
Spinal Codes
by

Jonathan Perry

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

c©Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 31, 2012

Certified by .
Hari Balakrishnan

Professor
Thesis Supervisor

Certified by .
Devavrat Shah

Associate Professor
Thesis Supervisor

Accepted by. .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students

Spinal Codes

by

Jonathan Perry

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract
Spinal codes are a new class of rateless codes that enable wireless networks to cope with
time-varying channel conditions in a natural way, without requiring any explicit bit rate
selection. The key idea in the code is the sequential application of a pseudo-random hash
function to the message bits, to produce a sequence of coded symbols for transmission. This
encoding ensures that two input messages that differ in even one bit lead to very different
coded sequences after the point at which they differ, providing good resilience to noise
and bit errors. To decode spinal codes, we develop an approximate maximum-likelihood
decoder, called the bubble decoder, which runs in time polynomial in the message size
and achieves the Shannon capacity over both additive white Gaussian noise (AWGN) and
binary symmetric channel (BSC) models. The decoder trades off throughput for computa-
tion (hardware area or decoding time), allowing the decoder to scale gracefully with avail-
able hardware resources. Experimental results obtained from a software implementation
of a linear-time decoder show that spinal codes achieve higher throughput than fixed-rate
LDPC codes [11], rateless Raptor codes [35], and the layered rateless coding approach [8]
of Strider [12], across a wide range of channel conditions and message sizes. An early
hardware prototype that can decode at 10 Mbits/s in FPGA demonstrates that spinal codes
are a practical construction.

Thesis Supervisor: Hari Balakrishnan
Title: Professor

Thesis Supervisor: Devavrat Shah
Title: Associate Professor

2

Acknowledgments

First and foremost, I would like to thank my wife, Noa, who courageously joined me

halfway across the world despite the uncertainty involved, and who always brings me sun-

shine on a cloudy day.

My family has a large part in this work getting done. Since I can remember, my parents

practiced the art of following one’s dreams, and have helped me follow mine. My grand-

parents Efraim and Miki offered their love and support: Miki, with his endless devotion,

always encouraged me to study, and offered help and guidance whenever possible; Efraim,

an example of independence, provided me with well-needed breaks from work during our

enjoyable outings to local pubs. I thank my aunt Miriam, for her infinite wisdom, her

calming patience, and her pride from doing the highest quality work.

I am lucky to work with two awesome advisors: Hari Balakrishnan and Devavrat Shah.

This work would not have been possible without them. In addition to being exceptional

professionally, they are great fun to work with. Both of them welcomed me with open

arms, and I have come to consider them a part of the family.

Thanks are due to Avinatan Hassidim, Eli Porat and Noga Alon, who believed in me

and helped open the doors to my graduate studies.

The MIT community created a fun and challenging environment where research can be

done. Special thanks go to the friends on the ninth floor; to the great courses offered and

their instructors, of which Dina Katabi deserves special notice for 6.829, the course which

introduced me to wireless networking; to Barbara Liskov for an endless supply of espresso.

I thank Aditya Gudipati for support in implementing Strider, and David Andersen, Nick

Feamster, Daniel Halperin, Mark Handley, Kyle Jamieson, Henry Pfister, Tom Richardson,

Pramod Viswanath, Lizhong Zheng, and the SIGCOMM reviewers for helpful comments.

Two generous graduate fellowships supported this work: the Irwin and Joan Jacobs

Presidential Fellowship, and the Claude E. Shannon Assistantship.

3

Contents

1 Introduction 7

2 Related Work 10

3 Encoding 13

4 Decoding 17

5 Puncturing 23

6 Link-layer Framing 25

7 Implementation 27

8 Evaluation and Parameter Choice 30

9 Conclusion 43

A Proof Sketch of Theorem 1 44

B Hardware Prototype Implementation 49

4

List of Figures

3-1 Encoding process . 14

3-2 Uniform and truncated Gaussian constellation mapping functions 16

4-1 Sequential decoding process using the bubble decoder 19

5-1 Puncturing schedule . 24

8-1 Rate comparison: spinal, raptor, strider, LDPC 32

8-2 Throughput of the rateless spinal code compared to various rated versions

of the spinal code. 34

8-3 Spinal, raptor and strider short message performance 35

8-4 Fading channel performance: spinal and strider 36

8-5 Fading channel performance: spinal and strider AWGN decoders 36

8-6 Compute vs. performance tradeoff . 37

8-7 Throughput with different bubble depth d 38

8-8 Throughput with different densities of output symbols 39

8-9 Throughput with different number of tail symbols 39

8-10 Throughput with different puncturing schedules 40

8-11 CDF of number of symbols required to decode at different SNRs 41

8-12 Effect of code block length on performance 42

B-1 Hardware implementation block diagram 50

B-2 Hardware performance compared to simulation results 51

5

List of Tables

8.1 Different constellation PAPR for 802.11a/g OFDM 41

6

Chapter 1

Introduction

Signal attenuation, noise, multipath fading, and interference all make it difficult to achieve

high throughput over wireless networks. Achieving high throughput is challenging even

when the channel is characterized by a single invariant parameter such as the noise variance

or the bit-error rate, but in practice, mobility and interference cause conditions to vary over

multiple time-scales. Currently deployed solutions to this problem in wireless LANs and

cellular networks are reactive; they measure the channel to dynamically select a “bit rate”—

i.e., a modulation scheme, channel code, and code rate—from a set of pre-defined choices.

An alternate approach is to use a rateless code between the sender and receiver [8, 12,

28, 29]. With a rateless code, the sender encodes the message bits so that every achiev-

able higher rate is a prefix of achievable lower rates. The sender keeps transmitting coded

data until the receiver informs the sender that it has correctly decoded all the data (or the

sender gives up). An ideal rateless code can be decoded correctly with modest computa-

tional complexity as soon as the effective rate drops below the capacity of the channel; the

prefix property of such a code eliminates the need for the heuristics used in explicit bit rate

selection.

This paper presents the encoding, decoding, and performance of spinal codes, a new

class of rateless codes. Spinal codes can encode message bits directly to constellation

symbols (which is somewhat unusual), or they can produce a sequence of coded bits to be

transmitted using any pre-existing symbol set. The first approach is preferable because the

spinal decoder can extract information from the raw received symbols without a demapping

7

step, permitting the use of the same dense constellation at all signal-to-noise ratios (SNR).

Even without control over the physical layer, spinal codes may be useful over an existing

physical layer modulation to improve throughput and error resilience.

Spinal codes apply a hash function sequentially to successive portions of the original

message bits to produce a pseudo-random mapping from message bits to coded bits, and

then use a constellation mapping function to produce a sequence of symbols for trans-

mission. Thanks to the sequential application of the hash function, two input messages

differing in even a single bit result in independent, seemingly random symbols after the

point at which they differ: any difference between messages is magnified in the encoded

symbols. This property makes the code robust to noise and errors; it achieves reasonable

rates even at SNR as low as −5 dB.

No previous code uses a hash function because good hash functions, by design, do not

possess a simple, invertible structure. Therefore, unlike previous codes such as low-density

parity check (LDPC) [11], LT [22], or Reed-Solomon [44] codes whose decoders exploit

graphical or algebraic properties, spinal decoding requires a different strategy.

So how does one decode spinal codes? Our solution draws its strength from the sequen-

tial structure of the encoding. The idea is to search over a tree, breadth first, with edges

weighted by the difference between the actual received symbols and the result of replaying

the encoder for different potential message bit sequences. The shortest path is an exact

maximum-likelihood (ML) decoding, but the size of the tree is exponential in the message

length. We introduce a polynomial-time method, called the bubble decoder, which prunes

the tree to produce an approximate ML estimate of the message. Theoretically, the bubble

decoder achieves capacity. To the best of our knowledge, spinal codes are the first rateless

codes with an efficient encoder and decoder that achieve capacity over both AWGN and

BSC (bit-flip) models.

Our experiments conducted using a linear-time spinal decoder compare spinal codes to

Raptor [35, 27] over a dense QAM-256 constellation, Strider [12], and LDPC codes [11].

We present four principal experimental results. First, the rate improvements of spinal codes

over Raptor and Strider (both rateless codes) for AWGN channels are significant:

8

SNR Raptor/QAM-256 Strider

High (> 20 dB) 21% 40%

Medium (10−20 dB) 12% 25%

Low (< 10 dB) 20% 32%

Second, spinal codes outperform the best envelope of the 802.11n family of LDPC

codes, because of a “hedging” effect that we identify. Rateless codes over modest code

block lengths are able to take advantage of channel variations that are inevitable even when

the SNR is fixed, unlike fixed-rate codes.

Third, on a Rayleigh fading channel model, spinal codes outperform Strider by between

19% and 28% at an SNR of 10 dB and by between 28% and 33% at an SNR of 20 dB. We

augmented Strider with a puncturing strategy, which improved Strider’s performance; the

augmented version, however, still underperforms in comparison to spinal codes. We also

found that spinal codes perform reasonably well even when the decoder does not have

detailed or accurate fading information, unlike Strider.

Fourth, for small packets, typical of Internet telephony or gaming applications, spinal

codes outperform Raptor by between 14%−20%, and Strider by between 2.5× and 10×.

To demonstrate that spinal codes are indeed practical to implement, we have built a

hardware prototype that achieves over-the-air rates comparable to equivalent software sim-

ulations for SNR between 2 dB and 15 dB. The FPGA decoder runs at 10 Mbits/s. Using

the appropriate tools, we estimate that a silicon implementation of the design would operate

at about 50 Mbits/s.

We believe these experimental results show that spinal codes are a promising and practi-

cal advance for wireless networks. Moreover, spinal codes present a conceptual framework

for making Shannon’s random coding ideas, which form the basis of many fundamental

capacity proofs, practical.

9

Chapter 2

Related Work

Current wireless networks, including 802.11 and various wide-area cellular wireless stan-

dards, provide a large number of physical layer (PHY) configurations, including various

codes, various parameters for these codes, several choices of symbol sets (i.e., constel-

lations) over which to modulate bits, and a way to map groups of bits to symbols (e.g.,

Gray code). These networks implement explicit, reactive bit rate adaptation policies to

dynamically select and configure the discrete choices and parameters provided by the

PHY [15, 19, 43, 32, 45, 7].

In recent years, there has been strong interest in rateless codes over both erasure (packet

loss) and wireless (AWGN and BSC) channel models. By “rateless”, we mean a code

where the sequence of coded bits (or symbols) when the code achieves a higher rate is

a prefix of the sequence when the code achieves a lower rate [8]. This prefix property

allows a decoder to process coded data incrementally until successful decoding is possible.

Shannon’s random codebook approach used in the proofs of capacity is inherently rateless,

achieving capacity for channels characterized by a single noise or error parameter [34, 36].

Unfortunately, it is computationally intractable.

The desire for computationally efficient, capacity-achieving rateless codes led to Shokrol-

lahi’s work on Raptor codes [35, 9], which are built on Luby’s LT codes [22]. They achieve

capacity for the Binary Erasure Channel where packets are lost with some probability. On

AWGN and BSC models (which model wireless better), not much is known about how

close Raptor codes come to capacity. There have, however, been several attempts made to

10

extend Raptor codes to the AWGN channel [27, 37, 4]; we compare spinal codes with an

extension of the method of Palanki and Yedidia [27].

Erez et al. recently proposed a “layered approach” to design rateless codes for the

AWGN channel [8]. This approach combines existing fixed-rate base codes to produce

symbols in a rateless manner. By carefully selecting linear combinations of symbols gen-

erated by the base codes, they show that the resulting rateless code can achieve capacity as

the number of layers increases, provided the fixed-rate base code achieves capacity at some

fixed SNR. Strider [12] uses this layered approach, with a base turbo-code [6].

In contrast, spinal codes are not layered codes; they do not rely on existing fixed-rate

base codes. Unlike Strider, which takes an existing fixed-rate code and symbol set system

and makes modifications to the lowest PHY procedures to achieve linear combinations of

symbols, the construction of spinal codes provides a single (arguably simpler) mechanism

to overcome channel impediments. Spinal codes also naturally extend to the BSC case,

whereas the layered approach does not. We compare spinal codes with Strider in §8.

Unlike most existing practical codes, spinal codes are nonlinear; i.e., the coded symbols

(bits) are not linear combinations of input message bits. Using hash functions, it produces

good coded sequences without requiring operations such as multiplying message bits by

a random matrix or using complex graph structures. Raptor and LT codes use a pseudo-

random number generator (through choice of the graph structure) to choose which bits to

XOR together, whereas spinal codes use a pseudo-random number generator directly to

produce symbols.

The M-algorithm [1, 18, 30] is a method to efficiently decode over a tree for random

convolutional codes [42]. Our bubble decoder may be viewed as a generalization of the

classical sequential decoding algorithm as well as the M-algorithm, as explained in §4.3.

We also note a superficial similarity between the direct coding to symbols used in spinal

codes and Trellis Coded Modulation (TCM) [40, 39]. TCM was crafted specifically to

achieve high minimum distance between codewords under a sparse constellation for con-

volutional codes, whereas spinal codes aim to attain higher mean distance, obviating the

need for sparse constellations. TCM is not rateless, does not achieve capacity for AWGN,

is not workable (in any obvious way) for BSC, and is specific to convolutional codes.

11

Among fixed-rate codes for communication applications, convolutional codes [42],

LDPC [11] and turbo-codes [6] are the most widely used. Because LDPC and turbo-

codes perform well, much simulation work has been done on puncturing these codes and

combining them with incremental redundancy in an attempt to emulate rateless opera-

tion [24, 21, 13, 33]. We compare spinal codes to LDPC codes decoded using a strong

belief propagation decoder.

12

Chapter 3

Encoding

This section describes the encoder for spinal codes. We describe it in the context of a

system that has full control of the physical layer, so the encoder produces a sequence of

symbols for transmission and the decoder operates on the received symbol sequence to

produce an estimate of the original message bits. By slightly modifying the encoder and

decoder, it is straightforward to apply the code to a system that has an existing mapping

from (coded) bits to symbols.

The encoding procedure takes the input message bits, M = m1m2 . . .mn, and produces

a sequence of symbols on the I-Q plane. At the receiver, the PHY receives a stream of

symbols on the I-Q plane. The decoder processes this stream sequentially, continuing until

the message is successfully decoded, or until the sender (or receiver) gives up, causing the

sender to proceed to the next message. In practice, a single link-layer frame might comprise

multiple coded messages, as explained in §6.

When used in rateless mode, spinal encoder can produce as many symbols as necessary

from a given sequence of message bits. The sequence of coded bits or symbols generated

at a higher code rate is a prefix of that generated at all lower code rates.

13

Figure 3-1: Encoding process. Start with a hash function, h. Compute spine values si =
h(si−1, m̄i). Seed RNG with si. For pass `, map c bits from RNG to symbol xi,`.

3.1 Spine Construction

At the core of the spinal code is a hash function, h, and a pseudo-random number generator,

RNG, known to both the transmitter and receiver. h takes two inputs: (1) a ν-bit state and

(2) k message bits. It returns a new ν-bit state. That is,

h : {0,1}ν ×{0,1}k→{0,1}ν .

The initial value, s0, of the ν-bit state is known to both the encoder and decoder, and may

be considered (for now) to be the string 0ν without loss of generality.

As shown in Figure 3-1, the idea is to build a spine of ν-bit states by sequentially

hashing together groups of k bits from the input message. We denote bits mki+1 . . .mk(i+1)

as m̄i, so the sequence of states is simply

si = h(si−1, m̄i), s0 = 0ν .

Each of these n/k states, or spine values (n being the number of bits in the input mes-

sage), is used to seed a random number generator, RNG. Each RNG generates a sequence

of pseudo-random c-bit numbers, which are converted into output symbols using a constel-

lation mapping function (§3.3). RNG is a deterministic function from a ν-bit seed and an

14

index to a c-bit number:

RNG : {0,1}ν ×N→{0,1}c.

The sequence of states computed by repeatedly applying h is superficially similar to

a traditional convolutional encoding, but there are three key differences. First, the hash

function has a richer pseudo-random (and generally nonlinear) structure and operates on a

significantly larger ν-bit state, where ν is on the order of 32. (Hash collisions are a potential

concern; §8.4 shows that they can be made extremely rare.) Traditional convolutional codes

update their state according to a linear (exclusive-or) function. The larger state space of the

spinal encoder gives rise to the second major difference: the “constraint length” of this

encoding goes all the way back to the start of the message, because the state at the end

of any stage depends on all the input message bits in the message until that point. The

third key difference is that, whereas a convolutional encoder has a constant ratio of the

number of input to output bits (i.e., a fixed rate), the spinal code is rateless because one

can generate as many transmission symbols as desired using the RNG. h and RNG together

allow the spinal encoding to not only achieve good separation between codewords, but also

ratelessness.

3.2 Hash Function and RNG

We choose h uniformly using a random seed from a pairwise independent family of hash

functions H [25]. This property guarantees that for two distinct hash inputs x and y, every

pair of output values a and b is equally likely. This property is standard and attainable

in practice. The encoder and decoder both know h, RNG, and the initial value s0; if s0

is chosen pseudo-randomly, the resulting symbol sequence is pseudo-random, providing

resilience against “bad” or adversarial input message sequences (one may view the use of

a pseudo-random s0 as analogous to a scrambler).

Because our requirements for RNG are similar to those for h, one suitable choice for

RNG is to combine h with a ν-to-c-bit shift register.

15

I

Q

I

Q

Figure 3-2: Uniform (left) and truncated Gaussian (right) constellation mapping functions.
Same average power; c = 6; truncated Gaussian with β = 2.

3.3 Rateless Symbol Generation

The output of the encoder is delivered in a series of passes of n/k symbols each, as depicted

in Figure 3-1. The encoder produces symbols xi,1 for the first pass, where xi,1 is the output

of a deterministic constellation mapping function acting on the first c-bit number generated

by the ith RNG (seeded by si). It produces symbols xi,` for subsequent passes by generating

additional outputs from each of the random number generators. The encoder continues

to loop back and generate additional symbols until the receiver manages to decode the

message or the sender or receiver decides to give up on the message.

Let b be a single c-bit input to the constellation mapping function. For the BSC, the

constellation mapping is trivial: c = 1, and the sender transmits b. For the AWGN channel

(with or without fading), the encoder needs to generate I and Q under an average power

constraint. The constellation mapping function generates I and Q independently from two

separate RNG outputs of c bits each.

We examine the two constellation mappings shown in Figure 3-2. The first is uniform,

and the second produces a truncated Gaussian via the standard normal CDF, Φ. In terms

of the average power P,

Uniform: b→ (u−1/2)
√

6P

Gaussian: b→Φ−1(γ +(1−2γ)u)
√

P/2
u =

b+1/2
2c

where γ ≡ Φ(−β) limits the Gaussian’s range to ±β
√

P/2. β controls the truncation

width. Very small corrections to P are omitted.

16

Chapter 4

Decoding

In this section, we present an efficient bubble decoder for spinal codes. This is an approx-

imate ML decoder whose time and space complexity are polynomial in the number of bits

in the message being recovered. Later in this section and in Appendix A, we show that the

polynomial-time approximation of ML decoding achieves capacity over both the AWGN

and BSC models. In §8, we show experimentally that a linear-time bubble decoder achieves

throughput close to the Shannon limit, outperforming state-of-the-art rated codes (LDPC)

and recent rateless codes (Raptor and Strider).

4.1 The Problem

The central concept in ML spinal decoding is to search for the encoded message that differs

least from the received signal. Given a vector of observations ȳ and an encoder function

x̄(M) that yields the vector of transmitted symbols for a message M, the ML rule for the

AWGN channel is then

M̂ ∈ argmin
M′∈{0,1}n

‖ȳ− x̄(M′)‖2. (4.1)

That is, the receiver’s estimated message M̂ ∈ {0,1}n is the one that produces an encoded

vector x̄(M̂) closest to ȳ in `2 distance. For the BSC, the only change is to replace the `2

Euclidean distance with Hamming distance.

17

Because spinal codes are rateless, the lengths of vectors x̄ and ȳ increase as the trans-

mitter sends more symbols through the channel. Suppose that the transmitter has sent N

symbols up to the present. The set of all transmitted words {x̄(M′) for all M′ ∈ {0,1}n}
forms a dense cloud in N-dimensional space. Under Gaussian noise, nearby points in the

cloud are initially indistinguishable at the receiver. As N increases, however, the average

separation of the points increases. Eventually, n/N (whose dimensions are bits/symbol)

drops below the Shannon capacity. The separation of the points then becomes great enough

that the correct message is the argmin, and decoding terminates.

The brute-force approach to ML decoding is to conduct an exhaustive search over all

2n possible messages. Thus, the key question is whether it is possible to develop a practical

and implementable spinal decoder. Fortunately, the sequential structure of spinal codes and

the powerful mixing effect of h and RNG enable efficient decoding, as explained next.

4.2 Decoding over a Tree

Because the spinal encoder applies the hash function sequentially, input messages with a

common prefix will also have a common spine prefix, and the symbols produced by the

RNG from the shared spine values will be identical. The key to exploiting this structure is

to decompose the total distance in (4.1) into a sum over spine values. If we break ȳ into

sub-vectors ȳ1, . . . , ȳn/k containing symbols from spine values si of the correct message,

and we break x̄(M′) for the candidate message into n/k vectors x̄i(s′i), the cost function

becomes:

‖ȳ− x̄(M′)‖2 =
n/k

∑
i=1
‖ȳi− x̄i(s′i)‖2. (4.2)

A summand ‖ȳi− x̄i(si)‖2 only needs to be computed once for all messages that share the

same spine value si. The following construction takes advantage of this property.

Ignoring hash function collisions (discussed in §8.4), decoding can be recast as a search

over a tree of message prefixes. The root of this decoding tree is s0, and corresponds to the

zero-length message. Each node at depth d corresponds to a prefix of length kd bits, and is

18

Figure 4-1: Sequential decoding process using the bubble decoder with B = 2, d = 2, k = 1.
(a) At the beginning of step i, the partial trees have depth d−1. (b) Grow them out to depth
d. (c) Propagate the smallest path costs back through the tree. (d) Select the B best children,
pruning the rest. Advance to the next step and repeat.

labeled with the final spine value sd of that prefix. Every node has 2k children, connected

by edges e = (sd,sd+1) representing a choice of k message bits m̄e. As in the encoder, sd+1

is h(sd, m̄e). By walking back up the tree to the root and reading k bits from each edge, we

can find the message prefix for a given node.

To the edge incident on node sd , we assign a branch cost ‖ȳd − x̄d(sd)‖2. Summing

branch costs on the path from the root to a node gives the path cost of that node, equivalent

to the sum in (4.2). The ML decoder finds the leaf with the lowest cost, and returns the

corresponding complete message.

The sender continues to send successive passes until the receiver determines that the

message has been decoded correctly. The receiver stores all the symbols it receives until

the message is decoded correctly. For instance, if six symbols have been received so far for

each spine value, then the vectors x̄d in the cost computation above have six components.

4.3 Bubble Decoding: Pruning the Tree

Suppose that M and M′ differ only in the ith bit. Comparing x̄(M) with x̄(M′), we find that

symbols from spine values bi/kc, . . . ,n/k in the two transmissions are completely dissim-

ilar. If M is the correct decoding, then M′ will have a larger path cost than M. The gap

will be largest when i is small. This observation suggests a helpful intuition, which can be

derived more formally from the proof of the theorem in the appendix: alternate codewords

19

with comparable path costs to the ML decoding differ only in the last O(logn) bits.

Building on this idea, suppose that we have constructed the entire ML decoding tree

and computed the path costs for all of the leaves. If we pick the best 100 leaves and trace

them back through the tree, we expect to find that within a few times logn steps, they all

converge to a small number of common ancestors.

Consequently, our proposed bubble decoder accepts two parameters: the depth d, and

the beam width B. Instead of searching the entire decoding tree, we maintain B com-

mon ancestors, termed the beam, and a partial decoding tree rooted on each ancestor. The

pseudo-code for the bubble decoder is:

Let T0 be the tree of nodes out to depth d from root.

beam←{T0} # set of rooted trees

for i = 1 to n/k−d do

candidates← bd ce # list of (tree,cost) tuples

for T ∈ beam do

for T ′ ∈ subtrees(root(T)) do

Expand T ′ from depth d−1 to depth d.

Compute and store path cost in expanded nodes.

cost←min{path cost(x) |x ∈ leaves(T ′)}
candidates.append((T ′,cost))

get B lowest cost candidates, breaking ties arbitrarily

beam← best(candidates,B)

return best(candidates,1)

These steps are depicted in Figure 4-1.

When d = 1, this method is the classical beam search (from AI), also termed the M-

algorithm in communication systems [1]. When d = n/k− logk B, we recover the full ML

decoder without any tree pruning.

20

4.4 Tail Symbols

The bubble decoder ends up with a list of B messages, from which it should produce the

best one. One approach is to reconstruct and validate all B messages, but the cost of doing

so may be too high when B is large. An alternative is to send multiple symbols from sn/k

in each pass (tail symbols), enough that if the correct candidate is in the beam, it has the

lowest path cost. Then, only the lowest path cost message needs to be validated. We find

that producing even just one extra tail symbol in each pass works well.

4.5 Decoding Time and Space Complexity

A single decoding attempt requires n/k−d steps. Each step explores B2kd nodes at a cost

of L RNG evaluations each, where L is the number of passes. Each step selects the best

B candidates in O(B2k) comparisons using the selection algorithm. The overall cost is

O(n
k BL2kd) hashes and O(n

k B2k) comparisons.

Storage requirements are O(B2kd(k+ν)) for the beam and the partial trees, plus O(n
k B(k+

logB)) for message prefixes.

If B is polynomial in n, or if B is constant and d = O(logn), the total number of states

maintained and the time complexity of operations remains polynomial in n. If both B and d

are constant, the complexity of the bubble decoder is linear in n. Our experimental results

are for such linear-time configurations, with B maximized subject to a compute budget

(§8.4).

In comparison, LDPC and Raptor decoders use several iterations of belief propagation

(a global operation involving the entire message). Turbo decoders also require many full

runs of the BCJR [2] or Viterbi algorithm [42]. All told, LDPC, Raptor, and turbo decoders

perform several tens to thousands of operations per bit.

A spinal decoder with an appropriate choice of parameters performs a comparable num-

ber of operations per bit to these codes, achieves competitive throughput (§8), and is paral-

lelizable (§7.2, §B). The spinal decoder has the additional advantage that the decoder can

run as symbols arrive because it operates sequentially over the received data, potentially

21

reducing decode latency.

4.6 Capacity Results

For the AWGN channel with the uniform constellation mapping, we establish that a polynomial-

time decoder achieves rates within a small constant (≈ 0.25 bits/symbol) of capacity. The

proof appears in the appendix. A recent companion paper [3] states and establishes capac-

ity results for the AWGN channel with the Gaussian constellation, and for the BSC: the

spinal decoder achieves capacity under these settings.

Theorem 1 (AWGN Channel Performance) Let Cawgn(SNR) be the AWGN channel ca-

pacity per channel use. With the uniform constellation, a bubble decoder polynomial in n

achieves BER→ 0 as n→ ∞ for any number of passes L such that

L
[
Cawgn(SNR)−δ

]
> k,

with the degree of the polynomial inversely proportional to (Cawgn(SNR)−δ − k/L) and

δ ≡ δ (c,P∗,SNR)≈ 3(1+SNR)2−c +
1
2

log
(

πe
6

)
. (4.3)

This result suggests that with the uniform constellation mapping, by selecting a large

enough c = Ω(log(1+ SNR)), it is possible to achieve rates within 1
2 log(πe/6) ≈ 0.25

of Cawgn(SNR). As mentioned above, it is possible to close this theoretical gap with an

appropriately chosen Gaussian constellation mapping. In simulation with finite n, how-

ever, we do not see significant performance differences between the Gaussian and uniform

mappings.

22

Chapter 5

Puncturing

In §3, the sender transmits one symbol per spine value per pass. If it takes ` passes to

decode the message, the rate achieved is k/` bits per symbol, with a maximum of k. More-

over, at moderate SNR, when ` is a small integer, quantization introduces plateaus in the

throughput. Because the decoding cost is exponential in k, we cannot simply increase k to

overcome these disadvantages.

Spinal codes may be punctured to achieve both high and finer-grained rates, without

increasing the cost of decoding. Rather than sending one symbol per spine value per pass,

the sender skips some spine values and, if required, fills them in subsequent “subpasses”

before starting the next pass.

Figure 5-1 shows transmission schedule we implemented (others are possible). Each

pass is divided into eight subpasses (rows in the figure). Within a subpass, only the spine

values corresponding to dark circles are transmitted. Decoding may terminate after any

subpass, producing a fine-grained set of achievable rates. This schedule nominally permits

rates as high as 8k bits per symbol.

Puncturing does not change the decoder algorithm. For any missing spine value in a

subpass, the associated branch costs are treated as 0, and the children are computed as

before (all the children of a given parent will have the same score). If the correct candidate

falls out of the beam, decoding will indeed fail in this subpass. If B is large enough, the

correct candidate may remain in the beam until the next non-omitted spine value arrives.

In our experiments, we find that B = 256 exhibits the positive benefits of puncturing; as

23

Figure 5-1: Puncturing schedule. In each subpass, the sender transmits symbols for spine
values marked by dark circles; shaded circles represent spine values that have already been
sent in a previous subpass.

computing becomes cheaper, increasing B further will cause the benefits of puncturing to

be even more pronounced.

24

Chapter 6

Link-layer Framing

To use spinal codes, two changes to the traditional (e.g., 802.11) link-layer protocol are

useful. First, because the code is rateless, the encoder and decoder must maintain some

state across distinct frame transmissions, and use the cumulative knowledge of transmitted

symbols to decode a message. The amount of data kept is small (on the order of a few

kilobytes), similar to H-ARQ receivers implementing incremental redundancy (e.g., 3G,

LTE). To prevent an erased frame transmission (e.g., the receiver fails to lock on to the

preamble) from de-synchronizing the receiver (which needs to know which spine values

are being sent in the frame), the sender should use a short sequence number protected with

a highly redundant code (cf. the PLCP header in 802.11).

Second, it is useful to divide a single link-layer frame into multiple code blocks, each

encoded separately. This use of code blocks is unusual, but not unique (cf. 802.11n with

LDPC). The reason we use it is that, for a fixed compute budget at the decoder, shorter

coded messages come closer to the Shannon capacity (§8). Each code block has a maximum

length, n (1024 bits in our experiments).

At the link layer, the sender takes a datagram from the network layer and divides it

into one or more code blocks of size not exceeding n bits. It computes and inserts a 16-bit

CRC at the end of each block to construct a link-layer frame. This frame is handed to the

encoder, which encodes each code block independently to produce symbols.

The sender transmits a certain number of symbols, and then pauses for feedback from

the receiver. An important concern for any rateless code over half-duplex radios is that the

25

receiver cannot send feedback when the sender is still transmitting, and the sender may not

know when to pause for feedback. To achieve high throughput, a good algorithm is required

for determining pause points. We have addressed this problem in more recent work [16].

At the receiver, the decoder processes the received symbols for each code block. If any

block gets decoded successfully (the CRC passes), the next link-layer ACK indicates that

fact. The ACK timing is similar to 802.11, but the ACK contains one bit per code block.

26

Chapter 7

Implementation

This section describes implementation considerations for spinal codes. After describing

general implementation principles, we describe the salient features of our hardware proto-

type.

The first goal when implementing a communication system is selecting the range of

conditions under which we would like the system to perform well. For wireless networks,

we expect the maximum SNR observed in practice to be 30 to 35 dB [14, 10]. At the lower

end, we would like to support as low an SNR as possible, to work in challenging conditions

with high external interference.

An implementation of spinal codes should pre-select (one or more) hash functions,

RNGs, and values of k, perhaps even at the time of protocol standardization. Of course,

these could be selected dynamically from a set of possibilities, but the sender and receiver

need to agree on them. k determines the maximum possible rate (with our puncturing sched-

ule, it is 8k bits/symbol), but the complexity of decoding is exponential in k, so smaller

values have lower decoding cost. In §8.4, we find that k = 4 provides performance close to

capacity for SNRs as high 35 dB.

An attractive property of spinal codes is that, given a value of k, the rate achieved

under any given set of channel conditions depends only on the decoder’s computational

capabilities. The same encoded transmission can achieve a higher rate at a decoder that

invests a greater amount of computation. With bubble decoding, each receiver can pick a B

and d independently (so, for instance, a base station might pick values larger than a phone,

27

and mobile devices could pick different values). The transmitter requires no knowledge

about the receiver’s capabilities, which avoids to need to negotiate supported modulation

and coding schemes (bit rates) on every association.

7.1 Implementation Decisions

Choosing h. Spinal codes rely on the “mixing” ability of the hash function to provide pair-

wise independence. We initially used Salsa20 [5], a cryptographic-strength function with

demonstrated mixing properties. On each use, Salsa20 requires 320 XORs, 320 additions

and 320 rotations on 32-bit words. With these results in hand, we compared code perfor-

mance with two other much cheaper hash functions developed by Jenkins, one-at-a-time

and lookup3.1 The one-at-a-time hash requires just 6 XORs, 15 bit shifts and 10 additions

per application. Our simulations showed no discernible difference in performance between

these three hash functions. We used one-at-a-time in our implementation and experiments.

RNG. We implemented RNG using one-at-a-time; to get the t th output symbol, the encoder

and decoder call h(si, t). This method has the desirable property that not every output sym-

bol has to be generated in sequence: if some frames containing symbols are not recovered,

the decoder need not generate the missing symbols.

Other parameters. We find that c = 6, B = 256, k = 4, d = 1 are good choices of param-

eters; see §8.4 for supporting results.

PHY and link layers. The hardware implementation runs atop an OFDM PHY. It uses

code block sizes of up to 1024 bits with a 16-bit CRC, dividing a longer packet into multiple

1024-bit code blocks.

Decoder details. The bubble decoder may be invoked multiple times on the same message

with different numbers of input symbols. At first glance, it would seem like a good idea to

cache explored nodes in the decoding tree between decoder runs, so in subsequent runs the

scores would only need to be incrementally updated rather than recomputed. However, until

enough symbols have arrived to successfully decode the message, the new symbols end up

1http://en.wikipedia.org/wiki/Jenkins_hash_function

28

http://en.wikipedia.org/wiki/Jenkins_hash_function

changing pruning choices to the extent that caching turns out to be unhelpful. Instead, the

decoder stores the received symbols, and uses them to rebuild the tree in each run.

7.2 Hardware Implementation

For high-speed, low-power, wireless operation, a code must be feasible in hardware. Spinal

codes are attractive to implement in hardware because of the high parallelism and low

latency made possible by their tree-like structure. Thus, spinal codes compare favorably to

other high-performance codes such as turbo and LDPC, which have limited parallelism and

longer latency due to their iterative structure. Details of an FPGA prototype are presented

in Appendix B.

29

Chapter 8

Evaluation and Parameter Choice

Our goal is to evaluate spinal codes under various conditions and compare it to the follow-

ing codes:

LDPC. We use the same combinations of code rates and modulations for our LDPC im-

plementation as in 802.11n [20], using soft demapped information. The code block size

n = 648 bits. We implemented a belief propagation decoder that uses forty full iterations

with a floating point representation [41]. To mimic a good bit rate adaptation strategy such

as SoftRate [43] working atop the LDPC codes, we plot the best envelope of LDPC codes

in our results; i.e., for each SNR, we report the highest rate achieved by the entire family

of LDPC codes.

Raptor code. We follow a similar construction optimized for the AWGN channel to

Yedidia & Palanki [27], with an inner LT code generated using the degree distribution

in the Raptor RFC [23], and an outer LDPC code as suggested by Shokrollahi [35] with a

forty-iteration belief propagation decoder. The outer code rate is 0.95 with a regular left

degree of 4 and a binomial right degree. We experimented with different symbol sets, and

report results for the dense QAM-256 constellation as well as QAM-64. We calculate the

soft information between each received symbol and the other symbols, a process that takes

time exponential in the number of constellation points: QAM-2α requires time Θ(2α/2).

Strider. Our Strider implementation is a C++ port of the Matlab software from Gudipati

[12]. We use the recommended 33 data blocks (layers), a rate-1/5 base turbo code with

30

QPSK modulation, and up to 27 passes. Unless mentioned otherwise, we use the recom-

mended code block size of 50490 bits. A significant enhancement we added to Strider is

puncturing, to enable it to achieve a finer-grained set of rates than in the original work

(denoted by “Strider+”).

8.1 Experimental Setup and Metrics

Software platform. To evaluate the different codes under the same conditions, we inte-

grated all codes into a single framework, built with no sharing of information between the

transmitter and receiver components. A generic rateless execution engine regulates the

streaming of symbols across processing elements from the encoder, through the mapper,

channel simulator, and demapper, to the decoder, and collects performance statistics. All

codes run through the same engine. In most cases, we measure performance across an SNR

range from −5 dB to 35 dB, stepping by 1 dB at a time.

Metrics. We evaluate two metrics: the rate and the gap to capacity. We measure the

rate in bits per symbol, so multiplying that number by the channel bandwidth (in Hz), and

subtracting OFDM overheads, would give the throughput in bits per second.

The gap to capacity is often a more instructive metric than the rate because it allows us

to compare how close different codes are to the Shannon limit. The “gap to capacity” of

a code, C , at a given SNR, is defined as how much more noise a capacity-achieving code

can handle and still provide the same throughput as C . For example, say a code achieves a

rate of 3 bits/symbol at an SNR of 12 dB. Because the Shannon capacity is 3 bits/symbol

at 8.45 dB, the gap to capacity is 8.45−12 =−3.55 dB.

8.2 AWGN Channel Performance

Figure 8-1 shows three charts comparing Raptor codes, Strider, and LDPC codes to spinal

codes from experiments run on the standard code parameters for each code. The first two

charts show the rates as a function of SNR, while the third shows the gap to capacity. The

two spinal code curves (256 and 1024 bits) both come closer to Shannon capacity than any

31

−5 0 5 10 15 20 25 30 35

SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon boundSpinal, n = 256, k=4, B = 256

Spinal, n = 1024, k=4, B = 256

Strider, n = 50490

Strider+, n = 50490

LDPC envelope
Raptor, n = 9500

< 10dB 10-20dB > 20dB
SNR range

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

spinal
raptor
strider
strider+

−5 0 5 10 15 20 25 30 35

SNR (dB)

−8

−7

−6

−5

−4

−3

−2

−1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

Spinal, n = 256, k=4, B = 256

Spinal, n = 1024, k=4, B = 256

Strider, n = 50490

Strider+, n = 50490

LDPC envelope
Raptor, n = 9500

Figure 8-1: Rates achieved by spinal code with k = 4, B = 256, d = 1, and the other codes
(Strider+ is Strider with our puncturing enhancement). Experiments at each SNR average
Raptor performance over 100-300 kbits of data, Strider over 5-20 Mbits, LDPC over 2
Mbits, and spinal codes over 0.6 to 3 Mbits.

of the other codes across all SNR values from −5 dB to 35 dB. The gap-to-capacity curves

show that spinal codes consistently maintain a smaller gap than all the other codes.

We aggregate by SNR to summarize gains under different conditions. Above an SNR

of 20 dB, spinal codes obtain a rate 21% higher than Raptor/QAM-256, 40% higher than

Strider, and 54% higher than the LDPC envelope. Between 10 and 20 dB, spinal codes

achieve a rate 25% higher than Strider and 12% higher than Raptor/QAM-256. At SNRs

below 10 dB, spinal codes achieve a rate 20% higher than Raptor/QAM-256 and 32%

higher than Strider.

Strider. Strider uses 33 parallel rate-1/5 turbo codes with QPSK modulation, so without

puncturing, the rates it achieves track the expression (2/5) ·33/` bits/symbol, where ` is the

number of passes required for successful decoding. In the tested SNR range, Strider needs

32

at least ` = 2 passes to decode, for a maximum rate of 6.6 bits/symbol. The puncturing

enhancement we added (Strider+) produces the more graded set of achieved rates shown

in Figure 8-1. At low SNR, we find that Strider is unable to successfully decode as many

messages as spinal codes. Another source of inefficiency in Strider is that the underlying

rate-1/5 turbo code has a non-negligible gap to capacity. The results (without puncturing)

are generally consistent with Figure 4a in the Strider paper [12]; it is important to note that

the “omniscient” scheme discussed in that paper is constrained to modulation and coding

schemes in 802.11a/g, and as such has a significant gap to the Shannon capacity.

Raptor. We are unaware of any previously reported Raptor result for the AWGN channel

that achieves rates as high as those shown in our implementation [27]. We believe that one

reason for the good performance is that we have a careful demapping scheme that attempts

to preserve as much soft information as possible. That said, spinal codes still perform 12%–

21% better across the entire SNR range, with the greatest gains at low and high SNRs.

There are two reasons for better performance: first, spinal codes naturally incorporate soft

information, while Raptor (and also Strider) loses information in the mapping/demapping

steps, and second, the LT code used in Raptor has some information loss. We experimented

with Raptor/QAM-64 as well, finding that it performs a little better at low-to-medium SNR

(16% worse than spinal codes, rather than 20%), but does much worse (54%) at high SNR.

The dense QAM-256 constellation does entail a significantly higher decoding cost for Rap-

tor, whereas spinal codes naturally support dense constellations.

LDPC. The primary reason why spinal codes do better than the best envelope of LDPC

codes has to do with the ability of rateless codes to take advantage of “lucky” channel

conditions. We term this the hedging effect. Intuitively, hedging is the ability to decode

in less time when the noise is low, without sacrificing reliability. This property is more

general than the LDPC comparison. In particular, Figure 8-2 demonstrates that the rateless

spinal code outperforms every rated version of the spinal code at every SNR.

Constant SNR means that the distribution of the noise does not vary, but the realized

noise does vary substantially over time. Because rated codes cannot adapt to realized noise,

they must be risk-averse to ensure a high probability of decoding. Hence, they tend to

33

−5 0 5 10 15 20 25 30 35

SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon bound
Spinal, rateless
Spinal, fixed rate

6 8 10 12 14
SNR (dB)

0

1

2

3

4

5

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon bound
Spinal, rateless
Spinal, fixed rate

Figure 8-2: Throughput of the rateless spinal code compared to various rated versions of
the spinal code.

occupy the channel for longer than strictly necessary. By contrast, rateless codes can use

the channel for less time when the realized noise is small and thus achieve higher rates. Due

to the law of large numbers (precisely, concentration), this effect diminishes with increasing

message length. For the same reason, rated codes approach capacity only for long message

sizes.

Small code block sizes. The results presented above picked favorable code block (mes-

sage) sizes for each code. For many Internet applications, including audio and games, the

natural packet size is in the 64-256-byte range, rather than tens of thousands of bits. Un-

derstanding the performance of different codes in this regime would help us evaluate their

effectiveness for such applications.

Figure 8-3 shows the rates achieved by spinal codes, Raptor, and Strider at three small

packet sizes: 1024, 2048, and 3072 bits. Each column shows the results obtained for data

transfers in the SNR range 5 to 25 dB. In this range, spinal codes outperform Raptor by

between 14% and 20% for these packet sizes.

The gains over Strider are substantial (2.5× to 10×) even when puncturing is used. To

handle small packets in Strider, we used the same number of layers and reduced the number

of symbols per layer, which is a reasonable method. It is possible that reducing the number

of layers might help, but it is unclear how best to handle smaller sizes in Strider.

34

1024 2048 3072
message length (bits)

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

spinal
raptor
strider
strider+

Figure 8-3: Average fraction of capacity in range 5-20 dB for spinal codes, Raptor and
Strider at different message sizes.

8.3 Fading Channel Performance

This section describes experiments with spinal codes and Strider+ (i.e., with puncturing)

over a fading channel model [38]. The model is a Rayleigh fading environment with two

parameters (σ2,τ). The transmitted signal x is transformed according to y = hx+n, where

y is the received signal, n is Gaussian noise of power σ2, and h is a complex fading coeffi-

cient randomized every τ symbols to a complex number with uniform phase and Rayleigh

magnitude.

The first experiment shows the performance of the codes on fading channels, with both

codes incorporating detailed fading information. In the second experiment, neither decoder

is given fading information. As such, this experiment evaluates the robustness of the codes

to varying conditions and to inaccurate estimates of channel parameters, as might occur in

practice.

Figures 8-4 and 8-5 show the results of both experiments for three different coherence

times, specified as multiples of one symbol time. In both graphs, the top curve is the

capacity of the fading channel. It is noteworthy that spinal codes perform roughly simi-

larly at all the measured coherence times when fading information is available. Compared

to Strider+, at 10 dB, the improvement is between 11% and 20% (without puncturing in

Strider, the gains are between 19% and 28%). At an SNR of 20 dB, the gains are between

13% and 20% (without puncturing, between 28% and 33%). When no fading information

35

−5 0 5 10 15 20 25 30 35

SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)
spinal; τ = 1 symbols
spinal; τ = 10 symbols
spinal; τ = 100 symbols
strider+; τ = 1 symbols
strider+; τ = 10 symbols
strider+; τ = 100 symbols

Figure 8-4: Performance of spinal codes and strider in a simulation model of a Rayleigh
fading environment. The decoders are given exact fading channel parameters.

−5 0 5 10 15 20 25 30 35

SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

spinal; τ = 1 symbols
spinal; τ = 10 symbols
spinal; τ = 100 symbols
strider+; τ = 1 symbols
strider+; τ = 10 symbols
strider+; τ = 100 symbols

Figure 8-5: Performance of the AWGN decoders on the Rayleigh simulation. This experi-
ment examines the decoders’ resilience to varying or inaccurate channel information.

is available, spinal codes achieve much higher rates than Strider+ (Figure 8-5).

These results show that spinal codes perform well across a wide range of time-varying

conditions, and that spinal decoding is robust even when the decoder does not have accurate

fading information.

8.4 Exploration of Spinal Code Parameters

Collision probability. Spines for two distinct messages can converge when there is a hash

collision, i.e., h(si, m̄i) = h(s′i, m̄
′
i). Collisions degrade the decoder’s ability to discriminate

between candidate messages with different prefixes. The probability that colliding mes-

36

sages exist can be made exponentially small in the message length n by choosing ν ≥ 3n

(cf. the Birthday Paradox).

In practice, it is not necessary to eliminate all collisions to achieve high performance.

A collision potentially reduces performance if it occurs between the correct message and

another candidate in the beam. Each iteration explores B2kd nodes. In a decode attempt,

a node collides with the correct one with probability ∼ (n/k)2−νB2kd , so these events are

rare if ν � log(B)+ log(n)+ kd. For example, with n = 256, k = 4, B = 256, d = 1, and

ν = 32, a collision occurs only once per 214 decodes on average.

Picking k and B. Figure 8-6 shows that k = 4 performs well across a range of compute

budgets (the x axis is proportional to B2k/k). Smaller values of k under-perform at higher

SNRs; larger values of k don’t do well at low compute budgets. Each decoder can use

a value of B according to its price/performance ratio. As computation becomes cheaper,

increasingly higher budgets can be used, translating to higher B, to get better performance.

From this graph, we conclude that k = 4 is a good choice for the SNR range we are target-

ing. For our experimental compute budgets, B = 256 is a reasonable choice.

24 25 26 27 28 29 210

computation (branch evaluations per bit)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

Figure 8-6: How compute budget per bit (B2k/k) affects performance in the SNR range
2-24 dB, for different k. A choice of k = 4 yields codes that perform well over the entire
range of budgets. This graph also shows that B = 256 is a good choice.

Picking d. A bubble decoder iteratively computes likelihoods and prunes the tree. Pruning

is inherently more expensive; whereas likelihoods can be computed in parallel, pruning has

limited parallelism due to the need to compare different values. Because the next iteration

of likelihood computation cannot start before pruning choices are made, the pruning stage

37

can become a bottleneck that severely limits system throughput.

Figure 8-7 shows the performance of several decoders with different pruning costs:

by increasing d and reducing B accordingly, so the decoder explores the same number of

nodes, the pruning stage picks nodes out of a smaller set, making the pruning stage less

expensive. However, the larger depth, d, restricts pruning choices: since full subtrees are

pruned instead of individual nodes, some nodes with high likelihoods might get pruned,

while lower-likelihood nodes survive; this limits decoder throughput. Thus, higher-depth

decoders achieve lower throughput, but at significantly less pruning stage computation cost.

In hardware, the cost savings can be used for increasing B, achieving higher throughput

than the low-depth decoders. Designers should optimize d and B for their specific hardware

platform.

−5 0 5 10 15 20 25 30 35

SNR (dB)

−8

−7

−6

−5

−4

−3

−2

−1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

B = 512, d = 1

B = 64, d = 2

B = 8, d = 3

B = 1, d = 4

Figure 8-7: Throughput with different bubble depth d. The figure compares decoders with
k = 3 and n = 256, with varying B and d values such that the number of hash applications is
kept constant. B = 64, d = 2 gives high throughput, with more than 8× savings in pruning
cost over B = 512, d = 1.

Picking c. The number of output bits, c, limits the maximum throughput. When c is small,

even if the channel’s SNR can support a high rate, there are simply too few bits transmitted

to decode with high throughput. Figure 8-8 shows that c = 6 is the right choice for the

range of SNR values we are concerned with.

Picking the number of tail symbols. Tail symbols are an efficient way of improving the

path cost estimates when the correct path is within the decoder’s list, but doesn’t have the

lowest path cost. Adding tail symbols, however, is only effective until the correct path’s cost

38

−5 0 5 10 15 20 25 30 35

SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)
Shannon boundc=1

c=2

c=3

c=4

c=5

c=6

Figure 8-8: Throughput with different densities of output symbols. c = 6 is a good choice
for this range of SNRs.

−5 0 5 10 15 20 25 30 35

SNR (dB)

−8

−7

−6

−5

−4

−3

−2

−1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

1 tail symbol
2 tail symbols
3 tail symbols
4 tail symbols
5 tail symbols

Figure 8-9: Throughput with different number of tail symbols. Producing two symbols
from sn/k in each pass greatly enhances code performance. More than two tail symbols
exhibit negative returns.

is the lowest path cost in the list; more tail symbols occupy the channel without changing

the decoder’s decision, thereby reducing throughput. Figure 8-9 shows the performance of

decoders with different numbers of tail symbols. Two tail symbols are the most effective

use of bandwidth, whereas the improvement in path costs with more tail symbols is too

little to justify the increased transmission time.

Puncturing. Figure 8-10 shows how different puncturing plans affect performance. To

maximize throughput, the decoder must decode with the fewest symbols possible. Finer

puncturing enables more frequent attempts to decode, reducing bandwidth waste. The

figure’s top curve shows an 8-way punctured decoder that attempts to decode very ag-

39

−5 0 5 10 15 20 25 30 35

SNR (dB)

−8

−7

−6

−5

−4

−3

−2

−1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

Spinal, n = 1024, k=4, B = 256

Spinal, 8-way puncturing
Spinal, 4-way puncturing
Spinal, 2-way puncturing
Spinal, no puncturing

Figure 8-10: Throughput with different puncturing schedules. The top line is 8-way punc-
turing, with decode attempts roughly every symbol. Finer puncturing and frequent de-
coding enable the code to adapt better to prevailing channel conditions, producing higher
throughput.

gressively, after roughly every received symbol. This aggressive approach improves per-

formance, because some decode attempts are successful even when the punctured pass is

partially received.

Gains from puncturing are less prominent at low SNRs. A large number of symbols are

needed to decode, so a handful of symbols is not a major fraction of the total channel time.

Figure 8-11 shows the CDF of the number of symbols needed to decode successfully at

different SNRs. It complements figure 8-2, by showing how the rateless spinal codes adapts

to instantaneous channel noise, requiring many or few symbols, as channel conditions per-

mit. The code uses 8-way puncturing, with frequent decoding attempts. Puncturing arti-

facts are visible, showing that decoding with a complete punctured pass is more likely to

succeed; however, some messages are decoded even with an incomplete punctured pass.

Peak-to-average power ratio (PAPR). A practical modulation scheme should have a mod-

est PAPR, defined in terms of the output waveform y(t) as 10 · log10
max |y(t)|2
mean|y(t)|2 . High PAPR

is a problem because the linearity of radio components degrades when waveforms have

large peaks. In a non-OFDM wireless system, dense constellations usually have a high

PAPR: for QAM-4 it is 0 dB, while for QAM-∞ it is 4.77 dB.

These results, however, do not carry over to the 802.11a/g OFDM stack, which our PHY

uses. For such OFDM systems using scrambling, PAPR is typically 5-12 dB [31], depend-

40

50 100 150 200 250 300
symbols for successful decode

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

SNR=6dB
SNR=8dB
SNR=10dB
SNR=12dB
SNR=14dB
SNR=16dB
SNR=18dB
SNR=20dB
SNR=22dB
SNR=24dB
SNR=26dB

Figure 8-11: CDF of number of symbols required to decode at different SNRs, with n =
256, k = 4, B = 256, d = 1, and 8-way puncturing. Full passes are 64 symbols, and each
punctured pass is 8 symbols. Concave patterns every 8 symbols show decode attempts
succeed more often at the end of a punctured pass than in its midst.

ing on the transmitted symbols. As shown in Table 8.1, OFDM obscures all but negligible

differences between the PAPRs of dense constellations and standard WiFi constellations.

Constellation Mean PAPR 99.99% below
QAM-4 7.34 dB 11.31 dB
QAM-64 7.31 dB 11.41 dB
QAM-220 7.31 dB 11.43 dB
Trunc. Gaussian, β = 2 7.29 dB 11.47 dB

Table 8.1: Empirical PAPR for 802.11a/g OFDM with various constellations, showing
negligible effect of constellation density. Each row summarizes 5 million experiments.

Code block length. A strength of the spinal code is good memory in the encoding, so bad

information from a burst of noise can be corrected by all following symbols if necessary.

But this memory also has a price: once a path is pruned out, the probability of the decoder

resynchronizing to a useful path is low. The decoder has to receive more symbols until the

true path is not pruned. However small this probability, for fixed k and B, a longer code

block means more opportunities for the true path to be lost. Hence, longer code blocks

require either more symbols per bit or a larger B in order to decode, even with the same

SNR, as reflected in Figure 8-12.

41

−5 0 5 10 15 20 25 30 35

SNR (dB)

−6

−5

−4

−3

−2

−1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

n = 64

n = 128

n = 256

n = 512

n = 1024

n = 2048

Figure 8-12: Effect of code block length on performance (k = 4, B = 256). Some punctur-
ing artifacts can be seen above 25 dB, where less than one pass is transmitted on average.

42

Chapter 9

Conclusion

This work described the design, implementation, and evaluation of rateless spinal codes.

The key idea in spinal codes is the sequential application of a random hash function to

the message bits to produce a sequence of coded bits and symbols for transmission. We

described a novel, efficient, capacity-achieving bubble decoder for spinal codes, whose per-

formance scales with available computational resources. This scaling only requires chang-

ing decoder paramaters; the encoder remains the same. Our experimental results show that

spinal codes out-perform Raptor, Strider, and the best envelope of 802.11n LDPC codes by

significant amounts over a range of channel conditions and code block sizes. Our hardware

prototype in Airblue [26] runs at 10 Mbits/s on FPGA hardware, and we estimate it can run

at 50 Mbits/s in silicon.

This work opens up several avenues for future work. First, developing a wireless net-

work architecture atop spinal codes that provides a different wireless link abstraction from

today: a link is that is always reliable at all SNR above some well-defined threshold, but

which produces outages below the threshold, eliminating highly variable packet delays.

Second, developing a good link-layer protocol for rateless codes to deal with the issues

raised in §6. Third, investigating the joint-decoding properties of codes that use hash func-

tions. And last but not least, the ideas presented in this work may provide a constructive

framework for de-randomizing, and realizing in practice, a variety of random-coding argu-

ments widely used in information-theoretic proofs.

43

Appendix A

Proof Sketch of Theorem 1

We establish the theorem for the real-valued AWGN channel; the complex channel sim-

ply doubles the capacity. We only cover the uniform constellation mapping here. This

argument applies to a bubble decoder with depth d = 1 and width B polynomial in n (ex-

ponent to be determined). The proof for d′ 6= 1, B′ ≥max(1,2−kdB) follows similarly and

is omitted for space.

Inputs to the constellation mapping function are uniformly distributed, thanks to the

mixing properties of the hash function and RNG. Under the uniform mapping, these inputs

are mapped directly to the range [−
√

3P/2,
√

3P/2], giving an average symbol power

(variance) slightly less than P∗ , P/2; the difference vanishes as c→ ∞. The Shannon

capacity [34] of the AWGN channel with average power constraint P∗ is

Cawgn(P∗) = 1/
2 log2 (1+SNR) bits/symbol, (A.1)

where SNR= P∗
σ2 denotes the signal-to-noise ratio.

The rate of the spinal code after L passes is k/L. Reliable decoding is not possible

until L passes have been received such that k/L is less than Cawgn(P∗). We shall show

that for essentially the smallest L that satisfies this inequality, our polynomial-time decoder

will produce the correct message with high probability. In the remainder of this section,

we assume L is the smallest value such that k/L < Cawgn(P∗)− δ (c,SNR,P∗). Without

puncturing, a single-pass transmission of the code results in rate Rmax = n/(n/k) = k. That

44

is, the rate after L passes, k/L, is Rmax/L.

The spinal encoder (§3) generates xi,`, the ith symbol of the `th pass, from the spine

value si, 1 ≤ i ≤ n/k, 1 ≤ ` ≤ L. Now si depends on si−1 and the k bits m̄i, si−1 in turn

depends on si−2 and m̄i−1, and so on. Choosing ν large enough to avoid collisions with

extremely high probability, and using the pairwise independence properties of h and RNG,

xi,` = f (hi,`(s0, m̄1, . . . , m̄i)), where hi,` is a random hash function satisfying pairwise inde-

pendence, and f is the deterministic constellation mapping. That is, the first i symbols of

any pass ` depend only on the first ik bits, denoted by Mi = (m1, . . . ,mik). Therefore, two

codewords that differ only in the bits indexed higher than ik get mapped to the same first i

symbols (in each pass), but all subsequent symbols generated for them are independent of

each other and entirely random.

After receiving symbols for L passes, the bubble decoder sequentially expands the de-

coding tree, maintaining up to B candidate message prefixes M1
i , . . . ,M

B
i at each stage i

with the hope that for i = n/k, they will be closest messages M1, . . . ,MB ∈ {0,1}n to the

received ȳ: i.e., that x̄(M1), . . . , x̄(MB) minimize ‖ȳ− x̄(M′)‖ over all M′ ∈ {0,1}n.

For convenience, the theorem modifies the bubble decoder slightly, replacing ȳ with

α ȳ where α = P∗/(P∗+σ2). (This modification effectively is a linear MMSE decoder

rather than ML, and is weaker than ML.) A capacity proof for this modified weaker bubble

decoder implies that the result holds for the original.

Our goal is to show that, with high probability, at every stage of decoding, the bubble

decoder has the prefix Mi of the correct message M in its beam of B candidates. We shall

additionally show that in this situation, the B candidate messages differ from each other

(and hence from the correct message) only in the last O(logn) bits. If the decoder declares

any one of the B candidates as the decoded message, the bit error rate (BER) is O(logn
n)→ 0.

That is, the BER goes to 0 as desired.

Intuitively, good messages have low path costs and bad messages have high path costs.

Provided we are δ away from the Shannon bound, the difference between good and bad is

large enough to make a reliable hard-decoding decision. We establish two invariants, which

together give the desired result. The first is an upper bound on the path cost of the correct

message, independent of constellation map. The second is a lower bound on the path cost

45

of an incorrect message, and depends on the constellation map.

Invariant 1. Given message M ∈ {0,1}n, the encoder transmits symbols x̄(M). Let x̄i(M) =

(xi,1(M), . . . ,xi,L(M)) denote the first L symbols generated from the ith spine value of M and

let ȳi be their noisy versions at the receiver. Then, for small enough ε > 0, with probability

1−O(exp(−Θ(ε2iL))),

i

∑
j=1

L

∑
`=1

(
αy j,`− x j,`(M)

)2 ≤ (1+ ε)
iLP∗

1+SNR
, (A.2)

for all 1 ≤ i ≤ L. To see why, consider the following: for each j, `, under the AWGN

channel,

y j,` = x j,`(M)+ z j,`, (A.3)

where z j,` is independent Gaussian noise (mean 0, variance σ2). Therefore,

(
αy j,`− x j,`(M)

)2
= α

2z2
j,`+(1−α)2x j,`(M)2

−2α(1−α)z j,`x j,`(M). (A.4)

By the independence of x j,`(M) and z j,`, and because E[x j,`(M)2] ≈ P∗, the mean of the

RHS of (A.4) is

α
2
σ

2 +(1−α)2P∗ =
(P∗)2σ2

(P∗+σ2)2 +
P∗σ4

(P∗+σ2)2

=
P∗σ2

(P∗+σ2)
=

P∗

1+SNR
. (A.5)

Because all the summands on the LHS of (A.2) are independent and identically distributed

(i.i.d.), and there are iL summands in total, the mean of the LHS is precisely iLP∗/(1+

SNR). Now the LHS of (A.2) can be written as three summations, each having iL terms,

one each corresponding to the terms on the RHS of (A.4). Because each of these is a sum-

mation of i.i.d. random variables with exponentially decaying tails (and x2
j,` is bounded by

46

3P/2), applying a Chernoff-style bound implies a concentration of these terms around their

means within error εiLP∗/(1+SNR)), with probability decaying as O
(

exp
(
−Θ(ε2iL)

))
for small enough ε > 0. This argument completes the justification of (A.2).

For iL = Ω(ε−2 logn), the bound holds with probability at least 1− 1/n4. Hence, by

the union bound (“the probability that at least one of the events happens is no greater

than the sum of the probabilities of the individual events”), it holds simultaneously for all

i = Ω(ε−2 logn) with probability ≥ 1−O(1/n3). We need this bound for any contiguous

set of indices (q,q+1, . . . ,q+ i) with i = Ω(ε−2 logn). Since there are O(n) such intervals,

by another application of the union bound, this claim holds true with probability at least

1−O(1/n2).

Invariant 2. Consider M′= (m′1, . . . ,m
′
n) with m′1 6=m1, i.e., M′ and M = (m1, . . . ,mn) differ

at least in the first bit. All the coded symbols of M and M′ are mapped independently and at

random. That is, x̄(M′) is independent of ȳ. We’ll focus, for the time being, on the first iL

symbols. Now for the uniform constellation, one way to obtain x̄(M′) is to sample a point

uniformly at random in the cube [−
√

3P/2,
√

3P/2]iL, and then map the co-ordinates in

each of the iL dimensions to the nearest quantized value (at granularity 2−c
√

6P). There-

fore, the probability of x̄(M′) falling within squared distance (1+ε)iLP∗/(1+SNR) of α ȳ

is bounded above by the probability that a uniformly sampled point in [−
√

3P/2,
√

3P/2]iL

falls within r2 ≡ (1+ε +δ1)iLP∗/(1+SNR) of α ȳ, with δ1 = 6(1+SNR)2−c. For the uni-

form distribution, this is merely the ratio of the volume of a ball of radius r and the volume

of the cube [−
√

3P/2,
√

3P/2]iL: using Stirling’s approximation that lnK!∼ K lnK−K,

1
(iL/2)!

(
πr2

6P

)iL/2
=

1
(iL/2)!

(
π(1+ ε +δ1)iL

12(1+SNR)

)iL/2

≈
(

πe(1+ ε +δ1)

6(1+SNR)

)iL/2

≈ 2−iL(Cawgn(P∗)−∆), (A.6)

where ∆≈ 1
2

(
ε +δ1 + log(πe/6)

)
.

Completing the proof using Invariants 1 and 2. Consider a bubble decoder at stage i trying

47

to estimate Mi using ȳi. From Invariants 1 and 2, conditional on event (A.2) happening

(which happens with high probability for i = Ω(ε−2 logn)), the chances of an M′, differing

from M in the first bit, having x̄i(M′) closer to α ȳi compared to x̄i(M), is given by (A.6).

There are at most 2ik−1 such messages. By the union bound, the chance for such an event

is at most

P(i) = 2−iL
(
Cawgn(P∗)−∆− k

L

)
. (A.7)

Thus, if k/L < Cawgn(P∗)− 1
2

(
δ1 + log(πe/6)

)
, then choosing ε = 1

2

(
Cawgn(P∗)− 1

2

(
δ1 +

log(πe/6)
)
− k

L

)
makes the exponent negative, i.e., P(i) will decay exponentially in i.

Given M′ 6= M, let q(M,M′) = min{p : mp 6= m′p} be the first bit index where they differ.

The above argument has q(M,M′) = 1. In general, while decoding at stage i, at most 2 jk

distinct M′ have q(M,M′) ∈ {(i− j)k+1, . . . ,(i− j+1)k−1}. In this scenario, the chance

that any such M′ has x̄i(M′) closer to α ȳi compared to x̄i(M) is the same as (A.7), with i

replaced by j. This is because, given that M′ and M have the same first (i− j)k bits, their

codewords x̄i− j(M) = x̄i− j(M′). Thus, the probability of the decoder finding x̄i(M′) closer

to α ȳi is at most P(j). Since Invariant 1 holds for i = Ω(ε−2 logn), at any decoding stage

i, the chance that any M′ 6= M with i− q(M,M′) = Ω(ε−2 logn) has x̄i(M′) closer to α ȳi

compared to x̄i(M) is bounded by

i−Ω(ε−2 logn)

∑
j=1

P(j) = O
(1

n2

)
, (A.8)

for an appropriately large constant in the Ω(·) term above. Thus, at any stage of decoding,

only messages M′ that differ from M in only the most recent O(ε−2 logn) bits can be closer

to α ȳi. But the number of such messages is polynomial in n, with degree depending on

ε−2, and ε = 1
2

(
Cawgn(P∗)− 1

2

(
δ1 + log(πe/6)

)
− k

L

)
(half the gap). Therefore, choosing

B for the decoder to be this polynomial value, we can ensure that at each stage, the correct

message M is one of the candidates. When decoding ends, the remaining candidates are

only those that differ from M in the last O(ε−2 logn) bits.

48

Appendix B

Hardware Prototype Implementation

Kermin Elliott Fleming and Peter Iannucci developed a working over-the-air FPGA proto-

type with our C++ implementation as guidance. The experiments demonstrate that spinal

codes perform well in hardware under real-world, wide-band conditions. A comparison of

the on-air experiments to results from the simulation framework shows that the simulation

framework closely predicts over-the-air performance. The rest of this section details the

hardware implmementation and the experimental results.

The hardware prototype spinal encoder and d = 1 bubble decoder was built using the

Airblue [26] platform. The implementation incorporates spinal codes into Airblue’s 802.11

OFDM stack to create 802.11-like 20 MHz and 10 MHz OFDM transceivers (Figure B-1).

Although the spinal encoder is a straightforward sequence of hashes, RNG evaluations,

and constellation mappings, the decoder requires careful design to take advantage of paral-

lelism.

As samples arrive from the OFDM stack, they are written into an SRAM in unpunc-

tured order, with passes for a given spine value located at adjacent addresses for batch

reads. When a decode attempt starts, a dispatch unit instructs M identical worker units to

explore all possible decodings of the first k bits, starting from state s0. Each worker has

a certain number of hash units, which serve double duty for computing h and RNG. A

worker explores a node by computing several hashes per cycle until it has mapped, sub-

tracted, squared, and accumulated the branch cost over all available passes.

Over the course of several cycles, the dispatcher and the workers will deliver B2k scored

49

Figure B-1: Hardware implementation block diagram, showing (a) the spinal transmitter
and (b) the receiver.

candidate nodes to the selection unit. This stage, corresponding to the two inner loops in

the algorithm in §4.3, is highly parallelizable: the work accomplished per cycle is linear in

the number of workers.

These candidates stream into a selection unit, which identifies the best B of them. The

selection unit sorts the M candidates delivered in a given cycle, selecting the best B. The

candidates from prior cycles will have already been winnowed down to the best B, so the

system merges those with the B from this cycle. The result is B items in bitonic (not sorted)

order. The system stores this list in a register, and on the next cycle finishes sorting these B

in parallel with sorting the new M.

Once all B2k nodes have been scored and selected, the best B become the new beam,

and are copied to the backtrack memory. This step advances the outer loop of the algorithm.

On the last iteration, the system fully sorts the B candidates and picks the best one, then

follows backtrack pointers to recover the message, and checks its CRC.

This prototype has a throughput of up to 10 Mbps in FPGA technology. Synthesized

using the Synopsis Design Compiler for the TSMC 65 nm process, the design can sustain 50

Mbps. This decoder is competitive with algorithms like Viterbi decoding in terms of logic

area (.60 mm2 versus .12 mm2), which is encouraging considering the decades of research

and development devoted to Viterbi decoding. More recent work describes a hardware

spinal decoder (with some refinements and generalizations to the above approach) that is

50

0 2 4 6 8 10 12 14
SNR (dB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ra
te

(b
it

s
pe

r
sy

m
bo

l)
Simulation with hardware parameters
Hardware over-the-air experiment

0

5

10

15

20

25

30

35

M
bp

s

Figure B-2: Rates achieved by the hardware over-the-air experiment, compared to a soft-
ware simulation with similar parameters. Throughput (right axis) shows equivalent link
rate for a 20 MHz 802.11a/g channel.

competitive with turbo decoding [17].

Over-the-air Experiments

We use high-speed transceivers constructed using Airblue [26], which is built out of Xilinx

XUPV5 FPGA boards and USRP2 radio front-ends. All on-air experiments were conducted

in the 2.4 GHz ISM band in an unshielded laboratory at MIT CSAIL. We tested spinal codes

with both 20 MHz and 10 MHz waveforms.

Figure B-2 shows the results obtained by measuring the Airblue spinal code implemen-

tation in over-the-air experiments for n = 192 bits, k = 4, c = 7, d = 1, and B = 4. Each +

sign in the figure is the rate measured by transmitting at least 20 messages over a 10 MHz

band. The measured on-air decoding performance closely tracks the results of a similarly

configured software simulator across a large SNR range (the range achievable using com-

modity USRP2/RFX2400 radio frontends), providing important real-world validation of

the code’s performance. Differences include effects of fixed-point precision, but should not

affect the take-away point: a reasonable implementation is both achievable and operational.

51

Bibliography

[1] J. Anderson and S. Mohan. Sequential coding algorithms: A survey and cost analysis.

IEEE Trans. on Comm., 32(2):169–176, 1984.

[2] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal Decoding of Linear Codes for

Minimizing Symbol Error Rate (Corresp.). IEEE Trans. Info. Theory, 20(2):284–287,

1974.

[3] Hari Balakrishnan, Peter Iannucci, Jonathan Perry, and Devavrat Shah. De-

randomizing Shannon: The Design and Analysis of a Capacity-Achieving Rateless

Code. arXiv:1206.0418, June 2012.

[4] R.J. Barron, C.K. Lo, and J.M. Shapiro. Global design methods for raptor codes using

binary and higher-order modulations. In MILCOM, 2009.

[5] D. Bernstein. The Salsa20 Family of Stream Ciphers. Lecture Notes in Computer

Science, 4986:84–97, 2008.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting

coding and decoding: Turbo-codes (1). In ICC, 1993.

[7] John Bicket. Bit-Rate Selection in Wireless Networks. Master’s thesis, Massachusetts

Institute of Technology, February 2005.

[8] Erez, U. and Trott, M. and Wornell, G. Rateless Coding for Gaussian Channels. IEEE

Trans. Info. Theory, 58(2):530–547, 2012.

[9] O. Etesami, M. Molkaraie, and A. Shokrollahi. Raptor codes on symmetric channels.

In ISIT, 2005.

52

[10] J.F. Frigon and B. Daneshrad. Field measurements of an indoor high-speed QAM

wireless system using decision feedback equalization and smart antenna array. IEEE

Trans. Wireless Comm., 1(1):134–144, 2002.

[11] R. Gallager. Low-density parity-check codes. IRE Trans. Information Theory,

8(1):21–28, 1962.

[12] A. Gudipati and S. Katti. Strider: Automatic rate adaptation and collision handling.

In SIGCOMM, 2011.

[13] J. Ha, J. Kim, and S. McLaughlin. Rate-compatible puncturing of low-density parity-

check codes. IEEE Trans. Info. Theory, 2004.

[14] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11 packet delivery

from wireless channel measurements. In SIGCOMM, 2010.

[15] G. Holland, N. Vaidya, and P. Bahl. A Rate-Adaptive MAC Protocol for Multihop

Wireless Networks. In MobiCom, 2001.

[16] P. Iannucci, J. Perry, H. Balakrishnan, and D. Shah. No Symbol Left Behind: A

Link-Layer Protocol for Rateless Codes. In MobiCom, 2012.

[17] P. A. Iannucci, K. E. Fleming, J. Perry, H. Balakrishnan, and D. Shah. A hardware

spinal decoder. In ANCS, October 2012.

[18] F. Jelinek. Fast sequential decoding algorithm using a stack. IBM Journal of Research

and Development, 13(6):675–685, 1969.

[19] G. Judd, X. Wang, and P. Steenkiste. Efficient Channel-aware Rate Adaptation in

Dynamic Environments. In MobiSys, June 2008.

[20] IEEE Std 802.11n-2009: Enhancements for Higher Throughput.

[21] J. Li and K. Narayanan. Rate-compatible low density parity check codes for capacity-

approaching ARQ scheme in packet data communications. In Int. Conf. on Comm.,

Internet, and Info. Tech., 2002.

53

[22] M. Luby. LT codes. In FOCS, 2003.

[23] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer. Raptor Forward Error

Correction Scheme for Object Delivery. RFC 5053 (Proposed Standard), October

2007.

[24] R. Mantha and FR Kschischang. A capacity-approaching hybrid ARQ scheme using

turbo codes. In GLOBECOM, 1999.

[25] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms

and probabilistic analysis, chapter 13, pages 321–326. Cambridge University Press,

2005.

[26] Man Cheuk Ng, Kermin Elliott Fleming, Mythili Vutukuru, Samuel Gross, Arvind,

and Hari Balakrishnan. Airblue: A System for Cross-Layer Wireless Protocol Devel-

opment. In ANCS, October 2010.

[27] R. Palanki and J.S. Yedidia. Rateless codes on noisy channels. In ISIT, 2005.

[28] J. Perry, H. Balakrishnan, and D. Shah. Rateless Spinal Codes. In HotNets-X, October

2011.

[29] J. Perry, P. A. Iannucci, K. E. Fleming, H. Balakrishnan, and D. Shah. Spinal codes.

In SIGCOMM, August 2012.

[30] G.J. Pottie and D.P. Taylor. A comparison of reduced complexity decoding algorithms

for trellis codes. JSAC, 7(9):1369–1380, 1989.

[31] Curt Schurgers and Mani B. Srivastava. A Systematic Approach to Peak-to-Average

Power Ratio in OFDM. In SPIE’s 47th Meeting, 2001.

[32] S. Sen, N. Santhapuri, R.R. Choudhury, and S. Nelakuditi. AccuRate: Constellation-

based rate estimation in wireless networks. NSDI, 2010.

[33] S. Sesia, G. Caire, and G. Vivier. Incremental redundancy hybrid ARQ schemes based

on low-density parity-check codes. IEEE Trans. on Comm., 52(8):1311–1321, 2004.

54

[34] C.E. Shannon. Communication in the presence of noise. Proc. of the IRE, 37(1):10–

21, 1949.

[35] A. Shokrollahi. Raptor codes. IEEE Trans. Info. Theory, 52(6), 2006.

[36] N. Shulman. Universal channel coding. PhD thesis, Tel-Aviv University, 2004.

[37] E. Soljanin, N. Varnica, and P. Whiting. Incremental redundancy hybrid ARQ with

LDPC and Raptor codes. IEEE Trans. Info. Theory, 2005.

[38] E. Telatar. Capacity of Multi-Antenna Gaussian Channels. European Trans. on Tele-

com., 10(6):585–595, 1999.

[39] G. Ungerboeck. Channel coding with multilevel/phase signals. IEEE Trans. Info.

Theory, IT-28(1):55–67, January 1982.

[40] G. Ungerboeck and I. Csajka. On improving data-link performance by increasing the

channel alphabet and introducing sequence coding. In ISIT, 1976.

[41] A.I. Vila Casado, M. Griot, and R.D. Wesel. Informed dynamic scheduling for Belief-

Propagation decoding of LDPC codes. In IEEE ICC, 2007.

[42] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Trans. Info. Theory, 13(2):260–269, 1967.

[43] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-Layer Wireless Bit Rate

Adaptation. In SIGCOMM, 2009.

[44] S.B. Wicker and V.K. Bhargava. Reed-Solomon codes and their applications. Wiley-

IEEE Press, 1999.

[45] S Wong, H Yang, S Lu, and V Bharghavan. Robust Rate Adaptation for 802.11

Wireless Networks. In MobiCom, 2006.

55

	Introduction
	Related Work
	Encoding
	Spine Construction
	Hash Function and RNG
	Rateless Symbol Generation

	Decoding
	The Problem
	Decoding over a Tree
	Bubble Decoding: Pruning the Tree
	Tail Symbols
	Decoding Time and Space Complexity
	Capacity Results

	Puncturing
	Link-layer Framing
	Implementation
	Implementation Decisions
	Hardware Implementation

	Evaluation and Parameter Choice
	Experimental Setup and Metrics
	AWGN Channel Performance
	Fading Channel Performance
	Exploration of Spinal Code Parameters

	Conclusion
	Proof Sketch of Theorem 1
	Hardware Prototype Implementation

