the

fermions of their bulk description. It would be interesting to study these excitations

in specific examples of non-Fermi liquids, to determine their physical manifestation

and potential consequences. Zero sound waves in ordinary Fermi liquids have quite

interesting and unique properties due to their propagation by deformation of the

Fermi surface, and it is quite intriguing that systems can manifest this same behav-

ior even in the absence of the quasiparticles in terms of whose interaction it was

originally formulated. While materials of physical interest would no doubt have in-

teractions more complicated the simple 4-vertex described here, a careful analysis of
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the analogous processes could definitely produce useful results. Such a study could

have consequences both for our understanding of general non-Fermi liquids and the

high energy plasmas produced at colliders like RHIC and the LHC.

40



Bibliography

[1] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, D. Vegh. Charge transport by holo-

graphic Fermi surfaces.

[2] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski. Institute for Physical Prob-

lems, Prentice-Hall (1963)

[3] J. M. Maldacena. The large N limit of superconformal field theories and super-

gravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

[4] S. S. Gubser, I. R. Klebanov and A. M. Polyakov. Gauge theory correlators from

non-critical string theory. Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109

[5] E. Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253

(1998). arXiv:hep-th/9802150

[6] S. A. Hartnoll. Lectures on holographic methods for condensed matter physics.

arXiv:0903.3246

[7] 3. McGreevy. Holographic Duality with a View Toward Many-Body Physics.

arXiv:0909.0518

[8] E. D'Hoker, D. Z. Freedman. Supersymmetric Gauge Theories and the AdS/CFT

Correspondence. arXiv:hep-th/0201253v2

[9] C. M. Varma, Z. Nussinov, W. van Saarloos. Singular Fermi liquids. Phys. Rep.

vol. 361, 267-417 (2002). arXiv:cond-mat/0103393

[10] G. R. Stewart. Rev. Mod. Phys. 73, 797 (2001); Rev. Mod. Phys. 79, 743 (2006).

41



[11] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams and A. E. Ruck-

enstein, Phys. Rev. Lett. 63, 1996 (1989)

[12] T. Senthil. Critical fermi surfaces and non-Fermi liquid metals. Phys. Rev. B 78,

035103 (2008). arXiv:0803.4009 [cond-mat].

[13] T. Senthil. Theory of a continuous Mott transition in two dimensions. Phys. Rev.

B 78, 045109 (2008). arxiv:0804.1555 [cond-mat].

[14] S. S. Lee. A Non-fermi Liquid from a Charged Black Hole: A Critical Fermi Ball.

arXiv:0809.3402[hep-th]

[15] H. Liu, J. McGreevy, D. Vegh. Non-Fermi Liquids from holography.

arXiv:0903.2477[hep-th]

[16] P. Coleman. Introduction to Many Body Physics. Rutgers University (2004)

[17] L. D. Landau. Oscillations in a Fermi liquid. Zh. Eksp. Teor. Fiz. 32, 59

(1957)[Soviet Phys. - JETP 5, 101 (1959)].

[18] J. de Boer. Introduction to the AdS/CFT Correspondence. Inst. voor Theor. Fys.

Plenary Lectures (2002)

[19] J. Bekenstein, Phys. Rev. D7, 2333 (1973); Phys. Rev. D9, 3293 (1974); S. W.

Hawking, Phys. Rev. D13, 191 (1976).

[20] L. Susskind. The World as a Hologram. Journal of Mathematical Physics 36

(11):6377-6396 (1995). arXiv:hep-th/9409089

42




