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Abstract

A deterministic method for sequential estimation of 3-D rotations is presented.
The Bingham distribution is used to represent uncertainty directly on the unit
quaternion hypersphere. Quaternions avoid the degeneracies of other 3-D ori-
entation representations, while the Bingham distributionallows tracking of large-
error (high-entropy) rotational distributions. Experimental comparison to a lead-
ing EKF-based filtering approach on both synthetic signals and a ball-tracking
dataset shows that the Quaternion Bingham Filter (QBF) has lower tracking error
than the EKF, particularly when the state is highly dynamic.We present two ver-
sions of the QBF–suitable for tracking the state of first- andsecond-order rotating
dynamical systems.

1 Introduction

3-D rotational data occurs in many disciplines, from geology to robotics to physics. Yet modern
statistical inference techniques are seldom applied to such data sets, due to the complex topology of
3-D rotation space, and the well-known aliasing problems caused by orientations “wrapping around”
back to zero. Many probability distributions exist for modeling uncertainty on rotational data, yet
difficulties often arise in the mechanics of complex inference tasks. The goal of this paper is to ex-
plore one distribution—the Bingham—which is particularly well-suited for inference, and to derive
many common operations on Bingham distributions as a reference for future researchers.

We present a new deterministic method—the Quaternion Bingham Filter (QBF)—for approximate
recursive inference in quaternion Bingham processes. The quaternion Bingham process is a type of
dynamic Bayesian network (DBN) on 3-D rotational data, where both process dynamics and mea-
surements are perturbed by random Bingham rotations. The QBF uses the Bingham distribution to
represent state uncertainty on the unit quaternion hypersphere. Quaternions avoid the degeneracies
of other 3-D orientation representations, while the Bingham distribution enables accurate tracking
of high-noise signals. Performing exact inference on quaternion Bingham processes requires the
composition of Bingham distributions, which results in a non-Bingham density. Therefore, we ap-
proximate the resulting composed distribution as a Binghamusing the method of moments, in order
to keep the filtered state distribution in the Bingham family.

We compare the quaternion Bingham filter to a previous approach to tracking rotations based on
the Extended Kalman Filter (EKF) and find that the QBF has lower tracking error than the EKF,
particularly when the state is highly dynamic. We evaluate the performance of the QBF on both
synthetic rotational process signals and on a real dataset containing 3-D orientation estimates of a
spinning ping-pong ball tracked in high-speed video. We also derive the true probability density
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function (PDF) for the composition of two Bingham distributions, and report the empirical error of
the moment-matching composition approximation for various distributions. We begin by introduc-
ing the Bingham distribution along with the first- and second-order quaternion Bingham processes
and the QBF for estimating their state. We then describe someimportant operations on the Bingham
distribution, and conclude with experiments on artificial and real data.

2 Distributions on rotations

The problem of how to represent a probability distribution on the space of rotations in three dimen-
sions has been a subject of considerable study. Representing the distribution directly in the space
of Euler angles is difficult because of singularities in the space when two of the angles are aligned
(known as gimbal lock). A more appropriate space for representing distributions on rotations is the
space of unit quaternions: a rotation becomes a point on the 4-dimensional unit hypersphere,S3.
This space lacks singularities, but has the difficulty that the representation is not unique: bothq and
−q represent the same rotation. Putting a Gaussian distribution directly in quaternion space does not
respect the underlying topology of 3-D rotations; however,this approach has been the basis of track-
ing methods based on approximations of the Kalman filter [13,3, 15, 4, 9, 10]. A more appropriate
method is to represent distributions in anR3 space that is tangent to the quaternion hypersphere
at the mean of the distribution [6]; but such a tangent-spaceapproach will be unable to effectively
represent distributions that have large variances. In manyperceptual problems, it may be possible to
make observations that provide significant information about only one or two dimensions, yielding
high-variance estimates. For this reason, we use the Bingham distribution.

The Bingham distribution [1] is an antipodally symmetric probability distribution on a unit hyper-
sphere. It can be used to represent many types of uncertainty, from highly peaked distributions to
distributions which are symmetric about some axis to the uniform distribution. It is thus a very flexi-
ble distribution for unit quaternions on the hypersphereS3. Despite its versatility, it has not yet seen
wide usage in the AI and robotics communities. This is because the normalization constant in the
Bingham density cannot be computed in closed form, which makes many types of (exact) inference
difficult. This difficulty can be overcome using caching techniques and interpolation to approxi-
mate the normalization constant,F , and its partial derivatives,∇F , with respect to the Bingham
concentration parameters,Λ.

The probability density function (PDF) for the Bingham distribution is

f(x; Λ, V ) =
1
F

exp{
d∑

i=1

λi(vi
T x)2} (1)

wherex is a unit vector on the surface of the sphereSd ⊂ Rd+1, F is a normalization constant,Λ is
a vector of concentration parameters, and the columns of the(d+1)×d matrixV are orthogonal unit
vectors. We refer to the density in equation 6 as thestandard formfor the Bingham. A more succinct
form for the Bingham isf(x; C) = 1

F exp(xT Cx), where C is a(d+1)×(d+1) orthogonal matrix;
however,C is clearly an over-parameterization since the firstd columns ofC completely determine
its final column. By convention, one typically definesΛ andV so thatλ1 ≤ λ2 ≤ · · · ≤ λd ≤ 0.
Note that a large-magnitudeλi indicates that the distribution is highly peaked along the directionvi,
while a small-magnitudeλi indicates that the distribution is spread out alongvi.

The Bingham distribution is derived from a zero-mean Gaussian onRd+1, conditioned to lie on
the surface of the unit hypersphereSd. Thus, the exponent of the Bingham PDF is the same as the
exponent of a zero-mean Gaussian distribution (in principal components form, with one of the eigen-
values of the covariance matrix set to infinity). The Binghamdistribution is themaximum entropy
distribution on the hypersphere which matches the sample inertia matrixE[xxT ] [14]. Therefore,
it may be better suited to representing random process noiseon the hypersphere than some other
distributions, such as (projected) tangent-space Gaussians.

The Bingham distribution is most commonly used to representuncertainty in axial data on the
sphere,S2. In geology, it is often used to encode preferred orientations of minerals in rocks [12, 16].
Higher dimensional, complex forms of the Bingham distribution are also used to represent the dis-
tribution over 2-D planar shapes [5]. In this work, we use theBingham onS3 as a probability
distribution over 3-D quaternion rotations. Since the unitquaternionsq and−q represent the same
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First-order

xn = wn ◦ un ◦ xn−1

yn = zn ◦ xn

Second-order

vn = wn ◦ un ◦ vn−1

xn = vn−1 ◦ xn−1

yn = zn ◦ xn

Figure 1: Process and graphical models for the discrete quaternion Bingham process.

rotation in 3-D space, the antipodal symmetry of the Binghamdistribution correctly captures the
topology of quaternion rotation space.

3 Discrete-time quaternion Bingham process

The first-order discrete-time quaternion Bingham process has, as its state,xn, a unit quaternion
representing the orientation of interest at timen. The system’s behavior is conditioned on control
inputsun, which are also unit quaternions. The new orientation is theold orientation rotated by
the control input and then by independent noisewn ∼ Bingham(Λp, Vp). Note that “◦” denotes
quaternion multiplication, which corresponds to composition of rotations for unit quaternions. (q◦r
means “rotate byr and then byq”.)

The second-order quaternion Bingham process has state(xn,vn), wherexn represents orientation
and the quaternionvn represents discrete rotational velocity at timen. The control inputsun are
analogous to rotational accelerations. Process noisewn enters the system in the velocity dynamics.

In both the first-order and second-order systems, observationsyn are given by the orientationxn

corrupted by independent Bingham noisezn ∼ Bingham(Λo, Vo). One common choice forVp and

Vo is

[
0 0 0
1 0 0
0 1 0
0 0 1

]
, which means that the mode is the quaternion identity,(1, 0, 0, 0). (Any V matrix

whose top row contains all zeros will have this mode.) Figure1 shows the process and graphical
models for the discrete quaternion Bingham process.

4 Discrete quaternion Bingham filter

The state of a discrete-time quaternion Bingham process canbe estimated using a discrete-time
quaternion Bingham filter, which is a recursive estimator similar in structure to a Kalman filter.
Unlike the Kalman filter, however, the QBF is approximate, inthe sense that the tracked state dis-
tribution is projected to be in the Bingham family after every time step. The second-order QBF will
also require an assumption of independence betweenxn andvn, given all the data up to timen. Both
the first-order and second-order QBFs are examples ofassumed density filtering—a well-supported
approximate inference method in the DBN literature [2]. We will start by deriving the first-order
QBF, which follows the Kalman filter derivation quite closely. Note that the following derivations
rely on several properties of Bingham distributions which will be detailed in section 5.

First-order QBF. Given a distribution over the initial statex0, Bx0 ∼ Bingham(Λ0, V0), and an
action-observation sequenceu1,y1, . . . ,un,yn, the goal is to compute the posterior distribution
f(xn | u1,y1, . . . ,un,yn). We can use Bayes’ rule and the Markov property to decompose this
distribution as follows:

Bxn
= f(xn|u1,y1, . . . ,un,yn) ∝ f(yn|xn)f(xn|u1,y1, . . . ,un−1,yn−1,un)

= f(yn|xn)
∫
xn−1

f(xn | xn−1,un)Bxn−1(xn−1)

= f(yn|xn)(fwn
◦ un ◦Bxn−1)(xn) .

wherefwn
◦ un ◦ Bxn−1 means rotateBxn−1 by un and then convolve with the process noise

distribution,fwn
. For the first term,f(yn|xn), recall that the observation process isyn = zn ◦ xn,
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soyn|xn ∼ Bingham(yn; Λo, Vo ◦ xn), where we used the result from section 5 for rotation of a
Bingham by a fixed quaternion. Thus the distribution foryn|xn is

f(yn|xn) =
1
Fo

exp
3∑

i=1

λoi(yn
T (voi ◦ xn))2 .

Now we can rewriteyn
T (voi ◦ xn) as(v−1

oi ◦ yn)T xn, so thatf(yn|xn) is a Bingham density on
xn, Bingham(xn; Λo, V

−1
o ◦yn). Thus, computingBxn

reduces to multiplying two Bingham PDFs
onxn, which is given in section 5.

Second-order QBF.Given a factorized distribution over the initial statef(x0,v0) = Bx0Bv0 and
an action-observation sequenceu1,y1, . . . ,un,yn, the goal is to compute the joint posterior distri-
butionf(xn,vn | u1,y1, . . . ,un,yn). However, the joint distribution onxn andvn is too difficult
to represent, so we instead compute the marginal posteriorsoverxn andvn separately, and approx-
imate the joint posterior as the product of the marginals. The marginal posterior onxn is

Bxn
= f(xn|u1,y1, . . . ,un,yn)

∝ f(yn|xn)
∫
xn−1

f(xn|xn−1)Bxn−1(xn−1)

= f(yn|xn)(Bvn−1 ◦Bxn−1)(xn)

since we assumexn−1 andvn−1 are independent given all the data up to timen− 1.

Similarly, the marginal posterior onvn is

Bvn
= f(vn|u1,y1, . . . ,un,yn)

∝
∫
vn−1

f(vn | vn−1,un)Bvn−1(vn−1)
∫
xn

f(yn|xn)f(xn|vn−1,u1,y1, . . . ,un−1,yn−1).

Once again,f(yn|xn) can be written as a Bingham density onxn, Bingham(xn; Λo, V
−1
o ◦ yn).

Next, note thatxn = vn−1 ◦ xn−1 so thatf(xn|vn−1,u1,y1, . . . ,un−1,yn−1) = Bxn−1(v
−1
n−1 ◦

xn), which can also be re-written as a Bingham onxn. Now lettingxn−1 ∼ Bingham(Σ, W ), and
since the product of two Bingham PDFs is Bingham, the integral overxn becomes proportional to a
Bingham normalization constant,1F1( 1

2 ; 4
2 ; C(vn−1)), where

C(vn−1) =
3∑

i=1

(
σi(vn−1 ◦wi)(vn−1 ◦wi)T + λoi(v−1

oi ◦ yn)(v−1
oi ◦ yn)T

)
.

Comparing C(vn−1) with equation 4 in section 5 we find that1F1( 1
2 ; 4

2 ; C(vn−1)) ∝
(fyn|xn

◦B−1
xn−1

)(vn−1). Thus,

Bvn
∝

∫
vn−1

f(vn | vn−1,un)Bvn−1(vn−1) · (fyn|xn
◦B−1

xn−1
)(vn−1)

= (fwn
◦ un ◦ (Bvn−1 · (fyn|xn

◦B−1
xn−1

)))(vn)

Note thatBvn
depends onBxn

, soBxn
must be computed first.

5 Operations on Bingham distributions

In order to implement the quaternion Bingham filter, we need to be able to perform several operations
on Bingham distributions. To our knowledge, all of these operations, except for computing the
normalization constant, are new contributions of this paper. More operations (including calculation
of KL-divergence and sampling methods) are presented in theappendix.

The Normalization constant. The primary difficulty with using the Bingham distribution in prac-
tice lies in computing the normalization constant,F . Since the distribution must integrate to one
over its domain (Sd), we can write the normalization constant as

F (Λ) =
∫

x∈Sd

exp{
d∑

i=1

λi(vi
T x)2} = 1F1(

1
2
;
d + 1

2
; Λ) (2)
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where1F1() is a hyper-geometric function of matrix argument [1]. Evaluating1F1() is expensive, so
we precompute a lookup table ofF -values over a discrete grid ofΛ’s, and use tri-linear interpolation
to quickly estimate normalizing constants on the fly.

Product of Bingham PDFs.The correction step of the filter requires multiplying PDFs.The product
of two Bingham PDFs is given by adding their exponents:

f(x; Λ1, V1)f(x; Λ2, V2) =
1

F1F2
exp{xT (

d∑
i=1

λ1iv1iv1i
T + λ2iv2iv2i

T )x}

=
1

F1F2
exp{xT (C1 + C2)x}

(3)

After computing the sumC = C1 +C2 in the exponent of equation 3, we transform the PDF to stan-
dard form by computing the eigenvectors and eigenvalues ofC, and then subtracting off the lowest
magnitude eigenvalue from each spectral component, so thatonly the eigenvectors corresponding to
the largestd eigenvalues (in magnitude) are kept, andλ1 ≤ · · · ≤ λd ≤ 0 (as in equation 6).

Rotation by a fixed quaternion. To find the effect of the control on the predictive distribution, we
rotate the prior byu. Givenq ∼ Bingham(Λ, V ), u ∈ S3, ands = u◦q, thens ∼ Bingham(Λ,u◦
V ), whereu ◦ V , [u ◦v1,u ◦v2,u ◦v3]. In other words,s is distributed according to a Bingham
whose orthogonal direction vectors have been rotated (on the left) byu. Similarly, if s = q ◦u then
s ∼ Bingham(Λ, V ◦ u).

Proof for s = u ◦ q: Since unit quaternion rotation is invertible and volume-preserving, we have

fs(s) = fq(u−1 ◦ s) =
1
F

exp{
d∑

i=1

λi(vi
T (u−1 ◦ s))2} =

1
F

exp{
d∑

i=1

λi((u ◦ vi)T s)2} .

Quaternion inversion. Givenq ∼ Bingham(Λ, V ) ands = q−1, thens ∼ Bingham(Λ, JV ),

whereJ is the quaternion inverse matrix,J =
[

1 −1
−1

−1

]
. The proof follows the same logic as

in the previous section.

Composition of quaternion Binghams. Implementing the QBF requires the computation of
the PDF of the composition of two independent Bingham randomvariables. Lettingq ∼
Bingham(Λ, V ) andr ∼ Bingham(Σ, W ), we wish to find the PDF ofs = q ◦ r.

Thetrue distribution is the convolution, inS3, of the PDFs of the component distributions1.

ftrue(s) =
∫
q∈S3

f(s|q)f(q) = 1F1( 1
2 ; 4

2 ; C(s))
2 · 1F1( 1

2 ; 4
2 ; Λ)1F1( 1

2 ; 4
2 ; Σ)

where C(s) =
3∑

i=1

(
σi(s ◦wi

−1)(s ◦wi
−1)T + λivivi

T
)

(4)

To approximate the PDF ofs with a Bingham density,fB(s) = fB(q ◦ r), it is sufficient to
compute the second moments ofq ◦ r, since the inertia matrix,E[ssT ] is the sufficient statistic for
the Bingham. This moment-matching approach is equivalent to the variational approach, wherefB

is found by minimizing the KL divergence fromfB to ftrue.

Noting that q ◦ r can be written as(qT HT
1 r, qT HT

2 r, qT HT
3 r, qT HT

4 r), where

H1 =
[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
, H2 =

[
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

]
, H3 =

[
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

]
, andH4 =

[
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

]
, we find that

E[sisj ] = E[qT HT
i rrT Hjq] ,

which has 16 terms of the form±rarbqcqd, wherea, b, c, d ∈ {1, 2, 3, 4}. Sinceq andr are inde-
pendent,E[±rarbqcqd] = ±E[rarb]E[qcqd]. Therefore (by linearity of expectation), every entry in

1See the appendix for a full derivation.
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(a) Λo = (−50,−50,−50)
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(b) Λo = (−10,−10,−1)
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(c) Λo = (−10,−10,−1)

Figure 2: Two simulated runs with the quaternion Bingham filter—(b) and (c) are different plots
of the same simulation. In all figures, the thick black line isthe true process signal, generated
with isotropic process noiseΛp = (−400,−400,−400). The thin blue lines in (a) and (b) are the
observation signal, and the thick red line is the filtered output. Rows 1-4 in each figure show the 4
quaternion dimensions(qw, qx, qy, qz). Row 5 in (a) and (b) shows the error between filter output
and true state (thick red line), together with the QBF sampleerror 90% confidence bounds (thin red
line). Marginal sample 90% confidence bounds are also shown in the thin red lines in (c).

the matrixE[ssT ] is a quadratic function of elements of the inertia matrices of q andr, which can
be easily computed given the Bingham normalization constants and their partial derivatives. The
entire closed form forE[ssT ] is given in the appendix.

Entropy. The entropy of a Bingham distribution with PDFf is given by:

h(f) = −
∫

x∈Sd

f(x) log f(x) = log F − Λ · ∇F

F
. (5)

The proof is given in the appendix. Since both the normalization constant,F , and its gradient with
respect toΛ,∇F , are stored in a lookup table, the entropy is trivial to approximate via interpolation,
and can be used on the fly without any numerical integration over hyperspheres.

6 Experimental Results

We compare the quaternion Bingham filter against an extendedKalman filter (EKF) approach in
quaternion space [13], where process and observation noiseare generated by Gaussians inR4, the
measurement function normalizes the quaternion state (to project it onto the unit hypersphere), and
the state estimate is renormalized after every update. We chose the EKF both due to its popularity
and because LaViola reports in [13] that it has similar (slightly better) accuracy to the unscented
Kalman filter (UKF) in several real tracking experiments. Weadapted two versions of the EKF
(for first-order and second-order systems) from LaViola’s EKF implementation by changing from a
continuous to a discrete time prediction update. We also mapped QBF (Bingham) noise parameters
to EKF (Gaussian) noise parameters by empirically matchingsecond moments from the Bingham
to the projected Gaussian—i.e., the Gaussian after it has been projected onto the unit hypersphere.

Synthetic Data. To test the first-order quaternion Bingham filter, we generated several synthetic
signals by simulating a quaternion Bingham process, where the (velocity) controls were gener-
ated so that the nominal process state (before noise) would follow a sine wave pattern on each
angle in Euler angle space. We chose this control pattern in order to cover a large area of 3-D
rotation space with varying rotational velocities. Two examples of synthetic signals along with
quaternion Bingham filter output are shown in figure 2. Their observation parameters wereΛo =
(−50,−50,−50), which gives moderate, isotropic observation noise, andΛo = (−10,−10,−1),
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observation noise -400, -400, -10 -400 -50
process noise -50 -200 -400 -50 -200 -400 -50 -200 -400

% improvement 37.3 45.6 54.3 19.9 3.33 1.52 3.42 0.72 0.47
± (5.1) (5.0) (6.4) (1.8) (0.53) (0.44) (0.88) (0.40) (0.27)

Table 1: Projected Gaussian process simulations. Average %mean error decrease for QBF over
EKF.

(a) slow top-spin (b) fast top-spin (c) slow side-spin (d) fast side-spin

Figure 3: Example image sequences from the spinning ping-pong ball dataset. In addition to lighting
variations and low image resolution, high spin rates make this dataset extremely challenging for
orientation tracking algorithms. Also, because the cameras were facing top-down towards the table,
tracking side-spin relies on correctly estimating the orientation of the elliptical marking in the image,
and is therefore much harder than tracking top-spin or under-spin.

which yields moderately high noise in the first two directions, and near-uniform noise in the
third direction. We estimated the composition approximation error (KL-divergence) for 9 of these
signals, with both isotropic and nonisotropic noise models, from all combinations of(Λp, Λo)
in {(−50,−50,−50), (−200,−200,−200), (−10,−10,−1)}. The mean composition error was
.0012, while the max was .0197, which occurred whenΛp andΛo were both(−10,−10,−1).

For the EKF comparison, we wanted to give the EKF the best chance to succeed, so we generated
the data from a projected Gaussian process, with process andobservation noise generated according
to a projected Gaussian (in order to match the EKF dynamics model) rather than from Bingham
distributions. We ran the first-order QBF and EKF on 270 synthetic projected Gaussian process
signals (each with 1000 time steps) with different amounts of process and observation noise, and
found the QBF to be more accurate than the EKF on 268/270 trials. The mean angular change in
3-D orientation between time steps were 7, 9, and 18 degrees for process noise parameters -400,
-200, and -50, respectively (where -400 meansΛp = (−400,−400− 400), etc.).

The most extreme cases involved anisotropic observation noise, with an average improvement over
the EKF mean error rate of 40-50%. The combination of high process noise and low observation
noise also causes trouble for the EKF. Table 1 summarizes theresults.

Spinning ping-pong ball datasetTo test the second-order QBF, we collected a dataset of high-speed
videos of 73 spinning ping-pong balls in flight2 (Figure 3). On each ball we drew a solid black ellipse
over the ball’s logo to allow the high-speed (200fps) visionsystem to estimate the ball’s orientation
by finding the position and orientation of the logo. However,an ellipse was only drawn on one side
of each ball, so the ball’s orientation could only be estimated when the logo was visible in the image.
Also, since ellipses are symmetric, each logo detection hastwo possible orientation interpretations3.
The balls were spinning at 25-50 revolutions per second (which equates to a 45-90 degree orientation
change per frame), making the filtering problem extremely challenging due to aliasing effects. We
used a ball gun to shoot the balls with consistent spin and speed, at 4 different spin settings (topspin,
underspin, left-sidespin, and right-sidespin) and 3 different speed settings (slow, medium, fast), for
a total of 12 different spin types. Although we initially collected videos of 107 ball trajectories, the
logo could only be reliably found in 73 of them; the remaining34 videos were discarded. Although
not our current focus, adding more markings to the ball and improving logo detections would allow
the ball’s orientation and spin to be tracked on a larger percentage of such videos. To establish an
estimate of ground truth, we then manually labeled each ballimage with the position and orientation
of the logo (when visible), from which we recovered the ball orientation (up to symmetry). We

2In future work, we plan to incorporate control signals into the ping-pong spin tracking dataset by allowing
the ball to bounce during the trajectory.

3We disambiguated between the two possible ball orientation observations by picking the observation with
highest likelihood under the current QBF belief.
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then used least-squares non-linear regression to smooth out our (noisy) manual labels by finding the
constant rotation,̂s, which best fit the labeled orientations for each trajectory4.

To run the second-order QBF on this data, we initialized the QBF with a uniform orientation distribu-
tion Bx0 and a low concentration (Λ = (−3,−3− 3)) spin distributionBv0 centered on the identity
rotation,(1, 0, 0, 0). In other words, we provided no information about the ball’sinitial orientation,
and an extremely weak bias towards slower spins. We also treated the “no-logo-found” (a.k.a. “dark
side”) observations as a very noisy observation of the logo in the center of the back side of the
ball at an arbitrary orientation, withΛo = (−3.6,−3.6, 0)5. When the logo was detected, we used
Λo = (−40,−40,−10) for the observation noise. A process noise withΛp = (−400,−400,−400)
was used throughout, to account for small perturbations to spin.

Results of running the second-order QBF (QBF-2) are shown infigure 4. We compared the second-
order QBF to the second-order EKF (EKF-2) and also to the first-order QBF and EKF (QBF-1
and EKF-1), which were given the difference between subsequent orientation observations as their
observations of spin. The solid, thin, blue line in each plotmarked “oracle prior” shows results from
running QBF-2 with a best-case-scenario prior, centered onthe average ground truth spin for that
spin type, withΛ = (−10,−10,−10). We show mean orientation and spin errors (to regressed
ground truth), and also spin classification accuracy using the MAP estimate of spin type (out of 12)
given the current spin belief6. The results clearly show that QBF-2 does the best job of identifying
and tracking the ball rotations on this extremely challenging dataset, achieving a classification rate of
91% after just 30 video frames, and a mean spin (quaternion) error of 0.17 radians (10 degrees), with
an average of 6.1 degrees of logo axis error and 6.8 degrees oflogo angle error. In contrast, the EKF-
2 does not significantly outperform random guessing, due to the extremely large observation noise
and spin rates in this dataset. In the middle of the pack are QBF-1 and EKF-1, which converge much
more slowly since they use the raw observations (rather thanthe smoothed orientation signal used
by QBF-2) to estimate ball spin. Finally, to address the aliasing problem, we ran a set of 12 QBFs in
parallel, each with a different spin prior mode (one for eachspin type), withΛ = (−10,−10,−10).
At each time step, the filter was selected with the highest total data likelihood. Results of this “filter
bank” approach are shown in the solid, thin, green line in figure 4.

7 Conclusion

For many control and vision applications, the state of a dynamic process involving 3-D orienta-
tions and spins must be estimated over time, given noisy observations. Previously, such estimation
was limited to slow-moving signals with low-noise observations, where linear approximations to
3-D rotation space were adequate. The contribution of our approach is that the quaternion Bing-
ham filter encodes uncertainty directly on the unit quaternion hypersphere, using a distribution—the
Bingham—with nice mathematical properties enabling efficient approximate inference, with no re-
strictions on the magnitude of process dynamics or observation noise. Because of the compact
nature of 3-D rotation space and the flexibility of the Bingham distribution, we can use the QBF
not only for tracking but also for identification of signals,by starting the QBF with an extremely
unbiased prior, a feat which previously could only be matched by more computationally-intensive
algorithms, such as discrete Bayesian filters or particle filters. The one drawback of the quaternion
Bingham process is that its process and observation models are somewhat restricted; for example,
no quaternion exponentiation (or interpolation) is currently allowed, which would be required for a
continuous-time update. Extending the QBF for these cases (most likely using numerical methods)
is a direction for future work.

4Due to air resistance and random perturbations, the spin was not really constant throughout each trajectory.
But for the short duration of our experiments (40 frames), the constant spin approximation was sufficient.

5We got thisΛo by fitting a Bingham to all possible dark side orientations.
6Spin was classified into one of the 12 spin types by taking the average ground truth spin for each spin type

and choosing the one with the highest likelihood with respect to the current spin belief.
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Figure 4: Spinning ping-pong ball tracking results. Top row: comparison of QBF-2 (with and with-
out an oracle-given prior) to QBF-1, EKF-1, EKF-2, and random guessing (for spin classification);
QBF-1 and EKF-1 do not show up in the orientation error graph because they only tracked spin.
Note that QBF-2 quickly converges to the oracle error and classification rates. Bottom row: QBF-2
results broken down into top-spin/under-spin vs. side-spin. As mentioned earlier, the side-spin data
is harder to track due to the chosen camera placement and ballmarkings for this experiment.

A Formulas and Derivations for the Bingham Distribution

A.1 Bingham Distribution

To review, the probability density function (PDF) for the Bingham distribution is

f(x; Λ, V ) =
1
F

exp{
d∑

i=1

λi(vi
T x)2} (6)

wherex is a unit vector on the surface of the sphereSd ⊂ Rd+1, F is a normalization constant,Λ is
a vector of concentration parameters, and the columns of the(d+1)×d matrixV are orthogonal unit
vectors. We refer to the density in equation 6 as thestandard formfor the Bingham. A more succinct
form for the Bingham isf(x; C) = 1

F exp(xT Cx), where C is a(d+1)×(d+1) orthogonal matrix;
however,C is clearly an over-parameterization since the firstd columns ofC completely determine
its final column. By convention, one typically definesΛ andV so thatλ1 ≤ λ2 ≤ · · · ≤ λd ≤ 0.
Note that a large-magnitudeλi indicates that the distribution is highly peaked along the directionvi,
while a small-magnitudeλi indicates that the distribution is spread out alongvi.

A.2 The Normalization constant

The primary difficulty with using the Bingham distribution in practice lies in computing the normal-
ization constant,F . Since the distribution must integrate to one over its domain (Sd), we can write
the normalization constant as

F (Λ) =
∫

x∈Sd

exp{
d∑

i=1

λi(vi
T x)2} (7)

In general, there is no closed form for this integral, which means thatF must be approximated.
Typically, this is done via series expansion [1, 8], although saddle-point approximations [11] have
also been used. Following Bingham [1], we note thatF (Λ) is proportional to a hyper-geometric
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function of matrix argument, with series expansion

F (Λ) = 2 · 1F1(
1
2
;
d + 1

2
; Λ)

= 2
√

π

∞∑
α1=0

. . .

∞∑
αd=0

Γ(α1 + 1
2 ) · · ·Γ(αd + 1

2 )
Γ(α1 + · · ·+ αd + d+1

2 )
· λα1

1 · · ·λαd

d

α1! · · ·αd!

(8)

For practical usage, we precompute a lookup table ofF -values over a discrete grid ofΛ’s, and use
interpolation to quickly estimate normalizing constants on the fly.

A.3 Max Likelihood Parameter Estimation

Following Bingham [1], we estimate the parametersV and Λ given a set ofN samples,{xi},
using a maximum likelihood approach. Finding the maximum likelihood estimate (MLE)̂V is an
eigenvalue problem—the MLE mode of the distribution is equalto the eigenvector of the inertia
matrix S = 1

N

∑
i xixT

i corresponding to the largest eigenvalue, while the columnsof V̂ are equal
to the eigenvectors corresponding to the2nd through(d + 1)th eigenvalues ofS.

The maximum likelihood estimatêΛ is found by setting the partial derivatives of the data log likeli-
hood function with respect toΛ to zero, yielding

1
F (Λ)

∂F (Λ)
∂λj

=
1
N

N∑
i=1

(vj
T xi)2 = vj

T Svj, (9)

for j = 1, . . . , d. Just as we did forF (Λ), we can pre-compute values of the gradient ofF with
respect toΛ, ∇F , and store them in a lookup table. Using a kD-tree, we can find the nearest
neighbors of a new sample∇F/F in O(d log M) time (whereMd is the size of the lookup table),
and use their indices to findΛ via interpolation (since the lookup tables forF and∇F are indexed
by Λ).

Notice that the maximum likelihood estimates forV andΛ are both computed given only the in-
ertia matrix,S. Thus,S is a sufficient statistic for the Bingham distribution. In fact, there is a
beautiful result from the theory of exponential families which says that the Bingham distribution
is themaximum entropydistribution on the hypersphere which matches the sample inertia matrix,
S = E[xxT ] [14]. This gives us further theoretical justification to usethe Bingham distribution in
practice, if we assume that all of the relevant information about the data is captured in the inertia
matrix.

A.4 Mode

The mode of the Bingham,µ, is the unit vector which is orthogonal tov1, . . . ,vd.

A.5 Inertia Matrix

Equation 9 can be inverted to solve for the inertia matrix,S, of a Bingham distribution. The eigen-
vectors ofS are given byv1, . . . ,vd, together with the mode of the Bingham,µ. The firstd
eigenvalues are given by∇F

F , while the last eigenvalue is1−∑
i

∂F/∂λi

F .

A.6 Sampling

There are many situations in which it is important to be able to draw samples from a distribution.
In this paper, we used sampling to compute empirical confidence bounds on the predictions of the
quaternion Bingham filter. In addition, one might use a Bingham sampler in the construction of a
particle filter for a quaternion Bingham process.

Because of the complexity of the normalization constant, sampling from the Bingham distribution
directly is difficult. Therefore, we use a Metropolis-Hastings sampler, with target distribution given
by the Bingham density, and proposal distribution given by the projected zero-mean Gaussian7 in

7To sample from the projected Gaussian, we first sample from a Gaussianwith covarianceS, then project
the sample onto the unit sphere.
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Rd+1 with covariance matrix equal to the Bingham’s sample inertia matrix,S. Because the proposal
distribution is very similar to the target distribution, the Metropolis-Hastings sampler typically has
a very high acceptance rate, making it an efficient sampling method.

A.7 Entropy

The entropy of a Bingham distribution with PDFf is given by:

h(f) = −
∫

x∈Sd

f(x) log f(x)

= −
∫

x∈Sd

1
F

exT Cx(xT Cx− log F )

= log F − 1
F

∫
x∈Sd

xT CxexT Cx.

Writing f in standard form, and denoting the hyperspherical integral
∫

x∈Sd xT CxexT Cx by g(Λ),

g(Λ) =
∫

x∈Sd

d∑
i=1

λi(vi
T x)2e

∑d
j=1 λj(vj

T x)2

=
d∑

i=1

λi
∂F

∂λi
= Λ · ∇F.

Thus, the entropy is

h(f) = −
∫

x∈Sd

f(x) log f(x) = log F − Λ · ∇F

F
. (10)

Since both the normalization constant,F , and its gradient with respect toΛ, ∇F , are stored in a
lookup table, the entropy is trivial to compute, and can be used on the fly without any numerical
integration over hyperspheres.

A.8 Divergence

The Kullback-Leibler (KL) divergence between two Binghamswith PDFsf andg is

DKL(f ‖ g) = −
∫
x∈Sd

f(x) log
f(x)
g(x)

(11)

= h(f, g)− h(f), (12)

whereh(f) is the entropy off andh(f, g) is the cross entropy off andg. Using similar methods
as in the entropy derivation,h(f, g) is given by

h(f, g) = log Fg −
d∑

i=1

λfi

w2
i0 +

d∑
j=1

(w2
ij − w2

i0)
1
Ff

∂Ff

∂λfj

 , (13)

where the matrixW of coefficientswij is given by the rotation ofg’s direction vectors,Vg, into f ’s
full-rank basis,V ′

f = [µf Vf ] (whereµf is the mode off ),

W = (V ′
f )−1Vg. (14)

Thus, the cost of a KL divergence is merely ad × d matrix inversion, plus the time it takes to look
up the normalization constants and their gradients.

A.9 Composition

Letting q ∼ Bingham(Λ, V ) andr ∼ Bingham(Σ, W ), we wish to find the PDF ofs = q ◦ r,
where “◦” denotes quaternion multiplication, which corresponds tocomposition of rotations for unit
quaternions.
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A.9.1 True Distribution

Thetrue distribution is the convolution, inS3, of the PDFs of the component distributions.

f(s) =
∫
q∈S3

f(s|q)f(q) =
∫
q

f(s; Σ,q ◦W )f(q; Λ, V )

=
1

F (Σ)F (Λ)

∫
q

exp
3∑

i=1

[
σi((s ◦wi

−1)T q)2 + λi(vi
T q)2

]
=

1
F (Σ)F (Λ)

∫
q

eqT C(s)q

where C(s) =
∑3

i=1

(
σi(s ◦wi

−1)(s ◦wi
−1)T + λivivi

T
)

.

Since all theλi’s andσi’s are negative, the matrixC is negative semidefinite. Therefore,
∫
q

eqT C(s)q

is the normalization constant of a Bingham distribution, sothat the final form for the composed PDF
is a quotient of hypergeometric functions,

ftrue(s) = 1F1( 1
2 ; 4

2 ; C(s))
2 · 1F1( 1

2 ; 4
2 ; Λ)1F1( 1

2 ; 4
2 ; Σ)

. (15)

A.9.2 Method of Moments: Inertia Matrix

Let A = [aij ] = E[qqT ] andB = [bij ] = E[rrT ] be the inertia matrices ofq andr, respectively.
ThenE[ssT ] is given by:
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A.9.3 Estimating the error of approximation

To estimate the error in the Bingham approximation to the composition of two quaternion Bingham
distributions,B1 ◦ B2, we approximate the KL divergence fromfB to ftrue using a finite element
approximation on the quaternion hypersphere

DKL(fB ‖ ftrue) = −
∫
x∈S3

fB(x) log
fB(x)

ftrue(x)
≈

∑
x∈F(S3)

fB(x) log
fB(x)

ftrue(x)
·∆x

whereF(Sd) and{∆x} are the points and volumes of the finite-element approximation toS3, based
on a recursive tetrahedral-octahedral subdivision method[17].
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