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Abstract

As the push for extreme scale performance continues to make computer architectures in-
creasingly complex, there has been a call for better programming models, and the systems
to support them. Todays microprocessors now expose more system resources than ever to
software, leaving it up to the application programmer to manage them. Studies have shown
that the energy efficiency of future technologies may eventually affect the ultimate perfor-
mance of multicore processors, and so programmers are forced to optimize systems for both
performance and energy in the midst of countless configurable parameters - an extremely
difficult task.

Self-aware systems can configure themselves through introspection, providing perfor-
mance and energy optimization without pressing an unrealistic burden on the programmer.
However, to build effective self-aware systems, we must identify useful sources of adaptivity.
This thesis will show the effectiveness of a number of adaptive mechanisms for self-aware
multicore systems. We show that adding these mechanisms improves efficiency, and then
make a case for coordinated adaptive systems. Coordinated systems treat adaptivity as a
first-class object, and can outperform all non-adaptive, statically configured, and uncoordi-
nated adaptive systems that do not possess a general view of system-wide adaptivity.
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Chapter 1

Introduction

1.1 Motivation

As we continue to push the limits of microprocessor technology, the diminishing returns

of transistor scaling have made it increasingly difficult to maintain performance gains. In

response, architects have shifted their approach to multicore architectures, where several

cores on a chip can provide speedup by exploiting application parallelism. Systems with as

many as 64 cores have already been fabricated and tested [3], and at the current scaling

pace our systems will contain 1000s of cores within the next decade [4].

The development of these systems introduces a critical problem for architects. As

transistor technology continues to scale, the number of transistors on a chip increases ex-

ponentially. Historically, this has been a boon for architects, whom have happily benefited

from the extra budget for logic. However, while scaling does allow us to fit more transistors

per unit area - which, to be sure, allows for the development of 1000-core chips in the first

place - it also increases the power density across the chip. In fact, if every transistor in
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1.1 Motivation

a 1000-core chip were to be active simultaneously, it would threaten to melt the silicon

substrate itself.

The dark silicon challenge describes the phenomenon where, regardless of chip or-

ganization and topology, power dissipation constraints will limit the number of transistors

that can be active at one time [5]. As a result, much of the chip must be powered off, and

is unable to do any useful work; hence the term dark silicon. For architects, this means

that energy efficiency is no longer a secondary design constraint that is only relevant for

mobile and low-power devices. For future technologies, minimizing energy consumption

actually allows for more transistors to be powered on, directly affecting the ultimate goal

of performance.

Unfortunately, developing efficient, low-power architectures is non-trivial, and even

with a working architecture, it is unrealistic to assume that it would be optimal for every

possible application type. Traditionally, the job of configuring a system to optimize the

competing goals of high-performance and low-energy consumption has been left to the

application developer. This is usually done by extensively profiling the application on

different configurations, and identifying the optimal resource distribution over the target

architecture. This not only requires the expertise in the application domain, but also a

deep understanding of the performance and power characteristics in the system. With the

added complexity of varying application workloads, unreliable components, and the sheer

number of configurable parameters in modern and future systems, this task is essentially

impossible for a massively multicore processor.

One vision for addressing these challenges is embodied by self-aware systems (also

known as autonomic, adaptive, self-optimizing systems etc.). These type of systems au-

tomatically observes its own state, and optimize performance and energy efficiency by

adaptively changing the configuration of the system in real time. In this way, the sys-

tem is automatically optimized as the application runs, relieving the burdensome task of

- 13 -
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optimization from the programmer.

Furthermore, while exposing large amounts of configurability to the application de-

veloper can be counter-productive, a self-aware system lets the system expose as much of the

hardware as necessary. Where a programmer would be overwhelmed by the sheer number

of configuration parameters, an intelligent software-based management system can utilize

all the extra parameters to make well-informed decisions.

With this new way of managing configurability, self-aware systems give rise to an

opportunity for implementing large amounts of adaptivity in both software and hardware.

There has already been some work in the development of adaptive mechanisms, but most

were closed systems that optimized a single component: very few studies investigated inte-

grated systems utilizing several adaptive mechanisms. In addition, there has been almost

no work on the effectiveness of adaptive mechanisms in massively multicore core systems.

As technology scales ever further, the knowledge of which mechanisms perform the best is

extremely valuable.

1.2 Previous Work

1.2.1 Self-Aware Systems

Self-aware systems dynamically adapt the behavior of system without human guidance [6,7].

These can be implemented in hardware, as Bitirgen et al. showed by implementing a decision

engine using a set of fixed-point multipliers, and observing performance traces to change

underlying hardware components [8]; or in software, as the ControlWare runtime observes

latency feedback and dynamically partitions web server bandwidth across threads [9]. Many

systems in both hardware and software have been implemented and evaluated [7,10,111.

- 14 -



1.2 Previous Work

Depending on the system, the mechanisms used to enable self-awareness vary widely.

In [8], the authors dynamically configured L2-cache sharing, memory bandwidth, and the

total power budget for a chip multiprocessor. In another study, the authors in [1] focused

on microarchitectural components such as adaptive issue queues load/store queues, reorder

buffer, etc., and in yet another project the focus was solely on dynamically reconfigurable

caches [12].

A common criticism of this work is that these approaches are limited to an inflexible

set of adaptivity. Once these systems are built, it is very difficult to add or remove levels of

adaptivity. Furthermore, the systems that are responsible for actuating the adaptivity are

closed to a single level of the compute stack. For example, the engine in [8] implements a

hardware-based neural network that configures the adaptive mechanisms through hardwired

connections. The neural network has no knowledge of other parts of the compute stack - such

as application-level algorithms or OS-level mechanisms - even though the decisions made by

the neural network will likely affect the performance of components across compute stack

boundaries. Without consolidating observations from all levels, it is improbable that such

a system would converge to a global optimum.

1.2.2 SEEC (SElf-awarE Computing) Framework

The SEEC framework developed by Hoffmann et al. allows the consolidation of all adapta-

tions in the form of goals, and allows adaptations to be made simultaneously at both the

hardware- and OS-level [13]. For SEEC, there is no distinction between types of adaptivity,

as long as the appropriate developer registers it into SEEC. For example, an OS-level mech-

anism such as the total cores allocated to an application would be registered by the systems

programmer, whereas an application-level mechanism such as algorithm choice would be

registered by the application developer. SEEC only requires knowledge that the adaptivity

exists, and an associated function stub to effect the change.

- 15 -



Introduction

We will describe SEEC in detail in Section 2.3, but we point out now that while

SEEC dissolves the barriers between adaptivity at separate levels, there has been little

work studying such a framework with specific adaptive mechanisms, especially on future

massively multicore processors. While SEEC indeed possesses the advantage of being able to

adapt across computing boundaries, it also takes on the burden of managing exponentially

more adaptivity. In this thesis, we will study the performance of SEEC on future multicore

systems, and show precisely the adaptations that benefit SEEC the most.

1.3 Thesis Scope

This thesis will explore adaptive mechanisms, or knobs, that provide useful adaptivity for

future massively multicore self-aware systems. To measure the effectiveness of these knobs,

we will investigate the implementation details of the SEEC (SElf-awarE Computational)

framework using the distributed multicore simulator Graphite [14].

Our main metric for evaluation is the energy efficiency of a system, or the perfor-

mance per watt, because as discussed future architectures bring the issue of energy con-

sumption into the foreground. Designing an optimal architecture has always been difficult,

because the resource demands of different applications can be exceedingly dissimilar. To

make matters worse, the traditional approach of over-provisioning functionality to protect

against the risk of underperformance is no longer realistic, because the threat of dark silicon

makes the waste of energy intolerable. Architects have since allowed parts of the system to

be configurable, and exposed the knobs to the application programmer so that the optimal

architecture can be configured after fabrication. Unfortunately, even if an optimal system

configuration existed, identifying it is a task that takes extreme amounts of time and effort,

especially as the number of cores continues to scale.

Self-aware systems dynamically configure themselves on-the-fly, and rely on a runtime
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controller to determine the optimal configuration. In this way, there is no tedious process of

statically configuring a system, and even an initially over-provisioned system can be made

to adapt to the application at hand. Self-aware systems have been an active research topic

in the past decade, but with that said, the uncertainty in future computer architecture

has left gaps where little work has been done. To wit, even with the failure of Dennard's

scaling and the advent of core scaling, there has been little work on adaptivity on massively

multicore architectures.

One key challenge is determining whether or not a knob is actually suited for a

massively multicore system, because the large number of variables makes this result non-

trivial. Therefore, in this thesis, we will focus on potential knobs for self-aware systems,

and show results on their effectiveness on a massively multicore architecture.

For this work, we will be using the SEEC framework to enable self-awareness, but we

note that many of the points we show will hold true for any self-aware controller. Any self-

aware system that provides goal-oriented programming will allow the developer to specify

goals instead of configuration parameters, and the otherwise tedious process of system

optimization is abstracted away.

This thesis is organized as follows. Chapter 2 provides essential background on self-

aware systems. Chapter 3 describes the architecture of the Angstrom project, especially

the features that enable self-awareness. Chapter 4 is the focus of the thesis, where the

details of the adaptive mechanisms, or knobs, are thoroughly described. Details on the

implementation of the knobs will be included, as will the tradeoffs they provide to a self-

aware system. Chapter 5 is the experimental evaluation section. It shows that an adaptive

system outperforms a static non-adaptive system, and then evaluates the performance of

the knobs when used by a self-aware controller. Chapter 6 will conclude this thesis by

summarizing the contributions of this work, and describing future avenues of promising

research.

- 17 -



Chapter 2

Self-Aware Systems

2.1 Overview

Self-aware systems (sometimes also known as autonomic, adaptive, or self-optimizing) at-

tempt to automatically monitor the behavior of a system, and dynamically optimize its own

configuration based on runtime conditions. With the unyielding trend of multicore scaling,

and the coming to fore of hard power constraints, these systems address a critical issue:

How exactly do we select the optimal system configuration for our application? Self-aware

tuning of system parameters allows an application to accomplish its goals for performance

and energy efficiency, and it does so without placing the burden solely on the application

programmer. However, most modern systems are only proficient at dealing with a single

source of adaptivity, and therefore cannot leverage the knowledge of other adaptable param-

eters in the system, whether synergistic or competitive. We call such systems uncoordinated

adaptive systems, and introduce the SEEC framework that provides a coordinated adaptive

solution.

- 18 -
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2.1.1 Multicore Scaling and Limitations

Traditionally, managing system resources was a job delegated to the application developer.

This is done by extensively profiling the application on numerous different configurations,

and identifying the optimal resource distribution over the target architecture. While this

was a reasonable task in the past, multicore scaling has made the space of possible resource

distributions grow exponentially, and rendered this approach unusable in future systems.

Consider a single core with O(M) configurable components, each with O(N) con-

figurations. The total space of possible configurations for this system is on the order of

O(NM). If these variables are small, as is the case for current low core-count systems, an

intelligent programmer can explore a reasonable part of the search space and determine a

configuration that is close to - if not exactly - optimal. However, in a system with Q cores,

the total number of configurable components grows exponentially, producing a space of con-

figurations on the order of O(NQM)! With the added challenge coming from the fact that

massively multicore processors will likely have several applications running simultaneously,

even the best of programmers cannot determine which reasonable part of the configuration

space to search.

Furthermore, the challenges of multicore scaling are not limited to finding a single,

globally optimal configuration. Even assuming that a programmer can determine the opti-

mal configuration of a massively multicore system at one time, there is no guarantee that it

is optimal during the entire lifetime of the application. Many applications go through sev-

eral phases, and each of those phases exerts specific demands on the system, likely requiring

several time variant configurations for optimality.

Consider a Fast-Fourier Transform application, where the convolution of large matri-

ces is usually split into transpose and multiplication phases. We use the example of the fft

application from the SPLASH2 benchmark, which uses an algorithm which performs each

- 19 -
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1.2
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Figure 2.1: Normalized energy efficiency results for fft using different L2 caches, divided
across phases. The target architecture has 64 cores and an 8KB Li Cache.

FFT with three transpose phases interspersed with two compute phases [2]. Figure 2.1

is generated by the experimental methodology described in Section 5.1.1, and shows the

energy efficiency of different L2 cache sizes on a 64-core architecture.

During the transpose phases of fft, the application is dominated by memory opera-

tions, and during the compute phases the application is dominated by compute operations.

As a result, the demands on the cache are greater in the transpose phases than the compute

phases, but it is evident in the figure that this relationship is non-trivial. Depending on

how warm the caches are before each phase, the actual efficiency of the cache can vary. In

fact, the first transpose phase shows a larger cache demand than the pursuant transpose

phases. Small caches are predictably efficient during the compute phases. Due to the con-

flicting nature of these phases, there is no single resource distribution that can be optimal

for both: if a 64KB cache was implemented, then the Compute 1 phase is 78% optimal,

whereas if a 16KB cache was implemented, the Transpose 2 phase is 70% optimal. An ideal

scenario would feature a cache that can adapt its size to the appropriate phase, so that

energy consumption is optimized for the necessary performance.
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Figure 2.2: Graphical representation of an Observe-Decide-Act loop in a self-aware system.

A final challenge with multicore scaling is that it also increases the chances of unfore-

seen events during the execution of the application. This could be a thermal emergency that

may throttle the speed of a core, or an error that restarts a part of the application. These

are cases that a statically configured system has no means of resolving, but an intelligent

self-aware system can deal with in stride.

2.1.2 Observation-Decision-Action Loops

The common denominator of all self-aware systems is the negative feedback loop that cor-

rects the error between the current and target state. At a high level, this feedback loop

is driven by continuously observing system behavior to determine how close it is to its

goals, deciding based on these observations what it can do to achieve the goal, and then

acting out its decision by tuning the available knobs. Hence, these loops are known as

observe-decide-act (ODA) loops [6,15], and are illustrated in Figure 2.2.

Regardless of the type of adaptivity available in a system, every self-aware system
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contains an ODA loop. In this subsection we will show how the ODA model fits in two ex-

isting self-aware systems, noting that the implementation of the ODA loop varies drastically

in literature [9,16-18].

In the adaptive processing system described by Albonesi et al. in [1], a number of

microarchitectural mechanisms are built for configurability. Depending on statistics gath-

ered by the controller, the system dynamically adjusts the issue queue, load/store queues,

reorder buffer, register files, and the instruction cache to match the utilization demand.

Observations are made by monitoring a number of performance counters built into the

hardware, and decisions are made to adapt the knobs when the counters trigger specific

events. For example, the average occupancy statistics of the issue queue are tracked by a

counter, and if a smaller queue is sufficient to hold the average number of instructions, an

event is triggered and the queue downsizes; if an overflow occurs, the adaptive issue queue

upsizes. This sort of ODA loop is present in many parts of the system. Figure 2.3 illustrates

the adaptive processing system of [1] superimposed with the associated ODA loops. Note

that, in this case, the ODA loops are built directly into hardware, and they all function

independently.

Intel's Turboboost feature controls the frequency of its cores to maximize perfor-

mance [19]. If a core is heavily used, Turboboost can tune up the frequency of that core.

On the other hand, if a core is lightly used, Turboboost can tune down the frequency, or

even power gate the core to yield even larger power savings. Observations are made by

hardware counters implemented as MSRs (Machine State Registers), and the decision for

the frequencies of the cores is ultimately constrained by power delivery limits, current con-

sumption, and temperature. When Turboboost decides that the statistics are under the

constraints, it steps up the frequency of the active cores. Figure 2.4 shows the associated

ODA loops on Turboboost.

The Turboboost ODA loop is different from the aforementioned adaptive processing

- 22



2.2 Uncoordinated Adaptive Systems

Observe p e
Decide counter

Obsere missrate>? Observe Decide aver eos, pancy utiiaion=?

t g erd bunter 
overfow?

miss rat av ea ccpancy A t

-- Q -- ALUI

L1|$ -- Fetch Logic - ROB -

loop IObserve
~we~ counter

miss rate

ee s te ce the y L1 eD$ Act
Obsrve Dede Decide

cone utilization ?
averuge ocfpad y F e miss rate >?

Figure 2.3: Adaptive microarchitecture in [1]. The shaded components are designed for

adaptivity, and each adapt to application demands through independent ODA loops. Ob-
servations are made by built-in performance counters, and decisions are made by events

triggered by the counters.

system: each adaptive component in Turboboost does not have its own independent ODA

loop. Instead, there is a single decision engine that collects all the observations from the

cores, and makes a decision on the core frequencies based on the state of the global system.

Nevertheless, both Albonesi's adaptive processing systemand Tes Tems are equally

valid self-aware controllers, and both rely heavily on ODA loops.

2.2 Uncoordinated Adaptive Systems

Most self-aware systems, such as those explained above, do very well in their sphere of in-

fluence. A major drawback, however, is that because they only have knowledge of their own

knobs, they do not work well with other sources of adaptivity. Fo r example, in the adap-

tive processing system described in the previous section, all of the adaptivity is built into

hardware, and so application-level goals are beyond the scope of its observations. Software-

based approaches, on the other hand, will assume that the hardware is fixed and make

no attempt to coordinate with these low-level adaptations. These systems are closed to
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Figure 2.4: Intel Turboboost ODA loop. Core frequencies are determined by a global
controller that makes decisions using observations on all cores in the system.

other levels of adaptivity, and cannot coordinate with others; we refer to such systems as

closed/uncoordinated adaptive systems.

Of course, this is not an issue if there is only one single adaptive mechanism in

the system. However, future systems will have many resources that are capable of being

adaptive, and the impact of each knob on the other cannot be ignored. Simply running

multiple ODA loops in hardware and software simultaneously is not a valid solution either,

because even with both loops targeting the same goals, it is almost impossible for each

loop to make intelligent decisions without understanding the impact it has on the rest of

the system. For example, two closed ODA loops running at the same time and targeting

the same application performance goal might realize the system is underperforming, and in

response both allocate extra resources. More likely than not, the next observation by the

controller will find that the system is over-performing, because both loops independently

added enough resources to make up the performance deficit and over-provisioned the system.

In response, both controllers remove resources from the application, and the system never

converges to an optimum.

The root cause of this problem is the existence of configurations that are sub-Pareto

optimal. Consider a system with the competing goals of performance and energy: a Pareto

24



2.2 Uncoordinated Adaptive Systems

optimal configuration is a configuration that runs with maximum performance and mini-

mum energy. With the sheer number of configurations available in a massively multicore

processor, the fact that some combinations of those knobs are sub-Pareto optimal configu-

rations is not surprising. However, in general, Pareto-optimal points are the only ones that

a controller in a self-aware system should ever consider. Unfortunately, without a sense

of how other knobs behave, an uncoordinated controller has no way of gauging the global

Pareto optimality of its actions.

To illustrate this, we explore the behavior of the barnes application from the SPLASH2

benchmark suite (see Section 5.1 for details on methodology) on a multicore system with

two knobs: the total number of cores assigned to it (from 1-64, by powers of 2), and the

size of the last-level cache on each core (from 16-256KB, by powers of 2). We simulate

each configuration on the Graphite simulator [14), measure application performance in in-

structions per second, total energy consumption in joules, and plot the normalized results

in Figure 2.5. The solid diamond points represent all simulated configurations; the squares

show configurations that appear optimal for a closed system which only considers cache

adaptations; and the triangles show optimal configurations for a system that only considers

core allocations. The Pareto-optimal frontier is depicted by those diamond points that are

connected together. Notice there are triangles and squares that appear below the Pareto

frontier: these points represent configurations that uncoordinated systems would believe to

be optimal, but, in fact, are sub-optimal for the overall system. For the closed systems,

these states are Pareto-optimal within its own space of possible configurations, but they are

clearly sub-optimal in the global system.

To avoid sub-optimal configurations, adaptivity needs to be considered as a first

class object, so that all knobs are considered globally instead of in piecewise, uncoordi-

nated objects. In a coordinated self-aware system with a global view of all the knobs in

the system, sub-optimal configurations can be filtered out and discarded, leaving only the
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Figure 2.5: Normalized efficiency of barnes. The Pareto frontier is shown as the blue

connected line.

Pareto-optimal configurations as actions for the ODA loop (the Pareto frontier).

2.3 SEEC Framework

In [15], Hoffmann et al. proposes the SEEC (SElf-awarE Computing) framework. In the

SEEC model, there are three distinct roles with distinct responsibilities:

Role Responsibilities

Application Developer Specifies application goals.

Systems Developer Specifies actions in the form of subroutines that tune the knobs.

SEEC Runtime System Observes the system and determines the amount of speedup
needed to achieve goal; decides on appropriate actions

Table 2.1: Roles and responsibilities in the SEEC model.

Note that the application developer is completely relieved from the optimization

task, and needs only to set the performance goal that he/she desires. All adaptive knobs

are registered into the SEEC framework by the systems programmer, who is exactly the
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Figure 2.6: The SEEC model.

individual most familiar with a systems underlying adaptivity. Since all the knobs are

registered in one place, SEEC filters out all sub-Pareto optimal configurations that would

otherwise plague an uncoordinated adaptive system.

In this thesis, we will be using SEEC as the self-aware controller for our architecture,

and use it to explore the effectiveness of the proposed knobs. A full description of SEEC

can be found in [13], but is mostly beyond the scope of this thesis. Instead, we will describe

only those features that are important for our interests. Figure 2.6 serves as a reference for

the following subsections.

2.3.1 Observation

Application goals are specified through an API provided by the SEEC framework, which

provides an abstraction of performance in the form of an Application Heartbeat [20]. The

application developer instruments the application to emit heartbeats at important intervals,

and sets the desired heart rate. The programmer can also specify the size of a rolling
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window, which acts as a low-pass filter to smooth out the heartbeat data. This abstraction

level allows the programmer the purchase for setting fine-grained goals, without having to

understand the lower level features of the system itself.

It is interesting to point out that, unlike the self-aware systems we have already dis-

cussed, goals in SEEC are specified directly by the application developer. In the previous

discussions, systems are optimized with extreme goals: run an application with maximum

performance, run an application with minimum energy consumption, etc. While this does

mean that these systems can run without any instrumentation in the application, it also

means that there is no way for these systems to target application-specific goals. For in-

stance, consider the target performance for a video encoding application: it could be 30

frames per second, 40 frames per second, or any number deemed necessary by the devel-

oper; there is no way for the application developer to specify such a goal. On the other

hand, SEEC assumes that the application developer has the most knowledge of application

demands, and provides the heartbeats interface to communicate these goals.

2.3.2 Decision

SEEC's decision engine is divided into several levels. At the simplest, or Adaptation Level 0,

the decision engine is a basic model-based feedback controller. This controller continuously

monitors the heart rate h(t), and compares it with the target heart rate g to compute the

required speedup s(t). Using the set of actions made available by the system programmer

and their associated models, SEEC decides on the appropriate action (or combination of

actions) to move the system closer to its goals. This basic control system is the backbone

of all the engines available.

The next level of sophistication, or Adaptation Level 1, addresses the issue of work-

load estimation. While the heart rate, h(t), measured by SEEC is a general indicator of
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the latency between heartbeats, it is not a direct measurement of application performance.

This is because the actual application performance also depends on the actual work done.

That is, the heart rate h(t) can increase either because the system is performing more ef-

ficiently, or the actual work being done for the application has decreased. In Adaptation

Level 0, the work done is assumed to be time invariant, but this is patently untrue for some

applications (i.e., a video suddenly becomes more difficult to encode). In Adaptation Level

1, a 1-dimensional Kalman filter is used to estimate the workload of the application. This

increases the speed of convergence substantially.

Adaptation Level 2 addresses the accuracy of the models provided to SEEC. While

the Kalman filter can estimate application workload, it cannot differentiate between cases

where workload actually changes, and cases where the action models provided by the sys-

tems programmer are inaccurate. The fact that the action models could be erroneous is not

unlikely, because a single model for a knob is unlikely to be appropriate for all applications

(although we discuss including multiple models per knob in Section 6.2). As an example,

consider the knob that tunes the total number of cores available to an application. Obvi-

ously, depending on the application, the limits of parallelism will provide different speedup

tradeoffs. Incorrect models imply that SEEC will select actions that are sub-Pareto optimal,

because it will adjust to changes in estimated workload that might not exist. In Adaptation

Level 2, another Kalman filter is used to estimate the actual cost and benefits of an action,

and modifies the models if it finds them incorrect. In this way, SEEC gradually learns the

correct action models, and will be able to recompute Pareto-optimal actions on-the-fly.

2.3.3 Action

The systems programmer specifies the action model for a knob by providing a set of actions

A0 , A1 , .., A., and associating a relative speedup and cost over the baseline action A0 ,

which by definition has a speedup and cost of 1.
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Action Speed-up Cost Description

Ao 1.0 1.0 1 allocated core

A1  2.0 2.0 2 allocated cores

A2  3.0 3.0 3 allocated cores

Table 2.2: Example action model for core allocation knob.

For example, to specify actions for the knob that tunes the number of cores available

to an application, the baseline action Ao represents the allocation of a single core. Action

A1 might represent the allocation of two cores, and the associated speedup and cost could

be set as 2.0, which represents double the performance and cost, and so on. This is shown

in Table 2.2.

The systems programmer provides a set of actions for every knob, and SEEC inter-

prets the combination of multiple knobs as the product of the associated speedup and cost

for each constituent action. The flexibility of this framework allows several different systems

programmers to provide action models for the knobs they are most familiar with. It also

allows the removal and addition of knobs as is appropriate, which allows SEEC to use new

knobs or a subset of existing knobs. If the models are accurate, SEEC will rapidly converge

to the optimal configuration to achieve the specified goals. In the case that the models are

inaccurate, either due to a single knob or a combination of them, the Adaptation Level 2

in SEEC's decision engine will resolve the inaccuracies.
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Chapter 3

Angstrom: A Massively Multicore Self-

Aware System

3.1 Architecture Overview

Angstrom is a large, cross-disciplinary project that aims to create a fundamentally new

system to meet the challenges of extreme-scale computing. Solutions are posed for challenges

at all levels, from circuits, to architectures, to operating systems, to applications. For this

thesis, we will be using the Angstrom proposal as the backbone architecture for our study.

The full specification of Angstrom is, of course, well beyond the scope of this thesis, but

there are two important features of Angstrom that are relevant to our interests.

First, Angstrom is proposed as a massively multicore processor, with up to a thou-

sand cores. This proposal comes from a projection of the multicore scaling trend, which

has seen the number of cores double every three years since 2006 [4]. Cores in Angstrom

are organized as a tile-based architecture, connected by a mesh network with endpoints at
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Figure 3.1: The Angstrom architecture.

each tile. Figure 3.1 illustrates a basic picture of the Angstrom architecture.

Cores in Angstrom are much simpler relative to modern processors, which otherwise

have large re-order buffers, superscalar issue width, and a considerable number of pipeline

stages. These architectural features are useful because they substantially improve perfor-

mance, but come at the expense of high energy consumption. For future technologies, where

transistor density will increase exponentially, the tradeoff of energy for performance is not

as forgiving as in previous generations. In fact, the heat dissipated from the transistors pose

a hard limit to the total number of active components, forcing large numbers of transistors

to be powered off at any one point in time. Studies predict that at 8nm, up to 50% of a chip

could be forced to be powered down, coining the term dark silicon to describe devices that

cannot utilize all its constituent transistors simultaneously [5]. Therefore, it is important

for a massively multicore system like Angstrom to be extremely energy-efficient. Notwith-

standing, the actual hit in performance from removing the complex architectural features
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is not fully realized anyway, because even if they were left in place, most of them could

not be powered on for doing useful work. Adding to the fact that a massively multicore

system targets parallel applications instead of sequential ones, then simple in-order cores

are perfectly reasonable for Angstrom.

The second feature of Angstrom that is relevant to our interests is that it is designed

to treat adaptivity as a first-class object. This means that all components of the architecture

are designed to contribute to the specification of the ODA loop. As such goals are specified

through a single interface, the self-aware controller will have purchase to adapt all levels

of adaptivity to accomplish them. Angstrom uses the SEEC model, and exposes a wide

array of both hardware and software observations and actions to the SEEC runtime. In the

following sections, we will describe in detail the features in Angstrom that contribute to the

ODA loop.

3.2 Observation

To provide SEEC appropriate feedback to model the tradeoffs associated with its knobs,

Angstrom provides a means to monitor both performance and power. As we will describe,

Angstrom goes beyond normal architectures to provide a level of introspection for SEEC

that would be impossible on a traditional system.

3.2.1 Performance Monitoring

The main interface for setting goals and observing the performance of the system is pro-

vided by the Application Heartbeats API described in Section 2.3.1; this is an architec-

ture independent feature, and is not reliant on Angstrom in any way. However, beyond

the application-level performance monitoring enabled by the Application Heartbeats API,
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Angstrom also provides several hardware features that provide valuable insight into the

application behavior on the underlying architecture.

The first such feature is the implementation of performance counters. Of course,

existing systems already possess a number of performance counters, but most of them either

impose strict limitations to the number of counters that can be monitored simultaneously,

or require heavy kernel interaction for each access [21]. As a result, either multiple profiling

runs are required to comprehensively pre-analyze an application, or the programmer is left

with limited and possibly out-of-date information about the system.

In Angstrom, all performance counters are exposed directly to software by mapping

a portion of memory dedicated to observation hardware. As such, all levels of the software

stack have access to all of the counters. This not only allows SEEC to gather informa-

tion from all the counters at one time, but provides low enough overhead per access to

allow SEEC to dynamically analyze the information during runtime. Counters enumerate

any events that may provide insight to application behavior. Some examples include: the

number of cache hits and misses, pipeline stall cycles, network flit traffic, etc. Figure 3.2

illustrates the architectural design of the performance counters.

Since performance counters are only enumerators, it is far too expensive for a runtime

system to continuously poll them for information, especially if it is trying to observe the

occurrence of a rare event. For such cases, Angstrom provides event probes that can be

associated to a performance counter, or some other architectural state. These event probes

contain a programmable comparator that continuously watches for a specific state, and

triggers an interrupt when the event occurs. Event probes can be set to different operations

- such as equal to, greater than, or less than etc. - and may be masked to only watch

selected bits. In any case, programmable event probes effectively move the busy-polling

loop from software to hardware.
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Figure 3.2: Performance counters are memory mapped, access is made through regular
load/store instructions.

Figure 3.3: Event probes allow observation of rare events without polling from software.
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3.2.2 Energy Monitoring

To effectively monitor the performance versus power tradeoff, the self-aware runtime re-

quires some sort of energy consumption feedback. Accurate measurements of energy allow

the controller to gauge the actual effect of its actions during exploration. In modern sys-

tems, power can be measured either by placing current meters at major power delivery

inputs of the system, or through an ad-hoc power model developed to estimate the energy

consumption of the specific architecture. The former approach fails to provide fine-grained

information on energy efficiency, and the latter is only as accurate as the model, which

can be especially vulnerable to rare corner cases, or unforeseen events such as thermal

emergencies.

Accurate, fine-grained power monitoring is key to architectural adaptivity because

it shows exactly which components of the system are the least efficient, allowing SEEC to

target knobs for improving efficiency on exactly those components. Otherwise, SEEC runs

the risk of unknowingly sacrificing the performance of components that might otherwise be

efficient. For example, consider an application that is compute-bound and uses very few

cache accesses, then the focus of optimization should be localized around the computational

part of the system. Application Heartbeats has no means of conveying this information a

priori; without fine-grained energy measurement, it is up to SEEC to discover the energy

tradeoff through exploration of the configuration space in both components. To be sure,

SEEC will eventually converge to the optimal configuration, but power observation can

improve the performance of the SEEC runtime.

To motivate fine-grained energy observation, we study the fft application first de-

scribed in Section 2.1.1. This Fast Fourier Transform algorithm alternates between a trans-

pose and computation phase, which alternately stresses different parts of the core architec-

ture. Figure 3.4 shows the dynamic energy breakdown of fft across the two phases. During
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Figure 3.4: Breakdown of cache and core component energy between phases in the fft
benchmark.

the transpose phase, when fft is focused on memory operations, the core pipeline spends

most of its time stalled. The results show that during this time the core consumes only 21%

of dynamic energy, but core dynamic energy consumption jumps to 93% during the compute

phase. This information is extremely insightful, as it can direct the optimizations in a very

clear direction, allowing any self-aware controller to converge to an optimal configuration

much faster.

This leaves the question of implementation. One way to provide this feature is

to implement circuits to monitor energy directly on-chip. One approach is to track the

current through the component under measurement, and the number of times it charges a

pre-defined capacitance. This number can then be converted to a power measurement by

comparing dividing the count with the system cycle counter:

P # cap charges x Vcap
# cycles elapsed x f

The counters that track the number of capacitor charges and the system clock cy-

cles are exposed to software as memory mapped locations, much like performance counters.

Therefore, accessing power information has the same overhead as any regular load or store

for memory mapped registers. Note, to allow for power measurements during specific win-
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Figure 3.5: Block diagram of energy monitor circuit.

dows of time, the energy monitoring register can be reset. Figure 3.5 is a high-level diagram

that shows how such a circuit is implemented.

By integrating multiple energy monitoring circuits within a single tile, Angstrom

provides a granularity of observation to SEEC never before available. Any such number of

these energy monitoring circuits can be implemented, limited only by the area available.

One concern is that current prototypes of this circuit use an off-chip capacitor to serve as

Vcap. This may stress the I/O constraints of the physical chip, and add considerable routing

complexity to connect the I/Os to every single energy monitoring circuit. However, work in

integrated switched capacitor technology has been promising, and can potentially be used

as a replacement for off-chip capacitors.

3.3 Decision

As we described in Chapter 2.3.2, the SEEC runtime has a decision engine that dynamically

converts observations from the system into actions for its knobs. Unfortunately, this type

of self-awareness does not come for free: the decision engine is real code, and must be given

some execution context to run upon. Angstrom provides a number of places to run the
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SEEC code:

(i) Instrumented Source The decision engine code is instrumented into the same context as the
application.

(ii) Same Core The decision engine code is run in a separate thread on the same core,
and receive heartbeats through the built-in API.

(iii) Separate Core The decision engine code is run in a thread on a separate core.

(iv) Partner Core The decision engine code is run in a separate thread on a specialized,
low-power core.

The efficiency of each approach can be summarized by two key metrics: communi-

cation latency and application slowdown. Communication latency is related to the speed

in which SEEC receives observable data, and the speed that it can effect change to the tile

containing the application; this is important because it directly affects the speed in which

SEEC can make adjustments. Application slowdown, for obvious reasons, is undesirable in

terms of application performance. Table 3.1 summarizes each approach.

Communication Latency I Application Slowdown

Instrumented Source Low High

Same Core Low Low to High

Separate Core Med to High None

Partner Core Low None

Table 3.1: Characteristics of SEEC decision engine placement.

The instrumented source approach epitomizes low communication latency because it

is co-located with the application thread, but suffers from slowdown because the application

must stop to allow the SEEC code to run. In the same core approach, or similarly an SMT

approach, communication is still cheap because hardware is still shared between the threads.

The application slowdown, however, is application specific. Slowdown could be kept low if

the scheduler is able to execute the SEEC runtime during periods where the application

thread is otherwise stalled. In cases where this is not possible, the application thread

must stall and wait for the SEEC thread to compute its decisions, resulting in substantial

application slowdown. On the separate core approach, the SEEC thread is completely
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decoupled from the application, allowing it to make its decisions asynchronously. The

communication latency can be variable, as it is a function of the distance between the cores

executing the SEEC runtime and the application. At best, the SEEC runtime thread is

scheduled on a tile adjacent to the application, which is inherently slower than the previous

two approaches but still reasonable. However, in the case where the SEEC runtime is

scheduled on a tile several network hops away, the communication latency grows quickly.

To address all these issues, Angstrom provides a novel architectural feature, called

Partner Cores, to allow for low-latency communication and no application slowdown. At

a high-level, a partner core is simply a small, low-power core on the same tile as the

core running the application. The uniqueness of the partner core is its emphasis on low

power rather than performance, and the way in which it communicates to the application

core. To minimize the power consumption and area of the partner core, each partner core

includes a low-power pipeline with very few architectural frills. Such a pipeline will be much

slower than the application core, but this is acceptable because SEEC makes its decisions

asynchronously and can avoid application slowdown. To observe and communicate with

hardware, the partner core makes use of direct hardwired connections to the main cores

hardware, resulting in bare minimum communication latency (Figure 3.6). Details of the

partner core architecture are described in [22], so we will not include them here.

3.4 Action

The Angstrom processor provides several adaptive mechanisms, or knobs, that can be tuned

on-the-fly by SEEC to reflect the speedup changes deemed necessary by its decision engine.

To register knobs with SEEC, the programmer must associate each knob configuration with

a speedup and cost, and then provide a valid subroutine that modifies the values in the

appropriate memory-mapped locations. Depending on where in the compute stack a knob
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Figure 3.6: Architecture of a single tile in the Angstrom architecture, showing the main
and partner cores.

is located, knobs may be registered by different developers.

If a knob is built in hardware, such as a knob that tunes the cache size or instruction

issue width, Angstrom will map the relevant control hardware into memory. Thus, a normal

load and store to the appropriate location can directly adjust the underlying hardware.

The process of creating these hardware interfaces is the responsibility of the architect, and

is completely invisible to the application developer. A detailed example of how such an

interface is built will be given in Chapter 4.

If a knob is built in software, such as a knob that schedules threads on cores, the

system programmer must again provide the appropriate subroutine and associated speedup

and cost. Unlike hardware-based knobs though, which are fixed with the specific processor

architecture, there is no limitation on the number of software-based knobs. To be sure,

designing a software-based knob requires deep knowledge of the system, and likely also
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requires kernel-level permissions, but there is no physical limit constraining the number of

software-based knobs. In this way, software-based knobs can be much more flexible than

hardware-based knobs.

Staying faithful to the definition of an open adaptive system, all knobs - whether

based in software or hardware - are dealt wholly by the SEEC runtime. This adds another

level of flexibility to Angstrom: through SEEC we can identify exactly those knobs we wish

to tune, and leave the rest at their initial state. This is important when the programmer has

a priori insight on the application, but is normally invisible to SEECs decision engine. For

example, a real-time application that possesses unstable performance patterns might pose

a challenge for SEEC. If the programmer understands which knobs are most important

to the application, then he/she can identify those knobs through SEEC to improve the

convergence behavior. Since real-time applications have hard deadlines, the improvement

in convergence time can be pivotal to completing on-time.

This leaves the question of what type of knobs are actually available. In the design of

Angstrom, this is still an open question, but it is this question that this thesis attempts to

answer by demonstrating knobs that are useful, and providing a framework for measuring

their effectiveness. In the next chapter, we will explore the implementation of knobs that

were found to be useful in a massively multicore system.
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Knobs for Self-Aware Multicore Systems

4.1 Caches Associativity and Size

4.1.1 Motivation

As technology scaling continues to increase transistor density in silicon, processor design

has tended towards using those transistors for larger on-chip caches [23, 24]. However,

the performance improvements from large caches come at the expense of increased energy

consumption. While this tradeoff is fine for a well-utilized cache, caches that are not well-

utilized will waste substantial energy. Due to the fact that caches are usually implemented

as DRAMs, periodic refreshes are required for all cache lines, even if there are lines that

are unused. This issue is exacerbated by smaller technologies, because the narrowing of

the transistor channel creates an even higher rate of leakage, requiring even higher refresh

rates.

In a perfect world, a cache would be sized to match the needs of the application
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programmer. Unfortunately, there is no single cache size that would be optimal in general,

because cache utilization depends on the application-specific working set size. The working

set of an application represents its temporal locality, which is a function of the amount

of data it requires during execution and the way data is distributed in main memory. To

design an appropriately sized cache, it is important to understand the working set sizes of

the applications it is designed to serve.

Beyond working set sizes, the specific access patterns of an application will determine

its miss behavior in the cache. In cases where an application reuses large blocks of memory

that share the same cache line, a highly associative cache is ideal. On the other hand, if

the required cache lines do not collide in the cache, the extra overhead used to maintain

the associativity of the class is wasted.

In the following sections, we will describe in detail the implementation of two mech-

anisms for cache adaptivity. The first knob adjusts associativity by powering down ways,

and the second adjusts the total number of sets per way by powering down blocks. In both

cases, the total size of the cache is changed, allowing SEEC to adapt the cache for both the

working sets sizes and access patterns of an application.

4.1.2 Tradeoffs

Working Set Size

Working set size can vary widely between applications. In Figure 4.1, we reproduce a study

of working set sizes in the SPLASH2 benchmark suite [2], which depict the cache miss rate

of each application as a function of cache size. The points of inflection (or knees) in the

figures correspond to the cache sizes where the working set of an application fits entirely

in the cache. Knowing this, it is clear that the working set of an application can vary by
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orders of magnitude. Consider radiosity, where the first knee is found at 16KB, compared

with radix, which has its first knee at 256KB - a 16x difference!
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Figure 4.1: Miss rate vs. cache size and associativity for the SPLASH2 benchmarks, taken
from [2].

Since it is impossible to provide a single cache for all varieties of working sets, we

implement as large of a cache as possible, and allow its size to be dynamically tunable. This

makes a larger cache available for applications that possess a large amount of data locality,

but the flexibility of reverting to a smaller cache to save power for applications that do not.

This knob also provides SEEC the license to adjust caches for time-variant working

sets. Figure 4.1 shows that multiple benchmarks actually contain multiple points of inflec-

tion, representing the fact that an application may have multiple working sets. In fact,
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it is not uncommon for an application to have a hierarchy of working sets. One simple

scenario where this is possible is an application with nested loops: if at each level the loops

require specific but partially shared data, then there is a tiered hierarchy of working sets.

Another example: if an application experiences several sequential phases containing differ-

ent amounts of data locality, then it will have multiple working sets spread out in time. In

these cases, a statically configured cache cannot remain optimal, whereas the cache knobs

allow SEEC to maintain cache optimality for the entire lifetime of an application.

Lastly, Figure 4.1, also shows us how the miss rate can change with associativity. In

most cases, increasing the associativity from 1-way to 2-way provides a stark improvement

in miss rate, whereas increasing from 2-way to 4-way the change is less pronounced. The

exact tradeoff for increasing associativity lies in the extra energy, area, and time required

for a cache line access. However, suffice it to say that the relationships between miss rate,

associativity, and these inherent cache properties are extremely complex, and difficult to

predict by an application programmer. In fact, what may be an expected trend, where

increasing associativity should improve miss rate, is not even true for all applications. In

fmm, the fully associative cache actually performs worse than the 4-way associative cache.

The impact of associativity on working set size is not predictable in general, and hence it

can be an attractive knob for a self-aware controller like SEEC, but not for an application

programmer.

Miss Behavior

To optimize a cache, we must implement the smallest cache possible which retains as low of a

miss rate as possible. Therefore, the miss behavior of an application is incredibly important

to the ultimate configuration of the cache. A miss in the cache can be categorized into three

categories:
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Miss Type Cause

Cold Misses Memory locations that have never been accessed will always miss in the cache.

Conflict Misses Memory locations that have been evicted due to the replacement policy.

Capacity Misses Memory locations that are evicted because of the finite size of the cache.

Table 4.1: Miss behavior and causes.

Cold misses can be addressed by the cache line size, but dynamically adapting the

line size has unfortunate implications to the cache mapping, and requires the entire cache

to be flushed. Memory prefetching is also a technique that can address cold misses, which

we explore in another paper [221. However, we will not investigate this type of cache miss

any further in this thesis.

Conflict misses are those that are closely related to the associativity of a cache.

These misses are caused be evictions from the mapping function, and the corresponding

replacement policy. Providing associativity allows locations that map to the same cache

line to be stored in separate ways, so that multiple lines are simultaneously valid for the

same cache address. Increasing the associativity of a cache comes at the expense of higher

area, energy consumption, and latency per access, because a line from every way must be

checked per access. Further, if the same total cache size is to be maintained while increasing

associativity, the number of sets per way must decrease, making the cache more susceptible

to capacity misses.

Lastly, capacity misses are closely related to the total number of sets in the cache. If

an application accesses a large amount of memory, then there will be misses resulting from

the lack of capacity. Having higher associativity will improve miss rate, but add additional

dynamic energy overhead, whereas simply adding to the number of sets would accomplish

the same without adding energy consumption to each access. Therefore, for an application

that demonstrates this sort of behavior, the best configuration is a cache that is big enough

to fit the working set with minimal associativity.
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We will exploit the latter two types of misses in the form of two different knobs.

The first is associativity adaptivity, which dynamically adjusts the associativity of the cache

by powering down entire cache ways when necessary; the second is set adaptivity, which

dynamically adjusts the size of the cache by powering down the sets when necessary. As we

will show, the associativity increases the dynamic energy consumption per access, so the

energy tradeoffs between the two knobs also differ. It is up to SEECs decision engine to

decide the appropriate amount of associativity that performs most efficiently for a specific

application.

All novel architectural features described in this section are feasible, as we have

designed this cache in RTL and have shown them working in hardware simulation.

4.1.3 Implementation

Associativity Adaptivity

The associativity adaptivity knob allows SEEC to adjust the associativity of the cache,

giving it the ability to improve the conflict miss behavior for an application. In addition,

it also allows SEEC to control the energy tradeoff, because powering down cache ways

decreases both static power and dynamic energy per access.

In general, caches are organized in several banks surrounded by control logic. There

are several types of bank organizations, but for our purposes Figure 4.2 details the archi-

tecture of the cache we will analyze.

In this design, each cache bank matches the width of a single word (32- or 64-bit), and

each way is associated with a separate bank. To access a word in a bank, the appropriate

word line is charged across all ways, and the corresponding bit lines are driven by the

contents of SRAM cell. Since banks usually contain a considerable number of lines, it is
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Figure 4.2: Cache bank organization with surrounding control and sense logic.

difficult to fabricate a single consistent SRAM block for an entire bank. Instead, SRAMs

are provided as smaller blocks, and together they form the banks of the cache.

In an associative cache, writes occur by accessing a single way, so the access energy

per write does not change with greater associativity. For reads, however, an associative

cache accesses every way in parallel, and the data is compared with the tag of the read

address. Therefore, an N-way associative cache in general consumes O(N) times dynamic

energy than a direct-map cache.

To power down a way, the corresponding SRAM blocks are powered down. This

requires an extra input to each SRAM block that will gate the voltage and clock inputs of

the block, and is implemented at the circuit-level. What is left then is to allow software the

ability to control these SRAM blocks, so that SEEC can dynamically tune the associativity

of the cache.

As we mentioned before, the control of hardware knobs is mapped in memory, so

SEEC controls the associativity adaptivity knob through regular memory load/stores to
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a special status register. Once a cache way powers down, there are two tasks the status

register is used for:

(i) Determining the number of ways available for a write.

(ii) Decoding the power signals to the appropriate banks.

In (i), when the cache controller determines a way to write its target data, that way

must be guaranteed to be powered on - exceptions to this rule would cause the data to

be lost. To make this guarantee, a decoder is used to mask the signal generated by the

cache controller that indicates the way to be written. Figure 4.3 shows a simple method to

convert a 4-way associative cache to a 2-way associative cache. In this figure, the decoder

is simply a modulus function where the base is controlled by the associativity stored in the

status register. As the associativity was initially 4-way, the replacement policy in the cache

controller decides that the next write should target Way 3. However, knowing from the

status register that the associativity has changed to 2-way, the new target way is 3 (mod

2) = 1. To be sure, the resulting evictions may violate the replacement policy temporarily,

but the cache is functionally sound, and the policy is eventually upheld with sufficient time.

Alternatively, the decoder can be as complex as desired by the architect, and made to

always honor the replacement policy. However, keeping with the theme of energy efficient

architectures, a simple decoder like this one is likely more desirable.

Likewise, in (ii), a simple encoder controlled by the status register provides the power

signals to the appropriate banks. Figure 4.4 shows how the associativity value in the status

register is encoded as a 4-bit vector to the power inputs of the banks when the associativity

changes from 4-way to 2-way. Again, more complex encoders can be implemented to select

specific ways for power down, but a simple scheme is to turn off the higher order ways.

Lastly, to maintain consistency in the cache, ways must be guaranteed to be com-

pletely empty when they are powered on. This is important because cache lines that were

valid in powered down ways could have be replaced during the time they are off. Other-
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Associativity
Status Register

Way 0 Way 1 Way 2 Way 3

LRU way mad (# ways) foo

Figure 4.3: A 4-way associative cache converted to a 2-way associative cache. A write access
intended for Way 3 is decoded to Way 1 due to the new associativity.

wise, if a way powered up with valid data, then there would be cache lines living in separate

places. This task does not require much implementation work, as caches need to be flushed

during their initial power up anyway; the only extra requirement here is that flushes can

be made at a per-way granularity.

Set Adaptivity

The set adaptivity knob allows SEEC to adjust the size of the cache by adjusting the total

number of sets in the cache. This is useful for data that does not generate a lot of conflict

misses, but would fit into a smaller cache size. This way, the total size of the cache can

be changed without changing the underlying associativity. Unlike the associativity knob,

dynamic energy per access does not change when adjusting the number of sets, but shrinking

the total number of sets will decrease static power consumption.

To dynamically power down specific sets is non-trivial because most SRAM arrays
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Associativity
Status Register

Way 0 Way 1 Way 2 Way 3

ena ena

1 10 0
enable encoder 0

ena ena

Figure 4.4: A 4-way associative cache converted to 2-way associativity. The power signals for

each bank are delivered from an encoder that converts the value stored in the associativity

status register.

are densely packed, and do not provide gating at such a granularity. However, as shown

in Figure 4.2, ways are composed of several separate blocks, and as previously discussed

these blocks can be powered down independently. Thus, the set adaptivity knob is easily

implementable at the granularity of SRAM blocks. This is reasonable, as powering down

sets at a cache line granularity is unlikely to change the cache behavior by very much

anyway.

Much like the associativity adaptivity knob, a status register can be read and written

directly by SEEC from software. Figure 4.5 shows an example where each way in a 4-

way associative cache is composed of two separate blocks. Each block will have its power

enable signal controlled by a decoder connected to a status register, which holds the set

configuration of the cache. In this simple example, as there are only two blocks per way,

the status register may hold either 0 or 1.

Since the number of valid sets changes with this knob, the cache mapping function
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Set Configuration
Status Register

Way 0 Way 1 Way 2 Way 3

ena ena ena ena

1 1 1 1
enable encoder -

Figure 4.5: A 4-way associative cache where half the number of sets is powered down. Set
adaptivity is achieved by turning off constituent blocks in a bank.

needs to be adjusted as well. In most modern caches, addresses are mapped into the cache

by a simple mask that divides the address into parts. Starting from the least significant

bit 0, the appropriate number of bits is used for the line offset, the set index, and the

tag, respectively. The bits for the cache line index are exactly enough to uniquely identify

every set in the cache, but if the total number of sets changes, so too must the set index.

Figure 4.6 illustrates how the set index bits grow with the total number of sets.

The number of tag bits necessary to identify a cache line decreases as the size of the

cache grows. However, the physical SRAM blocks that compose most tag caches have a

fixed width, and implementing a tag cache with adjustable bit width is a very expensive

circuit-level feature. Therefore, in our investigation, the length of the tags is fixed to the

length of the largest tag required (i.e., the tag required for the smallest possible cache, N -

k - 1 bits in Figure 4.6). For SRAM blocks that can efficiently power down bitlines, it may

be possible to make efficiency gains in an adaptive tag cache, but this is outside the scope

of this thesis.
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N-1

Static
Cache Mapping

Adaptive
Cache Mapping

Tag Set Index Line Offset

N-1 k

Tag Line Offset
I (k- i) bits

Set Index for Config 2
(k - i) + 1 bits

Set Index for Config 1

I (k-z)+2bits

Set Index for Config 0

Figure 4.6: Address mapping for static and adaptive caches. The number set index bits

changes with the set adaptivity knob, but the number of tag bits stays the same.

Adjusting the mapping function actually requires very little extra hardware, as it

can be done simply by using the set configuration register to directly control the address

mask. Once the mask is updated, address locations that map to powered-down locations

are remapped to still functioning sets. Figure 4.7 shows the procedure where a cache begins

with all its sets available, and then shrunk by half. An address that would have been in the

bottom half of the cache is then remapped to the top half. One drawback of this method

of adjusting the mapping function is that the number of blocks powered on must be powers

of two. As such, the number of available configurations for the set adaptivity knob is log

M, where M is the total number of SRAM blocks per bank.

Finally, maintaining the consistency in the cache as the number of sets changes is

non-trivial. Cache lines are susceptible to aliasing when the number of sets is dynamically

adjusted. Consider the case where the cache grows in the number of sets, as shown in

Figure 4.8. In this example, address 0x1100 is originally mapped to the top half of the

cache, but when the cache expands it ss mapped to the bottom half instead. As the cache
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Set Configuration 0
Status Register

Address mask

Set Configuration [
Status Register

Address mask

Way 0 Way 1 Way 2 Way 3

Way 0 Way 1 Way 2 Way 3

- -.. .- .- - -z- - - m ..

Figure 4.7: An address is that is mapped to the bottom half
the top half when the set configuration is adjusted.

of the cache is re-mapped to

remains in this state, data will be written to its location in the bottom half of the cache.

When the cache shrinks back to the half cache state, and the original cache line in OxO100

was not evicted, pursuant reads to address Ox1100 will hit on an outdated version of the

data!

To solve this issue, not only do sets coming out of power down have to be clear, but

the entire cache must be flushed when the cache grows. Flushing the entire cache may be

inefficient, as this aliasing issue is rare, and is usually localized over just a few addresses

even when it does occur. However, as the memory access patterns of most applications are

relatively stable over time, SEEC should not be growing the cache size often over short

periods of time. So for our purposes, this model for maintaining consistency within the
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Store foo into Ox 110
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Figure 4.8: Illustration of the aliasing problem in the set associativity knob.

cache is acceptable. Other methods of tracking aliasing are possible, but keeping with the

theme of low-power architectures, we will not pursue this path further.

Memory Hierarchy

As cache lines are invalidated on-the-fly, the system must be careful to maintain the cache

coherency of the memory hierarchy. In this thesis, we will consider two levels of private

cache per core, and implement a directory-based, write-back MSI protocol. Directories are

distributed across the tiles with memory controllers that access DRAM off-chip, and L2

caches are inclusive. Figure 4.9 shows a representation of this memory hierarchy for four

cores.
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Figure 4.9: Memory hierarchy showing private L1/L2 caches, and a distributed directory.

We only consider systems where the LI cache is adaptive. There are two main reasons

for this decision:

(i) The Li cache is the fastest and is the most frequently used cache in
the hierarchy.

(ii) The overhead of maintaining coherency for L2 cache adaptivity is
prohibitively high.

The first point is clear: sizing the Li cache to fit the working set of the application

can provide tremendous performance gains to the alternative. The second point is more

subtle. Consider the case where SEEC makes an adaptation to shrink the LI cache to half

its size, therefore invalidating all the lines that are powered down. Since the L2 cache is
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inclusive, there is no further need of any updates. On the other hand, Figure 4.10 shows

that changing the size of the L2 cache is much more involved.

rer ove sharer

Figure 4.10: Illustration of the coherency problem if the cache knobs are implemented for

the L2-cache.

First, because the L2 cache is inclusive, it must invalidate the corresponding lines

in the Li cache, which requires an invalidation request for every invalidated L2 cache line.

Second, and more important, the appropriate entry in the directories must be updated to

remove the appropriate sharers. Since the directory is distributed, not only does the on-

tile directory need to be updated, but the directories on other tiles need to be updated as

well. To this end, a network message for every invalidated cache line must be sent to the

appropriate tile with the directory entry. This not only consumes considerable amounts

of energy, but also generates an extreme amount of network traffic and latency. To make

matters worse, since multiple lines from multiple tiles could be tracked in a single directory

entry, the network router on the tile of heavily used directories would be severely congested.

Relatively speaking, the overhead of the first requirement is trivial; the overhead

required to maintain directory coherency is extremely expensive. For this reason, we provide

the cache knob only for the first level of caches.
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4.2 Core Allocation

4.2.1 Motivation

The core allocation knob controls the total number of cores available for an application.

Traditionally, a parallel application divides its workload into parts, and distributes the

work among several threads of execution. When the number of threads is smaller than the

number of total cores in the system, then the point of this knob is simple: allocate at most

the corresponding number of cores to the applications threads, and idle the rest. However,

the exact number of cores to allocate is unclear, because allocating one core per thread

is not necessarily the most efficient configuration. There are several tradeoffs associated

with running a core, and the optimal allocation might have multiple threads running on the

same core, leaving the other cores to idle and save power. In the case that there are more

threads than cores, then the problem becomes even more difficult. The complexity of this

knob makes it ideal for a learning self-aware controller such as SEEC.

4.2.2 Tradeoffs

The main decision SEEC must make for this knob is whether the performance provided

by running an extra core can offset the extra energy required to run it. The extra energy

required to run a core is the difference between the power consumption of a running core

and an idle core. This difference can be considerable, as most state-of-the-art cores provide

deep-sleep states that can completely power down the core at the expense of a longer start-

up time the next time it is used. As a result, allocating extra cores for performance comes

with signficant cost in energy.

What makes this knob hard to tune is the non-monotonic relationship between per-

formance and the number of cores. The speed of multithreaded applications depends on the
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amount of parallelism available, the division of workload, and the data locality of threads.

Moreover, these dependencies may change over the lifetime of an application, so a single

optimal configuration may not even exist.

We first consider how the type of parallelization and synchronization can affect the

performance of an application. A common approach for parallelizing an application is to

split the total workload into parts, and distribute the parts among a specific number of

threads. Another approach is to divide the workload into smaller tasks and place them into

a queue, where a specified pool of threads then request for work when they are able. In

any approach, applications require synchronization at the end of each iteration so they can

consolidate the results before continuing.

Unfortunately, dividing the workload into exactly equal parts is non-trivial, and in

fact a lot of time and effort is made by the application developer to manage this behavior.

As an example, consider the matrix multiplication shown in Figure 4.11. The common

block multiplication divides the matrices into equal-sized blocks, distributing the block

multiplications across parallel threads, and then consolidating the solution at the end.

Depending on the sparsity of each block, the time it takes each thread to compute a solution

can vary widely. If multiple short-running threads can finish their work before a single

long-running thread, then allocating a separate core for each short-running thread is likely

to be wasteful, as they would have to wait to synchronize with the long running thread

(Figure 4.11(a)). Alternatively, scheduling multiple short-running threads on a single core,

and leaving the others idle, would be much more energy efficient (Figure 4.11(b)). Of course,

it is possible for an expert application developer to identify the ideal distribution of work

for the specific input type, but SEEC can automatically accomplish the same thing with

this knob. Further, SEEC is also able to adapt the core allocation as unforeseen workload

changes occur, which is a luxury not available to the application developer.

Secondly, depending on the applications access patterns, data locality plays a large
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Blocked Matrix
(a) A B C D
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Figure 4.11: Unbalanced workloads in Matrix Multiplication: both distributions (a) and
(b) execute with the same latency because block D is a bottleneck, so distribution (b) is
much more energy efficient.

part in the optimal number of cores. Consider the case where threads actually share parts

of their working set. Executing threads on the same core could avoid what would otherwise

be cold misses that require long-latency DRAM accesses. Having warm caches can make

a substantial difference in performance as well as energy efficiency, but the issue of data

locality is application specific, and can also change during the lifetime of an application.

The data locality issue brings another advantage to coordinated self-aware systems

such as SEEC, because it is largely related to the size of the caches. Since SEEC has the

ability to tune both the size of the cache as well as the number of cores through a singular

interface, it can converge on the optimal configurations for both knobs simultaneously. On

the other hand, a closed adaptive system might configure its core allocation optimally at one

moment for a specific cache size, only to find that the cache size changes shortly afterwards,

and forcing it to readjust the number of cores.
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4.2.3 Implementation

The core allocation knob is strictly an OS-level feature, and can be implemented by the

thread scheduling features built-in to most kernels. In this thesis, we consider a system

with a pre-emptive thread scheduler that allows the user to specify a core affinity for each

thread. The feature for setting core affinity, or CPU pinning, is not unique, and can be

found in most operating systems.

Core affinity can be interpreted as a set of bits that specifies a list of cores that a

thread may prefer over another. When a thread possesses non-trivial affinity, the scheduler

prioritizes those cores when scheduling threads. For instance, if a thread is running on a

core that it has no affinity for, the scheduler will migrate the thread to a core that it does

have affinity with. Therefore, to implement the core allocation feature, SEEC needs only

set an affinity containing the appropriate total number of cores for all the threads in the

application. In Figure 4.12, SEEC is running on a 4-core system, and each thread has an

affinity mask that indicates that all cores are available. When SEEC decides to adjust the

total number of cores available to two, it tells the OS to change the affinity masks for each

thread. Eventually, the scheduler will honor the affinities, and the cores will be scheduled

to two cores.

Note that once the threads settle onto the cores associated with their affinity masks,

the scheduler is free to optimize the performance of these threads among those cores. There-

fore, the effects of load balancing and data locality are as good as the scheduler. Further-

more, there is no need for SEEC to deal with shutting down idle cores, as the OS should

move the cores into a sleep state after sufficient amount of time.
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Affin' Set

Core O Core 1 Core 2 Core 3

4-core configuration

Affino Set
11 1 00

Sleep Sleep

Core 0 Core 1 Core 2 Core 3

2-core configuration

Figure 4.12: To adapt the core allocation knob, SEEC sets the affinity mask of each thread
to correspond to the desired configuration.

4.3 Domain-Specific Dynamic Voltage and Frequency Scal-

ing (DVFS)

4.3.1 Motivation

DVFS (Dynamic Voltage and Frequency Scaling) is a technique used to tune down the

operating frequency of a component if that amount of performance is not required. When

frequency is decreased, the supply voltage can be correspondingly decreased, thus saving

on total energy consumption.

DVFS is a well-studied knob, because the scenarios where it is useful are plentiful,

and the level of energy savings is very attractive. Consider a core that is stalled frequently,

and is bottlenecked by the speed of the memory system; then the core does not need to be

at maximum frequency at all times. For this reason, many modern systems dynamically

vary the voltage and frequency of its cores, such as Intel's Turboboost system described in

Section 2.1.2.

For this study, we take this knob one step further, and provide DVFS knobs for
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each of the core and cache components for each tile in the system. This is useful because

applications frequently have vastly different demands on the components of the system,

and providing separate DVFS knobs to SEEC allows it to tune the performance of each

component to the exact demands of the application. This requires the clock domains of

the core and cache components to be separate, and also some complexity overhead for

communication between clock boundaries, but is a necessary expense of implementation.

4.3.2 Tradeoffs

The DVFS knob allows SEEC to adjust the performance of both the core and cache compo-

nents by tuning the clock frequency. In exchange, the power consumption of the component

moves in the same direction. Fortunately, this tradeoff is what makes dynamic frequency

scaling such a popular technique, because the frequency versus power relationship is super-

linear, given by:

Ptotal ZCV 2 f + Pstatic

Where C is the gate capacitance of the CMOS technology, f is the operating fre-

quency, V is the supply voltage, and a is the activity factor, which indicates the relative

factor of transistors switching at a time. From this relationship, it is clear that f is directly

proportional to the total power consumption. Moreover, scaling down frequency allows for

a corresponding scaling of supply voltage, so the actual benefit of frequency scaling is P

o( fV 2!

DVFS is useful because different applications put different demands on each system

component. For example, an application that is memory-bound does not require a fast pro-

cessor core, because it spends a large portion of cycles stalled and waiting for the memory
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subsystem. In such a case, tuning down the frequency of the core component while main-

taining the frequency of the cache component can save a considerable amount of energy

while sacrificing very little overall performance. On the other end of the spectrum, there

are applications that are compute-bound, and require a fast processor, but have very little

use of the memory system. In this scenario, the cache component can save a considerable

amount of energy by slowing down, while the compute component maintains its speed. By

providing separate DVFS knobs for the cache and core components, we allow the self-aware

controller to capitalize on both these types of applications.

With that said, the exact clock frequencies for the cache and core components can

depend on a number of factors: how many memory accesses miss on the cache, what propor-

tion of instructions are memory operations, what the relative delay in memory accesses over

the core clock period is etc. Again, like the other knobs, the optimal DVFS configuration

can be difficult to determine for an application programmer, but SEEC relieves this burden.

4.3.3 Implementation

To provide a DVFS knob that allows separate control of the core and cache frequencies,

the clock domain of each component must be separate. The support this feature, the core

pipeline must stall and wait for any cache accesses to complete before progressing. This

way, even if the core and the caches run at different speeds, no data is lost because no more

than one operation completes at a time. In addition, signals that travel between the core

and cache domains must pass through hardware synchronizers to avoid metastability.

Like the core allocation knob, frequency scaling for the DVFS knob can be imple-

mented as an OS-level feature. Many modern operating systems provide hooks for spec-

ifying the desired frequencies, and then voltage and frequency are scaled accordingly in

the hardware. At the architectural level, exposing this knob to software requires only the
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proper input to the clock controller, and those values can be set through memory mapped

addresses, similar to the previous knobs.

Lastly, recent studies have pointed towards the diminished returns of DVFS [23].

One main concern is that as the technology nodes become smaller, supply voltages also

scale down. As a result, as nominal supply voltages fall to the range of 0.9-1.OV, there

is little margin for voltage scaling between the threshold and supply voltages. To address

this concern, one approach is to develop future systems with subthreshold circuits [25]. In

this work, logic and memory are designed with a novel methodology, such that circuits

maintain functionality even in the subthreshold domain of the transistors. To be sure, the

tradeoff for running logic at a subthreshold voltage is an exponentially large sacrifice in

performance, but this is fine as long as the action models in SEEC are aware of them. A

full description of subthreshold logic and memory is well beyond the scope of this thesis,

but this technique can provide a much larger swing in supply voltage, vastly improving the

degree of effectiveness of the DVFS knob.
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Chapter 5

Experimental Evaluation

5.1 Methodology

5.1.1 Graphite Simulator

The SEEC framework has been tested on real x86 machines, and reports its effectiveness

for those systems have been shown in [13]. However, since our interests lie in new adaptive

mechanisms for future architectures, we cannot use traditional machines because the systems

we are interested in simply do not exist. Therefore, for our purposes, all of the measurements

for experimental evaluation will be made using the Graphite simulator [14].

For these experiments, the application under evaluation is linked to the Application

Heartbeats and SEEC libraries, and analyzed by the Graphite simulator. The SEEC run-

time is instrumented into the application source such that no extra threads of execution

are required for the self-aware portion of the application. To make observations, applica-

tions will also be instrumented with the Application Heartbeats API so that heartbeats are
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Graphite systems
Adaptivity Manager Programmer

Active Knobs: associativity,
cache frequency,

Target Architetre Adaptivity API

get~daptivitvTable() act

Application d

1 1.0 1.0

Application A%

Programmer Application N ', c.

Heartbeats SEEC Runtime

Figure 5.1: An application is simulated on a self-aware multicore system using Application
Heartbeats, SEEC, and Graphite.

emitted at the beginning of significant inner loops. For making actions, the SEEC runtime

can use a Graphite API specifically designed for adaptivity.

Once Graphite is configured with the desired knobs, SEEC can retrieve a list of all

possible actions and their associated speedups and cost through a single API call during

initialization. Knobs are configured by the Graphite programmer (i.e., systems programmer

in a real system), and the actual details are abstracted away so that SEEC needs only provide

a configuration number to specify an action. Figure 5.1 illustrates the high level diagram

of this setup.
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5.1.2 Benchmarks

To evaluate the knobs, we will study the SEEC's behavior of the SPLASH2 benchmark

suite [2]. SPLASH2 is a collection of shared memory parallel benchmarks representing a

wide range of computation behavior in the scientific, engineering, and graphics domains.

These benchmarks provide a good measure of effectiveness because they contain different

amounts of parallelism, working set sizes, and communication to computation ratios. Each

one of these characteristics directly affects the behavior of a knob:

" The amount of parallelism in an application characterizes how many cores can be effec-

tively utilized. By Amdahl's Law, the more inherent parallelism in an application, the

more effective extra cores are in speeding up the application. This is controlled by the

Core Allocation Knob.

" The working set of an application indicates the locality inherent in an application. As

described in Section 4.1.2, whether or not the working set fits in a cache can have tremen-

dous impact on miss rate, and therefore the local memory bandwidth and inter-core

communication. This is controlled by the Cache Associativity/Set Adaptivity Knobs.

" The communication to computation ratio indicates the potential impact of communica-

tion latency on performance. Communication is largely proportional to memory opera-

tions, which can result in local cache accesses, or off-chip memory accesses. Depending

on the breakdown of time spent in computation, memory accesses, or otherwise, the per-

formance of each of these components can be dynamically adjusted. This is controlled

by the Cache and Core DVFS Knobs.

While the algorithms of the benchmarks are pre-defined, the aforementioned charac-

teristics are extremely sensitive to the application parameters. Table 5.1 shows the exact

applications that were used, and the associated application parameters.
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Benchmark Application Parameters

volrend input head, 8x8 block, 8 steps, 1 rotation

raytrace a = 1, m = 32

barnes nbody = 16,384, dtime = 0.025, tol = 1.0, fcells = 2.0, fleaves = 5.0, tstop = 0.075

ocean N = 258, e = le-7, R = 20,000, T = 28,800

water tstep = 1.5e-16, nmol = 512, nstep = 3, norder = 6, cutoff = 3.21

cholesky input tkl5.0

lu 512x512 matrix, 16x16 blocks

radix 256K integers, 1024 radix

Table 5.1: Application parameters for benchmarks.

5.2 Results

5.2.1 Setting Goals

To evaluate a goal-oriented system such as SEEC, we must set an appropriate goal. Unfor-

tunately, goals are not only application specific, but also usage specific: different application

users may set different goals for the same application. The sheer number of possible goals

makes it impossible to evaluate SEEC for every goal and application. Instead, we evaluate

SEEC by targeting it towards challenging goals, and assume that it will perform well for

easier goals. In this way, we can at least provide a worst-case bound on SEEC performance.

To make the job of SEEC difficult, we create a performance goal where a large number

of sufficient configurations with similar effciency exist. In this case, SEEC must make

intelligent decisions to select the optimal configuration from a pool of similar configurations.

The maximum performance goal would not accomplish this, because there is only one

sufficient system, and SEEC will uninterestingly selecting the fully-loaded configuration.

On the other end of the spectrum, if the goal is minimum performance, SEEC will notice

that all configurations are sufficient, and select the lowest performing configuration. Instead,

we set the goal to one-quarter of the maximum performance attained by the follow loaded
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Adjusted IPS/J min(IPStarget, IPSconfig)
Etotal

Where IPSconfig is the instructions per second over the lifetime of the application,

IPStarget is the target average instructions per second, and Etotal is the total energy across all

components in the system. By using the minimum of the target performance and the actual

configuration performance, we penalize configurations that provide more performance than

necessary.

The system we will be using for our experiments is the one described in Table 5.2,

added to it the knobs we described in Chapter 4. The knob configurations are given in

Table 5.3.

Knob Available Configurations

Cache Associativity direct-map, 2-way, 4-way

Cache Sets 4KB, 8KB, 16KB per bank

Cache DVFS 200MHz(O.5V), 400MHz(O.6V), 600MHz(O.7V), 800MHz(0.8V), 1000MHz(O.9V)

Core DVFS 200MHz(O.5V), 400MHz(O.6V), 600MHz(O.7V), 800MHz(O.8V), 1000MHz(O.9V)

Core Allocation 1, 2, 4, 8, 16, 32, 64, 128, 256

Table 5.3: Possible knob configurations.

We first identify the configuration that has the highest cumulative Adjusted IPS/J.

This is the optimal configuration for a system that cannot change during runtime, and

is statically configured once for all the applications. We call this configuration the non-

adaptive configuration:

Cores Core Frequency Li Size Li Associativity Cache Frequency

Optimal Non-Adaptive Config 128 800MHz 64KB 4-way 800MHz

Table 5.4: Optimal non-adaptive configuration over all benchmarks.

To identify the static oracle configurations, each application is simulated on Graphite

with every combination of the knob settings shown in Table 5.3. The configurations with

- 72 -



5.2 Results

system given in Table 5.2.

Parameter Setting

Cores 256
Technology 32nm

Core Frequency 1 GHz
Li Cache 64 KB 4-way
L2 Cache 256KB 4-way

Cache Frequency 1 GHz

Table 5.2: Simulation settings for fully-loaded system.

To confirm that this assumption is correct, consider the Pareto plot in Figure 2.5.

There are very few configurations at the top of the performance spectrum, but many near

the bottom. This is due to the fact that the knobs configurations grow exponentially, and

only very few configurations are capable of high performance. That is to say, for instance,

that core size is tuned by doubling or halving, and so performance scales exponentially.

One-quarter maximum performance will have a large number of sufficient and similar con-

figurations, making the decision of picking the optimal one difficult for SEEC. The effect is

similar to guessing the values of two dice when given only the sum: seven is most difficult

because it possesses the most possible combinations.

5.2.2 Static Oracle

The static oracle configuration attains the target goal with the best energy efficiency pos-

sible, on a system that cannot change during runtime. That is, it is the best configuration

that an application developer could select given an infinite amount of time.

We define the best configuration as the one that attains at least the target perfor-

mance goal, and consumes the least energy. This is equivalent to the configuration with the

maximum Adjusted Instructions per Second per Joule, given by the following:
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Application Cores Core Frequency Li Size Li Associativity Cache Frequency

barnes 256 400MHz 64KB 4-way 600MHz

cholesky 128 800MHz 32KB 4-way 800MHz

lu-contig 128 800MHz 32KB 2-way 800MHz

ocean-contig 128 200MHz 16KB direct-map 600MHz

ocean-non-contig 128 200MHz 16KB direct-map 600MHz

radix 32 800MHz 32KB 2-way 800MHz

volrend 32 400MHz 64KB 4-way 400MHz

water-nsquared 256 800MHz 32KB 4-way 800MHz

water-spatial 64 600MHz 16KB direct-map 600MHz

Table 5.5: Static oracle configurations for all benchmarks.

the highest Adjusted IPS/J are shown in Table 5.5.

In Figure 5.2, the efficiency of each static oracle is normalized against the non-

adaptive system, showing remarkable improvements of up to 4.2x. Clearly, the static oracle

can make good use of the knobs, and leverage them effectively to cater to each applications

needs. This makes a strong case for providing any adaptivity possible: even if a system

cannot be dynamically self-aware, the ability to at least provision on a per application basis

is significantly better than a system with no configurability at all.

5.2.3 SEEC Results

To evaluate the behavior of SEEC, we again utilize the five knobs and the configurations

presented in Table 5.3. The only difference is that for the following results, the cache

knobs were split among the instruction and data caches, effectively doubling the amount of

adaptivity in the memory hierarchy.

There are a total of 32 possible combinations of these knobs, and our goal is to

determine how each knob performs with the others. To this end, each combination of knobs

- 73



Experimental Evaluation

5i

0z

4.5

4

3-5
3

2.5
2

1.5
1

0.5
0

* No Adaptivity

0 Static Oracle

III
4?A

~c%

qF, 54,

Benchmark

Figure 5.2: Results comparing static oracle configurations against an optimal non-adaptive
system.

is simulated by enabling specific knobs, and leaving the other knobs disabled. When disabled

during simulation, a knob is held at the configuration with maximum available performance.

For example, if the Cache Associativity Knob is disabled, then the associativity of the caches

will always remain 4-way associative, and if the Cache Allocation Knob is disabled, then

the application will always have 256 active cores. This emulates the case where real systems

are usually over-provisioned because there is no a priori information on the applications.

For these results, we use heart rate as the metric for best performance. The heart rate

is the total number of heartbeats emitted through the Application Heartbeats API during

a predefined window size. Again, we use a goal of one-quarter the maximum heart rate on

the fully-loaded configuration. Since the SEEC model is designed to optimize performance

while minimizing power, the appropriate metric to compare knob combinations is therefore

Adjusted Heart Rate/ Watt. Like with our previous study, we cap the heart rate of each

knob combinations to the target heart rate, so unnecessary performance is penalized:
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5.2 Results

Adjusted Heart Rate/W = min (HRtarget, HRcomb)
Pave

Where HRconfig is the average target heart rate over the lifetime of the application,

HRcomb is the average heart rate of the knob combination, and Pave is the total average

power over the lifetime of the application.

This metric is useful for measuring the quality of the knob combinations, because it

not only measures energy efficiency, but also includes information about SEECs convergence

behavior. If a set of knobs produces bad convergence behavior, then the total energy effi-

ciency would suffer, but on the other hand, if SEEC converges quickly, then the application

will correspondingly execute with higher energy efficiency. In a system with more knobs

enabled, SEEC is given more efficient, low-power states. However, having more states to

explore may cause delays in convergence. Therefore, we must determine if the addition of

more knobs actually provides enough improvement to performance and energy consumption

to offset the detrimental effect on convergence behavior. The Adjusted Heart Rate/Watt

metric directly reflects all these behavioral characteristics.

Over all 32 knob combinations, Table 5.6 shows the top five knob combinations as

ranked by Average Adjusted Heart Rate/W over volrend, raytrace, barnes, and water-spatial.

Knob Combination Knob Class Total States Normalized Heart Rate/W

Core Alloc, Core Freq, Cache Freq 3-knob 1000 2.57

Core Alloc, Core Freq, Cache Sets 3-knob 360 2.43

Core Alloc 1-knob 9 2.29

Core Freq, Cache Assoc, Cache Sets 3-knob 405 2.29

Core Freq 1-knob 5 2.20

Table 5.6: Top five knob combinations as ranked by average Heart Rate/W. Values are
normalized to the non-adaptive configuration.

To study the effect of different numbers of knobs, and the tradeoff of extra states
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and overall efficiency, we define the term knob class to describe combinations with a specific

number of knobs. That is, every knob combination with 3 knobs enabled is part of the 3-knob

class, and every combination with 4 knobs is in the 4-knob class. In Figure 5.3, we identify

the best knob combination in each knob class, and show their relative energy efficiency

normalized against the non-adaptive system. Table 5.7 contains the knob combinations of

each knob combination in the figure.
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Figure 5.3: Energy efficiency of the best knob combination in each knob class when targeted
to one-quarter maximum performance. Results are normalized against the non-adaptive,
fully-loaded system; actual knob combinations are shown in Table 5.7.

5.3 Discussion

It is clear from Figure 5.2 that even a statically adaptable system is far superior to a non-

adaptive system. The reason for such a large efficiency gain is the drastic disparity between

application behaviors: each application's unique idiosyncrasies cause it to put pressure on
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Knob Class Combination with Highest Adjusted Heart Rate/W

1-Knob Class Core Alloc

2-Knob Class Core Alloc, Core Freq

3-Knob Class Core Alloc, Core Freq, Cache Freq

4-Knob Class Core Alloc, Cache Freq, Cache Sets, Cache Assoc

5-Knob Class Core Alloc, Core Freq, Cache Freq, Cache Sets, Cache Alloc

Table 5.7: Best knob combinations for each knob class. The efficiency of each combination

is shown in Figure 5.3

specific components. While the non-adaptive optimal configuration in Table 5.4 provides

reasonable performance on every benchmark, it underperforms for some benchmarks, and

outperforms for some others. Providing adaptivity can cater to these idiosyncrasies, and

statically configuring them for each application results in large gains in efficiency.

Consider barnes, which is a highly parallelizable, and benefits from using all 256

cores in the system. Even though adding extra cores is very expensive in terms of power

consumption, the performance gain from adding cores for barnes outweighs the costs. To

wit, compared with the optimal non-adaptive configuration which contains 128 cores, the

static oracle burns 2.01x more power throughout the lifetime of the application. However,

by adjusting the number of cores to the system to 256, the static oracle completes barnes

3.26x faster, offsetting the cost of extra power.

Conversely, radix does not scale with the extra cores, and completion time actually

stops improving after 64 cores. The reason for this is a consequence of the algorithm, where

prefix computation in each phase cannot be completely parallelized [2]. Therefore, unlike

barnes, the optimal configuration is the one that attains the target performance using as few

cores as possible. Whereas barnes sacrificed higher power consumption and offset it with

faster time to completion, radix maintains power consumption as low as possible. The static

oracle for radix burns 0.24x power, and completes in 1.01x the time over the non-adaptive

configuration.
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We show the contrasting behaviors of completion time and total energy of barnes

and radix in Figure 5.4. For radix, the completion time flattens out completely after 32

allocated cores, whereas barnes continues to reap the benefits of parallelism. As a result,

the total energy consumption of barnes actually decreases up to 256 cores, whereas total

energy for radix rises exponentially after 32 cores.

12 1 4 16 64 256

Total Cores Allocated Total Cores Allocated

-- barnes -radix -harnes -radx

Figure 5.4: Contrasting performance and energy behavior of barnes and radix. barness

completion time scales with the number of cores, but radix does not.

The point here is that, depending on the application and its input, adaptivity can

provide huge gains in efficiency. However, the space of configurations can grow quickly:

even with the five knobs we described in Table 5.3, there are a total of 1,800 configuration

states that an application developer must test per application! As it is likely that there

would be more knobs with even more states in a massively multicore system, it is hard to

expect that an application developer can be as good as the static oracle. In fact, just by

splitting the cache-base knobs over the instruction and data caches, the total number of

possible configuration states for 5 knobs is 81,000!

In Table 5.6 we showed the best knob combinations as ranked by Heart Rate/Watt.

As expected, SEEC makes significant gains in energy efficiency over the non-adaptive sys-

tem. The Core Allocation, Core Frequency Knob, and Cache Sets Knob are present in a

majority of the top combinations. This suggests that these knobs offer the most useful
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tradeoffs to SEEC. This is not entirely surprising, because as we discussed in Section 4.3,

the frequency knobs also allow for corresponding voltage scaling, which greatly improves

the total power efficiency. As well, there are 256 cores in the simulated system, so the effect

is compounded by the large number of cores that are tuned. For that same reason, it is

also expected that the Core Allocation Knob has a large impact on efficiency. Finally, the

Cache Sets Knob can effectively tune a system to the appropriate working set size.

While the cache-based knobs are useful to an extent, the core-based knobs are clearly

stronger for this application set, as the top combinations all include at least one core-

based knob. This is likely due to the nature of the benchmarks, which are dominated

by compute-type operations. To wit, only an average of 31% of the instructions in the

applications simulated were memory accesses. In addition, in the architecture of the tiles

we are analyzing, the total power consumption is dominated by the application core, and

so core-based knobs offer a larger impact on the total efficiency of the system. The cache-

based knobs would likely be more effective for multicore systems with even simpler core

architectures and larger caches, perhaps as in an embedded multicore system. However, in

our analysis of an Angstrom-like system, we show that cache size based knobs are not as

effective as the others.

According to Table 5.6, the 3-knob class is the most effective, and not the 5-knob

class. In an ideal world, adding more knobs and adaptivity would only improve SEECs

behavior, because adding more knobs merely adds granularity, never eliminating existing

good states. However, in reality, adding more knobs to the system usually adds to the

configuration space, creating a larger space for SEEC to explore. The fact that the 2-knob

class is uncharacteristically lower than the 1-knob class, while the 3-knob class is still higher

than both shows how difficult it is to make these predictions a priori. Depending on the

synergies available between the knobs, SEEC can perform better even if the configuration

space is larger.
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Finally, we will discuss the convergence behavior of the knob classes. Figure 5.5

shows the heart rate behavior of the knob combinations with the most number of states in

each knob class for volrend. The 1-knob and 2-knob classes converge almost immediately,

as SEEC only needs to search through at most 25 and 225 states, respectively. However,

because of the lack of knobs, SEEC does not have the ability to put the system in lower

power configurations even if it hits the target heart rate, hence the lower overall efficiency.

As it turns out, SEEC actually has trouble converging for the 3-knob combinations, as it

only makes the goal right at the end of the simulation. That being the case, the 3-knob

combination possess more states that are efficient, so it can avoid being in wasteful states

even as it continues to converge to the goal. The 4-knob and 5-knob combinations show

much more erratic behavior, but by the end of the simulation they too begin to converge.

700 -

60

500

400

300

200

100

0

-+--Knob

-U-- 1-Knob

-* 2-Knob

,- 3-Knob

-+-4-Knob

+5-Knob

heart rate

0 2 4 6 8 10 12 14

Figure 5.5: The convergence behavior of the knob combination in each knob class with the
largest configuration space for volrend.

The source of SEEC's difficulty in the higher knob classes is not solely the number of

states; the quality of the action models is likely a big contributor to the erratic convergence

behavior as well. Recall in Section 2.3.3 that the action models for different knobs are com-

bined together by multiplication, which does not take into account the actual relationship
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between knobs. To be sure, SEEC can cope with incorrect values in the action models as

long as the values are relatively correct with each other (i.e., State 1 is faster than State 2,

even if the values are incorrect). However, even to correctly maintain the relative correctness

of the models is not guaranteed by multiplication, as the unique synergies between knobs

is non-trivial and not modeled by simple multiplication. For this reason, multiplication of

the action models is less accurate as the total number of knobs increases. The result is that

the action models for the higher knob classes are less accurate, making it a challenge for

SEEC to converge quickly.
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Chapter 6

Conclusions and Future Work

6.1 Contributions

With the multicore revolution in full force, the corresponding growth in transistor density

is threatening progress because of extreme constraints on power dissipation. Dark silicon

describes a scenario where the transistors in future technologies cannot all be active simul-

taneously, leaving large parts of the silicon unpowered. This effectively stunts the drive

for more cores on a chip, because even if the cores were available they could not be fully

utilized. Hence, designing energy efficient systems has come to the forefront of computer

architecture.

In this thesis, we share the vision that adaptive, self-aware systems may help solve

this challenge. An adaptive system provides mechanisms, called knobs, that can be tuned

to provide exactly enough performance for a specific application goal. This avoids provid-

ing systems with too much performance, which would consume more power than would

otherwise be necessary. However, to take full advantage of adaptivity, it is necessary to
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have enough configurability to cover all possible application behaviors. Unfortunately, the

configuration space scales quickly with the number of knobs and cores, and the task of

optimizing in such a space is unrealistic for an application programmer.

In Chapter 2, we present the background on self-aware systems, which can manage

adaptivity without pressing any burden on the application programmer. These systems are

introspective, allowing them to observe their own behavior and adjust the knobs as the

application is executed. Most existing self-aware systems can only deal with a single piece

of adaptivity, and cannot explore the configuration space in a global, consolidated manner.

We introduce a coordinated adaptive system, SEEC, as a possible solution to this problem,

and use this model for our evaluation.

In Chapter 3 we presented Angstrom, our proposed architecture of a massively multi-

core system. We focused on those components of Angstrom that are designed for facilitating

self-awareness and adaptivity. These include specific features specifically designed for the

parts of the ODA loop, which are ubiquitous in self-aware systems. For observation, we

presented memory-mapped performance counters and programmable event-probes for per-

formance monitoring, and integrated energy monitoring circuits that provide fine-grained

energy observations. For the decision component of the loop, we proposed the Partner Core

as a viable architecture for running the SEEC engine with low communication latency and

zero application slowdown. Finally, we described the SEEC and Angstrom interface that

allows actions to be made efficiently.

The main goal of this thesis explores the usefulness of different types of knobs,

especially for systems with high core counts, because studies of knobs in such systems have

never before been done. We presented five knobs in Chapter 4, and described the tradeoffs

that they are capable of controlling. Knobs were implemented and simulated in functional

RTL, and the details of each knob for a system such as Angstrom were included.
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In Chapter 5 we showed experimental results gathered from the Graphite simulator.

First, we showed that adaptivity is critical for massively multicore systems, as even allow-

ing per application configurability is far superior to a system that is non-adaptive. Results

showed that for the SPLASH2 benchmarks, and a target of one-quarter the performance of

a fully-loaded system, the static oracle executed with 2.2x IPS/J on average. We then went

on to evaluate SEEC on selected benchmarks that were known to have contrasting appli-

cation behaviors from the SPLASH2 suite. We found that the 3-knob combination of Core

Allocation, Core Frequency, and Cache Frequency provided the highest Heart Rate/Watt on

average, when targeting a performance goal of one-quarter the heart rate of a fully-loaded

system. Even though the 3-knob combinations performed hit their goals most efficiently,

we showed that the convergence behavior of SEEC was affected with the addition of knobs.

As the number of knobs was increased, the convergence behavior continued to get worse.

We attributed this to growth of the configuration space, and also the potential for action

model inaccuracies due to the combination of several knob models.

This thesis is the first to study the behavior of adaptive mechanisms in a massively

multicore self-aware system. Adaptivity and self-awareness provide an attractive way to

build energy efficient systems without unrealistic effort by the application programmer.

With the imminent danger of power dissipation threatening the utilization of a chip, this is

a necessary step in the further development of multicore systems.

6.2 Future Work

6.2.1 Partner Cores

Preliminary design of the Partner Core and the high-level architecture of an Angstrom

tile has been presented in [22], but there has been no work investigating its effectiveness
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for running the SEEC decision engine. In Section 3.3, we claimed that partner cores can

execute SEEC code with minimal communication latency and zero application slowdown,

and that this would give the freedom for the partner core to run slower than the main

application core. While this is true, the speed of the partner core directly affects the speed

at which SEEC makes its decisions, which ultimately impacts the speed of convergence. If it

is too slow, then SEEC could act on decisions that are well out-of-date, and never converge

to the target heart rate. Therefore, it is critical for us to empirically determine that the

frequencies we intend to use for the partner cores are sufficient for SEEC.

Furthermore, design work will need to be done for the interface between the partner

core and the tile hardware. Care must be taken, because direct changes to the hardware

by an asynchronous thread could break the functionality of the application thread. For

instance, the partner core cannot change the size of the cache without making sure that all

outstanding memory operations are first completed, lest a memory location gets invalidated

even before it is complete. The design of the action interface must be bug-free so SEEC

does not unintentionally violate functionality.

6.2.2 Application Classifier

As we have shown, SEECs convergence behavior tends to diminish as the number of knobs

increase. This is expected, because as we discussed in Section 2.1.1, the configuration space

scales by O(NM), where N is the number of knobs, and M is the number of configurations

per knob.

To help SEEC prune the configuration space, we propose a machine learning ap-

proach to classify the type of behavior of an application a priori. By predicting the behavior

of an application, a classifier can improve the convergence time of SEEC by guiding its ex-

ploration of the configuration space. For instance, if a classifier identifies that an application
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is compute-bound, then SEEC can focus on only the space where the compute component

is optimized for performance. This feature can make good use of the performance counters

described in Section 3.2.1.

A preliminary study was done to determine if a classifier could be effective using

only information that can be tracked by performance counters. To this end, statistics for

instructions per cycles, cache miss rate, and average memory access latency were gathered

for several known compute- and memory-bound applications running under numerous sys-

tem configurations. We used this data to form a training set for a number of different types

of classifiers, and measured the prediction error on a test set formed from the SPLASH2

benchmarks. Figure 6.1 shows well-defined peaks between compute- and memory-bound

applications, which show that these hardware metrics can be very useful for a classifier.

Using these metrics, we showed that a Bayesian classifier correctly predicted 86% of the

test set.

Effectively classifying an application provides benefits beyond just pruning the con-

figuration space. One challenge in the SEEC model is providing accurate action models

for each knob, because the behavior of knobs is application specific. For instance, an ap-

plication containing large amounts of parallelism can benefit from a lot of cores, so the

action model of the Core Allocation knob would describe a directly proportional relation-

ship between number of cores and performance. On the contrary, an application with no

parallelism will not benefit from extra cores, and in fact would suffer from the extra over-

head of communication, resulting in an inverse relationship between the number of cores

and performance.

One approach to address this issue is to allow the systems programmer to provide

multiple models for each knob, and associate each model to a type of application. Then, with

an effective application classifier, SEEC can determine which models to use. Making sure

that SEEC uses accurate action models at all times is extremely important for maintaining
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Figure 6.1: Histograms comparing behavior of compute- and memory-bound applications.
Well-defined peaks allow classifiers to make accurate predictions.

healthy convergence behavior, and a classifier could choose among a collection of models to

suit every application type.

6.2.3 Extra Knobs

While we have shown the effectiveness of five knobs in this thesis, the ultimate question of

what knobs to implement in Angstrom is still an open question. There are still a host of

unstudied sources of adaptivity, and any combination of them could benefit SEEC in an

impactful way.

A potential source of adaptivity is the number of memory controllers available in
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a system. The existence of multiple controllers increases the total bandwidth of memory

operations because pages can be spread across several controllers, and allow for more simul-

taneous accesses than a single memory controller. The tradeoff is that each extra memory

controller adds to total energy consumption. For applications that require high memory

bandwidth, this tradeoff is acceptable, but for applications that do not require many off-

chip memory accesses, the ability to adjust the number of memory controllers can greatly

improve efficiency.

Another source of adaptivity is in the network routers. Depending on the scheme

used by the routers, the latency per hop can be made to vary, thus affecting the total

communication latency of the application. Simple routing schemes, such as XY-routing,

require very little overhead, and produce very little latency per hop. However, simple

schemes risk the danger of blocking live packets if a router is congested, thus increasing

the total communication latency across the network. On the other hand, more complicated

schemes, such as ones that manage virtual channels, can manage congestion much more

easily. However, the extra overhead in virtual channel management will increase the latency

per hop. Therefore, depending on the type of network traffic in the application, the optimal

routing algorithm will differ. A knob that adjusts the flow-control algorithm can be used

to select the ideal network router depending on the type of traffic in the system.
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