
Path Planning in Time Dependent Flows using

Level Set Methods

by

Sri Venkata Tapovan Lolla

B.Tech., Indian Institute of Technology Bombay (2010)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Mechanical Engineering

August 17, 2012

Certified by. .
Pierre F. J. Lermusiaux

Associate Professor
Thesis Supervisor

Accepted by .
David E. Hardt

Chairman, Department Committee on Graduate Theses

2

Path Planning in Time Dependent Flows using Level Set

Methods

by

Sri Venkata Tapovan Lolla

Submitted to the Department of Mechanical Engineering
on August 17, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Autonomous underwater vehicles such as gliders have emerged as valuable scientific
platforms due to their increasing uses in several oceanic applications, ranging from se-
curity, acoustic surveillance and military reconnaissance to collection of ocean data at
specific locations for ocean prediction, monitoring and dynamics investigation. Glid-
ers exhibit high levels of autonomy and are ideal for long range missions. As these
gliders become more reliable and affordable, multi-vehicle coordination and sampling
missions are expected to become very common in the near future. This endurance
of gliders however, comes at an expense of being susceptible to typical coastal ocean
currents. Due to the physical limitations of underwater vehicles and the highly dy-
namic nature of the coastal ocean, path planning to generate safe and fast vehicle
trajectories becomes crucial for their successful operation. As a result, our motivation
in this thesis is to develop a computationally efficient and rigorous methodology that
can predict the time-optimal paths of underwater vehicles navigating in continuous,
strong and dynamic flow-fields. The goal is to predict a sequence of steering directions
so that vehicles can best utilize or avoid flow currents to minimize their travel time.

In this thesis, we first review existing path planning methods and discuss their
advantages and drawbacks. Then, we discuss the theory of level set methods and
their utility in solving front tracking problems. Then, we present a rigorous (partial
differential equation based) methodology based on the level set method, which can
compute time-optimal paths of swarms of underwater vehicles, obviating the need for
any heuristic control based approaches. We state and prove a theorem, along with
several corollaries, that forms the foundation of our approach for path planning. We
show that our algorithm is computationally efficient - the computational cost grows
linearly with the number of vehicles and geometrically with spatial directions. We
illustrate the working and capabilities of our path planning algorithm by means of
a number of applications. First, we validate our approach through simple bench-
mark applications, and later apply our methodology to more complex, realistic and
numerically simulated flow-fields, which include eddies, jets, obstacles and forbid-
den regions. Finally, we extend our methodology to solve problems of coordinated

3

motion of multiple vehicles in strong dynamic flow-fields. Here, coordination refers
to maintenance of specific geometric patterns by the vehicles. The level-set based
control scheme that we derive is shown to provide substantial advantages to a local
control approach. Specifically, the illustrations show that the resulting coordinated
vehicle motions can maintain specific patterns in dynamic flow fields with strong and
complex spatial gradients.

Thesis Supervisor: Pierre F. J. Lermusiaux
Title: Associate Professor

4

Acknowledgments

I would like to extend my gratitude to my advisor, Prof. Pierre Lermusiaux, for his

guidance and support throughout the course of this work. I thank him particularly

for allowing me to choose a topic of interest, and also for carefully proofreading

this thesis. His enthusiasm, words of encouragement and constructive criticism have

helped me develop a broad perspective on research. I also thank Pat, Wayne, Marcia

and Leslie for all their help over the last two years.

I thank all the members of MSEAS, particularly Matt, Themis, Thomas, Konur,

Pete, Akash and Chris for many entertaining and fun-filled discussions in the office.

Finally, I thank my family and close friends for believing in me and always being

there when I needed them.

5

6

Contents

1 Introduction and Motivation 21

1.1 Path Planning . 21

1.2 Layout of Thesis . 24

2 Problem Statement 27

2.1 Assumptions . 29

3 Literature Review 31

3.1 Robotic Path Planning . 31

3.1.1 Theory - A∗ Algorithm . 31

3.1.2 Theory - Rapidly exploring Random Trees (RRTs) 35

3.1.3 Robotic Path Planning Algorithms 37

3.2 Underwater Path Planning . 40

3.3 Summary . 49

4 Level Set Method 51

4.1 Front evolution and tracking . 51

4.2 Level Set Method . 54

4.3 Boundary Value Formulation of the Level Set Equation 60

4.3.1 Boundary Value Formulation 60

4.3.2 Fast Marching Methods . 62

4.4 Narrow Band Level Set . 64

4.5 Viscosity Solutions to Hamilton Jacobi Equations 67

7

4.6 Summary . 72

5 Path Planning using Level Set Methods 73

5.1 Control and Reachability . 73

5.2 Theorem . 76

5.3 Remarks and Corollaries . 86

5.4 Summary . 87

6 Numerical Implementation and Discussion 89

6.1 Algorithm . 89

6.2 Numerical Schemes . 90

6.3 Reinitialization of the level set function 93

6.4 Narrow Band Approach . 97

6.5 Choice of level set function φ . 97

6.6 Computational Cost . 98

6.7 Summary . 101

7 Applications 103

7.1 Benchmark Examples . 103

7.1.1 No Flow . 103

7.1.2 Optimal Crossing of a Jet Flow 104

7.1.3 Rankine Vortex Flow . 110

7.2 Realistic Ocean Flow Examples . 114

7.2.1 Path Planning in a Double Gyre Flow 114

7.2.2 Flow Past Cylinder/Circular Island 120

7.2.3 Sudden Expansion in Coastal Ocean and Fluid Flows 123

7.2.4 Ocean flows with ‘forbidden’ regions 129

7.3 Corollaries . 130

7.3.1 Discontinuity in Arrival Time 130

7.3.2 Determination of Starting Time 133

7.3.3 Multiple Optimal Paths . 136

8

7.3.4 Validity for Compressible Flows 137

7.4 Summary . 138

8 Coordinated Path Planning 139

8.1 Background and Review . 139

8.1.1 The Need for Coordination . 139

8.1.2 Pattern Formation . 143

8.1.3 Literature Review . 144

8.2 Pattern Formation using Local Control 148

8.2.1 Methodology . 148

8.2.2 Application . 151

8.2.3 Discussion . 152

8.3 Shape Formation using Level Set Method 152

8.3.1 Methodology . 156

8.3.2 Applications . 158

8.3.3 Discussion . 159

8.4 Summary . 162

9 Conclusions and Future Work 163

9

10

List of Figures

2-1 Vehicle motion in a dynamic flow-field given by V(x, t). The start

point (xs) and the end point (xf) are shown along with the vehicle

path p(t). The overall velocity of the vehicle (U(x, t)) is tangential to

p(t) and is composed of the nominal steering velocity (Fv(t)ĥ(t)) and

the flow-field velocity (V(x, t)). The steering direction (ĥ) is different

from the direction in which the vehicle moves (û). 28

3-1 Uniform discretization of a continuous robot workspace into cells. The

empty cells represent areas that the robot is free to visit while the solid

cells represent the obstacles to the robot which it must avoid. 32

3-2 (a) start and end points for the robot in a workspace filled with ob-

stacles, and (b), the optimal path computed by the A∗ algorithm. . . 33

3-3 Rapidly exploring Random Trees (RRTs) in practice: An RRT uni-

formly exploring a 2D configuration space of a robot (adapted from

(Lavalle, 1998)). 36

3-4 Growth of RRTs in a real ocean velocity field: (a) When no external

biasing is applied to the RRTs and (b) With an additional biasing (for

details, see (Rao and Williams, 2009)) (figure adapted from (Rao and

Williams, 2009)). 45

3-5 Multiple feasible vehicle tracks obtained from using the IkRRT biasing

rule. The black circle and the black cross indicate the start point and

the end point respectively (for details, see (Rao and Williams, 2009))

(figure adapted from (Rao and Williams, 2009)). 46

11

4-1 A general front in two dimensions moving at speed F (adapted from

(Persson, 2010)) . 52

4-2 Drawbacks of a Lagrangian particle method for front tracking - (a)

Some parts of the font are sufficiently resolved and some parts are

not well resolved due to the node redistribution, (b) Unrealistic sharp

corners can arise in the front and (c) Topology changes such as front

merging and splitting cannot be handled. (adapted from (Persson, 2010)) 54

4-3 A one dimensional front being embedded as the zero level set of a

two dimensional scalar field φ(x, t). φ(x, t) is defined over the entire

2-D domain. The front divides the domain into two regions: outside

(φ(x, t) > 0) and inside (φ(x, t) < 0)-(adapted from (Persson, 2010)). 56

4-4 Equivalence between the initial value formulation and the boundary

value formulation of the level set equation for F > 0. The upper plot

indicates the shapes of different arrival time contours. The lower plots

show the positions of the zero level set of φ(x, t) at three different

times, t = 0, 1, 2. In this case, since F > 0, the two approaches are

identical (adapted from (Sethian, 1999a)). 61

4-5 Various steps in the update procedure of the upwind differencing based

fast marching method.(adapted from (Sethian, 1999a)). 65

4-6 The fast marching method maintains three sets of node points: The

alive set (shaded black) on the upwind side where the value of u is

known, the close set (shaded dark grey) of trial values, and the far set

on the downwind side which contains all other points in space (adapted

from (Sethian, 1999a)). 66

4-7 Narrow Band level set method - A tube or narrow band of points is

built around the zero level set front of interest and computations are

performed only within this tube. (adapted from (Adalsteinsson and

Sethian, 1995)). 66

12

4-8 Multiple generalized solutions to equation (4.15). The problem admits

several solutions and only one solution can be the correct viscosity

solution. (adapted from (Bressan, 2011)). 68

4-9 The solution to equation (4.17) does not converge to any generalized

solution to equation (4.16) besides the signed distance function, d(x).

The signed distance field is thus, the correct viscosity solution to this

equation (adapted from (Bressan, 2011)). 69

4-10 Super-differentials and sub-differentials (adapted from (Bressan, 2011)). 71

5-1 Reachability front and possible steering directions of a vehicle: Given

the start point, xs, the end point, xf , the external flow-field, V(x, t)

and maximum vehicle speed F , the reachability front at time t repre-

sents the edge of the set of points the vehicle can reach within time

t. At every point along its trajectory p(t), the vehicle has an infinite

possible heading directions to choose from. 74

5-2 Tangential (t̂) and normal (n̂) directions to the zero level set: The

general heading direction ĥ can be written as a linear combination of

these two directions. 79

5-3 A vehicle (black circle) initially at position x(t) on the zero level set

front at time t can be steered in one several directions (ĥ). If it is

steered in a direction normal to the front (i.e. n̂) and moves at maxi-

mum relative speed F , it will lie on the zero level set front at the next

instant (t+ ∆t). For all other steering directions ĥ and relative speeds

of motion Fv, the vehicle falls ‘inside’ the front at the next instant. . 80

6-1 Stopping Criterion of Forward Evolution Equation 92

6-2 Directions of outward normals to discrete level set contours - Blue dots

are the discrete points which form the contour, red dots are the points

computed by backtracking equation (6.10) 93

13

7-1 Snapshots of the zero level set (reachability front) at different non-

dimensional times for example §(7.1.1). The start point is marked by

a black circle, while the end point is denoted by a star. 105

7-2 Optimal straight line path from start (circle) to end (star) for the

example §(7.1.1) computed using our algorithm. The optimal path

(shown in red) is overlaid on contours (black circles) of the zero level

set at different intermediate times. 106

7-3 Parameters involved in optimal crossing of a jet flow: jet speed V and

width d; start (circle), end (star), distances from jet y1, y2; vehicle

speed in still flow, F and headings θ1, θ2, α; resultant trajectory angle β.106

7-4 Snapshots of the zero level set (reachability front) at different non-

dimensional times for jet flow example §(7.1.2). The start point is

marked by a black circle, while the end point is denoted by a star. . . 108

7-5 Vehicle trajectory predicted by the level set algorithm for the jet flow

example in figure (7-3) (§(7.1.2)). The start point is denoted by a circle

and the end point by a star. The optimal path (red) is overlaid on level

set contours at various intermediate times (black curves). 109

7-6 Circular level set contours obtained by solving the forward equation

(5.2) for a Rankine vortex flow discussed in §(7.1.3). The start point

is marked as a black circle at the origin, while the end point is marked

as a star. Red: Path given by our algorithm, Black: Optimal path

calculated analytically (equation (7.13)). The paths given by the two

approaches are identical. 113

7-7 Variation of vehicle heading angles (in radians) with time - Black:

Heading angles predicted by our level set algorithm, and Red: Heading

angles calculated analytically (equation (7.13)). 114

7-8 Snapshots of double gyre flow-field at different non-dimensional times

- streamlines of the flow (white) are overlaid on color plots of vorticity

of the flow. The start point (xs) and the end point (xf) are marked as

a circle and a star respectively. 118

14

7-9 Time evolution of the zero level set (reachability front) for the double

gyre flow field (discussed in §(7.2.1)) for offset time ts = 1.10. 119

7-10 Fastest path from xs = (0.2, 0.2) (circle) to xf = (0.8, 0.8) (star) in

double gyre flow-field (§(7.2.1)). The optimal path (black) is overlaid

on the final snapshot of the flow-field, colored by vorticity. 120

7-11 Fastest time paths for two vehicles in the double gyre flow field overlaid

on vorticity-colored plots of the final flow-field. (a) The first vehicle

(F = 6) takes 0.0856 units of time to reach the end point whereas (b)

the second vehicle (F = 8) takes only 0.0343 units of time. (c) The

reachability front at time t = 0.035 for the slower vehicle (F = 6). . . 120

7-12 Schematic of Flow Past Circular Cylinder Test Case 121

7-13 Snapshots of velocity-field for flow behind a circular island (discussed

in §(7.2.2)) at different non-dimensional times. The streamlines of the

flow are overlaid on color plots of the vorticity. 123

7-14 Flow past circular island (§(7.2.2)) - time evolution of the zero level

set front corresponding to two different start points (marked in black).

None of the level set fronts pass through the island, but instead ‘wrap’

around the island. 124

7-15 Flow past circular island (§(7.2.2)) - Safe and time optimal trajectories

corresponding to every start point. As expected, none of the paths pass

through the island. All vehicle paths are overlaid on a snapshot of the

flow-field at the final time. 125

7-16 Schematic of Sudden Expansion Test Case 126

7-17 Snapshots of the flow field for a jet exiting a strait or estuary (sudden

expansion/2D coastal flow) showing color maps of the total magnitude

of the flow velocity overlaid with streamlines (a) at the time of initial

vehicle deployment and (b) near the final time of vehicle maneuvers in

Fig. 7-18a. 127

15

7-18 Optimal vehicle paths for 9 vehicles deployed from a single point (black

dot) in the flow illustrated by Fig. 7-17. Results for two situations are

shown: (a) No constraints or forbidden regions: Vehicle paths then take

full advantage of evolving jets and eddies to reach their final positions

(colored dots) in shortest time. (b) Two forbidden regions: Vehicles

are denied access to the gray shaded regions. Our algorithm provides

seven new time optimal paths for the paths computed in (a) that are

blocked while it correctly leaves unchanged the two paths that are not

blocked. 128

7-19 1D Flow Field and Domain . 130

7-20 Discontinuities in the first arrival time field, T1(x) (plotted in red)

caused by adverse the flow-field for the corollary discussed in §(7.3.1).

The maximum flow speed is 2, which is larger than the vehicle speed

F . The optimal vehicle path is plotted in blue. The start point is

xs = 0 and the end point is xf = 4. The optimal path to the end

point visits some points more than once, causing the discontinuity in

the first arrival time field. 132

7-21 Optimal trajectory of the vehicle (blue) and the first arrival time field

T1(x) for the corollary in §(7.3.1). The maximum flow-field speed is

0.95. The first arrival time field always coincides with the optimal

trajectory because the flow is not adverse to the motion of the vehicle. 133

7-22 Sample trajectories of vehicle, for different starting times, tstart, (de-

noted by filled circles). The first arrival time for each trajectory is

marked by filled stars. As observed, an earlier starting time does not

necessarily lead to a quicker arrival time at the destination. The arrival

time corresponding to tstart = 0.834 is the smallest. 134

7-23 Plot of first arrival times at xf = 2 against different starting times, tstart

for the corollary in §(7.3.2). The minimum arrival time is obtained for

tstart = 0.834. The corresponding arrival time is marked in red. 135

16

7-24 Time-optimal paths (red) from xs = (1, 1) to two different end points,

x1
f = (2, 0.8) and x2

f = (1.95, 0.75) overlaid on intermediate level set

contours. Even though the two end points are very close to each other

in space, the optimal paths leading to these points are widely different

- one of the optimal paths uses the jet, while the other does not. The

line marked in thick black indicates the set of points to which multiple

optimal paths exist. 137

8-1 Center of Mass (C) of an equilateral triangle pattern of vehicles. The

vehicles are located at the vertices of the triangle. The trajectory of

C, p(t) is computed along with its sequence of headings ĥ(t) using the

level set path planning algorithm. 149

8-2 Heading of vehicle 1, h1 computed by adding a correction ∆h1 to the

heading of the center of mass C , ĥ. 150

8-3 Time evolution of trajectories of three different groups of vehicles in

the flow past circular island example - The vehicles maintain a square

formation, a line formation and a triangle formation. Vehicle paths are

overlaid on plots of the velocity field colored by vorticity. 155

8-4 The shape check operation for maintenance of an equilateral triangle

pattern for three vehicles. The vehicles are marked as brown circles.

The uppermost vehicle is the ‘leader’ while the others are the ‘follower’

vehicles. In the shape check operation, the algorithm extracts points

from the level sets of the follower vehicles by optimizing an objective

function. The radius rmax can be increased to allow for larger size

patterns. 156

8-5 Paths of three vehicles which maintain a triangle pattern in a wind-

driven double gyre flow-field. The size of the triangle is a function of

the gradients in the flow-field. 161

17

18

List of Tables

6.1 Computational cost estimates (per time step) for solving the level set

equation (5.2) and the reinitialization equation: Regular solver and

narrow band solver. 99

7.1 Comparison of Results of Level Set Algorithm and Nonlinear Opti-

mization Method . 110

7.2 Double Gyre Flow: Numerical parameters used in generation of the

flow-field (equation (7.14)) and in level set evolution (equation (5.2)). 116

7.3 Flow past a circular island: Numerical parameters used in genera-

tion of the flow field and in level set evolution (equation (5.2)). 122

7.4 Sudden expansion in Coastal Ocean: Numerical parameters used

in generation of the flow field and in level set evolution (equation (5.2)).126

19

20

Chapter 1

Introduction and Motivation

1.1 Path Planning

The task of planning a path in a complex environment is a problem as old as antiquity.

This problem has existed for several decades now, perhaps since the age of mobile

robots. Therefore, this topic has a long history and it has received a great deal

of attention from many branches of science and engineering (especially the robotics

community). In the most general sense, ‘path planning’ refers to a set of rules provided

to an autonomous robot which enables the unit to navigate from one configuration to

another, in an ‘optimal’ fashion. Optimality of the navigation is generally governed

by an objective criterion of performance. The term ‘path planning’ is used by many

communities of engineering and science in a broad range of problems. It is applicable

to any situation where a semi or fully autonomous system has to be maneuvered.

In most cases, path planning is performed for autonomous vehicles. The optimal

plans are then provided to these vehicles and they can further adapt these plans as

they execute their missions. Since autonomous robots navigate with little or no hu-

man intervention, path planning becomes a crucial task for their successful operation

and safety. In contemporary science and engineering, modeling and computational

approaches are utilized to plan paths for these autonomous vehicle systems.

Autonomous robotic platforms are designed to accomplish a wide range of tasks in

21

a variety of fields. There does not exist a universal solution to path planning, primarily

because it is applicable in a number of diverse robotic scenarios. These scenarios

may require the robots to optimize dissimilar objective criteria and consequently, the

levels of complexity associated with these tasks may be quite different. Due to this,

there does not exist a universal path planner which is applicable to all autonomous

platforms. For example,

• Autonomous Underwater Vehicles (AUVs) (such as gliders and other propelled

vehicles) are a class of autonomous robots that are often used for ocean map-

ping, commercial exploration, military reconnaissance and harbor protection

(Stommel, 1989). They are also used to make measurements of field quantities

of interest in the ocean which aid in ocean prediction and other types of sci-

entific research. Underwater gliders are also used by oil and gas industries to

make a detailed map of the environment before embarking up on any drilling

activity. Path planning for AUVs may thus, involve minimization of time of

travel or energy spent or the mapping information gained by the AUV.

• Robots for military surveillance and reconnaissance may be navigated to max-

imize visibility or gather intelligence by inspecting a field. A path planner for

these robots may be used to generate safe paths, away from physical obstacles

in the environment. The quality of the path may be governed, in this case, by

the amount of intelligence gathered by the robot.

• Other domains involving robotic applications include manufacturing, medicine,

molecular biology etc. Autonomous robots in each of these fields may be navi-

gated to achieve widely different goals.

It is therefore, very challenging to derive a single theory that holds for every possible

application. However, one aspect that all mobile robots have in common is that they

must find a trajectory to their destination taking into account, the possibly dynamic

nature of the environment and limited capabilities of the robot itself.

Optimal navigation of autonomous vehicles (such as underwater gliders) in the

coastal ocean has become crucial for many applications, ranging from security and

22

acoustic surveillance, to collection of ocean data at specific locations, for ocean pre-

diction and monitoring. Underwater gliders are ideal for long range missions due to

their low power consumption and high levels of autonomy. This endurance, however,

comes at the expense of smaller travel speeds of the glider. In many cases, the speed

of the glider becomes comparable to, or even lesser than the speeds of the ocean

currents in which the glider operates. As these gliders have become more reliable

and affordable, the simultaneous use of several vehicles has recently emerged as a vi-

able option. Multi-vehicle sampling and exploratory missions are expected to become

very common in the near future. This will not only make missions with coordination

possible, but also enable individual robotic units to benefit from the information ob-

tained by other members of the group (Davis et al. (2009), Bahr et al. (2009)). This

naturally raises the question of navigating gliders through dynamic ocean currents.

Path planning for autonomous underwater vehicles (AUVs) in general aims to

optimize at least one of the following aspects of performance:

1. Travel time between two given points

2. Energy spent by the vehicle

3. Safety of the vehicle

4. Quality of data gathered by the vehicle

The environment of AUVs is the ocean, a highly dynamic and multi-scale system

with considerable variability in both time and three-dimensional space. Planning of

optimal AUV paths in the ocean is quite challenging. The speeds of ocean currents can

be comparable to vehicle speeds (e.g. for AUVs (see Schmidt et al. (1996), Elisseeff

et al. (1999))) or even much larger than vehicle speeds (e.g. for gliders) in some

cases. In these cases, the dynamic nature of ocean currents and their effect on the

vehicle path should not be neglected. Ocean geometry is often complex, especially

in the coastal zone. The challenge therefore, is to develop computationally efficient

and rigorous frameworks that accommodate both the environmental constraints and

robotic limitations while at the same time providing an accurate path for the robot

23

(Belta et al., 2007). Consequently, our motivation is to develop and illustrate efficient

but rigorous methodologies that predict the optimal paths of swarms of ocean vehicles

in dynamic ocean currents, without any limitation on the currents nor on the number

of vehicles.

This thesis focusses on time optimal path planning for autonomous underwater

vehicles such as gliders, which navigate in strong and dynamic ocean flow-fields.

We aim to predict how these vehicles must best utilize or avoid currents in order to

minimize their travel time. We present a rigorous (partial differential equation (PDE)

based) methodology based on the level set method, which can compute optimal paths

of swarms of underwater vehicles, obviating the need for any heuristic control based

approaches. As will be shown later, this algorithm is computationally efficient -

the computational cost grows linearly with the number of vehicles and geometrically

with spatial dimensions. We illustrate, by means of a number of examples, that

the algorithm automatically generates vehicle trajectories that avoid any obstacles in

the domain. These obstacles can either be stationary or time dependent. In what

follows, we will show that if vehicles travel at maximum nominal speed in a time

dependent flow-field, our methodology will efficiently compute the exact fastest path

between any two locations along with the sequence of headings that the vehicle must

take to realize this fastest path. We describe a number of benchmark examples to

validate our methodology and present results of the algorithm in more realistic ocean

scenarios that include obstacles, eddies and forbidden regions. Finally, we show how

this algorithm can be used to plan paths for multiple vehicles, either independently

or in a coordinated fashion, where coordination refers to formation and maintenance

of specific geometric patterns.

1.2 Layout of Thesis

This thesis is organized as follows: In chapter 2, we formally define our problem

statement and introduce all the relevant notation. We also state all the assumptions

that we use in this work. In chapter 3, we perform a thorough literature review of

24

the relevant existing methodologies for underwater path planning. We discuss their

advantages and various drawbacks describe how our methodology can overcome them.

Chapter 4 introduces the reader to level set methods. In this chapter, we describe the

theory of front propagation and the utility of level set methods in interface tracking.

We also discuss level set methods from a mathematical point of view by describing the

link between viscosity solutions of Hamilton-Jacobi equations and other hyperbolic

conservation laws. In chapter 5, we describe our path planning algorithm. Here, we

state and prove a theorem along with several corollaries which forms the basis of our

methodology. In chapter 6, we discuss the numerical details of implementation of

the algorithm and provide estimates of the computational cost of the method. In

chapter 7, we illustrate a number of applications of the path planning algorithm.

We first validate the algorithm by using benchmark examples for which analytical

solutions can be easily computed. Later, we apply the algorithm to more complex

and realistic ocean flow scenarios. In chapter 8, we describe how our methodology

can be used for coordinated path planning of multiple underwater vehicles. Here, we

present two novel approaches for pattern formation of swarms of vehicles and discuss

their features. In chapter 9, we summarize and highlight the main contributions of

this thesis and describe some possible directions for future work.

25

26

Chapter 2

Problem Statement

Consider the motion of a vehicle in a physical domain Ω, in a dynamic flow-field,

denoted by V(x, t). Let xs and xf respectively denote the position vectors of start

and end points of the vehicle. Let the maximum speed of the vehicle relative to the

flow-field (i.e. its maximum speed in still flow) be a constant, F . We wish to develop

a steering rule for the vehicle that minimizes its travel time. In other words, we wish

to develop an algorithm that predicts the sequence of headings (steering directions)

for the vehicle that would result in the fastest time path between xs and xf . Let the

continuous trajectory traced by the vehicle be denoted as p(t). We refer the reader

to figure (2-1) for a visual depiction of the vehicle motion and various parameters

involved.

The vehicle motion is governed by the kinematic relation (2.1). In addition to

its nominal motion due to steering (Fv(t)ĥ(t)), the vehicle also gets advected by the

flow-field (V(x, t)). Therefore, the total velocity of the vehicle (U(x, t)) is composed

of both, nominal velocity and the advection due to the flow-field.

dp

dt
= U(p(t), t) = |U(p(t), t)|û(t) = Fv(t)ĥ(t) + V(p(t), t) (2.1)

where Fv(t) is the speed of the vehicle relative to the flow-field (i.e. speed of the

27

Figure 2-1: Vehicle motion in a dynamic flow-field given by V(x, t). The start point
(xs) and the end point (xf) are shown along with the vehicle path p(t). The overall
velocity of the vehicle (U(x, t)) is tangential to p(t) and is composed of the nom-
inal steering velocity (Fv(t)ĥ(t)) and the flow-field velocity (V(x, t)). The steering
direction (ĥ) is different from the direction in which the vehicle moves (û).

vehicle in still flow), and is bounded above by F , i.e.,

0 ≤ Fv(t) ≤ F

ĥ(t) is the vehicle heading direction at time t. This is the direction that the vehicle

moves relative to the flow field. In other words, ĥ(t) is the direction in which the

vehicle is steered. Let T (x) denote the ‘first arrival time’ field, i.e. the first time the

vehicle can reach any given x, starting from xs. Clearly, T (xs) = 0, since the vehicle

starts moving from xs. For limiting conditions on p(t), we have,

p(0) = xs, p(T (xf)) = xf (2.2)

The goal is thus, to develop a control for the vehicle heading ĥ(t) and for the vehicle

speed Fv(t) that minimizes the travel time, T (xf), subject to constraints imposed by

equations equation (2.1) and equation (2.2).

We note that this problem is a modified version of Zermelo’s navigation problem

(Zermelo, 1931). Zermelo’s navigation problem is a standard problem in the theory

28

of optimal control (see e.g. Bryson and Ho (1975)). The original version of Zermelo’s

navigation problem (Zermelo, 1931) discusses time optimal path planning in steady

flow-fields. The reader is referred to (Falcone and Zidani (2012), Mitchell et al. (2005),

Bryson and Ho (1975)) for a detailed discussion on Zermelo’s navigation problem.

2.1 Assumptions

1. In this thesis, we assume that the flow-field V(x, t) is exactly known. Since the

work is primarily directed towards oceanic applications, in which flow-fields are

always associated with some levels of uncertainty, this assumption is somewhat

simplifying. For the purposes of this work, however, we assume that V(x, t) is

completely known.

2. We aim to obtain globally optimal long-distance trajectories for the autonomous

vehicle. In other words, the distance traveled by the vehicle is much larger than

its geometric dimensions.

3. We assume that the interaction between the vehicle and the flow-field is purely

kinematic. In other words, we assume that the vehicle behaves as a point mass

and exhibits no inertia.

4. We plan a continuous trajectory for the vehicle, i.e. p(t) is always continuous.

This imposes a constraint on the type of the flow-field (V(x, t)) the vehicle

can experience. V(x, t) cannot be a Dirac delta distribution. If V(x, t) is a

Dirac delta distribution, the vehicle trajectory (obtained by integrating equation

(2.1)) will no longer be continuous. Any other type of flow-field V(x, t) is

acceptable.

29

30

Chapter 3

Literature Review

The goal of this chapter is to provide the reader with a thorough review of existing

literature on underwater path planning. The goals of general robotic path planning

and underwater path planning are different at a very basic level. Path planning for

robotic applications has been extensively studied and ample literature is available on

this topic. Underwater path planning has received far lesser attention in compari-

son. Among the researchers who have worked on this problem, most of them have

tried to extend robotic path planning algorithms to address underwater path plan-

ning. Therefore, in this chapter, we first review some useful robotic path planning

algorithms, namely the A∗ algorithm and Rapidly exploring Random Trees (RRTs).

We then explain the difference between robotic path planning and underwater path

planning. Later, we provide an extensive literature review on existing underwater

path planning algorithms.

3.1 Robotic Path Planning

3.1.1 Theory - A∗ Algorithm

In this section, we briefly describe the A∗ search algorithm. The A∗ algorithm is

widely used by the mobile robotics community for computing obstacle free paths for

robots. The algorithm is well suited to solve problems where the environment of the

31

(a) (b)

Figure 1: (a) General tesselation of an environment. Such methods will result in an occupancy grid
with cells of varying sizes and shapes. (b) A grid decomposition of an environment. These results
in square cells of the same dimensions.

cost of the best route that goes through each node. And it employs this heuristic estimate when
determining which node to visit next in its search process. As such, A* is an example of a best–first
search algorithm [5]. Furthermore, if we choose h(x) = 0, we can show that Dijkstra’s algorithm
is simply a special case of A*. Lastly, A* is both complete and optimal. This means that A* will
always find a path if a path exists and report failure if a path does not exist and the path that A*
returns will be optimal in terms of the heuristic function.

2.1 Algorithm Structure

In this section we take a closer look at the mechanics and the structure of the A* algorithm. Let’s
take the example shown in Figure 2. The objective is to find the shortest path between the start
and goal. In other words, what is the minimum number of squares we need to tranverse in order
to reach goal from start?

Starting the Search

Given our occupancy grid, we begin our search by starting at the start position and check its
adjacent cells, searching outward towards the goal. Thus, we do the following:

1. Begin at start and add it to an open list of cells to be considered. The open list contains the
cells that may fall on the optimal path we want. In other words, the open list contains the
cells we need to take a closer look at in our search process. As we expand outward, this open
list will grow.

2. Look at all the reachable cells, i.e. cells that do not contain obstacles, adjacent to start and
add them to the open list. For each of these cells, save start as its parent cell, i.e. the cell
you were at before reaching the adjacent cell. Saving this information correctly is extremely
important since this is how we will trace our path once we have reached the goal, i.e. we will
get our optimal path by tracing backwards from the goal to the start position.

3. Drop the start the open list, and add it to a closed/visited list of cells.

2

Figure 3-1: Uniform discretization of a continuous robot workspace into cells. The
empty cells represent areas that the robot is free to visit while the solid cells represent
the obstacles to the robot which it must avoid.

robot is filled with stationary physical obstacles which the robot must avoid. We

define the workspace of the robot as the set of all possible points that the robot can

visit.

A common approach for robotic path planning is to first divide the workspace of

the robot into cells. This discretization of the workspace converts a continuous path

planning problem to a discrete one. Once the workspace has been discretized, the

layout of the workspace can be represented by an occupancy grid. This grid can be

considered as a map of the workspace where the free space is marked by clear cells and

obstacles are represented by solid cells (see figure (3-1)). The A∗ algorithm computes

the shortest distance between two points by determining the shortest sequence of free

cells that connects these points.

The A∗ scheme converts the path planning problem into a graph search problem

(Wikipedia). Each empty cell in the occupancy grid is represented as a node in a

graph. An edge exists between two nodes only if the cells they represent are adjacent

to each other and a feasible path exists between these cells. Once this graph is

generated, the A∗ scheme solves this graph search to compute the shortest path

between any two points. The graph search problem can be solved by a number of

different approaches such as depth-first search, breadth-first search, Dijkstra’s method

etc. A∗ is similar to these methods in that, it is a graph search technique. What sets

32

(a) (b)

Figure 2: An example.

• Add it to the open list if it isn’t on the list. Specify x as the parent cell and compute
f(x), g(x), and h(x).

• If it is already on the open list, check to see if the current path to the cell is better
by looking at the current value of g(x) and the previously stored value of g(x)
associated with the cell. If the current g(x) is lower, change the parent of the cell
to x and recalculate f(x), g(x), and h(x). If you are keeping your open list sorted
by f(x), you may need to resort the list to account for the change.

3. Stop when you: 1) Add goal to the closed list, in which case the path has been found, or 2)
fail to find goal, and the open list is empty. This occurs when no path exists between start
and goal.

To print out the path, work backwards from the goal position. Look at the parent of goal, print
this out. Then look at the parent of the parent of goal, print this out. And so on and so forth until
you reach start. This is your path. The A* algorithm is also summarized in pseudo-code form in
Algorithm 1. In our example the shortest path length is 9 and the path is shown in Figure 2(b).

This description of the A* algorithm and its implementation is a summary of the one provided
by Patrick Lester in [3]. Look at this website for more implementation details.

3 Task

You must implement the A* star algorithm to enable a robot to find an optimal path from its
starting position to any goal location specified by a human operator for a given environment. You
can code this up in whatever language you choose. Inputs to your code should include (but is not
limited to):

• start and goal positions;

• dimension of the workspace (i.e. number of cells × number of cells);

• map file of the workspace; and

• output the optimal path as a list of waypoints.

4

Figure 3-2: (a) start and end points for the robot in a workspace filled with obstacles,
and (b), the optimal path computed by the A∗ algorithm.

A∗ apart from these methods is the use of a heuristic function during the search

process.

The heuristic function, denoted by h(x), provides an estimate of the cost of the

best route that passes through a particular node. The algorithm keeps track of the

cost of the route leading up to a particular node along with the heuristic cost function

h(x) to determine which node it must visit next. It is a special case of a best-first

algorithm. In fact, if the heuristic cost function h(x) is chosen to be zero, we can show

that the A∗ algorithm is equivalent to Dijkstra’s algorithm. Any heuristic function

h(x) is acceptable, as long as it underestimates the actual cost of the path from the cell

x to the end point. For example, the Euclidean distance between cell point x and the

end point is an acceptable choice of h(x) because it is the shortest distance between

these points. The choice of the heuristic function determines the number of iterations

needed for the algorithm to find the optimal solution. The A∗ algorithm is both

complete and optimal. This means that if the heuristic function h(x) is appropriately

chosen, the algorithm will yield an optimal solution if one exists, or terminate by

reporting a failure if an optimal path does not exist.

We now look into the mechanics of the algorithm. We refer the reader to figure

(3-2) for the locations of the start and end points for the robot in a typical example.

The algorithm proceeds in the following steps:

33

Starting the Search

• Given the occupancy grid, the search begins at the start point. At every step,

the algorithm maintains an open list and a closed list of cells. The open list

contains the cells that can possibly fall on the optimal path which we wish to

compute. In other words, these cells need to be further examined in the search

process. The open list of cells will grow as we expand outward from the start.

• All the reachable cells, i.e. cells that do not contain obstacles, adjacent to start

are added to the open list. For each of these newly added cells, the position of

their parent cell, i.e, start is saved. This information will be used to compute

the optimal path backwards from the end point.

• start is removed from the open list and added to the closed list as it does not

have to be pursued any more.

The above steps are repeated starting from one of the cells in the open list. To

determine which cell must be pursued next, the path cost associated with each cell

in the open list is computed.

Path Costs

The path cost at any point x, denoted by f(x) in the A∗ algorithm, is the sum of

costs of a path leading to point x from start, (g(x)) and the heuristic estimate h(x)

of the cost to reach end from x. Thus,

f(x) = g(x) + h(x) (3.1)

As mentioned earlier, h(x) is an underestimate of the cost to go from x to the end

point. Typically, it is chosen to be the Euclidean distance between x and end,

disregarding all the obstacles in the domain. Thus, f(x) is a conservative estimate of

the total cost of the path from start to end through the current cell x. The path is

generated by repeatedly going through the open list and choosing the cell with lowest

f(x).

34

Completing the Search

To complete the search, at every iteration, we simply choose the cell from our open

list with the lowest cost f(x) and do the following steps:

• Remove it from the open list and move it to the closed list.

• Look at the neighbors of the current cell and add them to the open list if they

are not already on the list. Specify the current cell as the parent of the cells

added to the open list.

• If an adjacent cell is already on the open list, check to see if the current path

to the cell is a better one than the one earlier. In other words we check to see

if g(x) of this path is lower than the cost of the earlier path to this cell. If it

is, the parent of the adjacent cell is changed to the current cell and both costs

f(x) and g(x) are recalculated. If the cost to the current cell is higher than the

earlier cost, no action is taken.

The algorithm terminates either when end is added to the closed list or when end

is not added to the closed list, but the open list is empty. In the latter case, there is

no feasible path from start to end. The optimal path, when one exists is computed

by tracing back from the end to start. This is done by looking at the parent cell of

each point on the optimal path and retracing the steps back to the start point.

A∗ algorithm is widely used by the robotics community for obstacle avoidance and

generation of safe robot paths. However, it is not directly applicable for underwater

path planning, as will be discussed later in this chapter. In the following section, we

briefly describe Rapidly exploring Random Trees.

3.1.2 Theory - Rapidly exploring Random Trees (RRTs)

Rapidly exploring Random Trees (RRTs) were introduced by Lavalle (1998) as a tool

for robotic path planning. RRTs are a randomized data structure that are used in

a wide range of path planning problems. They are specifically designed to easily

deal with non-holonomic robotic path planning problems of large dimensionality and

35

{�Õ�s`Ö]lnm/Ø]s=xÆþ�w}w��]Ús
{�Õ�m^{kmñÕ]ÙqltÙqØ]Ù=ÚÙqznv�Ú�Ù�~�s�l�znwW��w|s;~Ê×
ztÚ�Ö�lrÞ¤ztØ]ßÅ{�Õ�m^{M�/ QÂm/Ø�~�S / � Q5Z�������i~Q:iEk ê	� x
cOsy{	�Ô}syÖ]Ô}s�w�syØL{¹{�Õ]s{]���vylrzn~�s;m/ØQÚsy{�Ô}ztvqx5ã$Õ�s�Ý�Ô�m/Ús�w¹ÜGsyltÙ^ä
w�Õ]Ù^äô{�Õ]s�v�Ù=Ø�w {}Ô���vd{�ztÙqØÅÙqÝ�m/Ø ��� ãôÝ�Ù=Ô�{}Õ]sWv�mqw�s+Ù/Ý � /
æ
 O ê�
	
/è�°æ
 O ê�
	
/è ×�UBV�/ ê ×�m/Ø�~^��� �!�#"�/Aå �
 O �
=é ï

ã$Õ]s �
� ãÁòL�]znv�î¤lrÞ·sy÷�Ö�m/Ø�~�w¹ztØ�m�Ý�s�äÂ~�ztÔ}s�vd{}zrÙ=Ø�w¹{�ÙòL�]ztv�î¤ltÞ
s�÷�Ö]ltÙqÔ}s�{}Õ]s¹Ý�Ùq�]Ô5v�Ù=Ô�Ø]s�Ô}w9Ù/Ý]{}Õ]s$w�òL��mqÔ�s=xYþ!lr{�Õ�Ùq�]ß=Õ�{�Õ]s*vyÙqØ�à
w|{�Ô}��vd{}zrÙ=Ø Ús�{}Õ]Ù�~¿ztw�w�ztÚ�Ö�lrs=×9zr{�ztwTØ�Ù�s�mqw�Þ�{}m=w|î
{�Ù â Ø�~¿m
Ús�{}Õ]Ù�~Å{�Õ�m^{ÞLztsyln~]ww���v�Õ.~�s;w|ztÔ}mqÜ]ltsQÜGsyÕ�mpo¤ztÙqÔ;xE�¹Ù=Ø�w|zn~�s�Ô�×
Ý�ÙqÔ$sy÷�mqÚÖ]lrs=×�m�Ø�mqzro=s�Ô�m/Ø�~]ÙqÚô{�Ô}sys�{�Õ�m/{¾znw$v�Ù=Ø�w {}Ô���vd{�s;~+ztØ�à
v�Ô}syÚs�Ø={�m/ltlrÞ¿Ü¤Þñw�sylts�vd{}zrØ�ß m oqsyÔ�{�sy÷ñm^{,Ô�m/Ø�~�ÙqÚ�×�m/Ø�zrØ�Ö]��{
m^{�Ô}mqØ�~�Ù=Úk× mqØ�~¿{�Õ�syØ�mqÖ]Ö]ltÞ¤zrØ]ß
{�Õ]skzrØ�Ö]��{�{}Ù`ß=syØ]s�Ô}m/{�sQm
Ø]s�äÆoqs�Ô|{}s�÷Êxþ!lr{�Õ]Ù=�]ßqÕ¿ÙqØ�s,ÚztßqÕL{�zrØL{}�]z´{}zro=syltÞ
s�÷�ÖGs�v�{3{}Õ]s
{�Ô}sys{}Ù��|Ô�m/Ø�~]ÙqÚlrÞ��Ws�÷�Ö]ltÙqÔ}s�{�Õ]s+w�Ö�mqvysq×9{�Õ]s�Ô�s·znw�mqv�{���mqlrltÞ
m�oqs�Ô�Þ°w {}Ô�Ù=Ø]ß�Ü]znmqwT{}Ù^ä¾mqÔ}~ Ö]lnmqv�s;w�m/ltÔ}s�mq~]Þ`s�÷�Ö]ltÙqÔ}s�~±å�Ù=�]Ô
w�zrÚ,�]ltm/{�ztÙqØ¿s�÷�ÖGsyÔ}zrÚs�Ø={�w�Þ¤zrs�lt~]s�~Åm/Ø¿sy÷L{}Ô�s�ÚsyltÞ`Õ]ztßqÕñ~�s�Ø�à
w�z´{ ÞWÙ/Ý oqs�Ô|{}ztvys�w$Ø]s;m/Ô���� �!�#"�×�ä*zr{�Õ�ltzr{|{�lts�Ùq{�Õ]s�Ô!s�÷�Ö]ltÙqÔ�m^{}zrÙ=Ø é x
þ Ô}mqØ�~�Ù=Ú ä¾mqlrîñmqltw�Ù¿w|��ú>syÔ�w,Ý�Ô�Ù=Úhm°Ü]znmqw,{�Ù^ä$m/Ô�~ÅÖ]lnmqvys�w
m/ltÔ}s�mq~]ÞQo¤ztw�zr{�s�~Ox�þ!Ø ��� ãÃä¾ÙqÔ}î�w*ztØ�{�Õ]s,ÙqÖ]ÖGÙ=w�z´{}s�Ú·m/Ø]Ø�syÔ
Ü¤ÞWÜGsyztØ]ß+Ü�ztm=w|s;~Q{}Ù^ä¾mqÔ}~kÖ]lnmqvys�w*Ø�Ù/{�Þ=s�{!o¤ztw�zr{�s�~Ox$ã$Õ�ztw�vym/Ø
ÜGs�w|s�syØkÜLÞWv�ÙqØ�w|zn~�syÔ}ztØ]ß�{}Õ]s � ÙqÔ}ÙqØ]Ù=zÊ~�ztmqßqÔ�m/ÚõÙqÝ9{�Õ�s ��� ã
oqs�Ô|{}ztvys�w�x�c9mqÔ�ß=syÔ � ÙqÔ}ÙqØ�ÙqzÊÔ}syßqztÙqØ�w$Ù¤v�v��]Ô*Ù=Øk{�Õ]s��|Ý�Ô�Ù=ØL{�ztsyÔ��
Ù/Ý�{�Õ]sk{�Ô}sys=x �¤ztØ�v�s�o=syÔ�{�s�÷ñw�sylts�v�{�ztÙqØ.znwÜ�m=w|s;~ñÙqØ�Ø]s�mqÔ�s;w {
Ø]s�zrß=ÕLÜGÙqÔ�w�×>{�Õ]znwTzrÚÖ]ltzts�wT{}Õ�m^{�oqs�Ô|{}ztvys�w3ä*zr{�Õ¿ltmqÔ�ß=s � Ù=Ô�Ù=Ø]Ùqz
Ô}syßqztÙqØ�w¾mqÔ�sTÚÙqÔ}sTlrztîqs�lrÞ+{�ÙÜ�s�w�sylts�v�{�s;~QÝ�Ù=Ô*s�÷�Ö�mqØ�w|ztÙqØ9x Ó Ø
mpoqs�Ô}mqßqs=×>mqØ ��� ã&znw�v�ÙqØ�w {}Ô���v�{�s;~`Ü¤Þ`zr{�s�Ô}m/{�ztoqs�lrÞ�Ü]Ô}s�mqî¤zrØ]ß
lnm/Ô}ßqs � ÙqÔ}ÙqØ]Ù=zÊÔ�s�ßqztÙqØ�w¾ztØ={}Ù·w|Ú·m/ltltsyÔ*ÙqØ�s�w�x
 mqw�s�~1ÙqØAw�ztÚ��]lnm^{}zrÙ=Øás�÷�Ö�s�Ô�ztÚsyØL{}w�×�w���v�ÕAmqw
{�Õ]s.ÙqØ]s

w�Õ]Ù^ä*ØômqÜ�Ù^o=sq×ä¾s�Õ�mpo=s³v�ÙqØ�v�lt��~�s�~Æ{�Õ�m^{¿{�Õ]s³ß=syØ]s�Ô}m/{�s;~
Ö�m/{�Õ�w¾m/Ô}s!Ø]Ùq{�Ýam/Ô�Ý�Ô�Ù=Ú ÙqÖ�{}zrÚ·m/lGm/Ø�~·{�Õ�m/{�{�Õ�s�o=syÔ�{�znv�s�w�ä*zrltl
syo=syØL{���m/ltlrÞ
ÜGs�vyÙqÚs�]Ø]zrÝ�ÙqÔ}ÚlrÞ°~�ztw|{�Ô}ztÜ]��{�s;~Êx=]�o=syØ {�Õ]Ù=�]ßqÕ
{�Õ�s�Ö�m^{�Õ�w3mqÖ]ÖGs�m/Ô �|m/ß=ßqs;~Ê×ÊØ]Ù/{}s�{}Õ�m^{�Ø]Ù�w�Ö]zrÔ�m/ltztØ]ßQÙ�vyvy�]Ô�wyx
 mqw�s�~�Ù=Ø
w|s�oqsyÔ�m/lÊsy÷�Ö�s�Ô�ztÚsyØL{}w�zrØ çqÿ ×>v�Ù=ØLo=s�÷�w|Ö�m=v�s;wy×�{}Õ]s
ÙqÖ]{�ztÚmql�Ö�m/{�Õ¿{}Ù�{�Õ]sQÔ�Ù¤Ù/{,zrØñvyÙqÚÖ�m/Ô}znw|Ù=Ø`{}Ù�{�Õ]sQÖ�m^{}ÕñzrØ
{�Õ�s �
� ãT×=~�zrú>syÔ�Ù=Ø·mpoqsyÔ�m/ß=s�Ü¤Þm3Ýamqvd{}ÙqÔ ÙqÝ ê x ù {}Ù ç x
 x5ø!Ø]zrà
Ý�ÙqÔ}Úz´{ Þ�Ù/Ý�{}Õ]s �
� ãño=syÔ�{�znv�s;wYä$mqw5Ô}syÖGs�m/{�s;~�lrÞ�vyÙqØ â Ô�Ús�~,Ü¤Þ
{�Õ�s·Ö�mqw}w|ztØ]ß�Ù/Ý*w�syoqs�Ô}mql��¹Õ]z´àºw}ò=��m/Ô}s�{}s�w|{}w�×9ä*Õ]znv�ÕÅm/Ô}s,{ Þ¤Ö]zrà
vymqlrltÞ+��w�s�~W{}Ù�s�o^m/lt��m^{}s3Ô�m/Ø�~�ÙqÚ Ø¤�]Ú,Ü�s�Ô*ßqs�Ø]syÔ�m^{}ÙqÔ�wyx
û�{YznwVØ]Ù/{5~�zrí·vy�]lr{Y{}Ù�Ö]Ô}Ù^oqs {}Õ�m^{Y{�Õ]s¾oqs�Ô|{}ztvys�w9ä*zrltl¤Ü�s;v�ÙqÚs

�]Ø]zrÝ�ÙqÔ}ÚlrÞ�~]ztw|{�Ô}zrÜ���{�s;~ÊxVþ�wO{}Õ]s �
� ãÅzrØ�z´{}ztmqlrltÞ�s�÷�Ö�mqØ�~]w�×�{}Õ]s
oqs�Ô|{}ztvys�w�mqÔ�s·v�lts�mqÔ�ltÞ
Ø]Ùq{��]Ø]zrÝ�ÙqÔ}ÚlrÞ°~�ztw|{�Ô}ztÜ]��{�s;~ �5Õ]Ù^ä¾syoqs�Ô�×
{�Õ�s�Ö]Ô}ÙqÜ�m/Ü]ztlrzr{ Þ,{�Õ�m/{¾m�Ô�m/Ø�~�ÙqÚltÞ=àºv�Õ]ÙLw|s�Ø�ÖGÙqztØL{¹ltzrs;w�ä*zr{�Õ�zrØ
UBV¹ÙqÝVm�oqs�Ô|{}s�÷+ÙqÝ9{�Õ�sT{�Ô}sysTsyo=syØL{���mqlrltÞ+m/Ö�Ö]Ô�ÙLmqv�Õ]s;w�Ù=Ø]sqx ûºØ
{�Õ�ztwTvym=w|s=×G{�Õ]s�Ô}mqØ�~�Ù=Ú w}m/ÚÖ]lts�ä*ztltlVÜGs·mq~]~]s�~
m=w�mWoqs�Ô|{}s�÷
{�Ù+{�Õ]s�{�Ô}sysqx�û�Ý {�Õ]s�w�mqÚ�Ö�lrs;w�m/Ô}s�ßqs�Ø]syÔ�m^{}s�~k�]Ø]zrÝ�ÙqÔ}ÚlrÞ=×�{}Õ]s
oqs�Ô|{}ztvys�w3ztØ`{}Õ]s�{�Ô}sys�ä*zrltl Ü�s;v�Ù=Ú�s�]Ø�z´Ý�Ù=Ô�Ú�xã$Õ]ztw3Ô}s�w��]lr{Tznw

ztØ�~�s�Ö�s�Ø�~�s�Ø={�ÙqÝ]{�Õ�s¾ztØ]zr{�znm/l�o=syÔ�{�s�÷�ltÙ�vym/{�ztÙqØWåHm/lnw|Ù3v�Ù=Ø â Ô}Ú�s;~
Ü¤ÞkÙq�]Ô�s�÷�ÖGsyÔ}zrÚsyØL{�w é�� ûºØ�ßqsyØ�syÔ�m/lI×�zrÝ {�Õ]s�ÖGÙqztØL{}w�� G (~�q�,m/Ô}s
w}m/ÚÖ]lts�~`Ý�Ô}ÙqÚ mqØLÞ
w�ÚÙ¤Ù/{�Õ Ö]Ô}ÙqÜ�mqÜ]zrltzr{ Þ
~�syØ�w�zr{ Þ�Ý��]Ø�v�{�ztÙqØO×
� åg� é ×�{�Õ]s,oqsyÔ�{�znv�s;w*Ù/ÝV{�Õ�s �
� ã1ä*zrltlY~]ztw|{�Ô}zrÜ���{�s;~
mqv�v�ÙqÔ�~�ztØ]ß
{}Ù � åg� é x·ã$Õ]znwTÖ]Ô}ÙqÖGsyÔ�{ Þ�ztwTo=syÔ}Þ���w|syÝ��]l Ý�Ù=Ô3ß=syØ]s�Ô}m/{�ztØ]ßkÜ]z´à
m=w|ztØ]ßkw�v�Õ]s�Ús�w�xTþôv�Ô}��vyztmqlYÖ]zts�vys,ÙqÝ�m/Ø�mqlrÞ�w�ztw�{�Õ�m^{TÔ�s�ÚmqzrØ�w
Ù=Ö�s�Ø�ztw¾{}Õ]s�Ô}m/{�sTÙ/Ý v�Ù=Ø¤oqsyÔ}ßqs�Ø�v�s=x
ý ÙqÔ¾zrØL{}syÔ}s�w|{�ztØ]ß,Ö�ltmqØ]Ø]ztØ]ß,Ö�Ô�Ù=Ü]lrs�Ú·wy×�� ä*ztltlGÜGsTØ]ÙqØ�v�ÙqØ]à

o=s�÷ÊxVûºØ+{�Õ�ztw¾vym=w|s=×/{�Õ�s �
� ã�o=syÔ�{�znv�s�w�ä*zrltl>w {}zrltl�ÜGs�vyÙqÚs���Ø]z´à
Ý�Ù=Ô�ÚltÞ
~�znw {}Ô�ztÜ]��{}s�~ �VÕ]Ù^ä¾syoqs�Ô�×GÙqØ�s,ä¾Ùq�]ln~ s�÷�Ö�s;vd{T{�Õ�s�Ô�m^{}s
ÙqÝOv�ÙqØ¤o=syÔ}ßqsyØ�v�s¾{�Ù�ÜGs�w�lrÙ^ä¾syÔ;xYã$Õ�ztw�lrs;mq~]w5{}Ù�m�Ö]Ô}ÙqÜ�m/Ü]ztlrznw|{�zrà
v�m/ltlrÞv�Ù=ÚÖ]lrsy{�s æ ë è Õ]Ù=lrÙ=Ø]ÙqÚznv$Ö]ltmqØ]Ø]s�Ô�x5û ~�s;m/l�ÖGsyÔ�Ý�ÙqÔ}Ú·m/Ø�vys
vyÙq�]ln~,Ü�s*Ù=Ü�{}mqzrØ]s;~�Ü¤Þ�~]s â Ø]ztØ]ß�m3Ús�{}Ô�znv/×!�G×/{}Õ�m^{ Þ¤ztsyln~]wV{�Õ]s
ltsyØ�ß/{�Õ�Ù/Ý¤{�Õ]s¹w|Õ]Ù=Ô|{}s�w|{9Ö�m/{�Õ�ÜGs�{ ä¾sysyØT{ ä¾Ù�w|{}m/{�s�w�×pÜ]��{Y~]s�{�s�Ô|à
ÚztØ]ztØ]ß3{�Õ]znwVÚ�sy{�Ô}ztv¾znw5mqw5~�zrí·vy�]lr{ m=w5w|Ù=lro¤ztØ]ß!{}Õ]s$Ö�m^{}Õ�Ö]lnm/Ø�à
Ø�zrØ]ß Ö]Ô}ÙqÜ]ltsyÚ�x¿þ!ltl¾Ô�m/Ø�~�ÙqÚztÛys�~¿Ö�m^{�Õ�Ö]lnm/Ø]Ø]ztØ]ß Ú�sy{�Õ]Ù�~]w
w���ú>syÔYÝ�Ô�Ù=ÚÁ{}Õ]s$~�z´í+vy�]l´{ ÞTÙqÝ�~�s�{}syÔ}Ú�ztØ]ztØ]ß�Ù=Ô9s;w {}zrÚ·m^{}zrØ�ß*{�Õ]s
zn~�s;m/l Ús�{}Ô�znv/x�ûºØ`{}Õ]s·vym=w|s�Ù/Ý¾Ø]ÙqØ]Õ�ÙqltÙqØ]Ù=Ú�znv�w|Þ�w|{�syÚ·w�×>{�Õ]s
Ô}s�w��]lr{�ztØ]ß �
� ã1Ô}syÚ·m/ztØ�w*Ö]Ô}ÙqÜ�m/Ü]ztlrznw|{�znvym/ltltÞWv�Ù=ÚÖ]lrsy{�s���Ø�~�syÔ
ÝamqzrÔ}ltÞ3ß=syØ]s�Ô}mqlqv�Ù=Ø�~�zr{�ztÙqØ�w	�^Õ]Ù^ä¾syo=syÔ;×;vyÙqØ¤oqs�Ô�ß=syØ�vysVznw}w|�]s;w9ÜGs�à
vyÙqÚs�s�oqsyØ`Ú�Ù=Ô�s�zrÚÖGÙqÔ�{}m/ØL{;x ý Ù=Ô�î¤zrØ�Ù¤~]ÞLØ�m/Úztv�Ö]ltmqØ]Ø]ztØ]ß�×
{}Õ]s�zn~�s�mql*Ú�sy{�Ô}ztv¿åaÙqÔ·Ö�w�sy��~]ÙqÚs�{}Ô�znv/×¾~��]sk{�Ùñm=w|Þ¤ÚÚs�{�Ô}Þ é
ä¾Ùq��lt~ Ü�sÙ=Ø]s�{}Õ�m^{�ß=zro=s�w�{�Õ]s+vyÙ=w|{3ÙqÝ�{}Õ]sÙqÖ�{}zrÚ·m/l5{}Ô}m�� s�v�à
{}ÙqÔ}Þ`ÜGs�{ ä¾sys�Øñm/Ø¤Þ
{ ä¾Ù
w {�m^{}s�w�x Ó Ø�vys+m/ßLm/ztØO×Y~�sy{�s�Ô�ÚztØ]zrØ�ß
{}Õ]znwÚ�sy{�Ô}ztvkznw·mqwÕ�mqÔ}~�mqww�ÙqltoLztØ]ß {�Õ]s�Ù=Ô�ztßqztØ�mql¹Ö]Ô}ÙqÜ�lrs�Úkx
ã$Õ¤��w�×Gä¹skåam/Ø�~�Ù/{}Õ]syÔ�w é m/Ô}s�Ý�ÙqÔ�v�s;~k{�ÙQ��w|s�w�ztÚ�Ö�lrs,Ú�sy{�Ô}ztv�wy×
Õ�ÙqÖ]ztØ]ß�{�Õ�m/{�v�Ù=ØLo=syÔ}ßqs�Ø�v�s�ä*zrltlOÜGsTÝamqw|{!zrØ�Ö]Ô�mqv�{�znv�sqx
 m=w|s;~ÆÙ=Ø&Ù=�]ÔÅÖ]Ô}syltzrÚztØ�m/Ô}ÞAs�÷�ÖGsyÔ}zrÚs�Ø={�wy×·zr{.m/Ö�Ö�s;m/Ô�w

{}Õ�m^{ �
� ã*wkÚzrß=Õ={kÜ�s Ýamqw|{�s�ÔQ{}Õ�m/ØÁ{�Õ]s°Ü�m=w|znv
Ö]Ô}ÙqÜ�m/Ü]ztlrznw|à
{}ztv�Ô}Ù=mq~]ÚmqÖ+m/Ö]Ö�Ô�ÙLmqv�ÕÝ�ÙqÔ¾Õ]Ù=lrÙ=Ø]ÙqÚznv*Ö]lnm/Ø]Ø]ztØ]ß�Ö]Ô}ÙqÜ]ltsyÚ·w�x
þ�Ø �
� ã�znw�ÚztØ]ztÚmql�ztØ·{}Õ]s�w�syØ�w�s!{}Õ�m^{¾z´{$znw�m/ltä$mpÞ¤w�m/Ü]lts!{}Ù
Ú·mqzrØL{}mqzrØ·m�vyÙqØ]Ø]s;vd{}s�~w {}Ô���vd{���Ô�s*ä*zr{�Õ{}Õ]s*Ý�syä¾s�w|{�s�~]ßqs�w�x5þ
Ö�Ô�Ù=Ü�m/Ü]ztltztw|{�znvQÔ}Ù=m=~�Ú·m/ÖñÙqÝ�{�s�Ø±w���ú>syÔ�w,ztØ.ÖGsyÔ�Ý�ÙqÔ}Ú·m/Ø�vysWÜGs�à
v�m/��w�s`Ú·mqØLÞ�sy÷L{}Ô}m.s�~�ß=s�wkm/Ô}s`ß=syØ]s�Ô}m/{�s�~�ztØÂm/{|{}syÚÖ�{}wW{}Ù
Ý�Ù=Ô�ÚümñvyÙqØ]Ø�s�vd{}s�~³Ô}Ù=m=~�Ú·m/ÖOx �
� ã*wWmqltw�ÙñÔ}s�òL�]ztÔ�s
w�zrØ�ßqlts
Ø�s�m/Ô}s�w|{|à�Ø]s�zrß=ÕLÜGÙqÔWò=��syÔ}zrs;wy×*ä*Õ]ztlts`Ö]Ô}ÙqÜ�mqÜ]ztlrznw {}ztv`Ô�ÙLmq~�Ú·mqÖ�w
Ô}s�òL�]ztÔ}s3ÚÙ=Ô�syàIsy÷¤ÖGsyØ�w|ztoqs y à�Ø]s�mqÔ�s;w {$Ø]syztßqÕ¤ÜGÙqÔ*òL�]syÔ}zts�w�xd�¹Ùqlrà
ltznw|ztÙqØ~�s�{}s�v�{�ztÙqØztw�m�î=syÞ�ÜGÙ/{�{�ltsyØ]s;v�î�ztØ�Ö�m^{�ÕÖ]lnm/Ø�Ø]zrØ�ß�×qmqØ�~
mqØ ��� ã�znw v�ÙqÚÖ]lts�{}syltÞ�w��]z´{}s�~�Ý�ÙqÔ ztØ�v�Ô}syÚs�Ø={�m/l]vyÙqltlrznw|ztÙqØ�~�s�à
{}s�v�{�ztÙqØOx�ã$Õ]znw!mqlrltÙ^ä!w¹{�Õ]sTÝam=w {}s�w|{|àºmpopmqlrznm/Ü�lrsTv�Ù=lrltztw�ztÙqØ�~�s�{}s�vdà
{}zrÙ=Ø.m/ltßqÙ=Ô�zr{�Õ�Úw�{�Ù`ÜGsWmqÖ]Ö]ltzrs;~°Ý�ÙqÔ�syo=syÔ}Þ v�Ù=lrltznw|ztÙqØñv�Õ]s;v�î>x
ý ÙqÔ�{�Õ]s;w|s!Ô}s�m=w|Ù=Ø�w�mqØ�~Ùq�]Ô�Ö]Ô�s�lrztÚzrØ�m/Ô}Þ,Ù=Ü�w|s�Ô�o^m/{�ztÙqØ�wVÝ�Ô}ÙqÚ
sy÷�Ö�s�Ô�ztÚsyØL{}m/{�ztÙqØO×�zr{!m/Ö]ÖGs�mqÔ}w¹{�Õ�m^{!m/Ø �
� ã¾àIÜ�mqw�s�~+Ö�ltmqØ]Ø]syÔ
Ú·mpÞñß=syØ]s�Ô}mqlrltÞñÞ¤ztsyln~�ÜGs�{�{�s�ÔQÖGsyÔ�Ý�ÙqÔ}ÚmqØ�v�sk{}Õ�m/Ø³m°Ö]Ô}ÙqÜ�m/à
Ü�zrltztw|{�znv*Ô}Ù=m=~�Ú·m/Ö�à�Ü�mqw�s�~�Ö]lnm/Ø]Ø]s�Ô	�=Õ]Ù^ä¾syoqs�Ô�×qz´{�znw�~�zrí+v��]lr{�{}Ù
Ú·mqîqs�mv�ÙqØ�v�lt��w|ztoqsTsy÷¤ÖGsyÔ}ztÚ�s�ØL{}m/lOvyÙqÚÖ�mqÔ�znw|Ù=ØOx

�
�*���5�f���9�
��syoqs�Ô}mql¹ztltlr��w|{�Ô�m^{}zro=sWsy÷]m/ÚÖ]lts�w�Ù/Ý �
� ã*w·m/Ô}sQÖ]Ô}s�w�syØL{�s;~

Õ�syÔ}sqx5ûºØQm�Ô}sylnm^{}s�~Ö�mqÖ�s�Ô æ87�è ×Lä¾s�Ö�Ô�s;w|s�Ø={}s�~·mqØ �
� ã¾àIÜ�m=w|s;~
Ö�ltmqØ]Ø]syÔV{}Õ�m^{�vyÙqÚÖ]��{}s�w5v�Ù=lrltztw�ztÙqØ�àIÝ�Ô�s�s¹î¤ztØ]Ù�~�Þ¤Ø�m/Úznv�{}Ô}m�� s�v�à
{}ÙqÔ}zrs;w¾{�Õ�m/{ â Ô}s�{}Õ]Ô}��w {}syÔ�w¾Ý�ÙqÔ*Õ]Ù^o=syÔ�v�Ô�m^Ý�{�w¾mqØ�~kw�m/{�syltltz´{}s�w*ztØ
vylr�]{|{�s�Ô�s;~ çqÿ mqØ�~ ùqÿ syØ¤o¤ztÔ�Ù=Ø]ÚsyØL{}w�x ��syoqs�Ô}mql�vyÙqÚÖ]ltztv�m^{�s;~

ù

Figure 3-3: Rapidly exploring Random Trees (RRTs) in practice: An RRT uniformly
exploring a 2D configuration space of a robot (adapted from (Lavalle, 1998)).

many degrees of freedom. They can efficiently search high dimensional and non-

convex spaces.

RRTs work by incrementally building a tree from the start point until the tree

reaches the end point. Thus, RRTs search for a path from start to end by expanding

a search tree in the following manner (Akkaya):

1. Identify start and end configurations for the robot.

2. Initialize the tree with start as its root.

3. Randomly pick a point in the robot configuration space. Every point in space

has equal probability of being chosen.

4. Identify the vertex in the tree that is closest to the newly generated point in 3.

5. Generate a new tree branch from this vertex by moving a certain fraction of the

displacement towards the point generated in 3.

6. This new branch is added to the tree and the algorithm goes back to step 3

until the tree reaches end.

The reader is referred to figure (3-3) for a depiction of RRTs exploring the 2-D

workspace of a robot.

36

Advantages of RRTs

1. The expansion of RRTs is heavily biased towards unexplored portions of the

search space. Thus, RRTs explore the entire search space thoroughly and effi-

ciently (see figure (3-3)).

2. The RRT algorithm is very simple to implement, even for large degree of system

configuration spaces.

3. The major advantage of RRTs is their ability to sample a large search space in

a relatively short time. Thus, RRTs can be used to quickly generate feasible

robotic paths.

However, the drawback of RRTs is that the path generated may not be optimal. In

fact, owing to the probabilistic nature of the algorithm, different paths are generated

for every search. Therefore, an RRT alone is insufficient to completely solve a planning

problem. It can be a component of other planning algorithms (LaValle), and can be

used to reduce the search space. The second limitation is that the algorithm searches

for the nearest neighbor vertex to every generated point in space. This can potentially

be expensive. We shall further discuss the applications of RRTs in some robotic and

underwater path planning algorithms later in this chapter.

3.1.3 Robotic Path Planning Algorithms

Robot motion planning and control is the problem of automatic construction of robot

control strategies from task specifications given in high level, human-like language

(Belta et al., 2007). A common approach to this problem is based on a three-level

process:

1. At the first level, the obstacle-free configuration space of the robot is partitioned

into cells and adjacency relations between cells is determined. The result is

presented in the form of a graph. (see §(3.1.1)).

2. At the second level, a path on this graph is chosen, for example, using an opti-

mality criterion penalizing the distance traveled, and/or proximity to obstacles.

37

3. At the third level, an optimization is performed over all the possible trajectories

generated in step 2. Robotic controllers are constructed so that this optimal

trajectory is followed.

Traditionally, robotic path planning has focussed on generating safe trajectories

for the robot, away from hazardous regions and obstacles. Motion planning algo-

rithms for multi-degree freedom systems such as robotic arms have also been exten-

sively studied. Several approaches for solving these problems have been proposed in

literature. In addition, cooperative control and coordinated motion of multiple robots

have also received a lot of attention. Here, coordination is either in the form of main-

taining specific geometric shapes (Leonard and Fiorelli, 2001) or obtaining maximum

information from an unknown environment (Bahr et al., 2009, Davis et al., 2009).

Even though many prior works have addressed general robotic path planning and its

variants, path planning through time dependent fields has received far lesser atten-

tion. This task is challenging because the currents directly affect the displacement of

the vehicle, making the cost of movement variable, and anisotropic at different points

in space (Isern-Gonzlez et al., 2012).

The objective of robotic path planning is different from that of underwater path

planning. Robotic motion planning mainly focuses on obstacle avoidance. One of the

challenges in these problems is the potentially large number of degrees of freedom of

the robot. Due to this, the configuration space of robotic trajectories is very large.

There is strong evidence that the solution requires exponential time in the number

of dimensions of this configuration space (Barraquand et al., 1996). Reif (1979) has

shown that robot path planning is a hard problem. For example, consider the task

of navigating a robot arm from one configuration to another. The number of degrees

of freedom of the arm is at least four. For more complicated systems, the number of

degrees of freedom can be as large as twenty. In fact, RRTs are the only algorithms

which are capable of handling such high dimensional problems, till date (Barraquand

and Latombe, 1991), since optimality is extremely difficult to achieve in these cases.

Robot motion may also be highly non-holonomic. This means that the number

of variables used to describe the configuration of the robot may be smaller than

38

the number of degrees of freedom. Other complexities in robotic path planning can

include field mapping, uncertainties, movable objects and moving obstacles, limited

field visibility and other dynamic constraints (Latombe, 1991). Every extension to

the basic problem adds in computational complexity (Latombe, 1995). For instance,

allowing moving obstacles makes the problem exponential in the number of moving

obstacles (Canny, 1988, Reif and Sharir, 1994). Uncertainties in motion and sensing

make the problem exponential in the complexity of robot environment (Canny, 1988).

Therefore, the requirement of optimality in a robotic path planning algorithm is

typically relaxed and replaced by an ability to quickly generate feasible trajectories.

Most of the algorithms for robotic path planning have been developed by extending

ideas of dynamic programming based methods such as Dijkstra’s algorithm and the A∗

algorithm (Rhoads et al., 2010). Most such algorithms are not applicable for dynamic

flow environments either because they often lead to infeasible solutions or due to their

enormous computational cost when the environment becomes complex. In addition,

these algorithms compute discrete paths, i.e. on a grid based representation of the

environment. Hence, when extended to a continuous setting, the paths do not remain

optimal. Finally, there is a possibility for the algorithms to be stuck in a local optima

and not yield globally optimal, continuous trajectories.

A randomized approach to path planning for obstacle avoidance was first devel-

oped by Lavalle (1998) (see also Kuffner and LaValle (2000)). Their seminal papers

describe the use of Rapidly exploring Random Trees (RRTs) in path planning. As

described in §(3.1.2), RRTs use ideas of random sampling and probabilistic complete-

ness to explore the workspace of the robot. They have formed the basis of a variety

of path planning algorithms developed in recent years (Yang et al., 2010, Bruce and

Veloso, 2002, Melchior and Simmons, 2007, Jaillet et al., 2010, Karaman and Frazzoli,

2011). They are easy to implement and can quickly generate feasible trajectories. As

noted earlier, the main advantage of RRTs is their ability to sample a high dimen-

sional space in a short time. This feature however, is not as helpful in the context of

long range underwater glider path planning due to the low dimensional nature of the

problem.

39

We do not aim to provide a comprehensive overview of robotic path planning algo-

rithms. We only seek to highlight the differences between the robotic path planning

and underwater path planning. Some methods of robotic path planning have been

described because of their extensions to underwater path planning.

3.2 Underwater Path Planning

Underwater path planning focuses on AUVs, such as gliders. These autonomous ve-

hicles execute long range sampling missions (order of days) and hence, it becomes

important to optimize performance criteria such as energy spent by the AUV or the

time of travel, in addition to generating safe and collision free trajectories. The num-

ber of degrees of freedom for long range AUVs is two, if motion in vertical direction is

neglected. This is because, for long range path planning, the motion of the robot can

be considered completely holonomic. If vertical motion is considered, the number of

degrees of freedom increases to 3. Thus, the challenge of underwater path planning

does not arise from the large dimensionality of the configuration space. The difficulty

here, arises due to the following factors:

1. The motion of the vehicle is continuous and is governed by equation (2.1).

Hence, the displacement of the vehicle is affected by environmental factors such

as the flow-field. Consequently, its trajectory p(t) is different from its heading

direction (ĥ(t)).

2. The number of control choices available to the vehicle at each point in its tra-

jectory is infinite. Thus, generation of feasible tracks itself is a challenging

problem.

3. The flow-field (V(x, t)) experienced by the vehicle can be strong, with large

spatio-temporal variability.

4. Underwater path planning is usually based on optimizing travel time, energy or

information gained by the vehicle.

40

In what follows, we describe some relevant literature on underwater path plan-

ning. Most methods for underwater path planning either fail when the environment

becomes complex, or are computationally expensive thus making them unsuitable for

real time applications with large number of vehicles. Well established methods in

robotic path planning applications have not been designed to handle situations with

dynamic environments, such as flow-fields. A recent trend in research on path plan-

ning methods has been to develop algorithms which use the dynamic nature of the

environment to reduce the energy expended by the vehicle. A closely related problem

is to obtain paths which minimize the total travel time of the vehicle when propelled

at nominal speed.

Alvarez et al. (2004) propose a genetic algorithm based on Darwinian theories of

natural selection for energy optimal path planning in strong ocean currents. A set

of feasible paths is generated and these paths are iteratively transformed by using

genetic operators like crossover and mutation. The path that minimizes a suitable

cost function is chosen. This method can however, lead to suboptimal solutions due

to the high dimensionality of the optimization problem.

In (Yilmaz et al., 2008), a path planning scheme based on mixed integer linear

programming (MILP) is presented. Their work focuses on the problem of adaptive

sampling in the ocean. Adaptive sampling refers to the task of predicting the types

and locations of ocean measurements that would be most useful to collect (Lermu-

siaux, 2007). The usefulness of measurements is governed by an objective function

and the path planning algorithm finds a vehicle path along which the line integral

of this objective function is optimized. Physical constraints on vehicle motion and

obstacle avoidance are translated as linear constraints in the optimization problem.

Even though additional constraints on vehicle motion are easily incorporated, the

computational effort required can quickly escalate due to the NP-hard nature of the

problem, even though the uncertainty fields used in the cost function are assumed

fixed and ocean currents are ignored. The posed problem is NP-hard even though

uncertainty fields are assumed to be stationary. However, the biggest limitation of

their method is that the effect of ocean currents on vehicle motion is ignored. Thus,

41

the method needs to be modified to incorporate the effect of flow-fields before it can

be applied for gliders.

Several researchers have attempted to address underwater path planning using

graph search techniques. As explained in §(3.1.1), this involves discretizing the

workspace of the robot into a grid and restricting the movement of the vehicle onto

this fixed grid. Dynamic programming can be employed as a graph-searching proce-

dure when a cost associated to each arc of the graph is known (Bryson and Ho, 1975).

While dynamic programming produces the optimal solution, the computational time

needed is proportional to the number of nodes in the graph, which in turn, is depen-

dent on the gridding (finer, coarser) of the solution space and increases geometrically

with the dimension of the solution space. In the case of 2-D AUV navigation in

space- and time-varying environments, the solution space is three-dimensional. Here,

dynamic programming may not be computationally feasible, especially in cases where

time-optimal paths are desired.

Instead of dynamic programming, A∗ method can also be used for the graph

search. Although in its original version, A∗ deals with stationary fields, it can be

modified to account for the effects of velocity fields around the vehicle. Applications

of the A∗ search scheme for path planning of AUVs in the ocean is described by Garau

et al. (2005) and also by Carroll et al. (1992). In their work, energy optimal paths

are calculated in a simulated ocean environment with high spatial variability in the

form of different types of eddies. The effect of different heuristic functions (h(x)) on

the performance of the A∗ scheme is analyzed. The main drawback of their approach

is that the ocean currents are assumed to be steady. For other applications of A*

search in AUV path planning using real ocean data, we refer the reader to (Rao and

Williams, 2009, Garau et al., 2009).

A major difficulty in the A∗ approach is in defining a heuristic that works for all

types of flow-fields. The computational time of the A∗ method is highly dependent on

the quality of the heuristic cost function (see §(3.1.1)). Some choices of the heuristic

may lead to extremely large computational times due to the large size of the open list

(see §(3.1.1)). Defining an appropriate heuristic is thus, very crucial for the success

42

of the A∗ algorithm. In cases where time optimal vehicle paths are desired, the cost

function of the A∗ algorithm is expressed in terms of time of travel. In many cases,

the only obvious choice of an admissible heuristic function is

h(x) =
d(x,xf)

maxx,t |V(x, t)|+ F
(3.2)

Here, d(x,xf) is the Euclidean distance between the point x and the end point xf .

maxx,t |V(x, t)| is the upper limit on the magnitude of the flow-field. This choice of

h(x) is admissible because it always underestimates the time taken by the vehicle to

go from x to xf . Therefore, this heuristic will guarantee a grid based optimal path.

However, this h(x) may be too conservative in practice. It will be particularly bad

when the flow field is very strong, but lasts for a short time. In such cases, the A∗

algorithm approaches Dijkstra’s algorithm with this heuristic function (Yigit, 2011).

Hence, the algorithm may take a lot of time to compute the optimal solution.

A∗ method performs reasonably well for simple flow-fields, but is not as good when

the flow becomes complex. This occurs because A∗ uses a grid based representation

of the domain and the vehicle trajectory may not always pass through the grid points.

To overcome this, non-uniform grids need to be used. Since there is no way of know-

ing which grid to use beforehand, this method needs several iterations to compute the

correct solution. In other words, the inaccuracy arises because of the fixed grid repre-

sentation. Finally, the computational time for the A* method increases significantly

when the flow field becomes time dependent because the algorithm requires an addi-

tional search space in this case. To be guaranteed an optimal solution, no branches

of the graph search can be trimmed, which makes the worst-case computational time

exponential in the size of the search space. We shall discuss the computational cost

of the A∗ method in detail in §(6.6).

In a related work, Bakolas and Tsiotras (2010a) describe an approximate solution

to the steady Zermelo navigation problem by reducing the continuous time problem

into a shortest path problem over a directed graph. The domain is divided into sub-

polygons and the velocity field is averaged over these polygonal regions, reducing the

43

problem to a finite dimensional search. The existence of such polygonal subdivisions

is assumed to be known. Then a representative point on each polygonal region is

computed and shortest paths to adjacent representative points are joined to obtain

the complete trajectory. Path planning for unmanned aerial vehicles in steady winds,

with a specified limit on their turning rate is discussed in (Techy and Woolsey, 2009).

Several authors have also pursued the idea of Voronoi diagrams to solve the ob-

stacle avoidance problem with generation of safe trajectories for vehicles. In (Garrido

et al., 2006), a Voronoi diagram of the environment is constructed and fast marching

methods are then used to compute smooth and safe trajectories. Bakolas and Tsio-

tras (2010b) solve the same problem, but consider the effect of flow fields. Nishida

et al. (2007) use a particle tracking method to compute a time dependent Voronoi

diagram. However, particle tracking can lead to unresolved contours and overlapping

boundaries of the Voronoi. To overcome this, they propose an independent particle

tracking method that handle singularities in the Voronoi edges.

As described in §(3.1.2), Rapidly exploring Random Trees (RRTs) have been

widely used in robotic path planning and they perform particularly well in situations

with dynamic obstacles. This randomized approach to path planning has also been

used for underwater vehicles to obtain obstacle free paths (Tan et al., 2004). Rao and

Williams (2009) have used RRTs for glider path planning in dynamic flow-fields. It is

interesting to note that the RRT growth is inherently biased in the direction of ocean

currents. In other words, since the kinematics of the vehicle motion equation (2.1) is

respected, the growth of the RRT branches will be biased along the direction of the

flow-fields, especially when they are strong. Using this idea, several feasible tracks are

generated and the one that minimizes the total time or energy is chosen (see figure

(3-4a)). Though continuous tracks are generated, they are still not optimal because

the entire search space is not explored.

The results of the RRT approach can be improved by heuristically biasing the

growth of RRTs, as shown by Rao and Williams (2009). They describe the usage

of a biased RRT algorithm named Iterative k-Nearest RRT (IkRRT), originally pro-

posed by Urmson and Simmons (2003). This bias ensures that the tree growth is

44

These are then considered as connection points between

the two trees.

To simplify the graph, branches of nodes that do not

lead to a connection point are ‘pruned’. This is achieved

by searching for each node which has no adjoining

‘daughter nodes’ (‘branch end’). The algorithm then

removes nodes from the tree in reverse until it reaches a

node with multiple connections (‘split branch’). By

repeating this process for each ‘branch end’, the

unconnected nodes are removed, and we are left with a

network of nodes, each with a position and pointers to its

connected nodes.

This non-uniform network is then searched for an

optimal path using the same A* approach as before. Since

the trees are generated with propagation over fixed

timestep Δ=, the time cost between successive nodes is

constant at =4>?? = Δ=. However, the time heuristic has to

be adjusted slightly because the previous heuristic is only

admissible over an 8-connected grid. Instead, we now use

the Euclidean distance given in Equation 12.

 O>PQ = B(�K − �%)< + (K − %)< (14)

The velocity estimate is the same as that for the grid case,

and the time heuristic is again given by ℎ2(�) = K[\]^
([\]^

.

The energy heuristic can then be found from Equation 11.

4.2 Biasing RRT growth

Improved results can be obtained by heuristically biasing

the growth of the RRTs.

The probability distribution for any RRT

implementation is a critical aspect [Simmons & Urmson,

2003], even for the uniform distribution of the original

case. The growth of the tree needs to be extensive enough

to ensure optimal solutions are not overlooked, but needs

to be small enough to avoid expanding into unnecessary

areas. This is largely satisfied by applying the adjusted

Iterative k-Nearest RRT (IkRRT) algorithm [Simmons &

Urmson, 2003] which weights the Voronoi regions of

each node by some heuristic cost, and adjusts the RRT

implementation to consider the k-nearest neighbours

rather than a single neighbour.

The cost of each node in the tree is denoted as the

energy cost heuristic, the sum of Equations 10 and 11.

When selecting an RRT node to expand, the algorithm

finds the k-nearest neighbours to nrstu, sorts them by

node cost, and iterates through each node starting with the

lowest cost node. A node is selected probabilistically,

such that low cost nodes are favoured over high cost

nodes [Simmons & Urmson, 2003]. The comparative

results with and without energy-based cost biasing are

shown in Figure 6.

As mentioned, the path is naturally biased towards

following ocean currents. To ensure the path does attempt

to reach the destination, a 20% destination bias is applied.

In other words, every fifth nrstu on average is the

destination node (for the forward tree) and the start node

(for the backward tree).

Figure 6: RRT growth without biasing (top) and IkRRT

heuristic cost biasing (bottom)

Rapid changes in path heading are undesirable as

they create a fluctuating path which sacrifices time and

energy efficiency. Over smaller distance scales, the

vehicle model rectifies this, only allowing smooth turns to

change heading. However, over long ranges, other

methods need to be implemented to produce sufficiently

smooth paths. In the current implementation, this is

achieved by limiting the change in .(between successive

nodes to ±20°. This value was selected because it

sufficiently removed rapid fluctuations but did not

excessively constrain the growth of the path.

5 Results

Results have been obtained with a fixed RRT size of

10000 nodes over both trees. However, since RRTs are

probabilistic, they are susceptible to variation over

multiple runs. Preliminary results suggest a maximum

variation of approximately 9% in energy cost over 5

consecutive runs (Figure 8). This inconsistency will need

to be considered in future work, but can be somewhat

alleviated by finding the best RRT path over multiple

runs of the algorithm. Given the long timescale of glider

missions, computation time is not a driving factor, and the

algorithm can easily be run multiple times to yield

improved results. The results shown here are the best of

five consecutive runs.

Australasian Conference on Robotics and Automation (ACRA), December 2-4, 2009, Sydney, Australia

(a) No biasing

These are then considered as connection points between

the two trees.

To simplify the graph, branches of nodes that do not

lead to a connection point are ‘pruned’. This is achieved

by searching for each node which has no adjoining

‘daughter nodes’ (‘branch end’). The algorithm then

removes nodes from the tree in reverse until it reaches a

node with multiple connections (‘split branch’). By

repeating this process for each ‘branch end’, the

unconnected nodes are removed, and we are left with a

network of nodes, each with a position and pointers to its

connected nodes.

This non-uniform network is then searched for an

optimal path using the same A* approach as before. Since

the trees are generated with propagation over fixed

timestep Δ=, the time cost between successive nodes is

constant at =4>?? = Δ=. However, the time heuristic has to

be adjusted slightly because the previous heuristic is only

admissible over an 8-connected grid. Instead, we now use

the Euclidean distance given in Equation 12.

 O>PQ = B(�K − �%)< + (K − %)< (14)

The velocity estimate is the same as that for the grid case,

and the time heuristic is again given by ℎ2(�) = K[\]^
([\]^

.

The energy heuristic can then be found from Equation 11.

4.2 Biasing RRT growth

Improved results can be obtained by heuristically biasing

the growth of the RRTs.

The probability distribution for any RRT

implementation is a critical aspect [Simmons & Urmson,

2003], even for the uniform distribution of the original

case. The growth of the tree needs to be extensive enough

to ensure optimal solutions are not overlooked, but needs

to be small enough to avoid expanding into unnecessary

areas. This is largely satisfied by applying the adjusted

Iterative k-Nearest RRT (IkRRT) algorithm [Simmons &

Urmson, 2003] which weights the Voronoi regions of

each node by some heuristic cost, and adjusts the RRT

implementation to consider the k-nearest neighbours

rather than a single neighbour.

The cost of each node in the tree is denoted as the

energy cost heuristic, the sum of Equations 10 and 11.

When selecting an RRT node to expand, the algorithm

finds the k-nearest neighbours to nrstu, sorts them by

node cost, and iterates through each node starting with the

lowest cost node. A node is selected probabilistically,

such that low cost nodes are favoured over high cost

nodes [Simmons & Urmson, 2003]. The comparative

results with and without energy-based cost biasing are

shown in Figure 6.

As mentioned, the path is naturally biased towards

following ocean currents. To ensure the path does attempt

to reach the destination, a 20% destination bias is applied.

In other words, every fifth nrstu on average is the

destination node (for the forward tree) and the start node

(for the backward tree).

Figure 6: RRT growth without biasing (top) and IkRRT

heuristic cost biasing (bottom)

Rapid changes in path heading are undesirable as

they create a fluctuating path which sacrifices time and

energy efficiency. Over smaller distance scales, the

vehicle model rectifies this, only allowing smooth turns to

change heading. However, over long ranges, other

methods need to be implemented to produce sufficiently

smooth paths. In the current implementation, this is

achieved by limiting the change in .(between successive

nodes to ±20°. This value was selected because it

sufficiently removed rapid fluctuations but did not

excessively constrain the growth of the path.

5 Results

Results have been obtained with a fixed RRT size of

10000 nodes over both trees. However, since RRTs are

probabilistic, they are susceptible to variation over

multiple runs. Preliminary results suggest a maximum

variation of approximately 9% in energy cost over 5

consecutive runs (Figure 8). This inconsistency will need

to be considered in future work, but can be somewhat

alleviated by finding the best RRT path over multiple

runs of the algorithm. Given the long timescale of glider

missions, computation time is not a driving factor, and the

algorithm can easily be run multiple times to yield

improved results. The results shown here are the best of

five consecutive runs.

Australasian Conference on Robotics and Automation (ACRA), December 2-4, 2009, Sydney, Australia

(b) Biasing included

Figure 3-4: Growth of RRTs in a real ocean velocity field: (a) When no external
biasing is applied to the RRTs and (b) With an additional biasing (for details, see
(Rao and Williams, 2009)) (figure adapted from (Rao and Williams, 2009)).

extensive enough to ensure optimal solutions are not overlooked, while being small

enough to avoid expansion into unnecessary areas (for implementation details, see

(Rao and Williams, 2009)). The RRT obtained after implementing this heuristic bias

is depicted in figure (3-4b). Since RRTs are based on random sampling, different

planning runs will lead to different feasible paths. In figure (3-5), we show the fea-

sible trajectories computed using the above biasing rule. Thus, RRTs show a lot of

promise in generating feasible glider trajectories in dynamic currents.

Another class of robotic collision avoidance algorithms that use potential field

techniques was introduced by Warren (1990). Since then, it has been widely used

by the robotics community and many problem specific developments have been made

to this algorithm (see Barraquand et al. (1992)). The key idea of this approach

is to introduce an artificial potential field on the obstacles that prevents vehicles

from getting very close to them, thus, generating safe paths. The algorithm has

the advantage of being inexpensive, thus allowing for easy real-time computations to

adapt the vehicle path. However, it has the drawback of producing locally optimal

solutions. Potential fields have also been used for underwater path planning in (Witt

and Dunbabin, 2008) with a cost function measuring the total drag experienced by

45

Figure 8: Path variation over multiple runs

To evaluate the performance of the current

algorithms, results are compared with those for a basic

heading controller, where the vehicle heading is set to the

destination at every point on the path. Results in Figure 7

show that both the grid and RRT based methods are

successful in producing feasible paths through the field.

Over the three missions A, B and C, the energy

consumption has been computed as the sum of Equation

10 over all path nodes. The results are shown in Table 1.

Mission Energy Cost (kJ)

Heading

controller

RRT Grid

A 289.1 263.7 267.8

B N/A 417.5 432.9

C N/A 475.5 431.7

Table 1: Energy cost results

Mission A represents a simple planning scenario for

a short distance mission. In this case the destination is

downstream from the start, and the direct method yields

satisfactory results. However, since it does not consider

path costs, its energy expenditure is greater than both

RRT and grid paths. The RRT path yields a marginal 2%

improvement over the grid-based path.

Mission B is a more difficult mission as it spans

over a larger range and has shallow regions close to the

destination point. For this less simplistic planning

scenario, a heading controller is no longer sufficient to

reach the destination. Instead, the vehicle reaches a steady

state position where its propulsion cannot overcome

ocean currents. The drawbacks of the grid discretisation

are also evident, as the grid path cannot avoid the

adjacent shallow region due to lack of discretisation

freedom. On the other hand, the RRT path travels around

the shallow areas and offers a 6% energy improvement

over the grid path.

However, for a highly difficult mission against

strong ocean currents (Mission C), the grid path

consumes 9% less energy than the RRT path. This

scenario reveals some potential downsides of the RRT

approach. With RRTs, paths that are against the Voronoi

bias (against ocean currents) are less likely to be found,

and the final path can fluctuate unnecessarily due to its

probabilistic nature.

6 Conclusions and Future Work

This paper discusses the application of Rapidly-Exploring

Random Trees to underwater glider path planning in an

ocean current field. Biasing the growth of these trees

allows us to generate a network which provides smoother

paths than typical grid partitioned methods.

Early results suggest that RRTs have strong

potential in underwater planning applications because of

the Voronoi bias, which innately drives the trees in the

direction of ocean currents. This can then be exploited to

generate paths that make full use of the ocean current

velocity advantage. A comparison between RRT and grid

techniques indicates that both methods may be suitable

for glider path planning in different mission scenarios.

RRT methods can overcome the drawbacks in the grid

discretisation and thereby avoid high energy shallow

regions, while the grid based planner can handle highly

difficult missions against strong ocean currents, where

RRTs may struggle to find path solutions against the

Voronoi bias.

However, one point to note is that the grid paths are

optimal, whereas the RRT paths could potentially be

improved if the RRT growth is improved accordingly.

Thus, future work will examine additional biasing

methods by which improved RRT paths can be generated.

Figure 7: Path results for mission scenarios A, B and C (left to right)

Australasian Conference on Robotics and Automation (ACRA), December 2-4, 2009, Sydney, Australia

Figure 3-5: Multiple feasible vehicle tracks obtained from using the IkRRT biasing
rule. The black circle and the black cross indicate the start point and the end point
respectively (for details, see (Rao and Williams, 2009)) (figure adapted from (Rao
and Williams, 2009)).

the vehicle, total travel time and any obstacles in the field. After generating a feasible

set of tracks, an optimization is performed on these tracks.

Path planning for underwater gliders using a variational calculus approach is de-

scribed by (Davis et al., 2009). They derive ‘ray’ equations for routing gliders through

steady velocity fields. Under these restrictions, their method is similar to ray trac-

ing for non-dispersive waves. Governing equations for minimal time routes in steady

flows are derived and related to Snell’s law in optics. They use a ‘shooting method’

to solve the governing ray equations. This entails repeatedly changing the initial

conditions of the equation and solving the equation until the final conditions have

been satisfied. They also discuss routing strategies for multiple underwater gliders in

order to maximize the mapping skill over the entire field. However, the possibility of

time varying flow-fields is not discussed, even though their work is directed towards

practical ocean applications.

Jarvis and Byrne (1986) introduce a wavefront expansion algorithm for obstacle

avoidance using ideas of the ‘distance transform’ methodology. Distance transforms

have been used for path planning in stationary fields. This approach propagates a

distance wave through the domain, from start to goal. The shortest path to the goal

46

is then traced by following the steepest descent. A comparison of A∗ search, RRTs

and distance transforms is presented in (Jarvis, 2006).

Tsitsiklis (1995) introduces a first order ‘fast marching’ scheme. This scheme

solves the discretized Hamilton-Jacobi equation for a trajectory optimization problem

in steady fields (see also (Bryson and Ho, 1975)). This algorithm obtains the viscos-

ity solution through a control-theory based optimality criterion. The fast marching

algorithm for continuous trajectory optimization is similar to a continuous version of

Dijkstra’s algorithm. We describe fast marching methods in detail, in §(4.3.2). Fast

marching methods were solved using a higher order numerical scheme by Sethian

(1999a). Since this development, fast marching methods have found several appli-

cations in path planning in both general robotic applications and underwater ap-

plications. The method involves solving an Eikonal equation (Sethian, 1999b) to

isotropically compute the arrival time function at different points. The optimal path

is then computed by a gradient descent on this arrival time field.

A continuous approach to path planning in a field of currents is presented by

Petres et al. (2007). They describe a fast marching algorithm for path planning using

anisotropic cost functions. Due to the dynamic nature of ocean currents, isotropic

cost functions cannot be used. Directional constraints such as those enforced by ocean

currents are taken into account using these cost functions. The anisotropy is enforced

by introducing a variable speed of propagation at different parts of the domain. A

drawback of this scheme is that it only accommodates linear energy cost functions.

Soulignac et al. (2009) improve the scheme proposed by Petres et al. (2007) to

yield better results for vehicle motion in such strong currents. The technique uses a

‘symbolic wavefront expansion’ to calculate shortest time paths and also determines

the departure time of the vehicle from the starting point. More recently, Soulignac

(2011) introduces a ‘sliding wavefront expansion’ technique for path planning in strong

currents. The algorithm combines appropriate cost functions with continuous opti-

mization techniques to guarantee the existence of a feasible path. Other references for

path planning using a wavefront expansion are (Thompson et al., 2010, 2009). Kruger

et al. (2007) also use a similar approach to minimize the total energy spent by the

47

AUV. They discuss path parameterizations, suitable energy based cost functions and

optimization techniques to enable efficient generation of optimal paths.

More recently, Choi and How (2010) presented an algorithm for continuous tra-

jectory planning of mobile sensors to reduce uncertainty in some quantities of interest

in the future. The objective reward criterion used is the mutual information between

the measurement along the continuous path and the verification variables at a future

verification time. Vehicle trajectories are predicted based on the maximization of this

reward criterion. The reader is referred to (Binney et al., 2010, Smith et al., 2010) and

references therein for further works on path planning for information maximization.

Zhang et al. (2008) use Lagrangian Coherent Structures (LCS) to compute near

optimal vehicle tracks for underwater gliders. The paper describes a control theory

based method that focuses on generation of nearly optimal trajectories based on the

B-spline approach. B-splines are a type of dynamic splines and are useful methods

to generate feasible solutions, especially for problems pertaining to trajectory gener-

ation in control theory. Another control theoretic work that uses LCS for AUV path

planning is (Inanc et al., 2005). The path planning problem is formulated as a stan-

dard constrained optimal control problem. Near-optimal solutions are obtained by

converting the problem into a nonlinear optimization problem and solving it with lin-

ear programming methods (Yigit, 2011). Senatore and Ross (2008) describe another

approach involving LCS but aim to solve the energy optimal AUV path planning

problem.

An approach named ‘Case Based Reasoning’ was introduced by Vasudevan and

Ganesan (1996). This approach aims to produce feasible AUV trajectories. Their

paper introduces a computational method that utilizes previously gathered data and

information to compute solutions to the planning problem. Trajectories are pro-

duced by modifying older trajectories or by synthesizing the acquired experiences

with planned trajectories in the operation region (Yigit, 2011). Even though case

based reasoning methods may be helpful in well-explored regions, it does not show a

lot of promise in poorly mapped regions and when time constraints are in place.

48

The solution to our minimum time navigation problem in dynamic currents is

governed by a Hamilton-Jacobi-Bellman equation (Bryson and Ho, 1975). Rhoads

et al. (2010) derive a set of Euler-Lagrange equations that can be solved in order to

extract the optimal trajectory. These equations are solved using an ‘extremal’ field

approach. This is equivalent to solving a controllability problem backward in time.

Since the arrival time at the target is unknown, the they have to solve a controllability

problem for every choice of the final destination time. This approach is not ideal as

it requires one to track a family of 1-D curves backward in time, for all choices of the

final arrival time. The final time that leads to the correct initial conditions is chosen

as the optimal solution. This algorithm can get computationally expensive because

of the potentially large number of curves that need to be kept track of.

3.3 Summary

In this chapter, we have summarized relevant literature in robotic and underwater

path planning methods. We have highlighted the basic differences between these

two planning problems and described several methodologies in literature that solve

them. Our goal in this thesis is to derive a methodology that is based on solution

of governing differential equations, and provides the globally optimal solution in a

computationally efficient manner. In the following chapter, we introduce the reader

to the theory of front tracking and level set methods.

49

50

Chapter 4

Level Set Method

In this chapter, we introduce the reader to front tracking and level set methods.

The path planning methodology that we propose in this thesis, is based on level set

methods. Thus, through this chapter, we aim to give the reader a good background for

level set methods. We explain theoretical properties of level sets and of their governing

equation. We also discuss two different formulations of the level set equation and the

advantages and drawbacks of using each one. Specifically, we present the following

topics, in order.

• Level set methods and their utility in interface and front tracking

• Fast marching method

• Narrow band level set method

• Viscosity solutions of Hamilton-Jacobi equations and hyperbolic conservation

laws

4.1 Front evolution and tracking

The task of tracking dynamic boundaries or interfaces between two media has a

variety of applications in numerous fields of engineering, science, graphics and com-

puter vision. For example, several phenomena in physics such as crystal growth, flame

51

propagation, two-phase flow, crack propagation etc. can be modeled using fronts that

evolve with a curvature dependent speed. Applications of front tracking in graphics

and computer vision include, but are not limited to image enhancement, noise re-

duction, shape detection, character recognition and morphology. Evolving interfaces

in each of these fields change their shape and position according to some underlying

laws of physics. Even though the physics that drives the motion of these interfaces

is well understood, the task of tracking the interface can potentially be extremely

challenging. In figure (4-1), we show such a front (interface) in two dimensions. In

three dimensions, the interface between two media becomes a surface. The speed of

evolution of this front, F , can be a function of a number of parameters (Sethian,

1999b). These parameters can be local (geometric properties such as normal, curva-

ture etc.), global (location of the front in space, for example) or of an independent

nature. F can also be either steady or time dependent. In general, the physics of the

front evolution governs the nature of F . In what follows, we assume that this speed

function F is known accurately.

Evolving Curves and Surfaces

• Propagate curve according to speed function v = Fn

• F depends on space, time, and the curve itself

• Surfaces in three dimensions

F

Figure 4-1: A general front in two dimensions moving at speed F (adapted from
(Persson, 2010))

The objective of the front tracking problem is to develop schemes that allow us to

predict the shape, position and other properties of the front as it evolves with time.

Level set methods offer a convenient numerical framework to solve this problem. The

52

interplay between the speed function F and the shape of the front is naturally handled

by level set methods.

The simplest approach, perhaps, to solving the front evolution problem is a

‘marker’ (or, ‘string’) method. As the name suggests, this method involves approxi-

mating the front by placing a number of ‘marker’ particles on the front. This explicit

representation involves approximating the continuous front by a finite number of

points assuming that they characterize the behavior of the front. In this explicit rep-

resentation, the front is parameterized by the marker particles. The motion of these

particles in space therefore, approximates the dynamics of the front evolution. Let

us denote the position vector of the ith marker particle on the front by xi. Let V(xi)

denote the velocity of the marker particle at xi. In this explicit representation, the

trajectory of each particle is computed according to equation (4.1). Since each parti-

cle is followed during the course of time, this is a Lagrangian approach to evolution

and tracking a moving manifold.

dxi
dt

= V(xi) (4.1)

Even though this Lagrangian approach to front tracking is easy to understand,

simple to implement and very fast in practice, it also has several drawbacks (Persson,

2010) (see figure (4-2)):

1. Certain velocity fields in space may cause the marker particles to concentrate in

some areas of the front and be highly spread out in other areas. This happens

whenever the velocity of the marker particles are highly different from each

other. In such a situation, certain areas of the front are very well resolved and

some areas have a poor resolution. This leads to a distortion of some parts of

the curve. When this happens, it becomes crucial to redistribute the particles

so that they are uniformly spread out along the front. This redistribution of

particles also leads to additional errors.

2. The marker particles may distribute themselves so that unrealistic sharp corners

appear in the front. At these points, geometric quantities such as normals and

53

curvature of the curve will have large errors.

3. Topology changes such as front merging and splitting require special treatment.

Marker particles may cross over themselves and this entails the removal of some

particles from the active set at areas where two fronts have merged.

4. The Lagrangian approach also poses some stability concerns when the speed

function F becomes curvature dependent (Persson, 2010).

Level set method addresses all of the above issues naturally and provides a numerical

framework for front tracking. This will be described in the following section.

Explicit Techniques - Drawbacks

• Node redistribution required, introduces errors

• No entropy solution, sharp corners handled incorrectly

• Need special treatment for topology changes

• Stability constraints for curvature dependent speed functions

Node distribution Sharp corners Topology changes

(a) Node Distribution

Explicit Techniques - Drawbacks

• Node redistribution required, introduces errors

• No entropy solution, sharp corners handled incorrectly

• Need special treatment for topology changes

• Stability constraints for curvature dependent speed functions

Node distribution Sharp corners Topology changes

(b) Sharp corners

Explicit Techniques - Drawbacks

• Node redistribution required, introduces errors

• No entropy solution, sharp corners handled incorrectly

• Need special treatment for topology changes

• Stability constraints for curvature dependent speed functions

Node distribution Sharp corners Topology changes

(c) Topology Changes

Figure 4-2: Drawbacks of a Lagrangian particle method for front tracking - (a) Some
parts of the font are sufficiently resolved and some parts are not well resolved due to
the node redistribution, (b) Unrealistic sharp corners can arise in the front and (c)
Topology changes such as front merging and splitting cannot be handled. (adapted
from (Persson, 2010))

4.2 Level Set Method

Level set methods overcome the above drawbacks of particle based front tracking

approaches. These methods are a class of numerical techniques which were designed

to solve problems related to fluid-interface motion. First introduced by Osher and

Sethian (1988) to analyze flame propagation problems, level set methods have since

then, been used in a variety of fields. They enable tracking of interface in systems

54

where front evolution is intricately connected to various physical properties of the

system. They add dynamics to the front and can capture the interaction between

surface motion and external forcing. The key feature of the level set method is that

it utilizes an Eulerian perspective on front tracking, instead of a Lagrangian one. In

other words, the front is not tracked by following particles on the curve, but instead by

embedding it as an iso-contour of a function that resides in one geometric dimension

higher than that of the front. This function is defined on a fixed grid and thus forms

an Eulerian approach to front tracking.

The level set of a function f(x), x ∈ Rn is defined as the set of points at which

the function takes a given constant value. Mathematically, the level set of f(x) is

the set, {x|f(x) = C}, where C is a given constant. The original idea behind level

set methods is a simple one. Given an open region Ω in Rn and any hyper-surface

(interface) ∂Ω in Rn−1 of co-dimension 1, a smooth function, φ(x, t) (at least Lipschitz

continuous) is defined on Rn such that the interface ∂Ω forms the zero level set of the

function φ(x, t). The evolution of the front can then be studied by solving an initial

value partial differential equation that governs the evolution of the level set function,

φ(x, t). This higher dimensional embedding is what allows for automatic handling

of merging and pinching of fronts and other topological changes. This method is

an ‘implicit’ representation of the front as it does not involve tracking any marker

particles. In figure (4-3) we show a picture illustrating the embedding of a front as

the zero level set of a higher dimensional scalar field φ(x, t).

The front ∂Ω separates the space into two regions. One of the regions is ‘outside’

(Ω+) the front and the other region is ‘inside’ (Ω−) the front (see figure (4-3)). The

level set function φ(x, t) is so defined such that the sign of φ(x, t) at any point in

space conveys whether the point is inside or outside the front. In this thesis, we will

use the convention:

φ(x, t) < 0 if x ∈ Ω− (inside)

φ(x, t) > 0 if x ∈ Ω+ (outside)

φ(x, t) = 0 if x ∈ ∂Ω (on the front)

55

Some authors use alternate definitions of inside and outside, but we shall stick to

above definition for the purposes of this thesis.

Implicit Geometries

• Represent curve by zero level set of a function, φ(x) = 0

• Special case: Signed distance function:

– |∇φ| = 1

– |φ(x)| gives (shortest) distance from x to curve

φ>0

φ<0

Figure 4-3: A one dimensional front being embedded as the zero level set of a two
dimensional scalar field φ(x, t). φ(x, t) is defined over the entire 2-D domain. The
front divides the domain into two regions: outside (φ(x, t) > 0) and inside (φ(x, t) <
0)-(adapted from (Persson, 2010)).

In order to track the front under a given velocity field, V(x, t), it is sufficient

to track the evolution of the level set function φ(x, t) under the same velocity field.

We now derive the equation that governs the evolution of φ(x, t) in this velocity

field V(x, t). The solution to the level set equation is based on weak solutions to

Hamilton-Jacobi equations governing hyperbolic conservation laws (Sethian, 1999b).

Consider an arbitrary iso-contour of φ(x, t), say, φ(x, t) = C. Using chain rule of

differentiation, we get:
∂φ(x, t)

∂t
+∇φ · dx

dt
= 0. (4.2)

Now, dx
dt

is the velocity of any point x on the the iso-contour, φ(x, t) = C. This is

identical to the velocity field experienced by the point x. From this, we can derive

the equation describing the evolution of a front moving normal to itself at constant

speed F (> 0) in a stationary environment (i.e. with no external flow-field). The

front’s motion can be thought of as an internally generated velocity field, F n̂. Since

n̂ = ∇φ
|∇φ| , we get, F n̂ · ∇φ = F ∇φ

|∇φ| · ∇φ = F |∇φ|. This gives,

56

∂φ

∂t
+ F |∇φ| = 0 (4.3)

Considering now, the motion of a field φ(x, t) solely driven by an external flow-

velocity field V(x, t) (i.e. dx
dt

= V(x, t)), the governing advection equation is given by

the equation (4.4):

∂φ

∂t
+ V(x, t) · ∇φ = 0 (4.4)

If in addition to the external flow-field of the equation (4.4), the front is also

internally driven by its own velocity as in equation (4.3), the advection equation

(4.4) becomes:

∂φ

∂t
+
(
Fv(t)ĥ(t) + V(x, t)

)
· ∇φ = 0 (4.5)

Here, as in equation (2.1), Fv(t)ĥ(t) is the velocity relative to the flow, of a hypothet-

ical vehicle located on the zero level set front. The magnitude of this relative velocity

is Fv, with 0 ≤ Fv(t) ≤ F and its heading direction is ĥ(t).

In all of the above cases, the motion of the front can be tracked by identifying

locations where the field φ(x, t) vanishes (Osher and Fedkiw, 2003).

Note that sometimes, the velocity field V(x, t) may not be known away from the

location of the front. In such cases, any arbitrary velocity field can be used away

from the front because we are interested only in how the zero level set front evolves.

We observe that equation (4.4) is a Hamilton-Jacobi equation. Weak solutions to this

equation allow the formation of singularities and shocks in the level set field. Such

mild singularities are typical of correct solutions to these Hamilton-Jacobi equations.

We shall further look into Hamilton-Jacobi equations and the ideas of viscosity solu-

tions in §(4.5).

Equation (4.4) is typically solved using a numerical procedure, on a discretized

domain. Thus, the accuracy of the solution procedure and the ability to handle subtle

features of the front become functions of various numerical parameters such as order

of discretization, time step and grid size. Thus, a natural way of accurately computing

57

quantities of interest emerges. Advances in numerical solution procedures, such as

variable grid spacing in meshing and parallel computing may also help in reducing

the computational complexity of solving equation (4.4).

The biggest drawback of level set methods arises from the computational expense.

Since the front is embedded in a higher dimension, this introduces additional compu-

tational effort. However, this problem can partly be addressed by Narrow Band level

set methods, as discussed in §(4.4).

We remarked earlier that the level set function φ(x, t) has to be at least Lipschitz

continuous. The choice of this function φ(x, t) though, is somewhat arbitrary. The

most common type of function used for this purpose is the signed distance function,

denoted by d(x). As the name suggests, a distance function, d(x), is the shortest

distance from point x in space to the front. Mathematically,

d(x) = min
xi

|x− xi|, for all xi ∈ ∂Ω (4.6)

A signed distance function, is defined as:

φ(x) =

d(x), if x ∈ ∂Ω+

−d(x), if x ∈ ∂Ω−
(4.7)

For every point xi on the front, the shortest distance between the point and the

front is zero, i.e. φ(xi) = 0. Clearly, for every point on the front, φ(xi) = 0, consistent

with the zero level set representation of the front. For all points outside the front,

φ(x) > 0, and for all points inside the front, φ(x) < 0. The defining property

of a signed distance field is that it is the viscosity solution to the following static

Hamilton-Jacobi equation (see §(4.5) for details).

|∇d(x)| = 1, x ∈ Ω (4.8)

Signed distance is a preferred choice for the implicit function because it is smooth

and maintains fixed gradients in the iso-contours (Sethian, 1999b), especially near

58

the zero level set. From this point on, we shall refer to the front also the ‘zero level

set’ or simply ‘level set front’. We will use all the three terms interchangeably.

We now summarize the advantages offered by level set methods for front tracking

(from Sethian (1999b), Osher and Fedkiw (2003)).

1. The first advantage comes from embracing a mathematical point of view for

front evolution. Complexities of front motion are highlighted, in particular, the

role of singularities, weak solutions, shock formation, entropy conditions and

topological changes in the evolving interface.

2. From a numerical perspective, natural and accurate ways of computing delicate

quantities emerge, including the ability to build higher order advection schemes,

compute local curvature in two and three dimensions, track sharp corners and

cusps and handle subtle topological changes of merger and breakage.

3. From an implementation point of view, since the approach is based on an initial

value partial differential equation, robust schemes result from numerical param-

eters set at the beginning of the computation. The error is thus controlled by

changing the

(a) The order of the numerical method

(b) The grid spacing ∆x

(c) The time step ∆t

4. The computational adaptivity, both in meshing and in the computational labor

is possible. In addition, the method lends itself to parallelization.

5. In the case of monotonically advancing fronts under certain speeds, fast march-

ing methods based on merging narrow band techniques and sorting algorithms

can be devised.

6. Lastly, geometric properties of the front can easily be calculated from φ(x, t).

59

For example, the normal to level set front n̂ can be evaluated as

n̂ =
∇φ
|∇φ| (4.9)

and the curvature of the level set front κ can be evaluated as

κ = ∇ · ∇φ|∇φ| =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

(4.10)

4.3 Boundary Value Formulation of the Level Set

Equation

4.3.1 Boundary Value Formulation

The level set equation (4.4) is an initial value partial differential equation. In order

to solve this equation, initial conditions on φ(x, t) must to be specified. Also, in the

regular level set method, equation (4.4) is solved in the entire domain at every time

step. For simplicity, let us assume that the front evolves only normal to itself at

speed F , and the external velocity field V(x, t) is identically zero everywhere. Under

the conditions F > 0, the initial value formulation of the level set evolution can be

converted to a stationary boundary value problem (Sethian, 1999a). We shall prove

this statement in §(5.2). This boundary value problem is significantly cheaper to

solve than the initial value partial differential equation (4.4).

Consider a closed curve ∂Ω in the plane propagating normal to itself at speed F .

Assuming F > 0, the front always moves ‘outwards’. The boundary value formulation

of the motion of the front uses the idea of ‘arrival time’. The arrival time at position

x is defined as the time when the front crosses x. Therefore, the position of this

expanding front can be characterized by computing the arrival time, T (x) as it passes

through each point x in space.

The initial value partial differential equation governing the evolution of the front

60

when it moves normal to itself at speed F is given by equation (4.11).

∂φ(x, t)

∂t
+ F |∇φ(x, t)| = 0 (4.11)

The stationary boundary value formulation of this equation is given by equation (4.12)

(for proof, see §(5.2)).

|∇T (x)|F = 1 (4.12)

Thus, the front motion is characterized as the solution to a boundary value problem.

The boundary conditions for this equation are T = 0, on ∂Ω(0). The front at any

time t is identical to the zero level set of φ(x, t) at time t, i.e. ∂Ω(t) = {x : φ(x, t) =

0}. Due to the equivalence between the two formulations, the front at time t is also

equivalent to the contour of the field T (x) at level t, i.e. ∂Ω(t) = {x : T (x) = t}. We

FAST MARCHING METHODS 213

T

X

Y

T=0

T=2

T=1

T=0

T=1

T=2

Initial Curve Γ

Fig. 12 Transformation of front motion into boundary value problem.

T=0

T=1

T=2

X

Y

(x,y,t=0)

X

Y

(x,y,t=2)

Y

X

(x,y,t=1)Φ ΦΦ

Φ Φ Φ=0 =0 =0

Fig. 13 Transformation of front motion into an initial value problem.

F̄ > 0, hence the front always moves “outwards.” One way to characterize the position
of this expanding front is to compute the arrival time T (x, y) of the front as it crosses
each point (x, y), as shown in Figure 12. Since the speed F̄ is inversely proportional
to the gradient, we must have

|∇T |F̄ = 1, T = 0 on Γ.(16)

Thus, the front motion is characterized as the solution to a boundary value prob-
lem; if the speed F̄ depends only on position, then the equation reduces to our familiar
Eikonal equation, with F̄ = 1/F .

Conversely, suppose we embed the initial position of the front as the zero level
set of a function φ in one higher dimension. The level set method identifies the
evolution of this level set function φ with the propagation of the front itself through
the time-dependent initial value problem

Φt + F̄ |∇Φ| = 0.(17)

This equation describes the time evolution of the level set function Φ in such
a way that the zero level set of this evolving function is always identified with the
propagating interface; see Figure 13.

Figure 4-4: Equivalence between the initial value formulation and the boundary value
formulation of the level set equation for F > 0. The upper plot indicates the shapes
of different arrival time contours. The lower plots show the positions of the zero level
set of φ(x, t) at three different times, t = 0, 1, 2. In this case, since F > 0, the two
approaches are identical (adapted from (Sethian, 1999a)).

will depict the equivalence between these formulations with the help of figure (4-4).

The upper picture shows the contours of equal arrival times at t = 0, 1, 2 obtained

61

by solving equation (4.12) with F = 1 in a 2D case. As expected, the arrival time

contours are all circles due to the angular symmetry of expansion. The lower plots

indicate the time evolution of the level set function φ(x, t). The zero level set at each

time has been highlighted. The shapes of the zero level set of φ(x, t) are identical to

the arrival time contours.

4.3.2 Fast Marching Methods

The boundary value formulation (equation (4.12)) can be solved efficiently by using

a class of numerical techniques called Fast Marching Methods. They were introduced

by Tsitsiklis (1995) as a continuous version of Dijkstra’s algorithm (Dijkstra, 1959).

Dijkstra’s algorithm is a graph search technique that computes the shortest path

between two nodes on a directed graph. The reader is referred to (Bryson and Ho,

1975) for a detailed illustration of Dijkstra’s algorithm. Fast marching methods are

numerical schemes for computing solutions to nonlinear Eikonal equations and other

static Hamilton-Jacobi equations. In the most general setting, these methods solve

the following nonlinear Eikonal equation.

|∇u(x)| = f(x) in Ω, f(x) > 0 (4.13)

u = g(x) on ∂Ω

Fast marching methods compute a continuous viscosity solution to the above Eikonal

equation (Tsitsiklis, 1995, Yigit, 2011). Sethian (1999a) proposes an upwind marching

technique to solve the above equation based on ideas originally presented in (Tsitsiklis,

1995).

The method starts by numerically approximating the Eikonal equation (4.13). In

a 2D problem,

|∇u(x)| ≈

 max(D−xij u,−D+x

ij u, 0)2

+ max(D−yij u,−D+y
ij u, 0)2

1/2

= fij (4.14)

62

Here, D−xij u denotes the first order backward difference operator etc.

D−xij u =
u(i, j)− u(i− 1, j)

∆x

D+x
ij u =

u(i+ 1, j)− u(i, j)

∆x

D−yij u =
u(i, j)− u(i, j − 1)

∆y

D+y
ij u =

u(i, j + 1)− u(i, j)

∆y

Similarly, fij is the value of the function f at node (i, j). Due to the upwind nature of

equation (4.14), information propagates only ‘outward’, i.e. from smaller values of u

to larger values. The fast marching method proceeds by building the solution outward

from the smallest u value. The reader is referred to figure (4-5) for a depiction of

the various steps of the upwind differencing based fast marching method (Sethian,

1999a). The algorithm proceeds in the following steps (from (Sethian, 1999a)):

1. At every step, the algorithm maintains three sets of node points. The alive set

includes all the nodes at which u is known. All the points which are one grid

cell away from the alive set constitute the close set. Finally, the far set contains

points in space which are neither close nor alive (see figure (4-6)).

2. The algorithm begins by identifying all the nodes that are one grid cell away

from the alive set. All these points are transferred to the close set. Points

neither in the alive set nor the close set are labeled far. At the first step, the

value of u known is known only at the boundary node (see figure (4-5)a).

3. The algorithm sweeps in a downwind fashion, updating the values of u at all

the close points by solving the piecewise quadratic equation (4.14) (see figure

(4-5)b).

4. Due to the upwind nature of the problem, no node can be affected by a node

that has a larger value of u. In other words, no point that is downwind to a

chosen node can affect the u value at this node. Thus, among all the updated

63

nodes in the close set, the node with the smallest value of u must be correct

(see figure (4-5)c).

5. This node is now added to the alive set and the set of close points is updated

(see figure (4-5)d), and the above sequence of steps repeats (see figure (4-5)e).

6. The algorithm marches forward until the u is solved at every node point in the

domain.

4.4 Narrow Band Level Set

As explained in §(4.2), the major drawback of level set method stems from the compu-

tational expense. Level set methods work by embedding the front as the zero level set

of a higher dimensional function, φ(x, t) which allows us to track changes in topology

and to calculate geometric quantities of interest. This embedding however, comes at

a significant price - we now track all the level sets of φ(x, t) and not just the zero level

set of interest. Even though the computational expense is still manageable in two

dimensional problems, the regular level set approach becomes intractable in higher

dimensions. The narrow band level set method is a modification to the regular level

set method that addresses this issue.

The idea of a narrow band approach for front tracking was first proposed by

Chopp (1993) and later significantly developed in the context of level set methods by

Adalsteinsson and Sethian (1995). The key idea of the narrow band approach arose

from the observation that the level set equation (4.4) does not have to be solved far

away from the zero level set because the grid points far away from the location of the

zero level set have little or no impact on its evolution.

The algorithm works similar to the regular level set method, but only operates in

a well-defined neighborhood of the zero level set called the band or the tube. This

band only contains points that are within a certain distance to the zero level set.

This distance is called the ‘width’ of the narrow band. We refer the reader to figure

(4-7) for a visual depiction of the tube around the zero level set front. The narrow

64

FAST MARCHING METHODS 209

A

B
C

D

(a) Update “downwind” (b) Compute new possible values

A

B
C

D
A

B
C

D

(c) Choose smallest dark gray sphere (d) Freeze value at A, update

(for example, “A”) neighboring downwind points

A

B
C

D
A

B
C

D

(e) Choose smallest dark gray sphere (f) Freeze value at D,

(for example, “D”) update neighboring downwind points

Fig. 7 Update procedure for Fast Marching Method.

This leads quite naturally to a variation on a heap algorithm (see Sedgewick [22])
with back pointers to store the u values. Specifically, we use a min-heap data structure.
In an abstract sense, a min-heap is a “complete binary tree” with a property that the
value at any given node is less than or equal to the values at its children. In practice,
it is more efficient to represent a heap sequentially as an array by storing a node at
location k and its children at locations 2k and 2k+1. From this definition, the parent
of a given node at k is located at k/2. Therefore, the root that contains the smallest
element is stored at location k = 1 in the array. Finding the parent or children of a
given element are simple array accesses that take O(1) time.

The values of u are stored, together with the indices that give their location in the
grid structure. The marching algorithm works by first looking for the smallest element

Figure 4-5: Various steps in the update procedure of the upwind differencing based
fast marching method.(adapted from (Sethian, 1999a)).

band method therefore, builds an adaptive mesh around the propagating front, i.e.

a band of neighboring level sets and performs the computations only on these grid

65

210 J. A. SETHIAN

"FAR AWAY VALUES"

DOWNWIND SIDE

ACCEPTED VALUES

UPWIND SIDE

NARROW BAND OF TRIAL VALUES

Fig. 8 Upwind construction of accepted values.

in the NarrowBand; this FindSmallest operation involves deleting the root and one
sweep of DownHeap to ensure that the remaining elements satisfy the heap property.
The algorithm proceeds by tagging the neighboring points that are not Alive. The
FarAway neighbors are added to the heap using an Insert operation and values at
the remaining points are updated using (14). Insert works by increasing the heap size
by one and trickling the new element upward to its correct location using an UpHeap

operation. Last, to ensure that the updated u values do not violate the heap property,
we need to perform an UpHeap operation starting at that location and proceeding up
the tree.

The DownHeap and UpHeap operations (in the worst case) carry an element all the
way from root to bottom or vice versa. Therefore, this takes O(logN) time, assuming
there are N elements in the heap. It is important to note that the heap, which is
a complete binary tree, is always guaranteed to remain balanced. All that remains
is the operation of searching for the NarrowBand neighbors of the smallest element
in the heap. This can be done in time O(1) by maintaining back pointers from the
grid to the heap array. Without the back pointers, the search takes time O(N) in the
worst case. As an example, Figure 9 shows a typical heap structure and an UpHeap

operation after the element at location (2, 7) gets updated from 3.1 to 2.0.
Since the total work in changing the value of one element of the heap and bubbling

its value upwards is O(logM), where M is the size of the heap, this produces a total
operation count of M logM for the Fast Marching Method on a grid of M total points.
Thus, if we imagine a three-dimensional grid of N points in each direction, the Fast
Marching Method reduces the total operation count from N4 to N3 logN ; essentially,
each grid point is visited once to compute its arrival time value. For more details, see
[27, 28, 30, and 17].

4. Related Algorithms.

4.1. Network Path Algorithms. The Fast Marching Method is reminiscent of
Dijkstra’s algorithm [10] (see also [5, 22]), which is a method for finding the shortest
path on a network with prescribed weights between each link. As illustration, imagine
one is given a rectangular network with equal unit cost of entering each link (see
Figure 10).

Figure 4-6: The fast marching method maintains three sets of node points: The
alive set (shaded black) on the upwind side where the value of u is known, the close
set (shaded dark grey) of trial values, and the far set on the downwind side which
contains all other points in space (adapted from (Sethian, 1999a)).

Figure 2: The signed distance function, de�ned on a tube.1.2.1 The tubeTo execute the fast level set approach, we begin by building the tube wherethe � function will be de�ned. We make a tube containing all the points withdistance to the curve less than maxDist by calculating the distance func-tion and using that to select the points. Rather than calculate the distancefrom each grid point to the initial curve (which would require O(n3) oper-ations), we extend out from the initial curve approximately k grid points,and accurately calculate the distance function only at such points; this re-quires O(nk2) operations. The � function is then initialized to be the signeddistance function.As the zero{level set corresponding to the front evolves, we must ensurethat it stays within the tube. One way to do so would be to reconstruct anew tube around the curve at each time step. This requires at every timestep the time{consuming procedure of determining which points make upthe domain, deciding how to take the di�erentials at the edge points, anddeciding how to de�ne the surface on all the points inside the domain.Instead, we use a given tube for as many iterations as possible; anddevise a technique to trigger tube reinitialization when the front is close tothe edge of the domain. During the life of a given tube, we can use the sameinitialization of �, and design a data structure to speed up calculations.1.2.2 Calculating the derivativesParticular care must be taken when calculating partial derivatives at theedge points of the tubular domain. We can calculate the �rst order deriva-tives with central or one{sided di�erences at all the points in the domain.We calculate the second order derivatives by standard stencils in the inte-rior and get the values on the edges by linear extrapolation from the newly5

Figure 4-7: Narrow Band level set method - A tube or narrow band of points is built
around the zero level set front of interest and computations are performed only within
this tube. (adapted from (Adalsteinsson and Sethian, 1995)).

points. While considerable programming complexities are introduced, the decrease in

computational labor is desirable in a lot of applications (Adalsteinsson and Sethian,

1995). Another reason to focus the computation only around the zero level set front

is that in some problems, the velocity of propagation may only be known at the front

and points close to it. Extending the velocity field at the front to other points in

space is called the ‘extension problem’ and this process can be expensive. By limiting

the computation to points near the front, the extension problem is also simplified.

The level set function is typically chosen to be the signed distance function for

all points within the narrow band. The various steps of the narrow band level set

method can be summarized as follows.

66

1. Identify the points which are within a specified distance away from the front.

This is usually done by first marching a few grid cells away from the front and

accurately computing the signed distance of these points from the front.

2. The front is evolved by solving the level set equation (4.4) for points within the

band.

3. Update the points inside the band and go to step 1.

We refer the reader to §(6.6) for a detailed discussion on the computational cost

of the narrow band level set approach and a standard level set method.

4.5 Viscosity Solutions to Hamilton Jacobi Equa-

tions

In §(4.2), we indicated that one of the main difficulties in solving the level set equation

(4.4) is that the solution need not be differentiable everywhere, even with smooth

initial and boundary conditions. This notion of non-differentiability of the solution

is intertwined with the concept of weak solutions to a differential equation. In this

section, we introduce the concept of viscosity solutions.

The numerical solution technique used to solve equation (4.4) should take into

account the possibility of formation of singularities and sharp corners in the field

and must lead to the ‘physically correct’ non-smooth solution. Thus, the numerical

solution to the level set equation (4.4) is based on viscosity solutions to the related

Hamilton-Jacobi equation (Fleming and Soner, 2006).

A static Hamilton-Jacobi equation governing a scalar field u(x) is any equation of

the form

H(ux, uy, uz, x, y, z) = 0 (4.15)

Here, the operator H is called the Hamiltonian of the system. The Eikonal equation

(4.13) is a special case of Hamilton-Jacobi equations, with H = |∇u(x)| − f(x). In

67

1

0
u

1u

u
2

uε xεx
u

−1 −11

figure 1.3a figure 1.3b

Observe that, among all these solutions, the distance function

u0(x) = 1 − |x| x ∈ [−1, 1]

is the only one that can be obtained as a vanishing viscosity limit. Indeed, any other generalized
solution u with polygonal graph has at least one strict local minimum in the interior of the interval
[−1, 1], say at a point x. Assume that lim

ε→0+
uε → u uniformly on [−1, 1], for some family of smooth

solutions to
|uε

x| − 1 = ε uε
xx .

Then for every ε > 0 sufficiently small the function uε will have a local minimum at a nearby point
xε (fig. 1.3b). But this is impossible, because

∣∣uε
x(xε)

∣∣ − 1 = −1 6= ε uε
xx(xε) ≥ 0.

On the other hand, notice that if uε attains a local maximum at some interior point x ∈] − 1, 1[,
this does not lead to any contradiction.

In view of the previous example, one seeks a new concept of solution for the first order PDE
(1.1), having the following properties:

1. For every boundary data (1.2), a unique solution exists, depending continuously on the boundary
values and on the function F .

2. This solution u coincides with the limit of vanishing viscosity approximations. Namely, u =
limε→0+ u

ε, where the uε are solutions of

F (x, uε,∇uε) = ε∆uε .

3. In the case where (1.1) is the Hamilton-Jacobi equation describing the value function for some
optimization problem, this new concept of solution should single out precisely the value function.

In the following sections we shall introduce the definition of viscosity solution and see how it
fulfills the above requirements 1 – 3.

4

Figure 4-8: Multiple generalized solutions to equation (4.15). The problem admits
several solutions and only one solution can be the correct viscosity solution. (adapted
from (Bressan, 2011)).

order to understand the concept of a viscosity solution, we first present a simple

example in one dimension.

Example: Consider the following static Hamilton-Jacobi equation:

|ux| − 1 = 0, x ∈ [−1, 1], with u(1) = u(−1) = 0 (4.16)

This is a two point boundary value problem which admits a number of piecewise affine

generalized solutions. A function u is said to be a generalized solution to a boundary

value problem in Ω if it is Lipschitz continuous on Ω and satisfies the boundary

conditions. The piecewise generalized solutions to equation (4.16) are plotted in

figure (4-8). The signed distance function, d(x) (see §(4.2)) is clearly a solution to

this equation.

Instead of computing solutions to equation (4.16), let us compute the solutions to

the following equation under the limit, ε→ 0.

|uεx| − 1 = εuεxx, x ∈ [−1, 1], with uε(1) = uε(−1) = 0. (4.17)

ε is the numerical viscosity that has artificially been added to the equation. The name

is inspired from fluid viscosity which also acts on the second derivative of the fluid

speed. The solution u(x) of this equation that results under the limit ε→ 0+ is called

the viscosity solution. We will show, by means of a contradiction, that the viscosity

68

1

0
u

1u

u
2

uε xεx
u

−1 −11

figure 1.3a figure 1.3b

Observe that, among all these solutions, the distance function

u0(x) = 1 − |x| x ∈ [−1, 1]

is the only one that can be obtained as a vanishing viscosity limit. Indeed, any other generalized
solution u with polygonal graph has at least one strict local minimum in the interior of the interval
[−1, 1], say at a point x. Assume that lim

ε→0+
uε → u uniformly on [−1, 1], for some family of smooth

solutions to
|uε

x| − 1 = ε uε
xx .

Then for every ε > 0 sufficiently small the function uε will have a local minimum at a nearby point
xε (fig. 1.3b). But this is impossible, because

∣∣uε
x(xε)

∣∣ − 1 = −1 6= ε uε
xx(xε) ≥ 0.

On the other hand, notice that if uε attains a local maximum at some interior point x ∈] − 1, 1[,
this does not lead to any contradiction.

In view of the previous example, one seeks a new concept of solution for the first order PDE
(1.1), having the following properties:

1. For every boundary data (1.2), a unique solution exists, depending continuously on the boundary
values and on the function F .

2. This solution u coincides with the limit of vanishing viscosity approximations. Namely, u =
limε→0+ u

ε, where the uε are solutions of

F (x, uε,∇uε) = ε∆uε .

3. In the case where (1.1) is the Hamilton-Jacobi equation describing the value function for some
optimization problem, this new concept of solution should single out precisely the value function.

In the following sections we shall introduce the definition of viscosity solution and see how it
fulfills the above requirements 1 – 3.

4

Figure 4-9: The solution to equation (4.17) does not converge to any generalized
solution to equation (4.16) besides the signed distance function, d(x). The signed
distance field is thus, the correct viscosity solution to this equation (adapted from
(Bressan, 2011)).

solution to equation (4.16) is the signed distance function d(x). Let us assume that

the solution to equation (4.17) is not d(x), but some other generalized solution u(x)

(see figure (4-9)). Every such u(x) has a local minima that lies strictly in (−1, 1). Let

us call this point y. If the viscosity solution converges to u(x), we must have uεx = 0

at some point yε in the neighborhood of y. At this point,

uεx − 1 = −1 = εuεxx

This leads to a contradiction because if yε is a local minima of uε, then uεxx > 0, and ε is

a small positive number. Therefore, the viscosity solution cannot have a local minima

in (−1, 1). The signed distance function is the only solution that satisfies the above

requirement. Hence, the signed distance function is the correct viscosity solution to

equation (4.16). Even though this discussion is not a completely rigorous proof, it

serves to demonstrate the significance of viscosity solutions to hyperbolic equations.

In what follows, we provide a mathematical background of viscosity solutions to

steady and unsteady Hamilton-Jacobi equations and explain their relation to level

set methods.

Consider a steady Hamilton-Jacobi equation of the form

G(x, u,∇u) = 0 (4.18)

Here, u : Ω → R is a scalar function defined on an open set Ω ⊆ Rn. The set of

69

super-differentials of u at point x is defined as:

D+u(x) =

{
p ∈ Rn : lim

y→x
sup

u(y)− u(x)− p · (y − x)

|y − x| ≤ 0

}
(4.19)

In other words, the hyperplane y → u(x) + p · (y − x) is tangent from above to the

graph of u at point x (see figure (4-10)). Similarly, we can define the sub-differential

as:

D−u(x) =

{
p ∈ Rn : lim

y→x
inf

u(y)− u(x)− p · (y − x)

|y − x| ≥ 0

}
(4.20)

A function u that is Lipschitz continuous in Ω is a viscosity subsolution of equation

(4.18) if

G(x, u(x), p) ≤ 0 for every x ∈ Ω, p ∈ D+u(x) (4.21)

Similarly, u is a viscosity supersolution of equation (4.18) if

G(x, u(x), p) ≥ 0 for every x ∈ Ω, p ∈ D−u(x) (4.22)

We say that u is a viscosity solution of equation (4.18) if it is both a viscosity

subsolution and a supersolution.

The above definition can be easily extended for the case of unsteady Hamilton-

Jacobi equations as well. A general unsteady Hamilton-Jacobi equation is of the

form:

ut +H(t, x, u,∇u) = 0 (4.23)

A Lipschitz function u is a viscosity subsolution of equation (4.23) if for every C1

function ψ = ψ(x, t) such that u− ψ has a local maximum at (t, x) there holds

ψt(x, t) +H(t, x, u,∇u) ≤ 0 (4.24)

Similarly, u is a viscosity supersolution of equation (4.23) if for every C1 function

ψ = ψ(x, t) such that u− ψ has a local minimum at (x, t), there holds

ψt(x, t) +H(t, x, u,∇u) ≥ 0 (4.25)

70

A function u is a viscosity solution to equation (4.23) iff it is both a viscosity

subsolution and a supersolution. Note that in this definition, u is not differentiated

anywhere. All the derivatives are taken only for the test function ψ. We state without

proof, the following statements (see Sethian (1999a)). The interested reader is referred

to (Crandall et al., 1984, 1992, Crandall and Lions, 1983, Bressan, 2011, Evans, 1998)

for a better formulation and a proof of the following statements:

1. If u is a smooth solution to the Hamilton-Jacobi equation, then it is a viscosity

solution.

2. If a viscosity solution u is differentiable at some point, then it satisfies the

Hamilton-Jacobi equation at that point.

3. The viscosity solution is unique, for given initial conditions. Using the above

statements, it can be shown that the solution produced by taking the limit

ε → 0+ of uε(x) is indeed this viscosity solution. The viscosity solutions are

therefore, the unique solutions obtained from the smoothed Hamilton-Jacobi

equations.

2 - One-sided differentials

Let u : Ω 7→ IR be a scalar function, defined on an open set Ω ⊆ IRn. The set of super-
differentials of u at a point x is defined as

D+u(x)
.
=

{
p ∈ IRn ; lim sup

y→x

u(y) − u(x) − p · (y − x)

|y − x| ≤ 0

}
. (2.1)

In other words, a vector p ∈ IRn is a super-differential iff the hyperplane y 7→ u(x) + p · (y − x) is
tangent from above to the graph of u at the point x (fig. 2.1a). Similarly, the set of sub-differentials
of u at a point x is defined as

D−u(x)
.
=

{
p ∈ IRn ; lim inf

y→x

u(y) − u(x) − p · (y − x)

|y − x| ≥ 0

}
, (2.2)

so that a vector p ∈ IRn is a sub-differential iff the hyperplane y 7→ u(x) + p · (y − x) is tangent
from below to the graph of u at the point x (fig. 2.1b).

x x

u
u

Figure 2.1a Figure 2.1b

Example 2.1. Consider the function (fig. 2.2)

u(x)
.
=

{
0 if x < 0,√
x if x ∈ [0, 1],

1 if x > 1.

In this case we have

D+u(0) = ∅, D−u(0) = [0,∞[,

D+u(x) = D−u(x) =

{
1

2
√
x

}
x ∈]0, 1[,

D+u(1) =
[
0, 1/2

]
, D−u(1) = ∅.

5

(a) Super-differential

2 - One-sided differentials

Let u : Ω 7→ IR be a scalar function, defined on an open set Ω ⊆ IRn. The set of super-
differentials of u at a point x is defined as

D+u(x)
.
=

{
p ∈ IRn ; lim sup

y→x

u(y) − u(x) − p · (y − x)

|y − x| ≤ 0

}
. (2.1)

In other words, a vector p ∈ IRn is a super-differential iff the hyperplane y 7→ u(x) + p · (y − x) is
tangent from above to the graph of u at the point x (fig. 2.1a). Similarly, the set of sub-differentials
of u at a point x is defined as

D−u(x)
.
=

{
p ∈ IRn ; lim inf

y→x

u(y) − u(x) − p · (y − x)

|y − x| ≥ 0

}
, (2.2)

so that a vector p ∈ IRn is a sub-differential iff the hyperplane y 7→ u(x) + p · (y − x) is tangent
from below to the graph of u at the point x (fig. 2.1b).

x x

u
u

Figure 2.1a Figure 2.1b

Example 2.1. Consider the function (fig. 2.2)

u(x)
.
=

{
0 if x < 0,√
x if x ∈ [0, 1],

1 if x > 1.

In this case we have

D+u(0) = ∅, D−u(0) = [0,∞[,

D+u(x) = D−u(x) =

{
1

2
√
x

}
x ∈]0, 1[,

D+u(1) =
[
0, 1/2

]
, D−u(1) = ∅.

5

(b) Sub-differential

Figure 4-10: Super-differentials and sub-differentials (adapted from (Bressan, 2011)).

We note that the level set evolution is governed by an unsteady Hamilton-Jacobi

equation (equation (4.4)). In order to allow mild singularities such as shocks and

formation of sharp corners in φ(x, t), we aim to compute the viscosity solutions to

71

equation (4.4). Numerical solutions to hyperbolic conservation laws use entropy con-

ditions that are similar to those in seen in Hamilton-Jacobi equations (see for example,

(Colella and Puckett, 1994, LeVeque, 2002, Sod, 1985)). Thus, numerical solutions to

level set equations have been developed using this observation. Crandall et al. (1984)

show that a monotone scheme for any hyperbolic conservation law converges to the

correct viscosity solution. They use a first order accurate monotone scheme to solve a

Hamilton-Jacobi equation. Osher and Sethian (1988) develop a higher order scheme

to solve the governing equation using ideas from numerical solutions to hyperbolic

conservation laws (Yigit, 2011). Therefore, viscosity solutions to Hamilton-Jacobi

equations play a very crucial role in the numerical solution to any level set equa-

tion. Finally, we refer the reader to (Sethian, 1999b) for a detailed discussion on

convergence and for additional numerical schemes for solving the level set equation.

4.6 Summary

In this chapter, we have presented the theory of level set methods and their advantages

in tracking the propagation of fronts. We have derived an initial value formulation

and a boundary value formulation for propagating fronts. Fast marching methods

and narrow band level set methods have been described. Finally, we introduced the

reader to a more theoretical aspect of solving the level set equations. Specifically,

we defined viscosity solutions for Hamilton-Jacobi equations and their applications in

the context of level sets.

72

Chapter 5

Path Planning using Level Set

Methods

In the previous chapter, we introduced the reader to level set methods and their ap-

plications in front evolution and tracking. In this chapter, we describe our level set

based path planning methodology. First, we discuss the concept of reachability and

link it to optimal control theory and Hamilton-Jacobi-Bellman equations. Then, we

state and prove a theorem which forms the foundation of our path planning method-

ology. Later, we present a number of corollaries to this theorem, each illustrating a

unique feature of our methodology.

5.1 Control and Reachability

The computation of continuous time optimal paths in a dynamic flow-field is not a

trivial problem. The complexity here arises in part, because of the number of control

choices available to the vehicle. At every point in its trajectory, the vehicle has an

infinite number of heading directions to choose from (see figure (5-1)). For every such

heading direction chosen at a time, it will again have an infinite number of heading

choices at the next instant. Thus, it is not trivial to predict the sequence of vehicle

headings that will lead to the quickest path.

Instead of aiming for the exact solution, approximation solutions can always be

73

Figure 5-1: Reachability front and possible steering directions of a vehicle: Given
the start point, xs, the end point, xf , the external flow-field, V(x, t) and maximum
vehicle speed F , the reachability front at time t represents the edge of the set of
points the vehicle can reach within time t. At every point along its trajectory p(t),
the vehicle has an infinite possible heading directions to choose from.

sought after. A class of practical path planning schemes are based on heuristic control

decisions for the vehicle. For example, a heuristic steering rule can be to always steer

in the direction of the end point. However, such approaches are not guaranteed to

be optimal, neither are guaranteed to find even a feasible trajectory. The problem

becomes more complicated when the flow fields are dynamic; the heuristic control

then becomes a function of the velocity field, to the very least, near the vehicle. One

solution to this problem could be to keep track of the vehicle trajectories for every

possible control decision choice, and then choose the sequence of headings that leads

to the least travel time. This method is however, extremely expensive and requires a

great deal of storage.

In the case where there is no external flow-field at all, the problem is much easier

to solve, and this has been done by using Fast Marching Methods (Sethian, 1999a).

Our aim in this thesis is to develop a rigorous methodology to compute the optimal

vehicle headings in the presence of any sort of flow-field, in an efficient manner.

Our approach to path planning is inspired by the problem of computing the reach-

ability set from a given starting point. A reachability set is defined as the set of points

in space that can be visited by the vehicle until a given time. The boundary of such

a set is called the reachability front. If we keep track of the reachability front at all

74

times, we can determine when this front reaches the target. The path traced by the

point on the reachability front that reaches the target will be the optimal path we

wish to compute.

The reachable (or attainable) set, R(xs, t) at time t, starting from xs is the set of

all points of the form yxs(τ), where, yxs ∈ S[0,t](xs), i.e.:

R(xs, t) = {yxs : yxs ∈ S[0,t](xs), τ ∈ [0, t]} (5.1)

Here, S[0,t](xs) is the set of all feasible trajectories yxs(t) which start from xs, and

satisfy equation (2.1), with yxs(0) = xs (Falcone and Zidani, 2012). We refer the

reader to figure (5-1) for a depiction of the reachability front and the infinite number

of possible heading directions that a vehicle can take, at every time.

This definition of a reachability set (and front) poses some key questions, which

include: If the reachability set exists, can one prove that its evolution is directly linked

to that of the the time-optimal path in any dynamic flow? What are the equations

that govern the dynamics of this front and the path? How can these equations be

solved efficiently? As we shall shortly see, level set methods provide leads for the

answers to all of these questions.

Hamilton-Jacobi based approaches have been used in the literature to compute

a reachability front (see Mitchell et al. (2005), Bokanowski et al. (2010), McShane

(1937), Evans (1998)). Before we proceed, we would like to refer the reader to equa-

tions (4.3), (4.4) and (4.5). For a given level set initial condition, equation (4.5)

defines a family of level set equations with each member of the family corresponding

to a specific choice for the time history of the relative velocity magnitude (Fv(t)) and

heading of the vehicle (ĥ(t)).

The comparison of (4.5) to (4.3) confirms that the heading and magnitude of

the relative velocity of the vehicle are the free time-dependent parameters of our

problem. Specifically, it raises the following question: should time-optimal paths be

those of vehicles driven in a direction normal to the time dependent level set similar

to (4.3), even if the level set is externally advected as in (4.4)? We provide a theorem

75

and its complete proof that answers this question and sets the foundation of our

approach. Using the theorem, we can demonstrate that the time optimal solution,

if it exists, is indeed obtained from a combination of (4.3) and (4.5). We derive

a new level set equation that governs the evolution of the reachability front and

the time-optimal paths from the start point, xs. This theorem is an extension of a

theorem provided with a sketch of proof in (Lolla et al., 2012). Remarks on existence,

multiple optimal times and optimal control are given after the theorem, along with

several other corollaries.

5.2 Theorem

Let T (y) denote the first arrival time at y, i.e. the minimum time by which a vehicle

reaches y, if it starts from the origin, xs = 0 at time t = 0. Let the vehicle move in a

dynamic external flow field of velocity denoted by V(x, t), with a maximum speed F

relative to the flow. Consider the evolution of a Lipschitz continuous function φ(x, t),

governed by the following initial value partial differential equation

∂φ(x, t)

∂t
+ F |∇φ(x, t)|+ V(x, t) · ∇φ(x, t) = 0 (5.2)

with the initial condition for φ set to the distance from the origin xs = 0, i.e.

φ(x, t = 0) = ‖x‖2 (5.3)

Then,

1. φ(y, T (y)) = 0.

2. @ t < T (y) such that φ(y, t) = 0, and, the optimal vehicle heading at time

t > 0 is the unit outward normal to the zero level set of φ, i.e. {z : φ(z, t) = 0}
passing through the current position of the vehicle: i.e. ĥ(t) = ∇φ(x,t)

|∇φ(x,t)| .

76

3. The optimal vehicle trajectory can be traced by solving the following equation:

dx

dt
= −V(x, t)− F ∇φ(x, t)

|∇φ(x, t)| (5.4)

integrating backward in time starting from x = y at t = T (y).

4. In the special case that F > |V (x, t)| ∀ x, t, then, T (y) satisfies the following

Eikonal equation:

F |∇T (y)|+ V(y, T (y)) · ∇T (y) = 1 (5.5)

Proof

Part 1

The condition φ(y, T (y)) = 0 means that the optimal zero level set front reaches y at

time T (y). To show this, consider such a 1-D front, implicitly represented as the zero

level set of a Lipschitz continuous scalar field, φ(x, t). The equation describing the

evolution of this front in a flow of velocity V(x, t) is given by equation (4.4). Now,

let us assume that in addition to this flow-field, the front also moves in a direction

normal to itself at a constant relative speed, F (> 0). For this relative field, the

general governing equation (4.5) becomes the level set equation (5.2).

The initial condition (5.3) ensures that the zero level set is initially, a point located

at the origin. The level set is a closed hyper-surface which, at the initial time, has a

singularity at the origin. As time progresses, this level set evolves according to (5.2).

Let us introduce an imaginary point vehicle P , that stays on this zero level set

front at all times. In other words, this point vehicle P experiences the same flow

field V(x, t) as the front and has a speed F normal to the front, relative to the flow.

Therefore, this vehicle behaves as a fixed ‘marker’ particle on the front. Let the path

traced by P be denoted by xP (t). Since P is always located on the zero level set, we

77

have,

φ(xP (t), t) = 0 (5.6)

Now, we consider the subset of vehicles P that reach point y. For any path taken

by such vehicles reaching y, the vehicles always stay on the front and therefore evolve

according to (5.2). Hence, whenever x(t) = y, i.e. whenever such a vehicle P reaches

y at a time ty, we obtain using (5.6), φ(y, ty) = 0. Among all of such times ty’s,

T (y) is by definition, the (yet unknown) minimum possible time and thus simply the

first of all such times ty’s. Therefore, at T (y), we also have φ(y, T (y)) = 0. This

completes the proof of part 1 of the theorem. We note that this result would also

hold if the evolution of the zero level set was governed by the more general equation

(4.5) instead of equation (5.2). This is relevant for Part 2.

Part 2

We now need to show that the minimum of the ty’s, i.e. T (y), is indeed obtained

when the front evolves normally to itself at maximum speed F . In other words, we

need to show that a sufficient condition for obtaining the fastest arrival time is that

the heading of the vehicle at every time is the normal to the zero level set passing

through the vehicle location at that time.

We prove this statement as follows. We consider the general set of vehicle motions

governed by (2.1). To each of these corresponds one member of an infinite family of

zero level set evolutions governed by equation (4.5). We compare these dual equations

to the to-be-proven optimal level set equation (5.2) and to its corresponding vehicle

relative velocity Fv(t) ĥ(t) = F n̂ = F ∇φ
|∇φ| which is governed by,

dx

dt
= F

∇φ
|∇φ| + V(x, t) , (5.7)

where φ is given by (5.2). Due to these dual correspondences, we could compare either

one of (2.1) and (4.5) to either one of (5.2) and (5.7). This is because each comparison

can be extended to the others by duality. Next, we choose to compare the evolution

78

of the general set of vehicle motions governed by (2.1) to that of to-be-proven optimal

level set equation (5.2).

Figure 5-2: Tangential (t̂) and normal (n̂) directions to the zero level set: The general
heading direction ĥ can be written as a linear combination of these two directions.

First, we thus consider any vehicle heading direction, ĥ, not necessarily aligned

with the normal to the front (see Fig. 5-2). This heading vector ĥ can be written as a

linear combination of the unit vectors in the tangential (t̂) and normal (n̂) directions,

ĥ = αt̂ + βn̂ (5.8)

where

α2 + β2 = 1, 0 ≤ |α|, |β| ≤ 1 . (5.9)

It should be noted that α and β are not constants, but are functions of the space and

time, i.e. α(x, t) and β(x, t). However, we simply refer to these variables as α and β

with the understanding that they are control variables.

The total velocity of such a vehicle, U, is given by (2.1), i.e. dx
dt

= U(x, t) =

Fvĥ + V(x, t), where 0 ≤ Fv ≤ F is the speed of the vehicle relative to the flow.

Using (5.9), we rewrite (2.1) as

dx

dt
= Fv(αt̂ + βn̂) + V(x, t) . (5.10)

79

Figure 5-3: A vehicle (black circle) initially at position x(t) on the zero level set front
at time t can be steered in one several directions (ĥ). If it is steered in a direction
normal to the front (i.e. n̂) and moves at maximum relative speed F , it will lie on the
zero level set front at the next instant (t+∆t). For all other steering directions ĥ and
relative speeds of motion Fv, the vehicle falls ‘inside’ the front at the next instant.

From (5.10), we will now show that if a vehicle starts on the front, i.e. on the zero

level set of φ governed by (5.2), all headings ĥ that differ from n̂ will lead the vehicle

to be ‘inside’ of the front, i.e. φ < 0 at the next instant. To see this, we seek the sign

of φ(x(t+ ∆t), t+ ∆t) under the limit ∆t→ 0+. First, we have,

lim
∆t→0

∆x

∆t
=
dx

dt
= U(x, t) = Fvĥ + V(x, t) (5.11)

where we defined ∆x = x(t + ∆t) − x(t). Clearly, since the vehicle trajectory is

assumed to be continuous, this ∆x→ 0 as ∆t→ 0+. Consider now the limit:

lim
∆t→0+

φ(x + ∆x, t+ ∆t)

∆t
.

Since φ(x, t) is Lipschitz continuous, lim∆t→0+ φ(x + ∆x, t + ∆t) = φ(x, t). Now,

since the vehicle is assumed on the zero level set front at time t, we have, φ(x, t) = 0.

80

Therefore,

lim
∆t→0+

φ(x + ∆x, t+ ∆t) = 0, and lim
∆t→0+

∆t = 0 .

The conditions of L’Hôpital’s rule are satisfied. Using this rule to evaluate the limit,

we have:

lim
∆t→0+

φ(x + ∆x, t+ ∆t)

∆t
= lim

∆t→0+

∇φ · ∆x
∆t

+ ∂φ
∂t

1

= ∇φ · dx
dt

+
∂φ

∂t
(5.12)

where in the numerator, we used the fact that as ∆t → 0+, ∆x
∆t
→ dx

dt
which is the

total velocity of the vehicle. Substituting the expression for dx
dt

from (5.10) into (5.12),

we have;

lim
∆t→0+

φ(x + ∆x, t+ ∆t)

∆t
=

∂φ

∂t
+∇φ · (Fvβn̂ + Fvαt̂ + V(x, t))

Since in our comparison φ is governed by (5.2), we have, ∂φ
∂t

= −F |∇φ| −V(x, t) ·
∇φ. Note also that the dot product ∇φ · t̂ = 0 because t̂ is perpendicular to ∇φ.

Using these substitutions we obtain the expression:

lim
∆t→0+

φ(x + ∆x, t+ ∆t)

∆t
= ∇φ · n̂ (Fvβ − F) (5.13)

lim
∆t→0+

φ(x + ∆x, t+ ∆t)

∆t
= |∇φ|(Fvβ − F) (5.14)

From this, we see that the coefficient of the leading order term in the expansion

of φ(x + ∆x, t+ ∆t) is |∇φ|(Fvβ −F), which is negative either if β < 1 or Fv 6= F (∵

|∇φ| > 0). Physically, this condition states that if a vehicle starts on the zero level

set and takes any direction other than the normal to the level set at that point and

any speed smaller than the maximum nominal vehicle speed, then it will no longer

stay on the zero level set at the next instant. In fact, it will always fall ‘inside’ the

front. Also, if β = 1 and Fv = F , the vehicle stays on the zero level set at all times,

81

because then, the zero level set and the vehicle experience the same velocity field. It

is crucial to note that there is no control for this vehicle that will take it ‘outside’

the zero level set governed by (5.2). The best a vehicle can do is to stay on that zero

level set at all times.

At this stage, we can utilize the dualities between (5.10) and (4.5) and between

(5.2) and (5.7). Specifically, to a given vehicle motion (5.10) over ∆t corresponds one

member of the family of zero level set evolution governed by (4.5) over the same ∆t.

From the above result, that level set governed by (4.5) over ∆t will contain a vehicle

marker point remaining within the level set governed by (5.2). This argument can

be repeated for all points of the level set governed by (4.5) since they correspond to

specific vehicles (5.10): it is only vehicles governed by (5.7) that remain on the level

set governed by (5.2). This shows that the level set governed by (5.2) is optimal over

∆t.

To complete the proof, we now show that once a vehicle is ‘inside’ the front

(i.e. φ(x(t), t) < 0), it will not be able to reach ‘outside’ the front governed by (5.2)

at any later time. Let us assume that the value of the level set function at the position

of the vehicle inside the front is φ(x + ∆x, t + ∆t) = γ < 0. We define a new field,

ψ(x, t) = φ(x, t)−γ, resulting in ψ(x+∆x, t+∆t) = 0. Since φ and γ differ only by a

constant, their time-optimal evolution equations over ∆t are identical, given by (5.2).

Therefore, the vehicle is on the zero level set of the ψ field. Repeating the above

arguments over successive ∆t’s, the value of ψ at any point on the vehicle trajectory

can never become strictly positive ψ ≤ 0, or, φ = ψ + γ ≤ γ < 0.

In conclusions, the zero level set governed by (5.2) will reach the goal earlier than

any other level set. So, a sufficient condition to obtain a time optimal trajectory for

the vehicle is to always stay on that zero level set. In other words, the value of φ at

the goal will not take a negative value unless it was zero sometime earlier. Finally,

the globally optimal trajectory can be obtained from the solution of (5.2). Hence,

(5.2) solves the reachability front problem and corresponds to at least one optimal

trajectory. This completes the proof of part 2.

82

Part 3

We have established in parts 1 and 2 of the theorem that in order to obtain the time

optimal path, Fv = F and β = 1⇒ α = 0. Therefore, from equation (5.10), we get;

dx

dt
= F n̂ + V(x, t) (5.15)

The optimal path can thus be traced by solving the backtracking problem from the

goal to the start, according to equation (5.4). This equation is solved backwards in

time because the direction of the normal to the zero level set is not well defined at

the initial time, due to the singularity at the origin.

Part 4

If the maximum speed of the vehicle (F) is, at all times, larger than the flow field

speed, the level set equation (5.2) can be simplified and the resulting equation can

be solved very efficiently. Mathematically, the additional assumption is:

F > |V (x, t) | ∀ x and t . (5.16)

We now show that if (5.16) holds, (5.2) can be simplified to an equivalent steady

boundary value equation (5.5) that governs the fastest or ‘first arrival’ time T (x) at

any location x. In other words, T (x) is the minimum duration in which the vehicle

can reach any point x. Note that T is only a function of position vector x and not of

time t. Hence, T (x) is a time-independent scalar field in space. We aim to minimize

the first arrival time at xf , i.e. T (xf), by choosing a suitable heading direction of the

vehicle (we already know from (5.2) that the vehicle has to travel at maximum speed

F , regardless of the external flow).

As a preliminary, we write equation (5.2) as,

∂φ

∂t
+ (F + V(x, t) · n̂) |∇φ| = 0. (5.17)

83

and show that under assumption (5.16), we have, F + V(x, t) · n̂ ≥ 0 and the field

T (x) is a continuous single-valued field. To prove these two statements, we write

V = Vxî + Vy ĵ and n̂ = nxî + ny ĵ, with n2
x + n2

y = 1. Then, we have:

(V(x, t) · n̂)2 = (Vxnx + Vyny)
2

≤ (V 2
x + V 2

y)(n2
x + n2

y︸ ︷︷ ︸
=1

) [Cauchy-Schwarz Inequality]

= |V(x, t)|2

< F 2

or,

−F < V(x, t) · n̂ < F ⇒ V(x, t) · n̂ + F > 0

Now, in eq. (5.17), |∇φ| ≥ 0 and V(x, t) · n̂ + F > 0. which proves the first part of

the claim. Now, using this result in (5.17), since |∇φ| ≥ 0, we obtain,

⇒ ∂φ

∂t
= − (F + V(x, t) · n̂) |∇φ|

< 0.

Recall that initially, φ(x, t = 0) = ‖x‖2 , and the zero level set is thus a point at the

origin. Since ∂φ
∂t
< 0, the zero level set will, at all times, expand away from the origin.

Simply put, this condition ensures that the entire front always ‘expands’ outwards

and never ‘contracts’. This in turn, means that the contours of equal first arrival time

C, i.e. {x : T (x) = C}, coincide with the zero level set front of φ(x, t) at time t = C.

Since φ(x, t) is a continuous field, T (x) will also be a continuous single-valued field in

this case. Thus, the optimal path leading to any point y in space passes through each

point along its path only once, at times equal to their respective first arrival times.

With this result, we now derive (5.5) from (5.17). Let us assume that the vehicle

is located at point x at time t = T (x). After an additional time ∆t, the vehicle moves

to another location in space, say x+ ∆x, depending on its heading direction. We can

84

write this as:

T (x + ∆x) = T (x) + ∆t (5.18)

Thus, T (x) + ∆t is the first arrival time at the point x + ∆x. From part 2 of the

theorem, the heading of the optimal path ĥ is normal to the level set fronts, i.e.

ĥ = n̂. In addition, under assumption (5.16), the contours of T and of the zero level

set of φ are identical, and the gradient of T (x) at x is unique and in the normal

direction to the level set, i.e. ∇T (x) = |∇T (x)|n̂. With this, by definition of the

vehicle speed, we have at first order |∆x| = |dx
dt
|∆t. Keeping the vector form of the

vehicle’s motion (e.g. in 3d in space), this is rewritten as:

∆x = |dx
dt
| û ∆t . (5.19)

Now, inserting (5.18) into (5.19) and projecting the result along the vehicle’s total

velocity U = |U |û, we obtain,

|∆x| = |dx
dt
| û · (T (x + ∆x)− T (x)) û (5.20)

Hence, dividing (5.20) by |∆x|,

1 = |dx
dt
| û · (T (x + ∆x)− T (x))

|∆x| û (5.21)

If we now take the limit for |∆x| → 0 in (5.21), since T (x) was shown to be continuous

and single valued, we obtain,

1 = ∇T (x) · dx
dt

(5.22)

dx
dt

the velocity of the vehicle with respect to a ground observer. From part 2 of

the theorem, the optimal vehicle velocity is given by (5.7). Thus, inserting (5.7) into

(5.22), we obtain,

∇T · (F n̂ + V(x, T)) = 1

or, F |∇(T)|+ V(x, T) · ∇T = 1 (5.23)

85

which is the stationary Eikonal equation we wanted to derive. It provides a suffi-

cient condition for obtaining the minimum arrival time at every point in the domain.

Physically equation (5.5) means that if the vehicle heads normal to time contours of

T , it will reach the destination in the shortest time. This completes the proof. �.

5.3 Remarks and Corollaries

In this section, we state a few remarks and corollaries to the above theorem. Exam-

ples corroborating the following statements are presented in chapter 7, along with all

other applications of the algorithm.

Existence: For a given problem configuration (xs, xf , V(x, t), and F), the solution

to the level set equation (5.2) can be used to predict whether or not the vehicle can

reach xf (or any given point in space) within a specified time limit, Tmax. In some

cases, the level set would never reach xf in finite time, indicating that it is impossible

for the vehicle to reach xf . In some other cases, the level set may reach xf , but

would take longer than the allowed time, Tmax. In this case, the vehicle cannot reach

xf within the time limit. In all other cases, the level set method can compute the

time-optimal paths to xf . We refer the reader to §(7.2.1) for an illustration.

Uniqueness (single and multiple optimal paths): In some situations, there may ex-

ist multiple optimal paths to a single end point. This happens when the level set

contours are not smooth at the the end point or at any other points along the path.

In both cases, the path has multiple time-equivalent optimal paths. Since the level

set equation (5.2) admits weak solutions, multiple optimal paths may exist if the end

point lies on a region of ‘shock’ (where, the gradients of φ are undefined). The reader

is referred to §(7.3.3) for an illustration.

Uniqueness (single and multiple arrival times): As seen in Part 4 of the theorem,

the contours of the level set function φ(x, t) coincide with those of the arrival time

86

field, T (x) when the maximum relative vehicle speed F is larger than the flow speed

(see figure (4-5)). The arrival time field is possibly multi-valued, because some points

may be visited more than once. The first arrival time, T1(x) is the minimum of all

such arrival times. T1(x) may exhibit discontinuities when the flow-field is strong and

adverse. In these cases, multiple arrival times need to be stored, in order to compute

the correct optimal trajectory. The Eikonal equation (5.5) is invalid in these cases.

We refer the reader to §(7.3.1) for an example.

External Flow Types: The level set equation (5.2) imposes no condition on the type

of flow-field V(x, t). V(x, t) only enforces a kinematic constraint on the vehicle’s

trajectory. Therefore, equation (5.2) can be used to plan paths, in principle, for com-

pressible flows as well.

Optimal Start Time: The initial conditions in the theorem given in (5.3) indicate

that the vehicle starts moving at time t = 0. However, in some cases, the vehicle

may reach the end point xf faster, if it is deployed at a later time, ts > 0. §(7.3.2)

discusses an example of such a scenario.

Forbidden Regions: Optimal paths of vehicles moving in dynamic flow fields may

be updated/corrected when forbidden or unsafe regions are introduced in the do-

main. Forbidden regions refer to areas in space which the vehicle must avoid. We

discuss an example of forbidden regions in §(7.2.3).

5.4 Summary

In this chapter, we have discussed a theorem that enables us to use level set methods

to track the reachability fronts in unsteady flow-fields. This theorem forms the foun-

dation of our path planning methodology. In the next chapter, we describe our path

planning algorithm and other numerical details.

87

88

Chapter 6

Numerical Implementation and

Discussion

The primary goal of this chapter is to describe our level set based path planning

algorithm. We discuss various numerical details of its implementation, including

the issue of reinitialization of the level set field. In the final section, we provide

computational cost estimates of our algorithm and compare it to other algorithms for

underwater path planning.

6.1 Algorithm

Our path planning algorithm consists of the following two steps:

1. Forward Propagation: In this first step, we expand a wavefront (the reach-

ability front) from the start point (xs = 0) by solving the governing level set

equation (5.2) forward in time, starting from the initial conditions. This equa-

tion is solved until the zero level set front reaches the end point (xf).

2. Backward Particle Tracking: Once the level set front reaches the end point,

this part of the algorithm tries to identify which points on intermediate level set

fronts correspond to the path that terminates at the end point. This is done by

solving a particle tracking equation (5.4) backward in time. This step computes

89

both, the optimal vehicle path and also the sequence of its optimal headings.

6.2 Numerical Schemes

We use a first order accurate upwind scheme to approximate the |∇φ| term at different

grid points (Sethian, 1999b, Agarwal, 2009). Let (i, j) respectively represent the grid

numbers of the nodes in x and y coordinates. The first order derivatives of φ at the

coordinates (i, j) are given by:

D+x(φ) =
φ(i+ 1, j)− φ(i, j)

∆x
, D−x(φ) =

φ(i, j)− φ(i− 1, j)

∆x
(6.1)

D+y(φ) =
φ(i, j + 1)− φ(i, j)

∆y
, D−y(φ) =

φ(i, j)− φ(i, j − 1)

∆y
(6.2)

Then, |∇φ| is computed as:

|∇φ| =
√

(Dx(φ))2 + (Dy(φ))2 (6.3)

where Dx(φ) and Dy(φ) are the upwind derivatives in the x and y directions.

Dx(φ) =

D−x if φ(i− 1, j) < φ(i, j) < φ(i+ 1, j)

D+x if φ(i− 1, j) > φ(i, j) > φ(i+ 1, j)

D+x +D−x

2
if φ(i− 1, j) ≤ φ(i, j) ≥ φ(i+ 1, j)

0 if φ(i− 1, j) ≥ φ(i, j) ≤ φ(i+ 1, j)

(6.4)

Similarly,

Dy(φ) =

D−y if φ(i, j − 1) < φ(i, j) < φ(i, j + 1)

D+y if φ(i, j − 1) > φ(i, j) > φ(i, j + 1)

D+y +D−y

2
if φ(i, j − 1) ≤ φ(i, j) ≥ φ(i, j + 1)

0 if φ(i, j − 1) ≥ φ(i, j) ≤ φ(i, j + 1)

(6.5)

90

The term V(x, t) ·∇φ is discretized using a second order accurate Total Variation

Diminishing (T.V.D.) scheme on a staggered C-grid (Ueckermann and Lermusiaux,

2009, 2011).

1. Forward Time Integration: We discretize (5.2) in time using a fractional step

method as follows:

φ? − φ(x, t)

∆t/2
= −F |∇φ(x, t)| (6.6)

φ?? − φ?
∆t

= −V

(
x, t+

∆t

2

)
· ∇φ? (6.7)

φ(x, t+ ∆t)− φ??
∆t/2

= −F |∇φ??| (6.8)

Adding these equations, we get:

φ(x, t+ ∆t)− φ(x, t)

∆t
= −F |∇φ(x,t)|+|∇φ??|

2
−V

(
x, t+ ∆t

2

)
· ∇φ? (6.9)

All terms of the form |•| are evaluated using equation (6.3). During this forward

time integration, the zero level set of φ represents the reachability front, rφ(t).

In order to be able to extract the time-optimal trajectory, we store this front at

every time step. The front is extracted from the field of φ(x, t) using a contour

extraction algorithm. For a 2-D problem, the amount of storage required for

this is not significant, because the reachability front is a curve in 1-D and is

numerically represented by a finite number of points.

2. Backtracking: The backtracking equation, (5.4) is solved using a first order

forward Euler method. The extracted contour is a piecewise linear curve rep-

resenting the front at that time. The forward time integration of the level set

equation is performed until the first time the front reaches the goal (xf), i.e.

φ(xf , T (xf)) = 0. However, due to the discrete nature of the numerical scheme,

this condition is very difficult to achieve. We almost always overshoot the actual

stopping time, by a maximum of one time-step. In other words, a more conve-

nient stopping criterion, (T) for the scheme is the first time when φ(xf , T) ≤ 0.

91

In Figure 6-1, we can see that the numerical stopping time (T) larger than the

actual stopping time T (xf), with 0 ≤ T − T (xf) ≤ ∆t.

Hence the first step in the backtracking step is to project xf on the final contour,

rφ(T) to obtain a point x′f closest to xf . Starting from x′f , the optimal path is

extracted by solving the discretized form of equation (5.4):

x(t−∆t)− x(t)

∆t
= −V(x, t)− F ∇φ(x, t)

|∇φ(x, t)|︸ ︷︷ ︸
n̂w(x′,t)

. (6.10)

with, x(T ′(xf)) = x′f .

Figure 6-1: Stopping Criterion of Forward Evolution Equation

The outward weighted unit normals to the level set contours, n̂w(x′, t) are com-

puted as follows (see Figure 6-2): If the point x′ lies between two points rep-

resenting the level set contour, the direction of n̂w is exactly perpendicular to

the line joining the two level set points. If x′ exactly coincides with one of the

level set points, the weighted normal n̂w is computed as the average of the two

normals to the line segments of the level set on either side of the point. Since the

external velocity field is completely known, the term V(x, t) can be computed.

Now, we have everything we need to solve equation (6.10). Due to the discrete

nature of the saved level set contours, the newly computed point, x(t−∆t) will

not lie exactly on the saved contours rφ(t−∆t). Therefore, we need to perform

the projection again, to compute the point on rφ(t −∆t) closest to x(t −∆t).

92

The above steps are repeated until we reach a point on the first saved level set

contour. The points traced by solving the backtracking equation form a discrete

representation of the time-optimal trajectory of the vehicle. Also, the optimal

headings of the vehicle are equal to n̂w(x, t).

Figure 6-2: Directions of outward normals to discrete level set contours - Blue dots
are the discrete points which form the contour, red dots are the points computed by
backtracking equation (6.10)

6.3 Reinitialization of the level set function

In this section, we describe the issue of reinitialization of the level set field φ(x, t).

We first define reinitialization and discuss its importance in the context of level set

methods. We discuss reinitialization in cases where there is no external flow-field,

and when there exists one. Finally, we describe some techniques for reinitialization

which are frequently used in the literature.

Reinitialization of the field φ(x, t) is an important issue in the process of solving the

level set equation (5.2). φ(x, t) is usually chosen to be the signed distance function. A

signed distance function has several favorable properties- it is smooth, and maintains

uniform gradients in φ. As seen in chapter 4, the signed distance function is the

unique viscosity solution of the static Eikonal equation, |∇φ| = 1. This property of

the signed distance function is numerically, very favorable.

Let us consider a scenario where the external flow-field is identically zero every-

93

where, i.e. V(x, t) = 0. In this case, the level set equation (5.2) reduces to:

∂φ

∂t
+ F |∇φ| = 0 (6.11)

If φ is initialized to be the signed distance function, then |∇φ| = 1, which gives:

∂φ

∂t
+ F = 0

Taking the x-derivative of this equation;

∂

∂t

∂φ

∂x
= 0

Similarly,
∂

∂t

∂φ

∂y
= 0

This gives;

∂|∇φ|
∂t

=
1

|∇φ|

∂φ

∂x

∂

∂t

(
∂φ

∂x

)

︸ ︷︷ ︸
=0

+
∂φ

∂y

∂

∂t

(
∂φ

∂y

)

︸ ︷︷ ︸
=0

= 0.

Hence, |∇φ| = 1 for all times. This means that theoretically, the level set equation

(6.11), i.e. with no external velocity field, preserves the signed distance property of

φ. However, in general, the signed distance property of φ is gradually lost due to

numerical approximation of the various terms. This may cause the field φ(x, t) to

develop steep gradients at some places and shallow gradients at others. This can

potentially result in large errors in the numerical approximation of the gradients,

∇φ. This directly leads to large errors in the evolution of the front and in the

evaluation of its geometrical properties such as directions of normals and curvature.

This problem, in general, cannot be alleviated by using a higher order scheme to

approximate the gradients, or for the time integration, as shown in (Mulder et al.,

94

1992). Reinitialization is defined as a process in which φ(x, t) is reset to a new

scalar signed-distance field with the zero iso-contour being unchanged. The ideal

reinitialization process should,

• Modify φ(x, t) such that it now satisfies the signed distance property, |∇φ| = 1.

• Keep the zero iso-contour of φ(x, t) unchanged.

Here, we note that there is no theoretical reason why φ(x, t) must be chosen as a

signed distance function. Hypothetically, if one could solve equation (5.2) exactly,

any Lipschitz continuous field would be a valid choice for φ(x, t) because we are only

interested in tracking the zero level set of φ(x, t) and not its entire field. However,

since the governing equations are solved numerically, this inevitably leads to errors,

which accumulate with time.

Let us now consider the case where the flow-field in the domain is non-zero. Taking

the x derivative of equation (5.2) and setting |∇φ| = 1, we get;

∂

∂t

∂φ

∂x
+
∂V

∂x
· ∇φ+ V · ∂

∂x
(∇φ) = 0

Similarly,
∂

∂t

∂φ

∂y
+
∂V

∂y
· ∇φ+ V · ∂

∂y
(∇φ) = 0

This gives;

∂|∇φ|
∂t

=
1

|∇φ|

(
∂φ

∂x

∂

∂t

(
∂φ

∂x

)
+
∂φ

∂y

∂

∂t

(
∂φ

∂y

))

=
−1

|∇φ|

({
∂φ

∂x

∂V

∂x
+
∂φ

∂y

∂V

∂y

}
· ∇φ+ V ·

{
∂φ

∂x

∂

∂x
(∇φ) +

∂φ

∂y

∂

∂y
(∇φ)

})

6= 0, in general.

This means that even though initially, the field of φ is a signed distance function,

it does not remain a signed distance function when it evolves according to equation

(5.2). Note that this is not a numerical issue, unlike the case when V(x, t) ≡ 0. A

completely accurate numerical procedure would still cause φ to deviate from a signed

distance function. Since it is crucial to correctly estimate gradients of φ near the

95

zero level set, one needs to either reinitialize the level set field or increase spatial

resolution around the front, in order to correctly calculate the gradients. However,

reinitialization is quite expensive and a lot of research has gone into dealing with this

problem.

The overall computational cost of the level set method can be influenced to a large

extent, by the scheme used for reinitialization. Another concern with the level set

method is the frequency at which reinitialization should be performed. Numerous

techniques have been proposed in literature to make the reinitialization process more

accurate and computationally efficient. The simplest technique for reinitialization

involves computing the distance of every grid point to the discrete level set front and

choosing the minimum of all those values. The computational cost of such a method

is O(n3), where n is the number of grid points in each direction (Sussman et al.,

1994). This method involves an exhaustive computation of all distances which makes

it expensive. Another approach for reinitialization involves solving a transient PDE

to steady state (Sussman et al., 1994). However, this PDE based approach is known

to suffer from the drawback of causing significant displacement of the level set front,

leading to incorrect features in the front.

Recently, an approach called constrained reinitialization was presented in (Hart-

mann et al., 2010a,b) to address the problem of front displacement. The scheme uses

a special treatment of cells adjacent to the level set front to make the reinitialization

more accurate near the front. This method is known to perform well when the level

set function is not far from a signed distance field, thus requiring lesser iterations

to converge to steady state. Other improvements to this PDE based reinitialization

scheme can be found in (Russo and Smereka, 2000).

A third approach for reinitialization is to solve the Eikonal equation |∇φ| = 1 using

a Fast Marching Method (Sethian, 1999a). The invariance of the zero level set front

is the boundary condition for this method. The computational cost of this method

is O(N logN), which is a significant improvement over the exhaustive computation

of all distances. A comparison of computational costs for different reinitialization

schemes can be found in (Oberhuber, 2004).

96

Instead of performing a reinitialization step at frequent intervals, some researchers

have also focussed on trying to maintain the signed distance property of the level set

function. One of these approaches is using extension velocities away from the level set

front to preserve the signed distance field (Chopp, 2009, Adalsteinsson and Sethian,

1999). This method modifies the velocity field away from the zero level set to prevent

φ(x, t) from deviating from a distance field. Li et al. (2005) describe a variational

formulation for the level set equation that penalizes a cost function when the level

set field deviates from a signed distance function. The interested reader is referred

to (Jones et al., 2006, Min, 2010) for a good review of various other reinitialization

techniques used in practice.

6.4 Narrow Band Approach

Since we are interested only in the evolution of the zero level set front and not in

the behavior of the φ field away from the front, we can use a narrow band approach

(Adalsteinsson and Sethian, 1995) to solve equation (5.2) efficiently. In this approach,

(5.2) is solved only within a band of points around the zero level set instead of the

whole domain. Due to this, significant reduction in computational effort can be

achieved. Although we have implemented a narrow band solver for path planning, all

the results presented in this thesis have been obtained using a regular level set solver.

6.5 Choice of level set function φ

The choice of the level set function is quite arbitrary. Ideally, the evolution of the

zero level set front should not depend upon the choice of the field φ(x, t), as long as it

is Lipschitz continuous (Evans, 1998, Russo and Smereka, 2000). If (5.2) is solved ex-

actly, any Lipschitz continuous field φ(x, t) should lead to the correct time evolution

reachability front and therefore, correct optimal vehicle trajectories. However, from

a numerical perspective, different choices of φ(x, t) lead to different solutions. It is

well known that a signed distance function for the level set field has several favorable

97

properties. The signed distance field is smooth, i.e. does not have any sharp gradi-

ents, especially near the zero level set contour. This leads to lesser numerical errors

in approximating field quantities such as ∇φ and therefore gives a more accurate

evolution of the level set front. Therefore, it is generally useful if the level set field is

chosen as the signed distance function, at least close to the front, if not in the entire

domain.

6.6 Computational Cost

In this section, we attempt to quantify the computational cost of our level set based

path planning algorithm and compare it to other algorithms in the literature.

In our implementation, eq. (5.2) is integrated forward in time using a finite volume

approach, either by a regular solver, or a narrow band solver. In both cases, since this

equation is solved on a grid, the overall computational cost of the algorithm becomes

a function of the grid resolution. In this thesis, we deal with path planning in two

dimensions, hence equation (5.2) is solved in 2D. Let us assume that there are O(n)

grid points in each direction and a total of O(N) grid points in the whole domain

(N ∼ n2).

Starting first with the regular finite volume approach, the level set equation is

solved in the entire domain. The computational cost per time step for this is O(n2)

(Adalsteinsson and Sethian, 1995). The number of time steps (K), that the algorithm

runs is directly related to the optimal travel time of the vehicle (K = T (xf)/∆t).

Since T (xf) is not known a priori, it is not possible to estimate the total number of

time steps (K) without solving the equation (5.2) to begin with. Therefore, we can

only provide computational cost estimates of the algorithm per time step.

Reinitialization of the level set also comes at an expense. The simplest reinitial-

ization procedure of computing the distance of every grid point to the level set front

is an O(n3) operation. However, if a fast marching method is employed to solve

the reinitialization equation, the computational cost drops to O(n2 log(n)) (Sethian,

1999a). Again, the overall contribution of the reinitialization step towards the com-

98

putational cost depends on the frequency (i.e. the number of time-steps without any

reinitialization) at which the level set field is reinitialized.

The computational costs of solving both, the level set equation and the reini-

tialization equation can be significantly reduced by using a narrow band approach

Adalsteinsson and Sethian (1995). If we assume a narrow band of width d, then the

cost of solving the level set equation (5.2) reduces to O(nd), per time step. The

cost of computing the distances to the zero level set for all points inside the narrow

band reduces to O(nd2). The above estimates of computational costs are tabulated

in Table 6.1.

Solver Level Set Eq. (5.2) Reinitialization

Regular(Full PDE) O(n2) O(n3)
Narrow Band O(nd) O(nd2)

Table 6.1: Computational cost estimates (per time step) for solving the level set
equation (5.2) and the reinitialization equation: Regular solver and narrow band
solver.

It is not so straight-forward, however, to come up with estimates of computational

costs of other algorithms that solve the fastest time path planning problem. In addi-

tion to the approximate vehicle trajectory ensued by a grid based representation of

the domain, the computational costs of the algorithms discussed in chapter 3 of this

thesis are also not easy to predict. For example, let us consider the A∗ method. This

method does not involve solving a PDE. The A∗ algorithm maintains an open and

closed list of cells that the robot can visit (see §(3.1.1)). The open list contains all

the points which can possibly lie on the optimal path, while the closed list contains

all points which have been removed from the open list, i.e. they are not considered

any more. The closed list contains all trajectories that have been trimmed from the

graph search. In other words, the algorithm maintains a sorted priority queue of path

segments along with estimates of the total cost to reach the goal. In underwater path

planning, the motion of the vehicle is affected by the flow-field. Since these flow-fields

are often of a dynamic nature, the costs associated with traveling across different arcs

of the AUV workspace (costs here have units of time) become time-dependent. This

99

adds to the complexity of the graph search. Specifically, for strong flows, the optimal

path to the end point may visit some points in the domain more than once. In order

for the A∗ algorithm to provide the optimal solution, no grid point may be added

to the closed list. In other words, no branch of the search tree can be trimmed. To

guarantee a globally optimal solution (overlooking grid-based paths), the A∗ algo-

rithm would require a time that is doubly exponential in the robot workspace, in the

worst case. In addition, the heuristic cost function that underestimates the cost to go

from the current point to the end point depends on the flow-field. For strong flows,

the performance of the A∗ algorithm crucially depends on the choice of the heuristic.

The computational cost of the A∗ method therefore, depends on a lot of factors.

We note that for some flow-fields, A∗ method can compute the optimal path faster

than our level set based approach. For example, consider a flow-field that is directed

towards the end point. In this case, the A∗ algorithm proceeds along a straight line

towards the end point and the optimal path is thus, directly computed. However,

analysis is not so simple when the flows become complex.

In addition, the performance of the method depends crucially on the choice of the

heuristic cost function chosen. The algorithm maintains a sorted priority queue of

path segments along with estimates of the total cost to reach the goal (travel time,

in this case). When the flow field becomes time dependent, the costs of traveling

across various arcs also becomes time dependent. In this case, to achieve optimality,

every path segment may need be pursued, which makes the computational cost of the

algorithm exponential, in the worst case. Even though the computational cost per

time step is small, the number of time steps needed for optimality may be extremely

large.

Randomized and approximate methods like RRTs also suffer from a similar prob-

lem in underwater path planning. Even though RRTs are quick in practice but an

estimate on the computational cost to yield an optimal solution depends on the na-

ture of the flow-field itself. The algorithm itself, owing to its random nature, is

not amenable to generating robust trajectories. This algorithm is only probabilisti-

cally complete, i.e. exhibits favorable convergence properties in a probabilistic sense.

100

Therefore, it is very challenging to come up with deterministic estimates of the com-

putational cost of RRTs. The author is not aware of any work that discusses the

computational costs of various algorithms for time optimal path planning in dynamic

flow currents.

6.7 Summary

In this chapter, we have presented our level set algorithm for time-optimal path

planning in dynamic flow-fields. We have described the numerical scheme used for

solving the governing equation. We then also discussed the topic of reinitialization of

the level set field and briefly commented on how it can affect the solution. Finally,

we provided estimates of the computational cost of our algorithm and compared it

with two other robotic path planning algorithms.

101

102

Chapter 7

Applications

In this chapter, we illustrate our path planning algorithm by means of three sets of

examples. The first set (Section 7.1) comprises of examples with simple canonical

flow-fields such as jet and vortex flows. These serve as benchmark examples wherein,

we compare the solution obtained by our algorithm to respective analytical solutions

which are either known, or can easily be computed. In the second set of examples

(Section 7.2), we utilize more complex and realistic, numerically simulated ocean flow-

fields to highlight the features and capabilities of our path planning algorithm. These

flow-fields are highly unsteady and include strong jets and eddies. The environment

is, in some cases, also composed of obstacles and forbidden regions. In the final set

(Section 7.3), we consider other interesting test cases which serve as corollaries to the

theorem presented in §(5.2). Each of these examples is designed to highlight a unique

feature of the algorithm. For robustness, many more cases have been studied, but we

illustrate only a subset of results here.

7.1 Benchmark Examples

7.1.1 No Flow

Consider a simple example in two dimensions, in which, there is no external flow

field, i.e. V(x, t) = 0 everywhere. We wish to navigate a vehicle from a start point,

103

xs = (1, 1) to the end point, xf = (1.8, 1.8) in the fastest time. The vehicle has a

maximum speed of F = 1 relative to the flow. The environment of the vehicle has no

obstacles and the vehicle is free to visit any point in space. In this case, the shortest

path is trivial - a straight line connecting xs and xf .

We use our level set algorithm to compute the optimal trajectory for this problem.

As per our algorithm, we solve the forward level set equation (5.2) starting from the

initial conditions. We refer the reader to figure (7-1) for snapshots of the zero level

set contour (reachability front) at various times. Since there is no flow-field in this

example, the shape of the level set front is always a circle, centered at the start point,

xs. As seen from figure (7-1), the algorithm correctly predicts the shapes of the zero

level set. The forward level set equation (5.2) is solved until the zero level reaches

the end point xf . This terminates the forward evolution step. The backtracking is

performed by solving equation (5.4), starting from xf until the vehicle reaches xs.

Since there is no flow field in this example, the optimal heading of the vehicle is

always in the outward radial direction from xs. In figure (7-2), we plot the optimal

vehicle trajectory predicted by our algorithm. We can see that our algorithm correctly

predicts the the optimal straight line path from xs to xf .

In addition, for this example, the analytical optimal time of travel is equal to

Tmin(xf) = |xf−xs|
F

= 1.1314. The travel time predicted by our algorithm is equal to

1.1300, which is within 0.15% of the analytical value. Therefore, the predicted solution

is within the error limits imposed by the grid resolution (i.e. ∆x
|xs−xf |

≈ 0.011). Thus,

the algorithm correctly predicts both the optimal path and the optimal time of travel

in this problem.

7.1.2 Optimal Crossing of a Jet Flow

In this second benchmark example, we apply our path planning algorithm to optimally

cross a ‘jet flow’ (Lolla et al., 2012). Consider a flow field (see figure (7-3)) in the form

of a uniform jet, from left to right, of constant speed V . This region of the flow field

is shaded in gray (see figure (7-3)). There is no flow in the rest of the domain. We

wish to determine the minimum time path of the vehicle from the starting location

104

(a) t = 0 (b) t = 0.15

(c) t = 0.75 (d) t = 1.10

Figure 7-1: Snapshots of the zero level set (reachability front) at different non-
dimensional times for example §(7.1.1). The start point is marked by a black circle,
while the end point is denoted by a star.

105

Figure 7-2: Optimal straight line path from start (circle) to end (star) for the example
§(7.1.1) computed using our algorithm. The optimal path (shown in red) is overlaid
on contours (black circles) of the zero level set at different intermediate times.

Figure 7-3: Parameters involved in optimal crossing of a jet flow: jet speed V and
width d; start (circle), end (star), distances from jet y1, y2; vehicle speed in still flow,
F and headings θ1, θ2, α; resultant trajectory angle β.

(marked by a filled circle) to the goal (marked by a star). Consistent with our earlier

notation, we denote the maximum nominal speed of the vehicle with respect to the

flow as F . Let us denote the vehicle heading angles before reaching the flow field, in

the flow field, and after exiting the flow region respectively as θ1, α and θ2. While

the vehicle advances in the jet, it is also advected by the flow. Therefore, in this case,

the actual direction of vehicle motion is different from the heading direction. Let us

denote the angle formed by the vehicle trajectory in the flow to the vertical by β.

Notations for various distance parameters in the problem can be read off from figure

(7-3).

106

As per our algorithm, we propagate a wavefront from the starting position of the

vehicle according to the level set equation (5.2) until the zero level set reaches the

goal. In figure (7-4), we show the shapes of the zero level set at different times for

this example. The level sets are primarily radial expansions outside of the jet and

advected to the right in the jet. Therefore, until the zero level set expands from

the start point to reach the flow, it remains a circle. After it reaches the horizontal

flow, by continuity, this advection elongates the level sets outside of the jet on the

downstream side. The kink (shock) in the level sets joining the elongation with the

radial expansion below the the jet represents the set of points which can be optimally

reached either using the jet or otherwise. As the desired goal is downstream to the jet,

the vehicle must make use of this favorable current in order to reach its destination.

The forward level set equation (5.2) is solved until the level set front reaches xf .

Then, we solve equation (5.4) backward in time to calculate the optimal trajectory

of the vehicle. The vehicle path computed by our algorithm is shown by discrete points

on intermediate level sets in figure (7-5).

Validation

In order to verify the results of the algorithm, we formulate this jet flow problem as

a nonlinear optimization problem. The constraints of this optimization problem are

obtained as follows.

Let U denote the velocity of the vehicle in the flow, as seen by a ground observer.

We have, componentwise,

Ux = F sinα + V (7.1)

and

Uy = F cosα (7.2)

where Ux and Uy are the x and y components of the total vehicle velocity, U. This

gives,

tan β =
Ux
Uy

= tanα +
V

F
secα (7.3)

107

(a) t = 0.15 (b) t = 0.35

(c) t = 0.60 (d) t = 0.90

Figure 7-4: Snapshots of the zero level set (reachability front) at different non-
dimensional times for jet flow example §(7.1.2). The start point is marked by a
black circle, while the end point is denoted by a star.

108

Figure 7-5: Vehicle trajectory predicted by the level set algorithm for the jet flow
example in figure (7-3) (§(7.1.2)). The start point is denoted by a circle and the end
point by a star. The optimal path (red) is overlaid on level set contours at various
intermediate times (black curves).

Let X be the total downstream displacement of the vehicle, i.e. in the x direction.

We have, from trigonometry:

X = y1 tan θ1 + d tan β + y2 tan θ2 (7.4)

Finally, the total travel time T can be written as the sum of travel times in each

individual region. Hence, the optimization problem we wish to solve is:

min T =
y1

F cos θ1

+
d

F cosα
+

y2

F cos θ2

(7.5)

s.t. X = y1 tan θ1 + d

(
tanα +

V

F
secα

)
+ y2 tan θ2 (7.6)

and

θ1, θ2, α ≥ 0

This optimization problem is solved numerically in MATLAB R©. We present the

results for F = 1, V = 1.2, y1 = 0.2, y2 = 0.4, d = 0.2 and X = 0.8 in Table

109

Table 7.1: Comparison of Results of Level Set Algorithm and Nonlinear Optimization
Method

Level Set Method Optimization Method

θ1 22.68◦ 22.66◦

θ2 22.68◦ 22.66◦

β 70.06◦ 69.99◦

α 45.90◦ 45.77◦

T 0.936 0.937

7.1. From this, we find that the two methods yield the same solution, up to very

small differences. These differences in the angles are due to small numerical and

truncation errors in the level set computation (e.g. limited grid resolution leads to

limited precision in angles).

7.1.3 Rankine Vortex Flow

We have validated our path planning algorithm in the case of zero flow and the case

of a simple jet flow. Here, we present the final benchmark example of path planning

in a Rankine vortex. This flow field can be characterized in polar coordinates as:

V(r, θ, t) = vθ(r)θ̂ (7.7)

Here, θ̂ is the unit vector in the direction of the angular coordinate. vθ(r) is a general

speed of the flow and depends on the type of vortex. We are interested in computing

the fastest time trajectory from the origin, xs = 0 to the end point xf : (r = R, θ = 0).

Let the total travel time of the vehicle be T (xf) and the fastest travel time be Tmin(xf).

Analytical solution for general vθ(r)

Let the to-be-optimized-speed of the vehicle with respect to the flow be:

Fv(t)ĥ = Fr(t)r̂ + Fθ(t)θ̂

110

with
√
Fr(t)2 + Fθ(t)2 ≤ F . The total speed of the vehicle can be written as:

dx

dt
= Fr(t)r̂ + [Fθ(t) + vθ(r)] θ̂ (7.8)

with x(t = 0) = 0 and x(t = T (xf)) = xf . Separating the radial and angular

components of the vehicle trajectory, we get;

ṙ = Fr(t) and rθ̇ = Fθ(t) + vθ(r)

Integrating the first equation, we get

R =

∫ T (xf)

0

Fr(t)dt ≤
∫ T (xf)

0

Fdt = FT (xf)

Since Fr(t) ≤ F , we can see that T (xf) ≥ R
F

. Hence, R/F is a lower bound for

the arrival time, T (xf). We claim that Tmin(xf) = R/F . For this, we need to show

that there exists a trajectory that satisfies equation (7.8) and has a travel time of

T (xf) = R/F . Such a trajectory can be generated by inspection, by setting Fr(t) = F

and Fθ(t) = 0. For this choice of the vehicle velocity (Fv(t)ĥ), we get:

ṙ = F (7.9a)

θ̇ =
vθ(r)

r
(7.9b)

Integrating the above equations, we get r(t) = Ft and

dθ =
vθ(r)

r
dt =

vθ(r)

r

dr

F∫ θ

θo

dθ =

∫ R

0

vθ(r)

Fr
dr

θ = θo +

∫ R

0

vθ(r)

Fr
dr (7.10)

Here, θ0 is the initial heading angle of the vehicle. The final value of θ is known

from the coordinates of the target point xf . Therefore, from equation (7.10), θ0 can

111

be computed. The control to generate the quickest time trajectory is, therefore,

Fv(t)ĥ(t)
∣∣∣
opt

= F r̂, with θ0 = θ −
∫ R

0

vθ(r)

Fr
dr (7.11)

This solution can also be obtained by using our level set algorithm. The zero level

set contours obtained by solving equation (5.2) are all circles centered at the origin

because of the angular symmetry of the flow (see figure (7-6)). The only information

needed from the forward evolution of the level set to solve the backtracking equation

(5.4), is the direction of the normals to the intermediate level set contours. In this

problem, we could have guessed the shapes of the contours without solving the forward

level set equation (5.2). Since the flow-field has no radial component, all the zero level

set contours are circles centered at the origin. The outward normal to the contours is

the unit vector in the radial direction, (n̂ = r̂). Using this observation, we can directly

solve the backtracking equation to compute the initial heading angle θ0 (where the

normal to the point level set is undefined).

This problem is in fact, almost identical to crossing a uniform jet in the fastest

time (discussed in §(7.1.2)). To cross a uniform jet in the fastest time (i.e. reach the

opposite bank quickest), one needs to steer perpendicular to the flow at all times, so

that the maximum component of the vehicle’s speed is directed towards the opposite

bank. Similarly, to get away quickest from the center of a vortex flow, one needs to

head normal to the streamlines of the flow (i.e. the radial direction). Since the radial

direction is undefined at the origin, we have to solve the backtracking equation to

compute the initial heading angle (θ0).

Rankine Vortex Solution

We study the performance of our algorithm when the Rankine vortex flow is defined

by,

vθ(r) =
Γr

2πσ2

Here, Γ represents the total circulation around the origin and σ is the radius of the

Rankine vortex. This flow-field models a solid body rotation of the fluid around the

112

vortex. This is realistic in most practical vortex flows, particularly close to the center.

For this example, we use Γ = 20, σ = 1.5 and vehicle speed F = 1. The coordinates

of the end point (xf) are R = 1, θ = 0, i.e. the end point is one unit to the right of

the origin. From equation (7.10), the initial heading angle, θ0 can be calculated.

θ0 = − ΓR

2πFσ2
= −1.4147 rad. (7.12)

Hence, the optimal trajectory for this flow-field is:

r(t) = Ft, θ(t) = θ0 +
vθ(r)

r
t =

Γ(Ft−R)

2πFσ2
(7.13)

Figure 7-6: Circular level set contours obtained by solving the forward equation (5.2)
for a Rankine vortex flow discussed in §(7.1.3). The start point is marked as a black
circle at the origin, while the end point is marked as a star. Red: Path given by our
algorithm, Black: Optimal path calculated analytically (equation (7.13)). The paths
given by the two approaches are identical.

The shapes of the zero level set contours at different times and the optimal vehicle

trajectory obtained by solving equation (5.4) are plotted in figure (7-6). The vehicle

headings predicted by the level set algorithm are compared against the analytically

computed headings in figure (7-7). From these figures, it can be seen that our level

113

Figure 7-7: Variation of vehicle heading angles (in radians) with time - Black: Heading
angles predicted by our level set algorithm, and Red: Heading angles calculated
analytically (equation (7.13)).

set algorithm accurately predicts the vehicle headings and the optimal trajectory.

Through this example, we emphasize that the only information needed from the

solution of the forward level set equation is the time evolution of the zero level set

front. If there is an intuitive way of knowing the level set shapes a priori, the forward

model does not have to be solved. This is generally not the case and therefore, for

most flows, the forward level set evolution equation must be solved.

7.2 Realistic Ocean Flow Examples

In this section, we apply our path planning methodology to more complex and re-

alistic, however numerically simulated ocean flow fields. We use these examples to

illustrate certain unique features and capabilities of the algorithm.

7.2.1 Path Planning in a Double Gyre Flow

The wind-driven double gyre flow that we study is modeled using a barotropic single

layer-model in a square basin of size L = 1 described in detail in (Dijkstra and

114

Katsman, 1997, Simmonet et al., 2009) (see also Pedlosky (1998), Cushman-Roisin

and Beckers (2010)). The intent is to simulate the idealized near-surface double-

gyre ocean circulation at mid-latitudes. The mid-latitude easterlies and trade winds

in the northern hemisphere drive a cyclonic gyre and an anticyclonic gyre, and the

corresponding zonal jet in between. This eastward jet would correspond to the Gulf

Stream in the Atlantic and to the Kuroshio and its extension in the Pacific. This

idealized flow is modeled by the nondimensional equations of motion

∂u

∂t
= −∂p

∂x
+

1

Re
∆u− ∂ (u2)

∂x
− ∂ (uv)

∂y
+ fv + aτx, (7.14a)

∂v

∂t
= −∂p

∂y
+

1

Re
∆v − ∂ (vu)

∂x
− ∂ (v2)

∂y
− fu+ aτy, (7.14b)

0 =
∂u

∂x
+
∂v

∂y
, (7.14c)

where Re is the flow Reynolds number taking values from 10 to 104, f = f̃ + βy is

the non-dimensional Coriolis coefficient, and a = 103 the strength of the wind stress.

In non-dimensional terms, we have f̃ = 0.1, β = 103. The flow in the basin is forced

by an idealized zonal wind stress that is constant in time, given by

τx = − 1

2π
cos 2πy

τy = 0.

Free slip boundary conditions are imposed on the northern and southern walls (y = 0, 1)

and no-slip boundary conditions on the eastern and western walls (x = 0, 1) . In

what follows, we present results for Re = 150, for which we have resolved flow

simulations. The dimensionless inertial and viscous boundary layer thickness are

δl = L−1
√
U/β0 =

√
1/β and δM = L−1(AH/β0)1/3 = (1/(Re β))1/3 respectively.

The governing equations (7.14) for the fluid flow are solved using a second or-

der accurate Navier-Stokes solver, which is a component of a modular finite volume

framework, implemented in MATLAB R© (Ueckermann and Lermusiaux, 2009). This

framework uses a uniform, two-dimensional staggered C-grid for the spatial discretiza-

115

tion. The diffusion operator in the Navier-Stokes equations is discretized using a sec-

ond order accurate central difference scheme. The advection operator is discretized

using a Total Variation Diminishing (TVD) scheme with the monotonized central

(MC) limiter Van Leer (1977). The time discretization uses a first-order accurate,

semi-implicit projection method, where the diffusion and pressure terms are treated

implicitly, and the advection is treated explicitly (for details see Ueckermann et al.

(2012), Ueckermann and Lermusiaux (2011)). In figure (7-8), we show a few snap-

shots of the computed flow-field streamlines, overlaid on a color plot of vorticity, at

different non-dimensional times.

Using this example, we wish to:

1. Examine the performance of our algorithm for path planning in a strong and

dynamic flow-field.

2. Illustrate an application where the goal is to determine if a vehicle can reach a

certain end point within a specified time limit.

Table 7.2: Double Gyre Flow: Numerical parameters used in generation of the
flow-field (equation (7.14)) and in level set evolution (equation (5.2)).

Parameter Value

Flow Field

Domain Size (x× y) 1× 1
Grid Size (Nx×Ny) 64× 64

Time Step (∆t) 1.0× 10−4

Reynolds Number 150

Level Set

Domain Size (x× y) 1× 1
Grid Size (Nx×Ny) 64× 64

Time Step (∆t) 1× 10−4

Time Offset 1.1
Vehicle Speed (F) 5
Initial Conditions Signed Distance

We are interested in computing the fastest time trajectory from xs = (0.2, 0.2) to

xf = (0.8, 0.8). In order to see more dynamic features in the flow-field, we let the

vehicle begin its motion at an offset time, ts, after the flow-field, i.e. the flow field

experienced by the vehicle at the beginning of its motion is the flow field at time

116

t = ts. In this example, we set ts = 1.10. Various numerical parameters used to solve

equation (7.14) and the level set equation (5.2) are shown in Table (7.2). Equation

(5.2) is solved according to the numerical scheme described in §(6.2). The level set

field is initially chosen to be the signed distance function.

In figure (7-9), we show the time evolution of the zero level set front when the

maximum vehicle speed relative to the flow is, F = 5. The backtracking equation

(5.4) is solved to compute the optimal path. The optimal vehicle trajectory for this

example is plotted in figure (7-10). Due to the strong flow-field, the vehicle has to

perform two revolutions around the lower eddy before it finds a favorable current that

drives it towards the end point.

Another important question that arises in path planning is to determine whether

a vehicle can reach a given end point within a specified time limit. We study this

problem using the double gyre flow-field. For this example, we set ts = 0.4, while all

other parameters remain the same as above. If the maximum relative vehicle speed,

F is set to 8, the optimal travel time from (0.2, 0.2) to (0.8, 0.8) is computed to be

0.0343 (see figure (7-11)). However, if the relative vehicle speed F is reduced to 6,

then the optimal travel time increases to 0.0856, which is more than twice the earlier

value. The optimal trajectory in this case is also significantly different. Our level set

algorithm can predict if a vehicle can reach the target within a specified time limit.

The reachability front at time t = 0.035 for F = 6 is shown in figure (7-11)c. Since

the front has not reached the end point by this time, we can conclude that it is not

possible for the vehicle to reach the target within the specified time of 0.035 units.

In the general case, the forward evolution equation (5.2) needs to be solved until the

zero level set reaches the target, or until the specified time limit, whichever is smaller.

If the target is reached within the imposed time limit, the optimal trajectory can be

computed by backtracking, and if not, the algorithm terminates by outputting the

reachability set (see also §(5.3)).

117

(a) t = 0.10 (b) t = 0.15

(c) t = 1.10 (d) t = 1.14

(e) t = 1.16 (f) t = 1.18

Figure 7-8: Snapshots of double gyre flow-field at different non-dimensional times -
streamlines of the flow (white) are overlaid on color plots of vorticity of the flow. The
start point (xs) and the end point (xf) are marked as a circle and a star respectively.

118

(a) t = 1.105 (b) t = 1.1150

(c) t = 1.1250 (d) t = 1.1350

(e) t = 1.1600 (f) t = 1.1800

Figure 7-9: Time evolution of the zero level set (reachability front) for the double
gyre flow field (discussed in §(7.2.1)) for offset time ts = 1.10.

119

Figure 7-10: Fastest path from xs = (0.2, 0.2) (circle) to xf = (0.8, 0.8) (star) in
double gyre flow-field (§(7.2.1)). The optimal path (black) is overlaid on the final
snapshot of the flow-field, colored by vorticity.

(a) F = 6 (b) F = 8 (c) F = 6

Figure 7-11: Fastest time paths for two vehicles in the double gyre flow field overlaid
on vorticity-colored plots of the final flow-field. (a) The first vehicle (F = 6) takes
0.0856 units of time to reach the end point whereas (b) the second vehicle (F = 8)
takes only 0.0343 units of time. (c) The reachability front at time t = 0.035 for the
slower vehicle (F = 6).

7.2.2 Flow Past Cylinder/Circular Island

In this example, we present the results of our path planning algorithm in the case of

open flow in a frictionless conduit with a circular cylinder obstacle (see figure (7-12)).

This is a highly unsteady flow field that exhibits periodic vortex shedding in the

120

Figure 7-12: Schematic of Flow Past Circular Cylinder Test Case

wake of the cylinder, at appropriate Reynolds numbers. For a real ocean scenario,

this corresponds to the flow that results when a stream of ocean current flows past a

circular island. The purpose of this example is threefold:

1. To illustrate the performance of our algorithm for path planning in a strong

and dynamic flow-field.

2. To demonstrate how obstacles to the flow (and the vehicle) are naturally handled

by the algorithm.

3. To illustrate that the algorithm can be parallelized when paths for multiple

vehicles have to be planned.

The flow is driven by a deterministic uniform inlet boundary condition (left of

domain), with slip velocity boundary conditions at the top and bottom, and open

boundary conditions at the outlet (see figure (7-12)). Snapshots of the flow field at

different times are shown in figure (7-13). The Reynolds number of the flow used in

this example is 1000.

In this example, there are 11 start points (marked by black circles) upstream of

the cylinder and 11 end points (represented by colored markers) downstream of the

cylinder (see figure (7-13)). Each start point releases a swarm of 11 vehicles, one for

each different end point. Thus, there are a total of 121 vehicles for which paths have

to be planned. The goal for this swarm of vehicles is to reach their respective targets

in the fastest time, by utilizing (or avoiding) the multi-scale flow structures in their

path. In addition, none of the vehicles should collide with the cylindrical obstacle in

the domain, i.e. the paths of all the vehicles should be both, safe and optimal.

121

Table 7.3: Flow past a circular island: Numerical parameters used in generation
of the flow field and in level set evolution (equation (5.2)).

Parameter Value

Flow Field

Domain Size (x× y) 20× 3
Grid Size (Nx×Ny) 200× 30

Time Step (∆t) 5.0× 10−4

Reynolds Number 1000

Level Set

Domain Size (x× y) 20× 3
Grid Size (Nx×Ny) 200× 30

Time Step (∆t) 5.0× 10−4

Time Offset 0.4
Vehicle Speed (F) 0.5
Initial Conditions Signed Distance

Corresponding to each of the 11 start points, we evolve a level set, according to

equation (5.2). The numerical parameters used in generation of the flow field and

in solving the forward evolution equation are presented in Table (7.3). The obstacle

in the domain is handled by ‘masking’ out the appropriate region in the domain

mesh, i.e. the governing equations are numerically solved at all points outside of the

obstacle. For grid points that lie under the obstacle mask, a deterministic boundary

condition is imposed on the level set function, φ. At all domain boundaries, an open

boundary condition is imposed on φ.

Figure (7-14) shows the time evolution of level set fronts corresponding to two

different start points, overlaid on streamlines of the flow-field, colored by vorticity.

We can see that the level set fronts, for all these cases, do not penetrate the obstacle,

but ‘wrap’ around it. This feature of the level set method leads to collision free (safe)

trajectories. The level set fronts from each start point are evolved until every end

point has been crossed. The crossing times of each end point are recorded because

backtracking (equation (5.4)) has to be performed from the time each end point is

reached. The optimal vehicle trajectories corresponding to each start point, to all the

end points are plotted in figure (7-15). As expected, none of the paths pass through

the obstacle.

Through this example, we have illustrated the ability of the algorithm to generate

collision free vehicle trajectories in addition to predicting time optimal paths. This

122

(a) t = 0 (Initial Time) (b) t = 3.00

(c) t = 4.800 (d) t = 6.900 (Final Time)

Figure 7-13: Snapshots of velocity-field for flow behind a circular island (discussed in
§(7.2.2)) at different non-dimensional times. The streamlines of the flow are overlaid
on color plots of the vorticity.

comes at no additional computational expense. Also, the number of level sets that

need to be evolved depends on the number of different start points, and not on the

number of end points. Paths to every end point corresponding to a single start point

can be planned by evolving just one level set field. In the case of multiple end points,

the level set needs to be evolved until all of the end points have been reached. Thus,

this algorithm can efficiently be parallelized to independently compute optimal vehicle

tracks from multiple start points.

7.2.3 Sudden Expansion in Coastal Ocean and Fluid Flows

We now apply our path planning algorithm to the third and final realistic ocean

flow-field with dynamic jets and eddies, and discuss the results. This example has

been published earlier in (Lolla et al., 2012). In this example, we consider a uniform

barotropic jet (2D flow in the horizontal plane) exiting a strait or estuary. Such flows

commonly occur in the coastal ocean and generally lead to meanders and vortices as

the jet exits the constriction. This situation corresponds to a highly unsteady flow

123

(a) t = 0 (Initial Time) (b) t = 0 (Initial Time)

(c) t = 1.5 (d) t = 1.5

(e) t = 3.00 (f) t = 3.0

(g) t = 4.5 (h) t = 4.5

(i) t = 6.0 (j) t = 6.0

Figure 7-14: Flow past circular island (§(7.2.2)) - time evolution of the zero level set
front corresponding to two different start points (marked in black). None of the level
set fronts pass through the island, but instead ‘wrap’ around the island.

124

(a) Start point 1 (b) Start point 2

(c) Start point 3 (d) Start point 4

(e) Start point 5 (f) Start point 6

(g) Start point 7 (h) Start point 8

(i) Start point 9 (j) Start point 10

Figure 7-15: Flow past circular island (§(7.2.2)) - Safe and time optimal trajectories
corresponding to every start point. As expected, none of the paths pass through the
island. All vehicle paths are overlaid on a snapshot of the flow-field at the final time.

125

Figure 7-16: Schematic of Sudden Expansion Test Case

field. If the width of the constriction is small enough, effects of the earth’s rotation

(Coriolis acceleration) can be neglected.

We refer the reader to figure (7-16) for a schematic of the sudden expansion

example. The flow is driven by a deterministic inlet velocity with no slip boundary

conditions at the top and bottom walls. The numerical parameters used in generation

of the flow-field are given in Table (7.4). The reader is referred to figure (7-17) for

two snapshots of the flow-field at two successive non-dimensional times. Shown are

flow streamlines overlaid on the magnitude (in color) of the velocity field.

Table 7.4: Sudden expansion in Coastal Ocean: Numerical parameters used in
generation of the flow field and in level set evolution (equation (5.2)).

Parameter Value

Flow Field

Domain Size (x× y) 7× 1
Grid Size (Nx×Ny) 420× 60

Time Step (∆t) 2.0× 10−3

Reynolds Number 417

Level Set

Domain Size (x× y) 7× 1
Grid Size (Nx×Ny) 420× 60

Time Step (∆t) 2.0× 10−3

Time Offset 0
Vehicle Speed (F) 0.5
Initial Conditions Signed Distance

In what follows, we will consider the scenario of a swarm of underwater vehicles

that are released from a fixed point near the exit of the strait or estuary (this start

point could correspond to a harbor or larger platform such as a ship or oil rig).

The goal for the swarm is to reach a predetermined formation in the open ocean

in fastest time, optimally using (or avoiding) the multi-scale flow structures as they

126

(a)

(b)

Figure 7-17: Snapshots of the flow field for a jet exiting a strait or estuary (sudden
expansion/2D coastal flow) showing color maps of the total magnitude of the flow
velocity overlaid with streamlines (a) at the time of initial vehicle deployment and
(b) near the final time of vehicle maneuvers in Fig. 7-18a.

occur along the way. The formation can for example be selected based on security,

surveillance, pollution monitoring or ocean sampling considerations. In all cases, our

methodology will compute the optimal heading time-series for each vehicle based on

our predicted time-dependent flow field. The computational cost of the algorithm is

overall proportional to the geometric dimensions of the formation pattern.

Another setting where this example can be useful is for the monitoring of the

flow in a pipe or channel which encounters a sudden increase in cross sectional area.

In that situation, our example would illustrate how mobile sensors released at the

junction would have to be navigated to reach a specific formation in fastest time.

Such a formation could then be designed to monitor possible pressure drops, release

of toxic material, status of pipe wall conditions or other properties.

127

(a)

(b)

Figure 7-18: Optimal vehicle paths for 9 vehicles deployed from a single point (black
dot) in the flow illustrated by Fig. 7-17. Results for two situations are shown: (a) No
constraints or forbidden regions: Vehicle paths then take full advantage of evolving
jets and eddies to reach their final positions (colored dots) in shortest time. (b)
Two forbidden regions: Vehicles are denied access to the gray shaded regions. Our
algorithm provides seven new time optimal paths for the paths computed in (a) that
are blocked while it correctly leaves unchanged the two paths that are not blocked.

In this example, we set the speed of the vehicles in still flow to F = 0.5. The

maximum speed Vmax of the flow is 2.5 (see Fig. 7-17). The width of the inlet is one

third of the total width of the channel (see figure (7-16)). The Reynolds number is

Re =

(
h

2

)
Umax

ν
= 417 with h =

1

3
and ν = 10−3.

In our scenario, we enforce that the swarm of vehicles take a triangle shape at final

time, as shown in Fig. 7-18a. The vehicles are released at the lower edge of the inlet.

Fig. 7-18a shows the optimal paths of the vehicles computed using our path planning

128

algorithm. From Fig. 7-17b, we can intuitively see that to reach the tip of the triangle

in shortest time, the vehicle must ride along a favorable current. For the four end-

points that are closest to the inlet, the vehicles clearly utilize the upper and lower

re-circulation eddies. Overall, we find from Fig. 7-18a that the algorithm correctly

predicts the shapes of the optimal paths.

7.2.4 Ocean flows with ‘forbidden’ regions

We now consider the situation where the swarm of vehicles cannot enter specific re-

gions, either because of safety, hazardous conditions, security or naval considerations.

We refer to these regions as forbidden regions because they cannot be entered by

vehicles but they have no effect on flow fields, i.e. currents are not affected by them.

To implement the forbidden regions in the forward level set evolution, we replace

the right-hand sides of equations (6.6-6.8) with zero for grid points inside the forbidden

regions. In the backward calculation, we only need to mask V(x, t) in equation

(6.10) with zeros in the forbidden regions since the level sets have evolved from the

modified forward algorithm have normals that correctly go around the forbidden

regions. Handling such regions is thus straightforward, which is a major advantage

of our approach.

Path planning with forbidden regions is illustrated in figure (7-18b). The physical

setup is as in figure (7-18a), but we prevent the paths from entering the two regions

shown in gray. Collectively, these two regions block seven of the nine optimal paths

of figure (7-18a). The new optimal paths for these seven vehicles all ride the lower

edge of the main jet, just skirting the bottom of the second forbidden region. They

then ride down one eddy and up an adjoining eddy, figure (7-17a), to rejoin the main

jet behind the forbidden regions. The two paths from figure (7-18a) that did not pass

through the forbidden areas remain unaffected by the forbidden areas.

We now present several interesting examples to bring out more subtle points about

the algorithm and its give an idea of the wide range of its applicability.

129

7.3 Corollaries

In this section, we present examples that also serve as corollaries to the theorem

discussed in §(5.2). Every example to be discussed here has been designed to bring

across an important feature of our methodology.

7.3.1 Discontinuity in Arrival Time

Consider a one dimensional problem in which we want to navigate a vehicle from

x = 0 to x = 4 in the fastest time. Using the notation in theorem §(5.2), we let the

maximum vehicle speed in still flow be F = 1 and let the external velocity field be

V(x, t) = −2 sin(πt)̂i (see figure (7-19)). This is an oscillating velocity field, which

can exist in compressible fluid flows. We choose this oscillating flow-field because it

conveys very well, the point we wish to focus on.

Figure 7-19: 1D Flow Field and Domain

Since the vehicle motion is restricted only to the x axis, the vehicle has only two

heading choices at any time- it can either head to the right or the left. As per the

theorem in §(5.2), the reachability front is traced when the vehicle moves at maximum

speed relative to the flow. Thus, the reachability front in this case consists of only

two points. The first point is obtained when the vehicle always heads to the right

at speed F relative to the flow, while the other is obtained when it always heads to

the left. Since the end point is to the right or the start point and the flow-field is

uniform, we can argue that the optimal trajectory is realized when the vehicle always

moves with velocity F î relative to the flow. Therefore, the time optimal trajectory of

130

this vehicle governed by:

dx

dt
= F + V(x, t) · î (7.15)

= 1− 2 sin(πt) (7.16)

Integrating this equation with initial condition x(0) = 0, we get:

x(t) = t+
2

π
(cos(πt)− 1) (7.17)

This continuous path is plotted in blue in figure (7-20). From this trajectory, we can

obtain the first arrival time field (T1(x)) for this 1-D problem. Mathematically,

T1(y) = min
t
{x(t) = y}

The (optimal) first arrival time field T1(x) is plotted in red, in the figure (7-20). From

this plot, we can clearly see the discontinuity in T1(x) at points x = 0.08 and x = 2.08.

This happens because at certain times, the vehicle experiences a strong flow current

adverse to its rightward motion. The vehicle is forced to reverse its trajectory until

a favorable (rightward) current advects it again towards the end point. Due to this

strong adverse current, the vehicle visits some points in its optimal path more than

once. This allows us to define the second arrival time field, T2(x) as,

T2(y) = min
t
{x(t) = y & t > T1(y)}

Thus, in this example, the optimal path to x = 0.08+ ends up visiting the point

x = 0.08 twice. Mathematically,

lim
x→0.08−

T1(x) 6= lim
x→0.08+

T1(x) = lim
x→0.08−

T2(x)

Therefore, the first arrival time field T1(x) is not necessarily continuous at all

points in the domain. Due to this, the gradient of T1(x) at these points is unbounded.

Under these circumstances, equation (5.18) is invalid. We need to keep track of later

131

Figure 7-20: Discontinuities in the first arrival time field, T1(x) (plotted in red) caused
by adverse the flow-field for the corollary discussed in §(7.3.1). The maximum flow
speed is 2, which is larger than the vehicle speed F . The optimal vehicle path is
plotted in blue. The start point is xs = 0 and the end point is xf = 4. The optimal
path to the end point visits some points more than once, causing the discontinuity in
the first arrival time field.

arrival times (in addition to the first arrival time) at these points when the velocity

field is strongly adverse.

Solving the forward level set equation (5.2) gives the correct optimal solution, even

with strong adverse flow currents because the zero level set front always corresponds

to the reachability front. By keeping track of the reachability front, the algorithm

automatically records multiple arrival times at various spatial points. Hence, the

algorithm is applicable to weak and strong flow fields alike.

Now, let us consider the same 1-D example discussed above, but with a flow

velocity, V(x, t) = −0.95 sin(πt)̂i. The maximum flow speed in this case is equal to

0.95, which is not adverse to the vehicle motion. The trajectory of the vehicle in this

case is plotted in blue in figure (7-21). The first arrival time field T1(x) is superposed

in red. In this case, both the vehicle trajectory and the first arrival time curves are

identical. This is expected because the vehicle does not experience strong adverse

currents along its path. In this case, the T1(x) field is continuous everywhere and the

first arrival time field is governed by equation (5.5).

132

Figure 7-21: Optimal trajectory of the vehicle (blue) and the first arrival time field
T1(x) for the corollary in §(7.3.1). The maximum flow-field speed is 0.95. The first
arrival time field always coincides with the optimal trajectory because the flow is not
adverse to the motion of the vehicle.

7.3.2 Determination of Starting Time

Our level set approach for path planning can also be used to determine when vehicles

must be deployed, in addition to their sequence of headings, to reach their targets

in the quickest time. In all the examples seen until now, we have assumed that the

vehicle starts its motion at time tstart = 0, from the starting point (xs). However, if

the vehicle is allowed to start at a later time (unknown a priori) it may be able to

arrive at the target sooner than if it starts at tstart = 0. This can happen if the vehicle

experiences strong adverse currents at the start which take it away from the target

(xf). In such cases, it may be better for the vehicle to be deployed (from a ship, for

example) at a later time when the adverse current has passed. We now present a

simple example in 1-D where this situation occurs, and how our level set approach

can be used to determine the optimal starting times. We use the same 1-D example

that was discussed in §(7.3.1). The flow field is given by

V(x, t) = −2 sin(πt)̂i

The maximum vehicle speed, F is set to 1. The starting point of the vehicle is the

origin, xs = 0, while its end point is xf = 2. As seen earlier, the optimal trajectory

133

for the vehicle is governed by:

dx

dt
= 1− 2 sin(πt).

Let us assume that the vehicle is deployed at a variable start time tstart ≥ 0, so that

x(tstart) = 0. Our goal now, is to minimize the first arrival time at xf = 2 by a

suitable choice of tstart. Integrating the above equation and setting the limits, we

have,

x(t)− 0 = (t− tstart) +
2

π
(cos(πt)− cos(πtstart)) (7.18)

This family of trajectories can be computed for different values of tstart ≥ 0. The

arrival time at xf = 2 can consequently be computed for each of the trajectories.

Some sample trajectories corresponding to starting times tstart = {0, 0.5, 0.833, 1.5, 2}
are plotted in figure (7-22).

Figure 7-22: Sample trajectories of vehicle, for different starting times, tstart, (denoted
by filled circles). The first arrival time for each trajectory is marked by filled stars. As
observed, an earlier starting time does not necessarily lead to a quicker arrival time
at the destination. The arrival time corresponding to tstart = 0.834 is the smallest.

From this figure, we can see that the trajectory corresponding to tstart = 0 reaches

the target later than the one corresponding to tstart = 0.5. This happens because there

134

is a strong flow in the negative x direction at t = 0. Due to this, the vehicle is forced

to reverse its path until a favorable (rightward) current appears, which can advect it

towards the target.

Figure 7-23: Plot of first arrival times at xf = 2 against different starting times, tstart
for the corollary in §(7.3.2). The minimum arrival time is obtained for tstart = 0.834.
The corresponding arrival time is marked in red.

If the vehicle is deployed at a later time (0.5 ≤ tstart ≤ 0.834), the spatially

uniform flow becomes favorable at tstart, and the vehicle thus does not travel any

longer than necessary. The vehicle can move in the positive x direction when the flow

speed becomes less than F , which happens at t = 1 − 1
π

sin−1(0.5) ≈ 0.834. In this

case, this is the optimal starting time, to reach xf = 2. In figure (7-23), we plot the

arrival times at xf = 2 as a function of the starting time, tstart. This curve clearly

shows that the quickest arrival time is for tstart 6= 0.

Our level set methodology can be used to compute the optimal starting time

tstart of the vehicle. This can be done by keeping track of the reachability front

corresponding to several starting times of the vehicle. Instead of one reachability

front, we can now track an ensemble of fronts, each for one choice of the starting

time. The starting time corresponding to the level set front that reaches the target

fastest, is the optimal starting time. Once this is known, the optimal path can be

calculated by solving the backtracking equation. Although this approach requires

solving an ensemble of forward level set evolution equations, it is not still not very

135

expensive due to the low computational cost of the algorithm (see §(6.6)).

Our algorithm also lends itself to easy implementation of heuristics to decide when

to evolve new level set fronts in order to reduce the computational cost of solving this

problem. For example, one admissible heuristic could be to evolve new level sets

whenever the flow at the start point is favorable (directed towards the goal).

7.3.3 Multiple Optimal Paths

In some situations, for a given problem configuration (xs,xf , F,V(x, t)), there may

exist multiple trajectories with the same travel time. We present such a scenario in

this example. We will show in this example that even though two end points are

very ‘close’ to each other in space, the quickest paths to these points can be very

different. Theoretically, for the point limit between the two, there are two possible

optimal paths. In fact, such point locus of multiple optimal paths can also be more

general (e.g. lines in 2D flows, surfaces in 3D flows etc.). We consider the example

of a jet flow in a 2-D domain, as described earlier in §(7.1.2) and also in Lolla et al.

(2012).

In this example, two identical vehicles (F = 1) start at the same position xs =

(1, 1) and at the same time, tstart = 0. Their destinations are x1
f = (2, 0.8) and

x2
f = (1.95, 0.75) respectively. The distance between these end points is much smaller

than the length of the vehicle trajectory. The fastest time paths of these vehicles are

plotted in figure (7-24). From here, we can see that even though x1
f and x2

f are nearby

each other in space, the optimal paths to these points are quite different. One of the

trajectories is a straight line from start to end, and is not affected by the jet flow.

The second path however, makes use of the jet flow to minimize the travel time. The

travel times of both paths however are identical, and equal to 0.982.

The level set equation (5.2) admits weak solutions (see §(4.5)). Thus, the level set

contours may develop sharp corners for certain flow fields. At these sharp corners, the

normal to the level set front is not defined. We see such a behavior in this example.

There exists a ‘shock’ line or locus formed by the level sets to the target points on

which, multiple optimal paths exist. This line has been marked in figure (7-24). In

136

Figure 7-24: Time-optimal paths (red) from xs = (1, 1) to two different end points,
x1
f = (2, 0.8) and x2

f = (1.95, 0.75) overlaid on intermediate level set contours. Even
though the two end points are very close to each other in space, the optimal paths
leading to these points are widely different - one of the optimal paths uses the jet,
while the other does not. The line marked in thick black indicates the set of points
to which multiple optimal paths exist.

fact, several other similar examples can be constructed in which there exist multiple

optimal paths to certain end points. The level set algorithm thus, can predict the

existence of such points and compute optimal paths leading to them.

7.3.4 Validity for Compressible Flows

Our methodology enforces no conditions on the nature of the external flow-field,

except requiring it to be different from an infinite impulse function. Since the velocity

field imposes only a kinematic constraint on the vehicle’s motion, the algorithm can

be used, in principle, for path planning in a compressible flow as well.

137

7.4 Summary

In this chapter, we have illustrated a number of examples for our path planning al-

gorithm. We have, first, presented a few benchmark examples where the analytical

solution can be easily computed. For these examples, we have examined the perfor-

mance of our level set algorithm. After establishing the validity of the methodology,

we presented the results of the algorithm for three realistic ocean flow-field scenarios.

In each example, we have highlighted a different feature of our methodology. Finally,

we have discussed a number of interesting examples, which serve as corollaries to

the theorem proved in §(5.2). In the following chapter, we discuss how our level set

approach can be augmented to optimize coordinated path planning for a swarm of

vehicles navigating through a dynamic flow-field.

138

Chapter 8

Coordinated Path Planning

In the previous chapters, we have described our level set method based path planning

algorithm for underwater gliders navigating in optimal time through dynamic flow

fields. We have illustrated a number of simple benchmark test cases validating our

approach and have also applied our algorithm to more realistic, simulated ocean test

cases. In this chapter, we describe two approaches, both based on level set methods,

for coordinated control of multiple autonomous vehicles in dynamic flow fields. In

this context, coordination refers to formation and maintenance of specific geometric

shapes by multiple vehicles navigating together in the ocean. We aim to maintain

specific geometric patterns for the vehicles and also minimize their travel time. First,

we briefly explain the advantages of coordinated path planning and shape formation

before describing relevant prior works in the literature that address this problem.

We then, illustrate two novel approaches for shape formation and maintenance, using

level set methods.

8.1 Background and Review

8.1.1 The Need for Coordination

Several areas of engineering and computer science have adopted the idea that swarms

of coordinating agents can solve a lot of complex problems. A swarm is defined as a

139

collection of a number of agents, each of which performs a simple task, but the actions

as whole produce a complex behavior (Hinchey et al., 2007). The idea of using swarms

in science and engineering has partially been inspired by the behavior of higher-order

animals such as colonies of ants, flocks of birds or packs of wolves. These animals

exhibit complex social structures to coordinate with each other in order to achieve

a common goal. Nature-inspired swarm technology deals with complex problems

that may be very difficult to solve using traditional single-agent based approaches.

Thus, scientists have tried to extend similar ideas of coordination to areas of learning,

robotics, ocean engineering and many fields of computer science. In these fields, the

term swarm refers to a large number of simple components which may work on the

Earth’s surface, underwater or in the air.

Coordination amongst a fleet of robotic agents is necessary in order to improve the

overall performance of most robotic missions. Several missions (underwater or other-

wise) use swarms of autonomous vehicles to accomplish various difficult and complex

tasks in a cooperative fashion. Multi-robotic systems are versatile and efficient in ex-

ploration missions, military surveillance and cooperative manipulation tasks. There

are several reasons why deploying multiple robots can be potentially more useful than

using individual units (Balch et al., 1999). These include:

• Distributed Action: Multiple robots can be in several places at the same time.

• Inherent Parallelism: Multiple robots can do, perhaps different things at the

same time.

• Divide and Conquer: Certain problems are amenable to be broken down into

several smaller problems, which can then be allocated to a smaller group of

robots.

• Often, for multi agent missions, the tasks assigned to individual robots become

much simpler than when a single robot executes all the tasks.

Research on multi-robot applications has focused mostly on cooperative manip-

ulation, navigation and planning, collaborative mapping, exploration and formation

140

control.

Since the main focus of this thesis is towards oceanic and underwater applications,

the uses of coordination among underwater vehicles are of most relevance to us.

Multi-vehicle missions have much to offer a variety of underwater applications. As

underwater vehicles become more reliable and affordable the simultaneous use of

several vehicles recently became a viable option and multi-vehicle deployments will

become standard in the upcoming years (Bahr et al., 2009). Control of vehicle swarms

will not only make possible entirely new types of missions which rely on cooperation,

but will also allow each individual member of the group to benefit from navigation

information obtained from other members. With sensors to measure the environment

and coordination that is appropriate to critical spatial and temporal scales, the group

can perform important tasks such as adaptive ocean sampling (Fiorelli et al., 2004,

Bhatta et al., 2005, Leonard et al., 2010).

Since the ocean is characterized by a wide range of spatial and temporal scales,

multi-vehicle tasks will also be associated with a range of characteristic scales. For

example, when an AUV group must function as a communication network, the critical

spatial scale may be small since there may be limits to how far apart adjacent vehicles

can be, without compromising on the transmission of data. In some other sensing

applications, ocean features may change quickly, and thus, smaller temporal scales

may drive the mission (Fiorelli et al., 2004). Thus, spatial and temporal scales of the

sampling mission may be one of the criteria that can be used to determine the control

and coordination requirements for the vehicles (see also Bhatta and Leonard (2002)).

When each vehicle is equipped with a sensor to make measurements, the group of

vehicles serve as a mobile sensor network. This network may serve to sample physical

and biological variables in the ocean. Even for these applications, the range of relevant

spatial and temporal scales may be very large. For example, sampling in a relatively

large area may help in observing large-scale ocean processes such as upwelling and

relaxation (Haley et al., 2009). Sampling in smaller areas of the ocean may help in

identifying smaller scale features such as eddies and algal blooms. Thus, multi-AUVs

and cooperative control have much to offer for ocean applications. For smaller scale

141

missions, vehicle speed, communication efficiency and pattern formation of AUVs may

be of greater interest. For larger scale missions, vehicle to vehicle communication may

be impractical, and one may be interested in optimizing endurance of the swarm.

Therefore, cooperative control of autonomous vehicles has been gaining increasing

importance in a number of fields and is partly, the focus of this thesis. An excellent

review of design of mobile sensor networks for data collection is given in (Leonard

et al., 2007).

Centralized and Decentralized Control

There are two main types of planners for coordinated vehicle motion namely,

1. Centralized planner

2. De-centralized planner

In a centralized planning scheme, all of the participating agents communicate with

a central agent to report their information and new measurements. The central plan-

ner gathers this available information to produce coordinated plans for all agents,

which are then redistributed to the team. The entire fleet of vehicles receives its in-

structions from a central server that is in charge of all the planning. No imperfections

in communication are assumed. These types of systems are useful since they place

much of the heavy processing requirements safely on the ground or aboard a ship,

making the robots smaller and cheaper to build. Generating a coordinated plan using

a centralized approach can be computationally intensive, but otherwise it is relatively

straight forward because the central planner has access to all information. On the

other hand, agents must consistently communicate with a fixed location, reducing the

possible mission ranges that the swarm can handle, as well as creating a single point

of failure in the mission.

In order to overcome the drawbacks of centralized planning schemes, some types of

decentralized methods have been proposed in the literature. These methods usually

work by placing a planner on each agent in order to increase the mission range, as

well as remove the single point of failure. Decentralized algorithms (Amato et al.,

142

2011) generally make use of consensus algorithms to converge on an agreement before

performing the assignment. These consensus algorithms allow the swarm to perform

a wide variety of tasks, even in highly dynamic and uncertain environments. A

decentralized coordination controller is more robust and flexible than a centralized

controller.

8.1.2 Pattern Formation

In this thesis, we focus on a particular type of coordination between multiple vehi-

cles, i.e. pattern formation. This is a fundamental problem in cooperative control

and involves having a group of robots organize themselves into global formations or

patterns (Swaminathan and Minai, 2005). The pattern formation problem can be

described as a cooperative behavior between various robots that allows the robots to

move in a stable configuration. These include simple patterns like circles, triangles,

squares, or a line formation.

Pattern formation control has drawn significant attention for many years now.

Controlling the formation of air and ground vehicles is becoming an important re-

search topic in robotics and controls community (Bendjilali et al., 2009). The ability

of mobile robots to navigate autonomously in a stable configuration and avoid obsta-

cles is central to various applications in both military and civilian domains. These

applications range over transportation, exploration, surveillance and rescue. Various

multi-robot configurations are also used for distributed sensing and coverage. Pattern

formation enables convenient establishment of a coordination between participating

agents.

Pattern formation is also helpful for modular robots. Modular robots are a class

of robotic systems composed of many identical, physically connected, programmable

modules that can coordinate to change the shape of the overall robot. Thus, by

transforming its shape, a modular robot can adapt to many tasks, from different

modes of locomotion like climbing and crawling to performing robotic structures such

as stairs and bridges (Yu and Nagpal, 2008). Pattern formation control is of great

importance in these units as well.

143

In the context of underwater applications, formation of pattern among the vehicles

allows for consistent estimation of features in the flow-field, such as gradients of the

ocean current speeds. Single vehicle sampling missions will provide local field data

such as velocity of the ocean current, temperature, salinity etc. at various times

and at different points along the vehicle’s trajectory. However, multiple vehicles that

maintain certain patterns will enable the estimation of other quantities of interest

such as gradients of velocity fields, temperature and salinity distributions at one fixed

time. Some patterns may be more useful than others to identify certain features in

the ocean.

The following are some other areas where pattern formation among participating

autonomous agents can potentially be useful (Swaminathan and Minai, 2005).

• Surrounding an object or feature in the environment - This may involve forma-

tion of a uniform distribution of robots in a given area for protecting the area

or for surveillance.

• Removal of mines and bomb disposal, in military applications.

• Election of a leader or in follow-the-leader situations, with possible military

applications.

• Gathering to share information or for some other collaborative task.

• Formation of sensing grids.

• Carrying, moving and assembling objects.

• Aiding emergency response and decongestion of traffic on highways.

8.1.3 Literature Review

In this section, we briefly discuss some approaches for pattern formation that have

been proposed in literature (Swaminathan and Minai, 2005).

144

1. Behavior based approach: In a behavior based approach, several desired

behaviors (collision avoidance, formation keeping, target seeking etc.) are pre-

scribed to each robot. The final robot action is derived by weighting the relative

importance of each behavior. The theoretical formalization and mathematical

analysis of this approach is challenging and this is the main drawback of the

approach. The other drawback is that the method does not guarantee the con-

vergence of the formation to the desired configuration.

2. Virtual structure approach: Virtual structure approaches considers the

robot formation as a single virtual rigid structure so that the behavior of the

robotic system is analogous to a physical object. Desired trajectories are not

assigned to individual robots, but to the unit as a whole.

3. Leader-following approach: In the leader-follower approach, one of the

robots is designated as the leader, while the others are the follower robots.

The leader moves along a trajectory which can be pre-computed, while the fol-

lowers are to maintain a desired posture (distance and orientation) to the leader.

The main criticism to this approach is that the method does not tolerate leader

faults and exhibits poor disturbance rejection features. However, despite these

drawbacks, it is very scalable and easy to implement.

Various methods are discussed in the literature to solve various problems in formation

and cooperative control. Arkin and Balch (1998) develop a shape-formation algorithm

using behavior based approaches. This method is highly flexible for various tasks such

as guiding the robots through uncertain and dynamic environments using local sensor

information only. The robots are initially positioned randomly in a defined area.

During this formation, the robots are also desired to coordinate among themselves

to avoid collisions and keep the desired distance between each other. The main

drawback of the approach is the difficult mathematical analysis and the convergence

to a particular pattern cannot be guaranteed.

A potential field approach for pattern formation that is quite similar to the classi-

cal potential field is suggested by Reif and Wang (1999) and modified by Dudenhoeffer

145

and Jones (2000) to control a distributed autonomous multi-robot system. Here, ar-

tificial force laws are defined between pairs of robots or robot groups. The authors

call the method social potential field, since it deals with interaction between multiple

agents. Bendjilali et al. (2009) discuss a method for modeling, initialization and con-

trol of formation of mobile robots that involves a combination of classical guidance

laws and kinematics rules. Using relative vehicle kinematics, they are able to de-

rive governing differential equations that enable the modeling and control of dynamic

robot formations. They finally use a leader-follower based method to plan individual

robot paths. They illustrate the formation of a straight line pattern, circle and a

general polygon formation in stationary environments.

Consolini et al. (2007) describe another work that makes use of leader-follower

approach for pattern formation of non-holonomic robots. They discuss how different

geometric patterns of the robots affects the admissible trajectory of the leader by

placing bounds on the maximum curvature of the leader path. The main difference

from other leader-follower based approaches is the the angle between the leader and

the followers is measured in the follower reference frame, instead of the leader’s. Sisto

and Gu (2006) also utilize a leader-follower approach, but consider the effect of noisy

communication between various robots in the formation and develop a fuzzy control

algorithm for formation control. Ren and Sorensen (2008) describe a formation con-

trol architecture which requires communication only between neighbors. An extended

consensus algorithm is applied to estimate the group trajectory in a distributed man-

ner. Then, a consensus based formation control strategy is then applied for vehicle

level control.

The use of graph search techniques coupled with leader-follower approaches for

pattern formation was first shown by Desai (2002). After planning the path for

the leader, their algorithm computes control for the follower robots using ideas of

nonlinear control theory and graph theory. Sabattini et al. (2011) and Fierro et al.

(2002) describe another use of artificial potential techniques for decentralized robotic

controllers in order to maintain a polygon shape. They prevent the occurrences of

local minima in the solution by using Lyapunov functions (Zhang and Leonard, 2006).

146

Another work that makes use of artificial potential functions for pattern formation

is (Leonard and Fiorelli, 2001). The main feature of this artificial potential function

is that it is constant beyond a certain distance d > 0. This leads to a distributed

control law for each vehicle and this does not depend on the position and velocity of

all other vehicles in the formation. However, this method has the drawback of not

being able to guarantee stabilization of the system of multiple vehicles to a unique

desired formation. The pattern formed by the vehicles is a function of the number

of vehicles and their initial conditions, which is highly undesirable. Yang and Zhang

(2010) also use a similar approach for shape formation.

A different approach is proposed by Belta and Kumar (2001). They describe a

geometric algorithm for pattern formation of under-actuated robots. The problem of

optimal trajectory generation of the robots is cast in terms of designing optimal curves

on an Euclidean Lie group. This leads to paths that minimize energy of translations

and rotations, while maintaining a fixed pattern. Olfati-Saber and Murray (2002)

propose a framework for formation stabilization of multiple autonomous vehicles in

a distributed fashion. They pursue an idea of structural potential functions for dis-

tributed control stabilization of multiple vehicles. Ogren and Leonard (2003) describe

an algorithm for pattern formation in the presence of obstacles in the domain.

The use of implicit shape functions for pattern formation can be seen in (Chaimow-

icz et al., 2005). The desired shape is set as the zero isocontour of a suitable function

and robots are then controlled by a gradient descent technique augmented with robot

to robot repulsion to spread along the zero function isocontour. Esin et al. (2008)

describe another implementation of using implicit function representations for the

desired shape of formation. Shape formation is controlled by using potential fields

generated from implicit polynomial representations and the control for keeping the

desired shape is designed by using Elliptical Fourier Descriptors (EFD). Coordina-

tion between adjacent neighbors is modeled by linear springs connectors. The authors

claim that this approach offers more flexibility in the formation shape and is suitable

to a wide range of swarm sizes. For results of a virtual deployment of a pattern of

vehicles, the reader is referred to (Paley et al., 2008, Zhang et al., 2007).

147

Derenick and Spletzer (2007) describe a method to convert the problem of pattern

formation into a convex optimization problem. Their inspiration comes from the

realization that the operation of a team that maintains a specific pattern is inherently

a constrained resource allocation problem. However, several other authors have raised

scalability concerns of such an optimization based approach (see Kalantar and Zimmer

(2006), Liu et al. (2011)). For other papers on pattern formation, the reader is referred

to (Fredslund and Mataric, 2002, Yang and Zhang, 2012, Zhang, 2007, Swaminathan

and Minai, 2005, Paley et al., 2006).

In all of the above described works on pattern formation, the motion of the robot

is not affected by the dynamic nature of the environment. Since underwater gliders

are easily susceptible to strong flow currents, we should also consider the effect of the

ocean currents on the motion of gliders and on the control for their pattern formation.

This motivates us to utilize our level set approach for pattern formation because it

accounts for the dynamic flow-field, computes time-optimal paths and can also deal

with obstacles to the vehicle’s motion in a straight-forward manner. In what follows,

we present two approaches for pattern formation based on level set approaches.

8.2 Pattern Formation using Local Control

In this section, we present a local control approach for pattern formation for under-

water gliders that respects the kinematics of the motion of individual members of

the swarm. This method is inspired from a virtual structure approach for pattern

formation (see §(8.1.3)).

8.2.1 Methodology

The local control approach presented in this thesis works by assigning a virtual center

of mass to the pattern we wish to maintain. This center of mass (henceforth denoted

by C) is the geometric center of mass of the pattern whose members are the under-

water gliders we wish to navigate in a cooperative fashion. For example, the center

of mass and the members of an equilateral triangle pattern are shown in figure (8-1).

148

Figure 8-1: Center of Mass (C) of an equilateral triangle pattern of vehicles. The
vehicles are located at the vertices of the triangle. The trajectory of C, p(t) is
computed along with its sequence of headings ĥ(t) using the level set path planning
algorithm.

It should be noted that C does not represent a vehicle. It is only a virtual point that

is characteristic of the pattern we desire to maintain. This local control algorithm is

a first order ‘predictor-corrector’ approach.

The local control algorithm works in the following steps.

1. Using the start point, xs, the end point, xf , the maximum vehicle speed F , and

the velocity field, V(x, t), the optimal path of the center of mass C is planned

by solving equation (5.2) and equation (5.4).

2. The optimal path p(t) and the heading sequence ĥ(t) of the center of mass C

are stored.

3. Let us focus on one member of the swarm, say vehicle 1 (see figure (8-1)). As

a first approximation, we let vehicle 1 move along the heading direction of the

center of mass C . In other words, we assume that the heading of vehicle 1 at

time t is equal to ĥ(t).

4. Using this heading direction, we predict the position of vehicle 1 one time-step

later (i.e. at time t+ ∆t) by numerically solving equation (2.1). Let us call this

149

Figure 8-2: Heading of vehicle 1, h1 computed by adding a correction ∆h1 to the
heading of the center of mass C , ĥ.

position p̃1(t+ ∆t). This is the ‘prediction’ step of the algorithm. We refer the

reader to figure (8-2) for a visual depiction of the motion.

5. The trajectory of C , p(t) is known. Assuming that the size and orientation of

the pattern does not change, the desired position of vehicle 1 at time t+∆t can

be calculated. Let us denote this position as p1(t+ ∆t).

6. If there is no velocity field, i.e. V(x, t) = 0, then p1(t + ∆t) = p̃1(t + ∆t). In

fact, if the velocity field near vehicle 1 is identical to the velocity field near the

center of mass C , then p1(t+ ∆t) = p̃1(t+ ∆t).

7. However, in the general case, p1(t + ∆t) 6= p̃1(t + ∆t). Therefore, we need

to add a correction to the heading h1(t) of vehicle 1. This correction can be

computed by first calculating ∆p1 = p1(t+ ∆t)− p̃1(t+ ∆t).

150

8. The correction to the heading ∆h can be calculated as

∆h1 =
∆p1

F∆t
(8.1)

9. The above correction is added to the center of mass heading ĥ(t) to compute

the new heading direction for vehicle 1. This completes the ‘correction’ step.

h1(t) = ∆h1 + ĥ(t) (8.2)

Since the heading vector should have unit magnitude, we normalize this vector

to get:

ĥ1(t) =
h1(t)

|h1(t)| (8.3)

10. This new heading direction, ĥ1(t) is used to numerically solve equation (2.1)

and evolve the trajectory of vehicle 1.

11. The trajectory of every other vehicle in the pattern is evolved using a similar

procedure (starting from step 3).

Thus, the algorithm predicts the headings of every member of the group at each time,

until the center of mass of the pattern reaches the end point. Next, we illustrate an

application of the above pattern formation algorithm for a realistic ocean scenario

and then discuss the advantages and drawbacks of the approach.

8.2.2 Application

We apply the above described local control pattern formation algorithm to the same

flow past a circular island example discussed in §(7.2.2). We aim to compute paths

of three different groups of vehicles which have to maintain square, triangle and a

line pattern (see figure (8-3)). In addition, we want to compute collision free paths

for these vehicles which respect the kinematics of motion, i.e. advection due to the

flow field. We refer the reader to §(7.2.2) for specifications of the example (such as

details of the flow field, numerical parameters used to solve the level set equation and

151

for flow-field generation). The start points of the vehicles are upstream of the island

and are marked in filled circles. The end points are far downstream of the island

and marked as stars. In figure (8-3), we show the time evolution of each vehicle path

along with the position of the center of mass C of the respective pattern. As seen

from the results, the algorithm performs adequately well in maintaining the specified

geometric patterns for all the three groups of vehicles.

8.2.3 Discussion

The local control algorithm presented here is simple to implement and computes

obstacle-free paths for the participating agents. Another advantage of this method is

that the computation of the path of the center of mass and of the pattern formation

is decoupled. This allows the center of mass to be optimized for varied criteria, e.g.

time optimal, obstacle avoidance, uncertainty reduction etc., while still aiming to

maintain a specific pattern. Of course, this decoupling can be a disadvantage too: if

the flow fields are very different for the different vehicles in the formation (e.g. the

pattern is large-scale compared to the ocean scales), then, the decoupled solution will

be too far from the coupled optimal (e.g. time optimal) and/or may not be able

to maintain the desired pattern. The first-order correction to the heading is only

effective when the velocity field at the center of mass C is close to that experienced

by the vehicles. This may not be the case for larger sized formations. This can occur

even if second order or other corrector schemes are employed (instead of first-order

scheme employed here). In addition, the path of the center of mass may completely

diverge from those of the vehicles, in some cases. In such cases, the center of mass C

may not characterize the shape of the pattern any more. These drawbacks lead us to

the next approach on pattern formation, which we present in the following section.

8.3 Shape Formation using Level Set Method

In this section, we present a pattern formation algorithm based on level set methods.

This algorithm is developed using a ‘leader-follower’ approach, discussed earlier in

152

(a) t = 0.000

(b) t = 0.500

(c) t = 1.300

153

(a) t = 2.250

(b) t = 2.750

(c) t = 3.50

154

(a) t = 4.50

(b) t = 5.50

(c) t = 7.00

Figure 8-3: Time evolution of trajectories of three different groups of vehicles in the
flow past circular island example - The vehicles maintain a square formation, a line
formation and a triangle formation. Vehicle paths are overlaid on plots of the velocity
field colored by vorticity.

155

§(8.1.3). In what follows, we first describe the algorithm and then apply it to a

simulated ocean flow-field. We then discuss the advantages and the drawbacks of the

algorithm.

8.3.1 Methodology

Figure 8-4: The shape check operation for maintenance of an equilateral triangle
pattern for three vehicles. The vehicles are marked as brown circles. The uppermost
vehicle is the ‘leader’ while the others are the ‘follower’ vehicles. In the shape check
operation, the algorithm extracts points from the level sets of the follower vehicles
by optimizing an objective function. The radius rmax can be increased to allow for
larger size patterns.

The level set based ‘leader-follower’ approach for pattern formation consists of the

following steps.

1. One of the vehicles in the group is randomly designated to be the ‘leader’ while

all the other vehicles are the ‘followers’. The path of this ‘leader’ vehicle is first

computed by solving equation (5.2) and equation (5.4). The optimal trajectory

of the leader p(t) and the headings ĥ(t) are stored. This part of the algorithm

is identical to the local control approach.

156

2. Let us denote the travel time of the leader as Tl. We divide the interval [0, Tl]

into N smaller disjoint sub-intervals (called sub-periods), Ii = [ti, ti+1], where

t1 = 0 and tN+1 = Tl. At the end of the time corresponding to each sub-interval

Ii, we perform a shape check operation for the members of the pattern. N is

the number of shape check operations performed in total.

(a) At the initial time t = t1 = 0, we solve the forward level set equation (5.2)

corresponding to each of the follower vehicles. This is done by evolving

separate level set fronts for each of the follower vehicles from their respec-

tive starting positions. These equations are solved until the end of the first

sub-period, i.e. until time t2. Note that we do not yet solve the backtrack-

ing equation (5.4), since we do not know the intermediate end points for

the follower vehicles.

(b) The shape check operation that is performed at the end of every sub-period

computes the intermediate end points for each of the follower vehicles. We

refer the reader to figure (8-4). In this figure, we show how a triangle

pattern can be maintained by the leader and two follower vehicles. The

forward level set equation (5.2) gives us level set reachability fronts corre-

sponding to every follower. Recall that the reachability fronts outline the

furthest any vehicle can go in a flow-field. From these reachability fronts,

we have to extract the intermediate end points of the vehicles. For this, we

perform an optimization by doing a local search (here, assuming we look

for an equilateral triangle pattern):

min |a− b|+ |b− c|+ |c− a| (8.4)

for points on the level sets within a distance rmax away from the position

of the leader vehicle (see figure (8-4)). This local search is suitable for

maintaining a triangular pattern because it minimizes the difference of the

triangle sides. This optimization gives us points on the level set fronts

which every follower vehicle must reach.

157

(c) Once the intermediate points for the follower vehicles are known, the back-

tracking equation (5.4) is solved to compute the trajectories of the follower

vehicles during that sub-period.

3. After the paths of each follower vehicle are computed in a particular sub-period,

we proceed to the next sub-period, by going back to step 2(a). This process is

repeated until we reach the end of the travel period of the leader.

This algorithm, therefore, predicts the headings and the trajectories of the pattern

members by solving several smaller sub-problems successively. The quality of the

geometric pattern is verified at each shape check step. In the next section, we present

an application of this algorithm for a wind-driven double gyre example.

8.3.2 Applications

In this section, we examine the performance of the level set based pattern formation

methodology for a realistic ocean-scenario. The example we use for this purpose is

the wind-driven double gyre flow-field, which was earlier described in §(7.2.1). In

this example, we wish to navigate three vehicles through the flow-field such that

they maintain an equilateral triangle pattern during the course of their trajectories.

We refer the reader to §(7.2.1) for various details of the flow field and numerical

parameters used to solve the level set equation. The results of our pattern formation

algorithm are shown in figure (8-5). In this figure, we show the time evolution of the

trajectories of each of the three vehicles overlaid on streamlines of the time-dependent

flow-field. The rightmost vehicle in each panel is the leader of the group. As seen

from these results, the algorithm performs well in maintaining an equilateral triangle

pattern.

An interesting point to note, from this example, is that the size and orientation

of the triangle are not fixed. We can see that as the group of vehicles approaches

the center of the domain (where the horizontal flow gradient ∂u
∂y

is not large), the

triangle size reduces. Away from the center, (where ∂u
∂y

becomes larger), the triangle

size increases. This happens because, whenever the vehicles in the pattern experience

158

largely different flow fields, maintaining a smaller pattern size is not always possible.

The algorithm gives preference to maintaining the shape of the pattern over the size

of the pattern. As a result, the size of the pattern needs to be increased, in order to

maintain the equilateral triangle shape. Therefore, the algorithm adjusts the size and

orientation of the pattern based on the flow gradients experienced by the vehicles.

8.3.3 Discussion

The pattern formation algorithm described in this section overcomes several of the

drawbacks of the local control based approach. The size of the pattern can be variable.

The local control approach does not allow for variable pattern sizes, nor guarantees

the formation of any specific pattern. However, since the level set pattern formation

algorithm involves computing feasible intermediate end points for the follower vehicles

from their level sets, the desired shape is always maintained. The radius of the search

rmax can be increased to expand the search space if the desired pattern is not feasible

at any time. This algorithm adapts the triangle size and orientation to length scales

of the flow. However, the local control approach performs well only when the size

of the pattern is smaller than length scales of the flow, but fares poorly when the

pattern size increases.

In this algorithm, we have assumed that each vehicle must navigate at maximum

speed F , relative to the flow. However, this condition is not absolutely necessary.

Earlier in this thesis, the focus was on computing time optimal paths of the vehicle,

and this required the vehicle to navigate at maximum nominal speed F relative to the

flow. In the present problem, the focus is more on maintaining geometric patterns

than time-optimality. Hence, we can relax the time-optimality requirement of the

paths and allow vehicles to head at speeds lesser than F , if it helps maintaining more

accurate patterns. As a starting point however, we can let the vehicles move at speed

F relative to the flow.

In some situations, the vehicles may need to change their formation pattern dur-

ing the course of their trajectories. For example, four vehicles, originally moving in a

square pattern may need for change their pattern to a triangle after some time. This

159

(a) t = 0.000 (b) t = 0.01

(c) t = 0.02 (d) t = 0.0.03

(e) t = 0.04 (f) t = 0.05

160

(a) t = 0.06 (b) t = 0.07

(c) t = 0.08 (d) t = 0.09

(e) t = 0.10 (f) t = 0.12

Figure 8-5: Paths of three vehicles which maintain a triangle pattern in a wind-driven
double gyre flow-field. The size of the triangle is a function of the gradients in the
flow-field.

161

can easily be incorporated in the level set pattern formation algorithm by appropri-

ately modifying the cost function during the shape check operation. The shape check

routine will compute updated intermediate points for the vehicles so that the new

formation is realized.

8.4 Summary

In this chapter, we have presented two predictor-corrector methods for pattern for-

mation of multiple vehicles moving together in an arbitrary flow-field. The first, local

control approach is a virtual structure method for pattern formation which involves

defining a virtual ‘center of mass’ of the pattern and using its planned path to compute

and correct the headings of the vehicles in the pattern. The second approach pre-

sented is based on a ‘leader-follower’ approach for pattern formation. This approach

was shown to overcome some of the drawbacks of the local control approach.

In the next and final chapter, we conclude by summarizing the main contributions

of this thesis and provide some directions for future work.

162

Chapter 9

Conclusions and Future Work

In this final chapter, we first summarize the main contributions of this thesis and

highlight the key results. Then, we describe some possible directions for future work.

Autonomous platforms such as AUVs (specifically, gliders and other propelled

vehicles) are playing an ever-increasing role in several oceanic applications. Their

high levels of autonomy and their ability to endure long range sampling missions are

highly attractive features for ocean sampling and prediction tasks. This has led to an

extensive spurt of research towards the possibility of using several such autonomous

vehicles to execute missions in a cooperative fashion. Coordinated missions are ex-

pected to help individual units benefit from the information gained by other members

of the group. Coordination among several vehicles makes certain types of missions

possible, which otherwise, cannot be executed by single-vehicle systems. This has

been the main motivation behind this thesis.

Underwater vehicles which operate in the coastal ocean frequently experience dy-

namic ocean currents whose effects on vehicle motion cannot be ignored. Unlike most

robotic scenarios, the environment of the vehicle (i.e. flow-field) directly affects the

motion of the vehicle. In addition, the coastal regions (where these vehicles typically

operate) often have complex geometries and may be composed of several regions that

are not safe for the vehicles to visit. All these factors make it difficult to even generate

feasible trajectories that respect motion constraints of the vehicle. The methodology

proposed in this thesis not only solves this problem, but also optimizes the travel

163

time of vehicles in an exact manner.

In this thesis, we developed an efficient and rigorous methodology based on level

set methods, to solve the minimum-time path planning problem for autonomous ve-

hicles navigating in dynamic flow-fields. Our methodology is based on solutions to

governing partial differential equations and this obviates the need for any heuristic

or ad-hoc assumptions.

One of the main contributions of this thesis is the theorem that establishes the

optimality of our level set based approach to solve the minimum time path planning

problem, in any type of flow-field. Our methodology combines several branches of

science and engineering. It is inspired by fluid dynamics and level set methods to de-

rive governing differential equations that predict reachability fronts and time-optimal

paths of robots, with roots in control theory and robotic path planning. Equations are

then solved efficiently at desired resolution using computational engineering, specifi-

cally, computational fluid dynamics and narrow-band schemes.

We have described various features of our methodology with the help of a num-

ber of sets of examples. We have also illustrated the versatility of our approach

by extending and applying it to several examples of coordinated time-optimal path

planning.

An important constraint for real-time underwater path planning operations is

the computational cost of the path planning algorithm. Even though we have im-

plemented a narrow-band solver, this has not been extensively tested for optimal

efficiency. Hence, one possible direction of future work is to further develop an ef-

ficient narrow band solver so that the computational cost of the algorithm can be

further reduced.

Secondly, in the context of underwater path planning, one may wish to generate

paths that optimize energy spent by the vehicles. We have focused on generation of

time optimal vehicle tracks for this thesis. Therefore, a second possible direction of

future work may be to develop schemes that can optimize the energy spent by the

vehicles.

Thirdly, we have assumed in this work that the flow-field experienced by the

164

vehicle is exact. However, ocean fields are always associated with uncertainty and

the exact flow-field may not always be known. Thus, a third possible direction is to

extend our methodology to a stochastic setting to plan stochastic paths for vehicles.

The fourth and final direction of future work in this topic is to merge the level set

based path planning algorithm with schemes for adaptive sampling and use it to plan

paths for swarms of underwater vehicles. This will enable collaborative platforms to

navigate optimally and contribute to better ocean prediction and monitoring.

165

166

Bibliography

Adalsteinsson, D. and Sethian, J. A. (1995). A fast level set method for propagating
interfaces. Journal of Computational Physics, 118(2):269 – 277.

Adalsteinsson, D. and Sethian, J. A. (1999). The fast construction of extension
velocities in level set methods. Journal of Computational Physics, 148(1):2 – 22.

Agarwal, A. (2009). Statistical field estimation and scale estimation for complex
coastal regions and archipelagos. Master’s thesis, Massachusetts Institute of Tech-
nology, Department of Mechanical Engineering.

Akkaya, N. Path finding using rapidly-exploring random trees. http://nakkaya.

com/2011/10/27/path-finding-using-rapidly-exploring-random-tree/.

Alvarez, A., Caiti, A., and Onken, R. (2004). Evolutionary path planning for au-
tonomous underwater vehicles in a variable ocean. IEEE Journal of Oceanic Engi-
neering, 29(2):418–429.

Amato, C., Schurr, N., and Picciano, P. (2011). Towards a realistic decentralized
modeling for use in a real-world personal assistant agent scenario. In Proceedings
of the 10th International Joint Conference on Autonomous Agents and Multi-Agent
Systems.

Arkin, R. C. and Balch, T. (1998). Artificial intelligence and mobile robots. chapter
Cooperative multiagent robotic systems, pages 277–296. MIT Press, Cambridge,
MA, USA.

Bahr, A., Leonard, J. J., and Fallon, M. F. (2009). Cooperative localization for
autonomous underwater vehicles. The International Journal of Robotics Research,
28(6):714–728.

Bakolas, E. and Tsiotras, P. (2010a). Minimum-time paths for a light aircraft in the
presence of regionally-varying strong winds. In Infotech at Aerospace, Atlanta, GA.
AIAA Paper 2010-3380.

Bakolas, E. and Tsiotras, P. (2010b). The Zermelo - Voronoi diagram: A dynamic
partition problem. Automatica, 46(12):2059 – 2067.

Balch, T., Arkin, R. C., and Member, S. (1999). Behavior-based formation control for
multi-robot teams. IEEE Transactions on Robotics and Automation, 14:926–939.

167

Barraquand, J., Kavraki, L., Latombe, J.-C., Li, T.-Y., Motwani, R., and Raghavan,
P. (1996). A random sampling scheme for path planning. International Journal of
Robotics Research, 16:759–774.

Barraquand, J., Langlois, B., and Latombe, J. C. (1992). Numerical potential field
techniques for robot path planning. IEEE Transactions on Systems, Man, and
Cybernetics, 22(2):224–241.

Barraquand, J. and Latombe, J. C. (1991). Robot motion planning - a distributed
representation approach. International Journal of Robotics Research, 10(6):628–
649.

Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., and Pappas, G. J.
(2007). Symbolic planning and control of robot motion: Finding the missing pieces
of current methods and ideas. Robotics and Automation Magazine, 14(1):61–70.

Belta, C. and Kumar, V. (2001). Motion generation for formations of robots: A geo-
metric approach. In Robotics and Automation Proceedings of. IEEE International
Conference on, volume 2, pages 1245 – 1250 vol.2.

Bendjilali, K., Belkhouche, F., and Belkhouche, B. (2009). Robot formation modelling
and control based on the relative kinematics equations. International Journal of
Robotics and Automation, 24(1):79–85.

Bhatta, P., Fiorelli, E., Lekien, F., Leonard, N. E., Paley, D. A., Zhang, F., Bach-
mayer, R., Davis, R. E., Fratantoni, D. M., and Sepulchre, R. (2005). Coordination
of an underwater glider fleet for adaptive sampling. In in Proceedings of Interna-
tional Workshop on Underwater Robotics, pages 61–69.

Bhatta, P. and Leonard, N. E. (2002). Stabilization and coordination of underwater
gliders. In 41st IEEE Conference on Decision and Control, volume 2.

Binney, J., Krause, A., and Sukhatme, G. S. (2010). Informative path planning for an
autonomous underwater vehicle. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 4791–4796.

Bokanowski, O., Forcadel, N., and Zidani, H. (2010). Reachability and minimal times
for state constrained nonlinear problems without any controllability assumption.
SIAM Journal of Optimal Control, 48(7):4292–4316.

Bressan, A. (2011). Viscosity solutions of Hamilton Jacobi equations and optimal
control problems. An Illustrated Tutorial, Penn State University.

Bruce, J. and Veloso, M. (2002). Real-time randomized path planning for robot
navigation. In Proceedings of IROS-2002, Switzerland.

Bryson, A. E. and Ho, Y. C. (1975). Applied Optimal Control: Optimization, Esti-
mation and Control. John Wiley and Sons.

168

Canny, J. F. (1988). The complexity of robot motion planning. MIT Press, Cambridge,
MA, USA.

Carroll, K., McClaran, S., Nelson, E., Barnett, D., Friesen, D., and William, G.
(1992). AUV path planning: An A* approach to path planning with considera-
tion of variable vehicle speeds and multiple, overlapping, time-dependent exclusion
zones. In Autonomous Underwater Vehicle Technology, 1992. AUV ’92., Proceed-
ings of the 1992 Symposium on, pages 79 –84.

Chaimowicz, L., Michael, N., and Kumar, V. (2005). Controlling swarms of robots
using interpolated implicit functions. In Robotics and Automation (ICRA), 2005
IEEE International Conference on, pages 2487–2492.

Choi, H.-L. and How, J. P. (2010). Continuous trajectory planning of mobile sensors
for informative forecasting. Automatica, 46(8):1266–1275.

Chopp, D. L. (1993). Computing minimal surfaces via level set curvature flow. Journal
of Computational Physics, 106(1):77–91.

Chopp, D. L. (2009). Another look at velocity extensions in the level set method.
SIAM Journal of Scientific Computing, 31(5):3255–3273.

Colella, P. and Puckett, E. G. (1994). Modern Numerical Methods for Fluid Flow.
Lectures conducted at Department of Mechanical Engineering, University of Cali-
fornia, Berkeley.

Consolini, L., Morbidi, F., Prattichizzo, D., and Tosques, M. (2007). A geometric
characterization of leader-follower formation control. In Robotics and Automation,
2007 IEEE International Conference on, pages 2397 –2402.

Crandall, M. G., Evans, L. C., and Lions, P. L. (1984). Some properties of viscosity so-
lutions of Hamilton-Jacobi equations. Transactions of the American Mathematical
Society, 282(2):487–502.

Crandall, M. G., Ishii, H., and Lions, P. L. (1992). User’s guide to viscosity solutions of
second order partial differential equations. Bulletin of the American Mathematical
Society, 27:1–67.

Crandall, M. G. and Lions, P. L. (1983). Viscosity solutions of hamilton-jacobi equa-
tions. Transactions of the American Mathematical Society, 277:1–43.

Cushman-Roisin, B. and Beckers, J. (2010). Introduction to Geophysical Fluid Dy-
namics. Physical and Numerical aspects. Academic Press.

Davis, R. E., Leonard, N. E., and Fratantoni, D. M. (2009). Routing strategies for
underwater gliders. Deep Sea Research Part II: Topical Studies in Oceanography,
56(35):173 – 187.

169

Derenick, J. and Spletzer, J. (2007). Convex optimization strategies for coordinating
large-scale robot formations. Robotics, IEEE Transactions on, 23(6):1252 –1259.

Desai, J. P. (2002). A graph theoretic approach for modeling mobile robot team
formations. Journal of Robotic Systems, 19(11):511–525.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271.

Dijkstra, H. and Katsman, C. (1997). Temporal variability of the wind-driven quasi-
geostrophic double gyre ocean circulation: Basic bifurcation diagrams. Geophysics
Astrophysics Fluid Dynamics, 85:195–232.

Dudenhoeffer, D. D. and Jones, M. P. (2000). A formation behavior for large-scale
micro-robot force deployment. In Proceedings of the 32nd conference on Winter
simulation, WSC ’00, pages 972–982, San Diego, CA, USA.

Elisseeff, P., Schmidt, H., Johnson, M., Herold, D., Chapman, N. R., and McDonald,
M. M. (1999). Acoustic tomography of a coastal front in Haro Strait, British
Columbia. The Journal of the Acoustical Society of America, 106(1):169–184.

Esin, Y. H., Unel, M., and Yildiz, M. (2008). Formation control of multiple robots us-
ing parametric and implicit representations. In Proceedings of the 4th international
conference on Intelligent Computing: Advanced Intelligent Computing Theories and
Applications - with Aspects of Artificial Intelligence, pages 558–565, Berlin, Heidel-
berg. Springer-Verlag.

Evans, L. C. (1998). Partial Differential Equations. Graduate Studies in Mathematics,
Volume 19, American Mathematical Society.

Falcone, M. and Zidani, H. (2012). Numerical method for HJB equations. Optimal
control problems and differential games. Lecture 3, ITN SADCO, Applied and
Numerical Optimal Control.

Fierro, R., Song, P., Das, A., and Kumar, V. (2002). Cooperative control of robot
formations. In Cooperative Control and Optimization, volume 66 of Applied Opti-
mization, pages 73–93. Springer US.

Fiorelli, E., Leonard, N. E., Member, S., Bhatta, P., Paley, D. A., Member, S.,
Bachmayer, R., and Fratantoni, D. M. (2004). Multi-AUV control and adaptive
sampling in Monterey Bay. In IEEE Journal of Oceanic Engineering, pages 935–
948.

Fleming, W. and Soner, H. (2006). Controlled Markov Processes and Viscosity Solu-
tions. Springer.

Fredslund, J. and Mataric, M. (2002). A general algorithm for robot formations
using local sensing and minimal communication. Robotics and Automation, IEEE
Transactions on, 18(5):837 – 846.

170

Garau, B., Alvarez, A., and Oliver, G. (2005). Path planning of autonomous under-
water vehicles in current fields with complex spatial variability: an A* approach. In
Proceedings of IEEE International Conference on Robotics and Automation, pages
194–198.

Garau, B., Bonet, M., Alvarez, A., Ruiz, S., and Pascual, A. (2009). Path planning for
autonomous underwater vehicles in realistic oceanic current fields: Application to
gliders in the Western Mediterranean Sea. Journal of Maritime Research, 6(2):5–
22.

Garrido, S., Moreno, L., and Blanco, D. (2006). Voronoi diagram and fast marching
applied to path planning. In Robotics and Automation, Proceedings 2006 IEEE
International Conference on, pages 3049 –3054.

Haley, P. J., Lermusiaux, P., Robinson, A., Leslie, W., Logoutov, O., Cossarini,
G., Liang, X., Moreno, P., Ramp, S., Doyle, J., Bellingham, J., Chavez, F., and
Johnston, S. (2009). Forecasting and reanalysis in the Monterey Bay/California
current region for the Autonomous Ocean Sampling Network-ii experiment. Deep
Sea Research Part II: Topical Studies in Oceanography, 56(35):127 – 148.

Hartmann, D., Meinke, M., and Schrder, W. (2010a). The constrained reinitialization
equation for level set methods. Journal of Computational Physics, 229(5):1514 –
1535.

Hartmann, D., Meinke, M., and Schrder, W. (2010b). On accuracy and efficiency of
constrained reinitialization. International Journal for Numerical Methods in Fluids,
63(11):1347–1358.

Hinchey, M., Sterritt, R., and Rouff, C. (2007). Swarms and swarm intelligence.
Computer, 40(4):111 –113.

Inanc, T., Shadden, S. C., and Marsden, J. E. (2005). In Proceedings of American
Control Conference, volume 1, pages 674–679.

Isern-Gonzlez, J., Hernndez-Sosa, D., Fernndez-Perdomo, E., Cabrera-Gmez, J.,
Domnguez-Brito, A. C., and Prieto-Maran, V. (2012). Obstacle avoidance in un-
derwater glider path planning. Journal of Physical Agents, 6(1):11–20.

Jaillet, L., Cortes, J., and Simeon, T. (2010). Sampling-based path planning on
configuration-space costmaps. Robotics, IEEE Transactions on, 26(4):635 –646.

Jarvis, R. (2006). Robot path planning: complexity, flexibility and application scope.
In Proceedings of the 2006 International Symposium on Practical Cognitive Agents
and Robots, PCAR ’06, pages 3–14, New York, USA.

Jarvis, R. and Byrne, J. (1986). Robot navigation: Touching, seeing and knowing.
In Proceedings of the 1st Australian Conference on Artificial Intelligence.

171

Jones, M. W., Baerentzen, J. A., and Sramek, M. (2006). 3D distance fields: A
survey of techniques and applications. Visualization and Computer Graphics, IEEE
Transactions on, 12(4):581–599.

Kalantar, S. and Zimmer, U. (2006). A formation control approach to adaptation
of contour-shaped robotic formations. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pages 1490 –1497.

Karaman and Frazzoli (2011). Sampling-based algorithms for optimal motion plan-
ning. International Journal of Robotics Research, 30(7):846–894.

Kruger, D., Stolkin, R., Blum, A., and Briganti, J. (2007). Optimal AUV path
planning for extended missions in complex, fast-flowing estuarine environments. In
Robotics and Automation, 2007 IEEE International Conference on, pages 4265–
4270.

Kuffner, J. J. and LaValle, S. M. (2000). RRT-connect: An efficient approach to
single-query path planning. In Proceedings of IEEE International Confernce on
Robotics and Automation, pages 995–1001.

Latombe, J. C. (1991). Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA.

Latombe, J.-C. (1995). Controllability, recognizability, and complexity issues in robot
motion planning. Foundations of Computer Science, IEEE Annual Symposium on,
0:484.

LaValle, S. M. The RRT page. http://msl.cs.uiuc.edu/rrt/about.html.

Lavalle, S. M. (1998). Rapidly-exploring Random Trees: A new tool for path planning.
Technical report, Iowa State University.

Leonard, N. and Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordi-
nated control of groups. In Decision and Control, 2001. Proceedings of the 40th
IEEE Conference on, volume 3, pages 2968 –2973.

Leonard, N. E., Paley, D., Lekien, F., Sepulchre, R., Fratantoni, D., and Davis, R.
(2007). Collective motion, sensor networks, and ocean sampling. Proceedings of
the IEEE, special issue on the emerging technology of networked control systems,
(95):48–74.

Leonard, N. E., Paley, D. A., Davis, R. E., Fratantoni, D. M., Lekien, F., and Zhang,
F. (2010). Coordinated control of an underwater glider fleet in an adaptive ocean
sampling field experiment in monterey bay. Journal of Field Robotics, 27(6):718–
740.

Lermusiaux, P. F. J. (2007). Adaptive modeling, adaptive data assimilation and
adaptive sampling. Physica D-Nonlinear Phenomena, 230(1-2):172–196.

172

LeVeque, R. J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, Cambridge, U.K.

Li, C., Xu, C., Gui, C., and Fox, M. (2005). Level set evolution without re-
initialization: a new variational formulation. In Computer Vision and Pattern
Recognition (CVPR), IEEE Computer Society Conference on, volume 1, pages 430
– 436.

Liu, S., Sun, D., and Zhu, C. (2011). Coordinated motion planning for multiple
mobile robots along designed paths with formation requirement. Mechatronics,
IEEE/ASME Transactions on, 16(6):1021 –1031.

Lolla, T., Ueckermann, M. P., Yigit, K., Haley, P. J., and Lermusiaux, P. F. J. (2012).
Path planning in time dependent flow fields using level set methods. In Proceedings
of IEEE International Conference on Robotics and Automation, pages 166–173.

McShane, E. J. (1937). A navigation problem in the calculus of variations. American
Journal of Mathematics, 59(2):327–334.

Melchior, N. A. and Simmons, R. (2007). Particle RRT for path planning with
uncertainty. In Robotics and Automation, 2007 IEEE International Conference on,
pages 1617–1624.

Min, C. (2010). On reinitializing level set functions. Journal of Computational
Physics, 229(8):2764 – 2772.

Mitchell, I. M., Bayen, A. M., and Tomlin, C. J. (2005). A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games. Automatic
Control, IEEE Transactions on, 50(7):947 – 957.

Mulder, W., Osher, S., and Sethian, J. A. (1992). Computing interface motion in
compressible gas dynamics. Journal of Computational Physics, 100:209–228.

Nishida, T., Sugihara, K., and Kimura, M. (2007). Stable marker-particle method
for the Voronoi diagram in a flow field. Journal of Computational and Applied
Mathematics, 202(2):377 – 391.

Oberhuber, T. (2004). Numerical recovery of the signed distance function. In Pro-
ceedings of Czech-Japanese Seminar in Applied Mathematics 2004, pages 148–164.

Ogren, P. and Leonard, N. E. (2003). Obstacle avoidance in formation. In IEEE
International Conference on Robotics and Automation, pages 2492–2497.

Olfati-Saber, R. and Murray, R. M. (2002). Distributed cooperative control of multiple
vehicle formations using structural potential functions. In The 15th International
Federation of Automatic Control World Conference, Barcelona, Spain.

Osher, S. and Fedkiw, R. (2003). Level Set Methods and Dynamic Implicit Surfaces.
Springer Verlag.

173

Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computa-
tional Physics, 79(1):12 – 49.

Paley, D., Leonard, N. E., and Sepulchre, R. (2006). Collective Motion of Self-
Propelled Particles: Stabilizing Symmetric Formations on Closed Curves. In 45th

IEEE Conference on Decision and Control, pages 5067–5072.

Paley, D. A., Zhang, F., and Leonard, N. E. (2008). Cooperative control for ocean
sampling: The glider coordinated control system. IEEE Transactions on Control
Systems Technology, 16(4):735–744.

Pedlosky, J. (1998). Ocean Circulation Theory. Springer-Verlag.

Persson, P.-O. (2010). 2.097: Numerical Methods for Partial Differential Equations.
Lectures conducted at MIT, Cambridge, MA.

Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., and Lane, D. (2007). Path
planning for autonomous underwater vehicles. Robotics, IEEE Transactions on,
23(2):331 –341.

Rao, D. and Williams, S. B. (2009). Large-scale path planning for underwater glid-
ers in ocean currents. In Proceedings of Australasian Conference on Robotics and
Automation.

Reif, J. and Sharir, M. (1994). Motion planning in the presence of moving obstacles.
Journal of the Association for Computing Machinery (ACM), 41(4):764–790.

Reif, J. H. (1979). Complexity of the mover’s problem and generalizations. In Foun-
dations of Computer Science, 1979., 20th Annual Symposium on, pages 421 –427.

Reif, J. H. and Wang, H. (1999). Social potential fields: A distributed behavioral
control for autonomous robots. Robotics and Autonomous Systems, 27:171–194.

Ren, W. and Sorensen, N. (2008). Distributed coordination architecture for multi-
robot formation control. Robotics and Autonomous Systems, 56(4):324–333.

Rhoads, B., Mezic, I., and Poje, A. (2010). Minimum time feedback control of au-
tonomous underwater vehicles. In Decision and Control (CDC), 2010 49th IEEE
Conference on, pages 5828 –5834.

Russo, G. and Smereka, P. (2000). A Remark on Computing Distance Functions.
Journal of Computational Physics, 163:51–67.

Sabattini, L., Secchi, C., and Fantuzzi, C. (2011). Arbitrarily shaped formations
of mobile robots: artificial potential fields and coordinate transformation. Au-
tonomous Robots, 30(4):385–397.

174

Schmidt, H., Bellingham, J. G., Johnson, M., Herold, D., Farmer, D., and Pawlowicz,
R. (1996). Real-time frontal mapping with AUVs in a coastal environment. In
OCEANS ’96. MTS/IEEE. Prospects for the 21st Century. Conference Proceedings,
volume 3, pages 1094 –1098.

Senatore, C. and Ross, S. (2008). Fuel-efficient navigation in complex flows. In
American Control Conference, 2008, pages 1244 –1248.

Sethian, J. A. (1999a). Fast marching methods. SIAM Rev., 41(2):199–235.

Sethian, J. A. (1999b). Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge University Press: Cambridge, U.K.

Simmonet, E., Dijkstra, H., and Ghil, M. (2009). Bifurcation Analysis of Ocean,
Atmosphere, and Climate Models. In ‘Computational Methods for the Atmosphere
and the Oceans’, volume XIV, p. 187-229. Handbook of Numerical Analysis.

Sisto, M. and Gu, D. (2006). A fuzzy leader-follower approach to formation control
of multiple mobile robots. In Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, pages 2515 –2520.

Smith, R. N., Chao, Y., Li, P. P., Caron, D. A., Jones, B. H., and Sukhatme, G. S.
(2010). Planning and implementing trajectories for autonomous underwater vehi-
cles to track evolving ocean processes based on predictions from a regional ocean
model. International Journal of Robotic Research, 29(12):1475–1497.

Sod, G. A. (1985). Numerical Methods in Fluid Dynamics. Cambridge-University
Press, Cambridge, UK.

Soulignac, M. (2011). Feasible and optimal path planning in strong current fields.
IEEE Transactions on Robotics, 27(1):89–98.

Soulignac, M., Taillibert, P., and Rueher, M. (2009). Time-minimal path planning
in dynamic current fields. In Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, pages 2473 –2479.

Stommel, H. (1989). The slocum mission. Oceanography, pages 22–25.

Sussman, M., Smereka, P., and Osher, S. (1994). A Level Set Approach for Computing
Solutions to Incompressible Two-Phase Flow. Journal of Computational Physics,
114:146–159.

Swaminathan, K. and Minai, A. A. (2005). Stigmergic Optimization. Spring-Verlag.

Tan, C. S., Sutton, R., and Chudley, J. (2004). An incremental stochastic motion
planning technique for autonomous underwater vehicles. In IFAC Control Appli-
cations in Marine Systems Conference, pages 483–488.

175

Techy, L. and Woolsey, C. A. (2009). Minimum-time path planning for unmanned
aerial vehicles in steady uniform winds. Journal of Guidance, Control, and Dy-
namics, 32(6):1736–1746.

Thompson, D. R., Chien, S. A., Chao, Y., Li, P., Arrott, M., Meisinger, M., Bal-
asuriya, A. P., Petillo, S., and Schofield, O. (2009). Glider Mission Planning in
a Dynamic Ocean Sensorweb. In SPARK Workshop on Scheduling and Planning
Applications, International Conference on Automated Planning and Scheduling.

Thompson, D. R., Chien, S. A., Chao, Y., Li, P., Cahill, B., Levin, J., Schofield, O.,
Balasuriya, A. P., Petillo, S., Arrott, M., and Meisinger, M. (2010). Spatiotemporal
path planning in strong, dynamic, uncertain currents. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 4778–4783.

Tsitsiklis, J. N. (1995). Efficient algorithms for globally optimal trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538.

Ueckermann, M. P. and Lermusiaux, P. F. J. (2009). 2.29: Numerical Fluid Mechan-
ics. Finite Volume MATLAB Framework, Cambridge, MA.

Ueckermann, M. P. and Lermusiaux, P. F. J. (2011). 2.29 Finite Volume MATLAB
Framework Documentation. Technical report, Massachusetts Institute of Technol-
ogy, Cambridge, MA USA.

Ueckermann, M. P., Lermusiaux, P. F. J., and Sapsis, T. P. (2012). Numerical schemes
for dynamically orthogonal equations of stochastic fluid and ocean flows. submitted
to Journal of Computational Physics.

Urmson, C. and Simmons, R. (2003). Approaches for heuristically biasing RRT
growth. In 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003), Proceedings of, volume 2, pages 1178 –1183.

Van Leer, B. (1977). Towards the ultimate conservative difference scheme. IV. A new
approach to numerical convection. Journal of Computational Physics, 23(3):276 –
299.

Vasudevan, C. and Ganesan, K. (1996). Case-based path planning for autonomous
underwater vehicles. Autonomous Robots, 3:79–89.

Warren, C. W. (1990). A technique for autonomous underwater vehicle route plan-
ning. In Autonomous Underwater Vehicle Technology, Proceedings of the Sympo-
sium on, pages 201–205.

Wikipedia. A∗ search algorithm. http://en.wikipedia.org/wiki/A*_search_

algorithm.

Witt, J. and Dunbabin, M. (2008). Go with the flow: Optimal auv path planning in
coastal environments. In Proceedings of Australasian Conference on Robotics and
Automation.

176

Yang, H. and Zhang, F. (2010). Geometric formation control for autonomous under-
water vehicles. In Proceedings of 2010 International Conference on Robotics and
Automation, pages 4288–4293, Anchorage, AL.

Yang, H. and Zhang, F. (2012). Robust control of formation dynamics for autonomous
underwater vehicles in horizontal plane. ASME Journal of Dynamic Systems, Mea-
surement and Control, 134(3).

Yang, K., Gan, S., and Sukkarieh, S. (2010). An efficient path planning and control
algorithm for ruavs in unknown and cluttered environments. Journal of Intelligent
and Robotic Systems, 57:101–122.

Yigit, K. (2011). Path Planning Methods for Autonomous Underwater Vehicles. S.M.
Thesis, Massachusetts Institute of Technology, Cambridge MA.

Yilmaz, N. K., Evangelinos, C., Lermusiaux, P., and Patrikalakis, N. M. (2008). Path
planning of autonomous underwater vehicles for adaptive sampling using mixed
integer linear programming. IEEE Journal of Oceanic Engineering, 33(4):522–537.

Yu, C.-H. and Nagpal, R. (2008). Sensing-based shape formation on modular multi-
robot systems: A theoretical study. In Proceedings of 7th International Conference
on Autonomous Agents and Multi Agent Systems (AAMAS 2008).

Zermelo, E. (1931). ’́Uber das navigationsproblem bei ruhender oder veŕ’anderlicher
windverteilung. Z. Angew. Math. Mech, 11:114–124.

Zhang, F. (2007). Cooperative shape control of particle formations. In Decision and
Control, 2007 46th IEEE Conference on, pages 2516 –2521.

Zhang, F., Fratantoni, D. M., Paley, D., Lund, J., and Leonard, N. E. (2007). Con-
trol of coordinated patterns for ocean sampling. International Journal of Control,
80(7):1186–1199.

Zhang, F. and Leonard, N. (2006). Coordinated patterns on smooth curves. In Proc.
of 2006 IEEE International Conf. on Networking, Sensing and Control, pages 434–
439, Ft. Lauderdale, Florida.

Zhang, W., Inane, T., Ober-Blobaum, S., and Marsden, J. E. (2008). Optimal tra-
jectory generation for a glider in time-varying 2d ocean flows b-spline model. In
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on,
pages 1083 –1088.

177

