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Abstract

Traffic congestion is a serious world-wide problem. Drivers have little knowledge of histor-
ical and real-time traffic congestion for the paths they take and often tend to drive subopti-
mal routes. Congestion phenomena are sure to be influenced by the coming of autonomous
cars. This thesis presents route planning algorithms and a system for either autonomous or
human-driven cars in road networks dealing with travel time uncertainty and congestion.

First, a stochastic route planning algorithm is presented that finds the best path for a
group of multiple agents. Our algorithm provides mobile agents with optimized routes to
achieve time-critical goals. Optimal selections of agent and visit locations are determined
to guarantee the highest probability of task achievement while dealing with uncertainty of
travel time. Furthermore, we present an efficient approximation algorithm for stochastic
route planning based on pre-computed data for stochastic networks.

Second, we develop a distributed congestion-aware multi-agent path planning algorithm
that achieves the social optimum, minimizing aggregate travel time of all the agents in the
system. As the number of agents grows, congestion created by agents' path choices should
be considered. Using a data-driven congestion model that describes the travel time as
a function of the number of agents on a road segment, we develop a practical method for
determining the optimal paths for all the agents in the system to achieve the social optimum.
Our algorithm uses localized information and computes the paths in a distributed manner.
We implement the algorithm in multi-core computers and demonstrate that the algorithm
has a good scalability.

Third, a path planning system using traffic sensor data is then implemented. We predict
the traffic speed and flow for each location from a large set of sensor data collected from
roving taxis and inductive loop detectors. Our system uses a data-driven traffic model
that captures important traffic patterns and conditions using the two sources of data. We

3



evaluate the system using a rich set of GPS traces from 16,000 taxis in Singapore and
show that the city-scale congestion can be mitigated by planning drivers' routes, while
incorporating the congestion effects generated by their route choices.

Thesis Supervisor: Daniela Rus
Title: Professor
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Chapter 1

Introduction

Traffic congestion is clearly a serious problem: a recent survey estimates that the annual

nationwide cost of traffic congestion in the US was $101 billion in 2010, including 4.8

billion hours in lost time and 1.9 billion gallons in wasted fuel. This is an average of

$713 per auto commuter [67]. Drivers today have little knowledge of historical and real-

time traffic congestion for the paths they take, and even when they do (e.g., from "live"

traffic updates), there are limited means for using that information to find good paths. As

a result, drivers often tend to drive suboptimal routes, and time is used inefficiently when

they leave well in advance to make an important deadline. Recent technology developments

are so promising that autonomous cars will be prevalent in the near future [125, 91], and

congestion phenomena are sure to be influenced by the coming of autonomous cars. Such

cars will need a motion planning algorithm to navigate from A to B.

In this thesis, our goal is to solve city-scale congestion problems by understanding the

traffic conditions and using them for planning drivers' paths. Our path planning system is

intended to find driving directions that lead to fast and reliable travel times for individual

drivers and less congestion on a city scale.

Current in-car navigation systems or Web-based route planning systems provide a driver

a path from his origin to destination. However, oftentimes the path turns out to be con-

gested. Avoiding congestion and finding a good path are not trivial, and the challenge is

two-fold: (1) it is hard to predict the travel time for a road segment since many factors such

as road conditions, congestion, and events affect the travel time, and (2) congestion is not

19



fixed but rather is an aggregate effect of drivers' choice of road segments to take for their

trips. Thus, a driver's path choice should be optimized considering the other drivers' path

choices, and the decision about paths affects other drivers' travel time at the same time.

The challenges addressed in this thesis are: Can we optimize drivers' paths under un-

certainty and congestion? Can we reduce city-scale congestion by finding better paths for

individual drivers? There are several optimization criteria we consider. From the point of

view of the individual we wish to maximize the probability of arriving at the destination

and the amount an individual spends in traffic. From the point of view of a group of in-

dividuals (where the group can be viewed as city-scale traffic) we wish to minimize the

overall time spent by all the users in traffic.

We address these questions using a data-driven approach. We collect GPS data using

probe vehicles such as fleets of commercial vehicles, taxis, and individual drivers with

GPS-enabled smart phones. When the GPS points are collected with high frequency (i.e.

several points each minute) the entire trajectory of individual users can be recovered with

great confidence. Traffic delay or speed information can be calculated from sequences of

GPS trajectories.

In addition to GPS data, we also use data from inductive loop detectors. Inductive

loop detectors are installed in the road pavement and detect the cars passing over them by

detecting the change in electro-magnetic fields. The loop detector data is important because

it gives us an accurate (ground truth) measure for all traffic at the locations where the loops

are installed. Probe data and inductive loop data are complimentary. Inductive loop data

gives us a measure of overall traffic at set points (where they are installed) but does not

allow us to track individual drivers as they move through the network. GPS data allows

us to track the drivers but presents information only about the GPS-enabled vehicles in the

system instead of the overall traffic network.

The availability of traffic data from loop sensors and GPS probes provides a great op-

portunity for developing more intelligent solutions to the transportation problem. However,

the following questions need to be addressed in order to understand the scope of the data:

How can we turn available traffic data into a useful form? How can we develop a practical

algorithm that use these data and find a good path under uncertainty and congestion? In
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this thesis, we develop practical algorithms for these questions and their implementation in

a city-scale environment.

Our first set of algorithms includes stochastic shortest-path planning to enable a driver

to find a fast and reliable path. This algorithms can also be used to coordinate a group of

multiple drivers or agents. Our algorithms find a good solution that considers the conges-

tion caused by each drivers path choice. Although each drivers contribution to congestion

may be small, the aggregate is large. We use real data to model the uncertainty and conges-

tion on road segments. More details on our practical algorithms are explained in Sections

1.1, 1.2, and 1.3.

Our second set of algorithms addresses data analysis, inference, and estimates for traf-

fic conditions using static and dynamic sensors. We enable real-time estimation of flow on

roads with dynamic sensors calibrated by existing static sensors. Based on the real-time

flow and speed information that we obtain from dynamic sensors, we predict the conges-

tion levels, and we make it possible to identify the current operational state of the roads.

These estimates are very valuable information for both individual drivers and city plan-

ners. Details for data-driven traffic estimation and congestion detection are explained in

Sections 1.4 and 1.5.

Finally, we implement these algorithms using data from a large set of taxi probes and

loop detectors and demonstrate that the resulting traffic routing system can be used for

guiding human-driven or autonomous cars. Our fast computation techniques and scalable

design enable planning for the larger systems in which our algorithms will function. Sec-

tion 1.6 provides more detail.

1.1 Route Planning on Stochastic Network

We describe a stochastic motion planning algorithm for multiple agents over a road network

with stochastic travel cost, in the presence of visit node constraints. Stochastic travel cost

models the uncertainty in travel cost depending on traffic conditions. The travel cost can

be time, gas, money, or any combination thereof. Visit node constraints model a sequence

of the agents' waypoints required to achieve a specific goal. Waypoints can model the
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Figure 1-1: Web interface for our Web-based optimal route query system. The interface

gets user input through the top-left panel including address, time of travel, day of travel,
and a deadline, if any. The red and green lines on the map show two different optimal

paths using our system's statistics for the travel time estimates. The left panel shows the
information of each segment in the routes, and the bottom panel shows the travel time
estimates of early and late departure by multiples of 30 minutes from the user's intended
departure time.

locations of resources to pick up or the location of one or multiple destinations.

Suppose a person calls a taxi company for help to get to any nearby hospital within ten

minutes. How can the probability of getting there on time be maximized? It is important

that a specific taxi, a specific hospital, and a specific path from the taxi's original location

to you and from you to the hospital should be selected in order to maximize the probability.

Similarly, if there is a fire in a building, how do we maximize the probability that at least

one of the fire trucks can get water from one of several fire hydrants and get to the burning

building within five minutes? A specific fire truck, a specific fire hydrant, and a specific

path that connects the truck, the hydrant, and the building should be selected in order to

maximize the probability.

The need for congestion-aware routing for complicated goals as illustrated above is in-
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Figure 1-2: Example application: Taxi booking considering the taxi's location and uncer-
tainty of travel time. The person want to go to one of the hospitals in ten minutes. There are
multiple available taxis at different locations. Which taxi should be dispatched and which
route should be used to get him to the hospital on time with the highest probability?

creasing. Today, with the technical achievements of advanced driver assistance systems,

location-aware mobile networks, and acquisition of traffic information, it is more possi-

ble than ever before to calculate and provide the optimal path for either human-driven or

autonomous vehicles.

We formulate a general framework for the stochastic shortest-path problem with visit

node constraints to capture a large range of stochastic shortest-path problems in the pres-

ence of multiple agents, multiple resources, and multiple destinations.

The first challenge in solving the stochastic shortest-path problem with visit node con-

straints is that the optimal substructure does not hold [83]. In many other problems, the

optimal substructure is used to develop efficient algorithms. In the hospital example, if the

travel time of each road segment were a fixed deterministic value, the fastest vehicle to the

patient would be guaranteed to be the fastest vehicle arriving at the hospital. In addition,

the fastest path from the taxi's original location to the patient's location would consist of

the fastest path from the taxi's original location to the hospital via the patient's location.

However, this property does not hold for goals such as maximizing the arrival probabil-
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ity in a road network whose road segments are associated with a travel time distribution

rather than a fixed value. The second challenge is that the number of possible routes grows

exponentially with the number of waypoints describing the constraints.

We formulate different classes of stochastic shortest path problems depending on the

structure of visit nodes constraints. First, we define and solve the Stochastic Shortest Path

with Fixed Node Sequence (SSPFNS) problem, where an ordered list of nodes to be vis-

ited is specified. We provide an efficient method that deals with the first challenge. Many

multiple-hop stochastic routing applications are formulated by SSPFNS. Second, we de-

fine and solve the Stochastic Shortest Path with General Constraints (SSPGC) problem,

where constraints describe complicated combinations of node visit sequences. The SSPGC

problem covers more general problems, including multiple-agent, multiple-resource, and

multi-destination routing applications.

This research is motivated by motion planning in a road network, but the algorithm is

general so that it can be applied to broader areas of robot motion planning in uncertain

environments. For example, we envision that the algorithm can be extended to find a tra-

jectory for a robot arm to move in a space maximizing the probability of achieving the goal

within a given cost.

1.2 Stochastic Route Planning using Distance Oracles

This thesis presents and evaluates a new practical algorithm for planning the motion of

vehicles (autonomous or human-driven) on roadways in the presence of uncertainty in traf-

fic delays [86]. We build on prior work on stochastic motion planning [83, 101, 102],

which introduces stochastic motion planning and route planning algorithms. This prior

work presents novel provably correct algorithms that are very well suited for planning the

motion of a vehicle on small-scale graphs; however, the computational complexity of this

prior suite of stochastic motion planning algorithms makes these algorithms impractical to

use for real-time motion planning on city-scale road networks.

The stochastic motion planning model incorporates traffic history in the form of prob-

ability distributions of delays observed on actual road segments. The probability distribu-
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tions capture the historical delay observations that are assigned as weights on the edges

of the road network. The stochastic motion planning algorithm minimizes a user-specified

cost function of the delay distribution. Current route planning methods can produce routes

with shortest expected time (based on historical traffic data) and some recent commercial

systems, using almost-real-time data based on cell-phone locations [126, 116], can also

compute "smartest" routes in dynamic traffic scenarios. The algorithm in this thesis im-

proves significantly on this previous work by enabling fast routes guaranteed to maximize

the likelihood of arriving at a destination within a specified deadline in city-scale route

graphs, in the presence of limited data storage. This work provides a planning system that

can be used by autonomous as well as human-driven vehicles for traffic routing applica-

tions that meet travel goals such as "when should you leave, and what path should you

take, to reach the destination by the given deadline with high probability?" Preserving the

inherently non-deterministic nature of actual traffic, we work with accurate probabilistic

models of traffic-intense areas; in our work, we actually build a probabilistic model of an

entire city's road network based on a large set of heterogenous GPS traces.

More specifically, the algorithm in this thesis improves the state of the art on stochastic

motion planning [101, 102] and its application to traffic routing [83]. The running time

of the state-of-the-art stochastic-shortest-path algorithm is approximately quadratic in the

number of nodes, rendering it too slow for real-time performance on city-scale networks.

We improve upon their running time by using efficient data structures. The preprocessing

algorithm runs in almost linear time and it does not depend on the origin and destination

pair. The query algorithm runs in sublinear time (whereas the algorithms in [83] run in

polynomial time). The running time of the query algorithm is almost logarithmic, offer-

ing exponential speedups over previous algorithms and allowing for almost instantaneous

response times.

We implement the algorithms described in this thesis and packaged them as a route

planning system. We evaluate the system using the road map of an entire city. Using

GPS traces from a very large fleet of taxis (16,000 vehicles), we are able to extract a

time-dependent, probabilistic model for each individual road segment. Our algorithms

preprocess the road network equipped with probabilistic edge lengths into a data structure.
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Using this data structure, our query algorithm can efficiently answer approximate stochas-

tic shortest-path queries. Our experiments validate the theoretical performance predictions,

showing improvements upon existing query algorithms by several orders of magnitude.

In summary, we propose an algorithm that improves upon the state of the art in stochas-

tic motion planning, providing a method that can answer stochastic shortest-path queries in

almost logarithmic time using a data structure that occupies space roughly proportional to

the size of the network. Our method has proven worst-case guarantees and it is applicable to

real-world scenarios. Applied to traffic navigation, we obtain a method that can efficiently

find a path with almost maximum arrival probability given a user-specified deadline.

1.3 Multi-Agent Route Planning

Several of our recent traffic planning algorithms consider optimizing a driver's path in the

presence of congestion [82, 83, 85]. However, as the number of drivers who use the sys-

tem increases, the paths computed by an agent-centric system have degraded performance.

Instead of optimizing individual travel times, we focus on optimizing the collective per-

formance of a multi-agent transportation system by aiming to achieve the social optimum.

The social optimum is defined as the minimum aggregated travel time for all the agents

in the system. The social optimum approach is different from computing the user equilib-

rium to achieve the optimal path for each individual driver [127, 114]. In a social optimum

planning system, some agents may be guided along expensive sub-optimal paths in order

to achieve the overall best system performance.

In this thesis we describe a new distributed algorithm for planning paths for multiple

agents in a road network. The goal is to minimize congestion and achieve the social op-

timum for traffic flow in the system. The social optimum minimizes the sum of the total

cost for all the agents in the system. We wish to provide each agent with a decision system

for selecting its path from origin to destination by making local decisions that depend only

on the other agents whose paths might overlap in segments with this agent's path. This

"localized" reasoning will ensure scalability and real-time performance.

Applications of this algorithm include route planning for transportation where the cars
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Figure 1-3: Distributed agent-centric approach. The neighbors of an agent are any agents
whose potential paths overlap with those of the agent in any road segments. The potential
paths for each agent is drawn in a blue circle. A pair of neighboring agents are indicated by
a bi-directional arrow. Each agent maintains the probabilistic path decision vector, and up-
dates it based on the neighbors' path decision vectors. The communication of path decision
vectors is required only between neighbors.

are either driven by people or autonomous. Mitigating congestion in road networks is one

of the most important challenges of urban transportation and multi-agent management of

navigation. Our algorithm also benefits swarm robotics applications where many robots

move in parallel. Mitigating collisions is a costly operation (with respect to perception,

computation, and communication) and if the robots can organize their paths from their

origins to their destinations to "spread" and minimize the number of likely intersection

points, the overall system performance increases. Other applications include planning for

evacuation and disaster response.

In our previous work [82, 83], we considered stochastic motion planning for a single

agent from a given origin to a destination in a stochastic graph whose weights were prob-

ability distributions corresponding to historical congestion. In this thesis we extend this

work to motion planning for multiple agents in stochastic graphs with a guaranteed social

optimum for the solution.
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1.4 Data-Driven Traffic Modeling and Estimation

Understanding traffic conditions and patterns, such as origins and destinations or trips, car

routes, and traffic volume and congestion, is critical for finding a path for a driver and for

urban traffic planning. Traffic information is collected today through manually conducted

surveys (for origins, destinations, routes), or using static sensors such as traffic cameras

and loop detectors' (for volume, congestion). However, survey data are often incomplete,

inaccurate, and out of date, and static sensor data are incomplete and often difficult to

analyze and aggregate, especially in real time. It is also typically sparse, relative to the size

of the entire road network. In this thesis, we consider a third source of data: a vehicular

sensor network that consists of a roving fleet of dynamic sensor "probes." Commercial

vehicles are often outfitted with GPS devices that log their locations and speeds at regular

intervals; increasingly, so are federal, state, and municipal vehicles. These vehicles form a

mobile sensor network, providing real-time information on the state of the road network.

In a large-scale study conducted in the country of Singapore, we collected the travel

data (including GPS, speed, and car state) from a fleet of 16,000 taxis for the month of

August 2010, representing approximately 500 million individual data points. The taxis

transmit the data using a cellular network. Thus, their data can be used in a real-time mode

or in a historical mode.

We develop a method to estimate traffic volume for a road segment using taxi data and

inductive loop detector data. Our model and inference procedures can be used to analyze

traffic patterns and conditions from historical data, as well as to infer current patterns and

conditions from data collected in real time. As such, our techniques provide a powerful

new data source for traffic visualization, analysis, and urban planning.

We provide intuition as to why a vehicular network consisting of taxis is well suited to

the problem of describing traffic patterns: we demonstrate empirically and theoretically that

taxis, no matter what their initial locations are, tend to rapidly "spread out", thus providing

good and consistent "coverage" of the road network, by showing that they behave like

rapidly mixing Markov chains.

1Loop detectors are inductive loops installed in the road network, typically at intersections. They can
detect metal and thus and count vehicles.
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This work builds on prior studies on traffic to estimate traffic volume and speed [38]

and mobility to measure the origins, destinations, and trajectories of trips [87].

1.5 Congestion Detection

Multi-agent congestion-aware algorithms require a congestion model that captures the re-

lationship between flow and travel time. Learning this relationship is challenging. In

this thesis we provide a method for learning the flow-travel time relationship, develop a

congestion-aware routing system that uses it, and evaluate the multi-agent socially optimal

path planning algorithm against real data. Specifically, we develop the congestion model

using one month of data from 16,000 taxis and 10,000 loop detectors in Singapore.

In this thesis, we propose using loop detectors together with a new source of data-

a roving fleet of dynamic sensor "probes"-to estimate in real time (1) the fundamental

diagrams of road segments, which define their effective capacities, (2) the critical points

in these fundamental diagrams, which effectively define the onset of congestion, and (3)

the current operating level of the road. The critical congestion point of a road segment is

defined as the road traffic state where the road capacity is reached and congestion starts.

The ability to estimate critical congestion points off-line, as well as the ability to determine

the current operating condition of a road segment relative to these critical points in real

time, has the potential to make an enormous impact on urban planning. Knowing when a

road state approaches congestion can be used by urban planners and road network users

to make many decisions such as suggesting or taking alternative routes, setting congestion

pricing schemes, and selecting public transportation routes and schedules.

Detecting congestion in real time is difficult, given standard techniques and data sources.

However, GPS technology enables the estimation of the speed and position of vehicles. We

propose a congestion estimation methodology based on estimating the fundamental rela-

tionship between traffic flow, density, and speed for any road segment off-line and then

determining a road segment's state using this learned relationship and dynamic sensor data

on-line. We demonstrate how all this information can be gleaned from taxi probes equipped

with GPS sensors and existing loop detector data. Using the extensive data described in
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Section 1.4, we develop a method for estimating the critical congestion point of a given

road segment by (1) estimating the fundamental diagram for that road segment off-line and

(2) estimating where in the fundamental diagram the current road state lies on-line.

In this thesis, we provide an efficient method for estimating road flow information for

any road segment using the taxi sensor network and existing loop detectors. Since not all

roads have loop detectors, we show that if we can estimate flow well, we can also accurately

estimate the critical congestion point for the road. We propose a method that estimates the

flow of a location without loop detectors using the real-time loop count information from

"similar" locations and the real-time taxi count for the given location. We use the dynamic

taxi sensor network, calibrated with static loops, to statistically infer fundamental diagrams

and critical congestion points and dynamically evaluate road performance in relation to

these critical points. We evaluate the accuracy of our method using the Singapore taxi and

loop detector data.

We also discuss how the theoretical fundamental diagrams are an idealized model of

the relationship between flow, density and speed. Specifically, the theoretical fundamental

diagrams postulate two distinct operational states of 'free flow' and 'congestion.' In real-

ity, we find that additional operational states, such as 'heavy traffic', may exist between

the 'free flow' and 'congestion' states. Furthermore, the state of 'true congestion', where

it is impossible to increase throughput, may never be empirically observed on a road. We

show how the multiple operational states may be discovered from empirical data and dis-

tinguished from the 'true congestion' state.

1.6 System, Applications, and Experiments

Using the flow-delay function for each road segment, we build the congestion-aware route

planning system with street-level congestion models. First, we estimate the flow of each

road segment using the loop detector data and the taxi data. Next, we estimate the flow-

delay function. We then implement the single-user congestion-aware algorithm [83] and

the multi-agent path planning algorithm [84] to capture the dual types of optimization we

wish to support in such a system: (1) the multi-agent social optimum and (2) greedy opti-
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mal planning. Using the system and taxi travel paths we show that the multi-agent social

optimum algorithm improves the system performance by 15%.

1.7 Contributions

The main contributions of this thesis are as follows:

1. Efficient exact stochastic motion planning algorithms-A stochastic motion planning

problem is presented which is general enough to represent many scenarios involving

multiple agents, multiple resources, and multiple destinations. An efficient algorithm

is developed to find an optimal agent, resource, locations to visit, and path coping

with the travel time uncertainty.

2. Approximation Algorithm for Stochastic Motion Planning by Pre-computation-A

speed-up method for stochastic shortest-path queries is developed with guaranteed

approximation bound in optimality. The method is efficient both in query time and

storage space.

3. Congestion-aware Multi-agent Routing Algorithm-We develop a multi-agent route

planning algorithm and prove the convergence and rate of convergence. The algo-

rithm is decentralized, using only local information; thus, it scales well for large

network problems.

4. Flow Estimation and Congestion Detection-Data-driven methods of flow estimation

and congestion detection are proposed and validated using real data from GPS sen-

sors and inductive loop detectors.

5. Implementation of Routing System-Our traffic routing system uses the flow-delay

function to estimate street-level congestion models and implements multi-agent congestion-

aware routing with the social optimum guarantee.

6. City-Scale Experiment-We run experiments that show comparison between actual

taxi paths, socially optimal congestion-aware routing, and greedy path planning.
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1.8 Organization

This thesis is organized as follows: Chapter 2 summarizes related work. Chapters 3, 4,

5, and 6 present the traffic routing algorithms and their theoretical analyses. More specif-

ically, Chapter 3 provides a single-origin single-destination stochastic route planning al-

gorithm. Chapter 4 shows how we can speed up the stochastic shortest-path calculation

using pre-computation. Chapter 5 presents stochastic routing in the presence of multiple

agents and multiple visit locations. Chapter 6 gives a multi-agent routing algorithm con-

sidering the changing travel times in road segments depending on the agents' path choices.

Chapters 7, 8, 9, and 10 provide the implementation of the theories and algorithms and

experimental results. Chapter 7 describes our traffic routing system implementing the de-

veloped algorithms and the data used for the system. Chapters 8 and 9 present data-driven

model estimation methods. Chapter 8 presents a method for traffic flow estimation using

sensor data. In Chapter 9 we describe how we detect traffic congestion. Chapter 10 presents

the experimental results of our traffic routing system using real data, estimated congestion

models, and our algorithms. Chapter 11 summarizes this thesis, provides lessons learned,

and outlines possible future research.
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Chapter 2

Related Work

Our proposed algorithms and systems are further related to prior work in the fields of

stochastic shortest paths, distance oracles for planar graphs, multi-agent routing, traffic

prediction and congestion estimation. In this chapter, we summarize related works.

2.1 Stochastic Routing

Our work is closely related to stochastic planning and stochastic shortest-path algorithms.

Prior work has considered stochastic shortest paths under the assumption that the travel

time follows a known probability distribution [118, 21, 88, 129, 96, 101, 102]. In stochas-

tic shortest path, edge costs are probability distributions rather than deterministic costs and

the optimal path depends on drivers' diverse objectives. When a driver's objective is to

minimize the expected travel time, the problem becomes the deterministic shortest-path

problem. It is well known that Dijkstra's algorithm is optimal and applicable for determin-

istic problems. However, for some goals such as maximizing the probability of arriving

within a given deadline, the optimal path cannot be found with the standard shortest-path

algorithms since the optimal substructure property does not hold.

Stochastic shortest-path problems are characterized by stochastic instead of determin-

istic edge weights [21, 88, 96, 118, 129, 101, 102, 100, 83]. Because the edge weight

is represented as a probability distribution rather than a fixed value, there can be many

different optimal path definitions. A few frequently used optimality criteria are [83]:
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Figure 2-1: Visualization of Stochastic Shortest Paths. Stochastic shortest paths optimize
drivers' goals considering the probability distribution of delays for road segments. Left:
The goal is finding a path that maximizes the probability of reaching the destination within
a given deadline d (Probability-Tail Model). Right: The goal is finding a path that allows
the latest departure, guaranteeing that the probability of making the deadline is at least a
given probability value (Mean-Risk Model). X axis and Y axis of the plots represent the
mean and variance of the travel time statistics for a path. Reprinted from [83].

" Given an origin and a destination, find a path that maximizes the probability of reach-

ing the destination within a given deadline. (Probability-Tail Model)

" Given an origin and a destination, find a path that allows the latest departure guaran-

teeing that the probability of making the deadline is at least a given probability value.

(Mean-Risk Model)

There have been many studies on single-origin single-destination stochastic shortest-path

problems. Nikolova et al. [102] developed an algorithm and theoretical bounds by assuming

that delays are both Gaussian and independent on different road segments. Inspired by this

algorithm, we developed a method that improves performance by removing unnecessary in-

vocations of shortest-path searches [83]. In this thesis, we focus on stochastic shortest-path

problems with multiple origins, multiple destinations, and multiple intermediate visit node

constraints. This thesis builds on the single-origin single-destination stochastic shortest-

path algorithm developed in [83]. We show how to utilize the parametric optimization

block in [83] to solve the constrained stochastic shortest-path problem. Related prior re-

search considers the visit node constraint problems in deterministic graphs [33, 47, 68].

There is some research on the shortest-path problem with visit node constraints [137,
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33] in a deterministic setting. Significant research has been done on the stochastic shortest-

path problem [109, 95, 28, 45, 107, 118, 97, 82, 83, 88, 96, 101, 102]. [23] developed a

smartphone based routing system that maximizes the probability of reaching the destination

within a given time budget. However, most of the stochastic shortest-path research has

focused on the single-origin single-destination case without any constraints. We extend

the prior work by providing a solution to the stochastic shortest-path problem for multiple

agents with visit node constraints on a stochastic network.

2.2 Approximate Distance Oracles

An (approximate) distance oracle is a data structure that efficiently answers shortest-path

and/or distance queries in graphs. Relevant quantities of a distance oracle include the

preprocessing time, which is the time required to construct the data structure, the space

consumption, the query time, and, for approximate distance oracles, the stretch, which

is the worst-case ratio among all pairs of query nodes of the query result divided by the

actual shortest-path distance. Approximate distance oracles using quasilinear space for

poly-logarithmic query time and stretch (1 + e) are known for planar [123] (implementa-

tion in [94]), bounded-genus [70], minor-free [11], geometric [57], and bounded-doubling-

dimension graphs [16]. For realistic traffic scenarios, we need the distance oracle to work

with directed graphs (also called digraphs). For planar digraphs, Thorup [123] gave an ap-

proximate distance oracle that occupies space O(ne7' log(nL) log(n)) and answers (1 +e)-

approximate distance queries in time O(e-1 + log log(nL)), where L denotes the largest

integer length of edge weights (see [70] for different tradeoffs between space and query

time).

Furthermore, many efficient practical methods have been devised [52, 115, 17], their

time and space complexities are however difficult to analyze. Competitive worst-case

bounds have been achieved under the assumption that actual road networks have small

highway dimension [10, 9].
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2.3 Multi-Agent Routing

There have been many studies in finding the social optimum and the user equilibrium in

traffic [77, 114, 31, 69]. Incremental planning for multiple drivers was studied in [131]

using the assumption that the stochastic travel time for a road segment changes according

to the number of previously planned drivers. Our work is closely related to traffic control

problems of multiple agent systems, multicommodity-flow problems, and congestion game

problems [44, 80, 128, 78, 32, 117]. The multi-commodity flow problem is a network

flow problem with multiple commodities (or goods) flowing through the network, with

different source and sink nodes. There have been many studies on congestion control in

communication networks [72, 71, 89, 12]. In game theory, many studies have been done to

find user equilibrium [127, 49, 50, 19]. There are studies in fractional flow settings [40, 14,

105]. In this thesis, we treat the probability of agent's path choice as fractional flow. Our

research finds the path choice probability of each agent to achieve the social optimum. The

algorithm for finding the probability is deterministic, but the actual assignment of agents

to a path is stochastic according to the probability. Our probability of path can be viewed

as similar to the mixed strategy in game theory. In [110], the convergence result was given

for the previous algorithm called the method of successive averages. The research provides

the convergence result, but the rate of convergence is not given. Our work provides the

convergence speed. In addition, [110] requires the global information. Our work only

requires local information, so the algorithm can run in a parallelized way.

In [36], stochastic user equilibrium (SUE) was introduced. The probability of route

choice is modeled as a logit distribution according to the measure travel times of K paths

for each driver. We also use this concept and find the optimal probability of route choice.

The law of large numbers is the basis for the construction of link flows. The link flow is

the summation of all the path probability for all the paths that have the link in the path.

The stochasticity explains the route choice probability of individuals due to the perception

errors. The stochasticity is about the random choice based on perception error and is not

about the stochastic travel time. In this work and following many studies, the probability

of path choice is considered as fractional flow for the path. [75] developed an algorithm for
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finding stochastic user equilibrium solution for congested transit networks.

[119] compares the implementation of different traffic assignment methods.

2.4 Traffic Data

The state of the art in estimating traffic uses static sensors such as loop detectors or traffic

cameras [6]. The static sensors are installed at fixed points and provide traffic estimates

at that single location. They require significant effort to deploy and maintain, and they

fail to capture traffic flow and trajectory information. Some recent studies have began to

investigate the use of GPS devices as dynamic traffic probes for inferring traffic volume

using existing mathematical models [55, 62], or they estimate traffic speed from GPS [134,

133] or from special-purpose static sensors [3, 4].

Measuring mobility patterns is more challenging than measuring traffic volume. The

state-of-the-art methodology for recording the origins and destinations (OD) of trips is a

manually-conducted survey [39, 113, 7, 8]. OD surveys include household, workplace,

or roadside surveys and aim to identify where people start and end their trips. There are

many shortcomings with this method. The surveys measure the average rather than actual

travel behavior, they cover only a small subset of trips, and given the manual nature of the

method, the information (e.g. travel time) is poorly estimated by the interviewee. More

recently, estimating origin and destination has also been done using the observed link flow

information [27, 58, 22, 13, 61, 59, 60]. However, the results of this method depend on an

underlying model of traffic and the number of link flow measurement locations. Surveys

have also been used to estimate route choices, although the results are not reliable due to

the complexity and scale of the route selection problem in a dense network of roads. Truck

fleets have been used to identify truck routes using loop detector counts [112]. Table 2.1

summarizes these previous studies according to the data sources used and the information

extracted from them.
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Table 2.1: Summary of data sources
oSurvey Static sensors Dynamic sensors

Origin and Household survey, OD estimation tech-

destination workplace survey, nique with observed

Roadside interview link flows [27, 58, 22,
[39, 113, 7, 8] 13, 61, 59, 60]

Route Reconstruct truck
routes from loop
detector counts [112]

Flow Loop detectors and Estimate flow from

cameras, etc. [6] GPS data [62]

Speed Advanced loop detec- From GPS[134, 133]
tors and cameras, etc.

2.5 Traffic Prediction and Congestion Modeling

Many traffic routing systems have been developed based on travel time estimation from

GPS data collected by probe vehicles [65, 138, 37, 48, 82, 63].

[65] developed a sensor network system that collects cars' traces while they are moving

and transmits the GPS information through open Wi-Fi access points. For probe vehicles

to be the basis of a real-time traffic monitoring system, it is necessary that the travel-time

measurements made by them be reliable, adequate and timely. In [66], coverage of roads

for a traffic congestion monitoring application is provided based on simulations. [138]

proposed a method of identifying traffic conditions and patterns on surface streets given

location traces collected from on-road vehicles and infrequent low-bandwidth cellular up-

dates. [37, 48] estimated the number of probe vehicles required for various types of road

networks using simulation. [135] uses machine learning techniques to predict the travel

time.

Prior research for estimating traffic flow includes [34, 122, 121]. [73] uses simulation

tools to address macroscopic simulation of a real large-scale motorway network. [42] uses

statistical learning theory to predict flow. [64] predicts traffic flow and congestion for a

small set of known bottleneck regions by using a large set of historical and realtime data to

construct a Bayesian network. However, the algorithm in [64] cannot predict the traffic on
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every roadway and street in a city, nor can it predict the fastest route between two arbitrary

points in a city. [111] uses neural network methods to estimate traffic flow.

The fundamental diagram of a road describes the relationship between flow, density,

and speed on a road [106, 29, 35, 46, 41, 74, 15, 76, 136, 139, 140].
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Chapter 3

Single-Agent Route Planning Under

Uncertainty

This chapter presents a single-origin single-destination stochastic shortest path algorithm.

The algorithms in Chapter 4 and Chapter 5 build on the algorithm described in this chapter.

Section 3.1 provides the set-up for the stochastic network, and Section 3.2 describes the

stochastic traffic model using GPS traces. Section 3.3 summarizes the stochastic shortest-

path algorithm in [83].

3.1 Stochastic Network

We model the road network as a directed graph G = (VE) consisting of a set of vertices

V that represent road intersections, and edges E C V x V that represent road segments

between intersections. Associated with each edge e is the travel cost distribution we ~

,/r (me, ve), which is assumed to be a normal distribution with mean me and variance Ve

of the travel cost of e. We assume that this distribution is independent from travel cost

distributions at other road segments.1

'Stochastic dependency between adjacent edges can be considered by transforming the given graph as
shown in Section 5.3.2
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3.2 Stochastic Traffic Model based on GPS Traces

We compute a stochastic model of an entire city using the following process. We start

with a heterogeneous set of roughly 500 million anonymized GPS points. Grouped by

individual vehicles, we extract those traces (subpaths), for which the sampling frequency

is sufficiently high (at least one data point every thirty seconds). For each trace, we employ

map-matching algorithms to compute the sequence of road segments that has the largest

likelihood to have been used by this particular trace. The process of matching GPS trace

data into a map has been investigated before [130, 56]. To overcome the noise and sparsity

of GPS data, a map matching method based on the Viterbi algorithm was suggested in [99].

We use their method for our dataset. Since we do not have the ground truth for our dataset,

the correctness of the map-matching step cannot be verified. It is actually rather unlikely

that all traces are mapped to the correct sequence of road segments. We assume that our

dataset is large enough such that the majority of traces is mapped to correct road segments.

We determine the speed of each vehicle per road segment and we sort all the values for

each road segment by time. We then bin speed values into one-hour intervals for each day

of the week. Using standard statistics, we compute the sample mean and standard deviation

for the speed and travel time for each bin.

Figure 3-1 shows distributions for different road segments and different times of the

day.

3.3 Efficient Solution for Single Agent Stochastic Shortest

Path (SSP) Problem

This section summarizes the solution method for SSP given in [83] on which this chapter

builds. [83] presents a method that finds the optimal path when the optimality criterion

is either of those given in Section 2.1. Let path 7r be denoted by a point (mir v,) in a

rectangular coordinate system, called the mean-variance plane, where the horizontal axis

represents the mean and the vertical axis represents the variance. As explained in detail in

Section 3.3.2, level sets of objective functions are shaped in parabola. Figure 3-2(a) shows
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D-1 am 8~9 am 5~6 pm

Road 1

0-1 am 8~9 am 5-6 pm Travel time

Road 2

Figure 3-1: The travel time distribution of two different road segments for 0~1 am, 8~9
am, and 5~6 pm on weekdays.

two different maximum arrival probability paths depending on the deadlines.

The key property is that the optimal path occurs among the extreme points of the convex

hull containing all the path points. Using this property, the algorithm solves the problem

by finding the A -optimal path, which is defined as the minimum-cost path where the edge

weight is given by we (/I) = me + A -ve for any nonnegative A. We refer to this linear com-

bination of mean and variance as A -cost. From the independency assumption between edge

distributions, it follows that a path's A-cost is the sum of the A-costs of all the edges in the

path. Thus, the A-optimal path can be found using Dijkstra's algorithm or any other stan-

dard shortest-path algorithms. The algorithm is shown in Algorithm 1, and a visualization

of the iterations is given in Figure 3-2(b).

Algorithm 1 finds and prunes the search regions and selects only a small number of

A values. The algorithm's building blocks (Algorithms 2, 3, and 4) are used in the al-

gorithms for visit node constraints in Sections 5.1 and 5.2. The isBetterThan operator

in Algorithm 4 compares the two paths depending on the optimality criterion. Deadline

information is used for this comparison.

The details of the SSP algorithm in [83] are further described in Sections 3.3.1 and 3.3.2.
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O All paths
U Optimal path for deadlinel
U Optimal path for deadline2

N' 1

deadlinel deadline2

mean
(a) The optimal path occurs among the extreme points of the convex hull including all the path points.

(1) A-Optimal-Path for the first A (=0)
(2) A-Optimal-Path for the second A (=-e)
(3) A-Optimal-Path for the third A set by Algorithm 3

~2I

mean
(b) The extreme points can be found efficiently by finding X-optimal paths where X values are se-
lected by Algorithm 3.

Figure 3-2: Explanation of the SSP algorithm in [83]

3.3.1 Problem Formulation

Road Network Modeling

The road network is a graph called the Geographic Map, where nodes represent intersec-

tions and edges represent road segments. We associate a road delay distribution with each
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Algorithm 1: Find-Optimal-Path
Data: Graph, origin and destination, deadline
Result: optimal path from origin to destination
optimalPath := NULL;
while (X:=Find-Next-A())#NULL do

;r:= Find-u-Optimal-Path(2, origin, destination);
optimalPath := Update-Regions-and-Optimal-Path(ir, deadline);

end
return optimalPath

Algorithm 2: Find-X-Optimal-Path
Data: X, start, end
Result: A-optimal path from start to end
Find the path minimizing mean + A -variance using a shortest-path algorithm such
as Dijkstra's or A* search algrotihm;

Algorithm 3: Find-Next-A
Data:
Result: A value for the candidate region to be searched if there exists a region, or

NULL otherwise
X :=NULL;
while (R :=pop from the candidate region FIFO queue)#jiNULL do

if the region satisfies the condition of pruning then

| continue;
end
else
I return X := lambda value for the region

end
end
return X

road segment. This per-intersection granularity road map leads to a large graph for small

road segments with related travel statistics. We combine statistically related road segments

into groups so that they can capture important delay characteristics without losing infor-

mation about alternate path segments. This data structure is the Delay Statistics Map. The

Geographic Map is used for matching GPS traces onto real road segments, while the Delay

Statistics Map is used for statistical delay sensitive routing. We assume that

1. the delay of each edge follows a Gaussian distribution;
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Algorithm 4: Update-Regions-and-Optimal-Path.
Data: new X-optimal path z, deadline
Result: Updated optimal path and candidate regions
if z isBetterThan currentOptimalPath then

currentOptimalPath = z;
end
Calculate new two candidate regions;
for each candidate region do

if the probe point of candidate region isBetterThan currentOptimalPath then
Insert the region into the candidate regions list;

end
end
return currentOptimalPath

2. the delay of each edge is independent of every other edge.

In Section 6.4, we provide evidence for these assumptions. We formulate stochastic motion

planning as a graph search problem over a graph with an origin 0 and a destination D,

where the travel time of each edge is an independent Gaussian random variable. Since the

sum of independent Gaussian random variables is also a Gaussian random variable, we can

denote the travel time for a path ; consisting of edges e of mean me and variance Ve as

follows:

tz ~ , (m7, vZ), where mr = Eeexme and v= Eevrve.

Cost Functions

Our objective is to find a path that minimizes an expected cost when the cost function

models a user's goal. We call this the "optimal" path for the given cost function. We

consider several cost functions including:

Linear cost: Here, the cost increases linearly with the travel time. When the cost of

arriving at the destination in time t is C(t) = t and the delay PDF of a path ;r is fr (t), the

expected cost of traveling through r is ECr f *tfx(t)dt = mr. Linear cost models the

path with minimum expected time.

Exponential cost: Exponential cost models a cost function that increases sharply as the

arrival time increases. When the cost function is C(t) = ek', where k is the steepness of
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the cost increase, the expected cost can be written as EC = f , ek'fx(t)dt = {ek(m2+± )

This exponential cost function minimizes a linear combination of mean and variance deter-

mined by k.

Step cost: Step cost models a cost that only penalizes the late arrival after a given deadline.

The cost function is C(t, d) = u(t - d), where u(-) is the unit step function and d is the dead-

line. The expected cost is EC,(d) f_* ,u(t -d)f,(t)dt = Jrff(t)dt = {1(- CDrd

where <b(-) is the CDF of the Standard Normal distribution. Thus, when I is a set of

all paths from 0 to D, the minimum expected cost path is argmax, <D(d d"), which

turns out to be the path that maximizes arrival probability. Since <(-) is monotonically

increasing, maximizing <b(-) is equivalent to maximizing

d - m(3.1)

The minimum expected cost path for the linear and exponential cost cases can be found by

a deterministic shortest-path algorithm, such as Dijkstra's or A* search algorithm since the

cost of a path can be expressed as the sum of the cost of each edge in the path. However,

when the cost is a step function, these algorithms cannot be used since the objective, (3.1),

is nonlinear. Our goal for the rest of this chapter is to develop an efficient algorithm for

finding the maximum probability path given a deadline.

3.3.2 Stochastic Path Planning by Parametric Optimization

In [102], an algorithm for the case of normally distributed edge costs was given based on

quasi-convex maximization. It finds the path with the maximum arrival probability by stan-

dard shortest-path runs with different edge costs corresponding to varying parameters. We

now give a graphical interpretation of the optimal path and show a connection to a para-

metric optimization problem, which will ultimately lead to a new algorithm that reduces

unnecessary runs over [102].
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Transforming the Cost Function into Parametric Form

Let path ;r be denoted by a point (mr, v) in a rectangular coordinate system, called the

mean-variance plane, where the horizontal axis represents the mean and the vertical axis

represents the variance. The objective of the optimization problem, (3.1), can be rewritten

to show the relation between mr and vr as

1
v = 2(m -d(3.2)

pd (,A

which is a parabola in the mean-variance plane with apex at d, where pg (Q) is determined

by the curvature of the parabola. Thus, the optimal path is the path that lies on the parabola

of the smallest curvature. Intuitively, the optimization problem is to find the first path that

intersects the parabola while we lift up the parabola starting from the horizontal line (see

Figure 3-3 (Left)). This suggests finding the optimal path using linear optimization with

various combinations of cost coefficients. 2

Consider setting the cost of an edge to be linear combinations of mean and variance,

me + Ave, for an arbitrary non-negative A. We call the solution for this edge cost the A-

optimal solution. This edge cost follows the optimal substructure property and has the

property described in Lemma 1, which was also stated in [102].

Lemma 1. An optimal path occurs among the extreme points of the convex hull for all the

o to D paths in the mean-variance plane if there exists a path that has a mean travel time

smaller than the deadline.

Proof. Let point P on the mean-variance plane represent the optimal path. Then, there is

no path point that has the q value larger than that of P. Therefore, every other path point

must be inside the parabola. Since the parabola is convex, P must be an extreme point. O

With Lemma 1 we can find the optimal solution from A-optimal solution for a given A.

Since A-optimal cost satisfies the optimal substructure property, any deterministic shortest-

path algorithm (e.g., Dijkstra's algorithm or A* search algorithm) will find A -optimal paths.

2Linear optimization finds a path that first intersects a straight line when the line is moved in a direction
determined by cost parameters.
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Figure 3-3: (Top left) Graphical interpretation of the optimal path in the mean-variance
plane. Each square represents a path from the origin to the destination. Equi-probability
paths lie on a parabola with an apex at (d, 0) and a curvature of 2. The optimal path
is the first point that meets with a parabola as we increase the curvature. (Top right) The
result after three executions of A-optimal searches with 1 = 0, A2 = oo, and A3 = - -l'Q-V.

Each square point represents the A-optimal path for each X. The gray points represent the
paths that are not found yet. The blue regions are guaranteed to contain no path. The white
triangles indicate candidate regions for better paths. The round points are the probe points
of the regions. (Bottom left) X-optimal search was done only for the left candidate region.
The newly found path turns out to be the new current optimal path and the two round points
are the probe points.

Exhaustive Enumeration

In [102], a method for stochastic motion planning was proposed that exhaustively enumer-

ates all the extreme points of the path convex hull. A brief description of the algorithm is

as follows: First, find the A-optimal paths for X - 0 and X = oo. If they are the same, it

must be the optimal solution. Otherwise, find the X -optimal path using A = -"'** since

this A value will cause the algorithm to search the entire region completely unless it finds
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a new path, as illustrated in Figure 3-3 (Middle). If no new path is found, the algorithm

terminates with the optimal solution being the one with the largest (p value. Otherwise,

the newly found path divides the search region into two parts. Then, the A -optimal search

is executed for each region using A values determined to search each region completely.

In this approach, when the number of extreme points is Ne, there will be Ne searches to

guarantee that all the extreme points are enumerated. In addition, Ne - 1 more searches

are needed to conclude that no other paths exist between the extreme points. Thus, the

total number of enumerations could be large. Next, we show how to reduce the number of

required A -optimal searches.

Examining Probe Points

If we know that a certain search region's best possible outcome is worse than the current

optimal solution, we do not need to execute the costly A -optimal search for that region. In

this section we formalize this point.

Definition 1. Let the triangular region where a better path can exist be called a candidate

region. Let the vertex in the middle of the candidate region be called a probe point Candi-

date regions are illustrated as white triangles ALiMiRi, and probes as round points Mi in

Figure 3-3 (Middle).

Theorem 1. If the <p value of the probe point as defined in (3.1) is smaller than the current

optimal value, the candidate region does not contain the optimal path.

Proof Suppose that a path lies at the probe point. Then, no other point in the candidate

region can be an extreme point. The interior points cannot be an optimal solution since the

optimal solution occurs at one of the extreme points by Lemma 1. Suppose that a path does

not lie at a probe point. Add an imaginary origin-to-destination path that lies on the probe

point. The addition of an imaginary path will not make any difference for searching for

the optimal solution since it is not better than the current optimal path. The same argument

shows that interior points cannot be optimal solutions. E

By Theorem 1, we can remove from consideration the candidate region if the region's

probe point satisfies the condition in Theorem 1. Figure 3-3 (Right) illustrates a case where
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the right candidate region AL 2M 2R2 was removed without any execution of A2-optimal

search since the (p value of the probe point M2 is smaller than that of the current optimal

path. The left candidate region AL1M 1 R1 was searched since the left probe point gives a

larger p value than the current optimal value, and a new path was found as the A -optimal

path. The same procedure is applied to the new candidate regions built by the newly found

A -optimal path until there is no candidate region remaining.

Restricting A by Upper and Lower Bounds

The A. values that should be searched are limited by upper and lower bounds.

Theorem 2. The optimal path can be found by searching only with the A. values upper

bounded by )y, the negative inverse of the tangent to the parabola at the intersection of the

0-optimal search line and the oo-optimal search line.

Proof If the A -optimal solution is the same as the Au-optimal solution for all A > Au, we

can trivially find the same path with Au instead of A > A. Suppose that there exists a certain

A. > Au for which A -optimal path (ma , va) is different from the Au-optimal path (man, van).

Then, we can say that mAu 4 mL and v, $ va since 0 < A < oo. From the definition of

AX-optimal path, ma, + Auva. < ma + Auva and mju + A vA > ma + A va. Rewriting these,

we get

A.u (va - va) < ma - ma, (3.3)

A.(va -va) > ma -mXn.

From the two inequalities we get (A - A.u)(van - va) > 0 and since A > Au, it follows that

vAu > va and ma > mju.We get an expression for Au by taking the derivitive of (3.2) and

its negative inverse Au = 1/ 0mo 1,= 2 (dmo)2 = .d-m From this and (3.3), and sincedM 2. (dmo) 2v.

d - mo > d - ma and va > v.,

ma-mA d-mo Id-ma (3.4)
va -va 2v. 2 va

51



Since mA > mj. and d - mk > 0, M,_U2 < From this and (3.4),
d-m 2

1 mA -mu VA

n mA" + 2  vz -vj d -mA

We can rewrite this as follows:

vA - v< m - mA mA - MAU +2 ),
vA d - m d-mA

vX d - m)

4 <( )2,
v'k d-mA

d-mA d-mz

Thus, for any A > A, the X-optimal solution is worse than the X-optimal solution. Thus,

there is no need to search the area with the X that is larger than Au. Therefore, whether

X-optimal solution is the same with the Xu-optimal solution or not we can find the optimal

solution by searching with 2 < Xu. D

Theorem 3. The optimal path can be found by searching only with the X values lower

bounded by X, the negative inverse of the tangent to the current X -optimal parabola at the

intersection of the current X-optimal parabola and 0-optimal search line.

Proof Following the argument as in Theorem 2, suppose that there exists a certain X < A,

for which the X -optimal path (mAx, vx,) is different from the X;-optimal path (mA, vA ). Then,

we can say that mA, f mA and vk, # vA since 0 < A < c. From the definition of A -optimal

path, mA, + AlvA, < mA + AlvA and mA, + AvA, > mA + A vA. We can rewrite this as

A1(vk, -vA) < mA -mA,, (3.5)

A(vX, -vA) > mA -mA,. (3.6)

Inequalities (3.5) and (3.6) give (A - Al)(vA, - vA) > 0 and since A < A,, it follows that

vA, < vA and mA < mA,. We get an expression for A by taking the derivative of (3.2) and its
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negative inverse

A; = -1/ |m=mo = d-m~t (3.7)
dm 2vopt (d -mo)

From (3.5) and (3.7),

mg -mA, (Pd(Wopt)2M A,< .p 7ot (3.8)
v', - v 2(d - m0 )

If (pd(zopt) > (pd(i), searching with A, does not give better result then current optimal

path. If (pd(zopt) - (pd(7r),

(pd (7opt)2  (pd (2 )2  (pd( 7() 2  d-ma (3 9)
2(d - mo) - 2(d - mo) 2(d -mx) 2v;

since d - mo > d - mA. From (3.8) and (3.9)

mA -mA, 1 d- -mA
< - (3.10)vA, -va 2 vs

Since mA < m, and d - mA > 0,

1 1
m -m" + 2 > (3.11)
d-mj

From equation (3.10) and equation (3.11),

1 mA - mA, vA
MA-mx1 +2 VA, -vA d - mA
d-mA

Following a similar process as in the proof of Theorem 2, we get

d-mA d -mA,

Thus, for any A < AL, the A-optimal solution is worse than A, -optimal solution. Thus, there

is no need to search the area with the A that is smaller than A1.
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Theorems 1, 2, and 3 lead to the Parametric Search algorithm (see Algorithm 5) for

finding the best route that maximizes the probability of arriving at the destination within a

given deadline. In lines 3 and 4, the 0-optimal and oo-optimal paths are searched with a

Algorithm 5: PARAMETRIC-SEARCH

Data: Graph with mean and variance of each edge, origin, and destination

Result: The optimal path
1: bestPath -0
2: Regions = [] : FIFO queue containing candidate

regions.
3: patho +- SEARCH-A -OPTIMAL-PATH(O)

4: path.+- SEARCH-AX-OPTIMAL-PATH(o)

5: if patho == path. then
6: return path0

7: Regions.push(Region(l : patho, r: path.,
p: (patho.mean,path..var)))

8: calculate A, and Au
9: while (R +- Regions.pop() ! = 0 do

10: if R.probe.(p < bestFath.<p then continue

11: X < Rl.mean-R.r.meanLvar-rvar
12: if A > A-u, then
13: if Au was not searched then A +- A.
14: else continue
15: if ) < A then
16: if A, was not searched then. +-?A,
17: else continue
18: path <-SEARCH-A.-OPTIMAL-PATH(A)

19: if path ! = R.l and path ! = R.r then
20: if path.<p > best Path.p then
21: bestPath 4- path, update 1
22: locate probe, and prober
23: if probel.p > bestPath.9 then
24: Regions.push(Region(l : R.l, r : path,

p : probe,))
25: if prober.p > bestPath.p then
26: Regions.push(Region(l : path, r : R.r,

p : prober))
27: return bestPath

shortest-path algorithm (e.g., Dijkstra's algorithm or A* search algorithm). If the two found

paths are the same, the algorithm terminates. If they are different, the first candidate region

consisting of the three points denoted in line 7 is pushed into the queue. Candidate regions
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are evaluated for searching. The conditions in lines 10, 23, and 25 come from Theorem 1,

and those in lines 12 and 15 from Theorems 2 and 3, respectively. If the candidate region

does not need to be searched, the algorithm continues with the next region. Otherwise, the

region is searched with the A value determined by the left and right path of the region (line

11) and possibly modified by the upper and lower bounds (lines 13 and 16) in line 18.

Correctness

Algorithm 5 finds the optimal solution in a finite number of A -optimal searches. The paths

in the region we exclude from the exhaustive enumeration using the extreme points cannot

be optimal by Theorem 1. The paths in the region we excluded using the upper and lower

bound of A cannot be optimal due to Theorems 2 and 3. Since the number of required A.-

optimal searches is upper bounded by 2Ne - 1 as described in Section 3.3.2, the algorithm

finds the optimal solution in a finite number of searches.

Running Time

As shown by Nikolova, et al. in [102] based on [26], there are total N9(logN) extreme points

in the mean-variance plane, where N is the number of nodes in the network. Compared to

their algorithm that searches every extreme point, our algorithm does not invoke unneces-

sary searches yielding an average running time of O(N 2log 4 N), where N2 term is due to

Dijkstra's runs for each / -optimal search.

The intuition is as follows. Each new path point found with a A -optimal search yields

two candidate regions. Our algorithm only searches the candidate region if its probe point

is outside the current optimal parabola. The parabola passing through the newly found path

point will almost always divide the two probe points causing one of them to lie outside

the parabola. The adverse case where both probe points are outside the parabola happens

rarely when the current optimal parabola meets the current 2-optimal search line twice

within the interval determined by the two probe points. The decision to remove candidate

regions without searching them depends on the distribution of path points in the mean-

variance plane and the deadline. Thus, the running time of our algorithm can be described

probabilistically.

55



We let P2(i) be the probability that both candidate regions are searched at the i'th it-

eration and po(i) be the probability that neither candidate region is searched at the i'th

iteration. We give the running time bound of our algorithm taking the varying p2(i) and

po(i) into account in Theorem 4. We use an assumption of how p2(i) and po(i) vary as

algorithm iterations proceed (Assumption 1) and a lemma for the running time of our algo-

rithm when p 2(i) and po(i) satisfy a certain condition (Lemma 2).

To see how p2(i) and po(i) grow as iterations proceed, we observed them by running

our algorithm on randomly generated convex hulls. We generated random convex hulls

with a fixed number of extreme points, ran our algorithm for each instance of the convex

hull, and observed the occurrence of the event at each iteration. The event is one of 'N', '0',

and 'B', meaning none, one, and both of the candidate regions are searched, respectively.

After observing these for each instance of convex hulls, we find the empirical probabilities

as follows:

The number of 'B' at i'th iteration
p2(i) The number of 'N', '0', and 'B' at i'th iteration

- The number of 'N' at i'th iteration
POWi) - The number of 'N', '0', and 'B' at i'th iteration

Figure 3-4 shows the plots of p2(i) and po(i) where 5000 random convex hulls were

used. As denoted at the top of each plot in Figure 3-4, p2(i) becomes smaller than po(i)

at around the logNe'th iteration, where Ne is the number of extreme points and remains

smaller for the following iterations.

Remark 1. The reasoning behind this empirical data is as follows: First, consider how

p2(i) and po(i) vary as iterations proceed. We have three cases: (a) two regions are left

in the queue, (b) one region is left in the queue, or (c) no region is left in the queue. Case

(a) occurs only when the X2-optimal search line is in the neighborhood of the tangent to

the parabola at the point being considered. The size of the neighborhood depends on the

distance between the two probe points (e.g., if the distance is large, even a large difference

in the slopes can result in the retention of both points.) If the distance is small, only a
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small difference in the slopes will lead to the retention of both points. Since the distance

gets smaller as iterations proceed, P2(i) decreases monotonically. On the other hand, the

probability of case (c) (e.g., both candidate regions are removed) monotonically increases

as the distance between the probe points gets smaller The optimal parabola gets flatter

and the lower bound of X ( 1 ) increases as a better X -optimal path is found, which also

causes P2(i) to decrease and po (i) to increase.

Consider the point when P2(i) becomes smaller than p0(i). When a single child is

retained at each step, it takes O(logNe) - O(log2 N) iterations until the optimal path is

found because we have a binary tree. Thus the probability that the search algorithm retains

one child decreases fast beyond O(log2 N) iterations. This results in po(i)'s fast increase
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since its increasing rate is related to the decreasing rate of 1 - P2 (i) - PO(i) by A = -

A(1-p 2 ()-po(i)) + ( p-() Thus, p0(i) becomes larger than P2(i) around i = O(log 2N).
Ai Ai

Figure 3-4 illustrates these behaviors of P2(i) and po (i).

Based on the empirical observation about P2(i) and po(i) and Remark 1, we make the

following assumption.

Assumption 1. P2(i) po(i),Vi > n,n = O(log 2N).

Lemma 2. If P2(i) Po(i),Vi, the average running time of our algorithm is O(N 2log 2N),

where N is the number of nodes in the graph.

Proof We use a binary tree to represent a hierarchy of candidate regions created by the I -

search sequence. Each node represents a candidate region and its children nodes represent

the two candidate regions created by searching the current region. Let h be the height of the

tree, and let the function num(,V) be defined as the total number of candidate regions to

search for a tree with a root node IV and let Y and 9 be the left and right children nodes

of 4. Then, h = O(log(No9N)) = O(log 2N) [102] and

num(Y) =

1+num(S) +num(g) with probability p2(i),

1 + num(,2) with probability 1-2-oi)with probability l-P2(j~0(j)
Inum(Y) 2

1 +num(M) with probability 1 -22Q -PO Q,

1 with probability po(i).

The conditional expectation of num(.IV) given num(f) and num(M.) is described as

follows:

E [num(V) |num(Y), num(g)]

1 +P2(i) - Po(i)S1+ 2 (num(2)+num o))

Then, the expectation of num(fV) can be expressed as follows, taking expectation over
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num(Y) and num(R) on the above conditional expectation.

E[num(')] = E[E[num(1V)|num(Y),num(R)]]

= 1+ 1P 2(i)-p0(i) (E [num(f)] +E[num(R)]) (3.12)
2

Since the expectation of num(.V) depends only on the height of the tree, we can define a

function nume(h) as the expected number of nodes given the height h. Then, for a node A'

whose height is h and whose two children are Y and R, we have E[num(/)] = nume(h)

and E[num(Y) = E[num(9)] nume(h - 1). From (3.12), nume(h) can be written as:

nume(h)

1+ (1+P 2 (i) -Po(i)) nume(h - 1) if h > 1,

0 if h=0.

Solving the above recursive equations, noting that 1 + P2(i) - Po(i) < 1, we get:

nume(h) < h = O(log 2N).

Thus, the running time is O(N 2log 2N) when we use Dijkstra's algorithm for each ) -optimal

search.

Theorem 4. The average running time of Algorithm 5 is O(N 2log4N).

Proof. The total running time is determined by considering the computation before and

after P2(i) < Po(i) is satisfied separately. By Assumption 1 the computational cost before

P2 (i) < po(i) is satisfied is O(N 2log2N). Then, we have O(log 2N) candidate regions. In

the worst case, all the remaining candidate regions should be searched. Since the height

of the sub-trees spanning from those candidate regions is bounded by h and they all satisfy

P2(i) po(i), the computational cost after p2 (i) < PO(i) is satisfied is O(N 2log 4 N) by

Lemma 2. Thus, the overall running time is O(N 2log 4N). El
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Stopping Earlier within Bounded Error

A sub-optimal path can be computed by stopping the search of the algorithm early. In such

cases we can still guarantee an error bound. For example, we can compute faster solutions

that are within 3% of the optimal solution.

When the probability difference between the current optimal path and the virtual path

defined by the probe point is in the range of a user's tolerable error range, it is guaranteed

that there is no other path that has larger probability at least by the tolerable error range.

Thus, we can remove the candidate region from consideration. By doing this, more can-

didate regions can be removed from the queue, resulting in faster search. Here, the probe

point can be used not only for comparing if the candidate region needs to be searched for a

better solution, but also for deciding how much better the solution can be, if it exists. When

the tolerance in probability is denoted as 3, line 10 of Algorithm 5 should be changed to

<b(R.probe.() - <b(bestPath.9) < 3,

and lines 23 and 25 of Algorithm 5 should be changed to

<b(probel .9p) -<b(bestPath.p) > 3

and

<b(prober.p) - <(bestPath.p) > 3,

respectively. Note that the algorithm with zero tolerance reduces to the original exact algo-

rithm.

Extension to Latest Departure Time

We examined how to find the maximum probability path. The question was

e Given the desired arrival time and the departure time, what is the path that has the

largest probability of making the trip within a given deadline?
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Note that deadline is expressed as desired arrival time - departure time.

We can also think of another question,

e Given the desired arrival time and the probability of making the trip within a given

deadline, what is the path that has the latest departure time?

This question arises when a user wants to depart as late as possible with a user-defined

good-enough probability of making the deadline. For a path 7r with mean m, and variance

mr the following relation holds.

1
vs = 2 { (desired arrival time - departure time) - M,} 2 , (3.13)

where ( is the argument of the Gaussian CDF <D(-) that makes the <b(.) equal to the given

probability of making deadline.

We are finding a path that maximizes the departure time, which is equivalent to finding

a path that minimizes desired arrival time - departure time. We can rewrite the parabola

equation (3.13) as

desired arrival time - departure time = m, + qp v 

Thus, the optimization problem to solve is

argmin m, + Jv-
Zerl

The optimal path occurs among the extreme points of the convex hull composing every

path point in mean-variance plane. This can be proven with similar arguments with those

in Proof 3.3.2. Thus, we can apply the probe point method we developed in Section 3.3.2 to

solve this new optimization problem. The difference is that the optimal parabola's curvature

is fixed at kand the apex is determined by the path point and the curvature. In the previous

version of the problem the apex was fixed and the curvature of parabola was determined.

The probe point is determined in the same way but the probe value is defined by mz +

9 v/i. The probe point with a smaller probe value than that of the optimal parabola is
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Figure 3-5: Illustration of the latest-departure path for a given probability guarantee. For a
given probability of making deadline the curvature of the parabola is fixed. There is no path
having the deadline as small as di or d2 . The optimal path is indicated as green which has
the smallest deadline among all the path, d3. It has the latest departure time since departure
time = desired arrival time - deadline.

kept. Intuitively, the optimization problem is to find the first path that intersects the parabola

while we move the parabola from left to right (see Figure 3.3.2). The apex of the parabola

stands for the deadline and the curvature stands for the probability of making the deadline.

Thus, for the two optimization problems above, we optimize one when the other is fixed.

We can also have numerous different optimality criteria that trades off between higher

probability of making deadline and later departure time. Note that all the optimal paths for

these different criteria occur among the extreme points, so that our methods can be used.

We can also use a similar technique as described in Section 3.3.2 to find a sub-optimal

solution within a tolerable departure time range.

3.4 Synopsis

In this chapter, we presented an efficient stochastic shortest-path algorithm dealing with

uncertainty in travel time. The algorithm uses a parametrical optimization method to find

the exact optimal path. We showed the correctness of the algorithm and the running time

of the algorithm.
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Chapter 4

Stochastic Route Planning with

Precomputation

This chapter describes a practical algorithm for stochastic motion planning and applications

to route planning in the presence of traffic delays. This algorithm builds on the stochastic

shortest-path algorithm explained in Chapter 3 and improves the query time by preprocess-

ing. One main objective is to minimize the running time of the overall procedure at query

time and hence the running times of these shortest-path subroutines are of high priority. We

improve on the prior state of the art by designing, analyzing, implementing, and evaluat-

ing data structures that answer approximate stochastic shortest-path queries. For example,

our data structure can be used to efficiently compute paths that maximize the probability

of arriving at a destination before a given time deadline. The main theoretical result is

an algorithm that, given a directed planar network with edge lengths characterized by ex-

pected travel time and variance, pre-computes a data structure in almost linear time such

that stochastic approximate shortest-path queries can be answered in poly-logarithmic time

(actual worst-case bounds depend on the specifics of the probabilistic model). The main ex-

perimental results are two-fold: (i) we provide methods to extract travel-time distributions

from a large set of heterogenous GPS traces and we build a stochastic model of an entire

city, and (ii) we adapt our algorithms to work for real-world road networks, we provide an

efficient implementation, and we evaluate the performance of our method for the model of

the aforementioned city, improving the query time by several orders of magnitude.
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This chapter is organized as follows. We review prior work on stochastic motion plan-

ning in Section 4.1. We present an outline of our motion planning algorithm in Section 4.2.

We describe practical considerations in Section 4.3 and experimental results in Section 4.4.

4.1 Background

4.1.1 Stochastic Shortest Paths

Consider a graph G with a given source node s and destination node t with stochastic

edge delays we that come from independent distributions with means and variances (p4e, Ze)

respectively. Denote the vector of edge delays by w = (Wi,..., WIEI) and the corresponding

vectors of edge means and variances by y = (Pi,...,. lE) and =. (...I, i). Denote the

incidence vector of a path by x E {0, l}IE with ones corresponding to edges present in the

path and zeros otherwise. Let the feasible set of s-to-t-paths be F C {0, 1 }IEl.

Given the uncertainty of edge delays, it is not immediate how to define a stochastic

shortest path: is it the path that minimizes mean delay? Or should it minimize path vari-

ance or some other metric? Risk-averse users would naturally care about the variability in

addition to mean delays. Two risk-averse models that have been previously considered are

the mean-risk model and the probability-tail model, which we describe below.

The algorithms for both models make black-box calls to the underlying deterministic

shortest-path problem:

minimize wTx subject to x E . (4.1)

Probability-Tail Model In this model, we are given a deadline d and we seek the path

maximizing the probability of arriving before the deadline: maximize Pr(wTx < d) subject to x E

F. This model assumes normally-distributed edge delays in order to obtain a closed-form

expression for the probability tail. In particular, when w is Gaussian, the problem is trans-

formed into the following formulation [100]:

d-yiTx
maximize subject to x E F. (4.2)
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Similarly to the mean-risk model, problem (4.2) can be solved exactly in time nO(Iogn) [102]

and it can be approximated as follows:

Theorem 5 ([100, Theorem 4.2]). Suppose we have a 3-approximation algorithm for

solving the deterministic shortest-path problem (4.1). For any e > 0, the probability tail

model (4.2) has a 1 3- [ 124)] -approximation algorithm that calls the algorithm

for the deterministic shortest-path problem polynomially many times in 1|E and the in-

put size, assuming the optimal solution to problem (4.2) satisfies P ix* < (1 - e)d for a

user-specified deadline d.

A Mean-Risk Model In this model, we seek the path minimizing mean delay plus a

risk-aversion coefficient c > 0 times the path standard deviation, more formally:

minimize y Tx+ c v X subject to x E- f. (4.3)

This is a non-convex combinatorial problem, which can be solved exactly by enumer-

ating all paths that minimize some positive combination of mean and variance (the latter is

a deterministic shortest-path problem with respect to edge lengths equal to the correspond-

ing mean-variance linear combination) and selecting the one with minimal objective (4.3)

(see [102, 100] for more details). The number of deterministic shortest-path iterations is

at most nO(lo") in the worst case [102]. Furthermore, there is a fully-polynomial-time

approximation algorithm (FPTAS) for the problem, more precisely:

Theorem 6 ([100, Theorem 4.1 ]). Suppose we have a 3-approximation algorithm for solv-

ing the deterministic shortest-path problem (4.1). For any E > 0, the mean-risk model (4.3)

can be approximated to a multiplicative factor of 3(1 + e) by calling the algorithm for the

deterministic shortest-path problem polynomially many times in the input size and 1 /E.

In other words, one can use both exact (3 = 1) and 8-approximate (for any 3 > 1)

shortest-path subroutines and obtain a corresponding approximate risk-averse solution.
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4.1.2 Approximate Distance Oracles

We point out one particular method, which is in some sense related to our construction.

Geisberger, Kobitzsch, and Sanders [51] provide a heuristic shortest-path query method

with edge lengths defined as a customizable linear combination of two edge length func-

tions (parameter from a discrete interval of bounded size - which is why we cannot use

their data structure).

U

Vo

lo,

Figure 4- 1: For each node v we have O (1/1E) portals on each separator path Q such that the
shortest path from v to each node q E Q is approximated within a (1 + E)-factor by going
through one of the portals. Note that two nodes u and v may not necessarily use the same
set of portals.

At a high level, Thorup's method works as follows. The preprocessing algorithm recur-

sively separates the graph into subgraphs of roughly equal size. Shortest paths are used as

separators. For planar graphs, it is possible to separate the graph into two roughly balanced

pieces by using three shortest paths Q1, Q2, Q3. Next, the preprocessing algorithm consid-

ers each node v E V and it computes O(1/E) portals for v on each separator path Qi such

that the shortest path from v to each node q E Qi is approximated within a (1 + E)-factor

by going through one of the portals. Since each node only needs to remember O(1/,C) dis-

tances to portals per level, and since each node participates in O(logn) levels, the overall

space complexity per node is bounded by O (E -1log n). For directed planar graphs, the
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construction is more complicated and the space and time complexities are slightly higher

but the core idea is very similar.

4.2 Stochastic shortest-path queries using Distance Ora-

cles

4.2.1 Overview

We provide a new stochastic motion planning algorithm and its implementation in a real

traffic network. The main objective is to minimize the time for querying a motion plan-

ning path. Algorithms studied in [102, 83] find an exact solution by iteratively determining

the parameter value k that governs the edge length f(e) := ky(e) + T(e) in terms of mean

y and variance T. Such parameter values depend on a specific problem, a deadline or a

risk-aversion coefficient. We develop a method that finds a set of parameter values over

the whole network (not depending on the specific problem) that provides guaranteed ap-

proximation accuracy for all choices of parameters simultaneously, while maintaining only

a small set of parameters, which allows for small storage and efficient preprocessing. We

preprocess the approximate optimal paths using the set of parameter values.

We implement the deterministic shortest-path algorithms required in [100] using a dis-

tance oracle, as described in the previous section. This allows for much faster query times.

The preprocessing algorithm, while taking roughly linear time, is executed only once and

the data structure can be computed on a fast machine (not necessarily the machine where

the query algorithm is run on). One important technical difference compared to the method

described in [83] is that we cannot use an adaptive algorithm at query time, since the pre-

processing algorithm must prepare for each step that is executed at query time. In other

words, the preprocessing algorithm must prepare for all possible query pairs (s,t) C V2,

and, potentially, deadline parameter values d E R. While such preprocessing algorithms are

standard for classical graph distances, non-trivial modifications are necessary for stochastic

shortest paths.
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4.2.2 Preprocessing Algorithm

We adapt the algorithms in Theorem 6 and Theorem 5 to our scenario, where we have ac-

cess to an approximate oracle for the deterministic shortest-path problem with edge lengths

e -± k -y (e) + r(e) for some k E X. In previous work [100], the aim was a polynomial-

time algorithm and shortest-path problems could be computed in roughly linear time for

any value k. Since we aim at sublinear query time, the queries made to the oracle need to

be non-adaptive, or at least restricted to a small set of possible queries X. We can then

precompute distance oracles for all these values k E X. On a high level, the preprocessing

algorithm is rather simple.

Algorithm 6: PREPROCESS

Data: G = (V, E) with lengths y, r : E -+ R+

Result: distance oracles orck for each k E X
compute the set X;
for k E X do

orCk +- build (approximate) distance oracle for length function

e a k (e)+ r(e);
end

Note that this preprocessing algorithm can be parallelized in a straightforward way.

Since there are no dependencies between the oracles constructed for different values of k,

the preprocessing algorithm can also make use of a multi-core architecture.

As an immediate consequence, we obtain the following.

Claim 1. The preprocessing time is bounded by O(IX| 9), where 3 denotes the pre-

processing time of the deterministic distance oracle.

A main technical contribution of this work is showing how to compute (and analyze)

this set X. The size of A' mostly depends on the user's choice of E.

We run the deterministic preprocessing algorithm for the graph with edge lengths £k(e)

k -p(e)+ r(e) for k E {L,(1+ -)L,(1 +) 2L,...U} for 4,L, U to be defined for each

model. Also, the approximation parameter E we use for the preprocessing algorithm in the

distance oracle changes with the model.
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A Mean-Risk Model Using a 3-approximate distance oracle, the end result is a S(1 +

e)-approximation. Therefore, when asking for a (1 + E)-approximate answer, we inter-

nally set eit := e/3, since, for e < 1/2, we have that (1 +e/3) 2 < 1 +2,/3 +E 2/9 < 1 +E.

In the following, we write e instead of eint. Next, we set 4, L, and U as follows.

L = min z(e)
e

U = r(e) n-maxr(e)
e e

Alternatively, U can be set to the largest possible variance of any path. Finally, we pre-

process the distance oracle with ek(e) for all k E A' {L, (1 + )L, (1 + )2L,... U}. We

have that the total number of values k is at most

|X| = log1+4 (U/L) = 0 (log (n max T (e)
\ min T (e)f f

As a consequence, we have the following lemma.

Lemma 3. For any graph G = (V, E) and for any two length functions y : E -+ R+ and

Tr: E -+ R+, there exists a set X of size |Xj = 0 (e-12 log n ma je) such that mean-

risk shortest paths can be approximated by a shortest path in one of the graphs Gk, defined

by G and the length function 4(e).

Probability-Tail Model For the probability-tail model, we follow the same strategy as

in the previous section, based on the proof of [100, Lemma 3.4], showing that, in the

mean-variance plane, any fixed parabola (also termed level set) with apex (d, 0) can be E-

approximated by a piecewise linear curve (see [100, Figure 1(b)] for an illustration) using

few line segments. We exploit this e-approximation in our algorithm. Furthermore, we

define level sets irrespective of the deadline d: we may actually define X for any value of

d - for a given query deadline d', the actual parabolas are just shifted to the left or to the

right. Each segment defines a slope value k and the union of all these slope values (their

absolute value, actually) is our set of slopes.
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We set 4, L, and U as follows.

4 = E/2

2 mine r(e)

dL

U - 2 Ee,(e) <2n maxer(e) <2n maxe r(e)
EdU - edu E mine p (e)

Although the user may choose to query the data structure for an arbitrarily large dead-

line d, we can give an upper bound on dL = maxd as follows. As soon as the deadline is so

large that shortest paths do not change anymore, we do not have to consider larger values

of d. In a straightforward way, dL can be computed by computing all-pairs shortest paths

for increasing values of d. Alternatively, a 2-approximation of the diameter can be found

in linear time.

4.2.3 Query Algorithm

The simplest version just tries all values k E X.

Algorithm 7: QUERY
Data: origin 0, destination D, distance oracles orck for each k E X, and mean risk

coefficient c or deadline d depending on the risk model m
Result: Approximate Optimal Path p
p <- NIL;
for k E X do

q +- findpath(0,D,orck)'
if (m = meanRisk and q.y + c q.'r < p.y + c p.'r) or (m = probTail and
d-q.y > d -p") then

q.Tr p.T
p+ -q;

end
end
return p;

Claim 2. The query time is bounded by O(|X|- a), where - denotes the query time of

the deterministic distance oracle.

Combined with Claim 1, we obtain our main theorem.
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Theorem 7. There is a data structure that can be computed in time O(|X| - 9 ), occu-

pying space O(Xj- Y) answering approximate stochastic shortest-path queries in time

(|XI - -), where 9 , - denote the preprocessing, space, and query complexities of

the deterministic distance oracle, respectively.

In the practical part, we also have a heuristic that binary searches for the optimal value

in X, resulting in faster query times.

Plugging in the distance oracle of Thorup [123], we obtain our main result. We state it

in the mean-risk model. An analogous bound holds for the probability-tail model.

To apply [123, Theorem 3.16], we set the largest integer length N(k) maxk -i(e) +
eEE

-r(e) for a preprocessing step k E X. Also, let i= m .n )

Corollary 1. For any directed planar graph, there exists a data structure that can be com-

puted in time O(n(log (n t))(lg(nN))(lgn) 3 - 5 / 2 ), occupying space

o (n - e-3/ 2 (lg n )(lg(nN) )(log (n t))) such that approximate stochastic shortest-path queries

can be answered in time O(e-1/ 2 log (nt) lg lg(nN) + c-3/2 log (ni)).

The space can be reduced at the cost of increasing the query time by using the construc-

tion in [70]. In particular, for scenarios where memory is scarce (such as a mobile device),

one can obtain a linear-space data structure. Note that the preprocessing algorithm can

be executed on a fast computer and not necessarily on the mobile device. The query time

remains poly-logarithmic.

4.3 Practical Considerations

We adapt our method for planar networks so that it can efficiently handle the actual road

networks we use in our experiments.

4.3.1 Non-planarities

Our network is not exactly planar and many real-world road networks may be non-planar [43].

The internal algorithms of the distance oracle use separator paths, which are sensitive to
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non-planarities. We propose to address most of these non-planarities as follows (inspired

by similar constructions for minor-free graphs [11]). On the highest level of the recursion,

instead of using two shortest paths to separate the graph, (i) we interpret the set of express

ways (cf. highways) as a set of separator paths, (ii) we compute portals for each separator

path Q and each node v, (distances to portals are computed with respect to the entire graph)

and (iii) we remove the set of express ways from the graph. The highest level of the recur-

sion handles all paths that use any part of an express way. The remaining graph has only

few further crossings.

Turn restrictions For some intersections, particularly in urban settings, it may not be

possible to make a left turn due to a turn restriction, or it may just be more time-consuming

to make a left turn, which can be modeled by a turn cost. Turn costs can be taken into

account by modeling each road segment by a node of the graph, and then connecting only

those nodes whose corresponding road segments can be traversed in sequence [24, 132].

Such a transformation increases the number of nodes [53] and, more importantly for our

oracles, it also violates planarity. Planarity is not just violated in a moderate way but the

violation is actually such that it cannot possibly be fixed. If arbitrary turn restrictions

were allowed, we could just (i) draw any graph in the plane (for example the large-girth

graphs in [124] or the expander graphs in [120]), (ii) add a node for each intersection, (iii)

apply left-turn and right-turn restrictions (i.e. apply the supposedly-existing transformation

without violating planarity), (iv) compute a planar distance oracle [123], and (v) store only

the distance labels for the actual nodes of the graph. If the transformation in step (iii) could

be done, the resulting oracle would contradict known lower bounds. In our implementation,

we connect each node to additional portals as follows: on any separator path, we deem each

turn-restricted intersection as a portal. The upper bound of 0(1/e) portals per separator

path cannot be guaranteed anymore. The bound in the implementation is 0(1/E + R),

where R is the number of intersections with turn restrictions on a given separator path.
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4.3.2 Directions

Realistic modeling of traffic requires us to consider directed graphs.' The existing imple-

mentation [94] is for undirected graphs only and the directed oracle is significantly more

complicated [123]. Existing methods for directed road networks [52, 115, 17, 18] usu-

ally do not have theoretical worst-case bounds close to [123] (some theoretical results are

known [10, 9]). For our scenario, we integrate the undirected implementation into our code.

While our theoretical results hold for directed networks, our experimental evaluation is for

undirected networks.

4.3.3 Reduced Set of Portals on Separator Paths

On the highest level, we cannot use planar-graph algorithms to efficiently compute portals

and distances to portals for each node. Instead, we propose to relax the approximation

guarantee in a controlled way. We heuristically treat each separator path (or express way)

as in Algorithm 8.

4.3.4 Deadline Values

In the probability-tail model, the user may specify an arbitrary deadline d. As a conse-

quence, the ratio of the smallest and the largest possible d can be arbitrary large. As argued

in the theoretical section, this can be controlled for effectively. In practical implementa-

tions, one could also limit the range of user input values by restricting the deadline values

available.

4.4 Experiments

We evaluate an implementation of our algorithm on a real-world network dataset. We show

that the query time is several orders of magnitude faster than the previous algorithms, and

'The shortest-path problem for directed graphs is strictly more general. In a straightforward way, any
undirected graph can be represented by a directed graph with bidirectional edges. For arbitrary directed
graphs, even if they are guaranteed to be sparse, not much is known with respect to shortest-path queries,
while the undirected variant is quite well understood.
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Algorithm 8: PORTALS (H, Q, k)
Data: a path Q and a parameter k
Result: a set of portals for each v E V (H)

SINGLESOURCESHORTESTPATHS(Q);

connect dummy source to each q E Q;
computes first portal qo(v) and distance d(v, qo(v)) for each v E V(H);

for qi E Q do
for j E {, ,2,...k- l} do

Q(i) +- subset of nodes qi where i = j mod k;

SINGLESOURCESHORTESTPATHS(Q()) ;

dummy source connected to all q E QW;
computes another portal q1 (v) and distance d(v, qj (v) for each v E V(H);

if (l+ E d(v,qj(v)) > d(v,qi(v))+d(qi (v) ,qj(v))for all portals qi(v) added
previously then

I add portal;
end

end
end

we also show that the approximate path is close to the optimal path.

4.4.1 Setup

The tests were run on a machine with 2 GB of main memory and an Intel Xeon CPU

1.86GHz processor.

Our graph represents a city-scale network with 40,000+ nodes and 70,000+ edges. As

described in the previous section, we adapted the worst-case-proven algorithm and tailored

it to fit our real-world scenario. We implemented the distance oracle for undirected graphs

based on the implementation of [94].

Since our network is mostly bidirectional (meaning that there are only few one-way

streets), our graph could potentially be considered undirected. However, in time-dependent

scenarios, the traffic may still flow in one direction, while a road may potentially be jammed

in the other direction. Using the following heuristic, we can use the undirected variant of

the distance oracle without significant impact on the path quality. To compile the different

travel time distribution of bidirectional road segments, we built distance oracles for two

different edge length functions: one with into-the-city-center driving time statistics and one
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with out-of-the-city-center driving time statistics. The orientation of an edge with respect

to the city center was used as the reference to indicate which of the two travel time statistics

should be used when constructing the distance oracle. At query time, for example, if the

route query overall corresponds to a into-the-city-center movement, the distance oracles

built based on the into-the-city-center statistics are used.

We examined the preprocessing time, query time, and approximation ratio for different

e values for the two different models: Specifically, we used e E {0.1,0.2,0.3,0.4,0.5, 1}

for the Mean-Risk model, and E E {0.5, 1} for the Probability-Tail model.

The number of k values for different values of e Preprocessing time
300 15000 4000

mean-risk -meanRisk
probability-tail 3500 | probTail

200 -10000

2500

E 2000

100- 75000 1500

1000

00 20 40 60 8 0 14 0 2 4 6 8 10
1/e 1/e

Oracle size
18

meanRisk
16o probTail

14-

12

10

6 -

2L
0 2 4 6 8 10

1/e

Figure 4-2: The number of k values needed for the road network. this figure illustrates
the growth of |Xj for the mean-risk and the probability tail model with respect to the
user-specified level of accuracy e (Left), Preprocessing time for each e (Middle), For each
e value (1/e on the x-axis), we report the total storage requirement for all the distance
oracles (y-axis) (Right).
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4.4.2 Preprocessing

Depending on the user's desired accuracy level E, we find the values , L, and U (as out-

lined in the theoretical part). The sizes of the set X for different values of e are shown

in Figure 4-2 (Left). The preprocessing time depends mostly on IXJ (and therefore on

E). For each value of E, we used c E {0,0.5, 1, --,6} for the Mean-Risk model, and

d { 1.1 -m*, 1.2 -m*, -- , 2 -m* } for the Probability-Tail model, where m* is the minimum

expected travel time for a given origin-destination pair.

Computation time The preprocessing time for different c values is shown in Figure 4-2

(Middle). For example, for the Mean-Risk model, if we set E = 0.1, 82 different k values

are used. The overall preprocessing time is 5,159 seconds. The average preprocessing time

for one distance oracle is roughly 63 seconds.

Note that the number of distance oracles to pre-process only depends on the desired

accuracy of the solution paths defined by E. It is independent of the users' other query

parameters, such as origin, destination and the risk-aversion coefficient c in the Mean-Risk

model or the deadline d in the Probability-Tail model.

Data space Depending on e, the overall space consumption varies greatly (see Figure 4-2

(Right)), mostly due to two reasons. First, the number of k values increases as the accuracy

is increased (meaning that E is decreased), see Figure 4-2 (Left), and second, the number

of connections in the distance oracle grows linearly with 1/E.

4.4.3 Path Queries

To measure the query time, we compute stochastic shortest paths between 1,000 random

origin-destination (OD) pairs. To evaluate the quality and accuracy of the reported paths,

we query 1,000 random OD pairs.

Query time Figure 4-3 shows the time required to answer a route query for different

values of E. The query time decreases as E increases. We implemented [83, Algorithm 1]

and plotted the query time result in Figure 4-3 as a comparison to our method in this chapter.
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Figure 4-3: The histogram of the query time for 1,000 random OD-paris. 'Pruning al-
gorithm' refers to Algorithm 1 in [83]. Our new method is faster by several orders of
magnitude. The speed-up is roughly from tens of seconds or several minutes to tens of or
hundreds of microseconds.

Approximation quality We compare the quality of the path output by our algorithm

to the optimal path length, computed by the algorithm described in [83]. As a quality

measure, we list the approximation ratio, defined as the difference between the optimal

solution and our solution, divided by the optimal solution (see Figure 4-4). Our worst-case

guarantee says that this ratio can never be larger than the user-specified level of accuracy e.

Our experimental results show that the ratio is smaller than e, and, moreover, the ratio is

substantially smaller than e. Even for relatively large values such as E = 1, we still obtain

an approximation ratio less than 0.02. Based on this experimental result, we suggest using
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Figure 4-4: The histogram of the approximation ratio for 100 random OD-paris. We used
c.E.{0,0.5, - -6} for the*Mean-Risk model anddE{1.1 -m*, 12 m* -- - ,2 -m*} forthe
Probability-Tail model, where m* is the minimum expected travel time for a given origin-
destination pair.

larger values of e, saving both computation time (both preprocessing and query time) and

storage (as outlined in the previous section).

4.4.4 Path Examples

We developed a web interface that responds to user inputs. Users can select the origin and

destination, as well as the travel time of the day and the day of the week. The system

computes the stochastic shortest path and displays it on the map. Figure 4-5 shows our

different solution paths for different deadlines for the Probability-Tail model with e 0.1.
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Figure 4-5: Path query example for maximizing the probability of reaching the destination
within a user-specified deadline. Our system finds such a path within milliseconds for
a city-sized network. When a user at origin '0' wants to get to destination 'D' within
30 minutes between 5pm and 6pm on a weekday, the blue path offers the best chance of
reaching the destination within the deadline. However, when the deadline changes to 20
minutes, the blue path has less than a 50% chance for making the deadline. In this case, the
red path is the best route, offering a 88.5% chance for on-time arrival.

4.5 Synopsis

In this chapter, we showed an improved algorithm upon the state of the art in stochastic

motion planning, providing a method that can answer stochastic shortest-path queries in

almost logarithmic time using a data structure that occupies space roughly proportional to

the size of the network. Our method has proven worst-case guarantees and it is applicable to

real-world scenarios. Applied to traffic navigation, we obtain a method that can efficiently

find a path with almost maximum arrival probability given a user-specified deadline.
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Chapter 5

Stochastic Multi-Agent Route Planning

In this chapter, we present route planning algorithms for multiple agents in a graph with

stochastic travel times. The goal is to provide a route plan for a group of agents to visit

multiple locations such that the route is optimally selected to maximize the probability of

completing the path within a given deadline. The algorithm aims to find the best agent,

the best resources and the best path through all the visit locations guaranteeing the highest

probability for achieving the goal.

Though much research has been done in stochastic shortest-path problems, the existing

algorithms focus on the single-origin single-destination problem for one agent. This chap-

ter formulates a general framework for the stochastic shortest-path problem with visit node

constraints designed to achieve a specific goal with multiple agents, multiple resources,

and multiple destinations. The constraints are defined by a set of sequences of nodes to be

visited. Given predetermined constraints, our motion planning problem consists of find-

ing the best agents, resources, and destinations, and the path through a sequence of nodes

representing them.

The single-source single-destination stochastic shortest-path algorithms cannot be di-

rectly applied to the problems with multiple agents and multiple visit locations since the

optimality sub-structure does not hold. In this chapter, we provides an efficient algorithm

for such complex problems using the building blocks of a stochastic shortest-path algo-

rithm presented in [83]. The technique in this chapter solves the problem at the same level

of complexity as solving the single-origin single-destination problem by parallelization.

81



We demonstrate the algorithm by a Web-based traffic navigation guide system and evaluate

the algorithm's performance.

The main contributions of this chapter are as follows:

1. Formulating the multi-agent, multi-resource, multi-hop navigation problem as a graph

search problem with visit node constraints.

2. Developing a solution to the stochastic shortest-path problem with visit node con-

straints.

3. Introducing a decentralized algorithm for multi-user congestion-aware routing that is

guaranteed to achieve the social optimum-where the goal is to minimize the overall

travel time in the system.

4. Implementing and evaluating the algorithm in a real road network with real historical

travel time data.

In Section 5.1, we offer a solution to the Stochastic Shortest Path with Fixed Node

Sequence (SSPFNS) problem, where an ordered list of nodes to be visited is specified.

In Section 5.2, we solve the Stochastic Shortest Path with General Constraints (SSPGC)

problem, where constraints describe complicated combinations of node visit sequences.

The SSPGC problem covers more general problems, including multiple-agent, multiple-

resource, and multi-hop routing applications. In Section 5.3, we discuss a couple of ex-

tensions to the problems: First, we give a method of incorporating the visit cost into the

algorithms. Second, we provide a method for considering statistical correlations between

edges. Section 5.4 shows experimental results.
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5.1 Multi-Hop: Stochastic Shortest Path Through a Fixed

Node Sequence (SSPFNS)

5.1.1 Problem Formulation

The SSPFNS problem is defined as finding the optimal path (such as the path that maxi-

mizes the probability of arrival at the destination within a given deadline) for visiting nodes

in a predefined sequence m1 ,m2 , -- , mm, where mi models the original location of an agent

and mM is the destination, with m2, --- ,MM-1 modeling the locations of required interme-

diate visits. We refer to these nodes as visit nodes. The travel cost for edges is modeled as

a normal distribution as in Section 3.1. The cost for visiting a node is assumed to be 0, but

we will discuss how to consider the visit time in Section 5.3.1. This problem formulation

captures many crucial applications such as planning a delivery truck's route to maximize

the probability of delivering all the delivery goods within the deadline.

Figure 5-1: The delivery truck wants to find the path to maximize the probability of finish-
ing the work by 5pm.

Let the feasible path set Pf be the set of all the paths that satisfy the fixed node sequence.

Each path of road network G is shown as a point and each path in the feasible path set is

shown in red in Figure 5-2. The problem is finding the best path in the feasible path set.
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N Paths that satisfy the constraints
o Paths that do not satisfy the constraints

O

deadlinemean

Figure 5-2: Red points represent the paths satisfying the constraints. The important obser-

vation here is that the optimal path with constraints occurs among the extreme points of red

squares.

5.1.2 Solution Method

The first important property for an efficient algorithm is that the optimal path for the

SSPFNS problem is one of the extreme points of the convex hull created by the feasi-

ble path set in the mean-variance plane. Moreover, the extreme points are represented by a

X-optimal solution satisfying the fixed node sequence for a certain A value.

Finding the 2-optimal Path Satisfying the Fixed Node Sequence

The second property for the solution method is that whereas the optimal path is not a

concatenation of the optimal paths for each hop of the fixed visit sequence, the Z-optimal

solution is a concatenation of the A-optimal paths for each hop of that sequence.Thus,

the same parametric optimization and pruning methods developed in [83] can be used to

solve the SSPFNS problem, except that now we focus only on the paths that satisfy the

constraints.

These two properties are proven in Section 5.1.3. Using these properties we develop

the SSPFNS algorithm as shown in Algorithm 9,

84



Algorithm 9: Find-Optimal-Path-FNS
Data: Graph and fixed node sequence
Result: optimal path from the origin to destination through the fixed node sequence
optimalPath := NULL;
while (A:=Find-Next-A())#ANULL do

7r:= Find-A-Optimal-Path-FNS(A, fixed node sequence);
optimalPath := Update-Regions-and-Optimal-Path(r);

end
return optimalPath

Algorithm 10: Find-A -Optimal-Path-FNS
Data: A, fixed node sequence
Result: A -optimal path through visit nodes
for each pair of subsequent visit nodes ni and ni+1 do

| 7Cn,-+4i, := Find-A-optimal path(A, ni, ni+1);
end
Find the concatenation of the found paths: Znii,Vi;

5.1.3 Correctness

First, we prove that the optimal path occurs among A-optimal paths from the feasible set.

Second, we show that the concatenation of each pair of subsequent nodes' A -optimal paths

is the A -optimal path from the feasible set.

Theorem 8. The optimal path occurs among the extreme points of the convex hull including

every path point satisfying the visit node sequence in the mean-variance plane.

Proof Let point P on the mean-variance plane represent the optimal path satisfying the

visit node sequence. Then, every other path point satisfying the constraints must be inside

the parabola that passes through P having its apex at (deadline, 0). Since the parabola

is convex, P must be an extreme point for the convex hull including all the path points

satisfying the visit node sequence. L

As shown in [83], an extreme point of a set of path points corresponds to the A-optimal

path for the set of paths for a certain A. The method of finding the A-optimal path is

described in Algorithm 10. Theorem 9 proves that this method is correct.
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Theorem 9. Let the edge weight be given by mean + X -variance. The minimum-cost path

that visits all the visit nodes is the concatenation of all the minimum-cost paths between

each pair of subsequent visit nodes.

Proof Let ni, n2 , - -- ,nm be the nodes to be visited. Let path r*i n be the minimum-

cost path from ni to n(i+1). Let a, b, c be the three subsequent visit nodes. The minimum-

cost path from a to c via b is the concatenation of the minimum-cost paths from a to b and b

to c. Thus, the minimum-cost path that visits all the intermediate nodes is the concatenation

of n1 -n2 7 Ln2-+nI I' -- +nm'

From Theorems 8 and 9 we know that there exists a X such that the concatenation of

2-optimal paths between the subsequent visit nodes in the sequence is the optimal path for

that sequence.

5.1.4 Complexity Analysis

The difference between Algorithm 1 and Algorithm 9 is that the building block Algorithm 2

is replaced with Algorithm 10 that includes M - 1 iterations of Algorithm 2, where M is

the number of visit nodes. Thus, the complexity of the SSPFNS algorithm is at most M - 1

times greater than that of the SSP algorithm in [83]. The algorithm can run in parallel since

there is no computational dependency between finding )A-optimal paths for each pair of

subsequent visit nodes. Thus, the running time is the same as the SSP algorithm when we

utilize M - 1 computation nodes.

5.2 Multi-Agent and Multi-Resource: Stochastic Shortest

Path with Generalized Constraints (SSPGC)

5.2.1 Problem Formulation

In this section, we define the Stochastic shortest-path problem with Generalized Con-

straints. Whereas the SSPFNS problem considers only a fixed node sequence, the SSPGC

problem considers a more general class of visit node constraints.
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C

Figure 5-3: The graph shows general constraints.

Figure 5-3 illustrates an example of visit node constraints, where one node in a group

(indicated in oval) should be visited in the order described by arrows. For example, a visit

sequence a -+ g -+ k is a valid sequence satisfying the constraints. Let A be the ordered

and operator and V be the or operator. Distributive and associative properties hold for

both V and A, but the commutative property holds only for V since the order of the two

items for a A matters. Using these operators, we can express the constraints as follows:

((aVbVc)A(gVh)A(jVkVlVm))V((cVd)A(eVf)A(hVi)A(n)). If we apply the

distributive law for all the terms and transform the constraints into V's of sequences with

only A's, each sequence with only A's represents a valid visit sequence. We refer to the

visit sequence with only A's as an elementary sequence.

Remark 2. A and V notations can describe other constraints too. For example, constraints

of visiting a set of nodes in any order can be described by enumerating possible permuta-

tions of nodes with A and V. If all the nodes in Group E in Figure 5-3 should be visited, in

any order we can express it as (e A f ) V (f A e) as drawn in Figure 5-4.

Whereas the SSPFNS problem's fixed node sequence can represent only one elemen-

tary sequence, the constraints in SSPGC represent general constraints that can model many

applications with multiple agents, multiple resources, and multiple destinations. Function-

ally equivalent agents' locations can be modeled as nodes in the same group. Similarly,

functionally equivalent resources' locations can be modeled as nodes in another group.

The constraints can be modeled as a sequence of these groups, meaning that any one from
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Figure 5-4: This figure illustrates how we can decompose the constraints of a group of
nodes being visited in any order into A and V.

the same group can be chosen. The goal is to find the best choice of the agents, resources,

destinations, and routes for the agents. Figures 5-5(a) and 5-5(b) illustrate examples.

5.2.2 Solution Method

We can think of a naive solution that finds the optimal path for each possible elementary

sequence using the SSPFNS algorithm developed in Section 5.1 and compares them to find

the best path among them. However, this is computationally expensive since the number of

such sequences grows exponentially with the number of total nodes of constraints, M. We

develop an efficient algorithm in this section.

Union of Extreme Points

Paths satisfying different elementary sequences are shown in different colors (red and

green) in Figure 5-6(a). Each parabola represents the level set of the optimal path for

each elementary sequence. The best path among the optimal solutions for each elementary

sequence is the optimal solution for the general constraints. As we pointed out, a naive

solution treating each elementary sequence differently is not desirable. The intuition be-

hind the efficient solution is that we see the optimal solution for general constraints as the

best solution among the path points that satisfy either of the elementary sequences. It is

equivalent to finding the optimal solution from the convex hull including the union of path

88



T1 T2 T3

H1 H2

(a) Taxi booking considering the taxi's location and uncertainty
of travel time. The person wants to go to one of the hospitals in
ten minutes. There are multiple available taxis at different loca-
tions. Which taxi should be dispatched and which route should
be used to get him to the hospital on time with the highest proba-
bility? The constraints are (T V T2 V T3)^P A (HI V H 2 ).

T1 T2

H 1 H2 H3

(b) A fire has occurred and it should be extinguished within 5
minutes. There are a few fire hydrants. A fire truck should visit
one of the fire hydrants on the way to the fire. Which fire truck
and which hydrant should be chosen and which route should be
taken to maximize the probability of getting to the fire in time?
The constraints are (Ti V T2 ) A (HI V H2 V H3 ) AF.

Figure 5-5: Example applications

points from each elementary sequence as visualized in Figure 5-6(b). The important fact

is that we do not need to find the optimal solution for the elementary sequence separately.

We can find the optimal solution for the general constraint at once, if we can find the A -
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* Paths that satisfy a constraint sequence
* Paths that satisfy another constraint sequence
o Paths that do not satisfy the constraints

-I - I

mean
deadline

(a) Red and green points represent the paths satisfying each elementary sequence. The important
observation here is that the optimal path with constraints occurs among the extreme points of either
the red convex hull or the green convex hull, whichever is better.

N Paths that satisfy a constraint sequence
M Paths that satisfy another constraint sequence
O Paths that do not satisfy the constraints03

E3

0
-I

mean
deadline

(b) The blue convex hull includes every path point satisfying the constraints. The key for the efficient
algorithm is that we can do the A-optimal search for the union of red and green points rather than
doing the search for each color separately.

Figure 5-6: Illustration of optimal path in mean-variance plane

optimal path for the constrained network. We develop a method to find the AX-optimal path

satisfying the general constraints in the following section.
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Finding the A -optimal Path for General Constraints

We introduce a hierarchical approach to find the A -optimal path for general constraints. At

the first level, we find the A-optimal path for all the A constraints between every pair of

subsequent visit nodes, called atomic constraints. Second, we create a new graph, called

a constraint graph, whose nodes include only visit nodes and whose edges are associated

with the A -optimal path cost found at the first level. Then, we find the minimum-cost path

on the constraint graph.

Definition 2. An atomic constraint is the visit order requirement between two visit nodes.

If we have a A constraint between two groups of nodes each having m and n nodes, respec-

tively, we have in -n atomic constraints.

Definition 3. A constraint graph is a graph with each edge representing an atomic con-

straint.

Complicated A and V constraints can be transformed into a constraint graph with visit

nodes and atomic constraints as edges.' We add virtual origin and destination nodes to the

constraint graph with edges connecting the virtual origin to the first group of nodes and

connecting the last group of nodes to the virtual destinations with associated weight 0. The

problem is now to find the SSP with the intermediate node constraints.

We transform the constraints described with A and V constraints in Figure 5-3 to a

constraint graph shown in Figure 5-7, where edges represent the atomic constraints. The

red nodes are the virtual origin and destination that are introduced with the red edges having

0 weights. The blue line is the minimum-cost path between the two nodes where the edge

weight is mean + A -variance. The finding of each pairwise minimum-cost path can be

computed in parallel. Once the pairwise minimum-cost paths are computed, the A -optimal

path from the virtual origin to the virtual destination can be found easily using Dijkstra's

algorithm. Finding the minimum-cost path for all the atomic constraints requires at most

O(M 2 ) Dijkstra's algorithm executions. We can run these executions in parallel.

'If the constraint graph has cycles, then we need to first transform the graph into a graph that does not
have any cycles.

91



Figure 5-7: Constraint graph. The problem in Figure 5-3 can be transformed to a constraint

graph shown in this Figure.

Basically, concatenating k-optimal paths in SSPFNS is replaced by finding minimum-

cost path on the constraint graph where edges are associated with X-cost for the corre-

sponding atomic constraints. As a matter of fact, the concatenation in SSPFNS can be

understood as the minimum-cost path solution. This follows naturally from the fact that

SSPFNS C SSPGC.

The SSPGC algorithm is described in Algorithm 11 using Algorithms 12 and 13 as

building blocks. The algorithm first builds the constraint graph (Algorithm 12), then assigns

the edge weight for the constraint graph by finding the A-optimal path between a pair of

subsequent visit nodes without any constraints, and finally it finds the minimum-cost path

through the constraint graph (Algorithm 13).

Algorithm 11: Find-Optimal-Path-GC
Data: Graph and constraints
Result: optimal route satisfying the constraints

optimalPath := NULL;
constraints-graph = Build Constraint Graph(graph, constraints);

while (2:=Find-Next-A())jLNULL do
7= Find-A-Optimal-Path-GC(A, constraints-graph);
optimalPath := Update-Regions-and-Optimal-Path(i);

end
return optimalPath
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Algorithm 12: Build-Constraints-Graph(A)
Data: graph, constraints
Result: constraints-graph
for each pair of subsequent visit nodes ni and ni+1 do

Add edges of constraint to the atomicConstraintList;
end
From the atomicConstraintList build constraintsGraph;

Algorithm 13: Find-A2-Optimal-Path-GCQA)
Data: X, constraints-graph
Result: A-optimal path satisfying the constraints
for each pair of subsequent visit nodes ni and ni+1 do

IFind-A-Optimal-Path(A , ni, ni+1);
end
Find the minimum-cost path from the constraint graph;

5.2.3 Correctness

Theorem 10. The optimal path satisfying the general constraints occurs among the A-

optimal paths satisfying the constraints.

Proof Let point P on the mean-variance plane represent the optimal path satisfying the

general constraints. Then, every other path point satisfying the constraints must be inside

the parabola that passes through P having its apex at (deadline, 0). Since the parabola

is convex, P must be an extreme point for the convex hull including all the path points

satisfying the constraints. E

Theorem 11. The solution for Algorithm 13 is the kA-optimal path among the paths satis-

fying the constraints.

Proof We prove this by contradiction. Assume that there exists a path 7r that has smaller

A-cost than the solution of Algorithm 13, ff. Let a visit node sequence s* be an ordered

sequence of visit nodes that zj satisfies. From Theorem 9, sr is the minimum-cost path

among the paths that satisfy s*. Thus, 7r should follow another visit node sequence than

s*. Since s* is the minimum-cost path for the constraint graph, any path that satisfies a

visit sequence other than s* cannot have a smaller A -cost than 7r. Thus, the assumption is
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wrong. Consequently, no other path satisfying the constraints can have smaller X -cost than

the solution for Algorithm 13. l

5.2.4 Complexity Analysis

Let the number of nodes in the graph be N and the number of nodes in the constraint graph

be M. Note that M < N and L - O(M 2 ), where L is the number of atomic constraints. First,

Algorithm 12 takes O(M 2) since there is a For loop that iterates for each of the atomic

constraints. Now let us examine Algorithm 13. The For loop iterating through each atomic

constraint uses the algorithm block 'Find-A -Optimal-Path' described in Algorithm 2. The

running time of the last line is 0(M 2 ). Thus, the running time of Algorithm 11 is 0(2 -

M 2 + L - N2 log 4N). The For loop in Algorithm 13 can run in parallel since there is no

computational dependency between finding X-optimal paths for each atomic constraint.

Depending on the available computation units, we can get the running time per computation

unit based on the tradeoff between the running time and the number of computation units.

5.3 Extensions: Graph Transformation for Visit Cost and

Dependency

5.3.1 Considering Visit Cost

We have assumed that the visit cost for visit nodes is 0. In this section we discuss how we

can incorporate the visit cost into the algorithm. We assume that the visit cost follows a

normal distribution c, ~ I (mn, vn) independent from the visit cost distributions at other

visit nodes and from the travel cost distribution at road segments. The constant visit cost

C(> 0) can be modeled with mv = C and v, = 0.

We make a simple graph transformation of a visit node n into two nodes n' and n"

and a directed edge from n' to n" associated with the visit cost. All the incoming edges

to n are directed to n' and all the outgoing edges from n start from n" in the transformed

graph as in Figure 5-8. We can solve the problems with visit cost by running the developed
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algorithms on the transformed graph. This transformation increases the number of total

nodes and edges by a factor of a constant less than or equal to 2. Thus, the complexity of

the algorithms increases at most by a factor of 4 from the analysis in Section 5.2.4.

Mb,Vb

mab,Vaab mb4c,Vbc

< Original network >

ma4b, Va+b mb, Vb mb~c, Vbc

< Transformed network >

Figure 5-8: Graph transformation for visit cost. We transform the visit node b with mean

mb and variance Vb into two nodes b' and b" and one edge connecting from b' to b". All
incoming edges to b are directed to b' and all outgoing edges from b start from b". The edge
weight of the new edge connecting b' and b" is the same as the visit cost of b. mb'+b"I - mb
and vy,'y" =vb.

5.3.2 Considering Stochastic Dependency

Although this chapter assumed the independence of each edge's distribution, correlations

between adjacent edges can be easily considered by transforming the graph. Assume that

there is a correlation between two adjacent edges a -+ b and b - c. Then, Var(wa-b +

Wbc) = Var(wa-b) +Var(wb c) ± 2 -COV(Wanb,Wbac). We introduce a new edge b -+ b'

with mean 0 and variance 2 -COV(Wa b, wbac) as illustrated in Figure 5-9. This new edge

captures the correlation between the two correlated distributions, maintaining the property

that the variance of a path is the sum of the variances of all the edges in the path. The

number of nodes and edges grows by one for each pair of correlation. Correlations be-

tween non-adjacent edges can be considered in a similar way. As long as we consider the

correlations between an edge and a constant number of other edges, the complexity of our

algorithms grow only by a constant factor. We can run our algorithms for the transformed

graph and find the solution for the problems with correlation.
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<Mb-)c Vboc(I b
Ma~b, Vaab

Mb~d, Vb+ d
(a) Original network

Mb 4c, V b4c

0, 2cova~b,b.

maob, Va-*b

0, 2CoVa-b,b+ b
mb4d,Vb~d d

(b) Transformed network

Figure 5-9: Graph transformation for dependency

5.4 Experiment

We implemented a Web-based route query system for the Singapore road network applying

the algorithm developed in this chapter. The travel time statistics for each road segment

were built from trajectories of a fleet of taxis with GPS receivers. The mean and variance

for each road segment was saved for each one hour time slot for each day of the week.

The user interface allows a user to input a) a time window when he wants to travel and

b) the visit constraints by either typing in the address or selecting a location on the map

interface and the deadline of the travel. Then, the system calculates the answer using the

corresponding statistics and shows the path on the map.

Figure 5-10 shows an example of our system's path query result. We demonstrate that

our algorithms significantly increase the probability of meeting a deadline by choosing the

taxis that will reach the passenger in the minimum expected time. We also demonstrate that

having multiple instances of agents and resources increases the probability significantly.

The path query takes a few seconds with Python implementation on a Linux computer with

1GHz CPU and 1GB RAM. So, we can use this system for real-time applications such as
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Figure 5-10: Hospital examples in Singapore: The patient located at P in the map wants
to go to one of the two hospitals (indicated by H1 and H2 ) within 12 minutes in the early
morning of a Monday. At the time, three taxis are available located at T1 , T2, and T3. The
constraints can be represented as (T1 V T2 V T3 ) AP A (HI V H 2). The maximum probability
path (blue line) is T via P to H2 with the probability 99 % of making the deadline. The
expected travel time is 9 min 54 sec. Two other paths are shown for comparison. The
shortest path (red line) is from T via P to H2 with probability 82 % and expected travel
time 14 min 23 sec, and the minimum expected time path (green line) is from T2 via P to
H1 with probability 94 % and expected travel time 8 min 28 sec.

taxi booking based on the taxis' current locations and the traffic conditions.

5.5 Synopsis

In this chapter, we defined the stochastic shortest-path problem with visit node constraints

and developed efficient algorithms that solve the problem. The problem formulation cap-

tures an extensive range of important problems in motion planning for multiple agents with

multiple locations for resources and destinations. For a given time budget or deadline, the

results in this study provide the optimal choice of agents, resources, destinations, and the

path to maximize the success probability. We demonstrated the algorithm by implementing

a real-world navigation application based on the real data gathered by taxis in Singapore.

97

two

10



98



Chapter 6

Congestion-Aware Multi-Agent Route

Planning

In the previous chapters, we developed a path planning algorithm for a group of agents

considering uncertainty in travel time. In this chapter, we consider the congestion effect

between agents: Each agent's path choice affects the travel time of other agents on the

roads driven by the agent. This effect grows as we control a larger number of agents.

This chapter proposes a method for multi-agent path planning on a road network consid-

ering the congestion affected by each agent's path choice. We suggest a distributed method

to find paths for multiple agents by introducing a probabilistic path choice achieving global

goals such as the social optimum. This algorithm considers the travel delays affected by

other agents' path choices. When applied in a large-scale, this algorithm is guaranteed to

result in the minimum travel time for all the agents in the system.

This approach, which shows that the global goals can be achieved by local process-

ing using only local information, can be parallelized and sped-up using massive parallel

processing. We provide the analytical result on convergence and running time. We demon-

strate and evaluate our algorithm by an implementation using asynchronous computation

on multi-core computers.

This chapter is organized as follows: We formulate the planning problem in Section 6.1,

and we develop a distributed algorithm for multi-agent routing in Section 6.2. In Sec-

tion 6.3, we implemented the algorithm using a 64 core computer where each agent's task
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runs asynchronously on each core of the computer. We evaluate our algorithm using this

implementation in a multi-core computer in Section 6.4.

6.1 Problem Set-up

We are given a directed graph G = (VE) consisting of a set of vertices V that represent

road intersections and a set of edges E C V x V that represent road segments between

intersections. We are given origin and destination pairs for each agent i E A. The goal is to

plan paths for agents to achieve the social optimum, where each agent shares the edges of

the given network with other agents.

To model the congestion generated by agents' path usage, we associate with edge e

the travel time te(fe), which is a function of flow for e, fe. Flow is defined as the number

of agents per unit time. The link travel time te(fe) is assumed to be a differentiable non-

decreasing function of link flow fe.

Social optimum is achieved if and only if the agents' path plans minimize the sum of the

total travel time for all the agents in the system. It is different from user equilibrium, which

is achieved if and only if every agent's cost cannot decrease unless other agents change

their decisions. User equilibrium is the state when selfish agents optimize their own paths.

Social optimum may require some agents to take a sub-optimal path to minimize the total

cost for the whole system. Figure 6-1 illustrates the difference between social optimum

and user equilibrium.

Using a cost function that is agent-centric but captures neighborhood congestion, we

would like for each agent to compute the path following a gradient decent type of method

as illustrated in Figure 1-3. Each agent considers its origin and destination as well as those

of its neighbors. Neighbors are agents that share some of their path with the current agent.

At a conceptual level, our proposed solution uses a cost function that includes the path cost

and the path congestion due to neighbors. By doing decentralized gradient descent, each

agent will compute its own path that guarantees the system will reach the social optimum.

The solution algorithm has a few advantages. First, the algorithm is scalable since

the computation is distributed for each agent and the communication is only required for
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Path 1 Path 2

........ : ... tim e

0 flow D0 flow
D

(a) Planning cars through routes

1 tin

flow
16

4

0
flow

0

(b) User equilibrium

1 tin

flow
3*2 6

nm

0
flow

1*5=5

(c) Social optimum

Figure 6-1: Given the network with two road segments associated with the cost vs. flow re-
lationships shown in (a), and given four cars traveling from 0 to D, equilibrium is achieved
when every car takes Path 1 experiencing cost 4 as shown in (b). Social optimum is
achieved when three cars take Path 1 experiencing cost 2, and one car takes Path 2 ex-
periencing cost 5 as shown in (c). Whereas the total cost for user equilibrium is 16, that of
social optimum is only 11.
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neighbors. Second, the algorithm is reliable since the algorithm can still run even if an

agent drops out from the system intentionally or with technical problems.

6.1.1 Notation

Throughout the chapter we use the symbols and notations given in Table 6.1.1.

[Symbol [Description

G a directed graph representing the road network
V vertices representing road intersections

E edges representing road segments

e an edge

fe flow of edge e
te travel time for edge e
A a set of all the agents in the system
Ki the number of paths for agent i

7cik agent i's k'th path

Pik probability that agent i selects his k'th path

Cik path cost of agent i's k'th path
ci minimum of Cik, k = 1, . -- ,Ki
T the time of the algorithm execution
V the Lyapunov function that represents the total cost of the system
V(T) V at time r

Vi the function that represents local cost for agent i
Ni a set of neighbors for agent i including himself

VNi sum of Vj,Vj C Ni

Wik the derivative of VNi by Pik

Yik a processed version of Wik
di dependent path of agent i

1K column vector of size K with all the elements being 1
ei element vector whose l'th element is one and other elements are all zero

6.2 Distributed Algorithm

In this section we describe a decentralized gradient descent algorithm for path selection.

The algorithm is shown to converge to a social optimum using a Lyapunov proof.

The previous research on finding the user equilibrium for the road assignment problem
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showed the fact that the user equilibrium is achieved when the integral of the link delay is

minimized [20]. But the method's convergence is not proven for a parallel implementation,

and the convergence rate is not known for a serialized implementation. In our work, we

consider a different Lyapunov-style cost function. The cost function we consider has two

properties: (1) the cost function is represented as the sum of local cost function of each

agent, and (2) the cost function converges to zero.

6.2.1 Probabilistic Path Choice

In this section, we provide a probabilistic path choice model. Each agent i is given a set

of Ki origin to destination paths to select from. Let 7i be a Ki dimensional column vector

representing agent i's Ki paths. We denote the k'th element of zi as 7rik meaning the k'th

path of agent i. We associate each path Zik with the probability for agent i to take it among

all the Ki paths. Similarly, we associate each path zik with the path cost Cik. The cost for a

path will be defined in the next section.

We assume that the number of agents in the system is large enough so that we can

consider each agent's path choice probability as a fractional flow. We also assume that the

congestion between agents is effective for the whole time horizon for planning. Thus, the

flow of edge e can be expressed as the sum of the probability of each agent's path that

includes edge e.

fe = Pik
V(i,k) s.t. eE Kik

6.2.2 Local Cost Function

Let Vi be the cost function of agent i, which is a function of its own path choice probabilities

and path costs. The total cost function of all the agents, V, can be described as

V = L Vi.
ViEA

We set the local cost of agent i, Vi, for the social optimum as sum of cost difference
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between each path and the minimum cost path weighted by the flow.

Vi = Y Pik(Cik - ci), (6.1)
Vk

where the path cost is defined as follows:

Cik = [( te+fe df =5f , (6.2)
Ve&rik-

and ci is the minimum of path cost of all the paths, ci = minvk cik.

Note that Vi can be computed by agent i using only its information because its cost

already takes into account the neighbors' cost via cik.

We define marginal cost of an edge as the total cost increase of all the agents using

the edge by a small increase of the edge flow. As illustrated in Figure 6-2, social optimum

occurs when all the paths' marginal costs are the same for all the agents. The reason we

selected the cost of path as in Eq (6.2) is because Cik becomes the same as the minimum of

Cik's for every k with nonzero Pik at the social optimum. Thus, each local cost is 0 at the

social optimum as shown next.

Theorem 12. V = 0,Vi G A if and only if the flow is at the social optimum.

Proof if-part: Assume that the flow is at the social optimum. For any agent i, a path Zik

with nonzero Pik has a path cost cik equal to the minimum path cost ci. Thus, for any agent

i,

Vi= pik(cik -ci) + ( pik(cik -ci)
Vk s.t. Pik=O Vk s.t. pitk O

= E 0 - (cik -- c) + E Pik -0
Vk s.t. Pik=O Vk s.t. pikfO

=0.

'We can also find user equilibrium with the same algorithm developed in this chapter, when we replace
the path cost with Cik - E te(fe)

VeE~rik
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time time

tt

dti : L a . a . a . a

0 0 12 flow

df df
Reduced Cost (t1 * df + f1 * dtl) Increased Cost (t2 * df + f2 dt2)

Dividing both sides by df, we get: ti + f1 * dtl/df = t2 + f2 * dt2/df

Figure 6-2: The condition that social optimum satisfies.

only-if-part: If V = 0,

Y Pik(Cik -Ci) + Pik(Cik - c) = 0
Vk s.t. Pik=O Vk s.t. PikO0

Thus, all the paths with nonzero probability has the same cost as the minimum path cost

for agent i. Since this holds for every agent i, the system is in social optimum. E

6.2.3 Distributed Control Law

We wish to develop a gradient controller that will drive the local cost to 0, in other words to

the social optimum (Theorem 12). The distributed controller governs the time derivative of

a agent's flow assignment, using the neighbors' current flow information. More precisely,

the information needed by the controller is how much a neighbor's cost changes when the

agent's path probability changes by a small amount. The controller moves its own path

probability distribution among Ki paths into a newer distribution. The aggregate effect of

these local controllers is proven to decrease the sum of the cost of all the agents. Moreover,

we provide a proof that the rate of decrease is exponential in terms of the total cost.
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Intuitively, each path's flow is controlled to move to (a) the negative direction of the

normalized value of the neighbors' cost change derivative (b) multiplied by the agent's

cost. (a) says that if the agent's path probability change affects the neighbors' cost increase,

the agent's assignment of flow to that path should be decreased. (b) shows that the step a

controller takes should be of a size proportional to the agent's current cost. This means that

if the agent's cost is bigger than a neighbor's cost, the increase or decrease in the agent's

flow control should have a bigger step.

The path probabilities for agent i, pik, Vk E {, 2, - - , Ki} satisfy the relation E = Pik

1. We assign one variable as the dependent variable that compensates for changes in other

variables. Thus, the Ki - 1 variables can change independently. For any small changes in

the Ki - 1 variables, the constraint that the summation of the total probability should be 1

is held by this dependent variable. When we control an independent variable, we consider

the change in the dependent variable.

Let Ni be a set of agent i and its neighbors. Let Wik be the total cost increase by a small

change in Pik, defined as:

dV -
ik Ed Pi

j (-Ni d pik

where

dV - d

dPik dPik v\,irj

where

d cl dce dce VijEA
d Pik ye,,,,d pe _ped~k Ve(=-Zk&Zy dPe kVeE 7d&r,riPe

where A is the set of all the agents. Note that when we increase or decrease the control

variable, we decrease or increase the dependent variable by the same amount, respectively.
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Let us define yi as follows for k #di:

'ik 0, if pik = 0 and wik > 0 or pik = 1 and Wik < 0 (6.3)

wik, otherwise.

Let di be the dependent path of agent i. Let di = argmaxyk Pik. Pidi 1 - EyVkdi Pik.

Our distributed controller is described as follows:

dpk - -yVi for k # di
d r ~~Ekdi for k = di,

where y is the step size, which can be chosen by the controller designer. We discuss the

selection of the y value in Section 6.3.

Combining the equations above we get:

Control Law: dp= Vi - (1KYi)ed (6.4)
dr |1y,1

where 1Ki is a column vector of size Ki with all the elements set to 1, and ed, is a column

vector of size Ki with the di'th elements set to 1 and the rest set to 0.

Equation (6.3) determines the control variables satisfying the boundary conditions.
Ki

Since the 1Kiyi = E Yik, (1KiTyi)edi in Equation (6.4) sets the dependent variable as the
k=1

negative of the sum of all the control variables.

Algorithm 14: Distributed algorithm for agent i

Data: Origin, Destination, Ki: the number of paths, e: tolerance of solution
Result: Path probability of each path
Initialization;
Find Ki minimum expected time paths based on the historical data;
Find neighbors that share any road segment with this agent;
while V > c do

Get d9 ifrom neighbors j E Ni

Find path probability using the control law in Equation (6.4);
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6.2.4 Convergence Analysis

Theorem 13. The controller in Equation (6.4) makes the total cost function V(r) decrease

exponentially.

Proof First, we find the time derivative of V with respect to r.

dV = L (dV
d~r yi= dpij

dpi
d'r

T dpi

dir
V (dVi

L dpif

Since V = E Vj,
VjEA

dV d

ViEA

-) T

dp1
[V~A

Since the partial derivative by pj only affects j's neighbors,

dV dVj)
ViEA jEN pi

T
dpi

d'r

Plugging in our controller Equation (6.4), we get

dV dV Nj
d VieA jEN P/

= : -VYV
ViEA

T
Yi - (1K:TYi)edi)

iv I y 1

yi - (1Ki'yi)edi
2 

J

Since the nonzero elements of vector yi except for the di'th element are equal to those of

EjENi T, and since the di'th element of EjEN -is 0,

dV Y

dzi VieA

Yi;7T)
j ,12

(6.5)=-y Vi= -yV
ViEA

108

T
dpi

d~r

dVj
dpi J

= ViEA (V

( jEN i )



Integrating both sides of Eq 6.5 in terms of r, we get:

V(T) = V(0)e--YT.

Thus, the total cost function decreases exponentially. E

6.2.5 Running Time

In the following theorem, we quantify the time needed to converge to an arbitrarily small

range of the optimal solution.

Theorem 14. For any E > 0, we have V(r) < efor T > 1log(V ,)).

Proof Since 'r> 1log(V0)), we have

V(T) = V(0)e-7T

< V(0)e~1Y = e.())

Assuming the polynomial relationship between edge travel time and edge flow, we find

the running time needed to converge to an arbitrarily small range of the optimal solution in

terms of the number of agents in the system.

Theorem 15. Let N be the number of agents in the system. If the congestion model te(fe)

is given by a polynomial function of fe with order m, V(r) < efor z> JO(log( ' )), for

any e > 0.

Proof The worst case happens when all the agents share the same edge. Thus, the com-

plexity of the initial cost V(0) can be described as O(N'm ). Plugging this into the statement

in Theorem 14, we get z> 0(log(N)) = D (og( )).
Y~ EM
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6.3 Asynchronous Implementation

We implemented the algorithm in C++. A C++ thread was created for each agent. One

thread is designated to periodically check whether the cost function V reached the prede-

fined error tolerance e. This thread gets the local cost Vi from each thread and sums up to

get V, and if it detects V < e it finishes the program. The communication between threads

was implemented using shared memory and Mutex. The threads run asynchronously. As

long as there are enough cores, different processors are assigned to different thread.

We can rewrite Equation (6.4), as follows:

dp1  Ti+(Ki2 Yi)Edid
dpi = -yVi 2j+(K 'j d dr.

dr is determined by the processing time of one iteration of each processor. Different pro-

cessors may have different dr for they may have different computing powers and also

they may need different amount of computation. Our algorithm works in these kinds of

varieties with a fully asynchronous implementation. Each processor runs Algorithm 14

asynchronously.

The step size y affects the running time, thus we need to choose a good y by doing

experiments. The right y seems to be dependent on the problem size. When the processing

time of one iteration is denoted as T, a reasonable and good choice of y is y= Constant sinceT

this maintains the step size of one iteration to be constant. Since the processing time of one

iteration depends on the number of neighbors, this choice of y provides good scaling as

O(N logN) according to Theorem 15 for a fixed m and e.

6.4 Evaluation

We ran the C++ implementation on a Tilera chip with 64 CPU cores [5].

6.4.1 Exponential Convergence

Figure 6-3 shows an exponential decrease of V for 50 agents in a Boston road network.
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Figure 6-3: Exponential convergence of our cost function V. Run on 64 core computer.
x-axis: seconds, y-axis: cost function V

6.4.2 Scalability

Figure 6-4: Running Time in 64 cores computer. x-axis: number of agents, y-axis: time in
seconds. The scaling of our algorithm appears to be O(nlogn).

Figure 6-4 shows our algorithm scales as analyzed in the previous section, which is

O(NlogN) when N is the number of agents. We can see sudden increase in the running

time in Figure 6-4 around the 63rd agent. This is because we have only 63 available cores

for agent threads. Our algorithm scales well for large number of CPUs getting full benefit

from the number of CPUs.
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(a) The paths for 100 drivers on a synthetic map. The 10 highlighted paths indicate a
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Figure 6-5: Grid network
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6.4.3 Implementation in Grid Network

On a grid network with 100 x 100 nodes and bidirectional edges associated with the conges-

tion cost-flow relationship, given 100 agents' origin and destination and ten paths per agent,

the algorithm finds the social optimum. Edge cost was generated with te = To(1+ a(f')),

where To is selected randomly from 0 to 1, and C = 10, a = 0.15, # 4. Agent i's origin

is the i'th leftmost point from the bottom and its destination is the i'th rightmost point from

the bottom in Figure 6-5(a). In Figures 6-5(b) and 6-5(c) the thickness of the path indicates

the flow of social optimum (blue) and greedy assignment (red). We can observe that the so-

cial optimum flow distributes agents through more road segments than greedy assignment,

whereas greedy assignment uses fewer road segments that would have been good without

congestion. The total cost of the system is 3720 for the social optimum and it is 4550 for

the greedy assignment.

6.4.4 Path Example in Real Road Network

We picked 5 paths from MIT (denoted as "0" in the map) to Fresh Pond (denoted as "D"

in the map). We ran our algorithm for different number of agents planning to achieve the

social optimum. In Figure 6-6, we can see that the cost of the paths are the same for the

paths that have non-zero probability. We can observe that the portion of people who choose

longer paths increase as the number of agents grows. We can observe that Path 4 was never

used since its cost is always greater than the others.

6.4.5 Discussion

Comparison with Greedy Algorithm

Figure 6-7 shows the difference in total time between our algorithm and a greedy algo-

rithm. The greedy algorithm assigns the best path for each agent when each agent's path

is determined using the information of the previously planned agents. Thus, the quality of

the solution depends on the order of planning agents. Figure 6-7 shows that the difference

is significant and increases as large numbers of agents plan together.
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(a) The paths on a map of Cambridge MA
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Figure 6-6: On a real network in Boston, we illustrate the social optimum solution for
25, 50, 75, and 100 drivers leaving '0' and arriving at 'D', respectively. (b) shows the
probability of choosing one of the five paths depending on the number of total drivers. The
result shows that Path 5 should not be used at all when the number of agents is small, but it
needs to be used significantly for the case when more agents participate. (b) shows the cost
ci; is the same for every path used with non-negative probability.

Effect of Probabilistic Assignment

Figure 6-7 also shows how the solution is different when we actually assign one path for

each agent according to the probability of path choice. The realization of the result proba-
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bility distribution is denoted as 'Alg. 1 atomic' in Figure 6-7. We can see that the atomic

realization is not very different from the fractional assignment with the probability.

0
E

I--

50 60 70
Number of agents

100

Figure 6-7: The plot shows the the comparison with greedy algorithm and the effect of
realization to atomic flow based on the probability result. 'Alg. 1 atomic' shows the average
of 50 sets of runs with error bars indicating the standard deviation.

Choice of Number of Paths

Figure 6-8 shows how the solution quality varies if we take more paths into consideration.

We observe that for a small number of agents more paths do not help much. We can

observe that for a larger number of agents we can observe some decrease of the total travel

time when we use more paths. However, the decrease saturates at about 15 paths. This

fact indicates that considering about 15 paths is enough in real road network. We plan to

extend our algorithm to searching the path with the smallest path cost at each iteration and

including it to the path set. By doing this, we can guarantee that the found path is the

optimal path among all the possible paths from origin to destination with the additional

computational cost of searching shortest path.
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Figure 6-8: Total travel time vs. different number of paths.

6.5 Synopsis

In this chapter, we developed a distributed algorithm for multi-agent routing. The algorithm

first finds the optimal fractional flow viewing the drivers' decisions as fractional flows. We

proved that the local processing based on the local information achieves social optimum

with exponentially fast convergence. We used the fractional flows as the probability of

selecting among the predefined path set. We showed that the probabilistic assignment for

atomic drivers generates very close travel time to that of the fractional flow case. We

implemented our algorithm in an asynchronous way and tested it on multi-core computers

where each processor runs for each agent's task.
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Chapter 7

From Theory to Practice: Traffic

Routing System with Sensor Data

In Chapter 6 we introduced a decentralized, theoretically-proven algorithm for multiple

agents to navigate through a road network minimizing the total travel time of the agents.

In this chapter, we present a congestion-aware route planning system that implements the

multi-agent routing algorithms, and we describe the details of the data we use for our route

planning system. The parameters of the models that the algorithms use are estimated from

the real sensor data. We use two kinds of traffic sensor data: One is the GPS trace data

from probe vehicles. The other is the data from inductive loop detectors. The loop detector

data available in limited locations serve as valuable data for estimating flows in conjunction

with the taxi data. We provide evidence that the taxis move randomly so that they cover

almost the whole area.

Congestion characteristics of each road segment is required for our congestion-aware

routing system. The detailed methods for traffic flow estimation are presented in Chapter 8.

The methods for detecting congestion for all the road segments are provided in Chapter 9.

Chapter 10 provides our technique for estimating congestion function based on estimated

traffic flow and presents our experimental results using real trip data from Singapore taxis.

The organization of this chapter is as follows: Section 7.1 describes the route plan-

ning system for multi-user congestion-aware routing. The system uses the traffic planning

algorithm provided in Chapter 6 for finding the socially optimal assignment of traffic. Sec-
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tion 7.2 describes our data for inferring traffic speed and flow. Section 7.3 provides an

intuition for why taxis make for good dynamic probes, by showing that they have a rapidly

mixing property.

7.1 System

We present a congestion-aware route planning system. The system is composed of database

server and Web server. The origin, destination, deadline, and the departure time of trips are

provided as input through a front-end web interface provided by the system. The back-end

computational module computes the social optimum paths using the algorithm described

in Chapter 6. That algorithm finds the congestion-aware social optimum paths for all the

drivers in the system. The algorithm decides which path among a given set of paths for each

driver should be selected by an iterative computation process. The algorithm is decentral-

ized and scales well for very big problems with many agents and a large-scale network of

roads. The front-end web interface is implemented in Javascript. We use Google maps

open API [2] for visualizing paths and map overlays. The back-end processing module is

implemented in C++.

7.2 Data

For the traffic models we use, we need either traffic delay or traffic flow information, or

both. To infer this information, in this study we use two sources of data: taxi data from a

large fleet of taxis in Singapore and loop detector data in Singapore. The taxi data provides

the speed and flow information for all the road segments. The taxi speed data is used as

ground truth on traffic speed. The loop detector count data is used as ground truth on traffic

volume. Whereas the loop detector count data is only available in a non-real-time manner

for limited locations, the taxi count data is available for almost all the road segments in the

road network in real time. However, the taxi count data is only a sampled version of the

total traffic count. Table 7.1 summarizes the availability of the data in location and time as

well as the capability for getting speed and flow information.
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Figure 7-1: A snapshot of the route planning system's web interface for Singapore. Among
the 5 paths indicated on the map, path 1 is the path that a taxi took at 8 am on Monday, Au-
gust 2, 2010 starting from the location marked '0' and ending at 'D'. The system computed
the green-colored path as the best path for achieving the social optimum.

Table 7.1: Taxi data and inductive loop detector data
Data Source Location Availability Time Availability Speed Flow

Taxi Almost everywhere Real time Ground truth Sampled count
Loop detector Limited locations Historical Not available Ground truth

As shown in Table 7.1 taxi is a good source for real-time speed information for al-

most every road segment. Section 7.3 provides the evidence of the taxis' rapid movement

throughout the entire area of the road network. In addition, loop detector data is a good
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[Loop detectors around ygj; Each loop detector reports the
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Figure 7-2: Loop data and taxi data. The top left figure shows the location of inductive loop
detectors in Singapore. The top right figure is a zoomed-in version showing the individual
loop detectors, and the bottom left figure shows an example taxi GPS trajectory. For a road
segment, we can obtain the total traffic count from loop detectors, and we can get the taxi
count for the same road segment by processing individual taxi's trajectory. The bottom
right plot shows the count of total traffic and taxis for the road segment during a certain
day.

source for flow information. However, the information is only available in a non-real-time

manner and the availability of the data is limited to the location where the loop detectors

exist. In Chapter 8, we show how to estimate the real-time general traffic flow for all the

road segments. We show that we can estimate the general traffic flow accurately using loop

detector data as well as taxi data.

7.2.1 Loop Detectors

Our study also uses the the loop count data we obtained from the Land Transportation

Authority (LTA) in Singapore for 12,500 loop detectors in 1,300 intersections in Singapore

for the same period of time, August 2010. Each loop detector record gives the number of

cars that pass over each loop detector during a 15-minute time slot. There are 2,688 time-
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slots for the first four weeks of August 2010. We used these time slots for our studies and

map all the taxi and loop detector data into these slots. The loop count serves as the ground

truth for the general traffic.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
loop (24 hours)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
loop (24 hours)

Figure 7-3: Distribution for August 1 and August 2, 2010 over 16 selected road segments.
The x-axis includes 16 segments, one per road. Each of these 16 segments includes 96
points, one for each 15-minute time slot during a 24-hour day. The y-axis shows the fraction
of traffic at that location and time.

Figure 7-3 shows the taxi and loop detector count data for 16 Singapore road segments

we selected randomly. Note that the taxi distribution (in red) tends to overestimate the loop

distribution (in blue) during much of the day, and that the overestimation varies. During

the morning rush hour, the taxi and loop distribution values are nearly identical. Thus,

while there exists a bias, this bias certainly changes throughout the day, though it appears

relatively consistent across days.

7.2.2 Probe Vehicles

Our study uses four weeks of data (August 2010) from 16,000 taxis in Singapore, which

amounts to approximately 500 million data points (3 1GB). Each taxi record contains the

car id, the driver id, the time stamp, the latitude, the longitude, and state of operation

121

0.3

0.25

0.2

n 0.15
2

a.2

0.1
0.05

0

0.3

0.25

0.2

-00.15
a.

0.1

taxi- - - -- - - ..... . .-.. -... -- .... ... ... ....
-.. -. -. -. .. ................

-. ... ..-- .... -. ....- ... ...



(represented by one of the following four attributes: free, person on board, busy, on break).

Records are logged at intervals between 30 seconds and 2 minutes, depending on network

connectivity. Table 7.2 shows the raw GPS data from the probe vehicles.

Table 7.2: Format of taxi GPS data
Field Description

Time Vehicle reported date in the format dd/mm/yyyy hh:mm:ss
Vehicle ID identification number for vehicle
Driver ID identification number for driver
Longitude X co-ordinate (longitude) of the location reported by vehicle
Latitude Y co-ordinate (latitude) of the location reported by vehicle
Speed Speed of the vehicle in km per hour at the reported time
State State of vehicle. Following are the state:

FREE - Vehicle is free to take a passenger
POB - Passenger is on board
BUSY - Vehicle is not free to take a passenger
BREAK - Vehicle is not free to take a passenger

Map Matching

Processing the taxi data to get the counts and speeds requires several steps. First, the data

is mapped to a time series of GPS points for each car. Next, we match the time series of

GPS points to a sequence of road segments in the road network of Singapore. To overcome

the noise and sparsity of the taxi GPS data, we used a map matching method based on the

Viterbi algorithm, as in [99]. Third, we count the number of taxis on road segments. From

this process, we get the taxi counts for each location in the road, which is regarded as the

sampled count for the probe traffic. Fourth, we calculate the speed of each taxi when it

passes each road segment. This speed, calculated from the taxi movement, is regarded as a

ground truth speed for the road segment.

7.3 Rapid Coverage by Probe Vehicles

Our thesis is that no matter where an individual taxi is located, or where it starts its day,

its location will rapidly become indistinguishable from the overall taxi distribution. The

reason for this is the stochastic nature of a taxi's passengers-unlike a mail delivery truck
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that likely follows a fixed route, a taxi will randomly visit locations based on the random

nature of the passengers' destinations.

In effect, one can view a taxi's movement as a random walk, with transitions between

regions governed by the conditional probabilities of passenger movements from origins to

destinations. Although the driver does maintain full control of the taxi's location when there

are no passengers on board, we show empirically that taxi distributions tend to converge

regardless of the taxis' initial locations. Thus, the locations of the taxis can be viewed as

having been randomly drawn from the overall taxi distribution at any point in time. As

such, they are well suited to the problem at hand: Regardless of the initial locations of the

dynamic taxi probes, we can expect them to quickly spread, providing good coverage in all

regions.

In the remainder of this section, we analyze taxi movement over 27 regions (see Sec-

tion 7.3, less one outlier region) at 15-minute intervals. The transition probabilities are

empirically derived from the taxi data.

Partitioning of Singapore into Traffic Zones

To make the analysis more tractable, we partitioned the area of Singapore into a number

of regions. This was done in a completely data-driven fashion, by applying the standard

K-means clustering on a subset of the origins and destinations extracted from the taxi data.

(198721 origins and destinations from trips of 500 taxis over the first week were used

for the K means clustering.) The K-means clustering algorithm iteratively assigns each

origin or destination to one of K centroids to which the origin or destination is closest (as

measured by Euclidean distance), and then adjusts each of the K centroids to the means of

the origins and destinations assigned to it. This results in a partition of the data space into

Voronoi regions, each represented by one of the K means or centroids.

In choosing the value of K, we followed [93] in the use of a criterion, composed of a

linear combination of the distortion (or encoding error) and a regularization term:

N

Xi- CENCODE(ii) 2 + 2XKlogN
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where N is the number of origins and destinations, Yi are the GPS locations of the origins

and destinations, CENCODE(Zi) is the nearest centroid to Yi, and A is the regularization factor.

In this criterion, the distortion Tj 1  i - CENCODE(Zi))2 is the sum of Euclidean distances

of each origin or destination from its nearest centroid, and 2AKlogN is the regularization

term. The "optimal" K* is chosen to minimize this criterion.

For our analysis, we have chosen A = 35, which results in K* = 28. Although the

"optimal" K is sensitive to the choice of A, we believe that our choice is validated for the

following reasons:

1. By visually examining the graph of distortion against K, we find an "elbow" at around

15 < K < 35;

2. There happen to be 28 postal districts in Singapore [104];

3. The resultant Voronoi regions appear to correspond to semantically significant areas

in Singapore.

We also verified that observations presented in this thesis are robust to a wide range of

K = 15, ... , 35.

Figure 7-4 shows the Voronoi regions extracted through K means clustering (27 regions

are shown, with an outlier region excluded). Each dot in the plot represents a single origin

or destination of a taxi trip, and is color-coded to represent the region to which it belongs.

Hence, each region is represented by a continuous patch of color-coded dots. Although

no additional map information was used in the creation of the plot, the map of Singapore

clearly emerges from the data, with the empty patches corresponding to inaccessible areas

(e.g., reservoirs or forests). We observe that semantically significant regions such as the

Airport in the East, the Central Business District and Orchard regions in the South; Tuas in

the West, and Woodlands in the North, are also visible.

Taxis Are Rapidly Mixing

To quantify the rate of convergence, we compute the maximum difference (i.e., the L*

distance1 ) between any initial taxi distribution and the observed overall taxi distribution

1A low L* distance indicates that the L' and L2 distances must necessarily be low as well.
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Figure 7-4: Voronoi regions of Singapore, extracted through K means clustering on origins
and destinations of taxi trips. A total of 27 regions are shown in this map, with one outlier
region excluded. The highlighted 6 regions will be discussed in detail in Section 10.1.3.

after 15 minutes, 30 minutes, and 1 to 8 hours, when following the empirical transition

probabilities. In effect, this is equivalent to the following: (1) consider a single taxi located

at any initial position, (2) compute the probabilities that this taxi will be located at any given

position after a set period of "mixing", and (3) compare this distribution to the overall taxi

distribution at that time. Note that we consider the worst-case possible initial conditions

(and thus our results apply to any initial taxi distribution or individual taxi location).

Let I = (i1, Z2,... , r)T be the overall taxi distribution at time t, and Y = (x 1 ,x2,... 

be any initial distribution of taxis, where r is the number of regions used for analysis.

Let A* be the transition probabilities matrix from time u to v. Note that the transition

probabilities matrix is estimated using taxi data and that we do not make any Markovian

assumptions in its construction.

Hence, fT = ITA* is the overall distribution at time t. The time-t distribution ob-

tained from an initial distribution of Y is YTAT*

We now present an upper bound on the L* distance between any initial taxi distribution
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and the observed overall taxi distribution after a given time t.

Claim: | - maxi, j (e; - sj)A_,|, where i is the standard basis

vector (0,... ,0, 1,0,...,0), and I - is the L. norm, returning the maximum absolute

element of a vector.

Proof: Let [Y]k denote the k element of any given vector '. Note that '= Exii'j, so:

xi -T A*
- i -l k

Eximax [iTA&*-+t k

= max [,TA*_ k

= Exi [ -A>t k

)

- xj [ TA0->t] k

] k x)
min [,TA0> k> xi minm TA0 k

= min (i A*,t ]

which bounds

min [[A _ k A0[-T* ] K max , -[A

Similarly, we can show for AT = A*_

min [i[A ] k tT] k <max [,A0-I k

Thus:

mi [(I k - max [ -TA k

[ TA*l - gtIk

max [ifTA~I] - mn [[A0-] k
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[yT A* jT1 kI

_ maxi EWiTA*,,] - mini [WiTA*~

= maxi,7 i - j A.. -)T A_]

- ||TA*_ -- ifI|- < max|(i - )TA_| I

Note that the above upper bound maxi, Ij(ei - j)T A_-+ holds for any initial distri-

butions Y and Ao. In other words, any two initial distributions will converge to within a

L. distance of maxi, j(i - 27)T A*_||t of each other within t time-steps. Hence, to show

that the taxi distributions converge regardless of initial locations, we need to show that this

upper bound decreases quickly as t increases.

This upper bound has a very natural interpretation. The distribution WfA*_ is obtained

when a subset of taxis concentrated in a single region is tracked for t time-steps. This initial

configuration is arguably the worst-case scenario, which we intuitively expect to take the

longest time to converge. The upper bound is thus a measure of the worst-case scenario,

where two extreme initial distributions are allowed to converge over t time-steps.

Figure 7-5 shows the results of our analysis for workdays and non-workdays. Each

curve represents a different time period such as "6 hours" (red curve with crosses); this

corresponds to the amount of time any initial taxi distribution (or individual taxi) is al-

lowed to "randomly walk" before its posterior distribution is compared to the overall taxi

distribution. The y-axis gives the upper bound on the L' distance between the "random-

walked" taxi distribution and the empirical overall taxi distribution. For instance, at 09:30

on a workday, the upper bound on the L* distance after two hours of "random-walks" is

approximately 0.25, indicating that starting from 07:30, any two initial taxi distributions

will come within an L' distance of 0.25 of each other by 09:30.2 Note that the convergence

rate is considerably worse in the early morning hours, as there is far less taxi traffic in the

middle of the night. As can be seen, we have fairly rapid convergence during almost all

waking hours.

In our analysis, these upper bounds represent extreme, worst-case scenarios: the taxis

2These values are the average, over all work or non-work days, of the worst-case, over all initial taxi
distributions, for the time period of interest.
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Figure 7-5: Upper bound on L' distance between distributions of taxis with different initial
distributions, after a given period of time. Within a short amount of time, low upper bounds
on the L*' distances are attained, indicating that the taxi distributions have converged, so
the taxi probes provide good coverage regardless of the initial distribution.

are concentrated in a single region, thus providing little coverage of the country. The low

upper bound values demonstrate that any initial distribution of taxis will quickly disperse

over the country to provide coverage on all regions.
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7.4 Synopsis

In this chapter, we introduced our congestion-aware route planning system and the data

sources we use for the system. Our analysis shows that the taxi data is a good source

of data for collecting traffic information since taxis cover the entire area rapidly. In the

following chapters, we show methods for processing these data to estimate necessary traffic

information used for our traffic routing system.
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Chapter 8

From Theory to Practice: Data-Driven

Traffic Flow Estimation

In this chapter, we provide a method to accurately infer traffic flow through data collected

from a roving network of taxi probes that log their locations and speeds at regular intervals.

Traffic flow is defined as the number of vehicles that transit a road segment per unit time

and is typically measured in units of vehicles per hour. Traffic flow is an important measure

for traffic condition of a road.

The estimated traffic flow is used to detect congestion in Chapter 9. In addition, it is

used for building the link-performance function for each road segment, which is used for

evaluating the multi-agent routing system in Chapter 10.

This chapter is organized as follows. Section 8.1 describes our approach. Section 8.2

provides a method for inferring traffic flows from taxi probes. We train the inference model

for locations where a small set of ground truth information exists and apply the model to

predict the flow information for the same locations. Section 8.2.1 presents an analysis of

how many devices are needed to achieve the inference within user-defined error limits.

Section 8.3 develops an estimation method for traffic flows for locations where the ground

truth traffic flow information does not exist.
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8.1 Modeling and Predicting Traffic with Taxi Probes

Our hypothesis in this chapter is that a small number of dynamic probes are sufficient to

characterize overall traffic at a city scale. Two natural questions arise: (1) How well does

the data from dynamic probes represent overall traffic? (2a) If it is representative, how

much data is needed to infer a good model for traffic? and (2b) If it is not representative, is

the bias consistent and correctable?

Our approach to these questions is based on two types of sensor data: static and dy-

namic. Static sensors are placed at a fixed location to collect information about traffic as

it passes by, for example, loop detectors or traffic cameras. Dynamic sensors are attached

to the vehicles themselves and collect information about individual vehicles as they move.

Note that with this setup, the dynamic data is strictly richer than the static data in the sense

that the static data can be inferred from the dynamic data, but not vice versa. Why? Sup-

pose that every vehicle was outfitted with a dynamic sensor and every intersection was

outfitted with a static sensor. The static sensors are effectively collecting macro-level data,

such as the number of vehicles passing through a given intersection during a given time

interval, and this information can be inferred from the micro-level data collected by the dy-

namic vehicle sensors, for example, by simply counting the number of such vehicles whose

sensed routes pass through the given intersection during the given time interval. However,

the micro-level dynamic data cannot be inferred from the static sensor data, unless individ-

ual vehicles can be identified.

Now suppose that we did not have every vehicle outfitted with a dynamic sensor, but we

did have a perfect random sample of such vehicles so outfitted. Then the static data inferred

from the dynamic data would not be correct in absolute terms, but it would be correct in

relative terms. In other words, if 1/3 of the vehicles (chosen uniformly at random) were

equipped with dynamic sensors, then the static traffic data inferred should be 1/3 of the

actual data collected from the static sensors. The distribution of traceffic should be correct.

This observation provides a mechanism for quantitatively testing how representative the

probe data is: Given any set of static sensor measurements, infer those measurements from

the dynamic probe data and compare the results in relative terms, e.g., by comparing the
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corresponding traffic distributions and/or traffic flows. If the probe data is representative,

these distributions and/or flows should match; if not, then one can quantify the mismatch,

identify specific areas of match and mismatch, correct for consistent biases, and so on.

Note that one would naturally suspect that probe data is not generally representative of all

traffic: for example taxis do not ply the same routes as trucks. But we can qualify and

quantify this mismatch.

There may be areas of Singapore where the taxi data is quite representative, for exam-

ple, in the Orchard Road area. Here we can use the taxi data to quantify the amount of taxi

data needed to infer good models of traffic: one can sub-sample the taxi data and see how

the inferred models of traffic degrade vs. the gold-standard static sensor data.

8.2 Inferring Traffic Flow Using Taxi Probes Trained by

Loop Detector Data

We employ machine learning, and in particular, a cross-validation study, to determine the

simplest corrective model for inferring the loop distribution from the taxi distribution. We

extend this result with a cross-validation study that shows that general traffic flow can also

be inferred from the taxi data. Figure 8-2 shows the results of learning the corrective coeffi-

cients for taxi data and demonstrates that that taxi data can indeed be used to predict general

traffic. Our analysis shows that the best model for accurately inferring traffic distribution

and flow uses (1) the hour of the day and (2) whether the day is a workday or non-workday.

Let R be a set of roads in our study. We selected the 1000 road segments from the Sin-

gapore road network whose lanes are equipped with loop detectors: R = {ri, r2 , - -- , riooo}.

For road r and time slot t we normalize the traffic value relative to the overall traffic, to

determine the fraction of traffic at that location at that time. Specifically, if tr and ir are the

vectors representing the taxi and loop detector counts for each 15 minute time slot for road
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ri and r and Ir are the corresponding distribution of taxis and loop detector counts, then

rtr ~ Ir

(t) 1000 t , r(t) Eli000 (t)
=1 t(t) i

Our goals are (1) to examine if the ir can be used to infer r and (2) how well we

can predict Ir from Ir. To compile the relationship between Ir and 4, we used a logistic

regression model as follows:

~ -
1+e-(Po+PTr)'

where #o and #1 are the two regression parameters we will learn.

We will find the best categorization of time slots for learning 0 and #1 that result in

the best prediction of Ir, using the day-of-week and time-of-day categorization.

The intuition behind this is from the observation of the traffic distribution pattern. We

saw significant periodic patterns based on day and week. Specifically, our day-of-week cat-

egories include "Each Day of Week", "Workday/Non-workday", and "All Days together",

where non-workday means Saturday, Sunday or holiday. Our time-of-day category varies

from 15 minutes to 24 hours. For example, Workday/Non-workday as day-of-week cate-

gory and 2 hours as time-of-day category results in 2 x 12 = 24 pairs of regression param-

eters.

We divided the 4 weeks (August 01~28, 2010) data into 3-week testing sets and a 1-

week training set. We learn the regression parameters using the training set and apply the

parameters to the left-out test set to find the test error. Figure 8-1 shows the leave-one-

out cross-validation training and testing RMSE errors after doing the logistic regression

for a road segment. As expected, the training error decreases when we use more complex

models; it decreases as the number of time-of-day slots increase, and as the number of day-

of-week slots increase. However, the testing error does not always decrease as the model

complexity increases (generally known as over-fitting.) Figure 8-1 shows that the best test

error was achieved at Workday/Non-workday for 15 minutes and the test error is not too

large though we use a simpler model such as 1 hour. Figure 8-2(a) shows that using taxi

data and the Workday/Non-workday 1 hour time model for learning the parameter we can

'Since we use 4 weeks of data, the length of tr and 1, is 2688.
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predict with highly accuracy general traffic distribution.

A similar analysis was done to infer traffic flow, represented as counts, from the dy-

namic probes using linear regression. The best test error was achieved for the model

Workday/Non-workday and 1 hour time slot Figure 8-2(b) shows that using taxi data and

the Workday/Non-Workday 1 hour time model for learning the parameters, we can predict

with highly accuracy general traffic count.

The best test error was achieved at Workday/Non-workday for 15 minutes and the test

error is not very large though we use a simpler model such as 1 hour. Figure 8-2(a) shows

that using taxi data and the Workday/Non-workday 1 hour time model for learning the

regression parameter we can predict with high accuracy the general traffic distribution.

A similar analysis was done to infer traffic flow, represented as counts, from the dy-

namic probes using linear regression. The best test error was achieved for the model

Workday/Non-workday and 1 hour time slot. Figure 8-2(b) shows that using taxi data and

the Workday/Non-Workday 1 hour time model for learning the parameters, we can predict

with highly accuracy general traffic count.

Let us call RMSE as absolute RMSE and define the relative RMSE as the coefficient of

variation of the RMSE as follows: relative RMSE mean of absolute RMSE To see howmaofloop detector distribution '

representative the taxi data is for the general traffic in Singapore, we computed the relative

RMSE for all 1,155 road segments and observed that the relative RMSE is less than 10%

for vast majority (80.3%) of the road segments.

We next show empirically that accurate estimates of the general traffic flows are possi-

ble using only a small number of probes.

8.2.1 How Many Taxi Sensors Are Needed?

Since taxi sensor data can be used to infer general traffic flow, we conclude that a taxi sensor

network is a good proxy for general traffic and would like to know how many nodes are

needed to infer traffic within some desired accuracy. There are several attributes that trade-

off (1) the number of nodes; (2) the amount of time the nodes roam to collect historical

data; (3) the fraction of roads the nodes cover, and (4) the accuracy of the general traffic
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Figure 8-1: Training(left plot) and test(right plot) RMSE for a road. The x-axis represents
the time window considered. The y-axis represents the RMSE. We can observe that the
training error decreases as the model gets more complex, but the test error shows over-
fitting effect. The best category for this road is Workday/Non-workday and 15minutes.

prediction from the taxi sensor network nodes. In this section we show that a relatively

small number of taxis is sufficient to get good road coverage, and that if the taxis roam

for a relatively small amount of time, general traffic can be inferred with high accuracy as
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(a) Distribution from loop detector data (blue), taxi data (yellow), and after applying the regression
for taxi data (red). The x-axis represents the day of the month (in this case week 4 of August 2010).
Each day is further divided into 96 15-minute intervals. The y-axis shows the distribution for each
give day and 15 minute slot. The ground truth provided by loop detectors is shown in blue. The
original taxi data is shown in yellow. The taxi data processed according to the learned parameters is
shown in red. Notice that the red curve is a very good match to the blue curve. The large variation
between loop detector data and taxi data is removed after applying the logistic regression.
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(b) Count from loop detector data (blue), taxi data (green), and after applying the regression for taxi data (red).
Whereas logistic regression was used for regression of distributions, linear regression was naturally used for
count regression.

Figure 8-2: Result of regression

measured by RMSE.

Coverage vs. Number of Taxis

Section 7.3 shows that taxis travel randomly and therefore they cover Singapore broadly.

In this section we quantify this property of taxi movement by investigating the fraction of

road segments they cover. We measure coverage as the fraction of roads that were driven

on at least k times 2 by any taxi. We examined the coverage for different time windows and

different k, using sets of taxis of size N that were randomly selected using the following

procedure. We generate a random permutation of 16,000 taxis and use the first N taxis from

the permutation sequence.

Figure 8-3 was drawn for a single permutation of 16,000 taxis. The plots show the frac-

tion of the 1,000 road segments driven on least 30 times during 2 different time windows.

The number of taxis used for the coverage is given by x-axis. Different curves correspond

2 k is a parameter we choose to support the methodology of inferring general traffic from the taxi counts.
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to different times of day, as denoted in the legend. The time window is 15 minutes (left)

and 1 hour (right). For workday coverage during 15 minutes (left plot), we conclude that

700 taxis are enough to cover 70% of the roads for most of the day's 1-hour time windows

except those in the middle of the night when the number of vehicles on the road is sparse.

Figure 8-4 shows cumulative histograms of 300 random permutations. The steep slopes

Workday 08:00 15 minutes Workday 08:00 1 hour
1 1

0.8 0.8 -hour 0
--hour 2

-.- -hour 4
S0.6 -0.6 -hour 6

--hour 8
2 2 -- hour 10
5 0.4- :6 0.4 -hour 12

d hour 14
-hour 16

0.2 0.2 -hour 18
-- hour 20

0 0- hour ,22
0 5000 10000 15000 0 5000 10000 15000

# taxis # taxis

Figure 8-3: Coverage according to the number of probes. The Left and right plots show
what fraction of roads are covered 30 times during 15 minutes and 1 hour respectively
(y-axis) as the number of probes grows (x-axis). Color encodes the time of day for the
coverage measurement.

indicate that the coverage result is not very different from one permutation sequence to

another. From the right plot, we can see that 2000 taxis are enough to cover 90 % of the

total loop detector locations during 08:00 ~ 08:15 on all the workdays.

RMSE vs. Number of Taxis

Next, we consider how many taxis are needed in order to estimate traffic on the Singapore

road network within a desired RMSE. We use as base case for traffic estimation the RMSE

derived in Figure 8-2(a) using the entire fleet of 16,000 taxi probes and ask, how much will

the RMSE degrade if we use a subset of size given by parameter k of the the probes selected

randomly. Figure 8-5(a) shows typical data for the RMSE. The RMSE decreases as the

number of taxi probes increases. However, the RMSE bottoms out at a certain point so that

increasing number of probes has no effect on improving the RMSE value. Figure 8-5(a)
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Figure 8-4: Cumulative histogram of coverage by 30 samples for 300 random permutations

for 8am. The steep slope of each line means that the variation from one random order

selection of 16000 taxis are not very different from the others. Thus, we don't need to

worry too much about which set of taxis we should choose

shows the tradeoff between the number of taxis used for the prediction and the accuracy of

the prediction.

Let RMSET denote the RMSE achievable with our entire fleet of 16,000 dynamic probes

and let nA (c) be defined as the minimum number of taxis that can be used to infer general

traffic with RMSE at most (1 + X)RMSET for a given traffic model c. Figure 8-5(a) shows

na (c). Figure 8-5(b) shows a cumulative histogram of nk (c) for various X values where

c is the model workday/non-workday with a 1 hour time slot. The y-axis of both plots

represents the fraction of road segments among the total 1,000 road segments. The left

plot is drawn over #probes for various /1, and the right one is drawn over Z for various #

taxis. In Figure 8-5(b) the increase in percentage is steep from 0 to 1000, which shows that

increasing the number of probes from 0 to 1,000 improves estimation. Given 2,000 probes

we can estimate the general traffic counts as given by the loop detectors for 65% of the road

network with precision at least 1. 1RMSET.
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(a) RMSE of a road over different number of taxi (b) Cumulative histogram of nX (c) Each curve in the
probes. The fewer probes we use, the higher RMSE plot corresponds to a different A. The x-axis plots the
gets. This graph shows a tradeoff between accuracy error tolerance, and the y-axis plots the percentage of
and number of probes. A defines the tolerance for ac- roads With 2000 probes and 10% additional error over
curacy in RMSE for using fewer probes. RMSET (the orange curve), we can predict the traffic

flows for 65% of the roads

Figure 8-5: The dependence of the RMSE for inferred traffic flows on the number of dy-
namic probes used.

8.3 Estimating Traffic Flow using Taxi Probes and Inferred

Traffic Flow for Limited Locations

Whereas travel time data for each road segment can be observed by taxis, the flow data is

only available for the locations where loop detectors exist. In this section we describe how

to estimate flow for each road segment. We develop a computational approach to estimating

the flow for locations where the loop data is not available. We estimate the traffic flow using

the predicted loop count learned in Section 8.2.

Let 0 be the set of all roads with associated loop detectors. Suppose road i does not

have an associated loop detector (i ( 0). Our goal is to estimate the flow for road i using

the real-time flow data from all the roads with associated loop detectors 0 and taxi count

information for the road set 0 U {i}. Intuitively, we will estimate the flow of road i by the

weighted average of inferred flow by a method given in Section 8.2 at other roads with loop

detectors, where the weight is defined by the similarity between road i and a road j in 0.
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Algorithm 15: Estimate-Flow

Data: f(j): inferred loop count for road j where loop detector exists;

ft (i): taxi count data for road i;
euclidean distance between all pairs of roads;
angular difference of orientation between all pairs of roads;
difference in number of lanes between all pairs of roads;
difference in taxi count for all pairs of roads;

Uk: the indicators for each similarity measure;
Result: f(i): estimated relative flow for road i without loop detector
o = a set of all roads where loop detectors exist;
for j E 0 do

Find mI(i, j), m2(i, j), m3(i, j), and m4 (i, j)
s(i, j) =M 1 (i, j)u X m2(i, j)U2 x m3(i, j)uX3 x (i, j)"4-

wi) = S ) ,Vj E 0

end

(i) = (ft (i)) Evjeo Wi(j)f ;

We quantify the similarity between roads i and j by several measures:

* measure 1: mi (i, j) = 1), where d(i, j) is the Euclidean distance between road i

and road j

" measure 2: m2 (i, j) =a , where a(i, j) is the angular difference between the ori-

entation of road i and that of road j

" measure 3: m 3 (i, j) = j, where l(i, j) is the difference between number of lanes

of road i and that of road j

" measure 4: m4(i, j) = 1J, where t(i, j) is the difference between taxi count for road

i and that of road j

Each of these four measures is an inversely proportional relation. Measures 1, 2, and 3 are

static. The information depends on neither time nor traffic conditions. Measure 4 captures

the dynamic real-time information observed by taxi probes.

We define an aggregated similarity measure using the four measures. For a pair of roads
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i and j, (i, j), the aggregate similarity measure is given as follows:

s(i, j) = mi (i, j)" x m2(i, j)u 2 X M3(, j)3 x m4 (i,)U 4  (8.1)

where Uk is the indicator for whether measure mi should be considered for deciding the

aggregate similarity.

1 if measure mk should be considered

0 otherwise

We choose the best Uk empirically.

Algorithm 18 describes the method for real-time estimation of traffic flow f(i) for road

i V 0, using the real-time loop count estimation from all roads in 0. Our algorithm esti-

mates the flow by the weighted average of the available inferred loop detector counts for

all the roads in 0. The weight assigned to each loop detector on road j for the estimation

of flow for road i, wi(j), is defined as the normalized aggregate similarity measure for all

the road segments in 0 as follows:

wi(I) s(i, j)Wi(j) = k , j E 0 (8.2)Evkeo s (i, k)

The estimation of flow for i, f(i), is calculated as the weighted average of the other

inferred loop counts using the weight wi(j),Vj E 0 as follows:

W) = (f (i) E wi(j) f() (8.3)
vjrolf(j)# ft U)

where f (j) is the observed loop count of road j divided by the number of lanes of road j.
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8.3.1 Quality of Estimation

In order to evaluate performance given our data (Section 7.2) we conduct a leave-one-out

cross-validation approach. We selected 1,000 locations with loop detector data as a test

set, 0. We use each road segment i E 0 as a test case. For each i we define Oi = 0 \ i to

contain all the road segments with loops. We test our algorithms for congestion detection

for i using Oi. We use the loop counts on i as ground truth to quantify our estimates. The

data consists of loop detector data for August 2010 and taxi data for the same period, where

the loop counts and taxi speeds are collected for each 15-minute time slot. Thus, we have

the loop counts and taxi speeds data for 1,000 locations with 31 days x 96 slots per day =

2,976 data points. Using these data, we ran our Algorithms 18 for 1,000 test cases.

For each road, we estimated the flow using Algorithm 18. We used all possible combi-

nations of similarity measures defined in Section 8.3 (a total of 16 combinations). The best

estimation was obtained when we used all the measures with (u1 , u2, U3, U4) = (1, 1, 1, 1).

Figures 8-6 and 8-7 show the quality of flow estimation. The estimated flow and the real

flow have a high linear correlation, and the gradient of the linear relationship is highly

concentrated around one.

8.4 Synopsis

In this chapter we have shown that taxi probes can be used to infer traffic patterns. Because

the movement patterns of taxis is similar to a rapidly mixing Markov chain, a fleet of

taxis can cover a city-scale road network very fast. Using data from a study conducted in

Singapore, we show that a relatively small number of taxis (700) is needed to cover about

70% of the road network in order to provide sufficiently accurate traffic models. Traffic,

as measured by taxis, provides a biased representation of general traffic in city-scale road

networks. However, our study shows this bias is consistent and we can learn the corrective

parameters. Thus, we conclude that taxi probes can be used to provide accurate traffic

forecasting using historical data from their past drives, and real-time traffic snapshots from

their current drives.
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Figure 8-6: Estimated flow for four different roads. The estimated flow (x axis) is strongly
linear to the real flow (y axis), and the gradient is very close to 1.
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Figure 8-7: Quality of Flow Estimation. (left) Correlation coefficient of estimated flow and
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range. Thus, the estimated flow approximates well the real flow.
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Chapter 9

From Theory to Practice: Data-Driven

Congestion Detection

Traffic congestion is presently and primarily estimated via static sensors, such as traffic

cameras and loop detectors. This information is often difficult to collect, aggregate, analyze

and quantify, especially in real time. In this chapter, we demonstrate that it is possible to

accurately infer traffic congestion through data collected from a roving network of taxi

probes that log their locations and speeds at regular intervals. Our model and inference

procedures can be used to estimate the natural capacity of a road or road segment off-line, as

well as to detect whether a road has exceeded its capacity (and thus reached congestion) in

real time. As such, our techniques provide a powerful new data source for traffic congestion

analysis, dynamic road pricing, and urban planning.

This chapter is organized as follows. Section 9.1 provides a background on funda-

mental diagram. Section 9.2 describe our methods for estimating the critical point in the

fundamental diagrams for each road. Section 9.3 presents the results of congestion detec-

tion. Section 9.4 discusses the discovery of operational states in addition to free flow and

congestion.
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9.1 Background: Fundamental Diagram

More specifically, the fundamental diagram of a road captures the relationship between

flow, density, and speed on that road [106, 29, 35, 46, 41, 74, 15, 76, 136, 139, 140].

Flow is defined as the number of vehicles that transit a road segment per unit time and

is typically measured in units of vehicles per hour; density is defined as the number of

vehicles present on a road segment per unit distance and is typically measured in units of

vehicle per kilometer; speed is defined in the usual way for vehicles on a road segment and

is typically measured in units of kilometers per hour. The relationship between these three

quantities is

flow = speed x density (9.1)

where maximum flow ultimately defines the capacity of a road segment.

The fundamental diagram for a road segment shows the tradeoff between speed vs.

density, flow vs. density, and speed vs. flow (see Figure 9-1). As a general rule (1) speed

decreases as density increases and (2) flow increases as density increases, until the degra-

dation in speed caused by increasing density causes the flow ultimately to begin to decline.

(Speed and flow have a non-functional relationship dictated by the above two rules and

Eq (9.1).) The critical point in a flow-density curve is the point at which the maximum

flow is reached: beyond this critical point, flow and speed will both decline as density

increases, and a road segment will experience congestion.

The fundamental relation between speed, density, and flow for a given road segment

will depend on different properties of the road (width of the lanes, grade), flow composition,

external conditions (weather and ambient conditions), traffic regulations, etc. [106]. The

fundamental diagram plays an important role in characterizing congestion [90, 98, 1, 92,

29, 81]. Prior research in understanding the fundamental diagram includes [92], where

assessment methods for roadway capacity estimation are presented, and [29], where the

estimation of the fundamental diagram is achieved through passing rate measurements in

congestion.

Figure 9-1 shows the shape of the theoretical fundamental diagram and sample dia-

grams estimated by our study using flow measured by inductor loops and speed measured

148



by processing taxi trajectory data. The density was calculated from these two measured

quantities using Eq (9.1). The operating point of a road in the fundamental diagram is

related to congestion. One challenge in computing the fundamental diagram and corre-

sponding congestion point for any road segment is the availability of data. While a large

fleet of taxis such as the Singapore fleet has comprehensive coverage of the road network

and thus provides good speed data, flow information is only available for selected locations

that have loop detectors.
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Figure 9-1: Examples of the fundamental relations between flow, density, and speed taken
from [106] (top) and the empirical fundamental diagram constructed from the loop detector
counts and taxi speed data for a sample road (bottom). Color indicates the time of day when
the points were collected, as shown in the legend.

9.2 Congestion Detection

We assume that the road's real-time speed information is known. This assumption can be

met using real-time taxi data, since the large fleet of taxis collects speed information for
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many road segments in parallel. We consider the speed information from the taxi probe

vehicles as the ground-truth speed. Thus, we have the ground-truth speed information for

every road.

We also assume that the real-time flow information is available for a subset of road

segments. It is common for a city to have flow information from loop detectors and cameras

for some of the road segments. In our evaluation, we use data from 1,000 loop detectors.

We consider the loop detector count per unit time as the ground-truth flow information for

the corresponding road1 .

Our goal in this section is to estimate the congestion state of a given road. This road

may or may not have an associated loop detector. In Section 9.4 we generalize this goal to

multiple operational states, including the heavy traffic state. Our approach has two steps.

First, we build the estimation of the fundamental diagram from the available sensor data.

Second, we estimate where in the estimated fundamental diagram the current road state

lies, by matching the current road state to the estimated fundamental diagram.

We detail our computational solution for the two steps in the following subsections.

9.2.1 Estimation of the Critical Point in the Fundamental Diagram

Figure 9-2 shows the estimated fundamental diagram for two roads. We see that the shape

of the estimated fundamental diagram matches the shape of the theoretical fundamental di-

agram. We also clearly see the presence of a critical point. We observe that it is challenging

to detect the slope change after the critical point (thus it is challenging to immediately see

the severe congestion in this data). Rather than detecting this event, we focus on detecting

the 'start of congestion' or 'near congestion', which happens around the critical point. The

points suggesting near-congestion are of great interest to traffic planners. Algorithm 16 de-

scribes the method for estimating the critical point as the break point for the road. We use

the flow-density curve for detecting the break points. We check whether the experimental

estimated fundamental diagram has a break point, and if there exists one, where it is lo-

cated. If the break point does not exist, the road does not experience significant congestion.

'Thus, for a road with a loop detector, we are provided with the data points for the real fundamental
diagram.
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Figure 9-2: Example fundamental diagram of two different roads. Two-segmented piece-
wise linear function fitting the data is illustrated. The congestion and non-congestion re-
gions are defined as the area divided by the line crossing the break point of the fitting curve.
Color indicates the time of day when the points were collected, as shown in the legend.

The details of the algorithm are described in Algorithm 16. We fit the data points of the

experimental flow-density fundamental diagram into piecewise linear segments using the

method in [25, 108, 54] for fitting a curve to piecewise linear functions. We use a similar

technique to find the best-fitting piecewise linear segments.

9.2.2 Classification of Congestion State

We provide a method for classifying the current state of a road as congestion or non-

congestion. Once we find the break point, we classify each data point into congestion

or non-congestion using the point's distance to the two line segments representing con-

gestion or non-congestion, respectively. The classification of congestion state is illustrated

in Figure 9-2. The dividing line is defined as the bisector of the angle between the two

fitted linear segments. The data points lying in each region are classified according to the

corresponding congestion state.
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Algorithm 16: Find-Critical-Point
Data: f: a time sequence of estimated flow k: a time sequence of

estimated density
Result: break point (kcritical, fcritical)
kcritical None;
fcritical = None;

COstmin 00;
fmin = minimum of f, fa, = maximum of f;
kmin = minimum of k, kax = maximum of k;
for r E {0.05,0.1,.- ,0.95} do

x coordinate of break point kbp = r x (kmax - kmin);

(cost, slope, num, fbp) = fitLinearSegments(k, f, knin, kbp, kmax);

if cost < costmin and slope < 0.2 x f"ax-f{"n and num > 200 then

COstmin = cost

kcritical = kb;

fcritical = fbp
end

end

Algorithm 17: Fit-Linear-Segments

Data: density k, density f, minimum of density kmin, kbp, kmax
Result: cost , slope, num, fbp
Find the fitting two linear segments that minimizes the residual sum of squared
errors using the algorithms in [25, 108, 54]
cost := residual sum of squared errors ;
slope := the slope of the second linear segment;
num := the number of data points corresponding to the second linear segment;

fbp := the y coordinate of the break point found for x = kbp

9.3 Experiments

In this section we describe our experiments with relative flow computation and critical

point detection for roads that do not have associated loop detectors. In order to evaluate

performance given our data (Section 7.2) we conduct a leave-one-out cross-validation ap-

proach. We selected 1,000 locations with loop detector data as a test set, 0. We use each

road segment i E 0 as a test case. For each i we define Oi = 0 \ i to contain all the road

segments with loops. We test our algorithms for congestion detection for i using Oi. We

use the loop counts on i as ground truth to quantify our estimates. The data consists of loop

detector data for August 2010 and taxi data for the same period, where the loop counts and
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taxi speeds are collected for each 15-minute time slot. Thus, we have the loop counts and

taxi speeds data for 1,000 locations with 31 days x 96 slots per day = 2,976 data points.

Using these data, we ran our Algorithms 18 and 16 for 1,000 test cases.

9.3.1 Quality of Flow Estimation

The quality of estimation of relative flow is shown in Figure 9-3 for four different estimation

methods:

1. using taxi count as relative flow,

2. using loop count for estimation of relative flow with similarity measure 1 in Eq (8.1)

((ul, u2, u3, u4) = (1,0,0,0)),

3. using loop count for estimation of relative flow with similarity measures I through 3

in Eq 8.1 ((ul, u2, u3, u4) = (1,1, 1,0)), and

4. using loop count for estimation of relative flow with similarity measures 1 through 4

in Eq (8.1) ((ul, u2, U3, u 4 ) = (,1, 1, 1)).

For each road we also used the taxi count as the estimation of the relative flow as a way

of comparing our method with an alternative that does not use loop counts. Figure 9-3

shows the naive estimation using the taxi data (first column) followed by the relative flow

estimation for (u1, u2, u3,u4) = (1,0,0,0), (1, 1, 1,0), and (1, 1, 1, 1).

9.3.2 Congestion Detection

Figure 9-3 also shows the relationship between the loop count data and the estimated rela-

tive flow. Figure 9-3 (1, 1) shows that the taxi count is not correlated to loop detector count

very well. Thus, the fundamental diagram built using taxi speeds and taxi counts (Fig-

ure 9-3 top row) is quite different from the real fundamental diagram (Figure 9-3 bottom

row).

Using the loop counts from other loop detectors, we can estimate the loop counts for

the current road better. Figures 9-3 (2, 1), (3, 1), and (4, 1) show that the loop count
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estimation gets better when we use static information such as distance, orientation, and

number of lanes, and the observed taxi count. When we use all the available static and

dynamic information, the real loop counts and the estimated relative flow have a highly

linear correlation. The histogram for the correlation coefficients for 1,000 roads is shown

in Figure 9-4.

We can predict the relative flow for roads that do not have any loop detectors. The

estimated fundamental diagrams in the fourth row of Figure 9-3 are very similar to the

real fundamental diagrams in row 5. We conclude that the estimation for relative flow is

accurate enough to identify the current operating point from the fundamental diagram.

Column 3 of Figure 9-3 shows the fundamental diagram used for congestion detection.

We observe that the break points of the fitting linear functions for our estimated funda-

mental diagram are very similar to those for the ground truth (see the third column of

Figure 9-3).

9.3.3 Congestion Detection Quality

Ground-truth congestion is determined as described in Section 9.2.2 using real loop detec-

tor counts instead of the estimated relative flows. We compare the ground-truth congestion

and the estimated congestion, and show the detection probability (the probability that the

real congestion is detected as congestion) and false-alarm probability (the probability that

non-congestion is falsely detected as congestion) in Figure 9-5(b).

Figure 9-5(a) shows the detection and false-alarm probabilities for the four different

estimation methods. When we use taxi counts as the relative flow, the false alarm rate and

detection rate are approximately 0.5, meaning that the congestion detection using taxis is

not much better than a random guess. The results show that we can predict congestion well

when we use the real-time loop detector counts from other roads.

9.4 Detecting Heavy Traffic

In our modeling of the empirical fundamental diagrams, we have chosen to follow closely

the theoretical relation between flow and density with a single critical point. However,
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Figure 9-3: Each row shows the quality of estimation of relative flow and the estimated
fundamental diagrams for each estimation method. For comparison, the bottom row shows
the real fundamental diagrams built from the real loop count observations. [First column:]
Real loop count (y-axis) vs. estimated relative flow (x-axis). [Second, third, and fourth
columns:] speed-density, flow-density, speed-flow fundamental diagrams estimated from
each method. The third column (flow-density relationship) is the one used for our conges-
tion detection. Color indicates the time of day when the points were collected, as shown in
the legend.
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Figure 9-5: Quality of congestion detection

we observe that in the empirical fundamental diagrams, the line segment corresponding to

the 'congestion' state often has a positive gradient, indicating that a higher throughput or

flow may be obtained by increasing the car density on the road. This is contrary to the

theoretical fundamental diagrams which postulate a negative gradient line past the critical

point of congestion.

Therefore, we believe that such roads have not experienced 'true congestion' (where

increased car density leads to lower throughput), but only 'heavy traffic'. The state of

'heavy traffic' is distinct from 'free flow', where flow increases rapidly with small increases

in car density. The theoretical fundamental diagrams consist of only two operational states,

and fail to account for additional states such as 'heavy traffic' that occur betwen 'free flow'

and 'congestion'.

In order to discover these additional operational states, we ran the piecewise line-fitting
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algorithm on the data, with the number of line segments varied from 1 to 5. The model

of best fit was then selected using a minimum description length (MDL) criterion, which

provides a balance between optimizing the error and the complexity of the model. We adapt

the polynomial regression MDL in [79] to our piecewise line fitting:

m+1
MDL= log2 (N) + log2(cost/N)

N

where N is the number of data points, m E { 1,2,3,4,5} is the number of line segments, and

cost is the residual sum of squared errors.
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o o 800
8 1000

600

500 400

200

01 01
0 50 100 0 10 20 30 40

density (cars / km) density (cars / kin)

(a) Example of a road with three operational states (b) Example of a road with two operational states of
of 'free flow' (low density), 'heavy traffic' (medium 'free flow' (low density) and 'heavy traffic' (medium
density) and 'congestion' (high density). density).

Figure 9-6: Piecewise line fitting to empirical fundamental diagrams, using the MDL crite-
rion to select the number of line segments. Color indicates the time of day when the points
were collected, as shown in the legend.

Figure 9-6(a) shows an example of the piecewise line fitting using the MDL criterion.

The curve of best fit found consists of three line segments. As the car density is increased,

the road progresses from 'free flow' (fast increase in flow as car density increases) to 'heavy

traffic' (slower increase in flow as car density increases) and finally breaks down into 'con-

gestion' (decrease in flow as car density increases).

On the other hand, Figure 9-6(b) shows a different road with only two operational

states of 'free flow' and 'heavy traffic'. The gradients of both line segments are positive,

indicating that the road has never experienced 'congestion' where it is no longer possible

to increase flow by increasing density.
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Figure 9-7: Histogram of the gradient of the line segment with the highest car density.

We also extracted the gradient of the line segment with the highest car density for each

road. This is shown in the histogram in Figure 9-7. Notice that only a small percentage of

the roads have line segments with negative gradients at high densities, which indicates that

few roads in Singapore actually experience severe congestion, even if they do get slow-

moving heavy traffic in the worst scenarios.

9.5 Synopsis

Understanding the relation between flow, density and speed of a road is a difficult yet

important problem. The congestion effect of the road segment is modeled as the relation-

ship between flow and delay. The model parameters were learned using the traffic volume

data from loop detectors and GPS location and time data from a roving fleet of taxis. We

demonstrate how empirical fundamental diagrams can be estimated for every road in the

city without installing costly loop detectors at every intersection. Our method augments

data collected from existing loop detectors with data from a fleet of taxis, which serve as

dynamic probes into the traffic conditions. By integrating the two sources of data, we are
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able to accurately estimate traffic volumes and the critical point in fundamental diagrams,

hence allowing us to detect congestion with high accuracy. Finally, we also show that roads

may have operational states in addition to free flow and congestion, and our method is able

to discover these multiple states from the empirical fundamental diagrams.
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Chapter 10

From Theory to Practice: City-Scale

Experiments

In this chapter, we present city-scale experiment using taxi trip data and inductive loop

detector data in Singapore. Various analyses reveal the traffic and mobility patterns in

the city. We learn the congestion model based on real data from a fleet of taxis and loop

detectors. Using the learned street-level congestion model, we develop a congestion-aware

traffic planning system that operates in one of two modes: (1) to achieve the social optimum

with respect to travel time over all the drivers in the system or (2) to optimize individual

travel times. We evaluate the performance of this system using 16,000 taxis trips and show

that on average our approach improves the total travel time by 15%.

Section 10.1 shows city-scale applications of our traffic forecasting including traffic

volume, hotspots, and origin/destination analysis. Section 10.2 compares the paths taken

by real taxi drivers to the paths computed by our system (the social optimum paths) and the

paths computed by a greedy path planning algorithm.

10.1 City-Scale Applications

Many interesting traffic and mobility analyses can be done using dynamic probes. In this

section we give three examples of traffic analysis using dynamic probes: estimating traffic

volume, estimating hotspots, and estimating the distribution of origins and destinations for
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traffic, which point to future directions and opportunities for using taxi probes to understand

urban-scale mobility.

10.1.1 Volume

Figure 10-1 shows a snapshot of taxi volume for different hours of day on August 2nd

(Monday) 2010 for Singapore. The volume is defined as the number of taxis observed

in the square block over a given time and is plotted for a regional block size of 400 x

400 square meters and a time size of 2 hours. Color also encodes a qualitative measure

of volume according the the color wavelength, with red denoting the highest volume and

blue denoting the lowest volume. Each bar height measure the volume. While the volume

distribution across the country changes according to different times of day, some parts of

the country retain the larges fraction of the traffic volume. We discuss this phenomenon in

the next section.

10.1.2 Hotspots

The red bars in Figure 10-1 indicate visually traffic hotspots. Some regions of the country

remain hotspots regardless of the time of day (e.g. the Changi airport). Other regions

(e.g. Orchard Rd) are hotspots during certain time periods. Figure 10-2(a) shows the top 9

hotspots, while Figure 10-2(b) shows the traffic variation during the day at each of these 9

hotspots (each location plotted as its own curve). We can observe different detailed volume

variation over a day for those hotspots in Figure 10-2(b).

Hotspots such as 'A-bomb in Figure 10-2(a) show excess traffic volume in the early

morning, and Hotspots such as 'F' show excess volume during the morning rush hour. 'B'

shows excess traffic both in the morning and evening rush hours. 'C' (airport) show all-

time high volume. Hotspots such as 'D', 'E' and much of northern area show that the traffic

volume is relatively higher in the evening and early morning than morning rush hour.
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(a) 3-5 am (b) 5~7 am

(e) 5-7 pm (f) 9~11 pm

Figure 10-1: Snapshots of traffic volume measured by taxi probes for August 2nd 2010
(Monday) plotted on the map of Singapore. Bar height and color combine to encode traffic
volumes. Note the large variation in volumes in different regions of the city.

10.1.3 Origins / Destinations

The streaming nature of the information from the taxi probes enable the aggregation of

higher-order information for mobility analysis, for example where do trips originate and
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(a) Hotspots with different daily volume patterns
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(b) Volume variation of hotspots over time

Figure 10-2: Hotspots according to time of day. The labels on the left map show the loca-

tions of the hotdpots. The curves show volume vs time of day for each of the 9 identified
hot spots.

end and which trajectories were followed. In this section we give results on how dynamic

probes can be used to analyze origins and destinations. In our future work we will describe

how we can use dynamic probes to infer general traffic mobility patterns.

Number of Taxi Trips

A total of approximately 12 million trips were extracted from the taxi data, and the average

number of trips starting (origins) and ending (destinations) at different times-of-day are

shown in Figure 10-3, together with the number of taxis plying the road.
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Figure 10-3: Number of taxis and trips (in terms of origins and destinations) at different
times of days, on both workdays and non-workdays.

The number of taxis decreases from 8pm to a daily low at 5am, before drastically in-

creasing through the morning rush hours till 10am. The supply of taxis on the roads then

remains nearly constant until the 8pm in the evening. The slight dip in taxi numbers at 5pm

is possibly due to shift changes.

The pattern for the demand of taxis (as represented by the number of origins / destina-

tions) is similar to that of the supply of taxis, where fewer trips are taken between 8pm to

5am, before again increasing till l0am. On workdays, however, the peak demand is experi-

enced at 9am. Even though the demand decreases after 9am, taxi drivers have started their
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own working hours, and continue to ply the roads, resulting in an over-supply during this

period.

Distribution of Origins and Destinations

Each origin and destination from all 12 million trips were classified as belonging to one of

the 28 regions. For each fifteen minute block starting from midnight on workdays, we cal-

culated the empirical distributions of the origins and destinations over the 28 regions. This

procedure was also repeated for trips on non-workdays. In total, 384 empirical distributions

were obtained (one distribution for origins on workdays, origins on non-workdays, desti-

nations on workdays, and destinations on non-workdays for each of the 96 fifteen minute

blocks in a day).

The randomness of each of these distributions were measured using perplexity.

Definition 4. Perplexity for a distribution p is

defined as 2 H(p) - Ez p(z) 10g 2 p(z), where H(p)

- Ez p(z) log 2 p(z) is the entropy of the distribution.

The perplexity has a natural interpretation for the OD distributions: if a trip has equal

probability of starting in any region, then the perplexity of the empirical distributions of

origins is exactly equal to 28, the number of regions. On the other extreme, if all trips

begin in the same region, then the perplexity is equal to 1. A distribution with a perplexity

value of X is as random as a uniform distribution over X regions.

The lines of marker '0' in Figure 10-4 show the perplexities of the empirical distri-

butions of origins and destinations at different times during workdays. The peak in the

perplexities of origins is found at the morning rush hours as passengers leave their homes

across Singapore. Distribution of origins stabilizes in the afternoon, before undergoing

a drop from 10pm to the trough at 3am. During this period, trips largely originate from

a small number of regions near the city centre that are dominated by offices and popular

shopping malls, indicating that passengers are reversing their morning trips and headed

home.

Conversely, a trough in the perplexities of destinations occurs at the morning rush hours,
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Figure 10-4: Perplexities of empirical distributions of origins and destinations

when passengers are traveling to the small number of city regions. Throughout the rest of

the day, the perplexity increases as passengers travel to more diverse regions. Between

8pm - 12pm, perplexity of destinations reaches its nightly peak as passengers head to their

homes in a large number of residential regions. A second trough occurs at 6am - this

phenomenon will be explained below.

Similar patterns can be seen on non-workdays as well, as shown by the lines of marker

'X' in Figure 10-4. In contrast to workdays, however, perplexities on non-workdays tend to

be higher, indicating that the population's movements are less synchronized. Furthermore,

the trough in perplexities of destinations, has shifted from 9:45am on workdays to 12:15pm

on non-workdays. This suggests that a shift in the behavior of Singapore residents has

occurred between workdays and non-workdays.

Unfortunately, perplexities are coarse-grained summary statistics that fail to properly

account for the richness of behavior encoded in the full distributions. To better understand

the evolution of OD distributions across time, we examined the probabilities of origins and

destinations occurring in each region.

We have highlighted 6 regions of interest for discussion, 5 of which fall within or near

the city center. The labels we have used for naming the regions are purely descriptive,
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and do not necessarily correspond to any official naming or demarcations. Nevertheless,

a Singapore resident should be able to readily identify the regions and common activities

associated with them.

The 6 regions of interest (as indicated by the corresponding bright colors in Figure 7-4)

are:

1. Airport (Black): The easternmost region of Singapore holds Changi Airport, by far

the most important civilian airport.

2. Geylang (Red): Although a largely residential area, Geylang is also well- known for

some of its nocturnal activities.

3. Orchard (Green): Singapore's famous shopping strip, but also houses a substantial

number of offices.

4. CBD (Blue): The Central Business District is dominated by high-rise offices, but

also caters to party-goers with its pubs and clubs.

5. Fort Canning (Magenta): Some of Singapore's most popular clubs are found here.

Being adjacent to Orchard and CBD, there are also shopping malls and offices in the area

as well.

6. Rochor (Cyan): At the fringes of the city area, Rochor is home to a few high-rise

offices and shopping malls.

Figure 10-5 shows the probabilities of trips originating and terminating in the 28 Voronoi

regions. The 6 regions of interest are highlighted while the remaining 22 (mainly residen-

tial) regions are faded into the background. We discuss some of the patterns that emerge

from these plots.

The city regions (CBD, Orchard, Fort Canning, and to a smaller extent, Rochor and

Geylang) are the most popular regions for taxi trips to begin and end at most times of the

days. The prominence of CBD as a destination from 8am to l0am reflects the arrival of

people at their offices. As the day wears on, the CBD is then overtaken by other city areas

such as Orchard and Fort Canning, where more leisure activities can be found.

One exception to the dominance of the city regions is the morning hours from 6am to

8am. During this time, one is more likely to find trips originating from residential areas

as people leave their homes to begin their day. Conversely, the popularity of city regions
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Figure 10-5: Probabilities of empirical distributions of origins and destinations. Taxi trips'
origins and destinations are mostly concentrated in the city regions, except for the morning
rush hours where origins are dominated by residential regions. The airport is also a popular
destination in the early morning hours.
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as origins increases during the evening, since taxi passengers are now leaving the city for

home. The same effect is observed with the destination probabilities when the city regions

become unpopular after 8pm.

Another pattern that can be clearly seen from Figure 10-5 is the popularity of the Airport

region as a destination in the early morning hours. We hypothesize that a large number of

flights are scheduled to leave Singapore in the morning. This is further compounded by

the lack of public trains in the early hours, leaving taxis as the major means of public

transportation for air travellers. This spike in the popularity of the Airport region also

accounts for the trough in perplexities of destinations at 6am seen in Figure 10-4.

The patterns on non-workdays (Figure 10-5(a)) are similar to the patterns on workdays

(Figure 10-5(b)). A notable exception is the CBD, whose popularity as a destination drops

drastically due to fewer people returning to offices on non-workdays.

On the other hand, during the late night hours 3am - 5am on non-workdays, trips are

likely to originate from the Fort Canning region. This is likely to be due to the presence of

nightspots that are frequented only on non-workdays when one does not have to report to

work early the next morning.

O-D Relationship

In addition to studying origins and destinations separately, we also investigated the rela-

tionship between the two. Specifically, we examined if the knowledge of a trip's origin

could provide us with information about its destination, and vice versa. Such questions

would be of particular interest to taxi drivers, whose expectations of their next task could

be altered according to the location where the passenger is picked up. OD transitions are

also important for transport planners as a first step towards understanding the load on the

traffic network.

In Figure 10-6, we compare the perplexities of origins and destinations with the con-

ditional perplexities of origins given destinations and of destinations given origins respec-

tively.

Definition 5. The conditional perplexity of origins given destinations is defined as 2

where H(O|D) = -- E dp(o,dlog2 p(od) is the conditional entropy of origins given
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destinations.

The conditional perplexity of destinations given origins is similarly defined.

The conditional perplexity of origins given destinations is the randomness or uncer-

tainty about origins that remains after the destination has been made known. Thus, if

the origins and destinations were independent, then we gain no information about origins

through the knowledge of destinations, and the conditional perplexity is equals to the per-

plexity itself. Such a situation may arise if all trips converged on a single region (so the

destination provides no additional information about the origin), or if all trips originated

from the same region (so the origin provides no additional information about the destina-

tion). On the other hand, if the two are perfectly correlated, then knowledge of destinations

leaves no uncertainty about the origins, so the conditional perplexity is 0. The difference

between the perplexities and the conditional perplexities quantifies the information that one

provides about the other.

As Figure 10-6 shows, knowledge about destinations reduces the perplexities of origins

by 3.5-9.5 regions on workdays and 2.5-8.5 regions on non-workdays. Knowledge about

origins reduces the perplexities of destinations by 4.5-11 regions on workdays and 4-8.5 re-

gions on non-workdays. The differences between perplexities and conditional perplexities

are, however, not uniform across different times-of-day and workday / non-workday. Fig-

ure 10-7 shows the variation of the ratios of perplexities to conditional perplexities across

the day.

The mutual information I(O;D) = H(O) - H(O|D) = H(D) - H(DjO) is a symmetric

measure of dependence between the origins and destinations. The ratio between the per-

plexities and conditional perplexities works out to be exactly 2 0;D), which is shown in

Figure 10-7. We see that mutual information tends to be higher in the day than at night.

Furthermore, a spike between 7am to 8am, followed by a depression at 10am, is observed

on weekdays. To explain these observations, we examined the proportion of intra-regional

trips, i.e. trips which originated and terminated within the same region.

As shown in Figure 10-8, the proportion of intra-regional trips is correlated with the

mutual information between origins and destinations. At 7am-8am on workdays, many taxi

trips are made within the regions around the perimeter of Singapore. We believe that this is
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Figure 10-6: Conditional perplexities of origins given destinations, and vice versa.

caused by people traveling to work locations near their homes, and hence knowledge of the

trip origin provides useful information on the probably nearby destination. This behavior

is then overtaken by the movement of office workers into the city regions at l0am; since

all trips likely end in the city, the knowledge of the trip's origin provides little additional

information.

The proportion of intra-regional trips increases after 10am as people do not move far

from their workplace. This allows us to again make better guesses about the destination if

the origin is known. After work, however, trips are taken out of the city into the residential
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Figure 10-7: Mutual information between origins and destinations. A clear spike occurs
between 7am to 8am on workdays, caused by an increase in the probability of intra-regional
trips (see Figure 10-8).

areas; since all trips likely originated from then city, the knowledge of the trip's destination

provides little additional information. The low proportion of intra-regional trips (and low

mutual information) then persists until the next morning.

Similar patterns are observed on non-workdays as people make short intra- regional

trips in the day but disperse at night. The spike and depression are not prominent, however,

since there is less work-related movement.

10.2 Experimental Comparative Study on Travel Time

In this section, we quantify empirically the travel time performance of a fleet of taxis for the

case when the taxis use the social optimum path computation algorithm from Section 7.1.

We compare travel times as recorded by the real taxi data to the computed and-simulated

greedy-optimal paths and socially optimal paths.

10.2.1 Approach

We begin by computing the total traffic for each road segment for each 15-minute time slot

using the methods described in Section 8.3. We identify the taxi trips and re-route them us-
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Figure 10-8: Probabilities of a trip originating and terminating within the same region, at
different times of day, on both workdays and non-workdays. The spike between 7am to
8am on workdays corresponds to the increased mutual information between origins and
destinations at the same time.

ing the algorithm in [84] based on the flow-delay function that we learned in Section 10.2.2.

Computing Taxi Traffic Flow

For each 15-minute time slot, we select only the taxi trips flagged as Passenger on Board

(POB) trips in the taxi data set. The GPS location where the state of the taxi changes to

POB is considered the start of the trip. The GPS location where the POB state is reset

to a different staus is considered the destination of the trip. Figures 10-9(a) and 10-9(b)

show the number of POB taxi trips and the histogram of travel times of the POB taxi trips,

respectively. The GPS points recorded by a taxi between the origin and destination of

a trip are matched to the Singapore map using an algorithm similar to [99]. Using this

map matched sequence of roads, we find the flow generated by POB taxis for each road

segment. The POB taxi flow as well as the total traffic flow for overall road network is

shown in 10-9(c).

We compute the total real travel time of all POB trips in a 15-minute time slot, and

compare its cost to the greedy-optimal paths and the social optimal paths for the simulated

case where the POB taxis follow the computed paths.

174



4500

4000

3500

-13000

5 2500

E 2000

1500

1000

500
2am Sam Sam 11 am 2pm 5pm Spm 11pm

time of day

(a) Number of Passenger on Board (POB) taxi trips over the day of August 2,
2010. To simplify the exposition and data presentation, the plot shows the first
15-minute time slot in every three hour-block.
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(b) The histogram of real travel time by taxis at 2 am (left) and 8 am (right). There are more trips
at 8 am than 2 am, and the travel time for a trip is longer.
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(c) Total traffic and taxi traffic over the day of August 2, 2010. To simplify the
exposition and data presentation, the plot shows the first 15-minute time slot in
every three hour-block. Taxi traffic accounts for about 20% of the total traffic at
11 pm and 2 am and only about 2% at 11 am. For the rest of the time of the day,
the portion of taxi traffic is about 10% of the total traffic.

Figure 10-9: Statistics of Selected Taxi Trips
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Computation for New Assignment

The underlying traffic flow is the traffic that we do not control. The underlying traffic flow

consists of all non-taxi traffic and non-POB taxi trips. The underlying traffic is computed

by subtracting the POB taxi traffic flow from the total traffic flow.

The greedy-optimal path is defined as the minimum expected time path. The greedy-

optimal path will have short travel time for single user queries; however, if multiple users

are directed along the same greedy path, the performance of the path degrades.

We compute the path sets of size K used in the multi-user routing algorithm in Sec-

tion 7.1 for each POB taxi trip's origin and destination pair. First, the real taxi path for each

O-D pair is included to its path set, P. Then, the other K - 1 paths are found by a standard

shortest-path algorithm such as Dijkstra's algorithm using the mean travel time statistics

of road segments for the corresponding 15-minute time slot. The details of the method we

used to find a reasonably disjoint set of K - 1 paths are as follows: We define B to be a set

of road segments that will not be used for finding an O-to-D path. First, we set B empty

and find the minimum expected time path using Dijkstra's algorithm. This path is added to

P. Second, we randomly select a predefined number of road segments from the found path,

and add these road segments to B. We find the 0-to-D path that minimizes the expected

time not using any road segment in B. The found path is added to P. We do this process

until we have total K paths in P. An example of 5 paths found using this method for an

O-D pair is shows in Figure 7-1.

10.2.2 Link Performance Function Estimation

Link Performance Function

The Bureau of Public Roads (BPR) developed a link congestion (or flow-delay, or link

performance) function, which we will term ta(fa) [103]:

ta (fa) =- Tao 1+ a , a)' (10.1)
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where To is free flow travel time on link a per unit of time; fa is flow attempting to use link

a per unit of time; Ca is capacity of link a per unit of time; and ta (fa) is the average travel

time for a vehicle on link a.

The BPR function is frequently used for computing an optimum traffic assignment [30,

77, 84]. Values for a and # are empirically measured from data. They may be different

for different type of roads, although typical values for a and # are 0.15 and 4, respectively,

based on the empirical data on highways. Our goal is to find the best empirical model

describing the data using flow and travel time data for each road segment in Singapore,

given our two data sources.

Link Performance Function Estimation using Flow Estimation

Eq (10.1) can be rewritten as:

ta (fa) = Pia + P 2 a fa, (10.2)

where Pa = T, and P2a = . Our goal is to find the best # that governs the link perfor-

mance function, and find Pla and P2a for each link a that fit the empirical data.

We first select roads with enough data points to learn the flow-delay curve. The roads

where more than 500 time slots (among the total 2,976 time slots) have at least one taxi

data point are selected. We estimate the link performance function for these selected roads

(approximately 38,000 roads, 49 % of overall 77,000 roads) as shown in Figure 10-10(a).

Second, for the roads rarely driven (Figure 10-10(b)), we calculated TO using the speed

limit. We set Ca as 100, the most frequently observed Ca in the first step.

We find the best parameter that fits all the data points in 2,976 time slots in August,

2010, one data point (flow and delay) per 15 minute slot. We fit the data using # = 2, 3,

and 4 and found that # = 2 maximizes the R squared value. Figure 10-11 shows the data

fit using the function with /3= 2.
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(a) The roads indicated in red were driven by a POB taxi for at least 500 time
slots among 2,976 total time slots.

(b) All the other roads not in (a)

Figure 10-10: Road segments with taxi data

10.2.3 Algorithm Implementation

Our data set includes several thousand simultaneous trips that need to be planned as shown

in 10-9(a). Using a modest computing platform (4 2GH CPU cores and 8 GB main mem-

ory), we select a random subset of size 100 from the total trips to plan and compute the

social optimum for a predefined time interval. We save the computation result and iterate

this procedure with other random subsets.
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Figure 10-11: Goodness of fit for estimated link performance functions. The data points
are color-coded by the time of day as indicated in the legend. A data point represents flow
and speed information gathered by loop detectors and taxis for each 15-minute time block
in August 2010.

10.2.4 Results

In this section we describe the results of our experiments for all the POB taxi trips for

August 2, 2010 (Monday). We used 5 paths for each O-D pair. One path was chosen as

the real path driven by the taxi; 4 paths were computed using the mean travel time of road

segments calculated from taxi data.

The travel time comparison between real taxi paths, greedy paths, and social optimum

paths of different times of the day is shown in Figure 10-13. For example, the total travel

time for 3,400 trips during 5 pm ~ 5:15 pm on August 2, 2010 is 769 hours, which is 13.58

minutes per trip on average. The total travel time for the total 3,400 trips computed using

our congestion model is 728 hours, or 12.86 minutes per trip on average. At the social

optimum, the total travel time is 641 hours, which is 11.32 minutes per trip on average.
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Figure 10-12: Histogram of Tao (left) and Ca (right)

Algorithm 18: Compute-Social-Optimum

Data: underlying traffic, O-D pairs and path sets for all the trips to be planned;
Result: socially optimal paths;
Load underlying traffic;
Initialize link flows using the underlying traffic;
for a random subset of the total trips do

Load saved underlying traffic and path selection probability for each driver;
Set link flows using the underlying traffic.;
Run Algorithm 14 for a predefined time interval;
Save the underlying traffic and path selection probability for each driver;

end

Thus, the congestion-aware social-optimum algorithm saves on average 15% of the total

travel time (approximately 2 minutes per trip on average). The total saved time for the

taxi company for the day's operation would have been 395 days if the taxis followed our

social optimum assignment. Note that this saving is only for POB taxi trips, which range

from 500 to 4,500 for each 15-minute time slot depending on the time of day as shown in

Figure 10-9(a).

To see how much we can save depending on the number of agents participating in the

social optimum assignment, we conducted an experiment using only sub-sampled taxis for

social optimum assignment. The savings for taxis are calculated by observing the difference

between the estimated travel time of those taxis for the real paths and the estimated travel

time in social optimum assignment. To calculate the savings for the total traffic we find the
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Figure 10-13: Total cost (top) and average cost (bottom) per trip for real taxi trips, greedy-
optimal paths and socially optimal paths over time of day. The plots are computed using the
real taxi data for Monday, August 2, 2010. To simplify the exposition and data presentation,
the plot shows the first 15-minute time slot in every three hour-block. Our estimates using
the congestion model for the real taxi trips (green) are close to the cost experienced by
the taxis (red). The socially optimal assignment (blue) has about 15% reduction of the total
cost. This is equivalent to 200 hours of travel time savings for 3,600 taxis from 8 am to 8:15
am. The greedy assignment based on the historical information produces worse (longer)
paths than the real taxi trips. This shows that the single user traffic planning algorithms can
be detrimental when they are used simultaneously by many users.
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flow of edges and the travel time for each edge using the learned link performance function.

Then, we find the total cost. We find the savings for general traffic by subtracting this from

the original total travel time of general traffic. Figure 10-15 shows the effect of number

of taxis on the savings. The time saved for participating taxis increases as more taxis get

involved with social optimum assignment, and its growth rate decreases slightly as more

taxis are involved. The savings for total traffic (including taxis) also increases. This shows

that taxis' social optimum assignment considers the general traffic and that the general

traffic gains advantage from these participating taxis. The savings for general traffic are

2.12 % of the travel time for the general traffic when 3,300 taxis follow our social optimum

assignment. Thus, we can expect more savings for total traffic when the number of cars

participating in our social optimum assignment grows.

We can clearly observe that the saving for general traffic increases as more taxis are

used. This is because our social optimum assignment algorithm not only considers the cost

of taxi but also the general traffic's cost. Thus, as we have additional drivers join the social

optimum assignment, we can expect that the total cost only decreases.
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Figure 10-14: The travel time for real taxi trips, greedy-optimal paths, and socially optimal
paths over the number of taxis used. We subsampled the total 3,600 POB taxis that start
their trips between 08:00~08:15am on August 2, 2010. The x axis denotes the number of
taxis used for our social optimum assignment. The y axis indicates the total travel time for
the number of taxis used.
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Figure 10-15: The savings for travel time for social optimum assignment of sampled taxis.
We subsampled the total 3,600 POB taxis that start their trips between 08:00~08:15am
on August 2, 2010. The x axis denotes the number of taxis participating in our social
optimum assignment. The y axis indicates the number of hours saved. The savings for
participating taxis are shown as 'Savings for taxis' and the savings for total traffic are
shown as 'Savings for total traffic' based on the estimated travel time at social optimum
assignment and estimated travel time for the real assignment.

Figure 10-16 shows the trip time histogram for 8:00~8:15 am on August 2, 2010. It

shows that the travel times for trips are reduced when we assign the taxis through social

optimum paths. The total traffic flow and the taxi flow for the same time slot are visualized

in Figure 10-17. We can clearly see that the social optimum planning system distributes taxi

traffic in a way that avoids congested road segments, whereas the greedy solution generates

more congestion.

183



1000

800

600

400

200

0

1000 r

800

600

400

200

'0

20 40

Time (minutes)

10001

Cl)

E
:3
Z

60

800

600

400-

200-

OL-

0 20 40

Time (minutes)

20 40 60

Time (minutes)

Figure 10-16: Histogram of trip lengths. Real assignment (top left), greedy assignment
(top right), and the social optimum assignment (bottom left). We used the total 3,600 POB
taxis that start their trips between 08:00-08:15am on August 2, 2010. The red vertical
lines indicate the mean.
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(c) POB taxi traffic with greedy paths (d) POB taxi traffic with socially optimal paths

Figure 10-17: Traffic flow between 8 am ~ 8:15 am on August 2, 2010. The width of the line indicates the amount of traffic flow during
the 15-minute slot. The amount of flow is also color-coded continuously from red (high) to blue (low). Red encodes high traffic flows;
blue encodes low traffic flows. The thicker the red lines, the higher the traffic flows. The flow pattern for real taxi traffic (b) is similar
to the total traffic (a). We see that the taxis' flow at social optimum is very different from the real taxi traffic, and the social optimum
assignment is distributing the taxi traffic across roads (d), whereas the greedy assignment increases the traffic on the popular roads (c).

(a) Real total traffic (from taxis and loops) (b) Real taxi traffic (POB taxis, no loops)



10.3 Synopsis

In this chapter, we have presented a traffic information and congestion-aware route plan-

ning system that supports multiple drivers on a road network. We have shown that taxi

probes can be used to infer traffic patterns such as congestion patterns, traffic hotspots,

and historical traffic volumes. Using the learned congestion model, we developed a multi-

agent route planning system capable of computing socially-optimal paths. We evaluated

the performance of this system using traffic data recorded in Singapore by 16,000 taxis.

The experiments show that socially-optimal congestion-aware routing achieves 15% travel

time reduction. In our experiments, we controlled a fraction of the traffic (the taxi traffic

due to POB accounted for approximately 10% of the total traffic; this fraction was esti-

mated by comparing taxi volume counts to loop detector counts.) We hypothesize that the

savings would be larger if a larger fraction of the overall traffic can be controlled.
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Chapter 11

Conclusions, Lessons Learned, and

Future Work

In this thesis, we develop congestion-aware routing algorithms based on data-driven traffic

modeling. These highly efficient algorithms make possible much improved large-scale

traffic planning. We have developed efficient route planning algorithms that consider (1)

uncertainties in travel time and (2) the congestion effect according to the drivers' path

choices. The algorithms are designed in such a way that they can be implemented in a

large network with a large number of agents. The traffic models for the algorithm are

estimated using the real data from inductive loop detectors and a fleet of roving taxis, and

they capture important characteristics of traffic conditions, including uncertainty in travel

time and congestion created by agents' road usage. We design the predictive model to

infer the general traffic flow from taxi data and loop detector data. Using the developed

algorithms and data-driven congestion models, we implement a traffic routing system for

multiple agents. We evaluate our algorithm using the sensor data. We demonstrate that we

can achieve the users' goals while reducing the travel time for the users and for the society

when our algorithms are applied. By running very large scale experiments using the real

data from 16,000 taxis and 10,000 loop detectors, we show that the city-scale congestion

can be mitigated by planning drivers' routes, while incorporating the congestion effects

generated by their route choices.

Though the work was motivated by the multi-agent navigation problem in a stochastic
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network, the algorithms presented in this chapter are general; hence, they can be applied

in many areas of motion planning problems, as well as uncertainty or risk management

problems in many more areas.

Lessons Learned In the course of this research we have learned several valuable lessons

concerning data processing, analysis, and algorithm development.

Firstly, we have learned that the modeling of the traffic and prediction algorithms should

be based on data. The data we work on always have anomalies and outliers. In addition,

the data do not correspond perfectly to the theoretical expectation. For example, the fun-

damental diagram theory describes an ideal situation but the data show more complicated

relationships. We needed to modify the previous models based on our data. The data indi-

cate what the important factors are as well as what and how we should model with the data.

We should look at data and accurately capture what is indicated.

A second lesson we have learned is that a combination of ideas from different disci-

plines can generate powerful methods. The concept of consensus controller was borrowed

from multiple robot coordination and applied to solve a very large-scale problem in a road

network.

The third lesson we have learned is that efficient algorithm development is crucial for

large-scale multi-agent route planning problems, and that distributed algorithms and im-

plementation make large-scale applications possible. We have seen that the computational

cost can be reduced using efficient algorithms that apply the specific computational struc-

ture of the problems. We have learned that a decentralized algorithm can find a global

solution using local information. The appropriate decomposition of the problem allows the

local knowledge to be sufficient for computing globally optimal solutions, and it enables

decentralized computation for large-scale traffic route planning. We have learned that the

formulation of the problem is general so that it can be used in many settings. We have

developed our algorithm in traffic planning settings. However, we realized that many other

problems can be modeled in a similar way. Robotic motion planning and financial risk

management are such examples.
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Future Work This thesis is a step towards city-scale congestion detection and control in

urban environments using dynamic sensors. The research in this thesis also points toward

several lines of future work.

One interesting direction for future research is to improve the generalization techniques

for traffic flow estimation. Our flow estimation algorithm used similarity information be-

tween road segments. If we have more information about the road category, etc., we can try

to use it to classify the roads. We can also use the new information for finding an optimal

weight for similarities. This study has been conducted using Singapore data. We envision

running our algorithm in different cities.

Another avenue for future work is to develop a congestion-aware dynamic road pricing

scheme as an on-line control alternative for congestion. Theoretically, it is well known that

the marginal cost should be charged to make selfish agents use the social optimum paths.

However, the values of time delay perceived by different users may be different. Thus, we

need to quantify how much the time value corresponds to the money value, and use it to

implement the congestion pricing algorithms.

It would also be interesting to identify various extensions of this work, including appli-

cations of the dynamic congestion model. In a multi-agent route planning algorithm area,

we are working on the multi-agent routing problem considering spatio-temporal interaction

between cars. In this thesis, we developed a multi-agent routing algorithm using a prede-

fined number of paths for each agent. We can also work on changing the set of paths in the

process of computing the paths. To create a multi-agent route planning algorithm dealing

with both uncertainty and congestion would be a good research direction as well.

We studied the mobility pattern in terms of the origin and destination. This information

is valuable information for road traffic management. We have ground-truth information for

each taxi's origin and destination. Currently, we have shown the effect of our algorithm on

city-scale deployment using taxis. Estimation of the origin and destination distribution of

other drivers using taxi data is a future research problem. One approach is to use subsample

taxi data for the estimation and validate the estimation algorithm using the test set. Accurate

estimation of the origin and destination distribution of general traffic will enable more

realistic simulation of our multi-agent path planning algorithms for general traffic.
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