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Abstract

A probability distribution over {0, 1}' is k-wise independent if its restriction to any k coordinates
is uniform. More generally, a discrete distribution D over E1 x ... x E, is called (non-uniform)
k-wise independent if for any subset of k indices {ii, . . . , ik} and for any zi E Ei 1, .. , Zk E Eik ,
PrX~D [Xi 1 - - -Xi, = Z1 .. z] = PrX-D[Xi 1 = zi] ... PrX~D [Xik = Zk]. k-wise independent
distributions look random "locally" to an observer of only k coordinates, even though they may
be far from random "globally". Because of this key feature, k-wise independent distributions are
important concepts in probability, complexity, and algorithm design. In this thesis, we study the
problem of testing (non-uniform) k-wise independent distributions over product spaces.

For the problem of distinguishing k-wise independent distributions supported on the Boolean
cube from those that are 6-far in statistical distance from any k-wise independent distribution, we
upper bound the number of required samples by O(nk/6 2 ) and lower bound it by Q (n 2 /6) (these
bounds hold for constant k, and essentially the same bounds hold for general k). To achieve these
bounds, we use novel Fourier analysis techniques to relate a distribution's statistical distance from
k-wise independence to its biases, a measure of the parity imbalance it induces on a set of variables.
The relationships we derive are tighter than previously known, and may be of independent interest.

We then generalize our results to distributions over larger domains. For the uniform case we
show an upper bound on the distance between a distribution D from k-wise independent distri-
butions in terms of the sum of Fourier coefficients of D at vectors of weight at most k. For the
non-uniform case, we give a new characterization of distributions being k-wise independent and
further show that such a characterization is robust based on our results for the uniform case. Our
results yield natural testing algorithms for k-wise independence with time and sample complexity
sublinear in terms of the support size of the distribution when k is a constant. The main technical
tools employed include discrete Fourier transform and the theory of linear systems of congruences.
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Abstract

A probability distribution over {0, 1}" is k-wise independent if its restriction to any k coordinates
is uniform. More generally, a discrete distribution D over Ei x ... x E, is called (non-uniform)
k-wise independent if for any subset of k indices {ii,... ,i} and for any zi E E .... , Zk E Ek
PrX~D[Xi, -.. Xik = Z- ... Zk] - PrX~D[Xi, = zi] ... PrX~D[Xik = Zk]. k-wise independent
distributions look random "locally" to an observer of only k coordinates, even though they may
be far from random "globally". Because of this key feature, k-wise independent distributions are
important concepts in probability, complexity, and algorithm design. In this thesis, we study the
problem of testing (non-uniform) k-wise independent distributions over product spaces.

For the problem of distinguishing k-wise independent distributions supported on the Boolean
cube from those that are 6-far in statistical distance from any k-wise independent distribution, we
upper bound the number of required samples by O(nk/62) and lower bound it by Q(n k 2 1/6) (these
bounds hold for constant k, and essentially the same bounds hold for general k). To achieve these
bounds, we use novel Fourier analysis techniques to relate a distribution's statistical distance from
k-wise independence to its biases, a measure of the parity imbalance it induces on a set of variables.
The relationships we derive are tighter than previously known, and may be of independent interest.

We then generalize our results to distributions over larger domains. For the uniform case we
show an upper bound on the distance between a distribution D from k-wise independent distri-
butions in terms of the sum of Fourier coefficients of D at vectors of weight at most k. For the
non-uniform case, we give a new characterization of distributions being k-wise independent and
further show that such a characterization is robust based on our results for the uniform case. Our
results yield natural testing algorithms for k-wise independence with time and sample complexity
sublinear in terms of the support size of the distribution when k is a constant. The main technical
tools employed include discrete Fourier transform and the theory of linear systems of congruences.
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Chapter 1

Introduction

The subject of this thesis is to investigate how many samples from a distribution are required

to determine if the distribution is k-wise independent or far from being k-wise independent. A

probability distribution over {0, 1}' is k-wise independent if its restriction to any k coordinates

is uniform. Such distributions look random "locally" to an observer of only k coordinates, even

though they may be far from random "globally". Because of this key feature, k-wise independent

distributions are important concepts in probability, complexity, and algorithm design [38, 40, 3, 44,

47]. For many randomized algorithms, it is sufficient to use k-wise independent random variables

instead of truly random ones which allows efficient derandomization of the algorithms.

Given samples drawn from a distribution, it is natural to ask, how miany samples are necessary

to tell whether the distribution is k-wise independent or far from k-wise independent? Here by "far

from k-wise independent" we mean that the distribution has a large statistical distance 1 from any

k-wise independent distribution. An experimenter, for example, who receives data in the form of

a vector of n bits might like to know whether every setting of k of those bits is equally likely to

occur, or whether some settings of k bits are more likely.

Naive algorithms using standard statistical techniques require Q(2') samples to test k-wise in-

dependence. We, however, seek sublinear algorithms, algorithms which sample the distribution

'The statistical distance between two distributions D 1 and D 2 over the same domain is

A(D 1 , D2) Z D1 (x) - D 2 (x)1. The extra factor 1/2 ensures that all statistical distances are between 0
and 1.

15



at most o(2') times. In this thesis we investigate algorithms for testing k-wise independent dis-

tributions over any finite domain with query and time complexity polylogarithmic in the domain

size. In fact more generally, our algorithms can test non-uniform k-wise independence over any

domain. Non-uniform k-wise independence2 generalizes k-wise independence by allowing the

marginal distributions to be arbitrary but still requiring that the restriction to any k coordinates

gives rise to a product of k independent distributions.

It is interesting to contrast our results with the result of Goldreich and Ron [32] (and a more

recent improvement of Paninski [52]) on testing uniformity. Note that a distribution over {0, 1} is

uniform if and only if it is n-wise independent. They show testing uniformity over {0, 1} requires

8( 2-) samples.

1.1 Property testing and robust characterizations

Property testing. The pursuit of fast algorithms which find "approximately correct" answers to

decision problems led to the development of property testing. Property testing has been studied in

a much more broader context than testing properties of distributions - in fact, it was first studied

for algebraic properties [56] and then generalized to combinatorial properties [31]. Formally, a

property P is a set of distributions (or Boolean functions, polynomials, graphs, etc) which share

certain common features or structures. An example of such a property is the set of monotone

increasing distributions 3 over {1, 2,... , n}. We say a distribution D is c-close to P if one can find

another D' in P such that the statistical distance between D and D' is at most c (in other words, D is

close to some element in the property). D is said to be c-far from P if otherwise. A property tester

for a property P is a fast algorithm which, on an input D, distinguishes between the case that D

satisfies P (i.e. D E P) from the case that D is E-far from satisfying P. Here, the (small) quantity

E, which measures the degree of approximation to the original decision problem, is known as the

distance parameter. The algorithm is allowed to err on inputs which are c-close to P (both answers

"YES" and "NO" are acceptable). Because of this flexibility introduced by the distance parameter,
21n literature the term "k-wise independence" usually refers to uniform k-wise independence in which all the

marginal distributions are uniform distributions.
3A distribution D : {1, 2,... , n} - [0, 1] is said to be monotone increasing if D(i) < D(j) for all 1 < i < j < n.
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a property tester can be much faster than the algorithm of the analogous decision problem. In

addition to speeding up processing of large data sets, property testing algorithms have important

applications in the theory of hardness of approximations. There has been extensive research on

property testing and it became one of the major areas in sublinear time algorithms - see the survey

articles [30, 54, 42, 23].

Property testing via robust characterizations. Property testing algorithms [56, 31] are often

based on robust characterizations of the objects being tested. For instance, a Boolean function

f : {0, 1} -* {0, 1} is said to be linear if there exists a E {0, 1} such that f(xi, . . . , x) =

_ aizi, where additions are performed modulo 2. The linearity test introduced in [16] is based

on the characterization that a function is linear if and only if the linearity test (which for uniformly

and randomly chosen x and y in {0, 1}, checks if f(x) + f(y) = f(x + y)) has acceptance

probability 1. Moreover, the characterization is robust in the sense that if the linearity test does not

accept for all choices of x and y, but only for most of them, then one can show that the function

must be very close to some linear function. These robust characterizations often lead to a new

understanding of well-studied problems and sheds insight on related problems as well.

A well-known characterization of k-wise independent distributions over {0, 1} is that all the

low level Fourier coefficients of the distributions are zero. Our main results show that this char-

acterization is robust. Furthermore, we prove that a similar robust characterization exists for the

most general non-uniform k-wise independent distributions over arbitrary finite domains. Such a

robust characterization is then used to design efficient testing algorithms for k-wise independent

distributions. These robust characterizations offer a new understanding of the combinatorial struc-

tures underlying (non-uniform) k-wise independent distributions and it is hoped more applications

of these robust characterizations will be found in the future.

Our results. Our main result is that the property of being a non-uniform k-wise independent dis-

tribution over any finite domain is testable with query and time complexity polylogarithmic in the

domain size. For technical reasons, we break up our results into three parts such that the algorithms

test progressively broader class of distributions but also their analysis gets more complicated and

17



the query and time complexity becomes slightly less efficient:

1. k-wise independent distributions over {0, 1}";

2. k-wise independent distributions over any finite domain;

3. non-uniform k-wise independent distributions over any finite domain.

To prove a robust characterizations of k-wise independence, one needs to show, given a dis-

tribution such that all of its low level Fourier coefficients are small, how one can transform the

distribution into a k-wise independent distribution such that the statistical distance incurred is also

small?

For distributions over the Boolean cube, we employ a novel approach which first operates

in the Fourier space and then "mends" in the functional space; to generalize the result to larger

domains, we follow a previous correction procedure of Alon et al. [5] but with additional new

ideas. In particular, we apply classical results in the theory of linear systems of congruences

to show orthogonality relations between vectors in commutative rings. Finally, for non-uniform

distributions, we introduce so-called "compressing/stretching" factors to transform non-uniform

distributions into uniform ones.

We also prove a sample lower bound of Q(n 2 ) for testing k-wise independence over the

Boolean cube. This rules out the possibility of polynomial-time testing algorithm when k = w(1).

As k-wise independence is a relaxation of total independence, (e, k)-wise independence is a

further relaxation of k-wise independence. A distribution is called (c, k)-wise independent if its

restriction to any k coordinates is e-close to uniform. We study the problem of testing (E, k)-wise

independence at the end of this thesis.

1.2 Related research

Testing properties of distributions. There has been much activity on property testing of dis-

tributions. Properties that have been studied include whether a distribution is uniform [32, 52]

or is close to another distribution [10, 65, 9], whether a joint distribution is independent [9], the

18



the distribution has a certain "shape" (e.g., whether the distribution is monotone [11], whether the

distribution is unimodal [II] or k-modal [25], whether a distribution can be approximated by a

piece-wise constant function with at most k pieces [36]), and whether a collection of distributions

are close to identical copies of a single distribution [43], as well as estimating the support size of

a distribution [53] and the Shannon entropy of a distribution [8, 51, 18, 53, 34, 63, 64]. If we are

given the promise that a distribution has certain property, e.g. being monotone, then the task of

testing can be significantly easier [55, 1].

More recently, testing k-wise independence and estimating the distance to k-wise independence

of distributions in the streaming model also attracted considerable attention [37, 19, 20].

It is interesting to compare our results with previous results on testing distribution properties.

Let N = IDI be the domain size of a discrete distribution D. In short, we show in this thesis that,

for constant k and any finite D, the sample and time complexity of testing (non-uniform) k-wise

independence over D is at most polylog N. Note that for k = n, a distribution is uniform k-wise

independent if and only if it is the uniform distribution over D. Goldreich and Ron [32] and Panin-

ski [52] show that uniformity is testable with VN samples and running time. Batu et al. [9] study

distributions over A x B, where A and B are two finite sets and JAl > IBI. They show how to

test whether the two variables of a distribution are independent with 0(A 12/3 Bi 1/3) samples and

time 4 - note that the domain size of their problem is N Al - |B, so their query complexity

is at least vN. In contrast, our results show that the exponential savings in sample space sizes

of k-wise independence extends to the domain of property testing: instead of polynomial sam-

ples required for testing total independence, testing k-wise independence can be done with only

polylog N samples and time for constant k. This adds yet another merit for k-wise independent

distributions: they admit more efficient testers than the totally independent distributions.

Constructions of k-wise independence. Much research has been devoted to the study of k-wise

independence, most of which focuses on various constructions of k-wise independent random

variables and (c, k)-wise independent variables. k-wise independent random variables were first

4We use 0 notation to hide any polylogarithmic factor of n, i.e., f = O(g(n) -h(E, 6)) implies f = 0(polylog n
g(n) - h(e, 6)).
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studied in probability theory [38] and then in complexity theory [22, 3, 44, 45] mainly for deran-

domization purposes. Alon, Babai and Itai [3] give optimal constructions of k-wise independence

with seed length 'k log n. Therefore polynomial-sized sample spaces are only possible for constant

k. This led Naor and Naor [47] to relax the requirement and introduce the notion of (e, k)-wise

independence. They construct a sample space with seed length O(k + log log n + 1/E). Their

result was subsequently improved in [47, 4, 7, 29, 14]. Construction results of non-uniform k-wise

independent distributions were given in [39, 41]. All these constructions and their correspond-

ing testing results 5 seem to suggest that the query complexity of testing a class of distributions

is related to the minimum support size of these distributions. Our query lower bound result (see

Section 4.2) is also consistent with this conjectured connection.6

Generalizing results on Boolean domain to large domains. Our results on larger domains

generalize the results of the binary field using tools from Fourier analysis and the theory of linear

systems of congruences. Many other techniques have also been developed to generalize results

from Boolean domains to arbitrary domains [26, 46, 15]. As is often the case, commutative rings

demonstrate different algebraic structures from those of prime fields. For example, the recent

improved construction [28] of 3-query locally decodable codes of Yekhanin [66] relies crucially

on the construction of set systems of superpolynomial sizes [33] such that the size of each set

as well as all the pairwise intersections satisfy certain congruence relations modulo composite

numbers (there is a polynomial upper bound when the moduli are primes). Generalizing results in

the binary field (or prime fields) to commutative rings often poses new technical challenges and

requires additional new ideas. We hope our results may find future applications in generalizing

other results from the Boolean domains to general domains.

51n Chapter 7 we show a tester that tests (c, k)-wise independence with query complexity O(log n).
6 Note that we only conjecture a relationship between the support size and the query complexity of testing, as

the time complexity of testing (E, k)-wise independence is probably much larger than the query complexity - see the
conditional time lower bound result in [2].
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1.3 Organization

The rest of the thesis is organized as follows. We first give necessary definitions and preliminary

facts in Chapter 2. A brief overview of our main results and techniques is present in Chapter 3.

We begin our study of testing k-wise independence in Chapter 4 with the simplest case in which

the domain is Boolean cube. In Chapter 5, we extend our results to domains of arbitrary sizes

and in Chapter 6 we treat the most general case of non-uniform k-wise independence. Finally in

Chapter 7 we study the problem of testing (E, k)-wise independence. We conclude in Chapter 8

with some open questions.
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Chapter 2

Preliminaries

Let n and m be two natural numbers with m > n. We write [n] for the set {1,... , n} and [n, m]

for the set {n, n + 1,... , m}. For any integer 1 < k < n, we write (I) to denote the set of all

k-subsets of [n]. Throughout this thesis, E always stands for a finite set. Without loss of generality,

we assume that E = {0, 1, .. . , q - 1}, where q = |E 1.

Vectors. We use bold letters to denote vectors in En, for example, a stands for the vector

(ai,... , an) with ai E E being the ith component of a. For two vectors a and b in E , their
defn

inner product is a - b= aibi (mod q). The support of a is the set of indices at which a is

non-zero. That is, supp(a) = {i E [n] : ai -f 0}. The weight of a vector a is the cardinality of

its support. Let 1 < k < n be an integer. We use M(n, k, q)=(") (q - 1) + -+ (n)(q - 1)k to

denote the total number of non-zero vectors in E" of weight at most k. When q = 2 (i.e., when

the underlying domain is a Boolean cube), we write M(n, k) instead of M(n, k, 2) for simplicity.

Note that M(n, k, q) = 8(nk(q - I)k) for k = 0(1).

Discrete distributions. We assume that there is an underlying probability distribution D from

which we can receive independent, identically distributed (i.i.d) samples. The domain Q of every

distribution we consider in this thesis will always be finite and in general is of the form Q =

Ei x x En, where E1, . . . , E, are finite sets. A point x in Q is said to be in the support of a

distribution D if D(x) > 0.
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Let D1 and D2 be two distributions over the same domain Q. The L1-distance and L 2-distance

between D1 and D2 are defined by

IDi - D211 = E ID(x) - D2 (x)|
XGQ

and

| - D212 = (D1(x) - D2(X))2
XGQ

respectively.

The statistical distance between D1 and D2 is

A(D 1, D2) = 1 ID1(x) - D2(X)|.

An alternative definition of statistical distance is

A(D 1 , D2 ) = maxI Pr[DI(S)] - Pr[D 2 (S)]|-
sco

One can check that statistical distance is a metric and in particular satisfies the triangle inequality.

We use statistical distance as the main metric to measure closeness between distributions in this

thesis. For any 0 < c < 1, one may define a new distribution D' as the convex combination

of D1 and D2: D' = D + ' D2. It then foll6ws that A(D', D1 ) < < c. Sometimes

we abuse notation and call the non-negative function cDi a weighted distribution (in particular, a

small-weight distribution when c is small).

Projections. Let S = {ii, .. . , i} C [n] be an index set. Let x be an n-dimensional vector.

We write XS to denote the k-dimensional vector obtained from projecting x to the indices in S.

Similarly, the projection distribution of a discrete distribution D over E" with respect to S, denoted

by Ds, is the distribution obtained by restricting to the coordinates in S. Namely, Ds : Ek -+ [0, 1]

is a distribution such that Ds(zi ... zi) = EXS-(z.....,zk) D(x). For brevity, we sometimes write

Ds(zs) for Ds(zi1 ... zik).
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2.1 The k-wise independent distributions

Let D: E1 x ... x E, - [0, 1] be a distribution. The following definitions will be used extensively

in this thesis.

" We say D is the uniform distribution if for every x E E1 x- x E, PrX~D [X - X] =

where qj = El.

" We say D is a k-wise independent if for any set of k indices {ii,... , i4} and for any

Z1 .. Zk E Ei X -.-. X Ej, PrX~D[Xii -.. Xi, = zi ... z] = Prx~D[Xi, = z11 x . x

PrX~D [Xi, = Z].

" We say D is a uniform k-wise independent if, in addition to the previous condition, we have

PrX~D[Xi = zj] = 1 for every 1 < i < n and every zj E EZ.

Let Dkai denote the set of all uniform k-wise independent distributions. The distance between

D and Dkwi, denoted by A(D, Dkwi), is the minimum statistical distance between D and any

uniform k-wise independent distribution, i.e., A(D, Dki) finfD'EDkwi A(D, D').

2.2 Discrete Fourier transform

For background on the discrete Fourier transform in computer science, the reader is referred to [61,

62, 24]. Let f : Ei x -- - - x ZE -+ C be any function defined over the discrete product space, we

define the Fourier transform of D to be, for every a E E1 x - x E,

f(a) =f (x)e2 qj+--+ .) (2.1)

XEEix---xEn

f(a) is called f's Fourier coefficient at a. If the weight of a is k, we then refer to f(a) as a

degree-k or level-k Fourier coefficient.

One can easily verify that the inverse Fourier transform is

fPX) = q, fn(a)e 2P q+-+ . (2.2)
1''' naGE1i X --- x En
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Note that if E = E for every 1 < i < n (which is the main focus of this thesis), then f(a)

E~ern f(x)e " and f(x) = _n EaEE -(a)e a-

We will use the following two simple facts about discrete Fourier transform which are straight-

forward to prove. Note that Fact 2.2.1 is a special case of Fact 2.2.2.

Fact 2.2.1. For any integer f which is not congruent to 0 modulo q, E eW = 0.

Fact 2.2.2. Let d, to be integers such that dIq and 0 < e0  d - 1. Then Z- e + ) = 0.

Proposition 2.2.3. Let D be a distribution over E1 x x E. Then D is the uniform distribution

if and only iffor any non-zero vector a E E1 x ... x E, b(a) = 0.

Proof First note that b(o) = E. D(x) = 1. Therefore, if b(a) 0 for all non-zero a, then by

the inverse Fourier transform (2.2),

D(x) 1() =
q1 qn q- * qn

For the converse, let a be any non-zero vector. Without loss of generality, suppose ai # 0. Since

D(x) 1 for all x, we have

D(a) = 1, __

qi qn

11-1
27ri(a x+---+an ) 7 2 aixi

q l * qn 12,---,qn 
1=

=0. (by Fact 2.2.1) E

By applying Proposition 2.2.3 to distributions obtained from restricting D to any k indices and

observing the fact that, by the definition of Fourier transform, D(a) = Ds(a) when supp(a) C S,

we have the following characterization of k-wise independent distributions over product spaces,

which is the basis of all the testing algorithms in this thesis.

Theorem 2.2.4. A distribution D over E1 x - . x En is k-wise independent if and only iffor all

non-zero vectors a of weight at most k, b(a) = 0.
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We are going to use the following notation extensively in this thesis.

Definition 2.2.5. Let D be a distribution over E'. For every a E E' and every 0 < j < q - 1, let

PD PrX~D[a - X -j (mod q)]. When the distribution D is clear from the context, we often

omit the superscript D and simply write Pa,j.

The Fourier transform (2.1) can be rewritten as

q-1 q-1
27rij-E 27tijfD(a) = Pr [a -X j (mod q)]e = 3 Paie >. (2.3)

j=0 j=0

For any non-zero vector a E E' and any integer 0 < j q - 1, let Saj {x E E" : E" aizi

j (mod q)}. Finally we write Uaj for the uniform distribution over Saj.

2.2.1 Fourier transform over the Boolean cube

Fourier analysis over the Boolean cube has attracted much attention recently, see e.g. [50]. Most of

the previous work applies Fourier analysis to study various properties of Boolean functions, where

the range space of the functions is {0, 1}. However, in this thesis we will use Fourier analysis to

treat distributions, where the range space of the functions is the interval [0, 1]. In the following we

briefly review some results useful for testing k-wise independent distributions over the Boolean

cube.

The set of functions f : {0, 1}' - R is a vector space of dimension 2' in which the inner

product between two elements f and g is defined as (f, g) = y Exclo,1 } f(x)g(x). For each

S C [n], define the character Xs : {0, 1} -+ {-1, 1} as Xs(x) = (-1)Ecsxi. The set of

2n functions, {Xs : S C [n]}, forms an orthonormal basis for the vector space. This implies

that any function f : {0, 1} - R can be expanded uniquely as f(x) = ESC[n] f(S)Xs(x),

where f(S) = (f, Xs(x)) is the Fourier coefficient of f over set S. The p-norm of f is ||f||, =

1 If f = D is a distribution, this definition differs from the commonly used distance metrics by a normalization
factor. For example, for p = 1, D1| 1 = - D11, where ID 1 = EX 0 ,1j |D(x)l; and forp = 2, ||DI| 2 = |D|2,

where ID| 2 = ZEX{o,1}2 |D(x) 2 .
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1 /p2

(n {o,11r If(x)|P . Parseval's equality, |if||1 = ESC[n] f(S) 2 , follows directly from the

orthonormality of the basis.

For two functions f, g : {O, 1}" - R, their convolution is defined as

(f * g)() f (y)g (x - y).

It is easy to show that fg = fsy and f g = j for any f, g : {O, 1} - R. It is also easy to

show that ||f *g||, < If I g I1, which is a simple special case of Young's convolution inequality.

A powerful tool in Fourier analysis over {0, 1} is the hyper-contractive estimate due indepen-

dently to Beckner [12] and Bonami [17]. The following is a form proved in [17]:

Theorem 2.2.6. Let f : {O, 1}" -+ R be afunction that is a linear combination of {XT : |TI <; k}.

Then for any even p > 2, If || < ( p - 1) If, 12
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Chapter 3

The Generic Testing Algorithm and

Overview of the Main Results

In this chapter we give an overview of our main results and techniques. We begin with providing

a formal definition of the problem of testing k-wise independence in Section 3.1. We then outline

a generic algorithm for testing k-wise independence in Section 3.2, which translates each robust

characterization into a corresponding testing algorithm. Finally we discuss the main results and

techniques of this thesis in Section 3.3.

3.1 Problem statement

The formal definition of testing algorithms for k-wise independent distributions is given below.

The complexity of a testing algorithm is measured both in terms of the number of samples required

(sample complexity), and the computational time required to run the algorithm (time complexity).

Definition 3.1.1 (Testing k-wise independence). Let 0 < c, 3 < 1, and let D be a distribution over

En, where E is a finite set. We say that an algorithm tests k-wise independence if, given access to

a set Q C E' of samples drawn independently from D, it outputs:

1. "Yes" if D is a k-wise independent distribution;
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2. "No" if the statistical distance of D to any k-wise independent distribution is at least 6.

The tester may fail to give the right answer with probability at most 1/3. We call |Q| the query

complexity of the algorithm, and the total time to run the testing algorithm (assuming each sampling

takes unit time) the time complexity of the algorithm.

We build our main results in three stages: in the first stage, we study distributions over the

Boolean cube [2]; in the second stage, we generalize our results to product spaces over arbitrary

finite domains [57] and in the final stage we treat the case of non-uniform distributions [57]. Result

of each stage is more general than the previous one; however, the price is that the testing algorithm

is also slightly less efficient.

3.2 A generic testing algorithm

We begin by giving a unified overview of the testing algorithms in this thesis. As is the case for

many property testing results, the testing algorithms are relative simple while the analysis of the

algorithms is usually much harder.

Let E = {0, 1,.. . , q - 1} be the alphabet' and let D : E" --+ [0, 1] be the distribution to

be tested. For any vector a E', the Fourier coefficient of distribution D at a is D(a)
27iEn F 2i y-n

ZXEznD(x)e q = 1 43jx = EX~D [e q .aXj The weight of a is the number of non-zero

entries in a. It is a folklore fact that a distribution D is uniform k-wise independent if and only if

for all non-zero vectors a of weight at most k, D(a) = 0. A natural test for k-wise independence

is thus the Generic Algorithm described in Fig. 3-1. We provide a detailed analysis of the query

and time complexities of the Generic Algorithm in Section 3.5 at the end of this chapter.

However, in order to prove that the Generic Algorithm works, one needs to show that the simple

characterization of k-wise independence is robust. Here, robustness means that for any distribution

D if all its Fourier coefficients at vectors of weight at most k are at most 6 (in magnitude), then D

is e(3)-close to some uniform k-wise independent distribution, where the closeness parameter e is

'This is without loss of generality, since we are not assuming any field or ring structure of the underlying alphabet
of the distribution. All the properties of distributions considered in this thesis are invariant under permutations of the
symbols in the alphabet.
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Generic Algorithm for Testing Uniform k-wise Independence

1. Sample D independently M times

2. Use these samples to estimate all the Fourier coefficients of weight at most k

3. Accept if the magnitudes of all the estimated Fourier coefficients are at most 6

Figure 3-1: A Generic Algorithm for testing uniform k-wise independence.

in general a function of the error parameter 6, domain size and k. Consequently, the query and time

complexity of the Generic Algorithm will depend on the underlying distance upper bound between

D and k-wise independence.

3.3 Our main results

We next discuss our three progressively more general testing results.

3.3.1 Binary domains

We first study the problem of testing k-wise independence over the Boolean cube {0, 1}f. To

state our main results, we need the notion of a bias over a set T which is a measure of the parity

imbalance of the distribution over the set T of variables:

Definition 3.3.1. For a distribution D over {0, 1}", the bias of D over a non-empty set T C [n] is

defined as biasD(T) Prx<D[ GiETD i = 0] - Prx<-D GiETi .1 We say biaSD(T) is an /-th

level bias if IT I = 1.

Note that the bias over T are intimately related to the Fourier coefficient at T - it is easy to

check that for any subset T, )(T) = biasD (T)

Let Dkwi denote the set of k-wise independent distributions over {0, 1} and A(D, Dkwi) denote

the statistical distance between distribution D and k-wise independence. We first give a new upper

bound on A(D, Dkwi) in terms of the biases of D. The previous result of Alon, Goldreich and
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Mansour [5] is

A (D, Dkwi) <- |biaSD (S) ,
ISI~k

and consequently it implies a testing algorithm with query and time complexity O(n2k/62).

Theorem 3.3.2 (Upper Bound on Distance). The distance between a distribution D and k-wise

independence can be upper bounded by

A(D, Dkwi) < 0 (log n)k/2 S biaSD (S)2

ISI<k

Consequently,

A(D, Di) 0 ((n log n)k/ 2 ) max biaSD(S)I.
ISIk

One can show that such an upper bound implies a testing algorithm for k-wise independence

with query complexity O(nk/6 2 ).

Our next main result, a lower bound on the query complexity of any testing algorithm for

k-wise independence, shows that our upper bound is at most quadratically from optimal.

Theorem 3.3.3 (Sample Lower Bound). For k > 2 and 6 = o(1/n), testing k-wise independence

requires at least |Q| (I = - ) samples from the distribution.

Note that our lower bound result rules out the possibility of polynomial time testing algorithms

for k = w(1).

3.3.2 Larger domains

To generalize the results on binary domains to larger domains, one needs to overcome several

technical difficulties. Our main result is the following robust characterization of uniform k-wise

independence.

Theorem 3.3.4. Let E = {0, 1,... q- 1} and D be a distribution over E". Let A(D, DkWi) denote
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the distance between D and the set of (uniform) k-wise independent distributions over E', then

A(D, Dkwi) E D(a)
O<wt(a)<k

As it turns out, the sample complexity of our testing algorithm is 0 (n2k( 21)2 2) and the time

complexity is O (n3k(q2 1 )3kq2), which are both sublinear when k = 0(1) and q < poly(n). We

further generalize this result to uniform k-wise independent distributions over product spaces, i.e.,

distributions over E1 x ... x En, where 1, . .. , En are (different) finite sets.

3.3.3 Non-uniform k-wise independence

We further generalize the results for larger domains to testing non-uniform k-wise independence.

Our main result is the following robust characterization of non-uniform k-wise independent distri-

butions over En.

Theorem 3.3.5. Let E = {0, 1,... , q - 1} and D be a distribution over E", then

A(D, Dwi) < poly(n, q) max non(a)
a:0<wt(a)<k

where the exponent in poly(n, q) is a function of k only and {b"0(a)}aezn are a set of non-

uniform Fourier coefficients to-be defined later (see Section 6.1 for details).

As we show in Sections 6.4 and 6.5, if all the marginal probabilities PrX~D [Xi = Z1, 1 <

i < n and z - E, are bounded away from both zero and one, then Theorem 3.3.5 also implies

a testing algorithm for non-uniform k-wise independence whose sample and time complexity are

polynomial in n and q when k is a constant.

We remark that our result on non-uniform k-wise independent distributions also generalizes to

distributions over product spaces.

To the best of our knowledge, there is no lower bound result for testing k-wise independence

over general domains except the one shown in Section 4.2 which works for the binary field case.

It will be interesting to get good lower bounds for general domains as well.
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3.3.4 Almost k-wise independence

A related problem, namely testing almost k-wise independence (see Section 7.1 for relevant defi-

nitions), admits a simple testing algorithm and a straightforward analysis. We include these results

in Chapter 7 for completeness.

3.4 Techniques

In this section we discuss the technical contributions of our work. For most parts of the thesis, we

are dealing with the following question: Given a distribution D which is close to k-wise indepen-

dence, how to find a sequence of operations which transform D into k-wise independent and incur

as small statistical difference as possible?

3.4.1 Previous techniques

Given a distribution D over the binary field which is not k-wise independent, a k-wise independent

distribution was constructed in [5] by mixing2 D with a series of carefully chosen distributions in

order to zero-out all the Fourier coefficients over subsets of size at most k. The total weight of the

distributions used for mixing is an upper bound on the distance of D from k-wise independence.

The distributions used for mixing are indexed by subsets S C {1, 2,. . . , n} of size at most k. For

a given such subset S, the added distribution Us is picked such that, on the one hand it corrects

the Fourier coefficient over S; on the other hand, Us's Fourier coefficient over any other subset is

zero. Using the orthogonality property of Hadamard matrices, one chooses Us to be the uniform

distribution over all strings whose parity over S is 1 (or -1, depending on the sign of the distri-

bution's bias over S). Although one can generalize it to work for prime fields, this construction

breaks down when the alphabet size is a composite number.

2Here "mixing" means replacing the distribution D with a convex combination of D and some other distribution.
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3.4.2 Techniques for the binary domain case

Our upper and lower bounds on A(D, Dkwi), together with the proof techniques, may be of in-

dependent interest when interpreted as Fourier-analytic inequalities for bounded functions on the

hypercube. The harmonic analysis of such functions has been considered in the Computer Science

literature, e.g., in [27]. The connection to Fourier analysis comes from the basic fact that the biases

of a distribution D are equal to D's Fourier coefficients (up to a normalization factor).

Bounds on A(D, Dkwi) may be viewed as part of the following general question: fix a family

F of functions on the hypercube and a subfamily H C F of functions defined via a restriction on

their Fourier coefficients. Then, for function f E F, what is the fi distance from f to its projection

in H, i.e., fi(f, H)? 3 In our case F is the set of all functions mapping to [0, 1] and sum up to 1

(i.e., distributions), and H (i.e., k-wise independent distributions) further requires that the functions

have all Fourier coefficients over non-empty subsets of size at most k to be zero. Then, for example,

Parseval's equality gives the following bound on the E2 -norm: f 2 (f, H) ;> |fk 11 2 where fsk(X) A

O<sI<k fsXs(x) is the truncation of f to the low-level Fourier spectrum. If the functions were

not restricted to mapping to [0, 1], then the lower bound is attainable thus making the inequality

an equality. However, the constraint that the functions under consideration are distributions makes

the problem much harder. Unfortunately, such a bound implies only very weak bounds for the

fi-norm.

In contrast, our upper bound on A(D, DEkwi) says that I(f, H) < ||f<k 12 - O(logk/ 2 n). To

prove such an inequality, we proceed as follows. Given a distribution D = f, we approximate

D using a function D 1, obtained by forcing all of D's first k-level Fourier coefficients to zero

while keeping all others unchanged. Although D 1 is not necessarily a probability distribution (it

may map some inputs to negative values), we show how to turn it back into a k-wise independent

distribution by "mending" it with a series of carefully chosen, small weight, k-wise independent

distributions in order to make all the values of D non-negative. By a deep result in Fourier analysis,

the Bonami-Beckner inequality, we bound the distance incurred by the "mending" process. Thus,

we are able to bound the total fi distance of D to k-wise independence by the distance from D to

3The distance of a function to a set, f,(f, H), is defined to be minhCH |1f - hllp.
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D1 plus the "mending" cost.

Furthermore, our lower bound technique (employed by the Random Distribution Lemma) im-

pliesthatf 1 ( , H >I1f<k 112
plies that 1(f, H) ; F , which is already useful when we take f to be a uniform function on

a randomly chosen support. This inequality follows by taking the convolution of D = f with an

auxiliary function and then applying Young's convolution inequality to lower bound the Ei-norm

of D - D', where D' is the k-wise independent distribution closest to D.

3.4.3 Techniques for the large domain case

The upper bound approach for the binary case does not admit a direct generalization to the non-

binary cases because, for larger domains, the pseudo-distributions are in general complex-valued.

Nevertheless, one may use the generalized Fourier expansion of real-valued functions to overcome

this difficulty.4 We present this simple approach in Section 5.1. However, there are several draw-

back of this technique. First, the bound obtained from this method is weaker than our main results

for the uniform case which we discuss shortly. Second and more importantly, the proof is "non-

constructive" in the sense that we do not know exactly what distributions should we mix with the

input distribution to make it k-wise independent. This drawback makes it hard to generalize the

approach to handle the non-uniform case. In contrast, our results on non-uniform k-wise indepen-

dence relies crucially on the fact that the correction procedure for the uniform case is explicit and

all the distributions used for mixing have some special structure (that is, they are uniform over all

but at most k coordinates in the domain).

Our main results on uniform k-wise independent distributions extend the framework in [5]. As

noted before, the key property used to mend a distribution into k-wise independent is the orthog-

onality relation between any pair of vectors. We first observe that all prime fields also enjoy this

nice feature after some slight modifications. More specifically, for any two non-zero vectors a and

b in Zg that are linearly independent, the set of strings with n_1 aixi j (mod p) are uniformly
def

distributed over the sets Sb,={X : En 1 bixi = f (mod p)} for every 0 < f < p - 1. We call

this the strong orthogonality between vectors a and b. The case when q = | is not a prime is

4We thank an anonymous referee of [57] for pointing this out.
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less straightforward. The main difficulty is that the strong orthogonality between pairs of vectors

no longer holds, even when they are linearly independent5 .

Suppose we wish to use some distribution U, to correct the bias over a. A simple but important

observation is that we only need that Ua's Fourier coefficient at b to be zero, which is a much

weaker requirement than the property of being strongly orthogonal between a and b. Using a

classical result in linear systems of congruences due to Smith [60], we are able to show that when

a satisfies gcd(ai, . . . , a,) = 1 and b is not a multiple of a, the set of strings with ZEi1 aii-

j (mod q) are uniformly distributed over Sb,e for e's that lie in a subgroup of Zq (compared with

the uniform distribution over the whole group Z, for the prime field case). We refer to this as the

weak orthogonality between vectors a and b. To zero-out the Fourier coefficient at a, we instead

bundle the Fourier coefficient at a with the Fourier coefficients at La for every f = 2,. . . , q - 1,

and think of them as the Fourier coefficients of some function over the one-dimensional space Zq.

This allows us to upper bound the total weight required to simultaneously correct all the Fourier

coefficients at a and its multiples using only Ua. We also generalize the result to product spaces

Q =E x ... x E, which in general have different alphabets at different coordinates.

3.4.4 Techniques for non-uniform distributions

One possible way of extending the upper bounds of the uniform case to the non-uniform case would

be to map non-uniform probabilities to uniform probabilities over a larger domain. For example,

consider when q = 2 a distribution D with PrDlx= 0] 0.501 and PrD[Xi = 1] = 0.499. We

could map xi = 0 and x= 1 uniformly to {1, ... , 501} and {502,. . . , 1000}, respectively and test

if the transformed distribution D' over {1, . . . , 1000} is k-wise independent. Unfortunately, this

approach produces a huge overhead on the distance upper bound, due to the fact that the alphabet

size (and hence the distance bound) blowup depends on the closeness of marginal probabilities

over different letters in the alphabet. However, in the previous example we should expect that D

behaves very much like the uniform case rather than with an additional factor of 1000 blowup in

the alphabet size.

5We say two non-zero vectors a and b in Z' are linearly dependent if there exist two non-zero integers s and t in
Ze such that sai - tbi (mod q) for every 1 < i < n, and linearly independent if they are not linearly dependent
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Instead we take the following approach. Consider a compressing/stretching factor for each

marginal probability PrD[Xi = z], where z E E and 1 < i < n. Specifically, let 6i(z) def 1
__ qPrD [Xi=Z]

so that 6i (z) PrD [Xi = z] ,the probability that x = z in the uniform distribution. If we mul-

tiply D(x) for each x in the domain by a product of n such factors, one for each coordinate, the

non-uniform k-wise independent distribution will be transformed into a uniform one. The hope is

that distributions close to non-uniform k-wise independent will also be transformed into distribu-

tions that are close to uniform k-wise independent. However, this could give rise to exponentially

large distribution weight at some points in the domain, making the task of estimating the relevant

Fourier coefficients intractable. Intuitively, for testing k-wise independence purposes, all we need

to know are the "local" weight distributions. To be more specific, for a vector a E E", the support
def

set or simply support of a is supp(a) {i E [n] : ai f 0}. For every non-zero vector a of weight

at most k, we define a new non-uniform Fourier coefficient at a in the following steps:

1. Project D to supp(a) to get Dsupp(a);

2. For every point in the support of Dsupp(a), multiply the marginal probability by the product

of a sequence of compressing/stretching factors, one for each coordinate in supp(a). Denote

this transformed distribution by D' ;

3. Define the non-uniform Fourier coefficient of D at a to be the (uniform) Fourier coefficient

of D' pa at a.

We then show a new characterization that D is non-uniform k-wise independent if and only

if all the first k levels non-zero non-uniform Fourier coefficients of D are zero. This enables us

to apply the Fourier coefficient correcting approach developed for the uniform case to the non-

uniform case. Loosely speaking, for any vector a, we can find a (small-weight) distribution W/

such that mixing D'pa with 1f zeroes-out the (uniform) Fourier coefficient at a, which is, by

definition, the non-uniform Fourier coefficient of D at a. But this W9'a is the distribution to mix

with the "transformed" distribution, i.e., D'upp(a). To determine the distribution works for D, we

apply an inverse compressing/stretching transformation to 0a to get #-. It turns out that mixing

0#a with the original distribution D not only corrects D's non-uniform Fourier coefficient at a
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but also does not increase D's non-uniform Fourier coefficients at any other vectors except those

vectors whose supports are strictly contained in supp(a). Moreover, transforming from /a to *a

incurs at most a constant (independent of n) blowup in the total weight. Therefore we can start

from vectors of weight k and correct the non-uniform Fourier coefficients from level k to lower

levels. This process terminates after we finish correcting all vectors of weight 1 and thus obtain a k-

wise independent distribution. Bounding the total weight added during this process gives an upper

bound on the distance between D and non-uniform k-wise independence. We hope that the notion

of non-uniform Fourier coefficients may find other applications when non-uniform independence

is involved.

3.5 Query and time complexity analysis of the generic testing

algorithm

We now provide a detailed analysis of the query and time complexity analysis of the generic testing

algorithm as shown in Fig. 3-1. The main technical tool is the following standard Chernoff bound.

Theorem 3.5.1 (Chernoff Bound). Let X 1 , ... , X, be i.i.d. 0-1 random variables with E [Xi]=
_2 ,

Let p ='7 1 Xi. Thenfor all y, 0 < y < 1, we have Pr[lp - | ;> -p] < 2 - e .

Theorem 3.5.2. Let D be a distribution over E" where | = q and A be a subset of vectors -in

E'. Suppose the distance between D and the set of k-wise independent distributions satisfies the

following conditions:

" (completeness) For any 0 < 6 < 1, if A(D, Dki) 6, then Ib(a)| r for every a in A;

e (soundness) A(D, Dk,1) < K maxaE A b(a) , where K is a function of n, k, q and A.

Then for any 0 < c < 1, the generic testing algorithm draws6 m = O(2 log(q|A|)) inde-

pendent samples from D and runs in time O(q2 K2
2 AI log(q|A|)) and satisfies the followings: If

6For all the cases studied in this thesis, the size of A is much larger than q, therefore we omit the factor q in the
logarithm in all the subsequent formulas.
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A(D, D,1) < 'g, then with probability at least 2/3, it outputs "Accept"; if A(D, Dki) > e,

then with probability at least 2/3, it outputs "Reject".

Proof The algorithm is to sample D independently m times and use these samples to estimate,

for each a E A, the Fourier coefficient of D at a. Then if maxaEA b(a) y 2, the algorithm

accepts D; otherwise it rejects D. The running time bound follows from the fact that we need to

estimate |A Fourier coefficients using m samples.

For every a E A and 0 < j < q - 1, define a 0-1 indicator variable Iaj (x), where x E E',

lajdefwhich is 1 if a -x -- j (mod q) and 0 otherwise. Clearly Ia,j E [Ia,j] = Paj. Let Paj =

' ZxQ Ia,(x); that is, Paj is the empirical estimate of Paj. Since Pa,j < 1, by Chernoff bound,

Pr[|Paj - Paj > < 2 . By union bound, with probability at least 2/3, for every vector a

in A and every 0 < j < q, |Pa,j - Paj I <

The following fact provides an upper bound of the error in estimating the Fourier coefficient at

a in terms of the errors from estimating Paj.

Fact 3.5.3. Let f, g : {0, . . . , q - 1} -+ R with jf(j) - g(j)| c for every 0 < j < q - 1. Then

f(i) - y(f) < qe for all 0 < f < q - 1.

Proof Let h f - g, then Ih(j)| < e for every j. Therefore,

q- 1

h(f)|= 1 h(j)eq|
j=0

q-1 q-1

l h(j)e | = |h(j)
j=0 j=0

q-1

< E c = qc. E
j=0

Let D(a) be the estimated Fourier coefficient computed from Paj. Fact 3.5.3 and (2.3) then

imply that with probability at least 2/3, D(a) - D(a) < ' for every a in A.
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Now if A(D, Dkwi) < ', then by our completeness assumption, we have maxacA b(a)

n-. Taking the error from estimation into account, maxaEA D(a) <2 holds with probability

at least 2/3. Therefore with probability at least 2/3, the algorithm returns "Accept".

If A(D, Dkwi) > c, then by our soundness assumption, maxaCA fb(a) > -. Again with

probability at least 2/3, maxaeA D(a) > 1-L for every a in A, so the algorithm returns "Reject".
3KD

41



42



Chapter 4

Binary Domains

In this chapter, we study the problem of testing whether a distribution over a Boolean cube is

k-wise independent or 6-far from from k-wise independence. Our upper bound and lower bound

results for testing are based on new upper and lower bounds on A(D, Dkwi) in term of D's first

k-level biases (or equivalently, Fourier coefficients. See below for definition of biases). We present

our upper bounds in Section 4.1 and lower bounds in Section 4.2.

4.1 Upper bounds on testing k-wise independence

4.1.1 Characterizing k-wise independence by biases

We use the notion of a bias over a set T which is a measure of the parity imbalance of the distribu-

tion over the set T of variables:

Definition 4.1.1. For a distribution D over {0, 1}, the bias of D over a non-empty set T C [In] is

defined as biaSD(T) Prx<-D[eiGTXi 0] - Prx<D[DGETXi -1. We say biaSD(T) is an l-th

level bias if IT I = l.

Up to a normalization factor, the biases are equal to the Fourier coefficients of the distribution

function D. More precisely, b(T) = y biaSD(T), for T 4 0. Thus, we sometimes use the terms

biases and Fourier coefficients interchangeably. The following well-known facts relate biases to
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k-wise independence:

Fact 4.1.2. A distribution is k-wise independent iff all the biases over sets T C [n], 0 < |T| K k,

are zero. In particular for the uniform distribution Un, biasu, (T) = Ofor all T.

By the alternative definition of statistical distance, we immediately have the following.

Fact 4.1.3. The distance between D and k-wise independence can be lower bounded by

1
A(D, Dkmi) > - max biasD(T).

2 TC[n],0<|T|k

4.1.2 Upper bound the distance to k-wise independence

In this section, we first prove an upper bound on A(D, Pkwi), then present our testing algorithm as

well as the sample and time complexity of our algorithm. For brevity, let b1  E ElsI<k IbiasD(S)|

and b2 A EISIsk biaSD(S) 2 . Note that b2 < bi Ma,kb2 < nk/ 2 b2 .

The only previously known upper bound for A(D, Dkwi) is given in [5], where it is implicitly

shown that A(D, Dkwi) K bi. Our new bound is the following.

Theorem 4.1.4 (Upper Bound on Distance). The distance between a distribution D and k-wise

independence can be upper bounded by

A(D, Dwi) < O ((lognik/ Z bias(S)2).

Consequently,

A(D, Dwi) < 0 ((n log n)k/ 2 ) max biaSD (S) -
|SIk

Since b2 is always smaller than or equal to bi, our upper bound is no weaker than that of [5] up

to a polylogarithmic factor. However, for many distributions of interest, b2 is much smaller than

bi (e.g., when all the biases are roughly of the same magnitude, as in the case of random uniform

distributions, then b2 = O*(bi/nk/2.

The basic ideas of our proof are the following. We first operate in the Fourier space to construct

a "pseudo-distribution" D1 by forcing all the first k-level Fourier coefficients to be zero. D1 is not
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a distribution because it may assume negative values at some points. We then correct all these neg-

ative points by a series of convex combinations of D1 with k-wise independent distributions. This

insures that all the first k-level Fourier coefficients remain zero, while increasing the weights at

negative points so that they assume non-negative values. During the correction, we distinguish be-

tween two kinds of points which have negative weights: Light points whose magnitudes are small

and heavy points whose magnitudes are large. We use two different types of k-wise independent

distributions to handle these two kinds of points. Using Bonami-Beckner's inequality, we show

that only a small number of points are heavy, thus obtaining a better bound for A(D, Dkwi).

Proof of Theorem 4.1.4. The following lemma bounds the fi-distance between a function and its

convex combination with other distributions.

Lemma 4.1.5. Let f be a real function defined over domain D {0, 1}' such that EZxsD f (x)

1. Let D 1 , . . . , Df be distributions over the same domain D. Suppose there exist positive real

numbers w 1 ,.. . ,we such that DI (f + _1 wiDi) is non-negative for all x E D.
i1 W

Then T|f(x) - D'(x)| w .

Proof If(x) - D'(x)||1 = wi(D' - Di)l 1 < E' _iw||D' - Dilli < 2-n+1 1 w%.

We first construct a real function Di : {0, 1} -- R based on D but forcing all its first k-level

biases to be zero. Di is defined by explicitly specifying all of its Fourier coefficients:

1 = 0, if S # 0 and IS| < k

D (S), otherwise.

Since bi(0) = D(0) = , we have Ex D1 (x) = 1. Note that in general D1 is not a distri-

bution because it is possible that for some x, D1(x) < 0. By Parseval's equality, ||D - D1| 2

ZII k biaSD(T)2 =b 2 . Hence by the Cauchy-Schwarz inequality, we can upper bound the

fi-norm of D - D1 as ||D - D ll 2 - b2 . Now we define another function D 2 : {0, 1}" -> R
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as

b 2(S) {D(S), if S #0 and |S| < k

0, otherwise.

By the linearity of the Fourier transform, DI(x) + D2 (X) = D(x). Since D(x) > 0 for all

X E {0, 1}n, we have D1(x) -D 2 (x). By the Fourier transform,

1
|D2 (x)| = - z biaSD(S)XS(X)

1<ISI k

1 biaSD (S) n bi
-2n 

2n~
1<ISIk

Hence the magnitudes of D1(x)'s negative points are upper bounded by 1bi, i.e. D 2 (X) > -Lbi.

By the linearity of the Fourier transform, if we define a function D' as the convex combination

of D1 with some k-wise independent distributions so that D' is non-negative, then D' will be a

k-wise independent distribution, since all the Fourier coefficients of D' on the first k levels are

zero.

If we use a uniform distribution to correct all the negative weights of D 1, then we will get

an upper bound almost the same (up to a factor of 3/2) as that of [5]. To improve on this, we

distinguish between two kinds of points where D1 may assume negative weights: heavy points

and light points. Let A = (2/log n)k. We call a point x heavy if D1(x) < -Ab 2/2", and light

if -Ab 2 /2n < D1(x) < 0. For light points, we still use a uniform distribution to correct them;

but for each heavy point, say z, we will use a special k-wise independent distribution UBCH-z(X),

constructed in [3]:

Theorem 4.1.6 ([3]). For any z E {0, 1}", there is a k-wise independent distribution UBCH-z(x)

over {0, 1}"l such that UBCH-z | =Sup p(UBCH- = Q 1

'Note that, as shown in [21, 3], the support sizes of such constructions are essentially optimal.
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Thus, we define D' by

D'(x) = DI(x) + Ab2Un(x) + Ez is heavy WzUBCH-z(X)

1 + Ab2 + Ez is heavy Wz

We set wz = SuPP(UBCHz) Ib1 . Since D1(x) > - -, one can check that D'(x) is non-negative

for both heavy and light points. Hence D' is a k-wise independent distribution.

Next we bound the number of heavy points. Note that this number is at most the number of

points at which D 2 (X) > Ab2/2". Observe that D2(x) has only the first k-level Fourier coefficients,

hence we can use Bonami-Beckner's inequality to bound the probability of |D 2 (X) assuming large

values, and thus the total number of heavy points.

First we scale D 2(X) to make it of unit f2-norm. Define f (x) = D2(x). Then

2 ~T1

11 2 4 - 21 2 4 1
|| |2= b2 |D |2= b2 2n 2( )

xC{O,1}"

24 1

=b2 22n baDn)

- ~ ~ 1<ISI<k baDS 2  1

where the second to last step follows from Parseval's equality. Now using the higher moment

inequality method, we have, for even p,

Ex [|f (z)|P ] ||f||1PPr[lf(x)| > A] < A= P .

By Theorem 2.2.6, ||f| ( p- 1 )f II - p -2k. Plug in A = (2/logn) and p= log n,

and without loss of generality, assume that p is even, then we have

Pr[lf(x)| > 2 k logk/
2 n < - i)Pk/2 < pk/2

AP (2 /log n)pk

( )klogn 1 .
(2nV
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Therefore,

Pr D1(x) < -2k(log n)k/ 2  < Pr [D 2(x) > 2k(log n)k/ 2 b2/2"]

< Pr [1D2(X)| 2k(log n)k/ 2 b2 /2n]

Pr [If(x)I 2k(log n)k/ 2 ] <

In other words, there are at most 2n/nk heavy points. Recall that | SUPP(UBCH-z) = 0 (nLk/ 2 j)

and b1 < nk/ 2b2), we use Lemma 4.1.5 to get that

2n

2 D 1 - D'1  Ab2 + w(z)
z heavy

< (2 og n)kb2 + I Supp(UBCH-z) I

= (2 /log n)kb 2 + O (b2 )

= 0 ((log n)k/ 2b2 ) -

Finally, by the triangle inequality, A (D, D') =9I ID - D'II < ((1D - D1 li + |ID 1 - D'11i) =

0 ((log n)k/ 2b2) -

4.1.3 Testing algorithm and its analysis

Armed with Theorem 4.1.4, we are ready to describe our algorithm for testing k-wise indepen-

dence. We will use the following algorithm to estimate the bias of a distribution D over any

non-empty subset S with error parameter 6.

Lemma 4.1.7. Let biasD(S) be the bias computed by Est imat e-Bi a s (D, S, k, 6), and biasD (S)

be the expected value of biasD(S) (i.e., the bias of distribution D over S). Then with probability

at least 1 - 31 , IbiaSD(S) sD()

Proof Let nodd and neven be the number of strings of odd parity and even parity, respectively, over

S. Without loss of generality, assume that biasD(S) > 0 (otherwise replace nodd with neven in

the following argument). Define the indicator random variables Xi for i = 1, . . . , m, such that
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Algorithm Est imate-Bias (D, S, k, 6)

1. Set m = 0 ((k log n)/6 2 ).

2. Set nodd = 0.(Assume the sample set is Q = {X 1,... , Xm})

3. For i = 1 to m

0 If DjESXj 1, nodd = nodd + 1.

4. Output biasD (S) -2 odd 1.

Figure 4-1: Algorithm for estimating the bias over an index subset S.

Algorithm Test-KWI-Closeness (D, k, 6)

1. From D, draw a set Q of samples of size Q I = 0 (k log n/6', where 6' =c(n ogn)k/
2 .

2. For each non-empty subset S C [n], S| I k, use Q to estimate biasD(S) to within an

additive term of 6'.

3. If maxs |biasD (S)| I 26' return "Yes"; else return "No".

Figure 4-2: Algorithm for testing if a distribution is k-wise independent.

Xi = (jcsX. It is clear that Xi are 0/1 random variables and E [Xi] = nodd/m ;> 1/2. Now

applying Chernoff bound to Xi gives the desired result, since biaSD(S) = 2E [Xi] - 1. E

Now we are ready to describe the algorithm of testing closeness to k-wise independence, which

(implicitly) uses E st imate-Bias as a subroutine.

The algorithm is simple in nature: it estimates all the first k-level biases of the distribution and

returns "Yes" if they are all small. Let Ck be the hidden constant in 0 (-) in the second part of

Theorem 4.1.4.

Next we prove the correctness of Test -KWI-Closeness (D, k, 6).

Theorem 4.1.8. Let D be a distribution over {0, 1}. If A(D, Dkwi) < 26 then Test -KWI-Cl osene,

accepts with probability at least 2/3; If A(D, Dkij) > 6, then Test -K WI-Closeness accepts

with probability at most 1/3. Furthermore, the sample complexity of Test -KWI-Cl oseness is

O(kCk(logfn)k+1nk/6 2 ) = O*(), and running time of Test -KWI-Cl oseness is O*(".
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Proof of Theorem 4.1.8. The running time and sample complexity analysis is straightforward. If

Z(D, Dwi) < 3Ck(nlgn)k/2, then by Fact 4.1.3, biaSD(S) < 3Ck(nlogn)k/ 2 for every 1 < I k.

By Lemma 4.1.7, |biaSD(S) - b D I 3C(nogn)k/2 with probability at least 1 - -. Thus

union bound gives, with probability at least 1 - Mnk1 > 2/3 (since Mnk < nk), |biaSD(S) -

biasD(S) I 3nn holds for each S. This implies that, for every non-empty S of size at3Ck (nlog n)k/

most k, Cki(n log n)k/ 2 |biaSD(S)I < 26. Therefore, the algorithm accepts.

If A(D, Dkwi) > 6, by Theorem 4.1.4, Ck(n log n)k/2 maxs0,Isisk biaSD(S) I > 6. A similar

analysis shows that with probability at least 2/3, Ck(n log n)k/ 2 maxs#e,IsIsk IbiaSD (S) > 6 and

hence the algorithm rejects. E

Note that for constant k, Te s t -KWI -Clo sene s s gives an algorithm testing k-wise indepen-

dence running in time sublinear (in fact, polylogarithmic) in the size of the support (N = 2") of

the distribution.

4.2 Lower bounds on testing k-wise independence

In this section, we prove a lower bound on the sample complexity of our testing algorithm. How-

ever, we first motivate our study from the perspective of real functions defined over the boolean

cube.

The upper bound given in Theorem 4.1.4 naturally raises the following question: Can we

give a lower bound on A(D, Dkwi) in term of the first k-level biases of D? The only known

answer to this question we are aware of is the folklore lower bound in Fact 4.1.3: A(D, Dkwi) >

1
2 maxl IsI<k |biaSD(S)|. This bound is too weak for many distributions, as demonstrated in [5],

who gave a family of distributions that have all the first k-level biases at most 0 (Q'), but are at

least 1/2-away from any k-wise independent distribution. Their proof is based on a min-entropy

argument, which seems to work only for distributions with small support size.

In fact, this statistical distance lower bound problem can be put into a more general framework.

Given a function f : {0, 1} -> R, can we give a lower bound on If |1 if only the first k-level

Fourier coefficients of f are known? Hausdorff-Young's inequality gives |If 11 > |1If||, which
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is equivalent to the bound stated in Fact 4.1.3. We develop a new approach to lower bound ||f|1

in terms of f's first k-level Fourier coefficients. Our method works for general k and is based on

convolving f with an auxiliary function and then applying Young's convolution inequality. Our

main result of this section is the following lower bound on distances between random uniform

distributions and k-wise independence, which is the basis of our sample lower bound result, Theo-

rem 4.2.15. Note that by Theorem 4.1.4, this bound is almost tight as implied by our upper bound

result.

Lemma 4.2.1 (Random Distribution Lemma). Let k > 2. Let Q = Af with 3 = o(1/n). If we

sample uniformly at random Q strings from {0, 1}"' to form a random multi-set Q and let UQ (x) be

the uniform distribution over Q, then for all large enough n, PrQ[A(UQ, Dkwi) > 0.096] = 1-o(1).

4.2.1 New lower bounds for A(D, DkWi)

In this section, we will develop a new framework to prove lower bound on the distance between a

distribution and k-wise independent distributions and apply this method to prove Theorem 4.2.4.

In fact, our techniques developed here may be of independent interest: We give a new lower bound

on the fi-norm of a function f : {0, 1}"' -- R in terms of f's first k-level Fourier coefficients. Our

method is based on convolving f with an auxiliary function and applying Young's convolution

inequality:

Theorem 4.2.2 (Young's convolution inequality). Let 1 < p, q, r < 00, such that = + j 1.r p q
Then for any f, g : {0, 1}" -+* R, If * g||r If IIp||g|q.

Given a distribution D over {0, 1}'. Let D' be the k-wise independent distribution which is

closest to D, i.e., A(D, DEkwi) = A(D, D') =ID - D'11,. Define f(x) = D(x) - D'(x). Then

we have
1

f(S) = biaSD (S), for all non-empty subsets S with |S| I k

and

A (D, Dkwi) =If (xzl = 2 n-1 i ll 0.
2 eo,}
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We will try to get a lower bound on A (D, Dkwi) by bounding the EI-norm of f (x) from below.

Theorem 4.2.3. Let f : {0, 1}' --* R. Define a family offunctions FT C R10,1n such that for all

g E Fg, the Fourier coefficients of g satisfy

0,)

yXS) =sign(f (S))

Thenfor all g E F9,

|Ifi|l >

if S 0 or IS| > k

if SI < k and f(S) : 0

if ISi < k and j(S) = 0.

Z1IS1 k if (S)I
11~ .

ES<k If(S)IIlin 1 m 9 11-

Note that for all S such that f(S) = 0, we have the freedom of choosing either +1 or -1 to

minimize ||g||, and get better lower bound.

Proof Setting p = 1, then Young's convolution inequality (Theorem 4.2.2) gives, for any 1 < r <

c, and any f,g: {0, 1}' -+ R,

Now we define function g as in the Theorem and define h(x) (f *g) (x). Then by the convolution

theorem,

h(S) = {if(S),
0,)

if S is non-empty and IS I k

otherwise.

By the definition of the Fourier transform,

Ih(x) | h(S)xs(x)|=
S

[
ISIsk

fj(S) xS(x) E
ISI<k
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since for all S C [n], Xs(0) = 1 and the evaluation of any function at 0 is simply the sum of all its

Fourier coefficients. Thus, ||h||. = h(0) = ISIk If(S)I. Now take r tending to infinity, we get

|Ig S||

Thus we get a lower bound for A(D, Dkw;):

Theorem 4.2.4. Let D be a distribution over {0, 1}", and let F. be defined as in Theorem 4.2.3

but replacing f (S) with biasD(S). Then for all g G F, A(D, Dkwi) ! 2 SI<k IbiaSD (S)I
11gi00

If all the low level Fourier coefficients of f are non-zero, then there is a unique g E Fg that

corresponds to f. Otherwise, there may be many g's in T g all correspond to f. If this is the case,

for the purpose of proving lower bound, we may pick the one with the smallest infinity norm. On

the other hand, there are many different f's that correspond to the same g. A nice property of

function g is that only the first k-level Fourier coefficients are non-zero and all these coefficients

are in {-1, 1}. By the monotonicity of norms and Parseval's equality, we have |jg|| > ||g|| 2 =

1 I|SI:k 1 Mk. And a trivial upper bound is |g | Mn,k. Note that if | < Mn,k,

then our new lower bound on A(D, Dwi) probably will give a much better bound than the trivial

lower bound A (D, Dkwi) > j maxs |biasD(S) . Next we will provide some evidence showing the

strength of our new lower bound: among 2,= 2 0("k) possible g's, at most an exponentially

small portion of them may have ||g||K = Q( -n-Ak). Thus most g's will give good lower bound.

Theorem 4.2.5. Let g be an M,,k-dimensional vector with its Mn,k components being g(x) 's non-

zero Fourier coefficients, then for all c > 0 and for all sufficiently large n,

Pr [|Ig||C > 1.18,/c+ 1/nMnkl < 2-"
gER 11,11"n kL

Proof We will need the following simple Chernoff-type tail bound (see Corollary A. 1.2 of [6])

Lemma 4.2.6. Let xi, 1 < i < rn, be mutually independent random variables with Pr[xi = 1] =
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Pr[xi = -1] = 1 and set S,, = x1 + -+ xz. Let a > 0. Then

a
2

Pr[ISml > a] < 2e 2m.

Let x be an arbitrary element in {o 1}'. Then

Mn,k M,k

g(x) = [ (Si)xs() = Yi,
i=1 i=1

where we define Y = y(Sj)Xsj (x). Now if (Sj)'s are independent random variables uniformly

distributed in {-1, 1}NIk, so are Y's. Hence we can apply Lemma 4.2.6 to bound the probabil-

ity of Ig(x) assuming large values. Set a = 1.18 (c + 1)M,kn > *oMk(cn + n), thenViog e

a > io Mn(cn +n+1) and a 2 > 2 M,,k(cn + n + 1) for all sufficiently large n. Now

Lemma 4.2.6 gives

Prg[lg(x)| > a] = Pr [ kY > a] < 2e < 2- -

Applying the union bound argument to all 2n strings gives

Prg [llg||. > a] = Pr[]x E {0, 1}' s.t. Ig(x)| > a]

<cn.< 2--E

4.2.2 Proof of the random distribution lemma

We will follow the lower bound techniques developed in the previous section to prove this lemma.

However, for ease of analysis, we will use functions different from those used previously. Let

D'(x) be the k-wise independent distribution with minimum statistical distance to UQ. Define

fQ(x) = UQ(x) - D'(x).
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Then we have

JQ(S) = UQ(S), for all S C [n], S # 0 and |SI < k,

and

A (Ug, Dkwi) = 2~ 1 |IfQI||1.

Define gQ(x) : {0, 1} -* R as

g(S) = {f (S),

0,

if S / 0 and |S| < k,

otherwise.

Also define the convolution hQ(x) A (fg * 9Q)(x), then

f(S)={f (S)2,

0,7

if S # 0 and |S| < k,

otherwise.

by the convolution theorem. Applying Young's inequality gives

fQ1 ;>||hQ1||
I1gQIK.

We will prove the Lemma 4.2.1 by proving the following two lemmas bounding ||hQ and |g

respectively.

Lemma 4.2.7. For all large enough n, PrQ ||hQ > 0.999 = 1 - o(1).

Lemma 4.2.8. Let Q = w (nMn,k). Thenfor all k > 2 and large enough n, PrQ [I|gQIIO < 5|25 flM,k|

1 -o(1).

Now we prove the Lemma assuming Lemma 4.2.7 and Lemma 4.2.8: By the union bound, with

probability 1 - o(1), both the lower bound of hQ | and the upper bound of ||gQ | hold. Then

we have

1
A(UQ, Dwi) = --2"|fQj i2

1 0 .9 9 9 M,k

> - - Q > 0.09
2 5.25 M",kn

VQ

55

Mk

',



as desired.

In the following proofs of Lemma 4.2.7 and Lemma 4.2.8, we will assume that all the elements

in multiset Q are distinct. This will not affect our results, since by the Birthday paradox, the

probability of seeing a collision in Q is o(1).

Proof of Lemma 4.2.7 We prove the lower bound of hQ|| by computing the expectation and

variance of ||h|. Then a simple application of Chebyshev's inequality gives the desired bound.

The calculations are straightforward but rather tedious.

Proof of Lemma 4.2.7. By the definition of Fourier transform

|hQ(x)| = hQ(S)xs(x) E hg(S) = he(S) = hQ(O).
1<|S|6k 1 |S|Gk 1<\S|Gk

Therefore

IIhQI = hQ(0)= jQ(S)2.
1 ISI~k

Then for all non-empty subset S with ISI < k,

fQ(S) = U b(x)xs(x)
xE{O,1}fl

S2nQ L xs(x);

XGQ

and

fQ(S) 2  1 UQ(x)xs(x)UQ(y)xs(y)22n
x,ye{O,1}~

=22nQg2 1:XS(z)XS(y);
x,yEg

To facilitate the calculation of the expectation and variance of I h|Q | 0, we first state two simple

technical claims.
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Claim 4.2.9. Let x and y be two distinct strings chosen uniformly at randomfrom {0, 1}", then for

all n > 1, x + y is equal to every element in {0, 1}" \ {O} with equal probability.

Proof First we fix an x, then the map y ---* x+ y is a one-to-one correspondence between {O, 1}n\

{x} and {0, 1}" \ {O"}. Then notice that y equals every element in {0, 1}" \ {x} with equal

probability. E

Claim 4.2.10. Let x, y, x' and y' be four distinct strings chosen uniformly at random from {o, 1}".

Then for all n > 2, x + y + x' + y' is equal to every element in {O, 1}" with equal probability.

Proof Let zi = x+y. By claim 4.2.9, zi equals all strings in {0, 1}"\{O"} with equal probability.

Then zi + x' equals all strings in {O, 1} \ {x'} with equal probability. But x' takes all values in

{O, 1}" equally often, so is zi + x' = x + y + x'. Therefore x + y + x' + y' is uniformly distributed

over {O, 1}". D

Proposition 4.2.11. The expectation of ||hQ ||, satisfies that

EQ [IlhQK||] = 22n - 1

Proof We have

EQ [||hQ ||] EQ <fQ (S)21

2 2 EQ [1S(kXYQx~)xs(Y)]22nQ2 E XsSIxkxsyy)

Mn~~~5||k + EX()SY

22nQ 22n12 -<S Gk x,yE Q,x:Ay

Mnk n 1 E Xs(Z)-2
2nQ ± 22nQ 2EQ I: I:

[1 IsIk xE Q zf0,z-xGQ _j

Mk + ,kQ(Q -- 1) r( )]

22nQ 22nQ2 E XSkz]-
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By Claim 4.2.9, z is uniformly distributed over {O, 1}\{O"}. Since for any S # 0, EzE10 ,114 Xs(z) =

0, hence Zz} xs(z) -1, and EzE{,1}\{on} sz)] - -1j Then we have

EQ [IlhQ1||] = M ( -
Q- 

).

This completes the proof.

Proposition 4.2.12. The expectation of I hQ satisfies that

E

EQ [IlhQI| ] = 2

24nQ2(i

Q 1 )2

SQ 1 )2, 1 k

=24n"Q2

+ 2MnkQ(Q - 1)
+24nQ4

2Mn k

24nQ 2

2(Q - 2))
2n - 1

Mn,k(Q - 1)2

24n(2n - 1)2Q2

EQ [IlhQI|12 EQ

=EQ[

( E
1IS| k

fj (S)2)2]

1I Sk f1 (S)I2
l <|S|Gk 1<|T|<k

24nQ 4

Then one can distinguish between 12 different cases and calculate their expectations respectively.

We omit the details here. D

Therefore we have

Var(IlhQj||)

and

o(||hQ j|| )

1 2M

1 2Mn

22n Q

Finally we apply Chebyshev's inequality, which states that for any t > 0 Pr[IX - E [X]| >

58

Proof

f| (T)2

S E xS(x +y)xT +
1|Ss!k 1 | TI<k x,yCQ x',y'GQ

y]



to (X)] < -, to ||hQ|| to finish the proof of Lemma 4.2.7.

Proof of Lemma 4.2.8 A simple calculation shows that gg (x) equals a summation of Q indepen-

dent random variables Y 1, .. . , Yo determined by the random subset Q, where -M,k < Yi < Mn,k.

However, a direct application of Hoeffding's bound to the sum can only gives IgQ K = 0 (Mn,k),

thus A(UQ, Dkwi) = Q(j), which is too weak. We improve on this is by noticing that the variance

of Y is small, thus Bernstein's inequality [13] gives a better bound.

Proof of Lemma 4.2.8. Fix an arbitrary x C {0, 1}n. Then

gQ(x) = fQ(S)xs(x)
1<lSI<k

2nZ UQ(y)xs(x)xs(y)
1<|S|$k yE{0,1}"

2~Q S Xs(xy)
1 ISIk yEQ

2~QS SXs(x~y)
YEQ 1 ISI~k

- 2 nQ LYX (Y) I
yGQ

where Yx (y) E 1IIIk Xs(x~y). Note that the summation is over independent random variables

YY(y) in Q.

If we apply the Hoeffding bound directly to the sum, we would not get the desired result.

Instead, we will employ the following Bernstein's inequality [13], which gives a better bound on

the sum of independent random variables when we have a good bound on the variance of the

random variables being summed.

Theorem 4.2.13 (Bernstein's inequality). Let X 1 , ... , XQ be independent real-valued random

variables such that IXi C for all 1 < i K Q. Let o2 = z Var(Xi). Then for any

t > 0
Q Qt

2

Pr[| Xj - E [X]I > Qt]le 22+;

i=1
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We next compute the expectation and variance of Y, (y).

Ey [Y(y)] = Ey E E [xS(y)] =E 0 = 0,
1< S|Gk 1<|S|$k

and

- 2-

EY [yX(y)2] = Ey Xs(y)

= EY L xS(Y)xT (Y)

"1<|SI,|T|<k

= EY [L

= Mnk + 0

= M,k.

xS(Y)2

By setting t = 5.25 Q and noticing that Q

Pr Y(Y)

+ EY z
1<ISIk S'#0

XS/ (y) (S' ^- SAT)

= W(nMn,k), we have

> 5.25Q Mk n K 2 -n (1).

It follows that, with probability 1 - o(1), for all x

2"|gQ(x)| < 5.25 M n

i.e. with probability 1 - o(1),

<5.25
1g1-~< 2n

This completes the proof of Lemma 4.2.8.

60

Mn,kn

Q
11

xS (y)
1<|S|:k



Tightness of the Lemma 4.2.1 Our lower bound on the statistical distance between a random

distribution and k-wise independent distributions is almost tight due to the following proposition

Proposition 4.2.14. Let S be a random multiset formed by uniformly sampling Q(k (log n)k+1nk/62)

times from {0, 1}". Then with high probability, Us is 6-close to k-wise independent.

Proof By Chernoff bound, for every S C [n], S| I k, S 74 0, with probability at least (1 -

Ibiasus (S)| < O(6/(n log n)k/ 2 ). By a union bound argument, this holds for all S with probability

at least 2/3. Applying Theorem 4.1.4 gives the desired result. E

Sample lower bound

Now we apply Random Distribution Lemma to prove a lower bound on the sample complexity of

testing k-wise independence.

Theorem 4.2.15 (Sample Lower Bound). For k > 2 and 6 = o(1/n), testing k-wise independence

requires at least IQI = Q (3 (n) k ) samples from the distribution.

Our lower bound result rules out the possibility of polynomial time testing algorithms for k

W(1).

Proof of Theorem 4.2.15. We will show that if the algorithm makes too few queries, then it can-

not successfully distinguish between two distributions far apart with high probability. Consider

the following two distributions. The first one is the uniform distribution Un over {0, 1}". Ob-

viously, Un is k-wise independent for all 1 < k < n. The second distribution UQ is a uni-

form distribution over a multiset Q, where Q is constructed by uniformly and randomly sampling

Z 9 (n) k2 0 .0 9 2 nk times from {0, 1}. By Lemma 4.2.1, with probability 1 - o(1),

UQ is at least 6-far from any k-wise independent distribution. Now let A be any algorithm that

makes Q = o(v/Z) = o (1{ ) 2 1) queries. Let Du, and Du, be distributions over sample sets

of size Q that algorithm A obtains from Un and UQ respectively. By the Birthday Paradox, with

probability 1 - o(1), all the strings queried from Un are distinct and all the strings queried from

UQ are distinct. Conditioned on this, the statistical distance between Du, and DuQ is zero, since
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both of the distributions are uniform distributions over m distinct strings randomly selected from

{0, 1}'. Therefore, A cannot distinguish these two distributions with success probability bounded

away from 1/2 by a constant. By the union bound, the total probability that A succeeds is at most

I+ o(1). This concludes the proof of the theorem. E
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Chapter 5

Large Domains

In this chapter, we generalize our testing uniform k-wise independence results over the Boolean

cube to testing uniform k-wise independence any finite domain. First, we prove our main upper

bound result, Theorem 3.3.4, by means of orthogonal polynomials in Section 5.1. We then give

another proof in Section 5.2, which generalizes the approach of Alon et al. [5] and gives slightly

better bound.

5.1 A proof of upper bound based on orthogonal polynomials

In this section we give our first and conceptually simple proof of Theorem 3.3.4. The bound we

prove here is somewhat weaker that stated in Theorem 3.3.4. The basic idea is to apply the "cut in

the Fourier space and then mend in the function space" approach in [2] to Fourier expansions with

discrete orthogonal real polynomials as the basis functions.

5.1.1 Generalized Fourier series

The discrete Fourier transform reviewed in Section

any orthonormal basis of an inner product space.

Rf .q-11, any orthonormal basis of real functions

2.2 can be generalized to decompositions over

In particular, for the discrete function space

{go(x), .. . , gq_1(x)} with go(x) = 1 for every
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S 27rix 27ri(q- 1)xx (the identity function)1 can be used in place of the standard Fourier basis 1, e ,* , e q }.

In general, such a basis of functions may be constructed by the Gram-Schmidt process. For con-

creteness, we present an explicit construction based on discrete Legendre orthogonal polynomi-

als [48], a special case of Hahn polynomials. An extensive treatment of discrete orthogonal poly-

nomials may be found in [49]. We remark that our proof works for any set of complete orthonormal

basis of real functions as long as one of the basis functions is the identity function.

For n > 0, we write (x), := x(x - 1) ... (x - n + 1) for the nth falling factorial of x. For any

integer q > 2, the discrete Legendre orthogonal polynomials, {Pa(x; q)} -, are defined as

Pa(x; q) = (-1)j (a (a1)( ),
j=O

Pa(0; q) = 1, for all a 0, 1,... q - 1.

These polynomials satisfy the following orthogonal properties (see, e.g., [48]):

q-1 0, if a b,
S Pa (x; q)Pb (x; q) =
x=O1 (q+a)a41 if a = b.=2a+1 (q-1)a '

Now we define 2 a complete set of orthonormal functions {XOF (X)-1 by

OF ) (2a + 1)(q)a+1 Fa(x; q),Xa (X = P Iz )(q + a)a+1

then they form a complete basis for the real functions space over {0, 1,... , q - 1} and satisfy the

'Therefore the uniform distribution is proportional to go and then by the orthogonality relation, all the non-zero
Fourier coefficients of the uniform distribution are zero.

2We add the superscript OF (denoting orthogonal functions) to distinguish them from the standard real Fourier
basis functions over {0, 1}".
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orthogonality relation

q-1

Zx OF F XOF W
x=0

0

q7

if a $ b,

if a = b.

Because of the orthogonality relation z:4 XOF ()2 = q for every a, we immediately have

Fact 5.1.1. For every 0 < a < q - 1 and every x E {0, 1,... ,q - 1}, IxOF(X)I < Vf.

Due to the orthogonality and the completeness of the basis functions, any real function f

{0, 1,... , q - 1} -R can be uniquely expanded in terms of {xOF(X)}a as:

q-1OF)XOF(X)

f( ) = OF OF ()
a=O

with the inversion formula

q-1

OF(a) _ (X)XOF(X).

x=O

We call the expansion coefficients {IOF(.a)} the generalized Fourier coefficients of f.

Generalizing this expansion to real functions over higher dimensional spaces is straightforward.

Let n > 1 be an integer and let f : {0, 1,. ., q - 1'- R. The generalized Fourier expansion of

f is simply

(X) = OF XF(X),

with the inversion formula

OF(a) (X)XFX),

a
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OF df n E. OF () XO(X) 07 if a -A b,
where xF 11. 1 XF (xi) and satisfy the orthogonality relation > x2F xF _

qfl, if a b.

A direct consequence of the orthogonality of the basis functions {xOF(x)} is the following

Parseval's equality

Sf 2 (X) E OF (a)2

It is easy to check that the following characterizations of the uniform distribution and k-wise

independent distributions over {0, 1,. . . , q - 1}" in terms of the generalized Fourier coefficients.

The proofs follow directly from the orthogonality of {xOF(x)} and the definition of k-wise inde-

pendence, therefore we omit them here.

Proposition 5.1.2. Let D be a distribution over {0, 1,. . . , q - 1}". Then D is the uniform distri-

bution if and only iffor all non-zero vector a E {0, 1, . .. , q - 1}", bOF(a) 0.

Corollary 5.1.3. A distribution D over {0, 1, ... , q - 1}" is k-wise independent if and only iffor

all non-zero vectors a of weight at most k,DOF(a) = 0.

5.1.2 Proof of Theorem 3.3.4

The basic idea of [2] is the following. Given a distribution D, we first operate in the Fourier space to

construct a "ps'eudo-distribution" D1 by setting all the first k-level generalized Fourier coefficients

(except for the trivial Fourier coefficient) to zero. All other generalized Fourier coefficients of

D1 are the same as D. Generally speaking, D1 is not going to be a distribution because it may

assume negative values at some points. We then correct all these negative points by mixing D1

with the uniform distribution with some appropriate weight. That is, we set D' = D1+ w U,

where U is the uniform distribution and w > 0 is the weight of the uniform distribution. After

such an operation, since the uniform distribution clearly has all its first k-level generalized Fourier

coefficients equal to zero and due to linearity of the generalized Fourier transform, we maintain

that all the first k-level generalized Fourier coefficients of D' are still zero; on the other hand,

we increase the weights at negative points so that they now assume non-negative values in D'.
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Bounding the total statistical distance between D and D' then offers an upper bound on the distance

between D and k-wise independence.

Let D : {0, 1,.. , q-1}" -+ R" 0 be a distribution, that is, D(x) ;> 0 for all x and E. D(x)

1. First we define a real function Di : {0, 1,. . . , q - 1 - R by explicitly specifying all its

generalized Fourier coefficients:

5F~ {0, if 0 < wt(a) < k

OF(a), otherwise.

We call D1 a "pseudo-distribution" because D1 may assume negative values at some points in

the domain, which are called the holes in D 1 . Note that since bF(o) bOF(0) = 1, we have

D1 (x) = 1. So the only difference between D1 and a distribution is these holes. The following

lemma bounds the maximum depth of the holes in Di.

Lemma 5.1.4. Let h be the maximum depth of the holes in D1 , then

qk/ 2

h < bOF(a)
qf O<wt(a)<k

Proof From the upper bound in Fact 5.1.1, it follows that xOF(X)I < qk/ 2 if the weight of a is

at most k. Now since D(x) > 0 for every x in the domain and D 1 is obtained by cutting off

all the first k level generalized Fourier coefficients of D, by linearity of the generalized Fourier

expansion,

DI(x) = D(x) - bOF (a)OF(X)

O<wt(a)<k

Therefore, for all x with D1(x) < 0, - ZO<wt(a)<k bOF(a)XOF(x) > 0, so we can upper bound
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the depth of every hole as

|DI(x)|= 1 1 bOFF(a)X(x) - D(x)
q O<wt(a)<k

< 1 E bOF (a)XF(X)
q O<wt(a)<k

qk/ 2

q O<wt(a)<k

The following lemma bounds the fi-distance between a function and its convex combination

with other distributions.

Lemma 5.1.5 ([2]). Let f be a real function defined over {0, 1,... , q - 1}" such that E. f (x) =

1. Let D 1 ,.. . , Df be distributions over the same domain and suppose there exist non-negative

real numbers w 1 ,..., we such that D'_ +5 (f + E> wiD) is non-negative for all x 6-

{0, 1,..n. , q - 1}. Then E.I f(x) - D'(x)I 2 E- wi.

Now we can mix D1 with the uniform distribution U over {0, 1, . . . , q - 1}n of weight qnh

(recall that U(x) = 1/q" for every x in {0, 1, ... , q - 1}") to obtain a distribution D', that is,

D' 1 D1_+qhU.
1 + qnh 1 + qnh

Then D' is non-negative at every point in the domain and D' has all its first k-level generalized

Fourier coefficients equal to zero. Thus D' is a k-wise independent distribution by Corollary 5.1.3.

Furthermore, by Lemma 5.1.5,

S IDI(x) - D'(x)I 2qnh < 2qk/ 2  bOF(a)
X O<wt(a)<k

By Parseval's equality, E ID(x) - DI(x)12 = g E ) DOF 12 . Combining this
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with Cauchy-Schwarz inequality yields

|D(x) - D1(x)l < |1bOF( 12.

O<wt(a)<k

Now the distance between D and k-wise independence can be upper bounded as

A(D, Dwi) < A(D, D')

1 > S D(x) - D'(x)|
2

< > 'ID(x) - D1(x)|+ I D1(x) - D'(x)|

< I +~OF 2 k/ 2  S bOF (a)1

0<wt(a)<k 0<wt(a)<k

S(qk/
2) IbOF(a).

0<wt(a)<k

We thus prove the following theorem

Theorem 5.1.6. Let D be a distribution over {o, 1,... , q - 1}", then

(by the triangle inequality)

A(D, Dwi) < O(qk/2) E )OF (a)
0<wt(a)<k

(5.1)

In particular;

A(D, Dwi) < O(qk/2 ))M(nk,q) max bOF(a)
0<wt(a)<k

Remark 5.1.7. One may try to generalize the approach of discrete orthogonal polynomials to the

non-uniform k-wise independence as well. However, this seems to require some additional new

ideas and we leave it as an interesting open problem. To see the obstacle, consider the simplest

one-dimensional case and let p(x), for every x E {, 1 . . . , q - 1}, be the non-uniform marginal

probabilities. We need to find a complete set of orthonormal functions {xOF(x)} =1. On the one

hand, the constraint jOF (0) = 1 for every distribution D (so that the "cut and paste" method may

apply) requires that xF() = 1 for every x E {0, 1,... , q - 1}; on the other hand, if we stick
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to the characterization that D = p if and only if all the non-zero Fourier coefficients of D vanish,

then combining this with the orthonormality of {X0F(X)}a 0 yields that XOF(x) qp(x) for every

x. Clearly only the uniform distribution p(x) = 1/q can satisfy both conditions.

5.1.3 Testing algorithm analysis

Since the bound in Theorem 5.1.6 is slightly weaker than the bound in Theorem 3.3.4, we will

not give a detailed analysis of the testing algorithm based on orthogonal polynomials. In fact, by

combining Fact 5.1.1 with the proof of Fact 3.5.3, it is easy to see that for any 0 < 6 < 1 and any

non-zero vector a of weight at most k, if A (D, Dkwi) < 6, then lbOF(a) < q3 /2 6. We thus have

the following theorem

Theorem 5.1.8. There is an algorithm that tests the k-wise independence over {0, 1... , q - 1

with query complexity 0 (q k+2 Anky)2 log (M (n, k, q)) and time complexity 0 (qk+2M(nkq)3 log(M(n, k, q))

and satisfies the following: for any distribution D over E", if A(D, Dkwi) 3q(k+3)/2j,(nkq, then

with probability at least 2/3, the algorithm accepts; if A(D, Dkwi) > c, then with probability at

least 2/3, the algorithm rejects.

5.2 Uniform k-wise independence

We now give another proof of Theorem 3.3.4 based on the standard Fourier transform. The advan-

tage of this approach is twofold: first it gives slightly better bound; second and more importantly,

the construction of a k-wise independent distribution from an input distribution is explicit and this

enables us to generalize it the non-uniform case. For ease of exposition, we start from the simplest

case: when the domain is a prime field.

5.2.1 Warm-up: distributions over Z'

We begin our study with testing k-wise independent distributions when the alphabet size is a prime.

Our main result is that in this case the distance between a distribution and k-wise independence
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can be upper bounded by the sum of the biases (to be defined later) of the distribution, slightly

generalizing an idea of Alon, Goldreich and Mansour [5] that they applied to the binary field case.

Let D be a discrete distribution over Z, where p is a prime number.

Definition 5.2.1. Let a E Zg be a non-zero vector. We say D is unbiased over a if pD = 1/p fora,f

every 0 < f < p-1. The MaxBias(a) of a distribution D is defined to be MaxBiaSD(a) maxo<;j<P p

1

Note that the MaxBias is non-negative for any distribution. It is well-known that when p is

prime, the Fourier coefficient 1)(a) of a distribution D over Zn as defined by (2.3) is zero if and

only if Pa,j = I/p for every 0 j < p -1. Combining this with the fact that D is unbiased over a

if and only if MaxBiaSD (a) is zero, we thus have the following simple characterization of k-wise

independence in terms of MaxBias.

Proposition 5.2.2. D is k-wise independent if and only iffor all non-zero a E Z' with wt(a) k,

MaxBiaSD(a) = 0.

We say two non-zero vectors a and b are linearly dependent if there exists some c E Z* such

that b = ca and linearly independent if they are not linearly dependent.

Claim 5.2.3. If a and b are linearly dependent, then MaxBiaSD(a) = MaxBiaSD(b).

Proof Suppose MaxBiaSD (a) is attained at j, i.e., MaxBiaSD(a) = Pj~ -. Then MaxBiasD (b) >

Pc o )- j - 1 = MaxBiaSD(a). Similarly, since c 1 exists, we also havePb,cj(mod p) p a- P

MaxBiaSD(a) > MaxBiaSD(b). It follows that MaxBiaSD(a) = MaxBiaSD(b). 1

For each a E Z' there are p - 2 other vectors (namely, by taking c = 2,. .. ,p - 1) that are

linearly dependent with a.

Lemma 5.2.4. Let a, b E Z' be two non-zero, linearly independent vectors, then for any 0 <

ra, rb p - 1,

Fn n
Pr aixi )A Zb (mod p)=

Xe _ i 1 (iL i= i=

71



Proof This follows from the well-known fact that the number of solutions to a system of 2 linearly

independent linear equations over Z in n variables is p"2, independent of the vectors of free

coefficients. E

Definition 5.2.5 (Strong Orthogonality). Let a and b be two non-zero vectors in Z". We say

a is strongly orthogonal to b if Ua,j is unbiased over b for every 0 < j < p - 1. That is,

Prx~uaj [b - X = (mod p)] = 1/p, for all 0 < j, f < p - 1.

Corollary 5.2.6. Let a be a non-zero vector in Z," and b be another non-zero vector that is linearly

independent of a. Then a is strongly orthogonal to b.

Proof Clearly we have Sa,j I = p"1 for all non-zero a and all j. Then by Lemma 5.2.4, the p -1

points in Saj are uniformly distributed over each of the p sets Sbe, 0 < f < p - 1. El

Now we are ready to prove the following main result of this section.

Theorem 5.2.7. Let D be a distribution over Z'. Then A(D, Dkai) < P ZO<wt(a)<k MaxBiaSD(a).

Note that this generalizes the result of [5] for GF(2) to GF(p) for any prime p. When p = 2,

we recover the same (implicit) bound there (our MaxBias is exactly half of their "Bias").

We first give a brief overview of the proof. We are going to prove Theorem 5.2.7 by construct-

ing a k-wise independent distribution that is close to D. Generalizing the approach in [5], we start

from D, step by step, zeroing-out MaxBiaSD(a) for every non-zero vector a of weight at most k.

By Proposition 5.2.2, the resulting distribution will be a k-wise independent one. At each step, we

pick any a with MaxBiaSD(a) > 0. To zero-out MaxBiaSD(a), we apply a convex combination

between the old distribution and some carefully chosen distribution to get a new distribution. By

the strong orthogonality between linearly independent vectors (c.f. Corollary 5.2.6), if for every

0 < j < q - 1, we mix with D the uniform distribution over all strings in Saj with some appropri-

ate weight (this weight can be zero), we will not only zero-out the MaxBias at a but also guarantee

that for any b that is linearly independent from a, MaxBiaSD(b) is not going to increase (there-

fore the MaxBias of all zeroed-out vectors will remain zero throughout the correcting steps). This

enables us to repeat the zeroing-out process for all other vectors of weight at most k and finally

obtain a k-wise independent distribution.
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Proof of Theorem 5.2.7. First we partition all the non-zero vectors of weight at most k into families

of linearly dependent vectors, say F1, F2 , . . ., etc. Pick any vector a from F1 . If MaxBiaSD(a) = 0,

we move on to the next family of vectors. Now suppose MaxBiaSD(a) > 0, and without loss of

generality, assume that Pao < Pa,1 < - Pa,p_. Let e = Paj - 1. Since =Paj 1, we

have co + + cp_1 = 0. Also note that MaxBiaSD(a) = ep-1.

Now we define a new distribution D' as

D' = I D + Ua,o + - - - 6p-2 Ua,p-2,

where c (E, 1 - c0 ) + - + (Cp-1 - cr-2). Now by the triangle inequality,

A (D, D') E e (ep_1 - CO) + --- + (Ep_1 - Er-2)

- pe_1 = pMaxBiaSD(a).

It is easy to check that MaxBiaSD'(a) = 0, since for every 0 < j p - 1,

pD D Ep- E j
aj 1+E a,j 1 + C

1

1 1
=+ (ce,_1+ -)+ 6 p

1
- (because c pcp-).
p

Moreover, due to Corollary 5.2.6 and the fact that Uaj is unbiased over b for every 0 j < p,

we have for any vector b that is not in the same family with a (i.e., in F 2,... , etc.),

1
MaxBiaSD'(b) = MaxBiaSD(b) MaxBiaSD(b).

1+ e

In particular, if MaxBiaSD(b) is zero, then after zeroing-out the bias at a, MaxBiaSD' (b) remains

zero.

Note that once we zero-out the MaxBias over a, then by Claim 5.2.3, the biases over all other
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p - 2 vectors in F1 vanish as well (that is, we only need to perform one zeroing-out for the p - 1

vectors in the same family). Repeating this process for all other families of vectors, we reach a

distribution Df that is unbiased over all vectors of weight at most k. By Proposition 5.2.2 Df is

k-wise independent and the distance between Df and D is at most as claimed in the theorem. E

5.2.2 Distributions over Z'q

We now address the main problem of this section, that is, robust characterization of k-wise in-

dependent distributions over domains of the form Z' when q is composite. A straightforward

application of the method for the prime fields case breaks down for general commutative rings

because the strongly orthogonal condition in Corollary 5.2.6 does not hold, even if the two vectors

are linearly independent. Recall that a distribution D over Z" is k-wise independent if and only if

for all non-zero vectors a of weight at most k, D(a) = 0. Our main technical result in this section

is to show, analogous to the prime field case, for a distribution D over the general domain Z,

the following holds: for every non-zero vector a of weight at most k, there exists a (small-weight)

distribution such that mixing it with D zeroes-out the Fourier coefficient at a and does not increase

the Fourier coefficient at any other vector.

Unless stated otherwise, all arithmetic operations in this section are performed modulo q; for

instance, we write a = b to mean that a2  bi (mod q) for each 1 < i < n.

Definition 5.2.8 (Prime Vectors). Let a = (ai,... , an) be a non-zero vector in Z". a is called

a prime vector if gcd(ai,. . . , an) = 1. If a is a prime vector, then we refer to the set of vectors

{2a, . . . , (q - 1)a} (note that all these vectors are distinct) as the multiples of a. A prime vector

and its multiples are collectively referred to as afamily of vectors.

Note that families of vectors do not form a partition of the set of all the vectors. For example

when n = 2 and q = 6, vector (4, 0) is a multiple of both (1, 0) and (2, 3), but the latter two are

not multiples of each other. Furthermore, there can be more than one prime vector in a family of

vectors, e.g., for q = 6 again, (2, 3) and (4, 3) are multiples while they are both prime vectors.

Recall that we use Sa,j to denote the set { E : 1 aixi j (mod q)}.
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Proposition 5.2.9. If a is a prime vector then |Saj| = q n for any 0 < j < q - 1.

Proof Since gcd(ai, . . . , a,,) = 1, there exist integers zi, . . . , zn such that aizi + - - - + anzn 1.

Note that for any z E Z" the map hz(x) = x + z is injective. Now if x C Sa,o, then hz(x)

(Xi z1 ,.. . , X + zn) E Sa,1. Therefore ISaoa < I Sai1. Similarly we have ISaI| < ISa,2 <

-. - ISa,q-il 5 |Sa,0 l. Since the sets Sa,o,... Sa,q-1 form a partition of Z", it follows that

|Sa,o l = |Sa,1| 1 |Sa,,_1| = q -.

Linear systems of congruences

A linear system of congruences is a set of linear modular arithmetic equations in some variables.

We will be particularly interested in the case when all modular arithmetic equations are modulo

q. If the number of variables is k, then a solution to the system of congruences is a vector in Z

Two solutions x, x' in Zk are congruent to each other if x = x' (i.e. xi x' (mod q) for every

1 < i < k) and incongruent otherwise.

We record some useful results on linear systems of congruences in this section. For more on

this, the interested reader is referred to [35] and [60]. These results will be used in the next section

to show some important orthogonality properties of vectors in Z". In this section, all matrices are

integer-valued. Let M be a k x n matrix with k < n. The greatest divisor of M is the greatest

common divisor (gcd) of the determinants of all k x k sub-matrices of M. M is a prime matrix if

the greatest divisor of M is 1.

Lemma 5.2.10 ([60]). Let M be a (k + 1) x n matrix. If the sub-matrix consisting of the first k

rows of M is a prime matrix and M has greatest divisor d, then there exist integers u, ... , uk such

that for every 1 < j < n,

uiM1 ,J + u2M 2,j + ... + Uk M -,= Mk+1,j (mod d).
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Consider the following system of linear congruent equations:

M1 ,1 x 1 + M 1,2X2 + - + M 1 ,nx M 1,n±1 (mod q)

(5.2)

Mk,1x1 + Mk,2x2 + + Mk,nX Mkn41 (mod q).

Let M denote the k x n matrix consisting of the coefficients of the linear system of equations and

let M denote the corresponding augmented matrix of M, that is, the k x (n + 1) matrix with one

extra column consisting of the free coefficients.

Definition 5.2.11. Let M be the coefficient matrix of (5.2) and ]( be the augmented matrix of M.

Suppose k < n so that system (5.2) is a defective system of equations. Define Yk, Yk-1,... , Y,

respectively, to be the greatest common divisors of the determinants of all the k x k, (k - 1) x

(k - 1),... , 1 x 1, respectively, sub-matrices of M. Analogously define Zk, Zk_1, . . . , Z1 for the

augmented matrix M. Also we set Yo = 1 and Zo = 1. Finally let s j1 gcd(q, Y3) and

t = ]J 1 gcd(q, Z)

The following Theorem of Smith gives the necessary and sufficient conditions for a system of

congruent equations to have solutions.

Theorem 5.2.12 ([60]). If k < n, then the (defective) linear system of congruences (5.2) has

solutions if and only if s = t. Moreover if this condition is met, the number of incongruent

solutions is sqn-k

Weak orthogonality between families of vectors

To generalize the proof idea of the GF(2) case (and also the prime field case studied in Sec-

tion 5.2.1) to commutative rings Z for arbitrary q, it seems crucial to relax the requirement that

linearly independent vectors are strongly orthogonal. , Rather, we introduce the notion of weak

orthogonality between a pair of vectors.

Definition 5.2.13 (Weak Orthogonality). Let a and b be two non-zero vectors in Z". We say a is

weakly orthogonal to b if for all 0 < j < q - 1, Uaj(b) = 0.
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Remark 5.2.14. Note that in general weak orthogonality is not a symmetric relation, that is, a is

weakly orthogonal to b does not necessarily imply that b is weakly orthogonal to a. Also note

that strong orthogonality implies weak orthogonality while the converse is not necessarily true. In

particular, strong orthogonality does not hold in general for linearly independent vectors in Z'.

However, for our purpose of constructing k-wise independent distributions, weak orthogonality

between pairs of vectors suffices.

The following lemma is the basis of our upper bound on the distance between a distribution

and k-wise independence. This lemma enables us to construct a small-weight distribution using

an appropriate convex combination of { Uaj },q, which on the one hand zeroes-out all the Fourier

coefficients at a and its multiple vectors, on the other hand has zero Fourier coefficient at all other

vectors. The proof of the Lemma 5.2.15 relies crucially on the results in Section 5.2.2 about linear

system of congruences.

Lemma 5.2.15. Let a be a non-zero prime vector and b any non-zero vector that is not a multiple

of a. Then a is weakly orthogonal to b.

Proof Consider the following system of linear congruences:

a1x 1 + a 2 x 2 +--- + anX- ao (mod q)
(5.3)

bixi + b2 x 2 + + b X bo (mod q).

[a, a2 ... an 1 a, a2 . an a0
Following our previous notation, let M= and M=

b1  b2  --- bn b1  b2  --- bn bo
Since a is a prime vector, Yi = Z1 = 1. We next show that if b is not a multiple of a, then Y 2 can

not be a multiple of q.

Claim 5.2.16. Let a be a prime vector and let M a1 a2 ... a . The determinants of
b1 b2 ... bn

all 2 x 2 sub-matrices of M are congruent to 0 modulo q if and only if a and b are multiple vectors.

Proof If a and b are multiple vectors, then it is clear that the determinants of all the sub-matrices

are congruent to 0 modulo q. For the only if direction, all we need to prove is that b = ca for some
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integer c. First suppose that the determinants of all 2 x 2 sub-matrices of M are 0. Then it follows

that b = -- = c. If c is an integer then we are done. If c is not an integer, then c = !, whereal a

u, v are integers and gcd(u, v) = 1. But this implies vlal for every 1 < i < n, contradicting our

assumption that a is a prime vector. Now if not all of the determinants are 0, it must be the case

that the greatest common divisor of the determinants of all 2 x 2 sub-matrices, say d', is a multiple

of q. By Lemma 5.2.10, there is an integer c such that caj = bi (mod d') for every 1 < i < n.

Consequently, bi - caj (mod q) for every i and hence b is a multiple of a. E

Let d = gcd(q, Y2). Clearly 1 < d < q and according to Claim 5.2.16, d # q so dlq. Applying

Theorem 5.2.12 with k = 2 to (5.3), the two linear congruences are solvable if and only if d =

gcd(q, Y2) = gcd(q, Z 2). If this is the case, the total number of incongruent solutions is dqn 2 .

Furthermore, if we let h denote the greatest common divisor of the determinants of all 2 x 2 sub-

matrices of 1I, then dlh. By Lemma 5.2.10, there is an integer u such that be = uao (mod h). It

follows that d|(bo - uao). Let us consider a fixed ao and write to = uaO (mod d). Since a is a

prime vector, by Proposition 5.2.9, there are in total q -1 solutions to (5.3). But for any fixed bo

that has solutions to (5.3), there must be dqa- 2 solutions to (5.3) and in addition dlq. Since there

are exactly q/d bo's in {0, ... , q - 1}, we conclude that (5.3) has solutions for bo if and only if

bo = fo + d(, where to is some constant and f = 0, .. . , 1 - 1. Finally we have

Ua~~b) >3Ua,j(X) 2,,b-x 1 e'b~x

qezq a 2-j (mod q)
d "=bo 0. (by Fact 2.2.2)

bo:bo=fo+d

This finishes the proof of Lemma 5.2.15. E

Correcting the Fourier coefficients of multiple vectors

Now we show how to zero-out a distribution's Fourier coefficient at every vector in a family. Let D

be a distribution over Z". By (2.3), for every 1 < f < q - 1, the Fourier coefficient of a vector la

can be rewritten as D(fa) = 1 Paje ej. Recall that MaxBias(a) = maxo<j<q_1 Paj - j
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Claim 5.2.17. We have that MaxBias(a) < 1 E -_ b(ea)

Proof Since b(ea) = jPaje Yt, by the inverse Fourier transform (2.2), for every 0 < j <

q - 1,
q-1

Paj qZ (fa)el qJ

Since b(0) 1, we have for every 0 < j < q- 1,

q-1 
,i1 1 22

Paj = - (Ea)e
q q _

q-1 q-1

<5 D(Ca)e- e < 5 D(Ea).

Now we are ready to prove the main theorem of this section.

Theorem 3.3.4. Let D be a distribution over Z', then 3

A(D, Dwi) D(a)
O<wt(a)<k

In particular, A(D, Dkwi) M(n, k, q) maxo<wt(a)<k D(a)

Proof Let a be a prime vector and D(a), D(2a),... , D((q - 1)a) be the Fourier coefficients of

a and all the multiples of a. Now construct a new distribution D' over Z' as

q-1

D' +E D+ 1 E V(j)qUl ,,
3=0

where c = j~4J v(j) and {v(j)}Iq are a set of non-negative real numbers that will be specified

later. It is easy to check that D' is indeed a distribution. Moreover, by Lemma 5.2.15 and linearity

3 It is easy to verify that the same bound holds for prime field case if we transform the bound in MaxBias there
into a bound in terms of Fourier coefficients. Conversely we can equivalently write the bound of the distance from
k-wise independence in terms of MaxBias at prime vectors. However, we believe that stating the bound in terms of
Fourier coefficients is more natural and generalizes more easily.
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Figure 5-1: Algorithm for testing if a distribution D over En is uniform k-wise independent.

of the Fourier transform, for every b that is not a multiple of a,

1

Without loss of generality, assume that PaO < ... < Paq-1. That is, MaxBias(a) Pa,q1 -

If we choose v(j) = Pa,q-1 - Pa,j, then clearly v(j) is non-negative for every 0 < j < q - 1.

Furthermore, by our construction pD. = 1 for every j. Therefore by Fact 2.2.1, b'(a) 0 fora~j q

every 1 < f < q - 1. Since E Pa,j 1, it follows that v(j) =qMaxBias(a). By

Claim 5.2.17,
q-1 q-1

A(D, D') < e = v(j) < S D(ea) . (5.4)
j=0 f=1

Finally observe that although some vectors are multiples of more than one prime vector (thus

they belong to more than one family and appear more than once in (5.4)), because the distance

bound in (5.4) is the sum of magnitudes of all the Fourier coefficients in the family, once a vector's

Fourier coefficient is zeroed-out, it will not contribute to the distance bound at any later stage. This

completes the proof of the theorem. E

Testing algorithm and its analysis

We are now ready to prove the following result on testing k-wise independence over Z".

Theorem 5.2.18. There is an algorithm that tests the k-wise independence over E" with query

complexity 6( 2
) 2k ) and time complexity 6( " E(q

2 ) and satisfies the following: for
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Test-Uniform-KWI(D, k, q, e)

1. Sample D independently 0 q2M(n' '92 log (M(n, k, q))) times to obtain

a set Q

2. For every non-zero vector a of weight at most k, use Q to estimate D(a)

3. If maxa b(a) 3M<n,k,q) return "Accept"; else return "Reject"



any distribution D over E', if A (D, Dki) < , then with probability at least 2/3, the

algorithm accepts; if A (D, Dki) > c, then with probability at least 2/3, the algorithm rejects.

Proof Our testing algorithm simply plugs the upper bound on distance to k-wise independence

in Theorem 3.3.4 into the Generic Algorithm as shown in Fig. 3-1. The algorithm is described in

Figure 5-1. For the analysis of Test-Uniform-KWI(D, k, q, c), we simply apply Theorem 3.5.2

with K = M(n, k, q), A = {a c En : 0 < wt(a) < k} and , = q. To see , = q, note that

P=,j 1/q holds for every a in A and 0 < j < q- 1 for any k-wise independent distribution. Since

no (randomized) algorithm can increase the statistical difference between two distributions [58], by

Fact 3.5.3 (more precisely, the proof of Fact 3.5.3), if A(D, Dkwi) < 6, then we have b(a) < q6

for every a E A. D

5.2.3 Distributions over product spaces

Now we generalize the underlying domains from Z, to product spaces. Let E1,... , En be n

finite sets. Without loss of generality, let Ei {0, 1,... , qi - 1}. In this section, we consider

distributions over the product space Q = Ei x ... x En. For a set of integers {qi, ... , qn}, denote

def
their least common multiple (1cm) by lcm(qi, ... , qn). Let Q lcm(qi,... , qn) and in addition, for

every 1 < i < n, set M = . Then we can rewrite the Fourier coefficient defined in (2.1) as
qi

D(a) = D(x)e (Mi1a1x1+...+Mnanxn)

EE1X --- XEn

= S D(x)e a'x1+---+a'non)

CEi x --- x En

where a' = Miai (mod Q) for every 1 < i < n. This suggests that we may view D as a distribution

over En with effective alphabet size |E = Q = 1cm(qi,... , qn) and consider the following map

from vectors in Ei x ... x En to vectors in Z:

- (ai,... , an) -+ (Aia1 (mod Q),... , Mnan (mod Q)). (5.5)

Then we only need to consider the Fourier coefficients at vectors a'= H (a) = (a, ... , a') E
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Z' (that is, vectors in Z' whose ith component is a multiple of Mi for every i). Note that in general

M lcm(q,... , q,,) could be an exponentially large number and is therefore not easy to handle in

practice4 . However, this difficulty can be overcome by observing the following simple fact. Since

we are only concerned with vectors of weight at most k, we may take different effective alphabet

sizes for different index subsets of size k. For example, consider a k-subset S = {i, . . . , ik}. Then

the effective alphabet size of S is IEs = lcm(qj, .... , qk), which is at most poly(n) if we assume

k is a constant and each qi is polynomially bounded.

Our main result for distributions over product spaces is the following theorem.

Theorem 5.2.19. Let D be a distribution over E1 x- . . x E,. Then A (D, DkWi) Eo<wt(a)<k b a)

We now sketch the proof of Theorem 5.2.19.

A vector a E Ei x ... x E, is a prime vector if gcd(ai,... , a,) = 1. For any integer f > 0, the
def

fE-multiple of a is fa = (fai (mod qi),... , a (mod q,)). Let a be a prime vector. Then vectors

in the set {2a, . . . , (Q - 1)a} are called the multiple vectors of a. Note that these Q - 1 vectors

may not be all distinct.

The main difficulty in applying our result for distributions over Z" to distributions over product

spaces is that the mapping in (5.5) is not surjective. In particular, after the mapping some families

of vectors may have no prime vector in it. To handle this problem, we slightly generalize the result

of weak orthogonality in Lemma 5.2.15 to non-prime vectors. Specifically, we say a non-zero

vector a (not necessarily prime) is weakly orthogonal to vector b if Ua,e(b) = 0 for all f such that

Sa,f is non-empty.

Lemma 5.2.20. Let a and b be two vectors in Z". If b is not a multiple of a, then vector a is

weakly orthogonal to b.

Proof Clearly we only need to prove the case when a is not a prime vector. Let a be any prime

vector that is a multiple of a and suppose a = dd. Now S,e is non-empty only if f -_'d (mod q)

for some integer f'. Note that Sa,f'd = Uj.jd= (mod q)S&,j. Since the sets {Sa,}j are pairwise

4 Recall that the testing algorithm requires estimating all the low-degree Fourier coefficients, where each Fourier
coefficient is an exponential sum with M as the denominator.
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1~~ wheegdd )i h ubrodisjoint, it follows that Ua,e'd gcd(d,q) j:jd=f'd (mod q) U6 here gd(d, q) is the number of

incongruent j's satisfying jd l'd (mod q). Now by Lemma 5.2.15, if b is not a multiple of 6,

then U, (b) = 0 for every j. It follows that Upad(b) = 0.

Note that for any integer f > 0 and every 1 i n, ai bi (mod qi) if and only if

faimi = bimi (mod Q), hence the map 'H preserves the multiple relationship between vectors.

Now Lemma 5.2.20 implies that if we map the vectors in E1 x ... x En to vectors in Zn as

defined in (5.5), then we can perform the same zeroing-out process as before: for each family of

vectors, zero-out all the Fourier coefficients at the vectors in this family using a mixture of uniform

distributions without increasing the magnitudes of the Fourier coefficients everywhere else. This

will end up with a k-wise independent distribution over the product space Ei x ... x En.

Next we bound the total weight required to zero-out a family of vectors. Let S be any k-subset

of [n]. Without loss of generality, we may take S = [k]. Let qs = 1cm(qi,... , qk) and let mi = S
qi

for each 1 < i < k. Let a E Ei x ... x E, be a prime vector whose support is contained in [k].

Then

D(a) = D ) +-

6EiX---XEk

D()Cqs(m1a1x1+---+mkakXk)

XEEi X---.XEk

Ds(x)e (a'x+--a'xk)

XEE1 X --- XEk

where, as before, we define a' (a', ... , a',) with a' mia (mod qs) for 1 < i < k.

Let d = gcd(mia 1 (mod qs),... , mkak (mod qs)) = gcd(a, ... , a') and set Sa,j {x E

Ei x ... x Ek : a'xi + - + a'zk j (mod qs)}. Clearly Sa,j is non-empty only if d~j.

Claim 5.2.21. Let a be a vector in El x - x Ek with d = gcd(a, ... , a'). Then ISa ,dI = ...qk

for every 0 < f - 1.

Proof Since d = gcd(a', . . , a' ), if we let bi = for each 1 < i < k, then gcd(bi,... , bk) = 1.

Now applying the same argument as in the proof of Proposition 5.2.9 gives the desired result. E
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*def qSNow for every 1 <e < - land put q - -wehv
d dd ehv

D(fa)=
XGE1 X --- X Ek

=
Ds(x)e q1 qk

d

Ds(x)e qS Pr [a'. X jd (mod qs)]e qd

X=D

d q

= jw(j)e = 0
j=O j=O

defI
where w(j) Pa,jd. That is, each of the Fourier coefficients b(a), b(2a), . . . , b((q* - 1)a) can

be written as a one-dimensional Fourier transform of a function (namely, w(j)) over Zq-. Then

following the same proofs as those in Sec. 5.2.2, we have that the total weight to zero-out the
dS__

Fourier coefficients at a and its multiples is at most E i D(fa) . This in turn gives the upper

bound stated in Theorem 5.2.19 on the distance between D and k-wise independence over product

spaces.

Testing algorithm and its analysis

We study the problem of testing k-wise independence over the product space E1 x ... x E in this

section.

To simplify notation, in the following we write

k

MProd - E ]7J(q% - 1)
e=1 Jr(]) iEI

for the total number of non-zero Fourier coefficients of weight at most k, and

qmax = max lcm(qi : i c S)
se( i z)

for the maximum effective alphabet size of any index subset of size k.
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Test-Product-KWI(D, k, q, c)

1. Sample D independently 0 maxM 2(n~k,q)2 log (MProd(n, k, q))) times to ob-

tain a set Q

2. For every non-zero vector a of weight at most k, use Q to estimate b(a)

3. If maxa (a) 3Mrod(n,k,q) return "Accept"; else return "Reject"

Figure 5-2: Algorithm for testing uniform k-wise independence over product spaces.

Note that a simple corollary of Theorem 5.2.19 is

A (D, Dkwi) < Mprod max a
O<wt(a)<k D a

which gives the soundness condition for the distance bound. For the completeness condition,

it is easy to see that for any 0 < 3 < 1 and any non-zero vector a of weight at most k, if

A(D, Dkwi) < 6, then Db(a) < qmao. The following theorem can now be proved easily by

plugging these two conditions into Theorem 3.5.2. We omit the proof.

Theorem 5.2.22. There is an algorithm that tests the k-wise independence over the product space

E1 x ... x E, (as shown in Fig 5-2) with query complexity o ( qaxE2 'n',2 log (MProd(rn, k, q))

and time complexity 0 ("'axME'd('lkq)3 log (MProd (n, k, q))) and satisfies the following: for any

distribution D over E", if A(D, Dkwi) , ' then with probability at least 2/3, the

algorithm accepts; if A(D, Dkwi) > c, then with probability at least 2/3, the algorithm rejects.
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Chapter 6

Non-uniform k-wise Independence

In this chapter we seek a robust characterization of non-uniform k-wise independent distributions.

For ease of exposition, we present our results only for the case when the underlying domain is

{ 0, 1, .. , q - 1}". Our approach can be generalized easily to handle distributions over product

spaces. The chapter is organized as follows. First we introduce non-uniform Fourier coefficients in

Section 6.1. A new characterization of non-uniform k-wise independence based on non-uniform

Fourier coefficients is present in Section 6.2. Next, in Section 6.3, we demonstrate how to zero-out

all the low-level non-uniform Fourier coefficients step by step. In Section 6.4 we study the testing

algorithm of non-uniform k-wise independence. Finally, we consider the problem of testing non-

uniform k-wise independence when the marginal probabilities are unknown in Section 6.5.

Recall that a distribution D : E" - [0, 1] is k-wise independent if for any index subset

S c [n] of size k, S = {i..., ik}, and for any zi -.. Zk E Ek, Ds(zi ... zk) = PrD[Xi,

zi] - PrD[Xik = Zk]. Our strategy of showing an upper bound on the distance between D and

non-uniform k-wise independence is to reduce the non-uniform problem to the uniform case and

then apply Theorem 3.3.4.
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6.1 Non-uniform Fourier coefficients

In the following we define a set of factors which are used to transform non-uniform k-wise inde-
def

pendent distributions into uniform ones. Let pi (z) = PrD [Xi= z]. We assume that 0 < pi (z) < 1

for every i E [n] and every z E E (this is without loss of generality since if some pi(z)'s are

zero, then it reduces to the case of distributions over product spaces). Let 0i (z)- (z) . Intuitively,

one may think of the O6(z)'s as a set of compressing/stretching factors which transform a non-

uniform k-wise distribution into a uniform one. For convenience of notation, if S ={i,. , it}

and z = zi, - - - zi, we write Os(z) for the product 0i, (zi 1) -.- - (zi,).

Definition 6.1.1 (Non-uniform Fourier Coefficients). Let D be a distribution over E'. Let a

be a non-zero vector in E" and supp(a) to be its support. Let Dsupp(a) be the projection of

D to coordinates in supp(a). For every z in the support of Dsupp(a), define D'upp(a)(z) =

6 supp(a) (z)Dsupp(a) (z), which is the transformed distribution' of the projected distribution Dsupp(a).

The non-uniform Fourier coefficient of D at a, denoted ," "(a), is defined by

nfon ldef ,\ 27rj
b" "(a)= b'supp (a) (a) =D'upp(.) (z) e q ~z (6.1)

zEEIsupp(a)|

Remark 6.1.2. In the following we always refer to h"" collectively as a set of (complex) num-

bers that will be used to indicate the distance between distribution D and the non-uniform k-wise

independence. Strictly speaking, Dh are not Fourier coefficients since in general there is no

distribution whose (low degree) Fourier coefficients are exactly "

To summarize, let us define a function

F : (R>0)E' x ( x Ek) - (R>O) k

which maps a distribution D over E' and a vector a c En of weight k to a non-negative function
'Note that in general Ds is not a distribution: it is non-negative everywhere but E Dsux () )1 my

dsupp(a) supp(a)
not hold.
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over Elsupp(a)l. That is, for every z E Ek,

F(D, a)(z) = DSuPPa (Z)Osupp(a)(Z). (6.2)

Then the non-uniform Fourier coefficient of D at a is simply the ordinary uniform Fourier coeffi-

cient of F(D, a) at a:

D" "..(a) = -F(D, a) (a).

The idea of defining Dsupp(a) is that if D is non-uniform k-wise independent, then D' up(a) will

be a uniform distribution over the coordinates in supp(a). Indeed, our main result in this section

is to show a connection between the non-uniform Fourier coefficients of D and the property that

distribution D is non-uniform k-wise independent. In particular we have the following simple

characterization of the non-uniform k-wise independence.

Theorem 6.1.3. A distribution D over E' is non-uniform k-wise independent if and only if for

every non-zero vector a E E' of weight at most k, b"' (a) = 0.

6.2 New characterization of non-uniform k-wise independence

We prove Theorem 6.1.3 in this section. It is straightforward to show that if D is a non-uniform k-

wise independent distribution, then all the non-zero non-uniform Fourier coefficients of degree at

most k are zero. However, the proof of the converse is more involved. The key observation is that

if we write the non-uniform Fourier transform as a linear transformation, the non-uniform Fourier

transform matrix, like the uniform Fourier transform matrix, can be expressed as a tensor product

of a set of heterogeneous DFT (discrete Fourier transform) matrices (as opposed to homogeneous

DFT matrices in the uniform case). This enables us to show that the non-uniform Fourier transform

is invertible. Combined with the condition that all the non-trivial non-uniform Fourier coefficients

are zero, this invertibility property implies that D must be a non-uniform k-wise independent

distribution.

Recall that our new characterization of non-uniform k-wise independent distributions is:
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Theorem 6.1.3. A distribution D over E" is k-wise independent if and only if for every non-zero

vector a G Ek with wt(a) < k, D "on(a) = 0.

Proof Suppose D is a non-uniform k-wise independent distribution. Then it is easy to see that for

any non-empty T C [n] of size at most k (not just for subsets whose sizes are exactly k),

DT (ZT) = flpA(zi).
icT

Indeed, if |TI = k then this follows directly from the definition of non-uniform k-wise independent

distributions. If |TI < k, let S D T be any index set of size k, then

DT(zT) = Ds D(zS)
z :jES\T

zj:j S\TCS

pflPi(zi) E fJ pj(Zj)
iET z:jGS\TjES\T

fpi(z ) fl ( (zj)
iET jES\T zjEE

= J7pi(zi),

iGT

as zj = 1 for every 1 <j < n.

Let a be any non-zero vector of weight f < k whose support set is supp(a). Now we show that

D'upp(a) is a uniform distribution and consequently all the non-uniform Fourier coefficients whose

support sets are supp(a) must be zero. Indeed, by the definition of D',

D'upp(a)(Zsupp(a)) = Dsupp(a)(Zsupp(a)) H 64(zi)
iEsupp(a)

1
= i p(z) H (z)

icsupp(a) iEsupp(a)

1
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for every zsupp(a) E {O, 1, ... , q - 1}. Hence b"' (a) = Dupp(a) (a) = 0 by Theorem 2.2.4.

The converse direction will follow directly from Lemma 6.2.1 below by setting E = Ds in the

statement. E

Lemma 6.2.1. Let E :k -+ Ro be a distribution. For any index set T C [k], let ET(z),

E (z) and E 0 "(a) be defined analogously to those of DT(z), D' (z) and b", "(a), respectively.

If E "1 0 (a) = 0 for every non-zero vector a, then E is a non-uniform independent distribution, i.e.

El is the uniform distribution and consequently E is a product distribution.

One may think of Lemma 6.2.1 as the non-uniform version of Proposition 2.2.3.

Proof For notational simplicity we write S [k]. Let T be a subset of S of size k - 1, and

without loss of generality, we assume that T = {1,... , k - 1}. We first observe the following

relation between Es(z) and E(zT).

E' (zi, ... , Zk_1) = ET(z1 , Zk_1)01(Zi) - --_1(Zk 1)

= Es(zi,... , zk_1, Zk)01(Zi) - -1(zk_1)
Zk

Z Ok(zk)

= qpk(zk)ES(z1,...,Zk).
Zk

By induction, we have in general, for any T C S,

E' (zT) = E E' (zi, . . . , zk) 11 (qpj (zj)). (6.3)
zj:jeS\T jES\T

Next we use (6.3) to eliminate the intermediate projection distributions ET, and write the non-

uniform Fourier transform of E as a linear transform of {E'(z)}zer k. Let a be a vector whose

support set is T, then

E" "(a) = ' (a)
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-S ET(ZT)e q iET ai zi

z :iET

E'(z)e_ ECT azi 17 (qpj (zj))
zi:iET zj:jcS\T jcS\T

E E'(z) e azi fJ (qpj (zj))
zEEk iCT jES\T

E sE'(z) JJ e "q ' 17 (qpj(zj)). (6.4)
zEEk icsupp(a) jCS\supp(a)

Define a qk -dimensional column vector E' with entries E'(z) (we will specify the order of

the entries later). Similarly define another qk-dimensional column vector whose entries are the

non-uniform Fourier coefficients E"'. Then we may write (6.4) more compactly as

= FE'. (6.5)

In what follows, we will show that F can be written nicely as a tensor product of k matrices. This

in turn enables us to show that f is non-singular.

27ri

Let w = e q be a primitive qth root of unity. The q-point discrete Fourier transform (DFT)

matrix is given by

1 1 1 1 -- - 1

1 w 2 
3  ... q-1

1 02 4 6 ... W2(q-1)
F=

1 w3 L)6 L) 9 ... . L 3(q-1)

q-1 2(q-1) 3(q-1) ... (q-1)(q-1)

Note that a DFT matrix is also a Vandermonde matrix and therefore det(F) # 0.

Definition 6.2.2 (Tensor Product of Vectors and Matrices). Let A be an m x n matrix and B be

a p x q matrix. Then the tensor product (a.k.a. Kronecker product) A 0 B is an mp x nq block
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matrix given by

A 0B -
A LB= amoB

[ o Bo -

aoobp-1,0

am- 1,0 b00

am-1,obp-1,0

- ao,_ 1 B1

- am- 1 ,n- 1 B

... aoobo,q-1

... aoo bp ,q-1

' . am-1,ob,q-1

am-1,obp-I,q-1

.' ' '' ao,n- b1b 00

. .''' ao,n-1 p-1,O

... ' .'am-1,n-boo

am-1,n-Ibp-,O

. . ao,n-1bo,q- 1

' ''bo,n-1p--I,q-1

'.. 'am-I,n- Ibp-I,q-1

... am-1,n-b1 p-1,q-1

Let a be an m-dimensional column vector in R' and b be a p-dimensional column vector in RP.

Then the tensor product a 0 b is an mp-dimensional column vector in RmP and its entries are given

by

ao bo

am-1 [p- 1

aobo

aobp_1

am-1bo

[am-
1 bp_1J

Let q > 2 be an integer. The q-ary representation of a natural number r is an ordered tuple

(bk, bi, bo) such that 0 < bi < q - 1 for every 0 < i < k and r = b0 + b1 - q + -b - q .

The following simple while useful fact about the tensor product of matrices can be proved easily

by induction on the number of matrices in the product.
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Fact 6.2.3. Let F( 1), .. . , F(k) be a set of q x q matrices where the (i, j)th entry of F(t) is denoted

by F<3, 0 < i j < q - 1. Let G - F(l) 0 -0 F(k). For 0 <I , J < qk - 1, let the q-ary

representations of I and J be I =(i 1 ,... , ik) and J = (j1,... , j, respectively. Then

G1,j = F.(, -.-. F .
11J1 ikJk

Let's first consider the simple case when E is a one-dimensional distribution. Let E be the

column vector whose entries are values of E at {0, 1,... , q - 1}. Similarly let E be the column

vector of E's Fourier transform. If we arrange the entries of E and E in increasing order, then the

one-dimensional (uniform) Fourier transform can be written in the matrix multiplication form as

E(0) E(0)

E= =F =FE. (6.6)

E(q - 1) E(q - 1)

For the general case in which E is a distribution over {0, 1,... , q - 1}k, we may view every

k-dimensional point (X 1 ,... , X) in E(x1,... , Xk) as the representation of a natural number X in

the q-ary representation: X = x 1 - qk-1 - - - - +k-1 -q + Xk. Then this provides a natural order

of the entries in any column vector defined over {0, 1, . . . , q - l}k: view each vector (1... , X)

as a natural number X in the q-ary representation and arrange them in the increasing order. By

tensor product and arranging the entries in E and t in the natural order, the k-dimensional Fourier

transform can be written as

E(0,0,.,0) E(0,0,.. . ,0)

=F -- F = F -@F E.
t times E times

(6.7)

Definition 6.2.4 (Non-uniform DFT Matrices). For every 1 < i < k, define (recall that pi (z)'s are
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the marginal probabilities of E at coordinate i) the non-uniform DFT matrix at coordinate i to be

qpi(0) qpi(1) qpi(2) qp (3)

1 w w 2  3

1 w2  4 w 6

1 o W6 9w

... qp (q - 1)

... 1 q-1

. . 2(q-1)

... 
3 (q-1)

1 o W --1 W 2(q-1) L,3(q-1) ... L'(q-1)(q-1)

The following lemma follows directly from Fact 6.2.3 and (6.4).

Lemma 6.2.5. If we arrange the entries in E' and Z"." in the natural order; then the qk x qk matrix

F in (6.5) is the tensor product of k non-uniform DFT matrices, i.e.,

and consequently

(F 1 @ --n - Fk)E'.

The following is a well-known fact on the determinants of tensor product matrices, see e.g. [59]

for an elementary proof.

Fact 6.2.6. If A is an m x m square matrix and B is an n x n square matrix, then

det(A 0 B) = (det(A))"(det(B))M .

Proposition 6.2.7. The non-uniform DFT matrix is non-singular for every 1 < i < k. In particu-

lar,

det(Pi) = q (pi(O) + - - - + pj(q - 1 )) (-1)-1 H (WM - ( 1 )q
1 e<m<q-1

J m (M_ f) # 0.
1s<<m<q-1
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Proof By Laplace expansion along the first row, we have

q-1

det(Fi) = (-1)I'qpj(j) det(Mij).
j=0

The determinant of the minor Mij is

det(Mij) =

1 W W j-1

1)
2

1)q-1

Wj+ 1

q-1

E=0,f 5j

1 1

1 j-1W

1

j+±1
q1

. . . L q-1

1 Wq-
2

q-1
H Y iO - L4,e)

f=O,i4j O<f<m<q-1

_ Tlof'ty Hose<m<q-ifqm f M )

since the matrix in the second step is a Vandermonde matrix.

Using the fact that Wq = 1, the denominator may be simplified as

j-1 q-1

H(wi - W) fl(L-Lw)
f=0 f=j+1

j-1 j q-1

=(-1) 1W 1(1 - ) ]7 (We- wi)
f=0 f=1 =j+1

j-1 j

=(-1)1 O J(i
=o f=1

q-1

- We) f H f-( - q+j-)

f=j+1
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. . q -1

. W 2(q-1)

. .. (q-1)(q-1)

2(j-1) W2(j+1)

W(j-1)(q-1) W(j+1)(q-1)

.. . L4(j-1)(q-2) U(j+1)(q-2)



j-1 j q-1 q-1

=(1) W oIII(1 - o) f WI (1 - q+j-f

e=o f=1 f=j+1 =j+1

q-1 q-1

(-) U J (1 - 2).
I =0 ,Ifj f=1

Therefore we have

det(Mij) = (-1)j(-1)q-1 H (w"n - O).
1<f<m<q-1

Plugging det(Mij) into (6.8) completes the proof.

Combining Fact 6.2.6 and Proposition 6.2.7 gives

Lemma 6.2.8. We have that

det(F) = det(5F ® - Fk) # 0.

Recall that we assume that all the non-zero Fourier coefficients E"no(a) are zero. Now to

make the linear system of equations in (6.5) complete, we add another constraint that non(O) =

E'(z) = cqk, where c is a constant which will be determined later. Since F is non-singular,

there is a unique solution to this system of qk linear equations. But we know the uniform dis-

tribution E'(z) = c for every z E Ek is a solution (by the proof of the only if direction of

Theorem 6.1.3), therefore this is the unique solution.

Now we have, for every z E Ek, E(z)Os(z) = c. Observe that 1/Os(z) = qkp1(zi) ... pk(zk),

and since pi(z)'s are marginal probabilities, EzE p (z) = 1 for every i, it follows that

Z I~z k Z k
rd s (z) - q E P1 (z1) -.- -k p(zk) = q.

zE Ek zE Ek

Using the fact that Ezrk E(z) = 1, we arrive at

1 = E (z ) = c s kc ,
zGEk zGEk s(Z)
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and therefore c = - and E(z) = = p1(zi) ... pk(zk) as desired. This completes the proof

of Lemma 6.2.1. D

6.3 Zeroing-out non-uniform Fourier coefficients

Given a distribution D which is not k-wise independent, what is the distance between D and the

non-uniform k-wise independence? In the following we will, based on the approach that has been

applied to the uniform case, try to find a set of small-weight distributions to mix with D in order

to zero-out all the non-uniform Fourier coefficients of weight at most k. Moreover, we can bound

the total weight added to the original distribution in this zeroing-out process in terms of the non-

uniform Fourier coefficients of D. This will show that the characterization of the non-uniform

k-wise independence given in Theorem 6.1.3 is robust.

A careful inspection of Theorem 3.3.4 and its proof shows that if we focus on the weights

added to correct any fixed prime vector and its multiples, we actually prove the following.

Theorem 6.3.1. Let E' be a non-negative function2 defined over E", a be a prime vector of weight

at most k and '(a), '(2a),... , '((q - 1)a) be the Fourier coefficients at a and its multiple

vectors. Then there exist a set of non-negative real numbers wj, j = 0, 1, q - 1, such that the

(small-weight) distribution WE',a = j w Uaj satisfies the following properties. The Fourier

coefficients of E' + Y/E',a at a, 2a, . . . , (q - 1)a all equal zero and yE',af(b) = Ofor all non-zero

vectors that are not multiples of a. Moreover; the total weight of Y/E',a is at most E'-' wj <

Applying Theorem 6.3.1 with E' equal to D'upp(a) gives rise to a small-weight distribution

/Dsupp(a),a which, by abuse of notation, we denote by O/. When we add Wf to D' the

resulting non-negative function has zero Fourier coefficients at a and all its multiple vectors. That

2In Theorem 3.3.4 we only prove this for the case when E' is a distribution. However it is easy to see that the result
applies to non-negative functions as well.

3Recall that Ua,j is the uniform distribution over all strings x E Z' such that a -x j (mod q).
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is,

#(f a) =-bsupp(a)(fa), for every 1 < f < q - 1. (6.9)

= -Dn "(l'a), for every f' such that supp(e'a) = supp(a). (6.9')

and for any b which is not a multiple of a,

4N(b) = 0. (6.10)

However, this small-weight distribution only works for the auxiliary function D' up(a) but what

we are looking for is a small-weight distribution that corrects the non-uniform Fourier coefficients

of D at a. To this end, we apply the reversed compressing/stretching factor to 0/ to get f,

def Oa(X)fa()= .] (6.11)

The following lemma shows that mixing D with #/ results in a distribution whose non-uniform

Fourier coefficients at a as well as its multiple vectors are zero4 . In addition, the mixing only adds

a relatively small weight and may increase the magnitudes of the non-uniform Fourier coefficients

only at vectors whose supports are completely contained in the support of a.

Lemma 6.3.2. Let D be a distribution over En and a be a prime vector of weight at most k. Let

supp(a) be the support set of a and a be as defined in (6.11). Let the maximum factor over all

def1
possible compressing/stretching factors be denoted as -Yk maxs,z S, where S ranges over all

subsets of [n] of size at most k and z G >|S|. Then ia satisfies the following properties:

1. The non-uniform Fourier coefficients of D + a at a as well as at the multiple vectors of a

whose support sets are also supp(a) are all zero.5 Moreover; Y " "(a') =for every vector

a' whose support set is supp(a) but is not a multiple vector of a.

4 In fact, the lemma only guarantees to zero-out the Fourier coefficients at a and its multiples whose support sets

are the same as that of a. But that will not be a problem since we will perform the correction process in stages and
will come to vectors with smaller support sets at some later stages.

5Note that if a is a prime vector and a' is a multiple vector of a, then supp(a') C supp(a).
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2. For any vector b with supp(b) Z supp(a), Y/a"0"(b) = 0.

3. The total weight of a is at most _Yk EC> Wa(x) _k j=1 D" 0 "(ja)-

4. For any non-zero vector c with supp(c) C supp(a), <T" (c) 7k E "0"ja)

Proof For simplicity, we assume that supp(a) = [k]. Recall that f = E WjUaj and U,j

is the uniform distribution over the strings x E Z' such that n" aixi j (mod q). A simple

while important observation is the following: since the support of a is [k], if X1 ... Xk satisfies

the constraint >I_ aixi = j (mod q), then for any Yk+1 ... yn E En-k, Xi -- Xkyk+1 ... yn will

satisfy the constraint and thus is in the support of the distribution.

Remark on notation. In the rest of this section, we always write x for an n-bit vector in En and

write z for a k-bit vector in Ek.

Note that we may decompose W/ (or any non-negative function) into a sum of qk weighted

distributions as Wl =ZzCrk wz'/z, such that each of the distribution Vz is supported on the

PE|n-k strings whose k-bit prefixes are z. That is,

a(x), if X[k] = Z,

0, otherwise.

To make 619z indeed a distribution, i.e., E. Wz(x) = 1, we simply set

def

That is, wz equals the mass of the projected distribution W/ at z. By Theorem 6.3.1 clearly we

have
q-1

wz " "(ja) . (6.13)
zEk j=1

The aforementioned observation then implies that for every z E Ek, Vz is the uniform distri-

bution over all IEIn-k strings whose k-bit prefixes are z. In other words, ?z is uniform over the
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strings in its support. We will refer to these distributions as atomic unform distributions. More

explicitly,

-nk if Xz[k] = Z,
z ix) = f](6.14)

0, otherwise.

After applying the compressing/stretching factor, W4z is transformed into I&z:

'&Z~ = ,if (X)= z (6.15)
0, otherwise.

We call 12/z a transformed atomic uniform distribution. Clearly we have

We remark that both atomic uniform distributions and transformed atomic uniform distributions

are introduced only for the sake of analysis; they play no role in the testing algorithm.

Our plan is to show the following: on the one hand, {wzz}z, the weighted transformed atomic

uniform distributions, collectively zero-out the non-uniform Fourier coefficients of D at a and all

the multiple vectors of a whose supports are the same as a. On the other hand, individually, each

transformed atomic uniform distribution 62z has zero non-uniform Fourier coefficient at any vector

whose support is not a subset of supp(a). Then by linearity of the Fourier transform, 0a also has

zero Fourier coefficients at these vectors.

We first show that if we project 62/z to index set [k] to obtain the distribution (z) , then

is supported only on a single string (namely z) and has total weight (z)' which is

independent of the compressing/stretching factors applied to the last n - k coordinates.

Remark on notation. To simplify notation, we will use Kronecker's delta function, 6(u, v), in

the following. By definition, 6(u, v) equals 1 if u = v and 0 otherwise. An important property of

6-function is E., f(u')6(u, u') = f(u), where f is an arbitrary function.
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Claim 6.3.3. We have

(Wz) [k (z') =

and consequently

XEn 0[k (Z)

Proof Note that W{z(x) can be written as

6(X[k], z) 1

0[k] (z) qn kg[k+1,n] (X[k+1,n])

Then by simple calculation,

(z[] (X[k]) -
z)[k]

E 4z(x)
Xk+1.,Xn

= (xHk, z) 1 

Ek qj3O[k] (Z) n k+1(Xk+1) -.. On(fn)

X k+1---Xn6(4[k], Z) ( n-

O[k] (Z) -k Pn(Xn )
Xk .. ,X

6 (X [k], z)

0[k](Z)

Note that (6.16) is exactly what we want, since to compute the non-uniform Fourier coefficient

of wz 6 z(z') at a, we need to multiply the projected distribution by 0[k] (z'). Specifically, denote

the transformed function F(*a, a) (as defined in (6.2)) by /' and use (6.16), then for every

z E Ek,

= Z (z'[ (z')
z

=Wz (z) 0[k](Z
= 0[kI(Z
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O(z', z)

1[]{

(6.16)

(6.16')

64[k], Z) 1

O[k] (z qn- kgk+1(Xk+1) - -On Xn).

ED



It follows that 0' W by (6.12). Therefore for any vector b whose support set is [k], we have

/an" "(b) = a(b). In particular, by (6.9') and (6.10), Yf" "('a) = -/" (C'a) for every vector

E'a such that supp(e'a) supp(a) and #a"' (b) = 0 for every vector b which is not a multiple of

a and satisfies supp(b) supp(a). This proves the first part of the Lemma 6.3.2.

Next we consider the non-uniform Fourier coefficient of iWa at b, where supp(b) Z [k]. With-

out loss of generality, assume that supp(b) = {f + 1, . . . , k, k + 1, . . . , k + m}, where f < k - 1

and m > 1. Consider the non-uniform Fourier coefficient of any atomic uniform distribution Jz

at b. By the form of &z(x) in (6.15),

(0<)supp(b) (Xf+ 1 , - k+m [f+1,k+m] (E+1, -k+m)

-E S:J4 X
X1---,Xe Xk+m+l,.--,Xn

16([k], Z)1

q n-k x ([k]() k Ok+1(Xk+l1) Ok+m(Xk+m)Ok+m+1(Xk+m+1) On(xn)q Xi,. O](Z Xk~m~l.--Xfl

([+1,k], Z[+1,k]) qnm 
(k-m

nk - E Pk+m+1 Xk+m+1) '. '(' Pn (Xn)qf O[k] (Z) Ok+1(Xk+1) ' 'Ok+m (Xk+m) ( Zk+m+1 (n

1

qmg[k] (Z)Ok+1 (Xk+1)'' Ok+m(Xk+m) 
3 ([f±1,k], Z[f±1,k]).

Therefore, after applying the compressing/stretching transformation, 9z is uniform over [k + 1, k +

m]. Consequently, its non-uniform Fourier coefficient at b is

non (X[e+1,k], Z[f+1,k]) Of+1( ) + . Ok+m(Xk+m) 2 (bj+1xt+i+--.+bk+mXk+m)

.Xkb) qmO[k] (Z)Oktl (Xk+1) ... Ok+,m(Xk+fTm)

2,i (be+1zt+1+---+bkzk) 2
bk+1xk+1+---+bk+m±k+m±)

Q 1 (zi) -. - f -B (zf ) E

Xk+1,---,Xk+m

2-(bf+1ze+1+---+bkzk)2,ii
q 27ri bk+2Xk+2+---+bk+mXk+m) l q (bk+12k+1)

qmO1(zi) .. . Of(zt) e E e

Xk+2,---,Xk+m Xk+1
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where the last step follows from Fact 2.2.1 as bk+1 is non-zero. This proves the second part of the

Lemma 6.3.2.

By (6.16') in Claim 6.3.3 the total weight added by a transformed atomic uniform distribution

is Wz < -YkWz. Adding the weights of all the atomic uniform distributions together and using
O[k] (Z) -

the upper bound on total weights in (6.13) proves the third part of Lemma 6.3.2.

For the last part, assume supp(c) = T C [k]. Now consider the contribution of a transformed

atomic uniform distribution wz 9 z to the non-uniform Fourier coefficient at c. The probability

mass at z' of the transformed atomic distribution is

FT wz (c)(zZ) T OT(z')

[k] (Z)

Therefore we can upper bound its non-uniform Fourier coefficient at c by

F(wz , 041C) (C) (W F ,wziz, c) (z'T)

S OT(ZT (since F(wz4;z, c) is non-negative)
O[k] (Z)

1
- wzk 1 (since 9T(z'%) 1)

0[k) (Z)T

lkWz-

Finally we add up the weights of all transformed atomic uniform distributions in 4" and ap-

ply (6.13) to prove the last part of Lemma 6.3.2. E

Now for any prime vector a of weight k, we can mix D with ?a to zero-out the non-uniform

Fourier coefficient at a and all its multiples whose supports sets are supp(a). By Lemma 6.3.2,

the added small-weight distribution will only increase the magnitudes of the non-uniform Fourier

coefficients at vectors whose supports are strict subsets of supp(a). After doing this for all the

prime vectors at level k, we obtain a distribution whose non-uniform Fourier coefficients at level
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k are all zero. We then recompute the non-uniform Fourier coefficients of the new distribution and

repeat this process for prime vectors whose weights are k - 1. By iterating this process k times, we

finally zero out all the non-uniform Fourier coefficients on the first level and obtain a non-uniform

k-wise independent distribution.

Theorem 3.3.5. Let D be a distribution over E", then

A(DI Dkwi) < O k
2 

2k+2 qk(k+1)) max "" .(a)
) a:O<wt(a)<k

Proof First observe that for every 1 < i < n and every z E E, 1= qpi(z) < q, so 7 < gj , for

every 1 < j < k.

We consider the zeroing-out processes in k+ 1 stages. At stage 0 we have the initial distribution.

Finally at stage k, we zero-out all the level-i non-uniform Fourier coefficients and obtain a non-

uniform k-wise independent distribution.

Let fmax= maxo<wt(a)<k Dhon(a) . To simplify notation, we shall normalize by fmax every

bound on the magnitudes of the non-uniform Fourier coefficients as well as every bound on the

total weight added in each stage. That is, we divide all the quantities by fnax and work with the

ratios.

Let f(i) denote the maximum magnitude, divided by fmax, of all the non-uniform Fourier co-

efficients that have not been zeroed-out at stage j; that is, the non-uniform Fourier'coefficients at

level i for 1 < i < k - j. Clearly f(0) = 1.

Now we consider the zeroing-out process at stage 1. There are (7) (q - I)k vectors at level

k, and by part(3) of Lemma 6.3.2, correcting the non-uniform Fourier coefficient at each vector

adds a weight at most yk (q - 1)f(0 ). Therefore, the total weight added at stage 1 is at most

(') (q - 1)k Yk(q - 1) f( 0) O (kq 2k+1). Next we calculate f l), the maximal magnitude of the

remaining non-uniform Fourier coefficients. For any vector c at level i, 1 K i K k - 1, there

are ("-) (q - 1)k-i vectors at level k whose support sets are supersets of supp(c). By part(4) of

Lemma 6.3.2, zeroing-out the non-uniform Fourier coefficient at each such vector may increase

bnon (C) by yk (q - 1)f(0). Therefore the magnitude of the non-uniform Fourier coefficient at c is
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at most

f(O) + ( - (q - 1)'~iyk(q - I)f(0) -. O k-(iq 2 k-i+l)(k - i)

Clearly the worst case happens when i = 1 and we thus have f(1) < 0 (nk-lq 2 k).

In general it is easy to see that at every stage, the maximum magnitude increases of the non-

uniform Fourier coefficients always occur at level 1. At stage j, we need to zero-out the non-

uniform Fourier coefficients at level k - j + 1. For a vector a at level 1, there are ("_) (q -- 1)k-

vectors at level k -j + 1 whose support sets are supersets of supp(a), and the increase in magnitude

of D"o"(a) caused by each such level-(k - j + 1) vector is at most 'Yk-j+1(q - 1)f(U-'). We thus

have

f U) < (q- 1)- 7-j+1 (q- 1)f j 0 (k-jq 2 (k-j+l)) f(j-1), for 1 j < k - 1.
(k -

This in turn gives

f(U) o (nj( 2k2- 1) qj(2k-j+1) for 1 < j < k - 1.

It is easy to check that the weights added at stage k dominates the weights added at all previous

stages, therefore the total weight added during all k + 1 stages is at most

0 ((n)(q - 1)-71) f (k-1) 0 (k
2 

2k+2qk(k±)) E

6.4 Testing algorithm and its analysis

We now study the problem of testing non-uniform k-wise independence over Z". Define

6
max max OS(z)

Sc[n],O<|S<k,zcIsI

to be the maximum compressing/stretching factor we ever apply when compute the non-uniform

Fourier coefficients.
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Claim 6.4.1. For any 0 < 6 < 1, if AZ(D, Dkw1) < 6, then for any non-zero vector a of weight at

most k, b"o(a) < q~max6.

Proof Recall that we compute the non-uniform Fourier coefficient of D at a by first projecting D

to supp(a) and then apply a compressing/stretching factor to each marginal probability in Dsupp(a)-

Let D' be any k-wise independent distribution with A(D, D') _< 6. For every 0 < j < q - 1, let

a and P"'j be the total probability mass of points in D and D' that satisfy a - z j (mod q)

after applying the compressing/stretching factors. By the definitions of statistical distance and

0 max, we have

-~ 3 (Dsuppta) (z) -- D'uppga) (z))Osuppta) (z)
azj (mod q)

(Dsupp(a)(z) - D'upp(a)(Z))9supp(a)(z)

a.z-j (mod q)

_ Omax Z Dsupp(a)(z) - D'upp(a) (Z)I
a z-j (mod q)

_ Omaxo.

Now applying Fact 3.5.3 gives the claimed bound. E

For simplicity, in the following we use M" "(n, k, q)dO (n k2 2k+2 qk(k+1)) to denote the bound

in Theorem 3.3.5.

Theorem 6.4.2. There is an algorithm that tests the non-uniform k-wise independence over E'
g2 (k

2
-k+2) 2(k

2
+2k+1) g2 n(k

2
+2) (2k

2
+5k+2)

with query complexity 6( ) and time complexity 6( m 2 ) and

satisfies the following: for any distribution D over E", if A (D, Dkwi) <onn, then with

probability at least 2/3, the algorithm accepts; if A(D, Dkw1) > c, then with probability at least

2/3, the algorithm rejects.

We now briefly sketch the proof of Theorem 6.4.2. Instead of estimating Paj as in the proof
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Test-Non-Uniform-KWI(D, k, q, E)

max+)0 M~non (~ 2lgM( ie
1. Sample D independently m = 0 (q* max""

2 (n,k,q)2 log (M(n, k, q))) times

2. Use the samples to estimate, for each non-zero vector a of weight at most k and

each z E Elsupp(a), Dsupp(a)(Z)

* Compute Dpp(a)(Z) = OS(z)Dsupp(a)(Z)

* Compute b"o"(a)D $'supp(a)(a) = Ez Dupp(a)(z az

3. If maxa b" "(a) < 2E return "Accept"; else return "Reject"

Figure 6-1: Algorithm for testing non-uniform k-wise independence.

Theorem 3.5.2, we estimate Dsupp(a)(z) for every z such that a - z =j (mod q). Since each P,"

is the sum of at most qk terms, where each term is some Dsupp(a) (z) multiplied by a factor at most

Omax, it suffices to estimate each Dsupp(a)(z) within additive error e/3qM"( "(n, k, q)qkOmax. The

soundness part follows directly from Claim 6.4.1.

6.5 Testing algorithm when the marginal probabilities are un-

known

If the one-dimensional marginal probabilities pj(z) are not known, we can first estimate these

probabilities by sampling the distribution D and then plug these empirical estimates into the testing

algorithm shown in Fig 6-1. The only difference between this case and the known probabilities case

is that we need to deal with errors from two sources: apart from those in estimating Dsupp(a) (z)

there are additional errors from estimating the compressing/stretching factors. It turns out that

the query and time complexity are essentially the same when all the one-dimensional marginal

probabilities are bounded away from zero.

In the following we write Pmin = mini,z p(z) for the minimum one-dimensional marginal

probability. Note that Omax (qpmin)-.

Theorem 6.5.1. There is an algorithm that tests the non-uniform k-wise independence over E"
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where the one-dimensional marginal probabilities of the given distribution are unknown. The algo-
2 2-k+2) 2(k

2
+2k+1) g2 (k2+2) (2k

2
+5k+2)

rithm has query complexity O()'n 2 ) and time complexity O max )
and satisfies the following: for any distribution D over f, ifA(D, Dki) < 3q6max Mnon (n,k,q) then

with probability at least 2/3, the algorithm accepts; if A(D, Dki) > e, then with probability at

least 2/3, the algorithm rejects. 6

Proof The algorithm is essentially the same as that of Theorem 6.4.2 shown in Fig 6-1. The only

difference is that this new algorithm first uses m O( ax (k 2
k2 2(k

2 +2k+1) samples to estimate,

for each 1 < i < n and each z E E, the one-dimensional marginal probability pi(z). Denote the

estimated marginal probabilities by p'(z) and similarly the estimated compressing/stretching fac-

tors by 0'[(z). After that, the algorithm uses the same samples to estimate, for every non-zero a of

weight at most k and every z, the projected probability DSUpp(a) (z). Then it uses these probabilities

together with the estimated one-dimensional marginal probabilities to calculate D" "(a).

By Chernoff bound, for every p'(z), with probability at least 1- 1/6qn, we have 1- c' < p(z) <
-i p(Z) -

1 + c', where c' = c/(12kqO maxM" "(n, k, q)). Therefore by union bound, with probability at least

5/6, all the estimated one-dimensional marginal probabilities have at most (1 ± c') multiplicative

errors.

It is easy to verify by Taylor's expansion that for any fixed integer k > 1, (1 + y)k < 1 + 2ky

for all 0 < y < 1/(k - 1). Also by Bernoulli's inequality, (1 - y)k > 1 - ky for all 0 <

y < 1. Combining these two facts with the multiplicative error bound for p'(z), we get that with

probability at least 5/6 all the estimated compressing/stretching factors have at most (1 ± 2kV')

multiplicative errors, as every such factor is a product of at most k factors of the form 1/qpi(z).

Also by Chernoff bound, we have with probability at least 5/6,

IDsupp(a)(z) - Dsupp(a)(Z)| 12qMnon (n, k, q)qkOmax

for every a and z.

6 Note that if Pmin is extremely small, the query and time complexity of the testing algorithm can be superpolyno-
mial. One possible fix for this is to perform a "cutoff" on the marginal probabilities. That is, if any of the estimated
marginal probabilities is too small, we simply treat it as zero. Then we test the input distribution against some k-wise
independent distribution over a product space. We leave this as an open question for future investigation.
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a-z=j (mod q)
Dsupp(a) (Z)Osupp(a) (z)

as the "non-uniform" Pa,j.

Our estimated value of Pal", denoted by P" ", is in fact

z
az~j (mod q)

Dsupp(a) (Z)6supp(a) (Z)

where Dsupp(a)(z) denotes the empirical estimate of Dsupp(a)(z). To simplify notation, in the

following we write P(z) = Dsupp(a)(Z), P(z) = Dsupp(a)(z), 6(z) = Osupp(a)(z) and 6'(z) -

6 supp(a) (z).

Putting the two error estimates together, we have with probability at least 2/3, for every a and

j

P aI n - p an " =o
a j - a j S

a~z=j (mod q)
P(z)6'(z) -

a.z=j (mod q)

a.z=j (mod q)

P(z)O'(z) - P(z)6'(z) + P(z)6'(z) -

F(Z)6'(Z) - P(z)6'(z) +
a.z=j (mod q)

P(z)6(z)

P(z)6'(z) -

6'(z)IP(z) - P(z)| +
a.z=-j (mod q)

a.zzj (mod q)

a.zj (mod q)

IP(z) - P(z)| + (2ke')0max
a.z=j (mod q)

< 26 + 2kOmax_2maxg 12qMnon(n, k, q)qk6max 12kq6maxMnon(n, k, q)

3qMnon(n, k, q)

10

Define

P"n n

P(z)6(z)

< 20max

P(z)6(z)

P(z)|6'(z) - 6(z)I

P(z)



The rest of the proof is similar to that of Theorem 3.5.2 so we omit the details. D

111



112



Chapter 7

Testing Almost k-wise Independence over

Product Spaces

We study the problem of testing the almost k-wise independent distributions over product spaces

in this Chapter. First we define almost k-wise independent distributions over product spaces in

Section 7.1. Then we study the problem of testing almost k-wise independence in Section 7.2.

7.1 Almost k-wise independent distributions

As we discussed in Chapter 1, almost k-wise independent random variables are useful in the design

of randomized algortihms. In particular, due to the small sample-space constructions [47, 4], they

can be used to derandomized many randomized algorithms.

In the following we will follow [2] and define the almost k-wise independence in terms of

max-norm.

Definition 7.1.1 (Uniform Almost k-wise Independence). Let E be a finite set with |E| = q. A

discrete probability distribution D over E" is (uniform) (c, k)-wise independent if for any set of k

indices {ii,. . . , ik} and for all zi,... Zk E E,

Pr [Xil ... Xik = z1 ... zk - 1qk <-
X~D
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Generalizing this definition to non-uniform almost k-wise independence over product spaces

is straightforward.

Definition 7.1.2 (Non-uniform Almost k-wise Independence over Product Spaces). Let E1,... ,

be finite sets. A discrete probability distribution D over E1 x ... x E, is (non-uniform) (c, k)-wise

independent if for any set of k indices {ii,... , 4k} and for all zi, E Ei,, ... , zi E Eig,

Pr [Xi ... Xik = zil ... zik] - Pr [Xjl = zil] x ... x Pr [Xik = zi < E.
X-D X-D X-D

From now on we will work with the most general notion of the almost k-wise independence,

that is the non-uniform almost k-wise independent distributions over product spaces. Let D(,,k)

denote the set of all (c, k)-wise independent distributions. The distance between a distribution D

and the set of (e, k)-wise independent distributions is the minimum statistical distance between

D and any distribution in D(e,k), i.e., A(D, D(E,k)) = infD'E'D(,k) A(D, D'). D is said to be -far

from (E, k)-wise independence if A(D, D(,,k)) > 6. We write qm for maxin| El. To sim-

plify notation, we use vectors pi, ... , pn of dimensions Ei , ... I , 1, respectively to denote the

marginal probabilities at each coordinates. That is, for every zj E E, the jth component of pi is

pi(zj) = PrX~D[Xi = z]. Clearly we have E pi(zj) = 1 for every 1 < i < n.

7.2 Testing algorithm and its analysis

In the property testing setting, for a given distribution D, we would like to distinguish between the

case that D is in D(E,k) from the case that D is -far from D(,,k)-

The testing algorithm, illustrated in Figure 7-1, first draws a few samples from the distribution.

It then uses these samples to estimate the marginal probabilities over all k-subsets. The test accepts

the distribution if the maximal deviation of these marginal probabilities from the corresponding

prescribed ones is small.

Theorem 7.2.1. Given a discrete distribution D over E1 x ... x En, there is a testing algorithm

with query complexity O(k ~o2q,) ) and time complexity 6( (bqk) such that the following holds. If
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Test-AKWI(D, k, E, E, 6)

1. Sample D independently Q = O(k1o,(nqm)) times

2. Use the samples to estimate, for every k-subset I {ii,... , ik} of [n] and every
def

zi -.-- zik, P 1 -..--zi . PrX ~D[X 1 - Xi = Zi Zik]

3. Let p, (zil -.. zik) PrX~D[Xil - ziI x - x PrX~D [Xik = Zik]

4. If maxi,z pI7(zi1 - -zi) -- pz 1 -. -zi) > E + e6/2, return "Reject"; else return

"Accept"

Figure 7-1: Algorithm for testing almost k-wise independence over product spaces.

D E D(E,k), then the algorithm accepts with probability at least 2/3; if D is 6-far from D(c,k), then

the algorithm rejects with probability at least 2/3.

To analyze the testing algorithm we will need the following lemma which, roughly speaking,

states that the distance parameter 6 can be translated into the error parameter c (up to a factor of c)

in the definition of the almost k-wise independence.

Lemma 7.2.2 ([2]). Let D be a distribution over Ei x ... x E. If A (D, D(E,k)) > 6, then

D ( D(E+E5,k). If A(D, D(e,k)) < 6, then D E D(c+6,k)-

Proof For the first part, suppose D E D(e+eo,k). Let U, 1,...,Pndenote the distribution that for

every z1 - zn C Ei x ... X En, U, 1, . . . .(zi .. z) = p 1 (zi) - pn(zn). It is easy to check

that since Ezj pi 1, Up,..,,n is indeed a distribution. Now define a new distribution D' as

D' = (1 - 6)D+6U p...,p,, then one can easily verify that D' E D(e,k), therefore A(D, D(e,k)) _ 6-

For the second part, recall that no randomized procedure can increase the statistical difference

between two distributions [58], therefore to project distributions to any set of k coordinates and

then look at the probability of finding any specific string of length k can not increase the statis-

tical distance between D and any distribution in D(e,k). It follows that when restricted to any k

coordinates, the max-norm of D is at most c + 6. E

Proof of Theorem 7.2.1. The testing algorithm is illustrated in Fig. 7-1. The query complexity

and time complexity of the testing algorithm are straightforward to check. Now we prove the

115



correctness of the algorithm. As shown in Fig. 7-1, we write pj (zi, - - - zi) for the estimated prob-

ability from the samples, pf (Zi, -. zk) for PrX~D [Xii -.. Xik = zil ... zik] and p, (zi 1 ... zik) for

PrX~D[Xi = zi 1] x - -- x PrX~D[Xi= zik]. Observe that E [p1 (zil ... zik)] p(Z ,- Zik).

Since pj(zi, ... zik) is the average of Q independent 0/1 random variables, Chernoff bound gives

Pr[p(z zi) - pfz -z_ z)i E612] / exp ( - ( 262Q)).

By setting Q = CEk1O(nlqm) for large enough constant C and applying a union bound argument to

all k-subsets and all possible strings of length k, we get that with probability at least 2/3, for every

I and every zi, .. . zik, |p(z- zik) - p?( Z,-. < E62.

Now if D C D(e,k), then with probability at least 2/3, for all I and all zis, . . . , zi, p zi -.. zik) - p(Z .. -,

c, so by the triangle inequality |pr(zi, ... zik) - pI (i - - - zi <; c+ c6/2. Therefore the algorithm

accepts.

If D is 6-far from (c, k)-wise independence, then by Lemma 7.2.2, D D(+<,6k). That is,

there are some I and zil , ... , Zik such that pf (zil ... zik) - PI(Zii ... zik)| > e + E6. Then with

probability at least 2/3, |pI(zi1 ... zik) - pI 1 i( -.. zik)| > c + c6/2. Therefore the algorithm

rejects. D
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Chapter 8

Conclusions

We conclude this thesis with some open problems suggested by our study of testing k-wise inde-

pendence.

Our testing algorithms are efficient only when k is relatively small. Let us consider the simplest

domain of Boolean cube {0, 1}f. As we discussed before, uniform distribution is just the uniform

n-wise independent distribution. If we plug k = n into our testing results, the query and time

complexity would be nP "Y instead of the optimal bound 2n/2 = nn [32, 52]. Therefore, it is

interesting to study algorithms which test k-wise independence when k is large, say k = n - 0(1).

Such a study would deepen our understanding of the structures of k-wise independence over the

entire range of k.

We discuss briefly in Chapter 1 a plausible connection between the minimum support size and

the query complexity of the optimal testing algorithm for uniformity, k-wise independence and

almost k-wise independence. Does such a relationship exist for a general class of distributions? If

so, what are the quantitative bounds between these two quantities and is there any deeper reason

why they are related?

There is a quadratic gap between the upper bound and lower bound on the query complexity of

testing k-wise independence over the Boolean cube. It would be great if one can close this gap and

find out the optimal query complexity. Also, the only lower bound we are aware of is the one we

show in this thesis for the binary domain. Can one prove a stronger query lower bound for testing
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k-wise independence over larger domains?

Let D be a distribution over a product space Ei x -.. x E, and let Di be the marginal probability

of D at coordinate i, for all 1 < i < n. An interesting question is, what is the closest product

distribution to D? The most natural candidate seems to be

DproddDi x ... x D,.

Indeed, Batu, Kumar and Rubinfeld [11] show that, for n = 2, if D is e-close to some product

distribution, then D is 3-close to DProd. One can show that their result generalizes to arbitrary n

and the distance between D and DProd is at most (n + 1)e. But is this bound tight? Much more

interestingly, is DProd the closest product distribution to D? If not, what is the right bound on the

distance between D and product distributions in terms of n and IE I (for simplicity, assume that all
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