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Abstract

A deterministic method for sequential estimation of 3-Datmins is presented.
The Bingham distribution is used to represent uncertaityctly on the unit

guaternion hypersphere. Quaternions avoid the degersratiother 3-D ori-

entation representations, while the Bingham distribuéibows tracking of large-

error (high-entropy) rotational distributions. Experimt& comparison to a lead-
ing EKF-based filtering approach on both synthetic signal$ @ ball-tracking

dataset shows that the Quaternion Bingham Filter (QBF)dwasrtracking error

than the EKF, particularly when the state is highly dynarii@ present two ver-
sions of the QBF—suitable for tracking the state of first- sacond-order rotating
dynamical systems.

1 Introduction

3-D rotational data occurs in many disciplines, from gepltg robotics to physics. Yet modern
statistical inference techniques are seldom applied th data sets, due to the complex topology of
3-D rotation space, and the well-known aliasing problenused by orientations “wrapping around”
back to zero. Many probability distributions exist for médg uncertainty on rotational data, yet
difficulties often arise in the mechanics of complex inferetasks. The goal of this paper is to ex-
plore one distribution—the Bingham—uwhich is particularlyliagited for inference, and to derive
many common operations on Bingham distributions as a ne¢eréor future researchers.

We present a new deterministic method—the Quaternion BimgFiter (QBF)—for approximate
recursive inference in quaternion Bingham processes. Whgetnion Bingham process is a type of
dynamic Bayesian network (DBN) on 3-D rotational data, vehieoth process dynamics and mea-
surements are perturbed by random Bingham rotations. THeu3Bs the Bingham distribution to
represent state uncertainty on the unit quaternion hypersp Quaternions avoid the degeneracies
of other 3-D orientation representations, while the Bingtdistribution enables accurate tracking
of high-noise signals. Performing exact inference on quaa Bingham processes requires the
composition of Bingham distributions, which results in aafi®ingham density. Therefore, we ap-
proximate the resulting composed distribution as a Binghaimg the method of moments, in order
to keep the filtered state distribution in the Bingham family

We compare the quaternion Bingham filter to a previous ajgpréa tracking rotations based on
the Extended Kalman Filter (EKF) and find that the QBF has fawacking error than the EKF,

particularly when the state is highly dynamic. We evaluate performance of the QBF on both
synthetic rotational process signals and on a real datas¢tioing 3-D orientation estimates of a
spinning ping-pong ball tracked in high-speed video. We alerive the true probability density



function (PDF) for the composition of two Bingham distrilauts, and report the empirical error of
the moment-matching composition approximation for vasidistributions. We begin by introduc-
ing the Bingham distribution along with the first- and secamnder quaternion Bingham processes
and the QBF for estimating their state. We then describe smpertant operations on the Bingham
distribution, and conclude with experiments on artificiadlaeal data.

2 Distributions on rotations

The problem of how to represent a probability distributiontloe space of rotations in three dimen-
sions has been a subject of considerable study. Repregehérdistribution directly in the space
of Euler angles is difficult because of singularities in thace when two of the angles are aligned
(known as gimbal lock). A more appropriate space for reprisg distributions on rotations is the
space of unit quaternions: a rotation becomes a point on-tiendnsional unit hypersphers?.
This space lacks singularities, but has the difficulty thatrepresentation is not unique: betland

—q represent the same rotation. Putting a Gaussian distribdtiectly in quaternion space does not
respect the underlying topology of 3-D rotations; howethds approach has been the basis of track-
ing methods based on approximations of the Kalman filter3135, 4, 9, 10]. A more appropriate
method is to represent distributions in B space that is tangent to the quaternion hypersphere
at the mean of the distribution [6]; but such a tangent-spggeoach will be unable to effectively
represent distributions that have large variances. In mpangeptual problems, it may be possible to
make observations that provide significant informationwflmmly one or two dimensions, yielding
high-variance estimates. For this reason, we use the Binglistribution.

The Bingham distribution [1] is an antipodally symmetriopability distribution on a unit hyper-
sphere. It can be used to represent many types of uncertaimty highly peaked distributions to
distributions which are symmetric about some axis to théouami distribution. Itis thus a very flexi-
ble distribution for unit quaternions on the hyperspt&teDespite its versatility, it has not yet seen
wide usage in the Al and robotics communities. This is beedlis normalization constant in the
Bingham density cannot be computed in closed form, whichesakany types of (exact) inference
difficult. This difficulty can be overcome using caching teiciues and interpolation to approxi-
mate the normalization constarit, and its partial derivativesy F', with respect to the Bingham
concentration parameters,

The probability density function (PDF) for the Bingham distition is

d
fxA V) = %exp{z Ai(viTx)?} 1)
i=1

wherex is a unit vector on the surface of the sphgfec R4*!, F'is a normalization constan, is

a vector of concentration parameters, and the columns ¢flthé) x d matrix V' are orthogonal unit
vectors. We refer to the density in equation 6 asstiasdard fornfor the Bingham. A more succinct
form for the Bingham isf (x; C') = + exp(x” Cx), where C is dd+1) x (d+1) orthogonal matrix;
however,C'is clearly an over-parameterization since the firsblumns ofC completely determine
its final column. By convention, one typically defindsandV so that\; < Ay < --- < Ay < 0.
Note that a large-magnitude indicates that the distribution is highly peaked along tineationv;,
while a small-magnitude; indicates that the distribution is spread out alerg

The Bingham distribution is derived from a zero-mean GaussinR?*!, conditioned to lie on

the surface of the unit hyperspheie. Thus, the exponent of the Bingham PDF is the same as the
exponent of a zero-mean Gaussian distribution (in principaponents form, with one of the eigen-
values of the covariance matrix set to infinity). The Binghdistribution is themaximum entropy
distribution on the hypersphere which matches the sampigianmatrix £[xx”] [14]. Therefore,

it may be better suited to representing random process ooishe hypersphere than some other
distributions, such as (projected) tangent-space Gasssia

The Bingham distribution is most commonly used to represeertainty in axial data on the
sphereS?. In geology, it is often used to encode preferred orientstiof minerals in rocks [12, 16].
Higher dimensional, complex forms of the Bingham distribatare also used to represent the dis-
tribution over 2-D planar shapes [5]. In this work, we use Biegham onS® as a probability
distribution over 3-D quaternion rotations. Since the guiterniongy and—q represent the same
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Figure 1: Process and graphical models for the discreteequiah Bingham process.

rotation in 3-D space, the antipodal symmetry of the Bingldistribution correctly captures the
topology of quaternion rotation space.

3 Discrete-time quaternion Bingham process

The first-order discrete-time quaternion Bingham process hs its statex,,, a unit quaternion
representing the orientation of interest at timeThe system’s behavior is conditioned on control
inputsu,,, which are also unit quaternions. The new orientation isalldeorientation rotated by
the control input and then by independent noisg ~ Bingham(A,,V},). Note that %" denotes
quaternion multiplication, which corresponds to compogibf rotations for unit quaternionsq 6 r
means “rotate by and then byy”.)

The second-order quaternion Bingham process has (state’,, ), wherex,, represents orientation
and the quaternion,, represents discrete rotational velocity at timeThe control inputas,, are
analogous to rotational accelerations. Process nojsenters the system in the velocity dynamics.

In both the first-order and second-order systems, obsengyi, are given by the orientatior,,

corrupted by independent Bingham noisg~ Bingham(A,, V,,). One common choice fdr, and
000

V, is {(1) 0 8], which means that the mode is the quaternion identity), 0,0). (Any V matrix
001

whose top row contains all zeros will have this mode.) Figushows the process and graphical

models for the discrete quaternion Bingham process.

4 Discrete quaternion Bingham filter

The state of a discrete-time quaternion Bingham processheagstimated using a discrete-time
quaternion Bingham filter, which is a recursive estimatamilgir in structure to a Kalman filter.
Unlike the Kalman filter, however, the QBF is approximatethia sense that the tracked state dis-
tribution is projected to be in the Bingham family after gvéme step. The second-order QBF will
also require an assumption of independence betwgemdv,,, given all the data up to time. Both
the first-order and second-order QBFs are examplessimed density filterirga well-supported
approximate inference method in the DBN literature [2]. W@ start by deriving the first-order
QBF, which follows the Kalman filter derivation quite clogeNote that the following derivations
rely on several properties of Bingham distributions whidh e detailed in section 5.

First-order QBF. Given a distribution over the initial state), Bx, ~ Bingham(Ag, 1,), and an
action-observation sequeneg,y,...,u,,y,, the goal is to compute the posterior distribution
f(xn | u1,y1,-..,u,,y,). We can use Bayes' rule and the Markov property to decompuse t
distribution as follows:

an = f(Xn|111>Y1a ceey unaYn) X f(Yn|Xn)f(Xn\111,}’17 ey Un—1,¥Yn—1, un)
= f(yn|xn)/ J(Xn [ Xp-1,u5)Bx,,_, (Xn-1)
x

n—1

= [(ynlxn)(fw, otn o Bx, ) (xn) -
where fy, o u, o By, , means rotatédBx, , by u, and then convolve with the process noise

1 )

distribution, f,, . For the first termf(y..|x,,), recall that the observation procesyis= z, o x,,



S0y ,|x, ~ Bingham(yn; Ao, V, 0 Xy ), Wwhere we used the result from section 5 for rotation of a
Bingham by a fixed quaternion. Thus the distributionyqtx,, is

3
1
f(Y7L|X’rL) - E exp ; )\oi(leT(Voi o Xn))2 .
Now we can rewritey,? (vVoi © Xn) as(v;" o yn) xn, S0 thatf(y,|x,) is a Bingham density on
Xn, Bingham(xy,; Ay, V, L oyy,). Thus, computings,, reduces to multiplying two Bingham PDFs
onx,, which is given in section 5.

Second-order QBF.Given a factorized distribution over the initial stgtéxg, vo) = Bx, By, and
an action-observation sequeneg y, ..., u,,y., the goal is to compute the joint posterior distri-
bution f(x,, v, | u1,y1,-..,u,,yn). However, the joint distribution or,, andv,, is too difficult

to represent, so we instead compute the marginal posteners,, andv,, separately, and approx-
imate the joint posterior as the product of the marginal® Marginal posterior or,, is

an = f(Xn|u1,Y17 o 7unaYn)
X f(}’n|xn)/ f(x’rL|Xn—1)an,1(Xn—l)

Xn—1

= f(yn|xn)(anf1 © anq)(xn)
since we assume,,_; andv,,_; are independent given all the data up to time 1.

Similarly, the marginal posterior on, is
an = f(VTL'ul?YIv o 7un7yn)

<.

Once againf(y,|x,) can be written as a Bingham density ®p, Bingham(x,,; A,, V, ! o y,,).
Next, note thatk,, = v,,_1 0 x,,_1 SO thatf (x,|Va_1,U1,y1,.- -, Un_1,¥Yn_1) = By, _, (v}, 0
x5, ), Which can also be re-written as a Binghanmon Now lettingx,,—; ~ Bingham (X, W), and

since the product of two Bingham PDFs is Bingham, the infemyrar x,, becomes proportional to a

Bingham normalization constantt; (1; 3; C(v,—1)), where

3

C(vn1) = 3 (Va1 0 Wi (Va1 0 W) + Xi(virt o yu) (v o ya)T)
i=1

Comparing C(v,—1) with equation 4 in section 5 we find thatF(3;3;C(ve-1))
(fyuixn © Bl | )(vn_1). Thus,
an X / f(Vn | anlaun)anfl(anl) . (fyﬂ,\xn o B;n{l)(vnil)

= (fw, 0 un 0 (B, _, * (fyax, © B! ) (Va)

Note thatB,,, depends omByx,, SO By, mustbe computed first.

f(Vn I Vn—l?un)BVn—l (vn—l)/ f(Yn|Xn)f(Xn|Vn—1,u1aY1a DR 7un—15yn—1)'
Xn

n—1

5 Operations on Bingham distributions

In order to implement the quaternion Bingham filter, we nedaktable to perform several operations
on Bingham distributions. To our knowledge, all of theserafiens, except for computing the
normalization constant, are new contributions of this paltere operations (including calculation
of KL-divergence and sampling methods) are presented iappendix.

The Normalization constant. The primary difficulty with using the Bingham distribution prac-
tice lies in computing the normalization constaht, Since the distribution must integrate to one
over its domain$?), we can write the normalization constant as

d
PO = [ en(3o Mm% = R ) @
T i=1

4



where; F () is a hyper-geometric function of matrix argument [1]. Ewaing; F} () is expensive, so
we precompute a lookup table Bfvalues over a discrete grid dfs, and use tri-linear interpolation
to quickly estimate normalizing constants on the fly.

Product of Bingham PDFs.The correction step of the filter requires multiplying PDFke product
of two Bingham PDFs is given by adding their exponents:

d

1
(o A, Vi) s Mg, Va) = T GXP{XT(Z ALiViivait + Aoivaivei® )x}
142 i—1 (3)

1
= R exp{x”(C} + Cy)x}
After computing the sunmi’ = C + Cs in the exponent of equation 3, we transform the PDF to stan-
dard form by computing the eigenvectors and eigenvalués, aind then subtracting off the lowest
magnitude eigenvalue from each spectral component, sotiathe eigenvectors corresponding to
the largesti eigenvalues (in magnitude) are kept, and< --- < Ay < 0 (as in equation 6).

Rotation by a fixed quaternion. To find the effect of the control on the predictive distriloutj we
rotate the prior byr. Givenq ~ Bingham(A, V), u € S3, ands = uoq, thens ~ Bingham(A, uo
V), whereuoV £ [uovy,uovs,uovsl. Inother wordss is distributed according to a Bingham
whose orthogonal direction vectors have been rotated @tleft) byu. Similarly, if s = g o u then

s ~ Bingham(A,V o u).

Proof for s = u o g: Since unit quaternion rotation is invertible and volunregerving, we have

d d
_ 1 _ 1
Fol8) = Jalu ™ o8) = e (N (o)) = pre(3oM(movy"s)%
Quaternion inversion. Givenq ~ Bingham(A, V) ands = q~ 1, thens ~ Bingham(A, JV),
1
where.J is the quaternion inverse matrix, = { -t } The proof follows the same logic as
-1
in the previous section.

Composition of quaternion Binghams. Implementing the QBF requires the computation of
the PDF of the composition of two independent Bingham rand@mables. Lettingq ~
Bingham(A, V) andr ~ Bingham (X, W), we wish to find the PDF o = q o r.

Thetrue distribution is the convolution, ir§?, of the PDFs of the component distributiéns

ftrue(s) = /683 f(slq).f(q) =

3
where C(s) = Z (Ui(s o Wi—l)(s o Wi—l)T + )\iViViT) 4)

i=1

To approximate the PDF ofs with a Bingham densityfz(s) = fg(q o r), it is sufficient to
compute the second momentscpb r, since the inertia matrix’[ss” ] is the sufficient statistic for
the Bingham. This moment-matching approach is equivatetite variational approach, whefg
is found by minimizing the KL divergence frorfiz to f;,qe.

Noting thatq o r can be written asq”H{r, q'HIr, q'H¥r, q'HIr), where

r

1000 0—-1 0 0 00-1 0 00 0-1

Hy = [8598},%: [5 > 3 ?},ng [93 0 01],andH4= [3013) 8],Wef|ndthat
0001 00 —-10 01 0 O 1 000

El[s;s;] = Elq" H ' vv" H;q]

which has 16 terms of the formr,r,q.qq, Wherea, b, c¢,d € {1,2,3,4}. Sinceq andr are inde-
pendentE[+r,rpq.q4] = £E[rq.rb])Flgeqaq). Therefore (by linearity of expectation), every entry in

1See the appendix for a full derivation.
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Figure 2: Two simulated runs with the quaternion Binghanerfit(b) and (c) are different plots
of the same simulation. In all figures, the thick black linehe true process signal, generated
with isotropic process nois&, = (—400, —400, —400). The thin blue lines in (a) and (b) are the
observation signal, and the thick red line is the filtere¢patit Rows 1-4 in each figure show the 4
quaternion dimensiong.,, ¢, ¢y, q-). Row 5 in (a) and (b) shows the error between filter output
and true state (thick red line), together with the QBF sarepler 90% confidence bounds (thin red
line). Marginal sample 90% confidence bounds are also showreithin red lines in (c).

the matrixE[ss’] is a quadratic function of elements of the inertia matriceq andr, which can
be easily computed given the Bingham normalization constand their partial derivatives. The
entire closed form fo2[ss”] is given in the appendix.

Entropy. The entropy of a Bingham distribution with PDHs given by:

VF
hf) = - (1)log f(z) = logF —A-— . (5)
zeSd
The proof is given in the appendix. Since both the normatiratonstantF', and its gradient with
respect to\, VF, are stored in a lookup table, the entropy is trivial to appmate via interpolation,
and can be used on the fly without any numerical integrati@n byperspheres.

6 Experimental Results

We compare the quaternion Bingham filter against an exte@aan filter (EKF) approach in
quaternion space [13], where process and observation agsgenerated by Gaussiangkif, the
measurement function normalizes the quaternion state¢jedi it onto the unit hypersphere), and
the state estimate is renormalized after every update. \&gecthe EKF both due to its popularity
and because LaViola reports in [13] that it has similar {gligbetter) accuracy to the unscented
Kalman filter (UKF) in several real tracking experiments. Wapted two versions of the EKF
(for first-order and second-order systems) from LaViol&kd=Emplementation by changing from a
continuous to a discrete time prediction update. We alscped®@BF (Bingham) noise parameters
to EKF (Gaussian) noise parameters by empirically matché@mpnd moments from the Bingham
to the projected Gaussian—i.e., the Gaussian after it hasgregcted onto the unit hypersphere.

Synthetic Data. To test the first-order quaternion Bingham filter, we gereztaeveral synthetic
signals by simulating a quaternion Bingham process, whege(telocity) controls were gener-
ated so that the nominal process state (before noise) wolllivfa sine wave pattern on each
angle in Euler angle space. We chose this control patterndardo cover a large area of 3-D
rotation space with varying rotational velocities. Two ewdes of synthetic signals along with
guaternion Bingham filter output are shown in figure 2. Théiseyvation parameters welg =

(—50, —50, —50), which gives moderate, isotropic observation noise, &pd= (—10, —10, —1),



observation nois -400, -400, -10 -400 -50
process noise | -50 | -200 | -400 | -50 | -200 | -400 -50 -200 | -400
% improvement | 37.3 | 45.6 | 54.3| 199 | 333 | 152 | 342 | 0.72 | 0.47
+ (5.1) | (5.0)| (6.4) | (1.8) | (0.53) | (0.44)| (0.88) | (0.40) | (0.27)

Table 1: Projected Gaussian process simulations. Averagee®im error decrease for QBF over
EKF.

DERNLD REDLE DEREER DEOED

(a) slow top-spin (b) fast top-spin (c) slow side-spin (d) fast side-spin

Figure 3: Example image sequences from the spinning pimgrpell dataset. In addition to lighting

variations and low image resolution, high spin rates make dataset extremely challenging for
orientation tracking algorithms. Also, because the capgeere facing top-down towards the table,
tracking side-spin relies on correctly estimating therta¢ion of the elliptical marking in the image,

and is therefore much harder than tracking top-spin or usgier.

which yields moderately high noise in the first two direciprand near-uniform noise in the
third direction. We estimated the composition approxioagrror (KL-divergence) for 9 of these
signals, with both isotropic and nonisotropic noise modéism all combinations of(A,, A,)

in {(—50,-50, —50), (—200, —200, —200), (—10,—-10,—1)}. The mean composition error was
.0012, while the max was .0197, which occurred whgrandA,, were both(—10, —10, —1).

For the EKF comparison, we wanted to give the EKF the bestaghemsucceed, so we generated
the data from a projected Gaussian process, with processtbeedvation noise generated according
to a projected Gaussian (in order to match the EKF dynamiagethoather than from Bingham
distributions. We ran the first-order QBF and EKF on 270 sgtithprojected Gaussian process
signals (each with 1000 time steps) with different amouifitsrocess and observation noise, and
found the QBF to be more accurate than the EKF on 268/27@ trihe mean angular change in
3-D orientation between time steps were 7, 9, and 18 degmeqwdcess noise parameters -400,
-200, and -50, respectively (where -400 meaps= (—400, —400 — 400), etc.).

The most extreme cases involved anisotropic observati@menaith an average improvement over
the EKF mean error rate of 40-50%. The combination of higlc@ss noise and low observation
noise also causes trouble for the EKF. Table 1 summarize®sugs.

Spinning ping-pong ball datasefTo test the second-order QBF, we collected a dataset of$pgkd
videos of 73 spinning ping-pong balls in fligt{Eigure 3). On each ball we drew a solid black ellipse
over the ball’s logo to allow the high-speed (200fps) vissgstem to estimate the ball’'s orientation
by finding the position and orientation of the logo. Hower ellipse was only drawn on one side
of each ball, so the ball’s orientation could only be estedathen the logo was visible in the image.
Also, since ellipses are symmetric, each logo detectionvimapossible orientation interpretations
The balls were spinning at 25-50 revolutions per secondgivMbguates to a 45-90 degree orientation
change per frame), making the filtering problem extremeBbllehging due to aliasing effects. We
used a ball gun to shoot the balls with consistent spin aneldsjad 4 different spin settings (topspin,
underspin, left-sidespin, and right-sidespin) and 3 dififi speed settings (slow, medium, fast), for
a total of 12 different spin types. Although we initially émited videos of 107 ball trajectories, the
logo could only be reliably found in 73 of them; the remainB¥yvideos were discarded. Although
not our current focus, adding more markings to the ball amatdaving logo detections would allow
the ball’'s orientation and spin to be tracked on a largergraege of such videos. To establish an
estimate of ground truth, we then manually labeled eachrpalje with the position and orientation
of the logo (when visible), from which we recovered the baleotation (up to symmetry). We

2In future work, we plan to incorporate control signals into the ping-pauitg sacking dataset by allowing
the ball to bounce during the trajectory.

SWe disambiguated between the two possible ball orientation observationskirygithe observation with
highest likelihood under the current QBF belief.



then used least-squares non-linear regression to smobtlup(noisy) manual labels by finding the
constant rotatior§, which best fit the labeled orientations for each trajectory

To run the second-order QBF on this data, we initialized tB& @ith a uniform orientation distribu-
tion By, and a low concentratiom\(= (—3, —3 — 3)) spin distributionB,,, centered on the identity
rotation, (1,0, 0, 0). In other words, we provided no information about the bafiigal orientation,
and an extremely weak bias towards slower spins. We alsttéiae “no-logo-found” (a.k.a. “dark
side”) observations as a very noisy observation of the legthé center of the back side of the
ball at an arbitrary orientation, with, = (—3.6, —3.6,0)°. When the logo was detected, we used
A, = (—40,—40, —10) for the observation noise. A process noise with= (—400, —400, —400)
was used throughout, to account for small perturbationpita s

Results of running the second-order QBF (QBF-2) are shoviigume 4. We compared the second-
order QBF to the second-order EKF (EKF-2) and also to the-dider QBF and EKF (QBF-1
and EKF-1), which were given the difference between subsegtgorientation observations as their
observations of spin. The solid, thin, blue line in each pilarked “oracle prior” shows results from
running QBF-2 with a best-case-scenario prior, centeretheraverage ground truth spin for that
spin type, withA = (—10,—10,—10). We show mean orientation and spin errors (to regressed
ground truth), and also spin classification accuracy usiegMAP estimate of spin type (out of 12)
given the current spin beli&f The results clearly show that QBF-2 does the best job oftifyémy
and tracking the ball rotations on this extremely challegglataset, achieving a classification rate of
91% after just 30 video frames, and a mean spin (quaternioo) @ 0.17 radians (10 degrees), with
an average of 6.1 degrees of logo axis error and 6.8 degrémgoodingle error. In contrast, the EKF-
2 does not significantly outperform random guessing, dubdcektremely large observation noise
and spin rates in this dataset. In the middle of the pack afe-QBnd EKF-1, which converge much
more slowly since they use the raw observations (rather tiismoothed orientation signal used
by QBF-2) to estimate ball spin. Finally, to address thesétigproblem, we ran a set of 12 QBFs in
parallel, each with a different spin prior mode (one for esyim type), withA = (—10, —10, —10).

At each time step, the filter was selected with the higheat ti#ta likelihood. Results of this “filter
bank” approach are shown in the solid, thin, green line inrégu

7 Conclusion

For many control and vision applications, the state of a thyingrocess involving 3-D orienta-
tions and spins must be estimated over time, given noisyresisens. Previously, such estimation
was limited to slow-moving signals with low-noise obseiwas, where linear approximations to
3-D rotation space were adequate. The contribution of oprageh is that the quaternion Bing-
ham filter encodes uncertainty directly on the unit quariypersphere, using a distribution—the
Bingham—uwith nice mathematical properties enabling efficapproximate inference, with no re-
strictions on the magnitude of process dynamics or obdervaioise. Because of the compact
nature of 3-D rotation space and the flexibility of the Binghédistribution, we can use the QBF
not only for tracking but also for identification of signalsy starting the QBF with an extremely
unbiased prior, a feat which previously could only be matichg more computationally-intensive
algorithms, such as discrete Bayesian filters or partidierél The one drawback of the quaternion
Bingham process is that its process and observation modekoanewhat restricted; for example,
no quaternion exponentiation (or interpolation) is cutlseallowed, which would be required for a
continuous-time update. Extending the QBF for these camest(likely using numerical methods)
is a direction for future work.

“Due to air resistance and random perturbations, the spin was not readitanbthroughout each trajectory.
But for the short duration of our experiments (40 frames), the cohspn approximation was sufficient.

SWe got thisA,, by fitting a Bingham to all possible dark side orientations.

®Spin was classified into one of the 12 spin types by taking the averagedgtruitin spin for each spin type
and choosing the one with the highest likelihood with respect to the cupanbslief.
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Figure 4: Spinning ping-pong ball tracking results. Top ree@mparison of QBF-2 (with and with-
out an oracle-given prior) to QBF-1, EKF-1, EKF-2, and ramdguessing (for spin classification);
QBF-1 and EKF-1 do not show up in the orientation error grapbalise they only tracked spin.
Note that QBF-2 quickly converges to the oracle error angsifigation rates. Bottom row: QBF-2
results broken down into top-spin/under-spin vs. sidexsfs mentioned earlier, the side-spin data
is harder to track due to the chosen camera placement anehédings for this experiment.

A Formulas and Derivations for the Bingham Distribution

A.1 Bingham Distribution

To review, the probability density function (PDF) for thenBham distribution is
1 d
. _ U~ T\ 2
fxA V) = = e){p{é:1 Ai(vit x)7} (6)

wherex is a unit vector on the surface of the sphgfec R%*+!, F'is a normalization constan, is

a vector of concentration parameters, and the columns @fithe ) x d matrix V" are orthogonal unit
vectors. We refer to the density in equation 6 asstias@dard fornfor the Bingham. A more succinct
form for the Bingham isf (x; C') = + exp(x” Cx), where C is dd+1) x (d+1) orthogonal matrix;
however,C is clearly an over-parameterization since the firsblumns ofC' completely determine
its final column. By convention, one typically defindsandV” so thath; < Ay < --- < Ay < 0.
Note that a large-magnitudeg indicates that the distribution is highly peaked along tineadionv;,
while a small-magnitudg,; indicates that the distribution is spread out aleng

A.2 The Normalization constant

The primary difficulty with using the Bingham distributiom practice lies in computing the normal-
ization constantF’. Since the distribution must integrate to one over its dong), we can write
the normalization constant as

d
F(A) = / » exp{z Ai(viTx)?} 7)

In general, there is no closed form for this integral, whichams thatt" must be approximated.
Typically, this is done via series expansion [1, 8], althosgddle-point approximations [11] have
also been used. Following Bingham [1], we note th&t\) is proportional to a hyper-geometric



function of matrix argument, with series expansion

1 d+1
F(A) = 2'1F1(§;T;A)
_ 2\/>Z Z 041—!- F(ad+%) AL AGe (8)
R a1=0  ag=0 (o + - —i—ad—k%) apl - ay!

For practical usage, we precompute a lookup tabl&-e@lues over a discrete grid dfs, and use
interpolation to quickly estimate normalizing constantstoe fly.

A.3 Max Likelihood Parameter Estimation

Following Bingham [1], we estimate the paramet&fsand A given a set ofN samples,{x;},
using a maximum likelihood approach. Finding the maximukelihood estimate (MLEY is an
eigenvalue problem—the MLE mode of the distribution is edoahe eigenvector of the inertia
matrix .S = % >, xix{ corresponding to the largest eigenvalue, while the colunfins are equal
to the eigenvectors corresponding to #mel through(d + 1)th eigenvalues of.

The maximum likelihood estimatk is found by setting the partial derivatives of the data ltgli
hood function with respect td to zero, yielding

1 OF(A) T N2 _ T
FA) 0 =~ 7Z:;(VJ xi)” = v~ Svj, 9)
forj = 1,...,d. Just as we did foF'(A), we can pre-compute values of the gradienfoivith

respect toA, VF, and store them in a lookup table. Using a kD-tree, we can fiedniearest
neighbors of a new sampRF/F in O(dlog M) time (where)M ¢ is the size of the lookup table),
and use their indices to findl via interpolation (since the lookup tables fBrandV F' are indexed

by A).

Notice that the maximum likelihood estimates fdrand A are both computed given only the in-
ertia matrix, S. Thus, S is a sufficient statistic for the Bingham distribution. Ircfathere is a
beautiful result from the theory of exponential familiesigthsays that the Bingham distribution
is the maximum entropylistribution on the hypersphere which matches the sampltignmatrix,

S = E[xxT] [14]. This gives us further theoretical justification to uke Bingham distribution in
practice, if we assume that all of the relevant informatibowt the data is captured in the inertia
matrix.

A.4 Mode

The mode of the Binghanu, is the unit vector which is orthogonaltq, .. ., vq.

A.5 Inertia Matrix

Equation 9 can be inverted to solve for the inertia matsixpf a Bingham distribution. The eigen-
vectors of S are given byvy,...,vq, together with the mode of the Bingham, The firstd

eigenvalues are given by, while the last eigenvalue is— Y, 2502

A.6  Sampling

There are many situations in which it is important to be abldraw samples from a distribution.
In this paper, we used sampling to compute empirical confieldrounds on the predictions of the
guaternion Bingham filter. In addition, one might use a Banghsampler in the construction of a
particle filter for a quaternion Bingham process.

Because of the complexity of the normalization constamyieng from the Bingham distribution
directly is difficult. Therefore, we use a Metropolis-Hasgts sampler, with target distribution given
by the Bingham density, and proposal distribution given ty projected zero-mean Gausgiam

"To sample from the projected Gaussian, we first sample from a GawsifanovarianceS, then project
the sample onto the unit sphere.
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RI+1 with covariance matrix equal to the Bingham’s sample imartatrix,S. Because the proposal
distribution is very similar to the target distributiongtiMetropolis-Hastings sampler typically has
a very high acceptance rate, making it an efficient sampliathod.

A.7 Entropy

The entropy of a Bingham distribution with PDHs given by:

n == [ 1@ss@
1

= 7/ y F@"TCX(XTCX —logIF)
IS

1
=log F' — —/ x! Oxex O,
F xS

Writing f in standard form, and denoting the hyperspherical integcr%agd xT Cxex’ Ox by g(A),

d
g(A) - / Z )‘z (ViTX)Q@Z?:1 Aj (Vij)2
weS? ;5

d
oF
= i =A-VF.
Thus, the entropy is
VF
h(f) = — (z)log f(z) = logF—A-T. (10)
resSd

Since both the normalization constait, and its gradient with respect tb, VF, are stored in a
lookup table, the entropy is trivial to compute, and can bedusn the fly without any numerical
integration over hyperspheres.

A.8 Divergence

The Kullback-Leibler (KL) divergence between two Binghawith PDFsf andg is

fx)
D = — x)log ——= 11
g == [ reeetd (1)
whereh(f) is the entropy off andh(f, g) is the cross entropy of andg. Using similar methods
as in the entropy derivation, f, g) is given by

1 OF;

d d
h(f,g) = log Fy — Z Api | wih + Z(W?J — wjy) (13)
i—1 =1

where the matriX?” of coefficientsw;; is given by the rotation of’s direction vectorsy,, into f’s
full-rank basisV; = [y Vy] (Wherepuy is the mode off),
W = (V)" 'V, (14)

Thus, the cost of a KL divergence is merely & d matrix inversion, plus the time it takes to look
up the normalization constants and their gradients.

A.9 Composition

Letting g ~ Bingham(A, V) andr ~ Bingham(X, W), we wish to find the PDF of = q o r,

where ‘©” denotes quaternion multiplication, which correspondsdmposition of rotations for unit
quaternions.
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A.9.1 True Distribution

Thetrue distribution is the convolution, irs3, of the PDFs of the component distributions.

/q€S3

m /qexpi [Uz‘((s ow;i )Tq)? + )\i(viTq)Q]

_ 1 e Clo)a
- F(X)F(A) /q

2321 (Ui(S ow; H)(sow; HT + /\iViViT>

o= relaf@= / f(5:2.q0 W) f(@: A, V)

q

where C(s) =
Since all the\;’s ando;’s are negative, the matrix is negative semidefinite. Thereforf%,eqTC(S)“l

is the normalization constant of a Bingham distributionttead the final form for the composed PDF
is a quotient of hypergeometric functions,

ftrue (S) - (15)

A.9.2 Method of Moments: Inertia Matrix

Let A = [a;;] = E[qq’] andB = [b;;] = E[rr”] be the inertia matrices ef andr, respectively.
ThenE[ssT] is given by:

a11bi1 — 2a12b12
—2a13b13 — 2a14b14
+az2bas + 2a23b23
+2a24b24 + az3zbss
+2a34b34 + ag4bag

aj1bi2 +ai2bi1 +aizbig
—a14b13 — a12b22 — az2b12
—a13b23 — a23b13 — aiab2y
—a24b14 — ag3bag + az4ab23
—a33bza + azabzz — azabaa
+agab3a

a11biz + aigbil — ai2bia
+aiabi2 — a12b23 — az3biz
—ai13b33 + a22b24 — az4abo2
—agabiz — a14b34 — azabiy
+ag3bza — azaba3 + azabaa
—agaboyg

aj1big +ai2bi3 —aizbiz
+a1abi1 —a12b2g — azabi2
—ag2b23 + a23b2z — a13b34
—a34b13 — az3b3z3 + azzbas
—a14bag — a24b34 + azaboy
—aa4bis

a11bi2 + ai12bi1 + aigbia
—ai14b13 — ai2b22 — az2biz
—ai13b23 — ag3biz — a1ab2a
—a24b14 — a23b2a + a24b23
—ag3bzs + a3abzz — azabay
+agabzq

2a12bi2 + aj1baz
+a22b11 + 2a13b24
—2a14b23 + 2a23b14
—2a24b13 — 2a34b34
+a33baa + agabss

ai2biz + aigbiz + ai1baz
+ag3bi1 — a12b24 + aiabo2
—ag22b14 + a24b12 + a13b34
—a14b33 + azzbia — agabis
+agabzq + azabosa — azzbaa
—ag4b23

ai2big +a1abiz +ai1boy
+a12b23 — a13ba2 + az2b13
—a23b12 + a24b11 — a14b34
+azabia + a13bag + a23b3s
—a24b33 — azzbaq + azabas
—a4abi3

a11biz + aigbi1r — a12bia
+aiabi2 — a12b23 — a23biz
—ai13b33 + a22b24 — agaba2
—agzbiz — a14b34 — azabis
+ag3bza — azabe3 + azabag
—agaboy

a12b13 + a13bi2 + ai1b23
+a23bi1 — ai2b24 + a14b22
—a22b14 + a24b12 + a13b34
—a14b33 + azzbia — azabis
+a24b34 + agabos — az3bag
—aq4b23

2a13b13 + 2a14b23
—2a23b14 + a11b3z
+agzbi1 — 2a12b34
+2a34b12 — 2a24b24
+a22bag + asabaz

a13bia + ai14b13 — aizbas
+a23b13 + a14b24 — azabiy
+a11b3a + a12b33 — azzbi2
+azabi1 + a23b24 + a24b23
—ai12bgqa — a22b34 — azabao
+agab12

a11bia + a12b13 — a13b12]
+aiabi1 — ai2b24 — agabi2
—ag2ba3 + az3baa — a13b34
—agab13 — a23b3zz + azzbas
—a14bga — a24b34 + agabas
—a44b14

aj2bia +aiabi2 +a11boy
+a12b23 — a13ba2 + az2b13
—a23b12 + a24b11 — a14b34
+a3zabia + a13bag + a23b3s
—a24b33 — azzbas + azabas
—aaabi3

a13bia + a14b1z — a13bag
+a23b13 + a1ab2a — a24abis
+a11b34 + a12b33 — azzbiz
+azabi1 + az3baa + az4abas
—ai2baa — ag2bzs — azabo2
+agabiz

2a14b14 — 2a13b24
+2a24b13 + 2a12b34
—2a23b23 — 2a34b12
+a11bag + a22bz3
+aszbaz + asabin

A.9.3 Estimating the error of approximation

To estimate the error in the Bingham approximation to themasition of two quaternion Bingham
distributions,B; o By, we approximate the KL divergence frofig to f;-.. using a finite element
approximation on the quaternion hypersphere

DKL(fB H ftrue) = _/653 fB(X) logf{;ii)((i)

~ Y fatxlog 20U

- Ax
xEF(S3) Ferue(x)

whereF(S?) and{Ax} are the points and volumes of the finite-element approxonat S, based
on a recursive tetrahedral-octahedral subdivision mefhad
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