
Optimization Problems in Network Connectivity

by

Debmalya Panigrahi

B.E., Jadavpur University (2004)
M.E., Indian Institute of Science (2006)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

June 29, 2012

Certified by. .
David R. Karger

Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/10129973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimization Problems in Network Connectivity
by

Debmalya Panigrahi

Submitted to the Department of Electrical Engineering and Computer Science
on June 29, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Besides being one of the principal driving forces behind research in algorithmic theory
for more than five decades, network optimization has assumed increased significance
in recent times with the advent and widespread use of a variety of large-scale real-life
networks. The primary goal of such networks is to connect vertices (representing a
variety of real-life entities) in a robust and inexpensive manner, and to store and
retrieve such connectivity information efficiently. In this thesis, we present efficient
algorithms aimed at achieving these broad goals.

The main results presented in this thesis are as follows.

• Cactus Construction. We give a near-linear time Monte Carlo algorithm for
constructing a cactus representation of all the minimum cuts in an undirected
graph.

• Cut Sparsification. A cut sparsifier of an undirected graph is a sparse graph
on the same set of vertices that preserves its cut values up to small errors. We
give new combinatorial and algorithmic results for constructing cut sparsifiers.

• Online Steiner Tree. Given an undirected graph as input, the goal of the
Steiner tree problem is to select its minimum cost subgraph that connects a
designated subset of vertices. We give the first online algorithm for the Steiner
tree problem that has a poly-logarithmic competitive ratio when the input graph
has both node and edge costs.

• Network Activation Problems. In the design of real-life wireless networks,
a typical objective is to select one among a possible set of parameter values
at each node such that the set of activated links satisfy some desired connec-
tivity properties. We formalize this as the network activation model, and give
approximation algorithms for various fundamental network design problems in
this model.

Thesis Supervisor: David R. Karger
Title: Professor

3

Acknowledgments

This thesis represents the culmination of a journey, both academic and personal,
and as with any journey in life, it owes its fruition to a large number of people who
have enriched it in more ways than I can possibly recount now. To all of them, my
heartfelt gratitude, and if I fail to acknowledge any of them in person, my most sincere
apologies.

I would not have had an academic career today had it not been for the untiring
efforts of Ramesh Hariharan, who not only propelled me into the world of research
over numerous lunches and late-night meetings at IISc, but also made it a point to
meet me in person whenever he was in Boston over the last five years just to enquire
about my well-being at MIT. I have cherished every discussion I have had with him,
about academic matters and beyond, and would hope our association continues for
many years to come.

Over the last five years, David Karger has been an incredible adviser, effortlessly
playing multiple simultaneous roles: as my primary point of reference in the depart-
ment and the university; as the most vocal champion of my work in the research
community at large; and as a research supervisor who has ensured that I stay on
track while allowing me complete freedom to pursue my own interests. David is also
the best exponent of scholarly writing that I have come across, and any parts of the
thesis that are readable are entirely due to whatever little I have learnt about writing
lucidly from him. I hope I get the opportunity to seek his advice and guidance long
after I cease to be his advisee.

The results presented in this thesis have been an outcome of fruitful collabora-
tions with Ramesh Hariharan, David Karger, Seffi Naor, and Mohit Singh. I have
also worked with Gagan Aggarwal, Yossi Azar, Susan Davidson, Atish Das Sarma,
Sreenivas Gollapudi, Sanjeev Khanna, Aleksander Mądry, Aranyak Mehta, Tova Milo,
Thomas Moscibroda, Bhaskaran Raman, Sudeepa Roy, Aravind Srinivasan, and An-
drew Tomkins in the last five years on results that do not appear in this thesis, and
with Anand Bhalgat, Partha Dutta, Ramesh Hariharan, Sharad Jaiswal, Telikepalli
Kavitha, Vivek Mhatre, K.V.M. Naidu, Rajeev Rastogi, and Ajay Todimala on vari-
ous research projects earlier. These collaborations have been one of the most enjoyable
aspects of my academic life, and I would like to express my heartfelt gratitude to all
of my collaborators for working with me over the years.

I spent all my four summers on the west coast: in the distributed computing group
at Microsoft Research (Redmond), the search labs at Microsoft Research (Mountain
View), the theory group at Microsoft Research (Redmond), and the social network-
ing research group at Google Research (Mountain View). Many thanks to Atish
Das Sarma, Alex Fabrikant, Sreenivas Gollapudi, Kamal Jain, Thomas Moscibroda,
and Andrew Tomkins for being wonderful hosts during these internships. I would
also like to sincerely thank Swarup Acharya, Pankaj Agarwal, Nikhil Bansal, Avrim
Blum, Sunil Chandran, Richard Cole, Jie Gao, Navin Goyal, Elena Grigorescu, Anu-
pam Gupta, MohammadTaghi Hajiaghayi, Anna Karlin, Sanjeev Khanna, Phil Klein,
Mohammad Mahdian, Aranyak Mehta, Kamesh Munagala, Viswanath Nagarajan,
Rina Panigrahy, Yuval Peres, Seth Pettie, Vijaya Ramachandran, John Reif, Tim

5

Roughgarden, Barna Saha, Baruch Schieber, Steven Skiena, Prasad Tetali, and David
Woodruff for being wonderful hosts on various academic visits.

Thanks are due to Michel Goemans, Piotr Indyk, David Karger, and Jon Kelner
for not only agreeing to serve on my thesis committee but also for helping and advising
me in various capacities over the years. I would also like to thank the other theory
faculty at CSAIL for making the theory group one of the most productive and lively
places in the Stata Center. In particular, I would like to personally thank Costis
Daskalakis, Jon Kelner, and Madhu Sudan. Costis and Jon have been inspiring
examples of young academicians, who, in spite of their extremely busy schedules,
have always been willing to keep every request I have made, be it discussing research,
job opportunities, or giving feedback on my practice talks. Madhu has been a tower of
strength — someone I could turn to for advice at any time without any reservation.
Madhu also deserves a special note of thanks for funding me for a semester even
though I had absolutely no right to his funds as a non-advisee.

Many thanks to the staff and students in the theory group and more generally,
in CSAIL and EECS. The last five years would not have been half as enjoyable as
it turned out were it not for the many hours of passionate debate and idle gossip
with the many friends that I made here. In particular, I would like to mention
Arnab Bhattacharyya, Yang Cai, Deepti Bhatnagar, Neha Gupta, Bernhard Haeupler,
Aleksander Mądry, Adam Marcus, Ankur Moitra, Jelani Nelson, Rotem Oshman, Eric
Price, Shubhangi Saraf, and Vineet Sinha for being such wonderful friends over the
last five years. I would personally like to thank Adam Marcus and Jelani Nelson for
all the fun we have had over the years, and for being always ready to help whenever
I needed it. Many thanks to Arnab and Payel for making my last few months at
MIT the most enjoyable phase of the last five years from a social perspective, and to
my friends from college — Aditi, Anirban, Arindam, Barna, Debarghya, Dipanjan,
Joydeep, Sayak, Shaon, Supratim, Sunny, and many others — for their love and
friendship.

Finally, it goes without saying that I owe everything that I have done to my
parents Maa and Baba, my siblings Dada and Dondi, and other members of my
family, especially Jethu and Dida. The loving embrace that they have ensconced me
in since my first day cannot be repaid, nor do I wish to. My sister-in-law Bunu and
my parents-in-law have given me a second family in the last few years, one that has
been just as warm as my own family. Last but not the least, my wife, Sudeepa,
has been a pillar of strength like no other, offering unstinted support and enjoyable
company in times of stress and jubilation alike. As I look forward to life with her, I
can only offer my deepest sense of gratitude for standing by me even when everything
seemed lost.

This research has been supported by an Akamai MIT presidential fellowship, and
NSF contracts CCF-0635286, CCF-1117381, and STC-0939370.

6

Contents

1 Introduction 13
1.1 Preliminaries . 13
1.2 Overview of Results . 15

1.2.1 Connectivity Data Structures 15
1.2.2 Network Design . 16

I Connectivity Data Structures 19

2 Cactus Construction 21
2.1 Background . 21

2.1.1 History . 22
2.1.2 Our Contributions . 23
2.1.3 Our Approach . 23

2.2 Near-linear Time Min-cut Algorithm 25
2.3 Cactus Construction Algorithm . 28

2.3.1 Listing minimal min-cuts of vertices 29
2.3.2 Labeling minimal min-cuts of vertices 33
2.3.3 Labeling second-smallest min-cuts of vertices 34
2.3.4 Minimal min-cuts of edges . 35
2.3.5 Cactus construction from minimal min-cuts 37

2.4 Concluding Remarks . 40
2.5 Notes . 41

3 Cut Sparsification 43
3.1 Background . 43

3.1.1 Connectivity Parameters . 44
3.1.2 Edge Compression . 46
3.1.3 History . 46

3.2 Our Contributions . 47
3.2.1 A General Sparsification Framework 47
3.2.2 Applications of the Sparsification Framework 48
3.2.3 Sparsification Algorithms . 49

3.3 Modified Chernoff Bounds . 50
3.4 Counting Cut Projections . 54

7

3.5 The General Sparsification Framework 58
3.6 Sparsification by Edge Compression 60

3.6.1 Compression using Edge Connectivities 60
3.6.2 Compression using Edge Strengths 61
3.6.3 Compression using NI indices 62

3.7 Cut Sparsification Algorithm . 62
3.7.1 Cut Preservation . 64
3.7.2 Size of the sparsifier . 70
3.7.3 Time complexity . 71

3.8 Concluding Remarks . 71
3.9 Notes . 71

II Network Design 73

4 Online Steiner Tree and Related Problems 75
4.1 Background . 75

4.1.1 Edge-weighted and Node-weighted Problems 77
4.1.2 The Online Model . 77
4.1.3 Bi-criteria Approximation for Network Design Problems . . . 78
4.1.4 History . 78

4.2 Our Contributions . 79
4.3 Online Node-weighted Steiner Tree 80
4.4 Online Group Steiner Forest . 87

4.4.1 Online Group Steiner Forest on Trees 87
4.4.2 Online Node-weighted Group Steiner Forest 91
4.4.3 Online Edge-weighted Group Steiner Forest 93

4.5 Online Edge-weighted Single-Source Vertex Connectivity 94
4.6 Concluding Remarks . 96
4.7 Notes . 96

5 Network Activation Problems 97
5.1 Background . 97
5.2 Our Contributions . 99
5.3 Minimum Spanning Activation Tree 102
5.4 Minimum Steiner Activation Forest 103
5.5 Minimum Vertex-connected Activation Network with R = 2 103

5.5.1 Minimum Leaf-weighted Subtree 106
5.6 Minimum Edge-connected Activation Network with R = 2 107
5.7 Minimum Edge-connected Activation Network for Arbitrary R 109

5.7.1 Connection between MEAN and MDAN Problems 110
5.7.2 Installation Cost Optimization 111

5.8 Minimum Activation Path . 112
5.9 Concluding Remarks . 113
5.10 Notes . 114

8

List of Figures

2-1 Example of a precut . 27
2-2 The two trees used in the modified min-cut algorithm 29
2-3 Outermost Minimal Minprecut . 31
2-4 Maximal min-cuts contained in a min-cut represented by an empty

cactus node . 36
2-5 Various cases in the cactus construction algorithm 40

4-1 Relationships between network design problems. 80
4-2 A lower bound for the greedy algorithm for the online NW Steiner tree

problem . 81
4-3 The standard ILP for the NW Steiner tree problem 82
4-4 Online rounding of the standard LP relaxation of NW Steiner tree . . 83
4-5 An example of a spider . 84
4-6 A covering spider decomposition of a tree 85
4-7 A new ILP for the online NW Steiner tree problem 86
4-8 An ILP for the online edge-weighted group Steiner forest problem . . 88

9

List of Tables

4.1 The online constraints for Steiner tree and its generalizations. 78

5.1 Network Activation Problems . 100

11

Chapter 1

Introduction

Networks are ubiquitous in nature and show up in various guises in a wide variety of
natural, social, and applied sciences such as communication, manufacturing, electron-
ics, biology, evolution, sociology, urban development, and so on. It therefore comes as
no surprise that network optimization has been an important component of computer
science and operations research since their very early days. The primary objective of
a network is to connect entities and a fundamental goal in studying a network is to
explore the properties of such connections. In this thesis, we explore and exploit the
combinatorial structure of graphs to achieve significant progress in several classical
optimization problems in network connectivity.

We focus on two fundamental categories of problems in this domain. The first
category, which we call connectivity data structures, focuses on efficiently estimating
connectivity parameters of existing networks and encapsulating them in succinct data
structures that provide efficient access to such information. The second category,
called network design, comprises problems where the goal is to design networks using
priced network elements such as nodes and edges, that satisfy desired connectivity
requirements. For example, the problem of finding a minimum cut in a graph belongs
to the first category whereas that of designing a minimum weight Steiner tree is
in network design. We propose new combinatorial and algorithmic techniques for
optimization problems in both categories.

1.1 Preliminaries

In this section, we set up the notation and terminology that we will use throughout
the thesis. It is important to mention at the outset that this thesis deals only with
undirected graphs and unless otherwise mentioned, all graphs are assumed to be
undirected.

The input graph is denoted by G = (V,E) where V is a set of n vertices and E is a
set of m edges. Each edge e = (u, v) has two vertices as endpoints. We will deal with
both node-weighted and edge-weighted graphs. In node-weighted graphs, each vertex
and each edge is allowed to have a non-negative, polynomially bounded weighted.
Typically, for most problems on node-weighted graphs, we will first reduce the prob-

13

lem to one where only the vertices (and not the edges) have weights by replacing
each weighted edge by a path of length 2 where the weight of the intermediate vertex
equals the weight of the edge. On the other hand, in edge-weighted graphs, only the
edges are allowed to have non-negative, polynomially bounded weights. A special
case of edge-weighted graphs are unweighted graphs, where each edge has a weight of
1. However, unweighted graphs are allowed to have parallel edges, i.e. multiple edges
between the same pair of vertices.

A cut is a bi-partition of vertices (S, V −S), and may either mean one of the sides
of the bi-partition, or the set of edges that have exactly one endpoint on each side
of the bi-partition. The value of a cut is the sum of weights of edges in the cut. A
minimum cut in a graph is a cut of minimum value. A cut is said to separate two
vertices s and t is they appear on two sides of the bi-partition. For any two vertices
s, t, an s− t minimum cut is a cut of minimum value that separates s and t. We will
often use the shorthand min-cut for minimum cut.

A flow between a pair of vertices s, t is a collection of paths between s and t and a
non-negative, real flow value associated with each such path satisfying the constraint
that the sum of flow values on all paths containing any particular edge is at most the
weight (often called capacity in the context of flows) of the edge. The overall value
of the flow is the sum of the flow values over all the paths. A maximum flow is a
flow of maximum value between s and t. It is well-known that if all edge weights
are integers, then there always exists at least one maximum flow between any pair of
vertices s, t where all the flow values are integers. In unweighted graphs, such a flow
corresponds to a maximum-sized collection of edge-disjoint paths between s and t.

We will use the following duality between cuts and flows called Menger’s theorem
(see e.g. [24] for a proof).

Theorem 1.1 (Menger’s Theorem). The value of a maximum flow between any two
vertices s, t in a graph is equal to the value of an s− t minimum cut.

In network design, a graph is said to connect a set of vertices S ⊆ V if it contains
at least one path between every pair of vertices in S. The approximation ratio of an
algorithm for a minimization (resp., maximization) problem is the maximum (resp.,
minimum), over all input instances, of the ratio of the objective value in the algorith-
mic solution to that in an optimal solution. In the online setting, the entire input
is not revealed to the algorithm at the outset; rather it receives constraints in online
steps that it must satisfy by augmenting the current solution. The approximation
ratio of an online algorithm (where we consider the worst input sequence) is called
its competitive ratio.

We will present both deterministic and randomized algorithms. Randomized al-
gorithms are further subdivided into Las Vegas and Monte Carlo algorithms. A Las
Vegas algorithm always produces the desired output, whereas a Monte Carlo algo-
rithm produces the desired output with high probability (or whp), which means that
the probability of error is o(1). The running time of a randomized algorithm is its
expected running time. Similarly, the approximation/competitive ratio of a random-
ized algorithm is the ratio of the expected value of the objective in the algorithmic
solution to the optimal objective value.

14

An algorithm is said to have a linear time complexity if its running time O(I)
where I is the size of the input. An algorithm is said to have a near-linear time
complexity if its have a running time is O(I logc I) for some constant c. Typically, we
will denote a time complexity of O(f(I) logc(I)) by Õ(f(I)), where f(.) is a function
of the input size I. In particular, a near-linear time algorithm has a running time of
Õ(I). An algorithm is said to have polynomial time complexity if its running time
is O(f(I)), where f is a polynomial function. The approximation/competitive ratio
of an algorithm is said to be poly-logarithmic if it is O(logc I) for some constant c.
An algorithm is said to have quasi-polynomial time complexity if its running time is
O(I log

c I) for some constant c.
The probability of an event E is denoted P[E] while the expectation of a ran-

dom variable X is denoted E[X]. We will use the following elementary tools from
probability theory.

Theorem 1.2 (Linearity of Expectation). For any set of random variables X1, X2, . . . , Xk,

E

[
k∑
i=1

Xi

]
=

k∑
i=1

E[Xi].

Theorem 1.3. For any set of independent random variables X1, X2, . . . , Xk,

P
[
∩ki=1Xi = ai

]
=

k∏
i=1

P[Xi = ai].

Theorem 1.4 (Chernoff Bounds). For any independent set of random variables
X1, X2, . . . , Xk and for any ε ∈ (0, 1), where P[Xi = 1] = pi and P[Xi = 0] = 1− pi,
we have

P

[
k∑
i=1

Xi < (1− ε)
k∑
i=1

pi

]
< exp

(
−ε2

k∑
i=1

pi/2

)

P

[
k∑
i=1

Xi > (1 + ε)
k∑
i=1

pi

]
< exp

(
−ε2

k∑
i=1

pi/3

)

1.2 Overview of Results

1.2.1 Connectivity Data Structures

We consider two connectivity data structures. In the first problem, we are given an
undirected graph with edge weights and the goal is to find all min-cuts in the graph.
We will represent these min-cuts succinctly using a data structure known as the cactus
representation [25] of the graph, and call this the cactus construction problem. For
this problem, we present a randomized Monte Carlo algorithm that has a running
time of Õ(m). This improves upon the previous best time complexity of Õ(n2) [60]
and is optimal up to poly-logarithmic factors. The best deterministic algorithm for

15

this problem has a running time of Õ(mn) [76, 32], which improves to Õ(m
√
n) [57]

for Las Vegas algorithms on unweighted input graphs.
We observe that all previous algorithms for the cactus construction problem re-

lied on an intermediate data structure called the chain representation of cuts which
requires Ω(n2) space even for graphs containing O(n) edges. In fact, there are simple
graphs such as a cycle on n vertices that contain O(n) edges but have Ω(n2) min-cuts.
To circumvent this quadratic barrier, we give an algorithm that identifies a subset
of min-cuts called minimal min-cuts (introduced originally by Gabow [35]) in Õ(m)
time and show that the minimal min-cuts contain sufficient information to efficiently
reconstruct the entire cactus.

The second problem in this category asks the following question: given any graph,
does there always exist a sparse graph on the same set of vertices that (approximately)
preserves the values of all cuts? It is important to note that the output graph (called a
cut sparsifier) is allowed to have edge weights irrespective of whether the input graph
is weighted or unweighted. This problem, called cut sparsification, was introduced by
Benczúr and Karger [11], who answered the above question in the affirmative. They
proposed a sampling scheme on the edges of the input graph and showed that for
a particular choice of sampling probabilities, the resulting sample is a cut sparsifier
with high probability. They also conjectured that a much simpler and more natu-
ral set of sampling probabilities based on edge connectivities should also yield a cut
sparsifier, and opined that such a result would substantially simplify cut sparsifica-
tion algorithms. We settle this conjecture in the affirmative and extend our proof
techniques to develop a sampling-based framework for cut sparsification. This frame-
work unifies, simplifies, and extends previous sparsification results, including that of
Benczúr and Karger. We also give a Monte Carlo cut sparsification algorithm that
has a running time of O(m) for unweighted graphs and O(m) + Õ(n) for weighted
graphs. The running times are optimal, except if the input graph is very sparse (has
Õ(n) edges) and is weighted. The previous best running times were O(m log3 n) for
weighted graphs and O(m log2 n) for unweighted graphs [11].

1.2.2 Network Design

Our second category of network connectivity problems is network design. We consider
two problems in this category. In the Steiner tree problem, we are given a weighted
graph G and a subset T of k vertices called terminals. The goal is to find a minimum
weight subgraph H that connects all terminals. We consider the online node-weighted
Steiner tree problem where the node-weighted input graph G is given at the outset
(i.e. offline) but the terminals are identified one at a time. On the arrival of a
terminal, it has to be connected to the previous terminals by augmenting the selected
subgraph. As usual, the goal is to minimize the weight of the selected subgraph. We
explore new combinatorial properties of the Steiner tree problem to obtain an online
Las Vegas algorithm that has a poly-logarithmic competitive ratio. The competitive
ratio of our algorithm is O(log n log2 k), which is optimal up to a logarithmic factor
against a known lower bound of Ω(log n log k). The previous best algorithm for this
problem was the näive greedy algorithm, i.e. we select the cheapest path to connect

16

the new terminal to the component containing the previous terminals, which has the
optimal competitive ratio of O(log k) if the input graph is edge-weighted, but the
competitive ratio degrades to Ω(k) in the presence of node weights.

We also give the first online algorithms with poly-logarithmic competitive ratio for
several generalizations of the Steiner tree problem such as the Steiner forest problem
and the group Steiner tree problem. However, unlike the online Steiner tree algorithm
which has polynomial running time, these algorithms run in quasi-polynomial time.

In this thesis, we introduce a new suite of network design problems that generalize
the node-weighted setting. Abstractly, in a traditional node-weighted network design
problem, each vertex has two choices, that of paying a cost equal to the weight of
the vertex or paying a cost of 0, and only the edges where both endpoints were
paid for are activated. The goal is to make choices at the vertices that minimize the
overall cost subject to the constraint that the activated set of edges satisfies some
desired connectivity property (such as connecting a given a set of terminals in the
Steiner tree problem). We generalize this view of network design problems in two
ways: first, there is an arbitrary set of cost options at a vertex, and second, an
edge is activated according to an arbitrary monotonic function applied to the choices
made at its two endpoints. As usual, the goal is to make choices at the vertices
that minimizes overall cost while ensuring that the set of activated edges satisfies
some desired connectivity property. We call these network activation problems. It
turns out that this generalization helps unify a variety of network design problems for
wireless networks that were previously considered individually in either the theory or
the networking literature.

In this thesis, we formally define the network activation framework, and give ap-
proximation algorithms and matching lower bounds for a variety of classical network
design problems in this framework. In particular, we show that in the network acti-
vation framework,

• The shortest path problem has a deterministic polynomial time exact algorithm.

• The Steiner forest problem has a deterministic algorithm with approximation
ratio O(log k), which is NP-hard to improve beyond constant factors. As a
corollary, the minimum spanning tree problem, which is a special case of the
Steiner tree problem with all vertices being designated as terminals, has an
approximation ratio of O(log n). Perhaps surprisingly, we show that this result
is also tight, i.e. it is NP-hard to approximate the minimum spanning tree
problem to a factor of o(log n) in the network activation framework.

• The 2-edge-connectivity (resp., 2-vertex-connectivity or bi-connectivity) prob-
lem, where the connectivity constraint is that there must be at least two edge-
disjoint (resp., vertex-disjoint) paths in the activated set of edges connecting
every pair of vertices, has a deterministic algorithm with approximation ratio
O(log n).

• The `-edge-connectivity problem, where the connectivity constraint is that there
must be ` edge-disjoint paths in the activated set of edges connecting every pair

17

of vertices, has a deterministic reduction to a more tractable degree-constrained
problem. In fact, we give a bi-criteria approximation algorithm for the `-edge-
connectivity problem via the corresponding degree-constrained problem for an
interesting application of the network activation framework called installation
cost optimization.

Roadmap

The next two chapters are devoted to connectivity data structures. We present our
results in cactus construction in Chapter 2 and those in cut sparsification in Chapter 3.
Chapters 4 and 5 focus on network design and respectively present results on online
Steiner trees and network activation problems.

18

Part I

Connectivity Data Structures

19

Chapter 2

Cactus Construction

The cactus is an elegant data structure introduced by Dinitz et al [25] that represents
all (possibly Θ(n2)) minimum cuts of an undirected graph using a different undirected
graph on O(n) edges. The representing graph is a tree of cycles—a collection of
cycles connected to each other by non-cycle edges that form a tree. Each vertex in
the original graph is mapped to a vertex of the cactus (though the mapping can be
non-injective and non-surjective). In the cactus, removing any tree edge, or any pair
of edges from the same cycle, divides the cactus vertices in two. Each such partition
induces a corresponding partition of the original graph vertices; these are precisely
the min-cuts of the original graph. A cactus makes it easy to enumerate all min-cuts,
to find a min-cut separating any two vertices if one exists, and to compute other
useful characteristics of the min-cuts of the original graph.

In this chapter, we give an Õ(m)-time Monte Carlo algorithm for constructing
the cactus representation of a (weighted/unweighted) graph. This improves on the
previous best Õ(n2)-time algorithm of Karger and Stein [60], and is optimal up to
logarithmic factors. It also matches, up to logarithmic factors, the time complexity
for finding a single min-cut [58].

2.1 Background

Let us first formally define a cactus graph.

Definition 2.1. An undirected graph is said to be a cactus graph (or simply, a cactus)
if each edge in the graph belongs to at most one cycle. An edge that belongs to exactly
one cycle is called a cycle edge while one that does not belong to any cycle is called a
tree edge.

Note that if the weight of every tree edge is k and that of every cycle edge is k/2
in a cactus graph, then every min-cut of the graph corresponds to two cycle edges
in the same cycle or a single tree edge. We use this structure to define the cactus
representation of a graph.

Definition 2.2. A cactus representation of a graph G = (V,E) is a cactus graph
H = (U, F) and a (possibly non-surjective and non-injective) function ψ : V → U

21

such that

• Each tree edge in H has weight λ and every cycle edge has weight λ/2, where λ
is the value of a min-cut in G.

• For any min-cut S ⊂ U in H, the cut defined by {v ∈ V : ψ(v) ∈ S} is a
min-cut in G. Conversely, for any min-cut S ⊂ V in G, all cuts S ′ ⊂ U in H
satisfying S = {v ∈ V : ψ(v) ∈ S ′} are min-cuts in H.

The vertices in the cactus graph that do not have any vertex in V mapping to
them are called empty nodes in the cactus representation. Note that a graph may
have multiple cactus representations. Our goal is to find at least one of them.

The Cactus Construction Problem

The input comprises a (weighted/unweighted) graph G = (V,E)
and the goal is to construct a cactus representation of G.

2.1.1 History

Karzanov and Timofeev gave a sequential algorithm for cactus construction [62] that
was parallelized by Naor and Vazirani [76]. This algorithm used an explicit listing of
all the min-cuts of the graph. An undirected graph potentially has Θ(n2) min-cuts,
each of which can be described explicitly in Θ(n) space; thus, the explicit listing
uses Θ(n3) space. Any cactus construction using such a listing will of course require
Θ(n3) time just to read its input. This was unimportant when min-cut algorithms
were slow, as the time to find the min-cuts dominated the time to construct the
cactus. However, as faster min-cut algorithms were developed [50, 74, 60, 58], faster
cactus construction algorithms became imaginable. Karger and Stein [60] gave an
Õ(n2)-time cactus construction based on the chain representation of min-cuts.

Definition 2.3. A chain of min-cuts is a set of concentric min-cuts in a graph, i.e.
∅ ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sk ⊂ V . A chain representation of min-cuts encodes all
min-cuts into n chains.

Note that each chain of min-cuts can be represented in O(n) space, and therefore,
the chain representation takes O(n2) space. The running time of the Karger-Stein
algorithm is thus near-linear in the (maximum) size of the representation it uses.

Subsequently, Karger [58] gave a near-linear time algorithm for finding a min-cut
in a graph. However, no algorithm with similar time bounds was given for cactus
construction, the quadratic-space intermediate representation used by the previous
algorithms being the bottleneck.

22

2.1.2 Our Contributions

To achieve near-linear time, we need to find a better way to examine all the min-cuts
of the graph that need to be incorporated in the cactus. Indeed, it is not only the
size of these cuts’ representation that is at issue: since there can be as many as Θ(n2)
cuts even in a graph with n edges (consider the cycle), a near-linear time cactus
algorithm does not even have time to encounter all the min-cuts, let alone build a
large representation of them. This is the challenge we surmount in the chapter: to
go directly from the size-m graph to the size-n cactus, without ever “unpacking” the
set of min-cuts that we need to examine for the construction.

Theorem 2.4. There is a Monte Carlo algorithm that finds a cactus representation
of a (weighted/unweighted) graph with high probability in O(m log4 n) time.

2.1.3 Our Approach

Although there may be Θ(n2) min cuts, we show that the cactus can be constructed
by finding only O(m+ n) minimal min-cuts. (The concept of minimal min-cuts was
introduced by Gabow in [35].) For intuition, suppose the cactus is a tree (i.e. the
cactus has no cycles) and the vertices of the graph are in 1-1 correspondence with
those of the cactus. To build the cactus, we need only identify the tree edges in the
cactus. To do so, pick some vertex r of the graph, and imagine we root the cactus at
this vertex. Then the min-cuts correspond to subtrees of this tree, and the subtree
rooted at v is precisely the minimal (in number of vertices) min-cut separating v from
the root r. Enumerating all such subtrees could generate Θ(n2) work. So instead, we
aim to identify the parent of each vertex. If w is the parent of v, then the subtree
rooted at w, besides being a minimal min-cut (for w) is the second smallest min-cut
separating v from r. Thus, to construct the cactus, we label each vertex w with its
minimal min-cut, and we find the parent of v by finding the vertex labeled by the
second smallest min-cut for v among these minimal min-cuts.

The first complication arises due to multiple graph vertices mapping to the same
cactus vertex. All these vertices however have the same minimal min-cut and second
smallest min-cut. These vertices are therefore indistinguishable and are treated as a
single vertex in the cactus construction algorithm.

Things get more complicated in the presence of cycles. We need to identify cycle
edges of the cactus. We can still speak of rooting the cactus, and of vertices “below”
others in the rooted cactus. Vertices on cycles, however, can have two “parents”,
meaning there is no one second-smallest cut identifying a unique parent for such
vertices. Instead, we argue that if (v, w) is a cycle edge, then there is an edge e
with one endpoint below v, and another below w. In this case, the smallest min-cut
separating both endpoints of edge e from the root r is the one that detaches edge
(v, w) from the rest of its cactus cycle, and is thus the union of the minimal min-cuts
labeled by v and w. In other words, there is a minimal min-cut for some edge e
that “certifies” that v and w are neighbors on a cactus cycle. Thus, enumerating the
minimal min-cuts for edges in the graph lets us identify cycle edges of the cactus.

23

We similarly handle the last complication, that of empty nodes in the cactus
representation. In this case, we show there is an edge e of the graph whose two
endpoints have this empty node as a least common ancestor—thus, the minimal min-
cut separating (both endpoints of) e from r corresponds to the subtree rooted at u.
We go a step further- we show that if a min-cut X represented by an empty cactus
node is the smallest min-cut containing another min-cut Y , then X is the minimal
min-cut separating (both endpoints of) some edge f with exactly one endpoint in Y
from r.

To find the minimal min-cuts, our algorithm builds on Karger’s Õ(m)-time min-
cut algorithm [58]. Given a graph G, Karger’s algorithm uses random sampling to
construct a set T of O(log n) trees with the property that any min-cut of G 2-respects
some tree of T . That is, there will be some tree T ∈ T such that it has at most two
edges crossing the given min-cut. Removing this edge or pair of edges will divide the
tree into two or three pieces that correspond to the vertex partition of the min-cut (if
two pieces, the partition is obvious; if three pieces, then the two non-adjacent pieces
form one side of the min-cut). The min-cut algorithm finds a cut by inspecting all
pairs of potentially removable tree edges—not explicitly, as that would take Ω(n2)
time, but by finding a “best match” second edge for each of the n edges of T . While
this algorithm will find some min-cut, it will not find all.

To find the minimal min-cuts, we augment Karger’s algorithm. We know that each
min-cut corresponds to a singleton or pair of edges from a tree T ∈ T , so we seek
the edges and pairs corresponding to minimal min-cuts. We piggyback on the part of
Karger’s algorithm that hunts for min-cuts, checking the values of cuts corresponding
to certain singletons or pairs of edges. However, where Karger’s algorithm can stop
once it finds some min-cut, we need to work more exhaustively to enumerate all
minimal min-cuts. This puts us at risk of spending Ω(n2) time encountering too-
many non-minimal min-cuts; we must therefore prove and exploit structural theorems
regarding these minimal min-cuts that let us terminate the exploration early so as to
guarantee spending only Õ(m) time.

Once we have this (implicitly represented) list of all minimal min-cuts, we con-
struct the tree T of vertex minimal min-cuts using the second smallest min-cuts that
we described earlier. The following property follows immediately from the fact that
a min-cut is contiguous in the cactus.

Lemma 2.5. Consider any vertex x and its children y1, y2, . . . , yk in tree T . The
vertices in the subtree of x in T (call this set X) are contiguous in a cactus. Further,
the vertices in the subtree of each of yi (call these sets Yi) are contiguous in a cactus.

For each node of this tree, our goal then becomes constructing the cactus repre-
sentation for the vertices in its subtended subtree, assuming that the cactus represen-
tation of its children subtrees have been constructed recursively. We show that this
can be done in Õ(m) time for the entire tree using the minimal min-cuts for edges
that we described earlier.

24

Roadmap

We review Karger’s min-cut algorithm [58] in Section 2.2. In Section 2.3, we describe
our cactus construction algorithm that uses a modified version of Karger’s algorithm.

2.2 Near-linear Time Min-cut Algorithm

In this section, we review Karger’s Õ(m) min-cut algorithm from [58]. To describe
this algorithm, we need to first define some terms that we will use throughout this
chapter.

Definition 2.6. A cut is said to k-respect a spanning tree of a graph if the spanning
tree contains at most k edges of the cut. A cut is said to strictly k-respect a spanning
tree of a graph if the spanning tree contains exactly k edges of the cut.

The following theorem provides the starting point of the min-cut algorithm.

Theorem 2.7 (Karger [58]). Given any weighted, undirected graph G, in O(m +
n log3 n) time we can construct a set of O(log n) spanning trees such that each mini-
mum cut 2-respects 1/3 of them with high probability.

Throughout this discussion, we will consider these trees to be rooted at the same
vertex. Since there are only O(log n) trees to consider, the problem of finding a
minimum cut in the graph reduces to finding, given a spanning tree T , a min-cut that
2-respects T provided such a min-cut exists. This problem is further sub-divided into
finding any min-cut that 1-respects T and finding any min-cut that strictly 2-respects
T . The first subproblem can be solved easily by a post-order traversal that leads to
the following lemma.

Lemma 2.8 (Karger [58]). The values of all cuts that 1-respect a given spanning tree
can be determined in O(m+ n) time.

The more involved case is that of finding a minimum cut that strictly 2-respects
the spanning tree. We can however restrict the problem further.

Definition 2.9. A bough in a tree is a maximal path on the tree with a leaf at one
end and having the property that all the other vertices have degree 2 in the tree.

If we contract all the boughs into their immediate parent in the tree, then the
number of leaves in the new tree is at most half of that in the original tree. This
follows from the fact that each leaf in the new tree consumes at least 2 leaves of the
original tree. Thus, in O(log n) iterations, the entire tree will shrink into a single
vertex. The problem then becomes one of finding the strictly 2-respecting min-cuts
where one of the edges is on a bough in Õ(m) time.

Now, we further sub-divide the problem.

Definition 2.10. The set of descendants of a vertex v in a spanning tree T is denoted
by v↓T . Similarly, the set of ancestors of v in T is denoted by v↑T .

25

If there is no scope of confusion, we will often drop the suffix and denote these sets
by v↓ and v↑ respectively. Now observe that since the spanning tree is rooted, any tree
edge can be uniquely represented by its lower endpoint in the tree. Therefore, each
strictly 2-respecting cut corresponds to two unique vertices in the tree. We sub-divide
the problem based of the relative locations of these vertices.

Definition 2.11. Consider any two vertices v and w in a spanning tree T . If v ∈ w↓
or v ∈ w↑, then we write v ‖ w (v and w are said to be comparable); else, v ⊥ w (v
and w are said to be incomparable).

Let us first show how to handle the case when v ⊥ w. We need to define some
notation.

Definition 2.12. C(X, Y) is the sum of weights of edges with one endpoint in vertex
set X and the other in vertex set Y , where X ∩ Y = ∅. Overloading our notation,
C(S) = C(S, V − S).

Definition 2.13. The v-precut at w, denoted Cv(w), is the value

Cv(w) = C(v↓ ∪ w↓)− C(v↓) = C(w↓)− 2C(v↓, w↓)

if v ⊥ w and ∞ otherwise.

In the example in Figure 2-1, the precut

Cv(w) = X−Z = (X+Y)−(Y+Z) = C(v↓∪w↓)−C(v↓) = (X+Z)−2Z = C(w↓)−2C(v↓, w↓).

Definition 2.14. The minimum v-precut, denoted Cv, is the value

Cv = min{Cv(w)|∃(v′, w′) ∈ E, v′ ∈ v↓, w′ ∈ w↓}.

Correspondingly, arg min{Cv(w)|∃(v′, w′) ∈ E, v′ ∈ v↓, w′ ∈ w↓} is called a minimum
precut of v.

The next lemma appears in [58] and follows from simple arithmetic on edge sets.

Lemma 2.15 (Karger [58]). If it is determined by incomparable vertices, the mini-
mum cut is minv(C(v↓) + Cv).

Calculating C(v↓) for each vertex v follows directly from Lemma 2.8- these are the
respective cut values. So, we are left to calculate Cv for each vertex v; the minimum
cut can then be found in additional O(n) time.

Recall that we have already assumed that v is on a bough of the spanning tree.
Let us restrict ourselves initially only to the case when v is a leaf. We maintain a
value val[w] at each vertex w and initialize it to C(w↓). Now, we require to subtract
2C(v↓, w↓) from each val[w]. Further, once val[w] has been computed for each w,
we need to find a vertex which has the minimum value of val[w]. The dynamic tree
data structure [86] helps solving both problems. Basically, it provides the following
primitives:

26

Figure 2-1: Example of a precut

• Addpath(v, x): add x to val[u] for every u ∈ v↑.

• MinPath(v): return minu∈v↑ val[u] as well as the u achieving this minimum.

Karger shows that for a leaf v with d incident edges in the graph, we can find Cv via
O(d) dynamic tree operations that require O(d log n) time.

This procedure is now extended from a single leaf to an entire bough.

Lemma 2.16 (Karger [58]). Let v be a vertex with a unique child u. Then either
Cv = Cu, or else Cv = Cv(w) for some ancestor w of a neighbor of vertex v. In the first
case, all the minimum precuts of u which are not ancestors of neighbors of v continue
to be minimum precuts of v.

This lemma leads to a simple bottom-up walk on the bough, where in each step,
the value of Cu computed inductively has to be compared with the values of Cv(w) in
Lemma 2.16, which can be computed using an additional O(d) dynamic tree opera-
tions, where d is the number of edges incident on vertex v in the graph.

We now describe the case of comparable v and w, i.e. v ‖ w. Without loss of
generality, let us assume that v ∈ w↓ and v is on a bough. We need to compute
C(w↓ − v↓). It is shown in [58] that

C(w↓ − v↓) = C(w↓)− C(v↓) + 2(C(v↓, w↓)− 2C(v↓, v↓)).

For a given v, C(v↓, v↓) and C(v↓) are fixed and can be computed in Õ(m) time for
all the vertices by a minor extension of Lemma 2.8. Thus, it is sufficient to compute,
for each vertex w ∈ v↑, the quantity C(w↓) + 2C(v↓, w↓). val[w] is initialized to
C(w↓) for each vertex using Lemma 2.8. Now, using a post-order traversal as earlier
and the dynamic tree operations mentioned above, 2C(v↓, w↓) is added to val[w] for
each w ∈ v↑. Once val[w] has been computed for each w, we need to find a vertex
which have the minimum value of val[w]. This can also be done using dynamic tree
operations.

27

In summary, a strictly 2-respecting min-cut can be found in O(D log n) time for
a bough which has a total of D edges incident on the vertices of the bough. After
running the above procedure, val[w] is reset to its original value by undoing all the
operations (subtracting instead of adding in AddPath) in O(D log n) time. A different
bough can now start running its procedure. Since an edge is incident on at most 2
boughs, the algorithm takes Õ(m) time for processing all the boughs. As discussed
earlier, all the boughs are now folded up and a new phase begins.

This algorithm yields the following theorem.

Theorem 2.17 (Karger [58]). There is a Monte Carlo algorithm that finds a mini-
mum cut in a (weighted/unweighted) graph with high probability in O(m log3 n) time.

2.3 Cactus Construction Algorithm

Unlike the min-cut algorithm presented above, we are not interested in finding only
a single min-cut in the graph. To specify our goals, we need some more definitions.

Definition 2.18. Let r be the vertex that was selected to be the root of the O(log n)
trees in the tree packing. Then, the size of a cut is the number of vertices not on the
side of r in the cut.

Note that the sum of weights of edges in a cut is its value; it is important to keep
the distinction between size and value of a cut in mind.

Definition 2.19. A minimal min-cut of a vertex v is a min-cut of least size which
separates v from r. If v is not separated from r by any min-cut, then its minimal
min-cut is undefined. Overloading the definition, a minimal min-cut of an edge (u, v)
is a min-cut of least size that separates r from both u and v. As earlier, if no min-cut
separates both u and v from r, then its minimal min-cut is undefined.

In the following discussion, we will often refer to a cut by a subset of vertices;
such a subset would be the side of the cut not containing the root vertex r.

Definition 2.20. Two cuts X and Y are said to be crossing if each of X ∩ Y,X −
Y, Y −X and XC ∩ Y C is non-empty.

Lemma 2.21 (see eg, Karger [58]). If X and Y are crossing min-cuts, then X ∩
Y,X − Y, Y −X and X ∪ Y are min-cuts. Further,

C(X ∩ Y,XC ∩ Y C) = C(X − Y, Y −X) = 0.

Lemma 2.22. The minimal min-cut of a vertex or edge is unique. Further, the
minimal min-cut of a vertex v does not cross any other min-cut of the graph.

Proof. If there are two minimal min-cuts of a vertex v (resp., edge (u, v)), then
their intersection is a smaller min-cut containing v (resp., u and v), contradicting
minimality. Similarly, if the minimal min-cut X of a vertex v crosses another min-
cut Y , then either X ∩ Y or X − Y is a smaller min-cut containing v, contradicting
minimality.

28

Y

X

a

b

Figure 2-2: The two trees used in the modified min-cut algorithm

We are finally in a position to describe our plan. We first construct a list of
Õ(m) min-cuts containing the minimal min-cut of each vertex, if one exists. Then,
we label each vertex with its corresponding minimal min-cut from the list and also,
subsequently, find the minimal min-cuts of a sufficient set of edges. Finally, this set of
minimal min-cuts for vertices and edges are used to construct a cactus representation
of the graph.

2.3.1 Listing minimal min-cuts of vertices

We now modify Karger’s min-cut algorithm to meet our objective. All our modifica-
tions are for the strictly 2-respecting scenario; the part of the algorithm that finds all
1-respecting min-cuts is exactly the same as above. Recall that the original algorithm
has O(log n) phases, where the algorithm is run on progressively smaller trees in each
phase. Now, consider a scenario where the minimal min-cut for a vertex u is defined
by vertices v and w, where v ⊥ w and u ∈ v↓. Our goal is to ensure that we identify
this min-cut in the phase where we process v. However, due to the recursive process,
w↓ might be a proper subset of the vertices compressed into a single node at this
stage. In this case, we will fail to identify the minimal min-cut for u. So, we need to
modify Karger’s min-cut algorithm.

We also have O(log n) phases, but we maintain two trees in each phase. One tree
is the shrunk tree S, identical to the earlier algorithm. The other tree T is the original
spanning tree without any edge contraction.

Each vertex in the contracted tree S represents a set of vertices in the original
tree T . For example, in Figure 2-2, the tree on the left is a spanning tree T where
the boughs in the different phases are marked. The shaded bough (on the left) is
processed in phase 2 at which stage its two vertices correspond to sets X and Y in T
(due to boughs being folded up). These sets are shown on the right. For each such
set X, let `(X) denote the leader of the set, which is the highest vertex in T (eg,
in Figure 2-2, a = `(X) and b = `(Y)). Conversely, each vertex v is the leader of a
contracted vertex in S (i.e. set of vertices in T) in some phase; denote this set by
`−1(v).

Now, any set X that gets contracted into a single vertex in S can have two possible

29

structures in T :

• If X is a leaf in S, then it represents a subtree rooted at `(X) in T .

• If X is a vertex with degree 2 in S, then it represents a subtree rooted at `(X)
in T , where one of the child subtrees of `(X) has been removed. This child
subtree is rooted at `(Y), where Y is the only child of X in S.

Our goal is to ensure that if the minimal min-cut of vertex u is defined by vertices
v and w, where v ⊥ w and u ∈ v↓, then this min-cut is identified when `−1(v) is
processed.

We need another definition.

Definition 2.23. Consider any vertex v on a bough and let w be a minimum precut
of v. If there exists no descendant x of w such that x is also a minimum precut of v,
then w is said to be a minimal minprecut of v. If w is the only such vertex, it is said
to be the unique minimal minprecut of v.

Lemma 2.24. Let the minimal min-cut of vertex u 2-respect a tree T , where it is
represented by vertices v and w, v ⊥ w and u ∈ v↓. Then, w is the unique minimal
minprecut of v.

Proof. Clearly, w is a minimal minprecut of v, else there is a smaller min-cut separat-
ing u from root r. If there are multiple minimal minprecuts of v, then these min-cuts
cross, violating Lemma 2.22.

To identify minimal minprecuts, we need to strengthen the MinPath primitive
provided by the dynamic tree data structure. Recall that MinPath(v) for a variable
val returns the minimum value of val among ancestors of v and a vertex which achieves
this minimum value. If there are multiple ancestors of v achieving this minimum value,
then the vertex returned by MinPath is ambiguous. However, we would like MinPath
to return the closest ancestor of v achieving this minimum value. To achieve this, we
run AddPath(v, ε) (for some ε > 0) for each vertex v as a pre-processing step. Clearly,
val[v] now has a value ε|v↓|. We choose a small enough ε so that this pre-processing
step does not tamper with the ability of the algorithm to distinguish min-cuts from
other cuts. Now, if we use our usual MinPath operations, we will always find the
closest ancestor in case of a tie in the original graph.

We need to impose some additional structure on the minimal minprecuts of a
vertex.

Definition 2.25. Consider a vertex v and let its minimal minprecuts be w1, w2, . . . , wk,
where each wi ⊥ v. Let `i be the lca of wi and v in tree T . Clearly, each `i lies on
the path connecting v to root r; let `o be the vertex of least depth among the `is.
Correspondingly, let wo be a minimal minprecut of v such that lca of wo and v is `o
(wo = wi for some i). We call wo an outermost minimal minprecut of v. If wo is
unique, it is called the unique outermost minimal minprecut of v.

30

v
w3 w1

w2

l1 = l2

l3

Figure 2-3: Outermost Minimal Minprecut

As an example, consider the tree in Figure 2-3. Here, `o = `1 = `2 and wo can be
defined as either w1 or w2.

The following lemma is an extension of Lemma 2.16.

Lemma 2.26. Let v be a vertex in T , X = `−1(v) and w be the unique outermost
minimal minprecut of v. If X is a leaf in S, then there exists at least one edge between
X and w↓. On the other hand, if X is a non-leaf in S, let Y be the only child of X
in S and u = `(Y). Then, either there exists at least one edge between X and w↓, or
w is the unique outermost minimal minprecut of u.

Proof. If X is a leaf in S, then by definition of a minimum precut, X and w↓ must
be connected. Otherwise, let there be no edge between X and w↓. We need to
prove that w is the unique outermost minimal minprecut of u. First, note that by
definition of minimum precut, u↓ and w↓ must be connected since v↓ = X ∪ u↓.
Further, by Lemma 2.16, Cu(w) = Cv(w) = Cv = Cu and if any descendant of w is a
minimal minprecut of u, then it is also a minimal minprecut of v, contradicting the
minimality of w. Thus, w is a minimal minprecut of u. If z is a minimal minprecut
of u such that the lca of z and u is either an ancestor of or the same as the lca of w
and u, then z ⊥ v and is a minimal minprecut of v. Thus, w is the unique outermost
minimal minprecut of u.

If w and v represent a minimal min-cut for a vertex u ∈ v↓, where w ⊥ v, then
w is the unique outermost minimal minprecut of v. Thus, our goal is to identify the
unique outermost minimal minprecut of a vertex, if it exists. Processing a leaf X in a
bough in S is easy; we simply run AddPath followed by MinPath queries for the other
endpoint of each edge with one endpoint in X. To process a vertex X of degree 2
in S, assume inductively that we have already found the unique outermost minimal
minprecut w corresponding to its child Y in S, provided such a vertex exists. We now
run AddPath followed by MinPath queries for the other endpoint of each edge with one

31

endpoint in X. Also, we check if w is a minprecut of v = `(X) by inspecting the value
of val[w]. The set of minimal minprecuts identified contains the unique outermost
minimal minprecut of v, if it exists. We now run lca queries to determine if v has
a unique outermost minimal minprecut among the minimal minprecuts identified.
The total time consumed by this procedure is O(d log n), where d edges are incident
on vertices in X. Overall, in any round, the time complexity is O(m log n) for this
procedure.

We now describe the algorithm used to identify all strictly 2-respecting minimal
min-cuts which are represented by comparable vertices. When we process vertex
v, we would like to find all such min-cuts represented by v and w, where v ∈ w↓.
Recall that Karger’s min-cut algorithm allows us to compute val[w] for each w such
that inspecting val[w] for each vertex w reveals all the min-cuts we want to identify.
However, whereas in the min-cut algorithm, only one MinPath query needs to be run
at vertex v, a single query would only reveal the deepest w which forms such a min-
cut with v, but would not reveal additional vertices satisfying the property further
up the spanning tree. To overcome this challenge, we maintain a list at each vertex
w, denoted by desc[w], which contains its descendants v with which it has been found
to form a min-cut that is potentially minimal for some vertex. This list is initially
empty for each vertex and populated by the following procedure (which is run, for
each vertex being processed on a bough in S, after the AddPath calls): Run a MinPath
query at v. Let w be returned by this query. If v, w do not form a min-cut, then stop;
else, if desc[w] is non-empty, then add v to desc[w] and stop; otherwise, add v to
desc[w] and recurse at w (ie, run a MinPath query at w and so on). The correctness
of the procedure is established by the following lemma.

Lemma 2.27. Let u ∈ v↓ or u ⊥ v in T . If both u and v represent min-cuts with
some vertex w ∈ v↑ ∩ u↑, then any min-cut represented by v and any z such that
z ∈ w↑ is not a minimal min-cut for any vertex.

Proof. This follows directly from the observation that any min-cut represented by v
and z must necessarily cross the min-cut represented by w and u. If such a min-cut
is minimal for a vertex, then Lemma 2.22 is violated.

The AddPath queries for a bough take O(D log n) time in the above procedure,
where D is the number of edges incident on the bough. Overall, in any round, the
time complexity is O(m log n) for these queries.

All the MinPath queries, except possibly the last one during the processing of
each vertex v, result in populating the previously empty desc list of some vertex;
thus, there are at most n such queries. The last query can be charged to the vertex
being processed; thus there are at most n such queries as well. Overall, in any round,
O(n) MinPath queries are made, and they take O(n log n) time.

The next lemma follows from the above analysis by the fact that there are O(log n)
rounds and O(log n) spanning trees in the algorithm.

Lemma 2.28. The time complexity of producing the list of min-cuts that contains all
the minimal min-cuts of vertices is O(m log3 n).

32

2.3.2 Labeling minimal min-cuts of vertices

We will now label each vertex with the smallest min-cut containing it among those
that 2-respect a fixed spanning tree T . As discussed earlier, the vertices representing
a min-cut can be used to classify the min-cuts into 3 categories: 1-respecting min-cuts
(category 1) and strictly 2-respecting min-cuts where the vertices are incomparable
(category 2) or comparable (category 3). We label each vertex with the smallest
min-cut containing it in each category. Finally, for each vertex, we find the minimum
among its O(log n) labels corresponding to the 3 categories of edges in the O(log n)
trees.

Category 1 (1-respecting). Lemma 2.8 states that in O(n) time, we can find the
weights of all 1-respecting cuts. Assuming that we know the value of a min-cut using
the algorithm in [58], it immediately follows that we can identify all the 1-respecting
min-cuts in O(n) time. To label each vertex with the minimal min-cut containing it,
we contract all the edges in T which do not represent min-cuts. Then, the smallest
min-cut containing vertex v is the edge connecting the contracted vertex containing
v to its parent. Thus, we simply label all vertices in a contracted set by the root of
the set. This takes O(n) time.

Category 2 (strictly 2-respecting, incomparable). The smallest min-cut con-
taining a vertex is the smallest among the min-cuts represented by its ancestors in the
bough containing it in S. We trace the path along the bough downward maintaining
the smallest encountered min-cut C. The label given to a vertex v is the min-cut
stored as C when v is encountered. Clearly, this takes O(1) time for each vertex
along the walk, and therefore O(n) time overall.

Category 3 (strictly 2-respecting, comparable). We perform a post-order tree
traversal using a mergeable minheap (see e.g. [24]) to hold all the minimal min-cuts
that contain the current vertex u. These min-cuts are exactly the min-cuts whose
lower vertex has been encountered but the upper vertex has not been encountered
yet. Labeling u with the smallest min-cut in the heap takes O(1) time. Now, all the
cuts whose upper vertex is u are removed from the heap and the heap is passed on
to the parent of u, say v. All the heaps passed up from its children are now merged
at v in amortized O(log n) time. This takes O(n log n) time overall.

The next lemma follows from the above analysis by the fact that there O(log n)
spanning trees in the algorithm.

Lemma 2.29. The time complexity of labeling each vertex with its minimal min-cut
is O(n log2 n).

We now form a partition of the vertices according to their minimal min-cut and
contract subsets of vertices having the same minimal min-cut. Clearly, this does
not change the set of min-cuts in the graph, and hence does not affect any cactus
representation of the graph. In the remaining discussion, a vertex will denote such

33

a contracted vertex. For simplicity, we will continue to denote the number of (con-
tracted) vertices in the graph by n, which is an upper bound on this number.

2.3.3 Labeling second-smallest min-cuts of vertices

As mentioned in the introduction, we will now construct a tree of min-cuts by labeling
each vertex with the second-smallest min-cut separating it from r among all the
minimal min-cuts of vertices. First, we show that this second-smallest min-cut of a
vertex is unique.

Lemma 2.30. The second smallest min-cut separating a vertex from the root r among
the minimal min-cuts of vertices is unique.

Proof. Suppose not. Let X, Y, Z,W be the partition of the vertices formed by the
crossing second smallest minimal min-cuts containing v, the crossing min-cuts being
X ∪ Y and X ∪ Z. Then, for any vertex u ∈ X ∪ Y , either X or Y is a smaller
min-cut than X ∪ Y containing u. Thus, X ∪ Y is not a minimal min-cut, which is a
contradiction.

As earlier, we sub-divide the problem based on the spanning tree where a minimal
min-cut is 2-respecting and the structure of the min-cut in the spanning tree. So,
given a spanning tree T , we aim to label each vertex with the second-smallest min-cut
(in each of the three categories) containing the vertex. First, consider the 1-respecting
cuts. After contracting edges which do not correspond to minimal min-cuts, let vertex
v be in vertex set X. If Y is the parent of X in the tree, then the second-smallest
1-respecting min-cut containing v is represented by the root of Y . This takes O(n)
time for all the vertices in each spanning tree.

Now, consider the 2-respecting minimal min-cuts where the representative vertices
are incomparable. Recall that in this case we used a top-down walk on the vertices to
be labeled, maintaining the smallest min-cut containing the vertex. To label a vertex
with the second-smallest cut, we need to maintain a list of two smallest minimal
min-cuts rather than one in the top-down walk. So, this also takes O(n) time in each
spanning tree.

Next, consider the case where the vertices representing the min-cut in the tree
are comparable. Here, recall that in the bottom up pass, we maintain a mergeable
minheap of the minimal min-cuts containing the vertex. The min-cut at the top of
the heap is the smallest mincut and one of its children is the second-smallest min-cut.
This takes O(n log n) additional time in each spanning tree.

Finally, we consider all the labels (for both smallest and second-smallest min-
cut) from the O(log n) spanning trees and retain the labels corresponding to the two
smallest min-cuts for each vertex.

We now form a tree T by connecting vertex v with vertex u if the minimal mincut
of u is the second-smallest minimal min-cut of v. This tree can be constructed in
O(n) additional time.

The next lemma follows from the analysis above along with Lemmas 2.28 and
2.29.

34

Lemma 2.31. The time complexity of constructing a tree of minimal min-cuts of
vertices where for every vertex v,

• the subtree subtended at v is the minimal min-cut separating v from r, and

• the subtree subtended at the parent of v in the tree is the second-smallest min-cut
separating v from r

is O(m log3 n).

2.3.4 Minimal min-cuts of edges

As described earlier, we need to find the minimal min-cuts of edges. We need the
following definitions.

Definition 2.32. A certificate of a min-cut X is an edge e such that X is the minimal
min-cut of e.

Definition 2.33. A min-cut Y is a maximal min-cut contained in a min-cut X if
Y ⊂ X and there does not exist any min-cut Z such that Y ⊂ Z ⊂ X.

The following lemma lower bounds the sum of weights of certificates of a min-cut.

Lemma 2.34. Consider a min-cut X. Let Y ⊂ X be a min-cut satisfying the follow-
ing properties:

• Y is a maximal min-cut contained in X.

• Y does not cross any other min-cut.

Then, the total weight of certificates of X with one endpoint in Y is at least λ/2,
where λ is the weight of a min-cut.

Proof. The properties satisfied by Y ensure that any edge between Y and X −Y is a
certificate of X. Now, if the total weight of edges between Y and X − Y is less than
λ/2, then X − Y is a cut of weight less than λ.

We now show that the above lemma ensures that the min-cuts of interest to us
have sufficiently large number of certificates. Recall from the introduction that we
are interested in min-cuts which are represented either by empty cactus nodes or by
consecutive nodes on a cactus cycle.

Let us consider the first category of min-cuts, i.e. those represented by empty
cactus nodes. Recall that we are interested not only in finding one certificate of such
a min-cut (say X), but in finding a certificate for each maximal min-cut contained
in it (i.e. min-cut Y such that there is no min-cut Z with Y ⊂ Z ⊂ X), where the
certificate needs to have exactly one endpoint in Y . The following lemma, combined
with Lemma 2.34 shows that the total weight of such certificates is large for each such
Y .

35

x

r

A

B C

D

Figure 2-4: Maximal min-cuts contained in a min-cut represented by an empty cactus
node

Lemma 2.35. For any min-cut represented by an empty node in the cactus, each
maximal min-cut contained in it satisfies the properties of Y in Lemma 2.34.

Proof. The maximal min-cuts contained in a min-cut X represented by an empty
node are the subtrees and cycles below the node. (For an example, see Figure 2-4,
where A,B,C, and D are the maximal min-cuts contained in the min-cut represented
by the empty node x.). Any min-cut represented by a subtree or a cycle in the cactus
does not cross any other min-cut.

Now, we consider the second category of min-cuts, those represented by a pair of
contiguous nodes on a cycle in the cactus. The cactus representation itself shows that
the total weight of edges between the min-cuts represented by the cycle nodes is λ/2.

We now show that we find the minimal min-cuts of edges using the algorithm for
constructing minimal min-cuts of vertices. We construct a set of C lg n graphs for a
large enough constant C from the input graph G, where each edge (of weight, say w)
in G is contracted with probability min(w/2λ, 1) independently in each new graph,
where λ is the value of a min-cut in the input graph.

Lemma 2.36. Let G′ be any new graph produced by random contraction of edges of
G. If X and Y satisfy the condition in Lemma 2.34, then with constant probability,
there exists a certificate of X with exactly one endpoint in Y which is contracted in
G′, and no edge in the cut X is contracted.

Proof. Let the certificates of X with one endpoint in Y have weights w1, w2, . . . , wk,
where

∑k
i=1wi ≥ λ/2 by Lemma 2.34. If there is an edge of weight ≥ 2λ in this set,

then it is necessarily contracted. Thus, let us assume that wi < 2λ, ∀i. Then, the

36

probability that none of the certificates is contracted is

k∏
i=1

(
1− wi

2λ

)
≤

k∏
i=1

(
1− 1

2λ

)wi
≤
(

1− 1

2λ

)λ/2
≤ e−1/4.

On the other hand, let the edges in cutX have weightW1,W2, . . . ,Wl, where
∑l

i=1Wi =
λ. Then, the probability that none of these edges is contracted is

l∏
i=1

(
1− Wi

2λ

)
≥

(
1−

∑l
i=1Wi

2λ

)
= 1/2.

The next corollary follows from the above lemma by the fact that C lg n indepen-
dent instantiations of contracted graphs are used by the algorithm.

Corollary 2.37. For each min-cut X that is represented by either an empty cactus
node or a pair of adjacent nodes on a cycle in the cactus, and for each maximal min-
cut Y contained in X, at least one certificate of X with exactly one endpoint in Y is
contracted and no edge in cut X is contracted, in at least one of the C lg n contracted
graphs, with high probability.

Note that a vertex in a contracted graph represents a set of vertices and edges
on them in the original graph. A disjoint-set data structure (see e.g. [24]) is used
to construct each contracted graph and keep track of the composition of a vertex.
Constructing each contracted graph takes O(mα(m)) time where α() is the inverse
Ackermann function. Further, we also keep track of the size of a contracted vertex,
i.e. number of vertices contracted into the vertex. This serves to compute the sizes
of min-cuts in the above algorithm. The next lemma follows from the above analysis
since there are O(log n) contracted graphs.

Lemma 2.38. The time complexity of labeling each edge with the smallest min-cut
containing it in any of the contracted graphs is O(m log4 n).

Note that while each vertex will necessarily be given its correct label, some edges
might have wrong labels (which correspond to larger min-cuts containing it) or have
no label at all. We show later that the set of edges correctly labeled is sufficient.

2.3.5 Cactus construction from minimal min-cuts

Recall that T is the tree of minimal min-cuts of vertices. First, we discard all edges
that are not between incomparable vertices in T in O(m) time using lca queries in
tree T .

Lemma 2.39. The minimal min-cut of an edge whose endpoints are in comparable
vertices in T is also the minimal min-cut of some vertex.

Proof. Consider an edge (u, v), where u ∈ v↓ in T . Then, the minimal min-cut of v
also contains u, which implies that all min-cuts containing v also contain u. Thus,
the minimal min-cut of (u, v) is also the minimal min-cut of v.

37

We now describe the construction of the cactus representation from tree T . In
the following discussion, a contiguous part of the cactus representing min-cuts that
are subsets of a set of vertices S is referred to as the cactus of S. Recall from the
introduction that Lemma 2.5 reduces our task to constructing the cactus for X with
each Yi contracted into a single vertex, where X is a subtree in T and Yi are its
children subtrees. This cactus will represent all the min-cuts which are contained in
X but not in any Yi. For this purpose, we need to identify the set of edges whose
minimal min-cuts will be represented in the cactus for X. Let (u, v) be an edge. Let
x = lca(u, v) in tree T and y and z be children of x containing u and v respectively.
Then, we define a function f : E → V × V such that f(u, v) = (y, z). The following
lemma states that for the purpose of the construction, we can consider (u, v) to be
an edge between y and z.

Lemma 2.40. Consider an edge e between vertices u and v, where u ⊥ v in T . The
minimal min-cut of e must be contained in x↓, where x = lca(u, v), and must contain
y↓ and z↓, where y and z are children of x such that u ∈ y↓ and v ∈ z↓. Further,
x, y, z can be identified for all edges in O(mα(m)) time.

Proof. The first proposition follows from the observation that u, v ∈ x↓ and x↓, being
a minimal min-cut of a vertex, does not cross any min-cut according to Lemma 2.22.
The second proposition follows from the non-crossing property of the min-cuts y↓ and
z↓.

The value of x, y and z for each edge can be found using a post-order traversal
maintaining a disjoint-set data structure that keeps track of all edges whose one
endpoint has been encountered but the other has not.

Thus, we can now concentrate on the following problem. We are given a set of
vertices X comprising subsets Y1, Y2, . . . , Yk, where ∪ki=1Yi ⊂ X and Yi ∩ Yj = ∅
for all i 6= j. For convenience, we assume that Yk+1 = X − ∪ki=1Yi. We assume,
for the purpose of this construction, that each Yi is contracted into a single vertex.
Further, we are given all edges between any pair of (contracted) vertices Yi and Yj
and their corresponding minimal min-cut labels. Our goal is to construct a cactus on
the vertices Y1, . . . , Yk+1 such that all the min-cuts contained in X but not in any of
the Yis are represented by the cactus.

One further complication arises from the fact that while some edges are labeled
with the minimal min-cuts containing them, other edges may have no label or incorrect
labels. First, we remove all edges without a label since Corollary 2.37 ensures that
each minimal min-cut has a (correctly) labeled certificate. Now, we need to distinguish
between min-cuts having the correct label and those that have erroneous labels. The
following property helps us make this distinction.

Lemma 2.41. If X1, X2, . . . , Xk be min-cuts such that ∪ki=1Xi is also a min-cut, then
among all edges with their two endpoints in different Xis, the label corresponding to
the smallest min-cut is a correct label.

Proof. This follows from Lemma 2.36, coupled with the fact that each edge label is
either correct (i.e. gives the minimal min-cut of the edge) or gives a strictly larger
min-cut containing both endpoints of the edge.

38

During the construction, we will mark any node for which the cactus has not been
constructed yet. Initially, all the Yis are unmarked. Now, let (Yi, Yj) be the edge with
the smallest label. We introduce a new node a as a parent of Yi and Yj and mark
a. We move all edges with exactly one endpoint in Yi ∪ Yj to a and remove all edges
between Yi and Yj. We then move on to the next smallest label among the surviving
edges. The previous lemma ensures that the label we process at any stage is correct
on account of being the minimum surviving label.

We now describe the construction for all the possible cases. In general, at any
stage of the construction, suppose the smallest label corresponds to an edge (a, b). If
both a and b are unmarked nodes (case (a)), then we have already constructed the
cactus for a and b; so we can assume that a and b are singleton vertices. In this case,
we simply introduce a new node c which is the parent of a and b, and mark the new
node. Now, suppose a is a marked node but b is not. Then, we introduce a new node
c and make it the parent of b. However, the relationship between c and a is not clear
at this stage. There are three possibilities: either c overlaps a, or it is the same cut as
a, or it is the parent of a. To distinguish between these possibilities, we run a set of
containment queries, each of which can be answered in O(1) time using lca values in
the spanning trees. First, we check if b ∈ a; if so, then c = a (case (b)). In that case,
we add b as a child of a and remove c; a remains marked. Suppose the above check
fails. Then, a and c are not the same min-cut. Now, if a has more than 2 children,
then a has no siblings (case (c)); so, c must be the parent of a. We unmark a and
mark c. On the other hand, if a has exactly 2 children x and y, then we check if x ∈ c
and y ∈ c. If both x, y ∈ c, then c is the parent of a (case (d)). In this case, if a has
no sibling, we unmark a, mark c and add c as the parent of a. Otherwise, if a has
siblings (case (e)), we mark c, remove a and its siblings, connect the children of the
siblings of a (including the children of a) in a chain and close the chain using c to
form a cycle; also, c is marked. The final possibility is that x is contained in c, but
y is not (case (f)). In this case, c is marked and added as a sibling of a containing x
and b. If both a and b are marked, then we need to run the above checks for both a
and b.

In Figure 2-5, we show the various possibilities. The marked nodes are dark. The
cases are (a) a and b are both unmarked, (b-f) a is marked and b is unmarked; (b)
b ∈ a, (c) a has more than 2 children, (d) a has no sibling, (e) a has siblings but both
of a’s children are contained in c, and (f) a has siblings and x ∈ c while y /∈ c.

When we are left with no edges, we have found all the min-cuts contained in X.
At this stage, we can have two situations. If the node representing X in the cactus
has more than one cycle/subtree below it, then X is the minimal min-cut for all the
edges between these cycles/subtrees. In this case, there will be a single empty node
at the highest level of the cactus formed. We replace this empty node with the node
representing X. The other possibility is that the node representing X has exactly
one cycle/subtree below it in the cactus. If it has exactly one subtree below it, then
there is no edge with endpoints that are incomparable in T and have X as their lca.
If it has exactly one cycle below it, then there will be a cycle at the highest level of
the cactus, where the last node added to the cycle is an empty node. In this case, we
replace this empty node by the node representing X. This completes the construction

39

(f)

b

a

b

c

aa b

c

b

c

a b

c

a

b

c

b

c

a

b

c

ab

c

a

b

c

a

yx xb y

c a

(a) (b)

(c) (d)

(e)

Figure 2-5: Various cases in the cactus construction algorithm

of the cactus of X.

Lemma 2.42. The time complexity of constructing the cactus from the tree of mini-
mal min-cuts of vertices and the minimal min-cut labels on edges is O(mα(m)).

Proof. The lemma follows from the observation that we use a constant number of
disjoint-set operations per edge.

Combining Lemmas 2.31, 2.38, and 2.42 yields Theorem 2.4.

2.4 Concluding Remarks

We have presented an Õ(m) algorithm for constructing a cactus representation of a
graph. An important open question is whether there exists an Õ(m) time computable
certificate for this problem. Even the potentially simpler question of whether there
exists an Õ(m) time computable certificate for a single min-cut (which would lead
to a near-linear time Las Vegas/deterministic algorithm for finding a min-cut) is also
open.

40

2.5 Notes

This chapter is based on joint work with David R. Karger. A preliminary version of
this work appeared in the Proceedings of the 19th ACM-SIAM Symposium on Discrete
Algorithms, 2009 [59].

41

Chapter 3

Cut Sparsification

Can any dense graph be approximated by a sparse graph? Surprisingly, the answer
is a resounding “yes”, under a variety of notions of approximation. For example,
given any undirected graph, there are sparse subgraphs that approximate all pairwise
distances up to a multiplicative and/or additive error, every cut to an arbitrarily
small multiplicative error, every eigenvalue to an arbitrarily small multiplicative error
and so on. Such approximations are a cornerstone of numerous important results in
theoretical computer science.

In this chapter, we consider the problem of cut sparsification, i.e. approximating
every cut arbitrarily well. This problem was originally studied by Karger [57] and
Benczúr and Karger [11], who proved the existence of cut sparsifiers for any graph
and gave an efficient algorithm for their construction. Since then, other cut spar-
sification schemes have been proposed and stronger notions of sparsification called
spectral sparsification have emerged. In this chapter, we give a general sampling
framework for cut sparsification that simplifies, unifies, and improves upon previous
cut sparsification results, resolves a conjecture of Benczúr and Karger on sampling
using edge connectivities, and leads to faster cut sparsification algorithms.

3.1 Background

Cut sparsification was introduced by Benczúr and Karger [11] as a means to accelerate
connectivity algorithms.

The Cut Sparsification Problem

The input comprises a (weighted/unweighted) graph G = (V,E)
and an error parameter ε. The goal is to output a weighted graph
Gε = (V, F) such that the value of every cut in H is within a
multiplicative factor (1± ε) of the value of the corresponding cut in
G.

The graph Gε is called a cut sparsifier of G, which will often be abbreviated as
Gε ∈ (1± ε)G. Cut sparsification is frequently used a pre-processing step in connec-

43

tivity algorithms so that the algorithms run on graphs containing fewer edges and are
therefore faster.

Spielman and Teng [88] realized that a stronger notion of sparsification (that they
called spectral sparsification) would be useful for efficiently solving systems of linear
equations defined by Laplacian matrices. To describe spectral sparsification, we need
to define the Laplacian matrix of a graph.

Definition 3.1. Let G = (V,E) be an undirected graph where we is the weight of edge
e. Then, the Laplacian matrix of G is defined as

L(G)u,v =

∑

e=(u,t)∈E we if u = v

−we if (u, v) ∈ E
0 otherwise

The Spectral Sparsification Problem

The input comprises a (weighted/unweighted) graph G = (V,E)
and an error parameter ε. The goal is to output a weighted graph
Gε = (V, F) such that for every n-dimensional vector x,

xTL(Gε)x ∈ (1± ε)xTL(G)x.

The graph Gε is called a spectral sparsifier of G. Note that a spectral sparsifier is
also a cut sparsifier, since spectral sparsification yields cut sparsification when x is
constrained to be a boolean vector.

3.1.1 Connectivity Parameters

In this chapter, we will use several connectivity parameters, of which edge connectivity
is perhaps the most natural.

Definition 3.2. For any pair of vertices u and v, the edge connectivity between u
and v, denoted kuv, is defined as the minimum value of a cut that separates u and v.
The connectivity of edge e = (u, v), denoted ke, is defined as kuv.

Benczúr and Karger introduced a new connectivity parameter called edge strength
and used it in their sparsification scheme.

Definition 3.3. A k-strong component of G is a maximal k-edge-connected, vertex-
induced subgraph of G. The strength of edge e = (u, v), denoted se or suv, is the
maximum value of k such that a k-strong component of G contains both u and v.

Next, we define electrical resistances and conductances of edges which is useful
for spectral sparsification.

44

Definition 3.4. The effective conductance of edge e = (u, v), denoted ce or cst, is the
amount of current that flows when each edge e of weight we is viewed as a resistor of
resistance 1/we and a unit voltage difference is applied between u and v. The effective
resistance of an edge e is the reciprocal of its effective conductance.

The following well-known property of effective resistances will be used later.

Lemma 3.5. The effective resistance of an edge is equal to the probability that is
appears in a spanning tree drawn uniformly at random from the set of spanning trees
of the graph.

Nagamochi and Ibaraki [75, 74] introduced a simple graph partitioning scheme for
estimating connectivities that leads to a new connectivity parameter called Nagamochi-
Ibaraki (NI) indices.

Definition 3.6. A set of edge-disjoint spanning forests T1, T2, . . . , Tk of a graph G is
said to be a NI forest packing if Ti is a spanning forest on the edges left in G after
removing those in T1, T2, . . . , Ti−1. For weighted graphs, an edge with weight we must
appear in we contiguous forests. The NI index of edge e, denoted `e, is the index of
the (last, if weighted) NI forest in which e appears.

The parameters se, ce, and `e are mutually incomparable; however, ke ≥ max(ce, se, `e)
always holds.

Lemma 3.7. Suppose edge e in an undirected graph G has edge connectivity ke,
effective conductance ce, edge strength se, and NI index `e. Then, ke ≥ max(ce, se, `e).

Proof. ke ≥ se follows from the fact that the strength of an edge is equal to its
connectivity in a subgraph.

Consider a cut C of weight ke separating the terminals of edge e. We contract
each side of this cut into a single vertex. In other words, we increase the conductance
of each edge, other than those in C, to ∞. By Rayleigh’s monotonicity principle (see
e.g. [26]), the effective conductance of e does not decrease due to this transformation.
Since the effective conductance of e after the transformation is ke, ce ≤ ke in the
original graph.

Note that there are `e edge-disjoint paths connecting the end-points of edge e in
the first `e NI forests. It follows, by Menger’s theorem (see e.g. [24]), that ke ≥ `e.

Further, there are known bounds on the sum of reciprocals of these connectivity
parameters. The bound on edge strengths is given in [11].

Lemma 3.8 (Benczúr-Karger [11]). Suppose G is an undirected graph where edge e
has weight we and strength se. Then,

∑
e
we
se
≤ n− 1.

The bound on edge connectivities now follows from Lemma 3.7.

Corollary 3.9. Suppose G is an undirected graph where edge e has weight we and
connectivity ke. Then,

∑
e
we
ke
≤ n− 1.

45

We now show similar bounds for conductances and NI indices. The bound for
conductance follows directly from Lemma 3.5.

Lemma 3.10. Suppose G is an undirected graph where edge e has weight we and
conductance ce. Then,

∑
e
we
ce

= n− 1.

On the other hand, the bound for NI indices is slighter weaker and follows from a
counting argument.

Lemma 3.11. Suppose G is an undirected graph and let T1, T2, . . . , Tk be a NI forest
packing where edge e has weight we and NI index `e. Then,

∑
e
we
`e

= O(n log n).

Proof. Since `e is the last index of a forest that contains a copy of e, we can upper
bound

∑
e
we
`e

by treating edge e as a set of we distinct parallel edges, each having an
NI index equal to the NI forest it belongs to. Then, NI forest Ti contributes at most
(n− 1)/i to the sum, and the overall bound follows by summing over all i. (Since all
edge weights are polynomial in n, the number of NI forests in any NI forest packing
is also polynomial in n.)

3.1.2 Edge Compression

A key idea in cut sparsification is that of edge compression.

Definition 3.12. An edge e is said to be compressed with probability pe if the edge is
sampled with probability pe and if selected, it is given a weight of 1/pe in the output.

Note that the expected weight of an edge after compression is equal to its weight
of 1 before compression. However, the variance of the edge weight after compression
depends on the probability pe.

3.1.3 History

We will describe all the previous non-algorithmic results in sparsification for un-
weighted input graphs. This is wlog since an edge of (integer) weight w is equivalent
to w parallel edges. However, such a substitution affects algorithmic performance;
hence, for algorithmic results we will distinguish between unweighted and weighted
input graphs.

The first result in cut sparsification was obtained by Karger [57] who proposed a
uniform compression of edges.

Theorem 3.13 (Karger [57]). Let Gε be obtained from an unweighted graph G by
independently compressing edge e with probability p = min(ρ/λ, 1), where ρ = 3(d +
2) lnn/ε2 and λ is the value of a minimum cut in G. Then, Gε contains O

(
m logn
λε2

)
edges in expectation and, Gε ∈ (1± ε)G with probability at least 1− n−d.

Karger also gave an O(m)-time implementation of this compression scheme for
weighted graphs. Clearly, this theorem is weak if the minimum cut in G is small.
Benczúr and Karger [11] improved this theorem by using a non-uniform compression
of edges to show that that for every graph G, there exists a cut sparsifier H containing
only O(n log n/ε2) edges.

46

Theorem 3.14 (Benczúr-Karger [11]). Let Gε be obtained from an unweighted graph
G by independently compressing edge e with probability pe = min(ρ/se, 1), where
ρ = 16(d + 2) lnn/ε2. Then, Gε contains O(n log n/ε2) edges in expectation, and
Gε ∈ (1± ε)G with probability at least 1− n−d.

Benczúr and Karger also gave an efficient randomized algorithm to construct a
cut sparsifier containing O(n log n/ε2) edges in expectation. This algorithm runs in
O(m log2 n) time if G is unweighted and O(m log3 n) time if G is weighted. They also
conjectured that replacing edge strengths by edge connectivity in their compression
scheme will lead to significant simplification.

As noted earlier, Spielman and Teng [88] introduced spectral sparsification as a
generalization of cut sparsification and proved the existence of spectral sparsifiers
containing O(n logO(1) n/ε2) edges for every graph. This was improved by Spielman
and Srivastava [87] who obtained spectral sparsifiers containing O(n log n/ε2) edges.

Theorem 3.15 (Spielman-Srivastava [87]). Let Gε be obtained from an unweighted
graph G by independently compressing edge e with probability pe = min(ρ/ce, 1), where
ρ = C lnn/ε2 for a large enough constant C. Then, Gε contains O(n log n/ε2) edges
in expectation, and Gε is a spectral sparsifier of G with constant probability.

Spielman and Srivastava [87] also gave an efficient algorithm to construct a spectral
sparsifier with O(n log n/ε2) edges in expectation; using later improvements to linear
system solvers [69, 70, 68], the best algorithm for producing a spectral sparsifier
containing O(n log n/ε2) edges now runs in O(min(m log2 n,m log n+ n log5 n)) time
(ignoring log log n factors).

Further improvement in spectral sparsification was achieved by Batson et al who
showed the existence of spectral sparsifiers containing (the optimal) O(n/ε2) edges for
every graph. They also gave a deterministic algorithm for constructing such spectral
sparsifiers in O(n3m) time [10].

Recently, connections between spectral sparsifiers and graph spanners [55], and
variants of spectral sparsification where specific subgraphs need to be retained [65]
have been studied. Both cut sparsification [2, 37, 3, 4, 38] and spectral sparsifica-
tion [63] have also been studied recently in the semi-streaming model.

3.2 Our Contributions

3.2.1 A General Sparsification Framework

We propose a general sparsification framework and set out sufficient conditions for
a sampling scheme to result in cut sparsifiers. In describing the framework, we will
assume that the input graph G is unweighted (allowing for parallel edges). Let Gε

be obtained from G by independently compressing edge e with probability pe =

min
(

96α lnn
0.38λeε2

, 1
)

, where α is independent of e and λe ≤ 2n − 1 for all edges. We
describe below a sufficient condition on the values of α and λe’s for Gε to be a cut
sparsifier.

47

To describe this sufficient condition, we partition the edges in G according to
the value of λe into sets F0, F1, . . . , Fk where k = blg maxe∈E{λe}c ≤ n − 1 and
Fi = {e : 2i ≤ λe ≤ 2i+1 − 1}. We will obtain concentration bounds for each Fi
separately since edges in any Fi have roughly the same sampling probability in the
compression scheme. Ideally, we would like to bound the error due to compression of
edges in Fi by a multiplicative factor of the size of Fi. Then, summing over all Fi’s
would immediately yield a concentration bound on the entire graph since the Fi’s are
disjoint. However, it might so happen that the number of edges in a particular Fi
is small, yet these edges have a low sampling probability. This is inconvenient since
we cannot hope to bound the error due to such an Fi by a multiplicative factor of
the size of Fi. To overcome this problem, we define a subgraph Gi of G (with edges
replicated, if required) for each Fi such that edges in Fi are well-connected in Gi and
therefore the error due to Fi can be bounded by a multiplicative factor of the size of
Gi. The goal then becomes one of choosing Gi’s such that no edge in G is replicated a
large number of times across all the Gi’s. This ensures that the sum of the individual
error bounds on the Fi’s in terms of the Gi’s can be expressed as a multiplicative
error on the entire graph G.

Formally, let G = {Gi = (V,Ei) : 1 ≤ j ≤ k} be a set of subgraphs of G such
that Fi ⊆ Ei for every i. For a set of parameters Π = (π0, π1, . . . , πk), G is said to be
a (Π, α)-certificate corresponding to the above choice of α and λe’s if the following
properties are satisfied for all i ≥ 0:

• (Π-connectivity.) The connectivity of any edge e ∈ Fi in graph Gi is at least
πi.

• (α-overlap.) For any cut C,
∑k

i=0
e
(C)
i 2i−1

πi
≤ αwC , where wC and e

(C)
i denote

the value of cut C in graphs G and Gi respectively.

Theorem 3.16 describes the properties of such a sampling scheme.

Theorem 3.16. If there exists a (π, α)-certificate for a particular choice of α and
λe’s, then Gε ∈ (1 ± ε)G with probability at least 1 − 4/n. Furthermore Gε has

O
(
α logn
ε2

∑
e∈E

1
λe

)
edges in expectation.

3.2.2 Applications of the Sparsification Framework

Our first application of the sparsification framework is to show that compressing by
edge connectivities yields cut sparsifiers, thereby resolving the conjecture of Benczúr
and Karger.

Theorem 3.17. Let Gε be obtained from an unweighted graph G by independently
compressing edge e with probability pe = min(ρ/ke, 1), where ρ = Cd ln2 n/ε2 for a
large enough constant C. Then, Gε contains O(n log2 n/ε2) edges in expectation, and
Gε ∈ (1± ε)G with probability at least 1− n−d.

The next three corollaries of this theorem follow from Lemma 3.7 and Lemmas 3.8,
3.10, and 3.11.

48

Corollary 3.18. Let Gε be obtained from an unweighted graph G by independently
compressing edge e with probability pe = min(ρ/se, 1), where ρ = Cd ln2 n/ε2 for a
large enough constant C. Then, Gε contains O(n log2 n/ε2) edges in expectation, and
Gε ∈ (1± ε)G with probability at least 1− n−d.

Recall that the corresponding result of Benczúr and Karger [11] (Theorem 3.14)
is stronger than this result since it produces sparsifiers containing O(n log n/ε2) edges
in expectation. We show later that we can match the Benczúr-Karger bound by using
our sparsification framework directly.

Corollary 3.19. Let Gε be obtained from an unweighted graph G by independently
compressing edge e with probability pe = min(ρ/ce, 1), where ρ = Cd ln2 n/ε2 for a
large enough constant C. Then, Gε contains O(n log2 n/ε2) edges in expectation, and
Gε ∈ (1± ε)G with probability at least 1− n−d.

As we noted earlier, the main caveat is that Spielman and Srivastava (Theo-
rem 3.15) prove spectral sparsification whereas we do not.

Corollary 3.20. Let Gε be obtained from an unweighted graph G by independently
compressing edge e with probability pe = min(ρ/`e, 1), where ρ = Cd ln2 n/ε2 for a
large enough constant C. Then, Gε contains O(n log3 n/ε2) edges in expectation, and
Gε ∈ (1± ε)G with probability at least 1− n−d.

As in the case of edge strengths, we will show later that this result can be improved
by applying the sparsification framework directly to obtain the following theorem. We
state this theorem for weighted graphs since we will use this theorem for algorithmic
applications.

Theorem 3.21. Let Gε be obtained from a weighted graph G by independently com-
pressing edge e with probability pe = min(ρ/`e, 1), where ρ = Cd lnn/ε2 for a large
enough constant C. Then, Gε contains O(n log2 n/ε2) edges in expectation, and
Gε ∈ (1± ε)G with probability at least 1− n−d.

3.2.3 Sparsification Algorithms

Our framework yields sparsification algorithms that are not only simpler, but also
faster. Nagamochi and Ibaraki showed that a NI forest packing can be constructed
in O(m)-time for unweighted graphs [75], and O(m + n log n)-time for weighted
graphs [74]. For weighted graphs, note that sampling an edge e involves the gen-
eration of a binomial random variable with parameters we and pe. This can be done
in O(wepe) time (see e.g. [54]), and therefore O(

∑
e∈E wepe) time overall for all edges.

We can now use Theorem 3.21 to claim that the time complexity of sampling all edges
is O(n log2 n) = O(m). (Note that if m = O(n log2 n), then we can retain all edges;
therefore, we assume wlog that n log2 n = O(m).) Coupled with Theorem 3.21, we
get the following theorem.

49

Theorem 3.22. For any input graph G and any constants ε ∈ (0, 1), d > 0, there is
a randomized algorithm that runs in O(m)-time and produces a graph Gε containing
O(n log2 n/ε2) edges in expectation, where Gε ∈ (1 ± ε)G with probability at least
1− n−d .

The cut sparsifier produced by this algorithm contains O(n log2 n/ε2) edges in ex-
pectation, which is a factor of log n greater than that produced by previous algorithms
of Benczúr and Karger. However, the output of this algorithm can be post-processed
using the previous algorithm for weighted graphs to obtain a cut sparsifier contain-
ing O(n log n/ε2) edges. Recall that the best previously known algorithm runs in
O(m log3 n) time for weighted graphs.

Corollary 3.23. For any input graph G and any constants ε ∈ (0, 1), d > 0, there is
a randomized algorithm that runs in O(m + n log5 n)-time, and produces a graph Gε

containing O(n log n/ε2) edges in expectation, where Gε ∈ (1± ε)G with probability at
least 1− n−d .

We give a new algorithm for unweighted graphs that reduces the running time to
the optimal O(m) without increasing the number of edges in the cut sparsifier.

Theorem 3.24. For any unweighted input graph G and any constants ε ∈ (0, 1), d >
0, there is a randomized algorithm that runs in O(m)-time and produces a graph Gε

containing O(n log n/ε2) edges in expectation, where Gε ∈ (1± ε)G with probability at
least 1− n−d .

Roadmap

This chapter is organized as follows. Section 3.3 and Section 3.4 give proofs of a mod-
ified Chernoff bound and a cut counting theorem respectively, which are the two main
technical tools that we use to prove properties of the sparsification framework (Theo-
rem 3.16) in Section 3.5. Applications of the framework to various sampling schemes
appears in Section 3.6. Finally, we present sparsification algorithms in Section 3.7.

3.3 Modified Chernoff Bounds

We will use the following form of Chernoff bounds for a set of random variables with
non-uniform sampling probabilities but uniform expectation.

Theorem 3.25. Let X1, X2, . . . , Xn be n independent random variables such that Xi

takes value 1/pi with probability pi and 0 otherwise. Then, for any p such that p ≤ pi
for each i, any ε ∈ (0, 1), and any N ≥ n,

P

[∣∣∣∣∣
n∑
i=1

Xi − n

∣∣∣∣∣ > εN

]
< 2e−0.38ε

2pN .

To prove the theorem, we need the following facts.

50

Fact 3.26. Let f(x) = x− (1 + x) ln(1 + x) for x > 0. If α = 1− 2 ln 2, then

f(x) ≤

{
αx2 if x ∈ (0, 1)

αx if x ≥ 1.

Proof. First, consider x ∈ (0, 1). Define

g(x) =
f(x)

x2
=

1

x
−
(

1

x
+

1

x2

)
ln(1 + x).

We note that g(x) is an increasing function of x for x ∈ (0, 1). Further, at x = 1,
g(x) = α. Thus, f(x) < αx2 for x ∈ (0, 1).

Now, consider x ≥ 1. Define

h(x) =
f(x)

x
= 1−

(
1 +

1

x

)
ln(1 + x).

We can verify that h(x) is a decreasing function of x for x ≥ 1. Further, at x = 1,
h(x) = α. Thus, f(x) ≤ αx for x ≥ 1.

Fact 3.27. Let f(x) = −x− (1− x) ln(1− x) for x ∈ (0, 1). Then,

f(x) ≤ −x2/2

Proof. Using the Taylor expansion of ln(1− x), we have

−x− (1− x) ln(1− x) = −x+ (1− x)(x+
x2

2
+
x3

3
+ . . .) ≤ −x2/2.

Fact 3.28. The functions f(x) = x(et/x − 1) and g(x) = −x(1 − e−t/x) are non-
increasing in the range x ∈ (0, 1] for any t > 0.

Proof. We have
df

dx
= et/x

(
1− t

x

)
− 1 ≤ et/xe−t/x − 1 = 0.

Similarly
dg

dx
= e−t/x

(
1 +

t

x

)
− 1 ≤ e−t/xet/x − 1 = 0.

We use the facts that we derived to prove the following lemmas.

Lemma 3.29. Let X1, X2, . . . , Xn be a set of n independent random variables such
that Xi takes value 1/pi with probability pi and 0 otherwise. Then, for any p ≤ pi for
each i, and for any ε > 0,

P

[
n∑
i=1

Xi > (1 + ε)n

]
<

{
e−0.38ε

2pn if 0 < ε < 1

e−0.38εpn if ε ≥ 1.

51

Proof. For any t > 0,

P

[
n∑
i=1

Xi > (1 + ε)n

]
= P

[
et
∑
iXi > et(1+ε)n

]
<

E
[
et
∑
iXi
]

et(1+ε)n
(by Markov bound (see e.g. [73]))

=
n∏
i=1

E
[
etXi

]
et(1+ε)n

(by independence of X1, X2, . . . , Xn)

=
n∏
i=1

pie
t/pi + 1− pi
et(1+ε)n

=
n∏
i=1

1 + pi(e
t/pi − 1)

et(1+ε)n

≤ exp

(
n∑
i=1

pi(e
t/pi − 1)− t(1 + ε)n

)
(since 1 + x ≤ ex, ∀x ≥ 0).

Since pi ≤ p for each i, we use Fact 3.28 to get

n∑
i=1

(pi(e
t/pi − 1)) ≤

n∑
i=1

(p(et/p − 1)) = np(et/p − 1).

Thus,

P

[∑
i

Xi > (1 + ε)n

]
< exp(np(et/p − 1)− t(1 + ε)n).

Setting t = p ln(1 + ε), we get

P

[∑
i

Xi > (1 + ε)n

]
<

(
eε

(1 + ε)1+ε

)pn
.

Since 1− 2 ln 2 < −0.38, we use Fact 3.26 to conclude that

P

[∑
i

Xi > (1 + ε)n

]
<

{
e−0.38ε

2pn if 0 < ε < 1

e−0.38εpn if ε ≥ 1.

Lemma 3.30. Let X1, X2, . . . , Xn be a set of n independent random variables such
that Xi takes value 1/pi with probability pi and 0 otherwise. Then, for any p ≤ pi for
each i, and for any ε > 0,

P

[
n∑
i=1

Xi < (1− ε)n

]{
< e−0.5ε

2pn if 0 < ε < 1

= 0 if ε ≥ 1.

52

Proof. For ε ≥ 1,

P

[∑
i

Xi < (1− ε)n

]
≤ P

[∑
i

Xi < 0

]
= 0.

Now, suppose ε ∈ (0, 1). For any t > 0,

P

[∑
i

Xi < (1− ε)n

]
= P

[
e−t

∑
iXi > e−t(1−ε)n

]
<

E
[
e−t

∑
iXi
]

e−t(1−ε)n
(by Markov bound)

=
n∏
i=1

E
[
e−tXi

]
e−t(1−ε)n

(by independence of X1, X2, . . . , Xn)

=
n∏
i=1

pie
−t/pi + 1− pi
e−t(1−ε)n

=
n∏
i=1

1− pi(1− e−t/pi)
e−t(1−ε)n

≤ exp(
n∑
i=1

−pi(e−t/pi − 1)− t(1− ε)n) (since 1− x ≤ e−x, ∀x ≥ 0).

Since pi ≥ p for each i, we use Fact 3.28 to get

n∑
i=1

(−pi(1− e−t/pi)) ≤
n∑
i=1

(−p(1− e−t/p)) = −np(1− e−t/p).

Thus,

P

[∑
i

Xi < (1− ε)n

]
< exp(−np(1− e−t/p)− t(1− ε)n).

Setting t = −p ln(1− ε), we get

P

[∑
i

Xi < (1− ε)n

]
<

(
eε

(1− ε)1−ε

)−pn
≤ e−0.5ε

2pn.

The last inequality follows from Fact 3.27.

We now prove Theorem 3.25 using the above lemmas.

Proof of Theorem 3.25. Let δ = εN
n

. First, consider δ ∈ (0, 1). From Lemmas 3.29

53

and 3.30, we conclude that

P

[∣∣∣∣∣
n∑
i=1

Xi − n

∣∣∣∣∣ > εN

]
= P

[∣∣∣∣∣
n∑
i=1

Xi − n

∣∣∣∣∣ > δn

]
< 2e−0.38δ

2pn

= 2e−0.38ε
2pN(N/n)

≤ 2e−0.38ε
2pN (since N ≥ n).

Now, consider δ ≥ 1. From Lemmas 3.29 and 3.30, we conclude that

P

[∣∣∣∣∣
n∑
i=1

Xi − n

∣∣∣∣∣ > εN

]
= P

[∣∣∣∣∣
n∑
i=1

Xi − n

∣∣∣∣∣ > δn

]
< e−0.38δpn

= e−0.38εpN

≤ e−0.38ε
2pN .

The last inequality follows from the fact that ε < 1.

3.4 Counting Cut Projections

Our next key ingredient is a natural generalization of the following cut counting
theorem due to Karger [56, 60].

Theorem 3.31 (Karger [56, 60]). For any α ≥ 1, the number of cuts of value at most
αλ in a graph is at most n2α, where λ is the minimum value of a cut in the graph.

To state our generalization, we need some definitions.

Definition 3.32. An edge is said to be k-heavy if its connectivity is at least k; oth-
erwise, it is said to be k-light. The k-projection of a cut is the set of k-heavy edges
in it.

Intuitively, we show that for a larger value of α, the large number of cuts of size
αλ predicted by Karger’s theorem arises from many distinct k-projections of these
cuts for small values of k, whereas there are few distinct k-projections of these cuts
for large values of k.

Theorem 3.33. For any k ≥ λ and any α ≥ 1, the number of distinct k-projections
in cuts of of value at most αk in a graph is at most n2α, where λ is the minimum
value of a cut in the graph.

Before proceeding further, we need to introduce the splitting-off operation.

Definition 3.34. The splitting-off operation replaces a pair of edges (u, v) and (v, w)
with the edge (u,w), and is said to be admissible if it does not change the edge con-
nectivity between any two vertices s, t 6= v.

54

A key technical tool in our proof of Theorem 3.33 is a theorem of Mader [72] on
the feasibility of the splitting-off operation, whose statement requires us to define cut
edges first.

Definition 3.35. A cut edge is an edge whose removal separates a connected graph
into two disconnected components.

Theorem 3.36 (Mader [72]). Let G = (V,E) be a connected graph where v ∈ V is a
vertex that has degree 6= 3 and is not incident to any cut edge. Then, there is a pair
of edges (u, v) and (v, w) such that their splitting-off is admissible.

Since uniformly scaling edge weights does not affect the conditions of Theo-
rem 3.33, we may assume that G is Eulerian and does not have any cut edge. There-
fore, Theorem 3.36 applies to our graph. The operation of splitting-off of edges can
also be extended to vertices.

Definition 3.37. The splitting-off operation on an even-degree vertex v repeatedly
performs admissible splitting-off operations on the edges incident on v until v becomes
an isolated vertex.

Note that Theorem 3.36 implies that we can split-off any vertex in a Eulerian
graph with no cut edge.

Our proof strategy for Theorem 3.33 is to give an algorithm (Algorithm 1) with
the following property, which immediately implies Theorem 3.33. Here, q(F) denotes
the minimum value of a cut whose k-projection is F .

Lemma 3.38. For any k-projection F with q(F) ≤ αk, Algorithm 1 outputs F with
probability at least n−2α.

To describe Algorithm 1, we need some an additional definition.

Definition 3.39. A vertex is said to be k-heavy if it is incident to a k-heavy edge;
otherwise, it is k-light.

As a pre-processing step, Algorithm 1 splits-off all k-light vertices in G. Since
Algorithm 1 preserves Eulerianness in G and does not introduce any cut edge, this
step (and subsequent splitting-off operations) is feasible. Next, it performs a set of
iterations, where in each iteration, it contracts an edge selected uniformly at random
(where an edge e of weight we is replaced by we parallel edges), removes all self-
loops, and splits-off any vertices that may have become k-light as a result of the
contraction. The iterations terminate when at most d2αe vertices are left in the graph.
At this point, the algorithm outputs the k-projection of a cut selected uniformly at
random. Note that the algorithm adds new edges to G via the splitting-off process.
All new edges are treated as k-light irrespective of their connectivity. Therefore, the
k-projection of a cut that is output by the algorithm does not include any new edge.

When k = λ, there is no k-light vertex and Algorithm 1 reduces to a random
contraction algorithm which was used by Karger to prove Theorem 3.31. Our main

55

Algorithm 1 An algorithm for proving bound on cut projections

• procedure Contract(G, k, α)

• input: A graph G = (V,E), a parameter k ≥ K where K is the weight of a
minimum cut in G, and an approximation factor α

• output: a k-projection

• While there exists a k-light vertex v

– Perform admissible splitting-off at v until v becomes an isolated vertex

– Remove v

• While there are more than d2αe vertices remaining

– Pick an edge e uniformly at random

– Contract e and remove any self loops

– While there exists a k-light vertex v

∗ Perform admissible splitting-off at v until v becomes an isolated vertex
∗ Remove v

• Output the k-projection of a cut selected uniformly at random

56

idea is that we can remove the k-light vertices while preserving the connectivities of
all k-heavy edges by using the splitting-off operation.

To prove Lemma 3.38, we fix a k-projection F with q(F) ≤ αk. Note that it is
sufficient to show that the following invariants hold over all iterations with probability
at least n−2α in Algorithm 1:

• (I1) F is a k-projection in the remaining graph,

• (I2) q(F) ≤ αk (where q(F) now minimizes over cuts in the remaining graph),
and

• (I3) Every remaining k-heavy edge e has connectivity at least k.

In Algorithm 1, modifications to the graph are due to admissible splitting-offs,
contraction of edges, and removal of self-loops. Clearly removing self-loops does not
affect the invariants. For the splitting-off operation, we note that

• (I1) is preserved because we only split-off k-light edges.

• (I2) is preserved because splitting-off never increases the size of any cut.

• (I3) is preserved because we only split-off at a light vertex and the splitting-offs
are admissible.

Finally, we consider edge contraction.

Lemma 3.40. Let the number of remaining vertices be r. Assuming that the invari-
ants hold, they will continue to hold after the contraction operation with probability
at least 1− 2α/r.

Proof. For (I3), note that since contraction does not create new cuts, the edge con-
nectivity of an uncontracted edge cannot decrease. Now consider the graph before
the contraction. Since every remaining vertex v is k-heavy, the degree of each vertex
is at least k; thus the number of remaining edges is at least kr/2. Let C be a cut such
that F is the k-projection of C and q(F) is the value of C. Note that (I1) and (I2)
are preserved if the contracted edge e is not in cut C. Since e is picked uniformly at
random, the probability that e is in C is at most q(F)

kr/2
≤ 2α/r.

Let ri be the number of remaining vertices after the splitting-off operations in iter-
ation i of Algorithm 1. Then, the probability that all the invariants hold throughout
the execution of Algorithm 1, and F is the output is at least(

1− 2α

r0

)(
1− 2α

r1

)
. . .

(
1− 2α

d2αe+ 1

)
2−(d2αe−1) ≥ n−2α.

This completes the proof of Lemma 3.38, which implies Theorem 3.33. Note that
this theorem reduces to Karger’s cut counting theorem by setting k = λ. Given
the numerous applications of Karger’s theorem, e.g. [8, 39, 57, 83], we suspect our
generalization may be of further interest.

57

3.5 The General Sparsification Framework

In this section, we will prove Theorem 3.16. We re-use the notation defined in Sec-
tion 3.2.1. Recall that the Π-connectivity property ensures that every edge in Fi has
connectivity at least πi in the subgraph Gi = (V,Ei). Also, the α-overlap property

ensures that for any cut C,
∑k

i=0
e
(C)
i 2i−1

πi
≤ αwC , where wC and e(C)

i denote the value
of cut C in graphs G and Gi respectively.

We also introduce some additional notation. For any cut C, let F (C)
i = Fi∩C and

E
(C)
i = Ei ∩C; correspondingly, let f (C)

i = |F (C)
i | and e(C)

i = |E(C)
i |. Also, let f̂ (C)

i be

the sum of weights of all edges in F
(C)
i that appear in Gε. Note that E[f̂

(C)
i] = f

(C)
i .

We first prove a key lemma.

Lemma 3.41. For any fixed i, with probability at least 1 − 4/n2, every cut C in G
satisfies ∣∣∣∣f (C)

i − f̂ (C)
i

∣∣∣∣ ≤ ε

2
max

(
e
(C)
i · 2i−1

πi · α
, f

(C)
i

)
Proof. By the Π-connectivity property, any edge e ∈ Fi is πi-heavy in Gi for any
i ≥ 0. Therefore, e(C)

i ≥ πi. Let Cij be the set of all cuts C such that πi · 2j ≤ e
(C)
i ≤

πi · 2j+1 − 1, j ≥ 0. We will prove that with probability at least 1− 2n−2
j+1

, all cuts
in Cij satisfy the property of the lemma. The lemma then follows by using the union
bound over j (keeping i fixed) since 2n−2 + 2n−4 + . . .+ 2n−2j + . . . ≤ 4n−2.

Suppose C ∈ Cij. Let X(C)
i denote the set of edges in F

(C)
i that are sampled with

probability strictly less than one; correspondingly, let x(C)
i = |X(C)

i | and let x̂(C)
i be

the total weight of edges in X(C)
i in the sampled graph Gε. Since edges in F (C)

i −X(C)
i

retain their weight exactly in Gε, it is sufficient to show that with probability at least
1− 2n−2

j+1
,

|x(C)
i − x̂(C)

i | ≤
(ε

2

)
max

(
e
(C)
i · 2i−1

πi · α
, x

(C)
i

)
for all cuts C ∈ Cij. Since each edge e ∈ X(C)

i has λe < 2i+1, we can use Theorem 3.25
with the lower bound on probabilities p = 96α lnn

0.38·2i+1ε2
. There are two cases. In the first

case, suppose x(C)
i ≤ e

(C)
i ·2i−1

πi·α . Then, for any X
(C)
i where C ∈ Cij, by Theorem 3.25,

we have

P

[∣∣∣∣x(C)
i − x̂(C)

i

∣∣∣∣ > (ε2) e
(C)
i · 2i−1

πi · α

]
< 2e

−0.38 ε
2

4 (96α lnn

0.38·2i+1ε2
)
e
(C)
i
·2i−1

πi·α

≤ 2e
−

6e
(C)
i

lnn

πi

≤ 2e−6·2
j lnn,

since e(C)
i ≥ πi · 2j for any C ∈ Cij. In the second case, x(C)

i >
e
(C)
i ·2i−1

πi·α . Then, for any

58

X
(C)
i where C ∈ Cij, by Theorem 3.25, we have

P
[∣∣∣∣x(C)

i − x̂(C)
i

∣∣∣∣ > (ε2)x(C)
i

]
< 2e−0.38

ε2

4 (96α lnn

0.38·2i+1ε2
)x(C)
i

< 2e
−

6e
(C)
i

lnn

πi

≤ 2e−6·2
j lnn,

since x(C)
i >

e
(C)
i ·2i−1

πi·α ≥ 2i+j−1

α
for any C ∈ Cij. Thus, we have proved that

P

[∣∣∣∣x(C)
i − x̂(C)

i

∣∣∣∣ > (ε2)max

(
e
(C)
i · 2i−1

πi · α
, x

(C)
i

)]
< 2e−6·2

j lnn

= 2n−6·2
j

for any cut C ∈ Cij. Now, by the Π-connectivity property, we know that edges in
F

(C)
i , and therefore those in X

(C)
i , are πi-heavy in Gi. Therefore, by Theorem 3.33,

the number of distinct X(C)
i sets for cuts C ∈ Cij is at most n

2

(
πi·2

j+1

πi

)
= n4·2j . Using

the union bound over these distinct X(C)
i edge sets, we conclude that with probability

at least 1− 2n−2
j+1

, all cuts in Cij satisfy the property of the lemma.

We now use the above lemma to prove Theorem 3.16. Lemma 3.41 bounds the
sampling error for a fixed i. In this theorem we bound the total error by summing
over i = 0, . . . , k. (Recall that k ≤ n− 1.)

Let wC and ŵC be the weight of edges crossing a cut C in G and Gε respectively.
By a union bound, the conclusion of Lemma 3.41 holds for every value of i with
probability at least 1− 4/n. Therefore

k∑
i=0

|f̂ (C)
i − f (C)

i | ≤
k∑
i=0

(ε
2

)
max

(
e
(C)
i · 2i−1

πi · α
, f

(C)
i

)

59

for all cuts C. Then, with probability at least 1− 4/n,

|ŵC − wC | = |
k∑
i=0

f̂
(C)
i −

k∑
i=0

f
(C)
i |

≤
k∑
i=0

|f̂ (C)
i − f (C)

i |

≤ ε

2

k∑
i=0

max

(
e
(C)
i · 2i−1

πi · α
, f

(C)
i

)

≤ ε

2

(
k∑
i=0

e
(C)
i · 2i−1

πi · α
+

k∑
i=0

f
(C)
i

)
≤ εwC ,

since
∑k

i=0
e
(C)
i ·2i−1

πi·α ≤ wC by the α-overlap property and
∑k

i=0 f
(C)
i ≤ wC since F (C)

i ’s
form a partition of the edges in C.

We now prove the bound on the expected number of edges in Gε. The expected
number of distinct edges in Gε is∑

e∈E

(1− (1− pe)we) ≤
∑
e

wepe.

The bound follows by substituting the value of pe.
This completes the proof of Theorem 3.16.

3.6 Sparsification by Edge Compression

In this section, we present edge compression schemes using various connectivity pa-
rameters and apply the sparsification framework to show that they yield cut sparsi-
fiers.

3.6.1 Compression using Edge Connectivities

First, we use the sparsification framework to show Theorem 3.17.
For any edge e = (u, v), set λe to its connectivity ke. Let α = 3+lg n and πi = 2i−1.

Recall that Fi is defined as the set of all edges e with 2i ≤ λe ≤ 2i+1 − 1. For any
i ≥ 1 + lg n, let Gi contain all edges in NI forests T2i−1−lgn , T2i−1−logn+1, . . . , T2i+1−1
and all edges in Fi. For i ≤ lg n, Gi contains all edges in T1, T2, . . . , Ti and all edges
in Fi.

Lemma 3.42. The α-overlap property is satisfied by the above definitions.

Proof. Let Yi denote the set of edges in Gi but not in Fi. For any i 6= j, Fi ∩ Fj = ∅
and each edge appears in Yi for at most 2 + log n different values of i. This proves
the α-overlap property.

60

Lemma 3.43. The Π-connectivity property is satisfied by the above definitions.

Proof. Note that for any pair of vertices u, v and for any i ≥ 1, u, v are at least
min(kuv, i)-connected in the first i NI forests, i.e. in T1∪T2∪ . . .∪Ti. Thus, any edge
e ∈ Fi is at least 2i-heavy in the union of NI forests T1, T2, . . . , T2i+1−1. Since there
are at most 2i−1 edges overall in T1, T2, . . . , T2i−1−lgn−1, any edge e ∈ Fi is 2i−1-heavy
in Gi. This proves the Π-connectivity property.

Theorem 3.17 now follows from the above lemmas and Corollary 3.9 applied to
Theorem 3.16. Note that Corollary 3.19 follows immediately from Lemma 3.7 and
Theorem 3.17; hence, we will not consider sampling by edge conductances separately.

3.6.2 Compression using Edge Strengths

Now, we use the sparsification framework to show the result of Benczúr and Karger
on compression using edge strengths (Theorem 3.14).

For any edge e, set λe to its strength se. Let α = 1 and πi = 2k for all i, where
k = blg maxe∈E{λe}c. Let Gi contain all edges in Fr for all r ≥ i, where each edge in
Fr is replicated 2k−r times. (Recall that replication of edges is allowed in Gi, which
are only used in the analysis and not in the actual compression algorithm)

Lemma 3.44. The α-overlap property is satisfied by the above definitions.

Proof. Consider any cut C with an edge e ∈ Fi. Let the corresponding cut (i.e. with
the same bi-partition of vertices) in Gi be Ci. Recall that f (C)

i and e
(C)
i respectively

denote the number of edges in Fi ∩ C and in Ci respectively. Then,

k∑
i=0

e
(C)
i 2i−1

πi
=

k∑
i=0

k∑
r=i

f
(C)
r 2k−r2i−1

2k

=
k∑
i=0

k∑
r=i

f
(C)
r

2r−i+1

=
k∑
r=0

r∑
i=0

f
(C)
r

2r−i+1

=
k∑
r=0

f (C)
r

r∑
i=0

1

2r−i+1

<
k∑
r=0

f (C)
r .

Lemma 3.45. The Π-connectivity property is satisfied by the above definitions.

To prove this lemma, we use the following property of edge strengths [11].

61

Lemma 3.46. The strength of an edge does not decrease even if all edges with lower
strength are removed from the graph.

We need to show that the number of edges in Ci is at least 2k to prove Lemma 3.45.
Let the maximum edge strength in C be kC , where 2j ≤ kC ≤ 2j+1−1 for some j ≥ i.
By Lemma 3.46, Ci contains at least 2j distinct edges of G, each of which is replicated
at least 2k−j times. Thus, Ci contains at least 2k edges. This completes the proof of
Lemma 3.45.

Theorem 3.14 now follows from the above lemmas and Lemma 3.8 applied to
Theorem 3.16.

3.6.3 Compression using NI indices

Now, we use the sparsification framework to show Theorem 3.21.
For any edge e = (u, v), set λe to its NI index `e. Let α = 2 and π = 2i−1. For any

i ≥ 1, define Gi to be the union of the set of edges in NI forests T2i−1 , T2i−1+1, . . . , T2i−1
(call this set of edges Yi) and all edges in Fi. (Note that Yi may contain parallel edges.)
Let G0 only contain edges in F0.

Lemma 3.47. The α-overlap property is satisfied by the above definitions.

Proof. For any i 6= j, Fi ∩ Fj = Yi ∩ Yj = ∅. Thus, each edge appears in Gi for at
most two different values of i, proving the α-overlap property.

Lemma 3.48. The Π-connectivity property is satisfied by the above definitions.

Proof. For any edge e ∈ Fi, the endpoints of e are connected in each of T2i−1 , T2i−1+1, . . . , T2i−1
by definition of a NI forest packing. It follows that e is 2i−1-heavy in Gi, thereby prov-
ing the Π-connectivity property.

Theorem 3.21 now follows from the above lemmas and Lemma 3.11 applied to
Theorem 3.16.

3.7 Cut Sparsification Algorithm

Recall that an implementation of edge compression using NI indices has a running
time of O(m) and produces a cut sparsifier containing O(n log2 n) edges in expecta-
tion. In this section, we give a more refined algorithm for unweighted input graphs
that will have the same time complexity, but will produce cut sparsifiers containing
O(n log n) edges in expectation. This algorithm proves Theorem 3.24.

Before formally describing the algorithm, let us give some intuition about it. Let
us abstractly view compression using NI indices as an iterative algorithm that finds
a set of edges Fi in iteration i (these are the edges in NI forests T2i , T2i+1, . . . , T2i+1−1
and are sampled with probability Θ(log n/2i)) with the following properties:

• (P1) Each edge in Fi has connectivity of Θ(2i) in Fi−1.

62

• (P2) The number of edges in Fi is Θ(n · 2i).

Our first observation is that property (P1) can be weakened — using the general
framework, we show it is sufficient for each edge in Fi to have connectivity of Θ(2i)
in Hi−1 = (V,Ei−1) where Ei−1 = Fi−1 ∪ Fi ∪ Since we are aiming for a sparser
sample than in the previous algorithm, we also need to make (P2) stricter. Our new
requirement is that the number of edges in Fi−1 from any connected component C
of Hi−1 is O(2i) times the number of components into which C decomposes in Hi.
This stricter condition ensures that the expected number of edges in Gε decreases to
Θ(n log n/ε2).

We also need to give a linear-time construction of Fi’s satisfying the above proper-
ties. Iteration i runs on each component of Hi separately; we describe the algorithm
for any one component C. First, (2i + 1) NI forests T1, T2, . . . , T2i+1 are constructed
in C and all edges in T2i+1 are contracted; let the resulting graph be GC = (VC, EC).
If |EC| = O(|VC| · 2i), we add the edges in EC to Fi and retain the remaining edges
for iteration i + 1. Otherwise, we construct (2i + 1) NI forests on GC, contract the
edges in the (2i + 1)st NI forest, and update GC to this contracted graph. We repeat
these steps until |EC| = O(|VC| · 2i); then, we add the edges in EC to Fi and retain
the remaining edges for iteration i + 1. One may verify that properties (P1) and
(P2) are satisfied by the Fi’s constructed by this algorithm.

This algorithm, with a pre-processing step where the number of edges is reduced to
Õ(n) by sampling using NI indices, runs in O(m) + Õ(n) time, and yields a sparsifier
of expected size O(n log n/ε2). We need one additional idea to turn this into a strictly
linear-time algorithm for unweighted graphs. Observe that we would ideally like to
place as many edges as we can in subsets Fi for large values of i so as to obtain a
sparse Gε. On the other hand, the fact that these edges are retained till the later
iterative stages implies that we pay for them in our time complexity repeatedly. To
overcome this dilemma, we use the following trick: instead of sampling these edges
with probability 1/2i in iteration i, we sample them with probability 1/2 in each
iteration j < i, and retain them in the set of edges for the next iteration only if
selected in the sample. Now, we are able to reduce the size of our edge set by a factor
of 2 (in expectation) in each iteration; therefore, implementing a single iteration in
linear time immediately yields a linear-time algorithm overall. However, this iterative
sampling scheme creates several technical hurdles since it introduces dependencies
between the sampling processes for different edges. Our key technical contribution
is in showing that these dependencies are mild enough for us to continue to use the
sparsification framework that we developed independent compression of edges.

Now, we will formally describe our sparsification algorithm. The algorithm (Al-
gorithm 2) has three phases.

The first phase has the following steps:

• If m ≤ 2ρn, where ρ = 1014 lnn
0.38ε2

, then Gε = G.

• Otherwise, we construct a NI forest packing of G and all edges in the first 2ρ
NI forests are included in Gε with weight one. We call these edges F0. The edge
set Y0 is then defined as E − F0.

63

The second phase is iterative. The input to iteration i is a graph (V, Yi−1), which
is a subgraph of the input graph to iteration i − 1 (i.e. Yi−1 ⊆ Yi−2). Iteration i
comprises the following steps:

• If the number of edges in Yi−1 is at most 2ρn, we take all those edges in Gε with
weight 2i−1 each, and terminate the algorithm.

• Otherwise, all edges in Yi−1 are sampled with probability 1/2; call the sample
Xi and let Gi = (V,Xi).

• We identify a set of edges Fi ⊆ Xi with the following properties:

– The number of edges in Fi is at most 2ki|Vc|, where ki = ρ · 2i+1, and Vc is
the set of components in (V, Yi), where Yi = Xi − Fi.

– Each edge in Yi is ki-heavy in Gi.

• We give a sampling probability pi = min
(

3
169·22i−9 , 1

)
to all edges in Fi.

The final phase consists of replacing each edge in Fi with 2i parallel edges, and
then compressing each edge independently with probability pi. (Recall that in the
interest of time complexity of the compression procedure, we will generate a Binomial
random variable to represent the weight of the edge in the sparsifier.) The weighted
graph formed by this compression procedure is the sparsifier Gε.

We now give a short description of the sub-routine that constructs the set Fi in
the second phase of the algorithm. This sub-routine is iterative itself. We start with
Vc = V and Ec = Xi, and let Gc = (Vc, Ec). We repeatedly construct an NI forest
packing for Gc and contract all edges in the (ki + 1)st forest, where ki = ρ · 2i+1, to
obtain a new Gc. We terminate this iterative process when |Ec| ≤ 2ki|Vc|. The set of
edges Ec that finally achieves this property forms Fi.

3.7.1 Cut Preservation

We use the following notation throughout: for any set of unweighted edges Z, cZ
denotes these edges with a weight of c given to each edge. Our goal is to prove the
following theorem.

Theorem 3.49. Gε ∈ (1± ε)G with probability at least 1− 8/n.

Let K be the maximum value of i for which Fi 6= ∅; let S =
(
∪Ki=02

iFi
)
∪ 2KYK

and GS = (V, S). Then, we prove the following two theorems, which together yield
Theorem 3.49 using the union bound. (Observe that since ε < 1, (1 + ε/3)2 ≤ 1 + ε
and (1− ε/3)2 ≥ 1− ε.)

Theorem 3.50. GS ∈ (1± ε/3)G with probability at least 1− 4/n.

Theorem 3.51. Gε ∈ (1± ε/3)GS with probability at least 1− 4/n.

The following property is key to proving both theorems.

64

Algorithm 2 The cut sparsification algorithm

• procedure Sparsify(G)

• input: An undirected unweighted graph G = (V,E), a parameter ε ∈ (0, 1)

• output: An undirected weighted graph Gε = (V,Eε)

• Set ρ = 1014 lnn
0.38ε2

.

• If m ≤ 2ρn, then Gε = G and terminate; else, continue.

• Construct NI forests T1, T2, . . . for G.

• Set i = 0; X0 = E; F0 = ∪1≤j≤2ρTj; Y0 = X0 − F0.

• Add each edge in F0 to Gε with weight 1.

• OuterLoop: If |Yi| ≤ 2ρn, then add each edge in Yi to Gε with weight 2i−1

and terminate; else, continue.

• Sample each edge in Yi with probability 1/2 to construct Xi+1.

• Increment i by 1; set Ec = Xi; Vc = V ; ki = ρ · 2i+1.

• InnerLoop: If |Ec| ≤ 2ki|Vc|, then

– Set Fi = Ec; Yi = Xi − Ec.
– For each edge e ∈ Fi, set λe = ρ · 4i.
– Go to OuterLoop.

Else,

– Construct NI forests T1, T2, . . . , Tki+1 for graph Gc = (Vc, Ec).

– Update Gc by contracting all edges in Tki+1.

– Go to InnerLoop.

• For each i, for each edge e ∈ Fi,

– Set pe = min
(

9216 lnn
0.38λeε2

, 1
)

= min
(

3
169·22i−9 , 1

)
.

– Generate re from Binomial(2i, pe).

– If re > 0, add edge e to Gε with weight re/pe.

65

Lemma 3.52. For any i ≥ 0, any edge e ∈ Yi is ki-heavy in Gi = (V,Xi), where
ki = ρ · 2i+1.

Proof. Since all edges in Y0 are in NI forests T2ρ+1, T2ρ+2, . . . of G0 = G, the lemma
holds for i = 0.

We now prove the lemma for i ≥ 1. Let Ge = (Ve, Ee) be the component of Gi

containing e. We will show that e is ki-heavy in Ge; since Ge is a subgraph of Gi,
the lemma follows. In the execution of the else block of InnerLoop on Ge, there are
multiple contraction operations, each comprising the contraction of a set of edges.
We show that any such contracted edge is ki-heavy in Ge; it follows that e is ki-heavy
in Ge.

Let Ge have t contraction phases and let the graph produced after contraction
phase r be Ge,r. We now prove that all edges contracted in phase r must be ki-heavy
in Ge by induction on r. For r = 1, since e appears in the (ki + 1)st NI forest
of phase 1, e is ki-heavy in Ge. For the inductive step, assume that the property
holds for phases 1, 2, . . . , r. Any edge that is contracted in phase r + 1 appears in
the (ki + 1)st NI forest of phase r + 1; therefore, e is ki-connected in Ge,r. By the
inductive hypothesis, all edges of Ge contracted in previous phases are ki-heavy in
Ge; therefore, an edge that is ki-heavy in Ge,r must have been ki-heavy in Ge.

We will now prove Theorem 3.50. First, we state a property of edge sampling.
Let R ⊆ Q be subsets of edges such that R is π-heavy in (V,Q). Suppose each edge
e ∈ R is sampled with probability p, and if selected, given a weight of 1/p to form a
set of weighted edges R̂. Now, for any cut C in G, let R(C) = R ∩ C, Q(C) = Q ∩ C,
and R̂(C) = R̂ ∩ C respectively; also let the total weight of edges in R(C), Q(C) and
R̂(C) be r(C), q(C) and r̂(C) respectively. Then the following lemma holds.

Lemma 3.53. For any δ ∈ (0, 1] satisfying δ2pπ ≥ 6 lnn
0.38

,

|r(C) − r̂(C)| ≤ δq(C)

for all cuts C, with probability at least 1− 4/n2.

Proof. Let Cj be the set of all cuts C such that

2j · π ≤ r(C) ≤ 2j+1 · π − 1

for each j ≥ 0. We will prove that with probability at least 1 − 2n−2
j+1

, all cuts in
Cj satisfy the property of the lemma. Then, the lemma follows by using the union
bound over j since

2n−2 + 2n−4 + . . .+ 2n−2j + . . . ≤ 4n−2.

We now prove the property for cuts C ∈ Cj. Since each edge e ∈ R(C) is sam-
pled with probability p in obtaining R̂(C), we can use Theorem 3.25 with sampling

66

probability p. Then, for any R(C) where C ∈ Cj, by Theorem 3.25, we have

P
[∣∣∣r̂(C) − r(C)

∣∣∣ > δq(C)
]

< 2e−0.38·δ
2·p·q(C)

≤ 2e−0.38·δ
2·p·π·2j

≤ 2e−6·2
j lnn

= 2n−6·2
j

,

since q(C) ≥ π · 2j for any C ∈ Cj. Since each edge in R(C) is π-heavy in (V,Q),
Theorem 3.33 ensures that the number of distinct R(C) sets for cuts C ∈ Cj is at

most n2
(
π·2j+1

π

)
= n4·2j . Using the union bound over these distinct R(C) edge sets, we

conclude that with probability at least 1− 2n−2
j+1

, all cuts in Cj satisfy the property
of the lemma.

Setting R = Yi, Q = Xi, R̂ = 2Xi+1, δ = ε/13

2i/2
, p = 1/2, and π = ρ · 2i+1 in

Lemma 3.53 gives Corollary 3.54.

Corollary 3.54. With probability at least 1− 4/n2, for every cut C in Gi, |2x(C)
i+1 +

f
(C)
i − x(C)

i | ≤
ε/13

2i/2
· x(C)

i , where x(C)
i , x

(C)
i+1 and f

(C)
i respectively denote the weight of

Xi ∩ C,Xi+1 ∩ C and Fi ∩ C.

Next, we show the following fact.

Fact 3.55. Let x ∈ (0, 1] and ri = 13 · 2i/2. Then, for any k ≥ 0,

k∏
i=0

(1 + x/ri) ≤ 1 + x/3

k∏
i=0

(1− x/ri) ≥ 1− x/3.

Proof. We prove by induction on k. For k = 0, the property trivially holds. Suppose

67

the property holds for k − 1. Then,

k∏
i=0

(1 + x/ri) =
k∏
i=0

(1 +
x

13 · 2i/2
)

= (1 + x/13) ·
k∏
i=1

(
1 +

x/
√

2

13 · 2(i−1)/2

)
≤ (1 + x/13) · (1 + x/(3

√
2))

≤ 1 + x/3
k∏
i=0

(1− x/ri) =
k∏
i=0

(1− x

13 · 2i/2
)

= (1− x/13) ·
k∏
i=1

(
1− x/

√
2

13 · 2(i−1)/2

)
≥ (1− x/13) · (1− x/(3

√
2))

≥ 1− x/3.

We now use Fact 3.55 and Corollary 3.54 to prove the following lemma.

Lemma 3.56. Let Sj =
(
∪Ki=j2i−jFi

)
∪ 2K−jYK for any j ≥ 0. Then, Sj ∈ (1 ±

(ε/3)2−j/2)Gj with probability at least 1− 4/n, where Gj = (V,Xj).

Proof. For any cut C in G, let the edges crossing C in Sj be S(C)
j , and let their total

weight be s(C)
j . Also, let X(C)

i = Xi∩C, Y (C)
i = Yi∩C, and F (C)

i = Fi∩C respectively;

Let their respective sum of weights be x(C)
i , y(C)

i and f
(C)
i .

Since K ≤ n− 1, we can use the union bound on Corollary 3.54 to conclude that
with probability at least 1− 4/n, for every 0 ≤ i ≤ K and for all cuts C,

2x
(C)
i+1 + f

(C)
i ≤ (1 + ε/ri)x

(C)
i

2x
(C)
i+1 + f

(C)
i ≥ (1− ε/ri)x(C)

i ,

68

where ri = 13 · 2i/2. Then,

sCj = 2K−jy
(C)
K + 2K−jf

(C)
K + 2K−1−jf

(C)
K−1 + . . .+ f

(C)
j

= 2K−jx
(C)
K + 2K−1−jf

(C)
K−1 + . . .+ f

(C)
j

since y
(C)
K + f

(C)
K = x

(C)
K

= 2K−1−j(2x
(C)
K + f

(C)
K−1) + (2K−2−jf

(C)
K−2 + . . .)

≤ (1 + ε/rK−1)2
K−1−jx

(C)
K−1 + (2K−2−jf

(C)
K−2 + . . .)

≤ (1 + ε/rK−1)(2
K−1−jx

(C)
K−1 + 2K−2−jf

(C)
K−2 + . . .)

. . .

≤ (1 + ε/rK−1)(1 + ε/rK−2) . . . (1 + ε/rj)x
(C)
j

≤ (1 + (ε2−j/2)/rK−1−j)(1 + (ε2−j/2)/rK−2−j) . . .

. . . (1 + (ε2−j/2)/r0)x
(C)
j since rj+i = ri · 2j/2

≤ (1 + (ε/3)2−j/2)x
(C)
j by Fact 3.55.

Similarly, we can show that sCj ≥ (1− (ε/3)2−j/2)x
(C)
j .

Finally, we observe that Theorem 3.50 follows from Lemma 3.56 if we set j = 0.
Now, we will prove Theorem 3.51. First, observe that edges F0∪2KYK are identical

in GS and Gε. Therefore, we do not consider these edges in the analysis below. For
any i ≥ 1, let ψ(i) be such that 2ψ(i) ≤ ρ · 4i ≤ 2ψ(i)+1 − 1. Note that for any j,
ψ(i) = j for at most one value of i. Then, for any j ≥ 1, Rj = Fi if j = ψ(i) and
Rj = ∅ if there is no i such that j = ψ(i). We set α = 32/3; πj = ρ · 4K ; for any
j ≥ 1, Qj = (V,Wj) where Wj = ∪i−1≤r≤K4K−r+12rFr if Rj 6= ∅ and j = ψ(i), and
Wj = ∅ if Rj = ∅.

The following lemma ensures Π-connectivity.

Lemma 3.57. With probability at least 1 − 4/n, every edge e ∈ Fi = Rψ(i) for each
i ≥ 1 is ρ · 4K-heavy in Qψ(i).

Proof. Consider any edge e ∈ Fi. Since Fi ⊆ Yi−1, Lemma 3.52 ensures that e is
ρ · 2i-heavy in Gi−1 = (V,Xi−1), and therefore ρ · 22i−1-heavy in (V, 2i−1Xi−1). Since
ε ≤ 1, Lemma 3.56 ensures that with probability at least 1− 4/n, the weight of each
cut in (V, 2i−1Xi−1) is preserved up to a factor of 2 in Zi = (V,∪i−1≤r≤K2rFr). Thus,
e is ρ · 4i−1-heavy in Zi.

Consider any cut C containing e ∈ Fi. We need to show that the weight of this
cut in Qψ(i) is at least 4K . Let the maximum λa of an edge a in C be ρ · 4kC , for some
kC ≥ i. By the above proof, a is ρ · 4kC−1-heavy in ZkC . Then, the total weight of
edges crossing cut C in Qψ(kC) is at least ρ · 4kC−1 · 4K−kC+1 = ρ · 4K . Since kc ≥ i,
ψ(kC) ≥ ψ(i) and Qψ(kC) is a subgraph of Qψ(i). Therefore, the the total weight of
edges crossing cut C in Qψ(i) is at least ρ · 4K .

We now prove the α-overlap property. For any cut C, let f (C)
i and w(C)

i respectively
denote the total weight of edges in Fi∩C and Wψ(i)∩C respectively. Further, let the

69

number of edges in ∪Ki=02
iFi ∩ C be f (C). Then, we have the following bound:

K∑
i=1

w
(C)
i 2ψ(i)−1

π
≤

K∑
i=1

w
(C)
i ρ · 4i

2ρ · 4K

=
K∑
i=1

w
(C)
i

2 · 4K−i

=
K∑
i=1

K∑
r=i−1

f
(C)
r · 2r · 4K−r+1

2 · 4K−i

=
K∑
i=1

K∑
r=i−1

f
(C)
r

2r−2i−1

=
K∑
r=0

r+1∑
i=1

f
(C)
r

2r−2i−1

=
K∑
r=0

f
(C)
r

2r

r+1∑
i=1

22i+1

=
32

3

K∑
r=0

2rf (C)
r

=
32

3
f (C).

Using Theorem 3.16, we conclude the proof of Theorem 3.51.

3.7.2 Size of the sparsifier

We now prove that the expected number of edges in Gε is O(n log n/ε2). For i ≥ 1,
define Di to be the set of connected components in the graph Gi = (V,Xi); let D0 be
the single connected component in G. For any i ≥ 1, if any connected component in
Di remains intact in Di+1, then there is no edge from that connected component in
Fi. On the other hand, if a component in Di splits into η components in Di+1, then
the algorithm explicitly ensures that

∑
e∈Fi

we
λe

(where we is the number of parallel
copies of e in the Binomial sampling step) from that connected component is∑

e∈Fi

2i

ρ · 4i
≤
(
ρ · 2i+2 · 2i

ρ · 4i

)
η = 4η ≤ 8(η − 1).

Therefore, if di = |Di|, then

K∑
i=1

∑
e∈Fi

we
λe
≤

K∑
i=1

8(di+1 − di) ≤ 8n,

70

since we can have at most n singleton components. It follows from Theorem 3.16 that
the expected number of edges in Gε is O(n log n/ε2).

3.7.3 Time complexity

If m ≤ 2ρn, the algorithm terminates after the first step which takes O(m) time.
Otherwise, we prove that the expected running time of the algorithm is O(m +
n log n/ε2) = O(m) since ρ = Θ(log n/ε2). First, observe that phase 1 takes O(m +
n log n) time. In iteration i of phase 2, the first step takes |Yi−1| time. We will show
that all the remaining steps take O(|Xi|+n log n) time. Since Xi ⊆ Yi−1 and the steps
are executed only if Yi−1 = Ω(n log n/ε2), it follows that the total time complexity
of iteration i of phase 2 is O(|Yi−1|). Since Yi ⊂ Xi and E[|Xi|] = E[|Xi−1|]/2, and
|Y0| ≤ m, it follows that the expected overall time complexity of phase 2 is O(m).
Finally, the time complexity of phase 3 is O(m+ n log n/ε2) (see e.g. [54]).

We are now left to prove that all, except the first step, of iteration i in phase 2
takes O(|Xi|+n log n) time. Each iteration of the else block takes O(|Vc| log n+ |Ec|)
time for the current Gc = (Vc, Ec). So, the last invocation of the else block takes at
most O(|Xi| + n log n) time. In any other invocation, |Ec| = Ω(|Vc| log n) and hence
the time spent is O(|Ec|). Now, consider an iteration that begins with |Ec| > 2ki · |Vc|.
Note that Ec for the next iteration (denoted by E ′c) comprises only edges in the first
ki NI forests constructed in the current iteration. Hence, |E ′c| ≤ ki · |Vc| < |Ec|/2.
Since |Ec| decreases by a factor of 2 from one invocation of the else block to the next,
the total time over all invocations of the else block is O(|Xi|+ n log n).

3.8 Concluding Remarks

In this chapter, we gave a general sampling framework for cut sparsification and
used it to show that various sampling schemes produce cut sparsifiers. In addition,
we gave two algorithms for cut sparsification both of which run in O(m) time and
produce cut sparsifiers containing an expected O(n log n/ε2) edges for unweighted
graphs and O(n log2 n/ε2) edges for weighted graphs. For weighted graphs, using
previously known algorithms for post-processing, we can obtain cut sparsifiers with
an expected O(n log n/ε2) edges in O(m)+O(n log5 n) time. Several problems are left
open by our work. For example, can we improve the running time of the sparsification
algorithm to O(m) even for weighted graphs? Also, can we obtain a near-linear time
algorithm for cut sparsification that produces a sparsifier containing o(n log n) edges in
expectation? Another interesting combinatorial question is to remove the additional
factor of log n in the sampling probability used in Theorem 3.17, i.e. sampling using
edge connectivities.

3.9 Notes

This chapter is based on joint work with Ramesh Hariharan. Some of the results
in this chapter were independently and concurrently obtained by Wai Shing Fung

71

and Nicholas J. A. Harvey [34]. A preliminary version of this work appeared in the
Proceedings of the 43rd ACM Symposium on Theory of Computing, 2011 [33].

72

Part II

Network Design

73

Chapter 4

Online Steiner Tree and Related
Problems

The minimum Steiner tree (or simply, Steiner tree) problem, where the goal is to
find the cheapest network connecting a designated set of vertices, is one of the most
fundamental and well-studied network design problems. Traditionally, network design
problems have been studied under two cost models—the edge-weighted (EW) model
and the more general node-weighted (NW) model. The Steiner tree problem has been
shown to be NP-hard in the EW model (and therefore in the NW model as well), and
algorithms with near-optimal approximation ratios have previously been proposed for
both models.

In many optimization problems arising in real-world applications, part of the input
is not known in advance but is revealed during the execution of the algorithm. The
online model has been widely used in algorithmic theory to model such instances. In
particular, online optimization for network design problems has received significant
attention. While a near-optimal online algorithm for the EW Steiner tree problem
was known previously, no non-trivial algorithm was known for the corresponding
NW problem. In this chapter, we propose the first online algorithm with a poly-
logarithmic competitive ratio for the online NW Steiner tree problem and several
related problems.

4.1 Background

The Steiner tree problem is defined as follows.

The Steiner Tree Problem

The input is comprised of an undirected graph G = (V,E) and a
set of k terminals T ⊆ V . Each edge and/or vertex in G has a given
cost. The goal is to output the minimum cost subgraph H = (V, F)
of G such that every pair of vertices t, t′ ∈ T is connected in H.

75

The Steiner tree problem has been extended to various other network design prob-
lems. Of particular relevance to our work are the Steiner forest and the group Steiner
tree problems.

The Steiner Forest Problem

The input is comprised of an undirected graph G = (V,E) and a
set of k terminal pairs T ⊆ V (2). Each edge and/or vertex in G has
a given cost. The goal is to output the minimum cost subgraph
H = (V, F) of G such that every terminal pair (s, t) ∈ T is
connected in H.

Note that an instance of the Steiner tree problem can be expressed as an instance
of the Steiner forest problem where the terminal pairs are {(r, t) : t ∈ T − {r}} for
any fixed vertex r ∈ T .

The Group Steiner Tree Problem

The input is comprised of an undirected graph G = (V,E), a root
vertex r ∈ V , and a collection of sets of terminals T ⊆ 2V . Each
edge and/or vertex in G has a given cost. The goal is to output the
minimum cost subgraph H = (V, F) of G such that the root vertex
r is connected to at least one vertex in every terminal set.

Note that an instance of the Steiner tree problem can be expressed as an instance
of the group Steiner tree problem where the root vertex r is an arbitrary fixed vertex
in T and each vertex t ∈ T − {r} is in a separate singleton terminal set.

Even though both the above problems generalize the Steiner tree problem, they
are mutually incomparable. Instead of treating these two problems separately, we will
often consider the group Steiner forest problem which generalizes the Steiner forest
and the group Steiner tree problems.

The Group Steiner Forest Problem

The input is comprised of an undirected graph G = (V,E), a root
vertex r ∈ V , and a collection of pairs of sets of terminals
T ⊆ (2V)(2). Each edge and/or vertex in G has a given cost. The
goal is to output the minimum cost subgraph H = (V, F) of G such
that for every pair of terminal sets (S, S ′) ∈ T , at least one vertex
pair s ∈ S, s′ ∈ S ′ is connected in H.

We also consider another generalization of the Steiner tree problem called the
single-source `-vertex connectivity problem.

76

The Single-source `-vertex Connectivity problem

The input is comprised of an undirected graph G = (V,E), a root
vertex r ∈ V , a set of k terminals T ⊆ V − {r}, and a connectivity
requirement `. Each edge and/or vertex in G has a given cost. The
goal is to output the minimum cost subgraph H = (V, F) of G such
that for every terminal t ∈ T , there are at least ` vertex-disjoint
paths between t and r in H.

Note that an instance of the Steiner tree problem can be expressed as an instance
of the group Steiner forest problem where ` = 1, the root vertex r is an arbitrary
fixed vertex in T , and the terminal set is T − {r}.

4.1.1 Edge-weighted and Node-weighted Problems

The edge-weighted (EW) versions of the above problems allow only edge costs, which
are often used to model costs of network links. On the other hand, the correspond-
ing node-weighted (NW) versions allow both edge and vertex costs. Node costs are
often used to model equipment cost at network nodes, load on network switches
and routers [46], latency and cost of recovery from power outages in electrical net-
works [44], etc. For any NW instance, we will replace every edge of cost c with two
edges of cost 0 connected by a vertex of cost c as a pre-processing step. It is easy
to see that solutions for the transformed instance have a one-to-one correspondence
to solutions for the original instance. The number of vertices increases to n+m and
the number of edges increases to 2m because of this transformation. This increase in
the size of the instance does not affect (quasi-)polynomiality of the running time of
algorithms. Therefore, we will henceforth assume that only vertices have associated
costs in NW versions of these problems.

4.1.2 The Online Model

In many optimization problems, part of the input is not known apriori and is period-
ically revealed during the execution of the algorithm. Such scenarios have typically
been modeled in the algorithmic literature using the online optimization (see e.g. [13])
paradigm. In online network design problems, the entire input graph G and the as-
sociated costs are given offline, i.e. before the execution of the algorithm. Initially,
the algorithmic solution H0 is the empty subgraph. In each online step, a new con-
straint appears online and must be satisfied by the algorithmic solution. (The online
constraint for each of the above problems is given in Table 4.1.) In other words, the
algorithm must maintain the invariant that the algorithmic solution Hi at the end
of the ith online step satisfies the constraint that appeared in that step. Further,
the algorithm is only allowed to add edges and vertices to its solution, i.e. Hi−1 is a
subgraph of Hi for each i. The goal is to minimize the cost of the algorithmic solution
after all the terminals have been revealed.

77

Problem Constraint that arrives online in the ith step
Steiner tree A new terminal ti that has to be connected to the previous

terminals in Hi.
Steiner forest A new terminal pair (si, ti) where si must be connected to

ti in Hi.
Group Steiner tree A new terminal set Ti where some vertex ti ∈ Ti must be

connected to the root r (which is given offline) in Hi.
Group Steiner forest A new pair of terminal sets (Si, Ti) where some pair of ver-

tices si ∈ Si, ti ∈ Ti must be connected in Hi.

Table 4.1: The online constraints for Steiner tree and its generalizations.

4.1.3 Bi-criteria Approximation for Network Design Prob-
lems

We will use the notion of bi-criteria approximation for the single-source `-vertex con-
nectivity problem. A bi-criteria approximation/competitive ratio of (a, b) for an `
connectivity problem implies that the solution produced by the offline/online algo-
rithm achieves a connectivity of `/b while its cost is at most a times that of an optimal
offline solution that achieves a connectivity of `.

4.1.4 History

The EW Steiner tree problem is one of the most well-studied problems in combinato-
rial optimization. It is easy to show that a minimum spanning tree over the terminals
obtains an approximation factor of 2. This approximation factor was improved in a
sequence of works [90, 61, 82, 84] ultimately leading to an approximation factor of
1.39 obtained by Byrka et al [15]. The last algorithm differs from the previous ones
in that it uses an LP-rounding approach as against the combinatorial techniques used
earlier. It is also known that the EW Steiner tree problem is inapproximable to within
a factor of 96

95
, unless NP = P [22]. In the online model, Imase and Waxman [52]

observed that the natural greedy algorithm, which adds the minimum cost path from
the new terminal to any previous terminal in every online step, has a competitive
ratio of O(log k) for the EW Steiner tree. It is easy to show that this competitive
ratio is the best possible up to constant factors.

Agrawal et al [1] and Goemans and Williamson [40] introduced the notion of
primal-dual algorithms to achieve an approximation factor of 2 for the EW Steiner
forest problem. For the online version of this problem, Awerbuch et al [9] showed
that the greedy algorithm has a competitive ratio of O(log n log k). Berman and
Coulston added a small but critical modification to the greedy algorithm to improve
this competitive ratio to O(log k).

For the EW group Steiner tree problem, Charikar et al gave anO(kε)-approximation
polynomial-time algorithm for any constant ε > 0 [17]. They also obtained an approx-
imation ratio of O(log2 k) in quasi-polynomial time. Garg et al [36] used probabilistic
embedding in trees to obtain an O(log3 n log k) approximation randomized algorithm

78

that runs in polynomial time. This algorithm was derandomized by Charikar et al
who obtained an approximation ratio of O(log2 n log k log log n) [18]. For other results
on the EW group Steiner tree problem, see [91] and [20]. An approximation hardness
of Ω(log2−ε k) for any ε > 0 under the complexity theoretic assumption that NP does
not have quasi-polynomial Las Vegas algorithms is also known [49]. For the online
version of this problem, Alon et al [5] used the online primal-dual schema to give an
O(log3 n log k) competitive randomized algorithm.

For the EW group Steiner forest problem, Chekuri et al [19] gave the first non-
trivial algorithm, which achieves an approximation ratio of O(log2 n log2 k). They
posed the design of an online algorithm with poly-logarithmic competitive ratio for
this problem as an open question that we resolve in this chapter.

Let us now move on to node-weighted problems. For the NW Steiner tree prob-
lem, Klein and Ravi [64] gave a greedy algorithm based on spider decompositions
and showed that it achieves an approximation factor of 2 ln k. Their algorithm also
generalizes to the NW Steiner forest problem. Subsequently, a primal-dual interpre-
tation of this algorithm was given by Guha et al [44], and the approximation factor
was improved to (1.35 + ε) ln k using a different combinatorial approach by Guha and
Khuller [43]. It is also known (due to Berman) that the NW Steiner tree problem
generalizes the minimum set cover problem [64], which implies that it is inapprox-
imable to within a factor of (1− o(1)) ln k, unless NP = P [29]. Our work gives the
first online algorithm for this problem with a poly-logarithmic competitive ratio.

4.2 Our Contributions

Our main result for the online NW Steiner tree problem is the following theorem.

Theorem 4.1. There is a polynomial-time randomized online algorithm for the node-
weighted Steiner tree problem with a competitive ratio of O(log n log2 k).

We note that there is a lower bound of Ω(log n log k) on the competitive ratio
of any polynomial-time online algorithm for this problem, even if the algorithm is
randomized. This follows from a corresponding lower bound for the online set cover
problem, under the BPP 6= NP assumption [30].

We also obtain an online algorithm for the NW group Steiner forest problem (and
therefore for the NW Steiner forest and NW group Steiner tree problems as well) with
poly-logarithmic competitive ratio.

Theorem 4.2. There is a quasi-polynomial time randomized online algorithm for the
node-weighted group Steiner forest problem with a competitive ratio of O(log4 n log5 k).

Our techniques also lead to new results in online EW network design. First, we
give a polynomial-time online algorithm for the EW group Steiner forest problem,
thus resolving an open question of Chekuri et al [19].

Theorem 4.3. There is polynomial-time randomized online algorithm for the edge-
weighted group Steiner forest problem with a competitive ratio of O(log6 n log k).

79

Set Cover

EW Steiner
Tree

NW Steiner
Tree

NW Steiner
Forest

Non-Metric
Facility Location

Group
Steiner Forest

on trees

NW Group
Steiner Forest

NW Group
Steiner Tree

EW Group
Steiner Forest

O
(l
og
n)

P
ol
yn
om

ia
l

O(
log

n)

Qu
asi
-po

lyn
om

ial

O
(log

n)

P
olynom

ial

Figure 4-1: Relationships between network design problems.

For the EW single-source `-vertex connectivity problem, we obtain the following
theorem.

Theorem 4.4. There is a polynomial-time deterministic online algorithm for the
edge-weighted single-source `-vertex connectivity problem with a (bi-criteria) compet-
itive ratio of (O (` log k/ε) , 2 + ε) for any ε > 0.

This theorem complements the results of Gupta et al [45] for the corresponding
online edge-connectivity problem.

Roadmap

The set of problems we consider and various reductions we perform are given in Fig-
ure 4-1. The arrows show the reductions from one problem to the other. Dashed lines
represent the reductions via generalization. The labels on the reductions represent
the approximation factor lost in the reduction and the size of the reduction.

This chapter is organized as follows. The online NW Steiner tree algorithm is
presented in Section 4.3. We give the group Steiner forest algorithm on a tree and
then use it to solve the EW and NW group Steiner forest problems in general graphs
in Section 4.4. The online algorithm for the EW single-source `-vertex connectivity
problem is given in Section 4.5.

4.3 Online Node-weighted Steiner Tree

As noted earlier, the online NW Steiner tree problem generalizes the online EW
Steiner tree problem, for which there are mainly two algorithmic approaches. Imase

80

…

1 - ε 1 - ε 1 - ε 1

r

t1 t2 tk

v

Figure 4-2: A lower bound for the greedy algorithm for the online NW Steiner tree
problem

and Waxman [52] showed that the natural greedy algorithm which chooses, in each
online step, the cheapest path to connect the new terminal to any previous terminal,
has a competitive ratio of O(log k) for the online EW Steiner tree problem. Unfortu-
nately, the greedy algorithm has a polynomial competitive ratio for the NW version.
Consider the example in Figure 4-2. Here, the vertices r, t1, t2, . . . , tk appear as ter-
minals, all of which have cost 0. The costs of non-terminal vertices are shown in the
figure. Since each terminal has a private path of cost 1− ε to r, the greedy algorithm
selects these private paths with total cost (1 − ε)k, whereas the optimal solution
chooses the paths through vertex v and has cost 1. Choosing ε to be an arbitrarily
small positive constant leads to a lower bound of k on the competitive ratio of this
algorithm.

The second approach for the online EW Steiner tree problem is based on proba-
bilistic tree embeddings [28], which have been successfully used by Gupta et al [45],
even for higher connectivity requirements in EW online settings. We will discuss such
embeddings in more detail later when we consider edge-weighted problems, but such
embeddings do not exist in the presence of vertex costs. Therefore, this approach is
also ruled out.

One of the reasons for the above two techniques failing for the NW Steiner tree
problem is that it also generalizes the set cover problem.

The Set Cover Problem

The input comprises a collection of m subsets S of a universe X
containing n elements. Each subset has an associated cost. The
goal is to find a sub-collection of subsets T ⊆ S of minimum cost
such that every element in U is covered by some subset in T , i.e.
∪T∈T T = X.

Note that an instance of the set cover problem can be expressed as a NW Steiner
tree problem on a graph G = (V,E), where the vertices V = X ∪ S ∪ {r} and the

81

min
∑

v∈V
∑

v∈V cvxv such that∑
v∈W

xv ≥ 1 ∀ vertex cuts W separating some t, t′ ∈ T

xv ∈ {0, 1} ∀ v ∈ V.

Figure 4-3: The standard ILP for the NW Steiner tree problem

edges E = E1 ∪ E2 with E1 = {(x, S) : x ∈ X is in S} and E2 = {(r, S) : S ∈ S}.
The terminal set T = X ∪ {r}. The costs of the non-terminal vertices are identical
to the costs of the corresponding sets. The terminal vertices have cost 0.

In the online set cover problem, the collection of sets S and the universe X is
given offline, but all elements need not be covered. In each online step, a new element
x that has to be covered is revealed and the selected subsets T has to be augmented
to cover x. The goal is to minimize the overall cost of T after all the elements to be
covered have been revealed.

The first non-trivial algorithm for the online set cover problem was given by Alon et
al [6], who introduced the online primal-dual paradigm (for a comprehensive survey
on this technique, see [14]) to obtain a competitive ratio of O(logm log n). This
algorithm works by first obtaining online a fractional solution to the standard LP
relaxation of the set cover problem to within an O(logm) factor, and then adapting
the randomized rounding method for set cover to work online, losing another factor
of O(log n) in the competitive ratio. Let us try to apply this technique to the NW
Steiner tree problem. The standard LP for this problem is given in Figure 4-3.

Using the methods of Alon et al [5] for online covering of cuts in a graph, we
can compute a fractional solution to this LP (i.e. when xv ∈ [0, 1]) online which
has a competitive ratio of O(log n). However, this LP appears to be too weak to
allow for online rounding without losing a polynomial factor in the competitive ratio.
Consider the example in Figure 4-4. If each edge and vertex has a value of 1/

√
n

in the fractional solution, then an independent rounding of the edges and vertices
does not produce a feasible solution. On the other hand, since the value on an edge
or vertex accumulates over multiple rounds, dependent rounding may produce an
integer solution that is polynomially more expensive than the fractional solution. In
fact, even for the EW Steiner tree problem, an online rounding technique for the
standard LP is not known.

Observe that one can view a solution to the online Steiner tree problem as a
collection of paths, one from each terminal to another terminal that appeared earlier
in the online sequence. If each terminal could afford to pay for its entire path (to
some previous terminal), then a greedy algorithm suffices. For the EW version, this
is indeed the case, and this property is crucial for the analysis of the greedy algorithm
in the online setting. However, as indicated earlier, the example in Figure 4-2 asserts
that for the NW version this property is not true, i.e. terminals must necessarily
share the cost of these paths in order to obtain a poly-logarithmic competitive ratio.

A natural next step is bounding the extent of the cost sharing among the terminals.

82

√n

…

√n

r
…

…… ti

…

Figure 4-4: Online rounding of the standard LP relaxation of NW Steiner tree

For example, in Figure 4-2, terminals t1, t2, . . . , tk only need to share the cost on the
solitary vertex v on their paths to terminal r. Our key lemma, somewhat surprisingly,
generalizes this to show that if we are ready to sacrifice a factor of O(log k) in the
cost, then the cost sharing among terminals can be restricted to a single vertex on
every path.

Lemma 4.5. Let G = (V,E) be an undirected graph with vertex and edge costs cv, ce
for vertices v ∈ V and edges e ∈ E respectively. Suppose T ⊆ V is a set of k terminal
vertices. Then, for any ordering of the terminals t1, t2, . . . , tk, and for any subgraph
GT of G connecting all the terminals, there exists a set of paths P2, P3, . . . , Pk and a
corresponding set of vertices v2, v3, . . . , vk such that

• Pi is a path from terminal ti to another terminal tj which is earlier in the order,
i.e., j < i, in GT

• vi is on path Pi, and

•
∑k

i=2(c(Pi)− cvi) ≤ d2 lg ke · c(GT),

where c(Pi) is the sum of costs of vertices and edges on Pi, and c(GT) is the sum of
costs of vertices and edges in GT .

To prove this lemma, we need to introduce the technique of spider decomposition
of trees due to Klein and Ravi [64].

Definition 4.6. A spider is a connected graph containing at least three vertices, where
at most one vertex has degree greater than two. Each vertex that has degree equal to
one is called a foot, while the unique vertex that has degree greater than two is called
the head. If no vertex has degree greater than two, then any of the vertices with degree
equal to two can be called the head. A head-to-foot path is called a leg of the spider.

An example of a spider is given in Figure 4-5.
Klein and Ravi [64] defined the notion of a spider decomposition of a tree and

proved its existence.

83

Figure 4-5: An example of a spider

Lemma 4.7 (Klein-Ravi [64]). Any tree R contains a set of vertex-disjoint spiders
such that the feet of the spiders are exactly the leaves of the tree. This set is called a
spider decomposition.

We extend this lemma to produce a recursive spider decomposition S of any tree
R. Suppose L = `1, `2, . . . , `k is an arbitrary ordering of the leaves of tree R. A
covering spider decomposition of R with respect to the ordering L is a sequence of
sets of spiders S1,S2, . . . with the following properties:

• The spiders in any set Si are node-disjoint.

• S1 is a spider decomposition of R, i.e. the feet of the spiders in S1 are the leaves
of R.

• Let Si = {si1, si2, . . . , siri}. Now, let the leaves of R that are feet of spider sij
be Lij; further let `ij be the first among these leaves in the ordering L. Then,
the feet of the spiders in Si+1 are exactly the leaves {`ij : 1 ≤ j ≤ ri}.

An example of a covering spider decomposition is given in Figure 4-6. The leaves
are ordered as {t1, t2, t3, t4, t5}. The spiders in the first recursive level (the top right
corner) form a spider decomposition of the tree. In the second recursive level (the
bottom right corner), there are only two terminals t1 and t4, which were the two
earliest terminals in their respective spiders. Thus, there is a single spider connecting
them. In general, instead of two recursive levels, we might have dlg ke recursive levels.

Before showing that such a recursive decomposition of spiders exists for any tree,
let us show that its existence implies Lemma 4.5. Recall that in Lemma 4.5, GT is
a connected subgraph of G containing all the terminals in T . Let R be a spanning
tree of GT . We also assume that all terminals in T are leaves of R. (Otherwise, we
introduce a dummy terminal of cost 0 and connect it to the original terminal using
an edge of cost 0). Now, for each terminal ti, the path Pi and the vertex vi on it (as
in Lemma 4.5) are defined as follows.

Let ji be the maximum index j such that terminal ti is a foot in a spider s ∈ Sj.
Let Ts be the ordering of the terminals that are feet of spider s with respect to arrival

84

t1 t2 t3 t4 t5

t1 t2 t3 t4 t5

t1 t4

Figure 4-6: A covering spider decomposition of a tree

order. Then, we define the path pi as the path from ti to the terminal immediately
before ti in the sequence Ts. Also, vi is defined as the head of spider s. In Figure 4-6,
the red arrows indicate the paths used by t2 to connect to t1 (path p2), t3 to t2 (path
p3), t5 to t4 (path p5), and t4 to t1 (path p4). The following property is a direct
consequence of this definition.

Lemma 4.8. The sum of costs c(Pi)−cvi for all terminals ti having ji = j for a fixed
j is at most 2c(R).

Proof. The proof follows by observing that each leg of a spider s ∈ Sj appears in path
pi for at most two terminals ti having ji = j.

The next lemma follows from the fact that each spider must contain at least two feet.

Lemma 4.9. The number of sets of spiders in a covering spider decomposition of a
tree containing k leaves is dlg ke, irrespective of the ordering of the leaves.

The above two lemmas immediately imply Lemma 4.5.
Finally, we need to show that any tree has a covering spider decomposition with

respect to any ordering of the leaves. We give a recursive procedure for constructing
such a decomposition. First, we use Lemma 4.7 to produce a spider decomposition
S1. Then, we delete all the legs of each spider in S1, except one leg from each spider
s ∈ S1 that ends at the leaf that appears earliest in the ordering among the leaves in
s. We now recursively construct the spider decompositions S2,S3, . . . in the remaining
tree. This completes the proof of Lemma 4.5.

85

min
∑k

i=2

∑
v∈V c

(v)
i x

(v)
i +

∑
v∈V cvyv s.t.:∑

v∈V

x
(v)
i ≥ 1 ∀ 2 ≤ i ≤ k

x
(v)
i ≤ yv ∀ v ∈ V, 2 ≤ i ≤ k

x
(v)
i ∈ {0, 1} ∀ v ∈ V, 2 ≤ i ≤ k

yv ∈ {0, 1} ∀ v ∈ V.

Figure 4-7: A new ILP for the online NW Steiner tree problem

It is interesting to note that Lemma 4.5 implies that no cost sharing is necessary
in the edge-weighted case. The Corollary below formalizes this claim.

Corollary 4.10. Let G = (V,E) be an undirected graph with edge costs only. Suppose
T ⊆ V is a set of k terminal vertices. Then, for any ordering of the terminals
t1, t2, . . . , tk, and for any subgraph GT of G connecting all the terminals, there exists
a set of paths P2, P3, . . . , Pk such that:

• Pi is a path from terminal ti to some tj which is earlier in the order, i.e. j < i,

•
∑k

i=2 c(Pi) ≤ 2dlg kec(GT),

where c(Pi) is the sum of costs of edges on Pi, and c(GT) is the sum of costs of edges
in GT .

It follows from Corollary 4.10 that the greedy algorithm for the online edge-
weighted Steiner tree problem is O(log k)-competitive, providing an alternative proof
for the Imase-Waxman result.

Our goal now is to select vertex vi and path Pi for each terminal ti; in fact,
selecting vi immediately selects the path Pi as the cheapest path from ti to vi, and
then from vi to any tj, j < i. This observation allows us to encode the Steiner tree
problem as a new ILP in Figure 4-7.

In this ILP, c(v)i is the sum of the costs of the cheapest path from terminal ti to
vertex v and the cheapest path from v to any of previous terminals, i.e. any tj, j < i.
Both of these costs do not include the cost of v, and can be computed on the arrival
of terminal ti. The variable x(v)i is an indicator variable for the event v = vi, and
yv is an indicator variable for selecting vertex v in the solution. The first constraint
guarantees that for each terminal ti, we choose at least one vertex as vi; the second
constraint guarantees that if a vertex v is chosen as vi by at least one terminal ti,
then we pay cv in the objective value.

Now, we claim that the ILP in Figure 4-7 is equivalent to the non-metric facility
location problem.

86

The Non-metric Facility Location Problem

The input comprises a set of facilities F and a set of clients C.
Each facility f ∈ F has an opening cost cf and each client-facility
pair (i ∈ C, f ∈ F) has a connection cost cif . The goal is to open a
subset of facilities and connect each client to an open facility such
that the sum of the opening costs and connection costs is
minimized.

In the online version of the problem, the facilities and opening costs are given
offline, but a new client along with its connection costs arrives in each online step.
On the arrival of a client, we can either open a new facility and connect the client to it
or connect the client to a previously opened facility. Alon et al [5] gave an algorithm
using the online primal-dual schema for the non-metric facility location problem and
showed the following theorem.

Theorem 4.11 (Alon et al [5]). There is a randomized online algorithm for the non-
metric facility location problem that has a competitive ratio of O(log |C| log |F |).

To model the ILP in Figure 4-7 as a facility location problem, we give the following
reduction. Consider the set of terminals ti, 2 ≤ i ≤ k, as clients and the vertices
v ∈ V as facilities. The cost of opening a facility v is cv, while the connection cost
of serving a client ti using facility v is c(v)i . Then, the ILP in Figure 4-7 asks for
the cheapest assignment of clients to facilities. Using Lemma 4.5, we can conclude
that the algorithm of Alon et al (Theorem 4.11), applied to our facility location
instance, yields an O(log n log2 k)-competitive algorithm for the online NW Steiner
tree problem, thereby proving Theorem 4.1.

4.4 Online Group Steiner Forest

We now turn our attention to the online group Steiner forest problem, both for the
node-weighted and edge-weighted case. As with the Steiner tree problem, the meth-
ods of [5] for online covering of cuts in a graph can be used to obtain a fractional
solution with a logarithmic competitive ratio for the standard LP formulations of
both problems, but all known online rounding techniques lose a polynomial factor
in the competitive ratio. Instead, we show that by losing a poly-logarithmic factor
in the competitive ratio, we can reduce both problems to instances where the input
graph is a tree. First, we give an algorithm for solving the online group Steiner forest
on trees.

4.4.1 Online Group Steiner Forest on Trees

We show the following theorem for the online group Steiner forest problem on trees.

Theorem 4.12. There is a randomized online algorithm for the group Steiner forest
problem on trees of depth h that has a competitive ratio of O(h log4 n log k).

87

min
∑

e∈E cexe such that∑
e∈W

xe ≥ 1 ∀i, ∀ cuts W separating (Si, Ti)

xe ∈ {0, 1} ∀ e ∈ E.

Figure 4-8: An ILP for the online edge-weighted group Steiner forest problem

Note that for a tree, the EW and NW versions are identical since there is a
one-to-one correspondence between the edges and non-root vertices of a tree. For
convenience, we will consider edge-weighted instances when showing the above theo-
rem.

We describe our algorithm in two stages. In the first stage, we give an online
algorithm that obtains a fractional solution to the problem, and in the second stage,
we give an algorithm for rounding a fractional solution online. Note that these two
algorithms are interleaved in their actual execution on an online instance of the prob-
lem.

We will assume throughout that we know the value of the optimal solution α.
This is without loss of generality because we can guess the value of α, doubling our
guess every time the ratio of the cost of the algorithmic solution to the guessed value
of α exceeds the competitive ratio we are going to prove. We will eventually obtain
a guess whose value is at most twice α. For simplicity, we will assume that we know
the value of α exactly (rather than up to a factor of 2); the entire analysis is valid
(up to constants) even if the guess were a constant factor more than the optimum.
At the outset, we divide all edge costs by α so that the cost of an optimal solution is
1.

In the description of the algorithm, R = (V,E) will denote the input tree.

First Stage: Fractional Algorithm

In the first stage, we use an online primal-dual algorithm for generalized cut problems
due to Alon et al [5] to obtain a fractional solution for our problem.

The standard LP for the EW group Steiner forest problem is given in Figure 4-8.
A cut is said to separate a terminal set pair (Si, Ti) if removal of edges in the cut
disconnects all vertices in Si from all vertices in Ti. The constraint is that at least one
edge must be selected from each such cut, which by Menger’s theorem (see e.g. [24])
implies that there is a path connecting some vertex in Si to some vertex in Ti in the
solution. In the fractional version, we are allowed to choose edges fractionally, i.e.
edges e ∈ E are chosen to fractions 0 ≤ xe ≤ 1.

Initialization. We categorize edges e ∈ E into three groups:

• If ce > 1, we initialize xe to 0.

• If ce ≤ 1/n, we initialize xe to 1.

88

• If 1/n < ce ≤ 1, we initialize xe to 1/n.

Online Algorithm. In each online step, the following augmentation is repeatedly
performed until the current fractional solution is feasible for the LP in Figure 4-8:
find the minimum cut separating (Si, Ti) and augment xe to xe(1 + 1/ce) on every
edge of this cut.

Analysis We will show that the fractional solution produced by the above algorithm
has a logarithmic competitive ratio.

Lemma 4.13. The fractional algorithm for the online EW group Steiner forest prob-
lem has competitive ratio of O(log n).

Recall that the optimal cost is 1; hence, we need to show that the cost of the
algorithmic solution is O(log n). The proof will follow from the following properties
that we show.

Lemma 4.14. The total cost of the initialization is at most 2.

Proof. Setting xe = 1 for each edge e with ce ≤ 1/n has a total cost of at most 1.
Setting xe = 1/n for each edge e with 1/n < ce ≤ 1 also has a total cost of at most
1.

Lemma 4.15. In each online step, the additional cost accrued is at most 1.

Proof. In each online step, the algorithm picks a cut W with
∑

e∈W xe < 1 and
augments each xe to xe(1+1/ce) thereby incurring an overall cost of

∑
e∈W xe < 1.

Lemma 4.16. The total number of iterative steps of the online algorithm is O(log n).

Proof. In each online step, at least one edge that is part of the optimal solution
suffers an augmentation. The proof follows from the fact that the maximum number
of augmentations on an edge is O(ce log n), and that the cost of the optimal solution
is 1.

This completes the proof of Lemma 4.13. Note that the above analysis did not
use the fact that the input graph is a tree. Indeed, as we mentioned earlier, this
algorithm produces a fractional solution with a logarithmic competitive ratio for the
online EW (and also for NW where augmentations are on vertex cuts) group Steiner
forest problem. The difficulty lies in the online rounding, and we will use the fact
that the input instance is a tree when we describe the online rounding algorithm.

Second Stage: Online Rounding Algorithm

Our rounding algorithm has close resemblance to a rounding technique for the group
Steiner tree problem on a tree due to Garg et al [36] (whose online version was given
by Alon et al [5]). However, there are some differences, e.g. we have to apply the
rounding algorithm on each subtree of the input tree R rather than only on R.

89

We will show that the integer solution produced by the rounding algorithm con-
nects at least one pair of vertices from each terminal group pair (Si, Ti) with probabil-
ity Ω(1/ log2 n). Moreover, the expected cost of the integer solution is O(h log n) times
the cost of the fractional solution, where h is the height of R. We run O(log2 n log k)
parallel instantiations of this rounding technique; using standard analysis, we then
conclude that any terminal group pairs is connected with probability at least 1−1/k.
This allows us to add the cheapest path from a vertex in Si to a vertex in Ti for a ter-
minal group pair (Si, Ti) that did not get connected; the expected overhead because
of this step is at most 1 since the cheapest path has cost at most that of an optimal
solution.

We will need the following definition.

Definition 4.17. The least common ancestor of a pair of vertices in a rooted tree is
their deepest common ancestor.

Suppose the new group pair in an online step is (Si, Ti). Our first step is to
identify a collective flow of 1 between vertices in Si and Ti that can be supported by
the fractional solution; such a flow is guaranteed by the fact the fractional solution
is feasible in conjunction with Menger’s theorem (see e.g. [24]). We decompose this
flow into flow paths characterized by their endpoints (si1, ti1), (si2, ti2), . . . where sij ∈
Si, tij ∈ Ti. Let f (v)

i (e) denote the total flow routed through edge e on flow paths
such that the least common ancestor of sij, tij in R is vertex v. Here, e is an edge in
the subtree (denoted Rv) of R rooted at v. We view the flow from Si to Ti through
v in Rv as a flow from Si to v and a separate flow from Ti to v of the same value;
let f (v)

i denote the value of these two flows. For tree Rv, we select a scaling factor γv
from the distribution (assuming wlog that n is a power of 2)

P[γv = 2i+1] =
1

2i
, for 1 ≤ i ≤ lg n,

and γv = 1 with the remaining probability. Now, let x(v)i (e) = maxj≤i{f (v)
j (e)}. and

y
(v)
i (e) = γvx

(v)
i (e).

Our rounding algorithm works on each subtree Rv separately as follows. We round
the edges e in Rv in topological order away from root v using the following rule. Here,
e(p) is the parent edge of e. The rules are identical to that of Alon et al in [6]; the
only difference is that we use the scaling procedure before applying the rules.

• If y(v)i (e) ≥ 1, then we select edge e.

• If e is incident on v or y(v)i (e(p)) ≥ 1, then we select edge e with probability

min

(
y
(v)
i (e)−y(v)i−1(e)

1−y(v)i−1(e)
, 1

)
.

• If e(p) is already in the integer solution or has been selected, then we select

edge e with probability min

(
y
(v)
i (e)−y(v)i−1(e)

y
(v)
i (e(p))−y(v)i−1(e)

, 1

)
.

90

We perform the above selection twice with independent randomness and include all
edges selected in either round to the integer solution.

Analysis First, we show the following property of the scaling procedure.

Lemma 4.18. For any terminal set pair (Si, Ti), with constant probability, there is
at least one tree Rv where the variables y(v)i can support a flow of at least 1.

Proof. For any tree Rv, the probability that y(v)i < 1 is at most 1 − x(v)i ≤ 1 − f (v)
i .

The lemma now follows from the fact that
∑

v∈R f
(v)
i ≥ 1.

The next lemma now follows directly from the analysis of Alon et al.

Lemma 4.19. For any Rv, a path is selected in the integer solution from v to some
vertex in Si and some vertex in Ti with probability Ω

(
1

log2 n

)
.

Proof. Lemma 4.18 asserts that with constant probability, the variables y(v)i are feasi-

ble in some subtreeRv. Then, by the analysis of Alon et al, with probability Ω
(

1
log2 n

)
,

the integer solution on that subtree contains a path from some vertex in Si to v (resp.,
from some vertex in Ti to v). The two independent rounding iterations ensure that

this property holds simultaneously for Si and Ti with probability Ω
(

1
log2 n

)
.

Lemma 4.20. The cost of the integer solution is at most O(h log n
∑

e∈E xe).

Proof. First, we note that each edge in Rv is selected with probability at most 2y
(v)
i (e),

given γv. This follows from the analysis of Alon et al [5], the factor of 2 arising because
of the two rounding iterations. Now, we observe that edge e appears in at most h
subtrees Rv, and the integer solution obtained from each tree Rv has cost at most∑

e∈Rv

y
(v)
k (e) ≤

∑
e∈Rv

xeE[γv] ≤ O(log n
∑
e∈Rv

xe).

Lemmas 4.13, 4.19, and 4.20 imply Theorem 4.12.

4.4.2 Online Node-weighted Group Steiner Forest

We first consider the NW version of this problem on general graphs. The following
structural lemma about an offline optimal solution (which generalizes a similar lemma
for the EW case due to Robins and Zelikovsky [84]) is key to our reduction of this
problem to the corresponding problem on trees.

91

Lemma 4.21. Given any instance of the NW group Steiner forest problem on a graph
G = (V,E) with terminal group pairs T = ((S1, T1), (S2, T2), . . . , (Sk, Tk)) (Si, Ti ⊆ V
for 1 ≤ i ≤ k), there exists another instance of the NW group Steiner forest problem
on a graph G′ = (V ′, E ′) where V ⊆ V ′ with the same terminal group pairs T =
((S1, T1), (S2, T2), . . . , (Sk, Tk)) such that

• For any feasible solution H for the the instance on graph G, there exists a
feasible solution H ′ for the instance on graph G′ such that c(H ′) ≤ 3dlg kec(H).

• For any feasible solution H ′ for the instance on graph G′, there exists a feasible
solution H for the instance on graph G such that c(H) ≤ c(H ′).

• There is an optimal solution H ′ for the instance on G′ such that every tree in
H ′ has depth at most dlg ke.

Proof. For simplicity, we will allow edge costs in G′; each edge can be replaced by a
path of length 2 losing a factor of 2 in the height of the tree if we are restricted to
node costs only.

Let V ′ = V and for every pair of vertices in u, v ∈ V , we have an edge in G′ whose
cost is the minimum cost path between u and v in G (excluding cu, cv).

Let H be any group Steiner forest in G and let T be any tree in H. We assume
without loss of generality that all terminals are leaves in T by adding dummy nodes
of cost 0. Now, we construct a tree T ′ of logarithmic depth in G′ as follows. The
leaves of T ′ (at level 1) are the leaves of T . Root tree T and pair the leaves from left
to right. Call the least common ancestor of each pair a level 2 vertex in T ′. Further,
connect each level 2 vertex v to the two level 1 vertices whose least common ancestor
is v. In general, suppose we have constructed T ′ up to level d. Then we sort the
vertices of level d of tree T ′ from left to right in tree T and pair them up. For each
pair, we add the least common ancestor in level d+ 1 and join it to the two vertices
in level d for which it is the least common ancestor. Moreover, we merge all copies of
a vertex in a single level into a single vertex. We terminate after we get the root of
T ′ at level dlg ke.

Now, we bound the cost of tree T ′. Each vertex in T ′ is also in T and appears at
most once in a level; hence node costs in T ′ add to at most dlg ke times that in T .
Now we bound the cost of edges in T ′. For each edge e ∈ E(T ′), replace it by the
cheapest path in T between its two endpoints. Now, consider any vertex v ∈ T . A
path between two vertices includes v as an internal vertex if one endpoint of the path
is in the subtree rooted at v and the other outside v. Since the vertices are paired
left to right in each level, this can happen at most twice in each level. Hence, vertex
v is included at most 2dlg ke times as an internal vertex among all the paths.

The converse direction simply follows by replacing each edge in T ′ by the corre-
sponding path in G and taking a spanning tree over the resulting graph.

Using Lemma 4.21, we construct a reduction from NW group Steiner forest on
general graphs to trees, and show the next lemma.

92

Lemma 4.22. Given a instance of the group Steiner forest problem on a graph G =
(V,E) such that each tree of the optimal forest has depth at most dlg ke, there exists
an instance of the group Steiner forest problem on a tree R of size O(ndlg ke) such that
every feasible solution on G corresponds to a feasible solution on R of the same cost
and vice versa.

Proof. The tree R = (VR, ER) has lg k levels indexed by 0, 1, 2, . . . , dlg ke− 1. Level i
contains ni copies of each vertex in V , the cost of each copy of a vertex being equal
to its cost in G. To index these vertices, let us first arbitrarily index the vertices in V
as v1, v2, . . . , vn. Then, the vertices in level i are denoted by (vp, j1, j2, . . . , ji) where
each 1 ≤ js ≤ n and 1 ≤ p ≤ n. For each i ≥ 0, edges between (vp, j1, j2, . . . , ji)
and (vq, j1, j2, . . . , ji, p) for each 1 ≤ p, q ≤ n, of cost dvpvq , i.e. the distance between
vertices vp and vq in graph G (excluding cvp , cvq) are added to R. For a terminal
group pair (Si, Ti) in the NW group Steiner forest problem, we introduce a terminal
set pair (S ′i, T

′
i) in R where S ′i contains all copies of vertices in Si and T ′i contains all

copies of vertices in Ti.
Consider any feasible solution H in graph G. Root every tree T of H at any

vertex, say vT . Then, there is a copy of this tree rooted at the unique copy of vertex
vT at level 0.

Conversely, consider any feasible solution H ′ in tree R. For any tree T ′ in H ′,
there exists a subgraph T connecting exactly the same set of nodes connected by T ′

and of cheaper cost. This follows from the fact that every edge between a copy of
node vp and vq in R corresponds to a path between vp and vq in G.

Lemma 4.22 and Theorem 4.12 implies Theorem 4.2.

4.4.3 Online Edge-weighted Group Steiner Forest

We now give a polynomial-time algorithm for the online EW group Steiner forest
problem and prove Theorem 4.3. The algorithm follows from a reduction to the EW
group Steiner forest problem on a tree using small-depth low-distortion probabilistic
tree embeddings [28].

Theorem 4.23 (Fakcharoenphol et al [28]). There exists a polynomial-time algorithm
that finds, for any metric space on n points, a distribution on tree metrics on the same
set of points such that the average distortion is O(log n). Moreover,

• each tree in the support of the distribution has depth O(log ∆) where ∆ is the
diameter of the metric space, and

• the length of an edge at level i is 2i and the minimum distance between any two
points is 1.

Now, we give our algorithm for the online EW group Steiner forest problem.
Consider the shortest path metric d on G = (V,E) with weights given by ce on edge
e. Sample one of the trees from the distribution given by Theorem 4.23 and solve the

93

online EW group Steiner forest problem on the tree using the algorithm given earlier
for the group Steiner forest on trees.

Using Theorem 4.23 and Theorem 4.12, we conclude that the competitive ratio of
this algorithm is O(log5 n log k log ∆). To remove the dependence on ∆, recall that
the cost of an optimal solution is 1 and we never use an edge of cost greater than 1.
Therefore, the effective diameter of the graph is at most n. This completes proof of
Theorem 4.3.

4.5 Online Edge-weighted Single-Source Vertex Con-
nectivity

We give an algorithm for the online single source `-vertex connectivity problem on
EW graphs with competitive ratio (O(` log k/ε), 2 + ε) for any fixed ε > 0. Let the
set of terminals in arrival order be {t1, t2, . . . , tk} and let r be the root that is known
offline. In round i, we find the minimum cost (i.e. greedy) vertex-disjoint collection
of `/(2 + ε) paths from terminal ti to Ti∪{r}, where Ti = {tj : j < i}, such that each
tj ∈ Ti is the endpoint of at most one of these paths. This can be done in polynomial
time by using a standard min-cost flow subroutine. The selected paths are added to
the solution.

Analysis

Our analysis will combine tools from this chapter with those developed by Chuzhoy
and Khanna for the offline version of this problem [23]. In fact, we will use the
techniques used by Chekuri and Korula [21] to prove the theorems of Chuzhoy and
Khanna. Our starting point is the the following theorem (Theorem 4.41 in [21]).

Theorem 4.24. Suppose T is a set of vertices each of which is `-vertex connected to
a fixed vertex r in an undirected EW graph G = (V,E). Let T ∪ {r} be called black
vertices, while all other vertices in V are white. Then, there exists a subgraph H of
G whose edges can be decomposed into a set of spiders such that:

• For each spider, its feet are distinct black vertices and all the intermediate ver-
tices are white.

• Each black vertex is the foot of exactly ` spiders, and each white vertex appears
in at most one spider.

• If a white vertex is the head of a spider, then the spider has at least two feet.

We use this theorem to prove our key structural lemma.

Lemma 4.25. Suppose we are given an ` vertex-connected EW graph G = (V,E) with
terminals T and root r, where the cost of edge e is ce. For an arbitrary ordering of

1All references are to the full version of the paper at http://arxiv.org/abs/0902.2795.

94

terminals t1, t2, . . . , tk, let ElemCost(ti) denote the minimum cost internally vertex-
disjoint collection of `/(2+ε) paths from terminal ti to Ti∪{r}, where Ti = {tj : j < i}.
Then,

∑k
i=1ElemCost(ti) = O(log k/ε)

∑
e∈E ce.

Proof. We give an algorithm that constructs collections of paths with the given cost
bound. First, we obtain the spiders in Theorem 4.24 for graph G. Now, for each
spider with s terminals, we can find one path each for s − 1 terminals to a previous
terminal (or to r) in the spider such that each edge is used at most twice in these
paths (see our proof of Lemma 4.5 for a construction of these paths). We say that a
terminal ti is satisfied if these paths contain at least `/(2+ε) paths from ti to a vertex
in Ti ∪ {r}. (Note that these paths are internally vertex disjoint since the spiders are
disjoint for white vertices.) By averaging, at least k/ε terminals are satisfied by these
paths. We remove these terminals from our set of terminals and recurse. Note that
for any terminal, all the paths come from a single recursive subproblem; hence, they
must be internally vertex disjoint. We conclude by noting that the cost bound follows
from the fact that the number of recursive calls is log k/ε.

Comparing this lemma to Lemma 4.3 in [21], we note that while the previous lemma
gets a better cost bound and guarantees ` internally vertex-disjoint paths (rather than
`/2) for every vertex, our lemma is robust to the online ordering of terminals.

Our final step is to use Lemma 4.25 to deduce the competitive ratio of the algo-
rithm. This step closely mirrors the proof of Theorem 4.2 in [21].

Theorem 4.26. Suppose AugCost(ti) is the cost of the greedy algorithm for terminal
ti. Then,

∑k
i=1AugCost(ti) is O(` log k/ε) times the cost of an optimal solution.

Proof. Let λ = `/(2 + ε). Following Chekuri and Korula [21], we give an iterative
algorithm that runs for 4λ2 iterations and gives, in iteration j, a set of λ internally
vertex disjoint paths Pj(ti) from each terminal ti to Ti ∪ {r} such that:

• For each terminal ti, every other terminal is an end-point in fewer than 4λ2+2λ
paths in ∪4λ2j=1Pj(ti).

•
∑k

i=1 c(Pj(ti)) isO(` log k/ε) times the cost of an optimal solution, where c(Pj(ti))
is the sum of costs of paths in Pj(ti).

The theorem follows from these properties using standard arguments (see [21] for
details).

We now describe the iterative algorithm and show that it satisfies the above two
properties. The first property is proved inductively, and will also define our algorithm.
Specifically, we will show that after j rounds, for each terminal ti, every other terminal
is an end-point in fewer than 4λ2 + 2λ paths in ∪jj′=1Pj′(ti). In iteration j, let
Blocked(ti) be the terminals in Ti such that at least j − 1 + λ paths in ∪j−1j′=1Pj′(ti)
terminate on each of them. We construct a meta-graph on the terminals where we
have an edge between (ti, ti′) if ti′ ∈ Blocked(ti). In any induced subgraph of this
meta-graph, the minimum degree of a vertex is at most 2(λ − 1); hence, this meta-
graph is 2λ − 1 colorable. For each such color class C, we apply Lemma 4.25 (with

95

the ordering on the terminals in the color class induced by the overall ordering) to
obtain λ internally vertex-disjoint paths Pj(ti) from each terminal ti to terminals
in (Ti ∩ C) ∪ {r}. If a path in Pj(Ti) contains another terminal in Ti internally,
then we terminate the path at the first such terminal. The second property follows
immediately from Lemma 4.25.

We now prove the first property inductively. For any ti, if ti′ ∈ Blocked(ti), then
there is at most one path in Pj(ti) that terminates at ti′ since the paths in Pj(ti) are
internally vertex disjoint. Thus, the first property holds after iteration j. On the
other hand, if ti′ /∈ Blocked(ti), then the first property holds after iteration j even if
all λ paths of ti terminate at ti′ .

4.6 Concluding Remarks

In this chapter, we gave online algorithms with poly-logarithmic competitive ratios
for a set of fundamental network design problems. Several questions are left open
by our work. While we gave a polynomial time algorithm for the online NW Steiner
tree problem, our algorithm for the generalizations of this problem to the Steiner for-
est/group Steiner tree/group Steiner forest settings have a quasi-polynomial running
time. It would be desirable to design online algorithms for these problems that have
a poly-logarithmic competitive ratio and polynomial running time. While we gave a
bi-criteria approximation algorithm for the online ` vertex connectivity problem for
EW graphs, obtaining an algorithm for this problem without relaxing the constraint
is an open question.

4.7 Notes

This chapter is based on joint work with Joseph (Seffi) Naor and Mohit Singh. A
preliminary version of this work appeared in the Proceedings of the 52nd Annual IEEE
Symposium on Foundations of Computer Science, 2011.

96

Chapter 5

Network Activation Problems

Network design problems have traditionally assumed that individual edges (resp., ver-
tices) have fixed costs and can be bought independent of other edges (resp., vertices).
While being reasonably accurate for wired networks, this model does not faithfully
represent wireless networks, where the activation of an edge is dependent on the se-
lection of parameter values (such as transmitter power level) at its endpoints, and
the cost incurred is a function of these values. In this chapter, we present a realistic
optimization model for the design of survivable wireless networks called the network
activation model that generalizes various suites of connectivity problems studied in
the theory literature, e.g. node-weighted Steiner connectivity problems and power
optimization, as well as problems studied in the networking literature, e.g. installa-
tion cost optimization. We obtain algorithmic results for several fundamental network
design problems in the network activation model.

5.1 Background

In wireless networks, one typically needs to choose the value of a parameter xv from
a domain of possible values D at each vertex v ∈ V (V being the set of vertices) and
the activation of an edge (u, v) depends on the parameters chosen at its endpoints.
Formally, there is an activation function fuv : D × D → {0, 1} that takes as input
the values of xu and xv and returns 1 iff the edge (u, v) is activated for the chosen
values of xu and xv. For example, one might need to set power levels at the nodes, and
depending on the power levels of the endpoints, an edge is either active or inactive; or,
one may need to fix the heights of towers for mounting antennas at nodes, and whether
an edge is active depends on whether there is line-of-sight between the antennas at
its endpoints. The objective is to minimize the total cost

∑
v∈V xv, while ensuring

that the activated set of edges satisfies some connectivity requirement C. We call this
the network activation model.

97

The Network Activation Problem

The input comprises a graph G = (V,E), a domain of parameter
values D, activation functions fuv : D ×D → {0, 1} for every edge
(u, v) ∈ E, and a connectivity requirement C. The goal is to select
a parameter xv ∈ D at each vertex v ∈ V such that

∑
v∈V xv is

minimized subject to the constraint that the set of activated edges
(i.e. (u, v) with fuv(xu, xv) = 1) satisfies connectivity requirement
C.

Before proceeding further, let us give some examples of activation functions and
the corresponding suite of problems defined by them:

• Node-weighted Network Design. The activation functions are defined by

fuv(xu, xv) =

{
1, if xu ≥ cu and xv ≥ cv
0, otherwise.

• Power Optimization. (see e.g. [47, 48, 71, 66, 67, 77]) In this problem, each
edge (u, v) has a threshold power requirement θuv and edge (u, v) is activated if
the power at each of its endpoints is at least this threshold. Thus,

fuv(xu, xv) =

{
1, if min(xu, xv) ≥ θuv
0, otherwise.

• Installation Cost Optimization. (see e.g. [27, 85, 81]) The installation cost
of a wireless network is dominated by the cost of building towers at the nodes
for mounting antennas, which in turn is proportional to the height of the towers.
An edge (u, v) is activated if the towers at its endpoints u and v are tall enough
to overcome obstructions in the middle and establish line-of-sight between the
antennas mounted on the towers; this is modeled as each edge (u, v) having a
threshold height requirement τuv, and edge (u, v) is activated if the scaled height
of the towers at its endpoints sum to at least τuv. Thus,

fuv(xu, xv) =

{
1, if αu,uvxu + αv,uvxv ≥ τuv
0, otherwise,

where αu,uvxu, αv,uv are constants.

Finite domain. In practice, the set of possible parameter values is often a small,
discrete finite set. Therefore, we consider finite, discrete domains D, and allow our
algorithms to run in time polynomial in |D| (so e.g., activation functions are lookup
tables). For the problems described above, this is without loss of generality. In
node-weighted Steiner network, we can restrict D to the vertex costs and 0. In power
optimization, restricting D to the thresholds on the edges does not change the optimal

98

solution. In installation cost optimization, it can be shown that the same restriction
increases the optimal cost by at most a factor of two; as we show later, this problem
is NP-hard to approximate to a factor of o(log n) and hence this transformation is
without significant loss in the approximation factor.

Monotonicity. We will assume throughout that the activation functions are mono-
tonic, i.e. fuv(a1, b1) = 1 implies fuv(a2, b2) = 1 for any a2 ≥ a1, b2 ≥ b1. This is
indeed the case in all the above applications, and in any other realistic scenario.

In this chapter, we consider several connectivity requirements C which are sum-
marized in Table 5.1. Besides being theoretically important, these connectivity re-
quirements are also practically relevant since they ensure robustness against edge and
node failures.

5.2 Our Contributions

We now outline the main results presented in this chapter.
We show the following hardness of approximation result for the MSAT problem.

Theorem 5.1. It is NP-hard to approximate the MSAT problem to a factor of
o(log n), even for the installation cost setting.

We give the following result for the MSAF problem.

Theorem 5.2. There is a deterministic O(log k)-approximation algorithm for the
MSAF problem.

The approximation factor in this theorem is optimal up to constant factors since
the MSAF problem is known to be NP-hard to approximate to a factor of o(log k)
even in the node-weighted setting [64]. In the power optimization setting, there is a
4-approximation algorithm for the MSAF problem [67]; no previous result is known
for installation cost optimization.

As a corollary of Theorem 5.2, we obtain the following result for the MSAT prob-
lem.

Corollary 5.3. There is a deterministic O(log n)-approximation algorithm for the
MSAT problem.

The approximation factor in this theorem is optimal up to constant factors by
Theorem 5.1. Corollary 5.3 generalizes an O(log n)-approximation algorithm for
the installation cost setting [81]; for power optimization, the problem is much more
tractable, and a 5/3-approximation algorithm is known [7].

We give the following results for the MVAN and MEAN problems with R = 2.

Theorem 5.4. There is a deterministic O(log n)-approximation algorithm for the
MVAN problem with R = 2.

Theorem 5.5. There is a deterministic O(log n)-approximation algorithm for the
MEAN problem with R = 2.

99

Minimum Edge-connected
Activation Network (MEAN)

Each pair of vertices must have R edge-disjoint
paths in the activated subgraph, for some given
R > 0.

Minimum Vertex-connected
Activation Network (MVAN)

Each pair of vertices must have R vertex-disjoint
paths in the activated subgraph, for some given
R > 0.

Minimum Steiner Activation
Forest (MSAF)

Each of k given pairs of vertices must be connected
by a path in the activated subgraph.

Minimum Spanning Activa-
tion Tree (MSAT)

The activated set of edges must contain a spanning
tree on the vertices. This is a special case of the
MEAN and MVAN problems for R = 1, and the
MSAF problem where the set of terminal pairs is
{(r, v) : v ∈ V − {r}} for some vertex r ∈ V .

Minimum Degree Activation
Network (MDAN)

For every vertex subset U in a given partition of ver-
tices P , there must be at least RU activated edges
with exactly one endpoint in U , where RU is the
(given) requirement of U .

Minimum Activation Flow
(MAF)

The activated set of edges must contain R edge-
disjoint paths between two specified vertices s, t.

Minimum Activation Path
(MAP)

The activated set of edges must contain a path be-
tween two specified vertices s, t. This is a special
case of the MAF problem for R = 1, and the MSAF
problem with only one terminal pair {s, t}.

Table 5.1: Network Activation Problems

100

Previously, no result was known for installation cost optimization, but the prob-
lems have 4-approximation [16] and 11/3-approximation [67] algorithms respectively
in the power optimization setting.

We show the following connection between the MEAN and MDAN problems.

Lemma 5.6. For any connectivity requirement R, an α-approximation algorithm for
the MDAN problem implies an O(α log n, 2)-approximation1 algorithm for the MEAN
problem.

As an application, we obtain the following result for the MEAN problem with
arbitrary k in the installation cost optimization setting.

Theorem 5.7. For any ε > 0 and any connectivity requirement k, there is a de-
terministic algorithm for the MEAN algorithm in the installation cost optimization
setting that has an approximation ratio of (O(log n log(4 + 8/ε)), 2 + ε).

Note that this theorem implies the next corollary by setting ε < 4/(k − 2) and
using the integrality of edge connectivity.

Corollary 5.8. For any connectivity requirement k, there is an (O(log n log k), 2)-
approximation algorithm for the MEAN problem in the installation cost optimization
setting.

We give an exact algorithm for the MAP problem.

Theorem 5.9. The MAP problem is solvable in polynomial time.

However, by an observation of Nutov [78] for the node-weighted setting, the MAF
problem is at least as hard as the well-known `-densest subgraph problem [31, 12].

Roadmap

This chapter is organized as follows. The proof of the lower bound for the MSAT
problem appears in Section 5.3 and the O(log k)-approximation algorithm for the
MSAF problem is presented in Section 5.4. In Sections 5.5 and 5.7, we present
our algorithms for the MVAN and MEAN problems with k = 2 respectively. We
establish the connection between the MDAN and MEAN problems, and use it to
obtain algorithms for the MEAN problem with arbitrary k for the installation cost
optimization setting in Section 5.7. We give an exact algorithm for the MAP problem
in Section 5.8.

1Recall that a (β, γ)-approximation for the MEAN problem implies that the cost of the algorith-
mic solution is β times that of an optimal solution, but the algorithmic solution achieves an edge
connectivity of k/γ instead of k.

101

5.3 Minimum Spanning Activation Tree

In this section, we prove Theorem 5.1 by showing that the MSAT problem in the
installation cost setting generalizes the Minimum Connected Dominating Set (MCDS)
problem. To describe the MCDS problem, we need to define a dominating set.

Definition 5.10. A subset of vertices S is said to be a dominating set if every vertex
in the graph is either in S or has an incident edge whose other endpoint is in S.

The Minimum Connected Dominating Set Problem

The input comprises an undirected unweighted graph G = (V,E)
and the goal is to find a connected dominating set in G containing
the least number of vertices.

It is known that the MCDS problem is NP-hard to approximate to a factor of
o(log n) [42].

We also need to define the notion of a vertex cover for this reduction.

Definition 5.11. A vertex cover is a subset of vertices S such that every edge is
incident on at least one vertex in S.

Given an instance G = (V,E) of the MCDS problem, we define an instance of the
MSAT problem on V as follows: The domain D = {0, 1} and for any pair of vertices
u, v, if (u, v) ∈ E then fuv(a, b) = 1 iff a+ b ≥ 1, while if (u, v) /∈ E, then fuv(a, b) is
identically 0. The following theorem establishes the validity of this reduction.

Theorem 5.12. If there is a connected dominating set S in G that contains c vertices,
then there is a solution of cost c to the instance of the MSAT problem. Conversely,
if there is a solution to the instance of the MSAT problem of cost c, then there is a
connected dominating set S in G that contains at most 2c vertices.

Proof. For the forward direction, observe that setting xv = 1 for all vertices in S
activates a spanning subgraph of G. For the converse direction, note that we have
chosen the activation function in a way that the cost of activating a set of edges is
at least its minimum vertex cover. Decompose an activated spanning tree into a set
of node disjoint paths in the following manner: Root the tree at an arbitrary vertex
and remove an arbitrary root-to-leaf path from the tree; then recurse on each tree of
the resulting forest. Note that each path in this decomposition contains at most one
leaf vertex. Then, a vertex cover of the tree must include (disjoint) vertex covers of
each of these paths, and the size of a vertex cover of any of these paths must be at
least half the number of non-leaf vertices in the path. Thus, the number of non-leaf
vertices in the optimal spanning tree in the MSAT solution is at most 2c, and these
vertices form a connected dominating set of the graph.

This completes the proof of Theorem 5.1.

102

5.4 Minimum Steiner Activation Forest

In this section, we prove Theorem 5.2 by giving an approximation-preserving reduc-
tion of the MSAF problem to the node-weighted (NW) Steiner forest problem. Given
an instance of the MSAF problem on a set of vertices V with terminal pairs R ⊆ V (2)

and activation functions fuv, we construct an instance of the NW Steiner forest prob-
lem as follows: For each vertex v ∈ V , construct a star with |D| + 1 vertices having
v0 as its center and {va : a ∈ D} as the peripheral vertices. v0 has cost 0 while va
has cost a for each a ∈ D. Now, connect ua to vb with an edge iff fuv(a, b) = 1.
The terminal pairs in the constructed graph are {(u0, v0) : (u, v) ∈ R}. The following
lemma establishes that the validity of the reduction.

Lemma 5.13. For any solution to the instance of the MSAF problem, there is a
solution to the instance of the NW Steiner forest problem constructed by the reduction
with at most as much cost, and vice-versa.

Proof. Suppose that in the MSAF solution, xv = av for vertices v ∈ V and let the
activated edges be T . Then, the edges {(v0, vav) : v ∈ V } and edges {(uau , vav) :
(u, v) ∈ T} connect the terminal pairs and have total node cost equal to

∑
v∈V av in

the NW Steiner forest instance.
Conversely, for any solution to NW Steiner forest instance, if there are multiple va

vertices in the solution, then we only retain the vertex with the maximum value of a,
breaking ties arbitrarily if required. By the monotonicity property of the activation
functions, this retained vertex has edges to all vertices that were connected via the
vertices that we did not retain. Therefore, after the transformation, we obtain a new
Steiner forest with at most as much weight as the original solution. Now, in the
MSAF instance, set xv = a if va is selected in the transformed solution to the NW
Steiner forest instance. Clearly, all the terminal pairs can be connected using these
values of xv since the solution to the NW Steiner forest instance connects all the
terminal pairs.

Theorem 5.2 now follows from the O(log k)-approximation algorithm of Klein and
Ravi [64] for the NW Steiner forest problem.

5.5 Minimum Vertex-connected Activation Network
with R = 2

In this section, we give an algorithm for the MVAN problem for R = 2. Our algorithm
has two phases.

• In the first phase, we run the O(log n)-approximation algorithm for the MSAT
problem in Corollary 5.3. This produces a connected spanning activation sub-
graph whose cost is at most O(log n) times that of an optimal solution of the
MVAN problem.

103

• In the second phase, we give an O(log n)-approximation algorithm for optimally
augmenting the solution from the first phase to make the activated subgraph
biconnected.

To describe the second phase of the algorithm, we need to define block-cutpoint
graphs [51].

Definition 5.14. A block of an undirected graph is a maximal biconnected subset of
vertices, while a cutpoint is a vertex whose removal increases the number of compo-
nents in the graph. A block-cutpoint graph T of an undirected graph G is a graph
whose nodes are the blocks and cutpoints of G and edges connect each block to the
cutpoints contained in it.

It turns out that the block-cutpoint graph T of a connected graph G is a tree
(hence we will call it a block-cutpoint tree) such that the vertex subsets that T and
G split into on removing a cutpoint v correspond to each other. We introduce the
notion of partition number of a vertex/graph.

Definition 5.15. The partition number of a vertex v (denoted ρ(v)) in an undirected
graph G is the number of components G splits into when v is removed minus one.
Equivalently, if v is a cutpoint, ρ(v) is the degree of v in the block-cutpoint tree T
minus one; if v is not a cutpoint, ρ(v) = 0. Overloading our notation, the partition
number of graph G (denoted by ρ(G)) is the sum of the partition numbers of its
vertices.

We show the following property of ρ(G) for connected graphs.

Lemma 5.16. If G is a connected graph, then its partition number ρ(G) is at most
2n− 4.

Proof. The partition number of any spanning tree of G containing ` leaves is 2(n −
1)−` (since each non-leaf vertex v is a cutpoint whose removal splits the graph into a
number of components equal to the number of edges incident on v), which is at least
2n − 4 since any spanning tree has at least two leaves. To complete the proof, note
that adding edges does not increase the partition number of a graph.

Observe that the partition number of a biconnected graph is 0. So, the process of
augmenting a connected graph into a biconnected one decreases the partition number
from at most 2n − 4 to 0. This motivates us to describe a greedy algorithm where,
in each round, the goal is to obtain the maximum decrease in ρ(A) of the activated
subgraph A while minimizing cost. To describe each such round, we need to define a
star.

Definition 5.17. A star is a graph where at most one vertex has degree greater
than one; this vertex is called the center while the other vertices are called peripheral
vertices. (A single edge is also a star, but either vertex can be called the center.)

104

In each round of the algorithm, we add a star s that minimizes the ratio cs/bs,
where the cost cs is the sum of xv of the vertices in s required to activate all the edges in
s, and the benefit bs is the decrease in the partition number of the activated subgraph
as a result of adding s to it. Before giving a polynomial-time implementation of this
algorithm, we analyze its approximation ratio.

Analysis

We will now prove Theorem 5.4. The following lemma is crucial.

Lemma 5.18. Let G = (V,E) be any connected graph and F1, F2 be two sets of edges
on V . Let b1, b2 and b1,2 be the decrease in the partition number of G due to the
addition of F1, F2 and F1 ∪ F2 respectively. Then, b1,2 ≤ b1 + b2.

Proof. For any cutpoint v, let the vertex subsets that graph G decomposes into on
removing v be called the components of v. Define a star graph Gv where v is the
central vertex and each component of v is contracted into a single peripheral vertex.
Then, the decrease in the partition number of v due to the addition of a set of edges
F is equal to the number of edges in any spanning forest of F on graph Gv. Clearly,
the sum of the number of edges in spanning forests of F1 and F2 on Gv is at least as
much as the number of edges in a spanning forest for F1 ∪ F2. Thus, the decrease in
ρ(v) due to F1 and F2 separately is at least at much as the decrease in ρ(v) due to
F1∪F2. To complete the proof, note that the decrease in ρ(G) is the sum of decreases
in ρ(v) for the cutpoints v.

Let (V,A) be a connected graph, and let F be any minimal set of edges such that
(V, F ∪ A) biconnected. Because of minimality, F must be a forest. We root each
tree of this forest arbitrarily and decompose each tree into stars S centered at each
non-leaf vertex and containing its children as peripheral vertices. Then, the previous
lemma ensures that S satisfies the next lemma.

Lemma 5.19. S satisfies both the following properties:

• Each vertex in V appears in at most two stars in S.

• The sum of benefits of the stars in S is at least the partition number of (V,A).

Proof. Each vertex can only appear in the stars centered at itself and its parent in
the tree containing it in F . Since A∪F is a biconnected graph, the benefit of F , and
therefore the sum of benefits of the individual stars by Lemma 5.18, is at least the
partition number of A.

Theorem 5.4 now follows from the above lemma using standard techniques (cf. the
analysis of the greedy approximation algorithm for the set cover problem in e.g. [89]).

105

5.5.1 Minimum Leaf-weighted Subtree

We now show that we can reduce the problem of finding the optimal star in any round
of the algorithm to the Minimum Leaf-weighted Subtree (MLS) problem and
give an exact algorithm for the MLS problem.

The Minimum Leaf-weighted Subtree Problem

The input comprises a node-weighted tree T rooted at a vertex r
and a parameter λ > 0. The goal is to choose a subtree rooted at r
containing at least λ edges that minimizes the sum of costs of the
(non-root) leaves of the subtree.

Finding Optimal Star Using Minimum Leaf-weighted Subtree

Since there are n vertices and |D| possible values of xv for any vertex v, it is sufficient
to give an algorithm to find the optimal star among stars centered at a particular
vertex v and having xv = a for some fixed a ∈ D. Since all edges in T are between
a block and a cutpoint, and all the leaves are blocks, the tree T can be decomposed
into a set of maximal stars, each of which is centered at a cutpoint and has blocks as
its peripheral vertices; the cutpoint at the center is contained in the peripheral blocks
in G. We call each such star a full component. For the purposes of this reduction,
if v is a cutpoint, we will consider the full component containing v as a single block
that appears in all the full components that any block containing v appeared in.
With this assumption, we root the tree T at the unique block containing v. Each
full component C now has a root block rC . We replace each full component C in T
with edges between rC and the other blocks in C. Let S be the resulting rooted tree
defined on the blocks. Now, for each vertex u ∈ V (u 6= v), define bu as the unique
block containing u if u is not a cutpoint, and as the root block of the full component
that was centered at u in T if u is a cutpoint. Then, for every block b (other than the
one containing v), we define cb = minbu=b(x

(v,a)
u) and a unique eb = arg minbu=b(x

(v,a)
u)

breaking ties arbitrarily if required. The following property ensures that we do not
need to consider edges not in Eb = {eb : b is a block not containing v} when finding
the optimal star.

Lemma 5.20. There is an optimal star s centered at v and having xv = a that only
contains edges from Eb.

Proof. In a star, we can replace any edge not in Eb with the edge in Eb having its
endpoint other v in the same block; this does not increase the cost or change the
benefit of the star.

For any subset of blocks B that does not include the block containing v, the cost
of activating the subset of edges EB = {eb : b ∈ B} with xv = a is a +

∑
b∈B cb and

its benefit is the number of edges in the minimal rooted subtree in S containing all
blocks in B. This yields the following algorithm for finding the optimal star centered

106

at v with xv = a (here, β is the number of blocks in the transformed block-cutpoint
tree): For each λ = 1, 2, . . . , |S| − 1, solve the MLS problem to obtain the minimum∑

b∈B cb given that the benefit has to be at least λ. Now, compare the solutions and
take the one that has the best cs/bs ratio.

Exact Algorithm for Minimum Leaf-weighted Subtree

We now give an algorithm for exactly solving the MLS problem for parameter λ on
an arbitrary tree S with root r and cost cv for vertex v. For every vertex, order its
children arbitrarily. Then, consider the MLS subproblem for the subtree subtended at
a vertex v, but only including the subtrees subtended at the first i children of v, with
the constraint that the size of the selected subtree needs to be exactly j. We denote
this subproblem by MLS(v, i, j). We solve the MLS(v, i, j) problem for all v ∈ V (in
post-order), for all 1 ≤ i ≤ nv where v has nv children (in increasing order of i) and
for all 1 ≤ j ≤ λ. Clearly, the overall MLS problem is identical to MLS(r, nr, λ). Our
dynamic program is the following (here u1, u2, . . . are children of v in the arbitrary
ordering that we defined):

MLS(v, i, j) =

mini`=1(cu`), if j = 1
MLS(u1, nu1 , j − 1), if i = 1 and j > 1
min(MLS(v, i− 1, j),MLS(v, i− 1, j − 1) + cui ,MLS(ui, nui , j),

minj−2`=1(MLS(v, i− 1, `) + MLS(ui, nui , j − `− 1))), otherwise.

To describe this dynamic program, let Si denote the subtree subtended at ui plus the
edge (v, ui). In the non-trivial third case above, we compare the following possibilities:

• The entire optimal subtree is contained in S1, S2, . . . , Si−1.

• The optimal subtree contains only the (v, ui) edge from Si; the remaining edges
are from S1, S2, . . . , Si−1.

• The entire optimal subtree is contained in Si.

• Exactly 1 ≤ ` ≤ j−2 of the edges of the optimal subtree are from S1, S2, . . . , Si−1
while j − ` edges are from Si.

Our base case are the leaf vertices v, for which MLS(v, i, j)= ∞ for all i, j. This
dynamic program runs in polynomial time and solves the MLS problem exactly.

5.6 Minimum Edge-connected Activation Network
with R = 2

In this section, we give an algorithm for the MEAN problem for R = 2. As with the
corresponding MVAN algorithm, this algorithm has two phases.

107

• In the first phase, we run the O(log n)-approximation algorithm for the MSAT
problem in Corollary 5.3. This produces a connected spanning activation graph
whose cost is at most O(log n) times that of the optimal solution for the MEAN
problem.

• In the second phase, we give an O(log n)-approximation algorithm for optimally
augmenting the solution from the first phase to make the activated subgraph
2-edge-connected.

To describe the second phase of the algorithm, we need to use the following prop-
erty of connected graphs.

Lemma 5.21. A connected graph induces a spanning tree on its 2-edge-connected
components.

Proof. Clearly, the induced graph on the 2-edge-connected components is a connected
graph; if it contains cycles, that the maximality of the 2-edge-connected components
is violated.

Observe that this spanning tree is vacuous, i.e. contains no edges, for a 2-edge-
connected graph. So, the process of augmenting a connected graph into a 2-edge-
connected one decreases the number of edges from at most n− 1 to 0. Let us denote
the number of edges in this spanning tree for a connected graph G as η(G). This
motivates us to describe a greedy algorithm where, in any round, the goal is to obtain
maximum decrease in η(A) of the activated subgraph A while minimizing cost. To
this end, in each round, we add a star s that minimizes the ratio cs/bs, where the
cost cs is the sum of xv of the vertices in s required to activate all the edges in s,
and the benefit bs is the decrease in the partition number of the activated subgraph
as a result of adding s to it. Before giving a polynomial-time implementation of this
algorithm, we analyze its approximation ratio.

Analysis

We will now prove Theorem 5.5. The following lemma is crucial.

Lemma 5.22. Let G = (V,E) be any connected graph and F1, F2 be two sets of
edges on V . Let b1, b2 and b1,2 be the decrease in the number of edges in the spanning
tree of 2-edge-connected components of G due to the addition of F1, F2 and F1 ∪ F2

respectively. Then, b1,2 ≤ b1 + b2.

Proof. The lemma follows from the observation that for any particular edge of the
spanning tree, it appears in the benefit if it is in the fundamental cycle of any added
edge.

Let (V,A) be a connected graph, and let Y be any minimal set of edges such that
(V, F ∪A) 2-edge-connected. Because of minimality, Y must be a forest. We root each
tree of this forest arbitrarily and decompose each tree into stars S centered at each
non-leaf vertex and containing its children as peripheral vertices. Then, the previous
lemma ensures that S satisfies the next lemma.

108

Lemma 5.23. S satisfies both the following properties:

• Each vertex in V appears in at most two stars in S.

• The sum of benefits of the stars in S is at least the partition number of (V,A).

Proof. Each vertex appears in at most two stars—one where it is the center and
another where its parent in F is the center. The second assertion follows from applying
the above lemma multiple times.

Theorem 5.5 now follows from the above lemma using standard techniques (cf. the
analysis of the greedy approximation algorithm for the set cover problem in e.g. [89]).

Finding the Optimal Star Using Minimum Leaf-weighted Subtree

We now show that we can reduce the problem of finding the optimal star in any
round of the algorithm to the MLS problem. Similar to the MVAN problem, we
focus on finding the optimal star centered at a vertex v with xv = a for some a ∈ D.
For any vertex u, let the 2-edge-connected component containing u be C(u). Then,
the benefit of a star s is the number of edges in a minimal subtree of the spanning
tree described above that contains all the components {C : C = C(u), (u, v) ∈ s}
tree rooted at C(v). For each 2-edge-connected component C 6= C(v), we define
wC = minC(u)=C x

(v,a)
u and a unique eC = arg minC(u)=C x

(v,a)
u breaking ties arbitrarily

if required. The following properties are crucial.

Lemma 5.24. There is an optimal star s centered at v and having xv = a that only
contains edges from Eb = {eb : b is a block not containing v}.

Proof. For any star s, first discard all edges with both endpoints in C(v). Then, for
any 2-edge-connected component C ∈ {C : ∃(u, v) ∈ s s.t. C(u) = C}, we replace
the set of edges with the endpoint other than v in C by the edge eC . The new star
formed after the transformation has the same benefit and at most as much cost as
s.

The cost of activating a star s ⊆ {eC : C 6= C(v)} is a +
∑

C(u):(u,v)∈swC(u). This
leads to the following algorithm for finding the optimal star centered at v with xv = a
(here, t is the number of edges in the spanning tree): For each λ = 1, 2, . . . , t, solve
the MLS problem to obtain the minimum

∑
C wC given that the benefit has to be at

least λ. Now, compare the solutions and take the one that has the best cs/bs ratio.

5.7 Minimum Edge-connected Activation Network
for Arbitrary R

In this section, our first goal is to prove Lemma 5.6 which connects the MEAN and
MDAN problems. Then, we use this connection to prove Theorem 5.7.

109

5.7.1 Connection between MEAN and MDAN Problems

Note that by Menger’s theorem (see e.g., [24]), the MDAN problem with a degree
requirement of R for any vertex partition imposes a strictly weaker constraint that
the MEAN problem with connectivity requirement R. Thus, any feasible solution to
the MEAN problem is also feasible for the corresponding MDAN problem. We are
interested in identifying a converse relationship between these two problems.

Let us first consider the case R = 1. Suppose we repeatedly run an MDAN
algorithm, where the partition in each iteration is the set of connected components in
the subgraph activated by previous iterations, and the requirement RU = 1 for each
component. Since the number of components decreases by a factor of at least two in
each step, we terminate after at most lg n iterations yielding an overall approximation
factor of O(α log n) for the MEAN problem if α is the approximation factor for the
MDAN problem.

For the same approach to work for arbitrary values of R, we need to quantify
the progress we make towards satisfying the R-edge connectivity constraint in each
iteration of the MDAN algorithm. For this purpose, we need the following definition:

Definition 5.25. An R-edge connected component is a maximal subset of vertices
such that every pair of vertices in the subset have R edge-disjoint paths between them.

Edge connectivity is transitive, i.e. if vertex pairs u, v and v, w are R-edge con-
nected, then so too is u,w. This implies that the R-edge connected components form
a partition of the vertex set. We can then view our goal as activating a set of edges
so that this partition, which has n singleton components before any edge is acti-
vated, coalesces into a single R-edge connected component spanning all the vertices.
Now, suppose any solution to the MDAN problem were to produce a set of at most
cn R-edge connected components, where c < 1 is a constant. Let us define these
components as the subsets of our partition P in the next iteration of MDAN. Then,
after the next iteration, we get at most c2n R-edge connected components. This al-
gorithm, where in each iteration we call the MDAN sub-routine with the subsets of
the partition defined as the R-edge-connected components, will terminate in O(log n)
iterations since the number of R-edge-connected components decreases by a constant
factor in each iteration. The overall approximation ratio of the algorithm would then
be O(α log n) for the MEAN problem, where α is the approximation factor of the
MDAN subroutine.

However, consider a line graph where each edge has R/2 parallel copies, except the
two edges at the two ends of the line that have R parallel copies each. The minimum
degree in this graph is R, but the number of R-edge-connected components is n− 2.
Therefore, a solution to the MDAN problem need not produce a graph containing
at most cn components for some constant c. Instead, we show the following weaker
property.

Lemma 5.26. For any R, if (c + 1/2)n vertices in an undirected graph G = (V,E)
have degree at least R for some 0 < c ≤ 1/2, then the number of dR/2e-edge-connected
components in G is at most (1− c/2)n.

110

Before proving the lemma, we note that the following corollary follows from the
above lemma by setting c = 1/2.

Corollary 5.27. The number of dR/2e-edge-connected components in a graph with
minimum degree R is at most 3n/4.

For notational brevity, let us replace dk/2e by k/2 in Lemma 5.26; all proofs
continue to hold with dk/2e instead of k/2. We need to introduce a data structure
called Gomory-Hu trees [41]. (We only need the version for unweighted graphs, and
that is what we define.)

Definition 5.28. A Gomory-Hu tree is a weighted tree T defined on the vertices of
an undirected unweighted graph G = (V,E) satisfying the following properties:

• For any pair of vertices u, v ∈ V , the number of edge-disjoint paths between u
and v in G is equal to the minimum weight of an edge in the unique path between
u and v in T .

• For any edge e ∈ T with weight w(e), the cut in G corresponding to the vertex
partition produced by removing e from T has w(e) edges in it.

We will now prove Lemma 5.26. Let vertices that have degree at least R in G,
but do not have R edge-disjoint paths to any other vertex in G, be called dangerous
vertices. We will show that every dangerous vertex must have at least three neighbors
in any Gomory-Hu tree T of G. Since any tree has at most n/2 vertices with degree
three or more, it follows that there are at most n/2 dangerous vertices in G. But, note
that every vertex that is not dangerous must be in a R/2-edge connected component
that has at least two vertices. This will immediately yield the lemma.

We now show that a dangerous vertex v has at least three neighbors in a Gomory-
Hu tree T . By the second property of Gomory-Hu trees, the sum of weights on edges
incident on v in T is at least the total degree of v in G, which is at least R since v
is a dangerous vertex. Thus, if there are less than three neighbors of v in T , there
is at least one edge (u, v) incident on v in T with weight at least R/2. But property
1 then ensures that T has at least R/2 edge-disjoint paths in G between u and v,
contradicting that v is dangerous.

This completes the proof of Lemma 5.26.
Now, consider an iterative algorithm for the MEAN problem that runs the α-

approximation MDAN subroutine in every round with the partition defined by the
R/2-edge connected components of the subgraph activated in previous iterations.
By Corollary 5.27, this algorithm terminates in O(log n) iterations, thereby proving
Lemma 5.6.

5.7.2 Installation Cost Optimization

We will now give an algorithm for the MEAN problem in the installation cost setting
that proves Theorem 5.7. Recall that in this setting, every edge (u, v) has a threshold

111

τuv and scaling constants αu,uv, αv,uv, and an edge is activated iff αu,uvxu + αv,uvxv ≥
τuv.

First, we give an algorithm for the MDAN problem in this setting. We define
the cost of a star s as cs = max(u,v)∈s τuv. Observe that we can activate all the
edges of s by increasing the value of xv to cs and keeping the value of xu for all
other vertices u unchanged. We define the benefit of s as the overall decrease in the
degree requirements of the subsets in partition P when we activate the edges of s.
Our algorithm runs in rounds, where in each round, it greedily select a star with
the minimum cost-benefit ratio to add to the set of activated edges. We terminate
once the set of activated edges satisfies 8+3ε

8+4ε
fraction of the total degree requirement.

Clearly, this algorithm can be implemented in polynomial time.

Analysis

The next lemma analyzes the approximation ratio of the MDAN algorithm.

Lemma 5.29. The approximation ratio of the MDAN algorithm given above is O(log(4+
8/ε)).

Proof. Let δ = 8+3ε
8+4ε

. So, we need to show that the approximation ratio is O
(
log 1

1−δ

)
.

The total cost of the partial MDAN solution is at most(
1

nR
+

1

nR− 1
+ . . .+

1

δnR

)
opt = O

(
log

1

1− δ

)
opt,

where opt is the cost of an optimal MDAN solution.

The next lemma states that this terminating condition implies that a sufficiently
large number of vertices have sufficiently high degree.

Lemma 5.30. If the total degree requirement satisfied by a partial solution to the
MDAN problem is at least Rn

(
8+3ε
8+4ε

)
, then there are at least 3n/4 vertices with degree

at least
(

2
2+ε

)
R.

Proof. Let us order the vertices v1, v2, . . . , vn by decreasing degree in the activated
subgraph. Then, the degree of v3n/4 is at least

Rn(8 + 3ε)/(8 + 4ε)− 3Rn/4

n/4
= R

(
2

2 + ε

)
.

It follows from Lemmas 5.30 and 5.26 that O(log n) iterations of the MDAN
algorithm yields a R/(2 + ε)-edge-connected activated subgraph. Theorem 5.7 now
follows from Lemma 5.29.

5.8 Minimum Activation Path

In this section, we give an exact algorithm for the MAP problem with terminals
s, t. The algorithm mimics Bellman-Ford’s single-source shortest path algorithm (see

112

e.g. [24]) with source vertex s, except that the dynamic program has to be additionally
parameterized by the value xv ∈ D chosen at the destination v. Let d(v, a) and
π(v, a) be variables respectively representing the length and the predecessor of v in
the shortest path from s to v discovered thus far, where xv = a ∈ D. Initially,
d(v, a) = ∞ and π(v, a) = null for all vertices v 6= s, and for all a ∈ D; also,
d(s, a) = a and π(s, a) = null for all a ∈ D. The algorithm runs in n − 1 rounds,
where in each round it relaxes each edge (u, v) by making the following updates for
each a, b ∈ D such that fuv(a, b) = 1:

• if d(v, b) > d(u, a) + b, update d(v, b) to d(u, a) + b and π(v, b) to (u, a).

• if d(u, a) > d(v, b) + a, update d(u, a) to d(v, b) + a and π(u, a) to (v, b).

The final output is mina∈D d(t, a) and the corresponding path given by the predeces-
sors.

The following lemma is crucial to proving correctness of the above algorithm.

Lemma 5.31. Suppose u is the immediate neighbor of v on a shortest path between s
and v with xv = a. Also, let xu = b on this path. Then, the prefix of this path between
s and u is a shortest path between s and u where xu = b.

Proof. If not, we can replace the s to u segment of the s to v shortest path with the
shorter alternative path. Since xu and xv remain unchanged, the edge (u, v) remains
activated.

We now use the above lemma to prove the following lemma; setting i = n− 1 in the
lemma proves correctness of the algorithm.

Lemma 5.32. If a shortest path from s to v with xv = a contains i edges, then d(v, a)
and π(v, a) are correctly set after i rounds of the algorithm.

Proof. We prove by induction on i. The base case, for i = 0, is immediate. For the
inductive case, let u be the neighbor of v on the shortest path from s to v with xv = a;
let xu = b on this path. By Lemma 5.31 and the inductive hypothesis, d(u, b) and
π(u, b) are correctly set at the end of round i− 1. The proof follows since edge (u, v)
is relaxed with values xu = b, xv = a in round i.

5.9 Concluding Remarks

The activation network model introduces a new set of practically relevant network
design problems. One important objective is to obtain similar results in directed net-
works. The algorithmic techniques presented here are tailored to undirected graphs,
and do not, in general, extend to directed graphs. Even for undirected graphs, an
interesting direction is to obtain approximation algorithms for higher connectivity
requirements. Several interesting results in these directions have been obtained by
Nutov [79] since the publication of this work. However, several questions remain:

113

e.g., can we obtain bi-criteria algorithms for higher connectivity requirements with
poly-logarithmic approximation factors for arbitrary activation functions?

Another interesting direction of research is to restrict the activation functions
to obtain better approximation ratios. For example, the minimum Steiner forest
problem (or even the much richer generalized Steiner forest problem [53]) admits
constant factor approximation algorithms in edge-weighted graphs. These problems
are special cases of our general framework; so is this a manifestation of some special
structural property in their activation functions? Can we identify and exploit these
structural properties to obtain good approximation algorithms for broader classes of
activation functions?

5.10 Notes

A preliminary version of this work appeared in the Proceedings of the 21st ACM-SIAM
Symposium on Discrete Algorithms, 2011 [80].

114

Bibliography

[1] A. Agrawal, P. N. Klein, and R. Ravi. When trees collide: An approximation
algorithm for the generalized steiner problem on networks. SIAM J. Comput.,
24(3):440–456, 1995.

[2] K. J. Ahn and S. Guha. Graph sparsification in the semi-streaming model. In
ICALP (2), pages 328–338, 2009.

[3] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear
measurements. In SODA, pages 459–467, 2012.

[4] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: sparsification, spanners,
and subgraphs. In PODS, pages 5–14, 2012.

[5] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. A general approach
to online network optimization problems. ACM Transactions on Algorithms,
2(4):640–660, 2006.

[6] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. The online set
cover problem. SIAM J. Comput., 39(2):361–370, 2009.

[7] E. Althaus, G. Calinescu, I. I. Mandoiu, S. K. Prasad, N. Tchervenski, and
A. Zelikovsky. Power efficient range assignment for symmetric connectivity in
static ad hoc wireless networks. Wireless Networks, 12(3):287–299, 2006.

[8] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi. An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling sales-
man problem. In SODA, pages 379–389, 2010.

[9] B. Awerbuch, Y. Azar, and Y. Bartal. On-line generalized steiner problem.
Theor. Comput. Sci., 324(2-3):313–324, 2004.

[10] J. D. Batson, D. A. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
pages 255–262, 2009.

[11] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in õ(n2)
time. In STOC, pages 47–55, 1996.

115

[12] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. De-
tecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In
STOC, pages 201–210, 2010.

[13] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press, New York, NY, USA, 1998.

[14] N. Buchbinder and J. Naor. The design of competitive online algorithms via a
primal-dual approach. Foundations and Trends in Theoretical Computer Science,
3(2-3):93–263, 2009.

[15] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An improved LP-based
approximation for steiner tree. In STOC, pages 583–592, 2010.

[16] G. Calinescu and P.-J. Wan. Range assignment for biconnectivity and k-edge
connectivity in wireless ad hoc networks. MONET, 11(2):121–128, 2006.

[17] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li.
Approximation algorithms for directed steiner problems. J. Algorithms, 33(1):73–
91, 1999.

[18] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: Determin-
istic approximation algorithms for group steiner trees and k-median. In STOC,
pages 114–123, 1998.

[19] C. Chekuri, G. Even, A. Gupta, and D. Segev. Set connectivity problems in
undirected graphs and the directed steiner network problem. ACM Transactions
on Algorithms, 7(2):18, 2011.

[20] C. Chekuri, G. Even, and G. Kortsarz. A greedy approximation algorithm for
the group steiner problem. Discrete Applied Mathematics, 154(1):15–34, 2006.

[21] C. Chekuri and N. Korula. A graph reduction step preserving element-
connectivity and applications. In ICALP (1), pages 254–265, 2009.

[22] M. Chleb́ık and J. Chleb́ıková. The steiner tree problem on graphs: Inapprox-
imability results. Theor. Comput. Sci., 406(3):207–214, 2008.

[23] J. Chuzhoy and S. Khanna. Algorithms for single-source vertex connectivity. In
FOCS, pages 105–114, 2008.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2001.

[25] E. A. Dinic, A. V. Karzanov, and M. V. Lomonosov. The structure of a system
of minimal edge cuts of a graph. In A. A. Fridman, editor, Studies in Discrete
Optimization, pages 290–306. Izdatel’stvo “Nauka”, 1976.

[26] P. G. Doyle and L. J. Snell. Random Walks and Electric Networks. Carus
Mathematical Monographs, 1984.

116

[27] P. Dutta, S. Jaiswal, D. Panigrahi, K. V. M. Naidu, R. Rastogi, and A. K.
Todimala. Villagenet: A low-cost, 802.11-based mesh network for rural regions.
In COMSWARE, 2007.

[28] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[29] U. Feige. A threshold of ln for approximating set cover. J. ACM, 45(4):634–652,
1998.

[30] U. Feige and S. Korman. Personal communication. 2010.

[31] U. Feige, D. Peleg, and G. Kortsarz. The dense -subgraph problem. Algorithmica,
29(3):410–421, 2001.

[32] L. Fleischer. Building chain and cactus representations of all minimum cuts from
hao-orlin in the same asymptotic run time. J. Algorithms, 33(1):51–72, 1999.

[33] W. S. Fung, R. Hariharan, N. J. A. Harvey, and D. Panigrahi. A general frame-
work for graph sparsification. In STOC, pages 71–80, 2011.

[34] W. S. Fung and N. J. A. Harvey. Graph sparsification by edge-connectivity and
random spanning trees. CoRR, abs/1005.0265, 2010.

[35] H. N. Gabow. Applications of a poset representation to edge connectivity and
graph rigidity. In FOCS, pages 812–821, 1991.

[36] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm
for the group steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

[37] A. Goel, M. Kapralov, and S. Khanna. Graph sparsification via refinement
sampling. CoRR, abs/1004.4915, 2010.

[38] A. Goel, M. Kapralov, and I. Post. Single pass sparsification in the streaming
model with edge deletions. CoRR, abs/1203.4900, 2012.

[39] M. X. Goemans, N. J. A. Harvey, K. Jain, and M. Singh. A randomized rounding
algorithm for the asymmetric traveling salesman problem. CoRR, abs/0909.0941,
2009.

[40] M. X. Goemans and D. P. Williamson. A general approximation technique for
constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995.

[41] R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. Soc. Indust. Appl.
Math., 9(4):551–570, 1961.

[42] S. Guha and S. Khuller. Approximation algorithms for connected dominating
sets. Algorithmica, 20(4):374–387, 1998.

117

[43] S. Guha and S. Khuller. Improved methods for approximating node weighted
steiner trees and connected dominating sets. Inf. Comput., 150(1):57–74, 1999.

[44] S. Guha, A. Moss, J. Naor, and B. Schieber. Efficient recovery from power outage
(extended abstract). In STOC, pages 574–582, 1999.

[45] A. Gupta, R. Krishnaswamy, and R. Ravi. Online and stochastic survivable
network design. In STOC, pages 685–694, 2009.

[46] G. R. Gupta, S. Sanghavi, and N. B. Shroff. Node weighted scheduling. In
SIGMETRICS/Performance, pages 97–108, 2009.

[47] M. T. Hajiaghayi, N. Immorlica, and V. S. Mirrokni. Power optimization in fault-
tolerant topology control algorithms for wireless multi-hop networks. IEEE/ACM
Trans. Netw., 15(6):1345–1358, 2007.

[48] M. T. Hajiaghayi, G. Kortsarz, V. S. Mirrokni, and Z. Nutov. Power optimization
for connectivity problems. Math. Program., 110(1):195–208, 2007.

[49] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In STOC,
pages 585–594, 2003.

[50] J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a
directed graph. Journal of Algorithms, 17(3):424–446, 1994.

[51] F. Harary. Graph Theory. Addison-Wesley, 1969.

[52] M. Imase and B. M. Waxman. Dynamic steiner tree problem. SIAM J. Discrete
Math., 4(3):369–384, 1991.

[53] K. Jain. A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica, 21(1):39–60, 2001.

[54] V. Kachitvichyanukul and B. W. Schmeiser. Binomial random variate generation.
Commun. ACM, 31(2):216–222, 1988.

[55] M. Kapralov and R. Panigrahy. Spectral sparsification via random spanners. In
ITCS, pages 393–398, 2012.

[56] D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple
min-cut algorithm. In SODA, pages 21–30, 1993.

[57] D. R. Karger. Random sampling in cut, flow, and network design problems.
Mathematics of Operations Research, 24(2):383–413, May 1999.

[58] D. R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000.

[59] D. R. Karger and D. Panigrahi. A near-linear time algorithm for constructing a
cactus representation of minimum cuts. In SODA, pages 246–255, 2009.

118

[60] D. R. Karger and C. Stein. A new approach to the minimum cut problem. J.
ACM, 43(4):601–640, 1996.

[61] M. Karpinski and A. Zelikovsky. New approximation algorithms for the steiner
tree problems. J. Comb. Optim., 1(1):47–65, 1997.

[62] A. V. Karzanov and E. A. Timofeev. Efficient algorithm for finding all minimal
edge cuts of a non-oriented graph. Cybernetics, 22:156–162, 1986.

[63] J. A. Kelner and A. Levin. Spectral sparsification in the semi-streaming setting.
In STACS, pages 440–451, 2011.

[64] P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for
node-weighted steiner trees. J. Algorithms, 19(1):104–115, 1995.

[65] A. Kolla, Y. Makarychev, A. Saberi, and S.-H. Teng. Subgraph sparsification
and nearly optimal ultrasparsifiers. In STOC, pages 57–66, 2010.

[66] G. Kortsarz, V. S. Mirrokni, Z. Nutov, and E. Tsanko. Approximating minimum-
power degree and connectivity problems. In LATIN, pages 423–435, 2008.

[67] G. Kortsarz and Z. Nutov. Approximating minimum-power edge-covers and 2,
3-connectivity. Discrete Applied Mathematics, 157(8):1840–1847, 2009.

[68] I. Koutis, A. Levin, and R. Peng. Improved spectral sparsification and numerical
algorithms for SDD matrices. In STACS, pages 266–277, 2012.

[69] I. Koutis, G. L. Miller, and R. Peng. Approaching optimality for solving SDD
linear systems. In FOCS, pages 235–244, 2010.

[70] I. Koutis, G. L. Miller, and R. Peng. A nearly-m log n time solver for SDD linear
systems. In FOCS, pages 590–598, 2011.

[71] Y. Lando and Z. Nutov. On minimum power connectivity problems. J. Discrete
Algorithms, 8(2):164–173, 2010.

[72] W. Mader. A reduction method for edge-connectivity in graphs. Ann. Discrete
Math., 3:145–164, 1978.

[73] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1997.

[74] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM J. Discrete Math., 5(1):54–66, 1992.

[75] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–
596, 1992.

119

[76] D. Naor and V. V. Vazirani. Representing and enumerating edge connectivity
cuts in rnc. In WADS, pages 273–285, 1991.

[77] Z. Nutov. Approximating minimum-power k-connectivity. Ad Hoc & Sensor
Wireless Networks, 9(1-2):129–137, 2010.

[78] Z. Nutov. Approximating steiner networks with node-weights. SIAM J. Comput.,
39(7):3001–3022, 2010.

[79] Z. Nutov. Survivable network activation problems. In LATIN, pages 594–605,
2012.

[80] D. Panigrahi. Survivable network design problems in wireless networks. In
SODA, pages 1014–1027, 2011.

[81] D. Panigrahi, P. Dutta, S. Jaiswal, K. V. M. Naidu, and R. Rastogi. Minimum
cost topology construction for rural wireless mesh networks. In INFOCOM, pages
771–779, 2008.

[82] H. J. Prömel and A. Steger. A new approximation algorithm for the steiner tree
problem with performance ratio 5/3. J. Algorithms, 36(1):89–101, 2000.

[83] S. Rao and S. Zhou. Edge disjoint paths in moderately connected graphs. SIAM
J. Comput., 39(5):1856–1887, 2010.

[84] G. Robins and A. Zelikovsky. Tighter bounds for graph steiner tree approxima-
tion. SIAM J. Discrete Math., 19(1):122–134, 2005.

[85] S. Sen and B. Raman. Long distance wireless mesh network planning: problem
formulation and solution. In WWW, pages 893–902, 2007.

[86] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, June 1983.

[87] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, 2011.

[88] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM J.
Comput., 40(4):981–1025, 2011.

[89] V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001.

[90] A. Zelikovsky. An 11/6-approximation algorithm for the network steiner problem.
Algorithmica, 9(5):463–470, 1993.

[91] L. Zosin and S. Khuller. On directed steiner trees. In SODA, pages 59–63, 2002.

120

	Introduction
	Preliminaries
	Overview of Results
	Connectivity Data Structures
	Network Design

	I Connectivity Data Structures
	Cactus Construction
	Background
	History
	Our Contributions
	Our Approach

	Near-linear Time Min-cut Algorithm
	Cactus Construction Algorithm
	Listing minimal min-cuts of vertices
	Labeling minimal min-cuts of vertices
	Labeling second-smallest min-cuts of vertices
	Minimal min-cuts of edges
	Cactus construction from minimal min-cuts

	Concluding Remarks
	Notes

	Cut Sparsification
	Background
	Connectivity Parameters
	Edge Compression
	History

	Our Contributions
	A General Sparsification Framework
	Applications of the Sparsification Framework
	Sparsification Algorithms

	Modified Chernoff Bounds
	Counting Cut Projections
	The General Sparsification Framework
	Sparsification by Edge Compression
	Compression using Edge Connectivities
	Compression using Edge Strengths
	Compression using NI indices

	Cut Sparsification Algorithm
	Cut Preservation
	Size of the sparsifier
	Time complexity

	Concluding Remarks
	Notes

	II Network Design
	Online Steiner Tree and Related Problems
	Background
	Edge-weighted and Node-weighted Problems
	The Online Model
	Bi-criteria Approximation for Network Design Problems
	History

	Our Contributions
	Online Node-weighted Steiner Tree
	Online Group Steiner Forest
	Online Group Steiner Forest on Trees
	Online Node-weighted Group Steiner Forest
	Online Edge-weighted Group Steiner Forest

	Online Edge-weighted Single-Source Vertex Connectivity
	Concluding Remarks
	Notes

	Network Activation Problems
	Background
	Our Contributions
	Minimum Spanning Activation Tree
	Minimum Steiner Activation Forest
	Minimum Vertex-connected Activation Network with R=2
	Minimum Leaf-weighted Subtree

	Minimum Edge-connected Activation Network with R=2
	Minimum Edge-connected Activation Network for Arbitrary R
	Connection between MEAN and MDAN Problems
	Installation Cost Optimization

	Minimum Activation Path
	Concluding Remarks
	Notes

