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Abstract

Photonic nanostructures exhibit unique optical properties that are attractive in many different

applications. However, measuring the optical properties of individual nanostructures, in

particular the absorptive properties, remains a significant challenge. Conventional methods

typically provide either an indirect or qualitative measure of absorption. The objective of this

thesis is to therefore demonstrate a method capable of directly and quantitatively measuring the

absorptive properties of individual nanostructures. This method is based on atomic force

microscope (AFM) cantilever thermometry where a bimorph cantilever is used as a heat flux

sensor. These sensors operate on the principle of a thermomechanical bending response and by

virtue of their dimensionality, are capable of picowatt sensitivity. To validate the use of this

technique, a single silicon nanowire is measured. By attaching a silicon nanowire to a cantilever

and illuminating the sample with monochromatic light, the absolute absorptance spectrum of the

nanowire was measured and shown to match well with theory. This spectroscopic technique can

conceivably be used to measure even smaller samples, samples which cannot be characterized

using conventional methods.
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Chapter 1

Introduction

The control of light has been a pursuit of many researchers over the years and has led to the

development of many optics-based technologies such as fiber optics, energy efficient windows

and solar cells. As these technologies continue to evolve, the need to more precisely engineer

photonic nanostructures, structures which exhibit characteristic dimensions on the order of the

wavelength of light or even smaller, is greater than ever. By designing structures at this scale, it

is possible to manipulate optical properties to an extent previously inconceivable. In fact, recent

studies have created structures which have demonstrated the possibility of optical cloaking,

perfect lenses and optical computing.[1-5]

However, one of the biggest challenges in this field is measuring the broadband

absorptive properties of individual structures. As will be discussed in Sec. 1.1, conventional

spectroscopic techniques can only indirectly or qualitatively measure the spectral absorptance of

such structures. The purpose of this thesis is to therefore demonstrate a method capable of

directly and quantitatively characterizing the absorptive properties of individual nanostructures.

This method is based on the use of atomic force microscope (AFM) cantilever thermometry.

Although the measurement platform can be used to characterize a variety of photonic structures,

we strictly focus on silicon nanowires due to their relative ease of measurement and potential

impact.

1.1 Background on Particle Measurements

1.1.1 Definitions

In this study, the spectral absorptivity of an individual structure is characterized by its absorption

efficiency. The absorption efficiency is a normalized representation of the effective absorption

cross section viewed by the light source. Since this parameter is wavelength dependent, the

following can be written,
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Qbs (A) ' (2)
G

where Qbs is the absorption efficiency, C,,s is the absorption cross section and G is the

geometric cross section in the direction perpendicular to the incident radiation. In addition, we

can also define the scattering efficiency in the same manner,

Q, (A) = c"(A) (1.2)
G

where Q,,, the scattering efficiency, is also the effective scattering cross section of the particle

viewed by the light source. The sum of these two quantities is called the extinction efficiency,

Q. (A)= Qab, ()+ Qs, (2) (1.3)

which represents the absorbed and scattering losses from the incident field due to the presence of

the particle. The parameters in (1.1-1.3) will be derived from Mie theory in much greater detail

in Ch. 2. The purpose of introducing these parameters now is to provide some context for the

previous techniques that have been used to measure these efficiencies.

1.1.2 Nephelometry

The motivation behind the optical characterization of micro and nanostructures, namely

particulates of varying shapes and sizes with a characteristic length on the order of microns and

nanometers, has evolved over the past several decades and so too the methods employed in these

measurements. Perhaps the oldest and most well known technique is nephelometry which has

been used extensively since the 1970's to characterize particulates either in a gas or a liquid. The

concept of nephelometry is based on the measurement of scattered light spectra from a

suspended particle or stream of particles illuminated by a light source. In this method the

scattering and extinction efficiency can be quantitatively measured. The scattering efficiency can

be measured by summing the intensities of the scattered light at all angles around the particle. To

measure the extinction efficiency, the optical theorem is used which states that only the intensity

in the shadow of the particle needs to be measured. It is in this manner that the absorption

efficiency can be determined from (1.3).[6]

This technique has primarily found use in the detection of aerosols and other pollutants

for air quality characterization. However, several studies have been conducted on single particles
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to confirm the results obtained by Mie theory. In 1970, Phillips et al. utilized this technique to

measure the refractive index and diameter of single polystyrene spheres. [7] Polystyrene spheres

were specifically chosen due to their use as light scattering standards at the time. The diameter

chosen ranged from 400 to 4000 nm. The spherical particles were nebulized from a water

suspension when introduced into the system so that the particles retain a charge. They were then

held in position via an electric field and illuminated by a pulsed argon ion laser (514.5 nm).

Although in this study they do not explicitly calculate the efficiencies, since their intention was

to demonstrate the accuracy of this method in sizing the individual particles, they nonetheless

obtain the scattering intensity as a function of the scattered angle. They then utilize Mie theory to

fit these results to back out the refractive index and diameter (1099 nm) to within 1% error.

In 1976, Marshall et al. improved this method by enabling the rapid measurement of the

full 3600 light scattering pattem.[8] Their system utilized a rotating aperture at 3600 rpm to

measure the pattern in less than 20 ms which meant that the particles themselves no longer

needed to be suspended. They once again measured the refractive index and diameter of

polystyrene spheres, which flowed through the system in an aerosol stream. Here they

illuminated the particles with a He-Ne laser (632.8 nm) and were able to observe very sharp

resonance peaks as predicted by Mie theory. In 1980, Bartholdi et al. constructed an alternate

system that utilized an array of photodetectors to rapidly measure the scattering pattern of

individual polystyrene particles for size analysis.[9]

In 1981, Schuerman et al. conducted a more systematic study to assess the validity of

Mie theory for different particle shapes.[10] To facilitate control over the particle shape, a

microwave analog was used which enabled the researchers to use particles with dimensions on

the order of centimeters. The particles studied consisted of spheres, cylinders, prolate spheroids,

oblate spheroids and disks made from polymethyl methacrylate (PMMA) which has a refractive

index in the microwave wavelength range similar to silicates in the optical wavelength range.

These particles were illuminated by 3.18 cm radiation. The results presented in this work were

averaged over all particle orientations. To determine the extinction and scattering cross sections,

the researchers measured the Stokes vector, which requires measuring the intensity of the

scattered light at different incident polarizations. The results for the spheres and cylinders were

fitted using Mie theory while the other particle shapes required a separate calculation. It was thus
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shown that for nonspherical particles, the true size of the particles was significantly

underestimated when using Mie theory for data fitting.

Overall these methods were shown to exhibit exceptional accuracy with relative errors

well within 10%. Experimentally, this is due to the use of a high intensity laser as this leads to a

strong scattering response. Furthermore, the size and refractive index of the particles were

obtained by fitting the scattering response to theory. For these particles, the scattered intensity as

a function of the scattering angle was generally a smooth, slowly changing curve. Therefore,

fitting naturally smeared out any variations exhibited during experiment. By contrast, in the

present study, a broadband light source in the visible wavelength range is used. These sources

generally exhibit a lower intensity which inherently makes measurements on individual particles

more challenging. In addition, the method used will not require any fitting.

As one can clearly see, the majority of the studies conducted in this era were motivated

by applications aimed towards the detection of particles, such as the presence of aerosol

particulates. More recently, the focus has shifted towards the study of highly confined optical

modes and resonant effects in these particles, as will be discussed in the next section.

1.1.3 Current Methods

The study of highly confined optical modes and resonant modes has attracted substantial

attention recently due to their potential to significantly enhance the absorption efficiency of

particles. In brief, this enhancement originates from the coupling of light to modes supported by

the particle. This includes highly confined optical modes, phonon polariton modes and plasmon

polariton modes. When light couples to these modes, an electromagnetic field is created within

the particle that extends beyond its boundaries; hence, these modes are referred to as leaky mode

resonances. The resulting interaction of this leaky field with incoming light can lead to

interference effects which produce scattering and absorption efficiencies greater than 1, i.e. the

effective cross section viewed by the light source is much larger than the geometric cross section.

For many materials, these modes exist in the visible and infrared wavelength spectrum which is

useful for many applications, as will be discussed in Sec 1.2.

In many of these studies, a dark-field illumination scheme is used which is once again

based on the concept of measuring scattered light spectra to determine the extinction and

scattering efficiencies. Dark-field illumination is a common technique to image samples where
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the unscattered beam is excluded from the final image. Since the image is formed by scattered

light only, this image can be analyzed spectrally to obtain the extinction and scattering

efficiencies.

In 2002, Sonnichsen et al. used this method to study the reduction of plasmon damping in

gold nanoparticles.[11] A conventional optical microscope with a high aperture dark-field

condenser, an oil immersion objective and a halogen lamp as the light source is used to clearly

distinguish individual gold nanoparticles on a substrate. The scattered light from individual

particles is then focused onto an entrance slit of a spectrometer where a CCD camera is used as

the detector. Based on the scattered spectra from a single particle, they were able to measure the

plasmon resonance peak for single gold nanosphere and nanorod. By assessing the strength and

the shape of peak, they were able to determine that nanorods exhibit a much greater reduction in

plasmon damping resulting in a higher scattering efficiency. In 2003, McFarland et al. studied

the shift in the plasmon resonance when a self-assembled monolayer is formed onto a single

silver nanoparticle.[12] It was shown that the absorption of less than 60,000 adsorbate particles

on the silver nanoparticle led to a shift in the plasmon wavelength of 40.7 nm in real-time. In

2004, Nehl et al. studied the scattering spectra of gold nanoshells using a scanning electron

microscope (SEM) and atomic force microscopy (AFM) to confirm that Mie theory can be used

to fit this data.[13] From this study they were able to support the assertion that the broadening of

the plasmon resonance is due to inhomogeneous broadening from variations in particle size and

shape. In 2006, Nehl et al. also conducted a study on star-shaped gold nanoparticles which

showed the presence of multiple plasmon resonances corresponding to the different tips of the

nanoparticle.[14] As a result, this particle exhibited polarization dependent multidirectional

scattering spectra which the authors postulate could be used to determine the three-dimensional

orientation of the particles. In 2010, Br6nstrup et al. measured the scattering and absorption

efficiencies of silicon nanowires as a function of the polarization and incident angle of the

illuminating light source as well as the size of the nanowires.[15] It was shown that the

absorption efficiencies are stronger for TM polarization when the wire diameter is less than 160

nm. The behavior is opposite for thicker nanowires. In addition, the incident angle of the

illuminating light source did not significantly deviate from measurements at normal incidence. In

2011, Cao et al. followed up this work with a study on the coupling effects between adjacent

silicon nanowires.[16] It was shown that these coupling effects are substantially stronger
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compared to coupled microresonators resulting in strong scattering peaks as the spacing between

the wires was reduced.

The methods discussed thus far have comprised a family of techniques that enable the

indirect, yet quantitative measure of the absorption efficiency on individual particles.

Alternatively, several studies have also been conducted that directly, yet qualitatively measure

the absorption efficiency of individual semiconductor nanowires. In 2009 and 2010, Cao et al.

measured the photocurrent generated by silicon and germanium nanowires when illuminated by

monochromatic light in the visible wavelength spectrum.[17, 18] To measure the photocurrent

response, an individual nanowire was placed onto an insulating substrate. Two electrical contacts

were then deposited on both ends of the nanowire made from aluminum and platinum to form an

Ohmic contact and Schottky contact, respectively. This asymmetric configuration provided a

built-in potential to drive photoexcited carriers and also suppressed the effects of dark-field

current in the measurement. Based on their measured photocurrent spectra, they were able to

correlate their results with Mie theory which showed good agreement in predicting distinct

optical features for different size nanowires.

Although not directly related, it should not go without mention that photoluminescence

and Raman spectroscopy measurements are also commonly used to characterize the emissive

properties of individual nanostructures by probing the electronic structure of the material. Ng et

al. and Yang et al. both characterized ZnO nanowires excited using a He-Cd laser as a function

size, crystallinity and growth conditions.[19, 20] Ng et al. measured the resulting emission using

a UV resonant Raman spectrometer and Yang et al. near-field scanning optical microscope.

Gudiksen et al. conducted a similar study on superlattice nanowires made from II-V and IV

materials.[21] Qi et al., Sham et al. and Cao et al. conducted studies on silicon nanowires.[22-

24] Cao et al. also included measurements on silicon nanocone structures. Qi et al. excited the

samples using a XeCl laser and measured the resulting photoluminescence using a CCD camera.

Sham et al. conducted a soft x-ray excited optical luminescence excitation and measured the

emission with an x-ray emission spectrometer. Cao et al. also utilized a Raman spectrometer and

modeled the scattered emission based on Mie theory. More recently, Laffont et al. measured the

intrinsic electrical conductivity of gold and nickel nanowires using electron energy loss

spectroscopy using scanning transmission electron microscopy.[25]
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To summarize, current methods either provide an indirect and quantitative measurement

or direct and qualitative measurement of absorption. This is indicative of the difficulty inherent

in absorption measurements. However, as will be shown in this study, the use of cantilever

thermometry can circumvent these limitations. This method is believed to be the only method

available to directly and quantitatively measure the absorptive properties of nanostructures.

1.1.4 Cantilever Thermometry

In this study, we use a different approach based on AFM cantilever thermometry. Beginning in

the mid-90's and onwards, the use of AFM bimorph cantilevers as a measurement platform has

continually grown due to the robustness and high sensitivity characteristics when used as a

sensor.[26] This has been primarily motivated by physical, biological and chemical sensing

applications. Though perhaps not as prevalent as the aforementioned fields, AFM cantilevers

have also found a niche in thermal sensing applications. In 1994, Gimzewski et al. originally

used a bimorph cantilever as a calorimeter to sense the catalytic conversion of H2+02 to H20

by measuring fluctuations in heat flow via oscillations in the cantilever.[26] In this work, they

were able to achieve a temperature sensitivity of 10'K and a power sensitivity of 1 nW by

simply using an AFM head as their measurement platform. This was followed in 1994 by Barnes

et al. who made numerous modifications to the measurement platform, including the introduction

of a light source and a lock-in amplifier, to create the first photothermal detector based on the

bimorph principle. [27, 28] In their work, they were able to achieve a power resolution as low as

100 pW. In 1997, Lai et al. and Varesi et al. further optimized this measurement platform and

the design of the cantilever, achieving a power sensitivity of 50 pW and temperature sensitivity

of 10~6 K[29, 30] More recently, in 2005, LeMieux et al. developed a polymer-silicon cantilever

with a thermal sensitivity one order of magnitude higher than standard metallic-silicon

cantilevers.[31] In 2008, Shen et al. introduced a clever method to directly measure the thermal

conductance of a bimorph cantilever. This enabled the simultaneous measurement of temperature

and heat flux at the tip. [32] In 2011, Narayanswamy et al. further showed that it is possible to

measure the heat transfer coefficient (h = 3400 W/m2K ) when the cantilever is operated in

air. [33] Most recently, Sadat et al. designed an optimized cantilever with a power resolution as

low as 4 pW, which is currently the highest sensitivity reported. [34]
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The continual advancement of bimorph cantilevers as thermal sensors has also brought

forth numerous applications. In 1994, Nakabeppu et al. used a bimorph cantilever to conduct

scanning thermal imaging of surfaces with submicron resolution via heat conduction from the

surface to the AFM tip.[35] In 1996, Berger et al. physically attached a solid mass of n-alkane

(C,,H 2 2 ) to the cantilever and then locally heated the sample using a heater to measure the

enthalpy of the phase transition of the material.[36] In 2000, Li et al. used a multilayer reed,

which is essentially a larger cantilever, as a photothermal chemical detector.[37] A chemically

selective layer is used as a substrate to deposit thin-films of specific chemicals. The absorptance

spectrum can then be measured by illuminating the sample with different wavelengths of light. In

2002, Zhao et aL. developed an IR imaging system based on an array of cantilevers which

functioned as individual pixels.[38] More recently in 2008, Narayanaswamy et al. utilized a

bimorph cantilever to measure the near-field radiative transfer between two objects placed in

close proximity.[39] This work demonstrated that near-field radiative transfer can exceed

Planck's blackbody limit. In 2010, Shen et al. used a bimorph cantilever to measure the thermal

conductivity of individually drawn polyethylene nanofibers.[40] It was demonstrated that the

thermal conductivity of polyethylene could be as high as 104 W/mK In 2010, Kjoller et al.

utilized a unique measurement setup based on atomic force microscopy that allowed the

simultaneous measurement of thermal and mechanical properties for a thin-film illuminated by

infrared radiation.[41] In addition, Kwon et al. conducted a study to assess the sensitivity of

various commercial cantilevers in application to infrared spectroscopy. [42] This was followed in

2012 by another study from Kwon et al. which looked into the dynamic thermomechanical

response of a bimaterial cantilever under periodic heating conditions. [43]

Given the versatility and high sensitivity of these cantilever sensors, the work presented

in this thesis will be based on a configuration where an AFM bimorph cantilever is used as a

photothermal detector. The idea is to use the cantilever to directly and quantitatively measure the

radiative energy absorbed by a micron or even nanometer sized particle when illuminated by

monochromatic light. Further discussion will be provided in Ch. 3.

1.2 Applications of Particles

The evolution of the measurement techniques employed to characterize the optical properties of

individual nanostructure has coincided with a shift in the intended applications of these studies.
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Whereas the studies from decades earlier were motivated by the detection of particulates in air,
recent work has been motivated by the optimization and use of the enhanced optical properties

observed in these individual nanostructures. In particular, semiconductor nanostructures have

drawn significant interest due to both the optical properties, as mentioned, as well as the

electronic properties which can be tailored for different applications. Despite being a bit dated,

Law et al. provides a nice review of the various methods for fabrication and property

characterization as well as a variety of applications where such materials could find use.[44]

Although the applications of these materials are numerous, a brief review of some of these

technologies will be discussed.

In the microelectronics industry, silicon is the most widely used material due its

performance and abundance. However, in photonics applications, the indirect bandgap of silicon

has limited its use due to its poor absorptive properties. But, as discussed in Sec. 1.1, the

nanostructuring of many materials, including silicon, can lead to dramatic improvement in the

optical properties. Cao et al. utilized this behavior to demonstrate the color tunability of silicon

nanowires.[45] Since resonant scattered light is a strong function of size, changing the diameter

of the wire can shift the wavelength of the scattered light across the entire visible wavelength

spectrum. Therefore, silicon nanowires can be used strictly as a scatterer of white light which

would be useful in a variety of display technologies. Alternatively, Huang et al. proposed the

integration of silicon nanowires in conjunction with III-V and II-VI nanowires to form a

nanoLED constructed from a bottoms up approach. [46] The motivation for this is to combine

materials and structures which are typically incompatible using conventional fabrication

techniques. Here, the silicon nanowires are p-type and the other direct band gap materials are n-

type thus forming a junction. As a result, the n-type nanowires function as the emitters. Despite

the complexity, the small footprint of these nanoLEDs can be useful in many applications such

as high density optical storage, lab-on-a-chip systems and chemical/biological analysis.

Perhaps one of the more sought after applications is in photovoltaic cells where the

enhanced optical properties of semiconductor nanostructures could provide improved efficiency

with lower material usage. Several studies have been conducted where vertically oriented silicon

nanowire arrays were used for light trapping. Hu et al. conducted a theoretical analysis on the

optical absorption a periodically arranged silicon nanowire array.[47] It was shown that at

moderate filling ratios, the array exhibited enhanced absorption at high frequencies. At lower
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frequencies, the absorption was worse than a thin film. Given that the structure studied was

unoptimized, the ultimate efficiency only approached that of a thin film. However, more recently,

Huang et al. conducted a more systematic study that optimized the nanowire array.[48] By

optimizing the spacing and the diameter at a given length, it was shown that the ultimate

efficiency can exceed a thin film for several materials from 100 nm to 100 pm. Tsakalakos et al.

experimentally measured the optical properties of silicon nanowires synthesized by both

chemical vapor deposition and wet etching using an integrating sphere spectrometer. [49] It was

shown that the absorption across the entire solar spectrum was improved compared to a thin film

of equivalent thickness. Tian et al. coated a single doped silicon nanowire with silicon shell to

form a p-n junction which was then connected in series to an electrical to power a logic gate.[50]

Gamett et al. coated a doped silicon nanowire array with a doped silicon shell to form a p-n

junction.[51] Despite the enhancement in absorption, surface recombination limited the device

performance. Furthermore, Baxter et al. also used ZnO nanowires to create a dye-sensitized solar

cell where the nanowires replaced conventional TiO2 nanoparticles.[52] These nanowires were

coated with dye thus function as both the absorber and a conduction path for electrons to migrate

across the cell.

The use of semiconductor nanowires has also found application in the development of

new photodetectors. As mentioned in Sec 1.2, Cao et al. developed a platform to measure the

photocurrent generated by a single nanowire when illuminated by light.[17, 18] This platform is,

in essence, a photodetector. Once again, the small footprint of the device and its polarization

dependent optical properties lends itself to lower cost and new applications. VJ et al. provides a

nice review on this subject matter. [53]

1.3 Objectives

The objective of this work is to experimentally measure the absorption efficiency of an

individual silicon nanowire directly and quantitatively. This will be achieved by illuminating a

nanowire with monochromatic light at various wavelengths and measuring the heat absorbed by

the nanowire using an AFM bimorph cantilever as a photothermal detector. Theoretical results

obtained by Mie theory will be used to validate experimental results. Ultimately, the goal is to

demonstrate that this platform will provide a new means of probing the unique optical properties

of various nanostructures to an extent previously unattainable with conventional methods.
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1.4 Organization of Thesis

In this thesis, the hope is to provide a comprehensive picture of the project which includes the

theoretical foundation from which this study is based off of and the measurement technique

employed to measure the spectral absorption efficiency of individual. Therefore, Chapter 2 will

consist of a complete derivation of Mie theory for infinitely long cylinders in addition to

theoretical results for the particular case of a silicon nanowire. In Chapter 3, an overview of the

experiment will be provided including the synthesis of nanowires, sample fabrication, the

experimental setup and the various calibrations needed to extract absorptivity data. Chapter 4

will provide a discussion on experimental results including additional modifications to the theory

to account for experimental limitations. And finally, Chapter 5 will summarize the results in this

study and provide an outlook on future work in this field.

25



Chapter 2

Theoretical Background

The theoretical foundation for this study is based on examining the interaction of

electromagnetic waves with a freely suspended particle. In this chapter, the theoretical solutions

to the absorption efficiency for an infinitely long cylinder illuminated by a monochromatic plane

wave will be derived. This derivation constitutes the well-known Mie theory, aptly named after

Gustav Mie and his seminal work in 1908 on electromagnetic scattering by small particles.[54]

In the interest of providing future readers a complete understanding of the theory, a full

derivation will be conducted. Then, a solution will be presented for the specific case of a Si

nanowire followed by an analysis detailing its unique optical characteristics.

2.1 Mie Theory

The theoretical basis for particles exhibiting strong optical absorption is evident when

considering spherical particles operating in the Rayleigh limit.[6, 55] In this limit, the

characteristic length of the particle is much smaller than the wavelength of the incident field. The

absorption efficiency can be approximated to be,

Qb., 4xIm 6-J ; for x =ka <<1 (2.1)
s6+2)

where x is the size parameter, k is the wave vector, a is the particle radius and e is the dielectric

permittivity. From (2.1), we can clearly see that when the real part of the permittivity is equal to

-2, the absorption efficiency will be strongly enhanced. The frequency at which this occurs is

known as the Frohlich frequency. However, the efficiency will not diverge to infinity for real

materials as (2.1) may suggest due to finite damping from the imaginary component in the

dielectric permittivity. Nonetheless, many real materials, including both metals and insulators do

exhibit absorption efficiencies greater than 1 at certain frequencies.

This optical phenomenon originates from the coupling of light at a frequency matching

electromagnetic modes supported by the particle. The fields generated by this coupling can
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extend beyond the boundaries of the particle, making them leaky. There are several types of

leaky modes as briefly mentioned in Ch. 1, Sec. 1.1.3. Highly confined optical modes are

analogous to modes supported in optical fibers and microresonators.[17] The existence of these

modes can be determined based on classical waveguide theory where certain conditions on the

radius and the dielectric constants must be satisfied. Another type of leaky mode is based on the

coupling of light to the charge carriers (electrons and ions) in the material. This mode coupling is

known as either a plasmon polariton or phonon polariton for electrons and phonons, respectively.

In general, these modes exist as surfaces waves which decay over short distances. However,

when these surface waves are confined within a nanoparticle or nanowire, the charge carriers

will resonate with the incident field, resulting in a radiating dipole-like field at the same

frequency. For electrons, this characteristic frequency typically occurs in the ultraviolet regime.

Likewise, for ions exhibiting lattice vibrations, or phonons, such frequencies are generally in the

infrared regime due to the higher mass of the ions. Generally, these frequencies are shape

dependent. For example the surface plasmon frequency will differ for a flat plate and a sphere by

factors of NTh and 43-, respectively.[6] The resulting interference between the leaky field and the

incident field can cause a concentrating effect where the energy of the surrounding field, the

Poynting vector, is redirected towards the particle. This is shown visually in Fig. 2.1,
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(a) (b)

Figure 2.1: (a) The Poynting vector field distribution when the particle is illuminated by light

corresponding to the resonant frequency. (b) The Poynting vector field distribution when the

particle is illuminated by light at an off-resonant frequency. The dashed line corresponds to the

effective absorption cross section of the particle.

In our definition of efficiency, we always normalize with respect to the incident geometric cross

section. Therefore, if such a concentrating effect is present, the absorption efficiency will

naturally be greater than 1.

In this project, we use the more general Mie theory to study infinitely long cylinders with

an arbitrary size parameter to determine the regions of interest, as a function of both the

wavelength of light and the particle radius, where such enhancement may be observed without

the limitations imposed by the Rayleigh approximation. Thus, the remainder of Sec. 2.1 is

devoted to the derivation of the Mie theory efficiencies and Sec. 2.2 will provide a discussion on

theoretical results for silicon nanowires. However, given the inherent complexity in the

mathematics of Mie theory, it would first be pertinent to outline the steps in this derivation so as

to avoid becoming lost in a myriad of formulas. Note that for the remainder of the chapter, the

wavelength of light will be used rather than the frequency. The following derivation can also be

found in Bohren and Huffman. [6]
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2.1.1 Outline of Derivation for an Infinitely Long Cylinder

To begin, a harmonic plane wave is incident on an infinitely long cylinder suspended in vacuum

as shown in Fig. 2.2,

z

Incident
E,

a

Y

'6, Scattered
E,

Figure 2.2: Definition of fields, geometry and coordinate system used in the analysis. Note the

scattered field is treated separately. Subsequent interference with the incident field will be

accounted for when calculating the Poynting vector.

where El is the field inside the particle, Ei is the incident field, E, is the scattered field, a is the

radius of the cylinder, (p is the azimuthal angle and 4 is the polar angle of incidence relative to

the cylinder axis. Note that we take E2 , the field in the medium surrounding the particle, to be

the superposition of the incident and scattered fields,

E2 =E,+E, (2.2)

H2 =H,+H, (2.3)

Because the object in question is a cylinder, there will be a polarization dependence on the

efficiencies. Two incident fields must therefore be defined in order to account for all relevant

polarization states. For convenience, we choose these incident fields to be either parallel or
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perpendicular with the cylinder axis. Harmonic plane waves are more naturally represented in

Cartesian coordinates, thus,

E = E. (sin i- cos4 i) e-(2(rsin.cos4+z)osc)

E , = E5 i e~'i'''"i'****=co') (2.5)

Here we use I to denote parallel polarization and II to denote perpendicular polarization. The

components in the propagation direction in (2.4) and (2.5) are merely projections onto the x-z

plane in a cylindrical coordinate system. To convert the polarization components from Cartesian

coordinates to cylindrical coordinates, we use the unit vector defmnitions,

x = cos qP-sinq^

y = sin r^+ cos qp(

Thus, (2.4) and (2.5) become,

Ei = EO (-cos~cos p+ cosgsing ^+sin(^) e -ik((sin4cosp+2csc) 2.6)

Ei,1 = E, (sing r+ cos p A) e-k(rsincos+2sc) (2.7)

In the following sections, all derivation will be done only for case I. A summary of the results for

case II will be presented in Sec. 2.1.7. We emphasize here that the mathematics will differ

slightly between both cases, however the methodology will remain the same.

Given the complex nature of the mathematics involved in the derivation, the following

sections are structured to emphasize the overarching steps taken in this derivation. Sec. 2.1.2 first

provides a brief review of the electromagnetics relevant to this derivation. Sec. 2.1.3 discusses

the derivation of the vector harmonics which will be used as a new basis to express all field

solutions in the problem. As will be shown, use of these harmonics will drastically simplify the

problem. Sec. 2.1.4 discusses the form and the expansion of the fields in terms of the vector

harmonics. Sec. 2.1.5 utilizes the expanded forms of the fields in the system and applies

boundary conditions to solve all field solutions. And finally, Sec. 2.1.6 will discuss the

derivation of the efficiencies from the field solutions derived in Sec. 2.1.5.
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2.1.2 Review of Electromagnetic Theory

Maxwell Equations

Before delving into the mathematical details of the derivation, it would be worthwhile to first

provide a brief review of electromagnetic theory relevant to the problem at hand. As mentioned

in the previous section, a macroscopic approach is taken in describing light interacting with a

particle. Appropriately, we begin with the macroscopic Maxwell equations,

VB=0 ; Gauss's Law (2.8)
V -B =0

VxE=- ; Faraday's Law (2.9)
at

VxH=J+ ; Ampere's Law (2.10)
at

where D is the electric displacement, E is the electric field, B is the magnetic induction, H is the

magnetic field, p is the charge density and J is the current density. We can further relate the field

parameters using the constitutive relations,

D =6, E

B= pH (2.11)

J= o-E

where 6, is the dielectric permittivity which includes the polarizability, p is the magnetic

permeability, and o is the electrical conductivity. In general, these phenomenological

coefficients are a tensor. However, for this analysis, we assume these phenomenological

coefficients are field independent (the medium is linear), independent of position (the medium is

homogeneous) and independent of direction (the medium is isotropic). Since the current density

is a function of the electric field, the permittivity can be written to include the electrical

conductivity as an imaginary term.[6, 56] This will be shown in the following section when

using harmonic representation for the fields. For simplicity we assume the system is charge free

(p =0).
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Time Harmonic Fields

In this analysis, we make use of time harmonic fields of the form,

E = E0 eik~-imt  

(2.12)
H = He e'k'-Xt

If we use the fields in (2.12), substitute in the constitutive relations (2.11) and assume a source-

free system, the Maxwell equations (2.8-2.10) become,

V-E=O (2.13)

V-H=0 (2.14)

VxE=icopH (2.15)

V x H = -icv E (2.16)

where e is the complex permittivity,

.0C
6 = 6 +I -

Now if we take the curl of (2.15) and (2.16) using the identity,

V x (V x A)= V(V -A)-V 2 A

and use the divergence free property of the fields (2.13 and (2.14), we obtain the vector wave

equations for E and H,

V 2 E+k 2 E=0 (2.17)

V 2 H+k2 H=0 (2.18)

where k 2 = C0
2 epU. From (2.17) and (2.18), any divergence free vector field that satisfies the

vector wave equation is an acceptable field. The corresponding magnetic field, H, can be

determined by the curl of E.

Boundary Conditions

When solving problems of this nature, we generally solve (2.17) and (2.18) to determine the

fields at all positions both internally and externally to the particle. In order to account for fields

transitioning from one medium to another, we must impose boundary conditions at the interface.

In electromagnetics, we require the tangential components of the field to be continuous at the

interface,

(E2-E,)x n =0 (2.19)
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(H2 -H 1 )xn =0 (2.20)

where n is the outward normal of the interface. For a particle, this condition is applied on its

surface.

From the Maxwell equations (2.13-2.16), the wave equations (2.17, 2.18) and the

boundary conditions (2.19, 2.20), we now have the foundation to solve the problem of a

harmonic plane wave illuminating a cylinder.

2.1.3 Cylindrical Vector Harmonics

Theoretical Basis of Vector Harmonics

In general, because we require field solutions at all positions in our domain, we must solve the

vector wave equations (2.17) and (2.18) derived in the previous section. However, directly

solving these equations presents an intractable problem. Instead, we can utilize a set of vector

harmonics to write the field solutions in a new basis concentric with the particle shape. As will

be shown, this will greatly simplify the problem. To establish a complete basis capable of

describing an electromagnetic field, two vector harmonics are defined,

M =Vx( 2) (2.21)

N = (2.22)
k

where M and N are the vector harmonics, V/ is a scalar function, 2 is the pilot vector and k is the

wave vector. We note that 2 is an arbitrary constant vector that is orthogonal to M. It is typically

chosen to be along one of the coordinate axes for mathematical simplicity. These harmonics

must exhibit the properties inherent in electromagnetic fields: (1) M and N must be divergence

free, (2) M and N must be related to one another via the curl operator and (3) M and N must be

solutions to a vector wave equation. For (1), we note that that divergence of a curl of any vector

will equal zero. Thus,

V-M =0

V-N=O

To satisfy (2), we note that M and N can be further related by,

VxN=kM (2.23)
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As for (3), we can derive a corresponding wave equation for M and N as we did before for E and

H,

Vx (VxM)=V(VM)-V-(VM)= v2M
0

V x (V x M) = k -(V x N) = k2 M

Thus,

V2 M+k 2 M=O (2.24)

Similarly, for N,

V2 N+k2 N=O (2.25)

Therefore, these harmonics exhibit all the properties needed to describe an electromagnetic field.

Now if we were to substitute (2.21) into (2.24), we can derive the following,

V2 M+k 2 M =V 2 (Vx 27)+k2 (Vx 27)

We note that the Laplace operator, V2 , is a scalar operator. Hence, we can rearrange this to be,

V2 M+k 2 M=Vx (V2(2)+k 2 (2 V)) = V X yV2 + 2V 2V + 2 k2Yj
0

V2 M+k 2 M = V x[C(V2 V+k2V)] (2.26)

From (2.24) and (2.26), we can then show that,

V 2 +k 2V= 0 (2.27)

Using (2.21), we can conclude that a solution to the scalar wave equation (2.27) will also be a

solution to the vector wave equations (2.17, 2.18), which considerably simplifies the problem.

Note that (2.27) can also be derived using (2.25).

The geometry of the particle will dictate the form of the scalar wave equation to be

solved. Furthermore, since we use separation of variables to solve (2.27), the geometries we can

consider are limited to the coordinate system used to define the Laplacian. In this case, we

choose a cylindrical coordinate system to describe an infinitely long cylinder.
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Cylindrical Vector Harmonics

For an infinitely long cylinder, the scalar wave equation becomes,

- r -- + + +k2 t' =0 (2.28)
r &r &r r 2 a92 Z 2

From separation of variables, we assume W has a solution of the form,

v (r,(,z) = R(r)D(#)Z(z) (2.29)

Upon substituting (2.29) into (2.28), we obtain,

1I 8 RD 1 1 2 i 2 Z
- a(r- -I+ + +k2=0
r &r &r R r 2 a ( 2 (1 az

In order to solve each coordinate function in (2.29), we isolate and group terms according to the

coordinate variable and lump all other terms into a separation constant. This is done in an order

that is most convenient,

For Z(z):

82 Z I a (1 1 R 1 2 1 k2 -2
az2 Z r r ar R r2 a(2 (

-+ +h 2Z=0 (2.30)
8Z 2

For c(#):

2 1 a R 1 1 82 1 2h =- r- -+--+k
r ar &r R r2 a(0 2D

82(D 1 -a (rR ) 1 2(k2-2 2

,aI2 ar ar R

- a 2 +n 2O=0 (2.31)

For R(r):

n2=r- r- I-+r2 (k2 -h2)
ar ar R

r- "r--R +[ r2(k 2-h 2)-n2 ]R=0
ar 8r '
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If we introduce a change of variables, p = rdk2 h2 the expression becomes,

a ( _aR~ F22
p- p- +(p-n2R=O

ap ap

Expanding the differential terms we obtain the following,

2R R 2
p 2_+P-+[P 2 -n2]R=0Op ap

This is Bessel's differential equation. Therefore, we replace R with Z to denote a solution of

order n,
2a2zn az +[2 2]Z
S 2 +p =0 (2.32)

Solving (2.30-2.32), we will find,

R =Z'

CD = e'"p (2.33)

Z =e""

where all of these functions are normalized. The separation constant h is dependent on the form

of the incident field in the system and will be determined in Sec. 2.1.4. For the separation

constant n, we require that V be a single-valued function with respect to the azimuthal angle, p,

lim V/(cp+v)= v/ (p) ;for all (o

Therefore, the separation constant n must equal to zero or an integer to satisfy this condition. The

solution to the scalar wave equation using (2.33) is thus,

y, (r,p,z)= Z, (p)en"ehz ; n =0, 1, ± 2,... (2.34)

From (2.34) we can now solve for the vector harmonics Mn and Nn of order n according to their

definitions (2.21, 2.22),

M=VX x(Z ) (I , r+ - (
r 89r _ _ ar

Applying a change variables from r to p from before,

Vk2 -h2 a ~

Mn -(Vf) r^+ -k2 -h2 (n
p a (P 8p _
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Thus,

M = [,rkn2 -h2 nZ9in+ -[k2 -h4 2 ',(p)e(neP+hz)

-M = 4k2 -h2 n Z(p) Z' (P) 1 e ("+) (2.35)

Similarly for Nn,

VxMn 1 Mn,,~ 1 . 1 1 1(rM.,,) 1 aM 1
N = r+ 9+ z

Lk k 8 z r ar r a9

Applying a change of variables, p =rdk -h

V n 1M, [M 2  1 (pM,,) 1 MflrI' lN = = r+ I+k-

" k k a _p z P hp op p 8

Thus,

N,,= k2 -hihZ'{pe(e+ ]-_ ,k2 -h2 nh Z, {pje(nP +...

r 2 -2 , (P) P + nZ1 P) e("p'hz)k -Lh ]nP n

For the z component, we can substitute (2.32) to simplify,

S2 -h2 ihZ ( p)-nh Z,,( p)I-+Ik2 _h2 Z, pi e(""h) (2.36)
Nn k Z p

From (2.35) and (2.36), we now have the mathematical form of the vector harmonics. We note

that these harmonics are orthogonal in the sense that,

M,-M* dp = Nn.N* dp = MN* dp=O ; n wm (2.37)

These cylindrical vector harmonics thus provide us the means to expand all fields in the system

in a cylindrical basis. Although these harmonics are rather complex mathematically, it will be

shown that the steps taken to solve the problem are now considerably simpler.
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2.1.4 Field Expansion

General Form of Field Expansion Coefficients

The incident fields (2.4) and (2.5) can now be expanded using the derived vector harmonics

(2.35) and (2.36). Since the radial component of the scalar solution (2.34) contains a Bessel

function, we should ideally use a Hankel function so that all solutions to the Bessel differential

equation are included. However, for the incident field, the direction of propagation is towards the

center of the cylinder. Therefore, we must exclude the Bessel function of the second kind to

avoid a singularity at r = 0. The expansion of the incident field can then be generally written as,

E, = [A M)+B, N(1) (2.38)

where A, and B, are unknown coefficients and the superscript (1) denotes use of the Bessel

function of the first kind. In order to solve for 4, and B., we can utilize the orthogonality of the

vector harmonics (2.37) to show that,

(E,M 'd9 = r (A. Ml)- M')*) dp + f(B N -). M ' ))d p
m=m0 n - m=* 0 , 0

_on 0 = unless n=m= 0 unless n=m ]
where we have applied an integral of a dot product with M(*. Therefore,

oo 2 r M0*2,TMM ) 21r

(E,M5 (=)d = A= +,(M B ()- M*d
n=-o 0 n=-o 0 0

For a particular n,

E(i,-M *d= ( M M'*) dp+B N,.M *)d 9  (2.39)
0 0 0

5 1 2

We can derive a second expression in a similar manner by applying a dot product with-N,)

Ei,.N)dP=, J (M').N,' ) d +B, f (N-').N')*)dy (2.40)
0 0 0

6 3 4

The numbers below each term correspond to the order in which these terms are solved in the next

section.
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Solutions to the Field Expansion Coefficients

In order to solve for A, and B,, we must solve the integrals contained in (2.39) and (2.40). To

start, let's solve the integrals containing only the vector harmonics:

Equation 1:2x(Ml.M0)*)dp

MO.-M()*)do=
2

..-k2-2-in "n( )F -J', p) ]e ''"h)d~p
r 2 -h 2 

-

=(k2 -h2 n2 ) + j'2 (P)

2x J2
-+ (I). M *)dp =2rk -h2 n2 (P) +J 2 (P)

0 n n) d( (k .P

Equation 2: J (N5,1).M(1)*)d~o
0

(N(1). M5,)drp
0

k2-h2 ihJ,(p) -- nh (P+
k L~n~A~ p

... k2 -h2 [-in " r- J', (p) ( e d

(k2 -h2 ) 2
,-nh nh (P)J'

- 'i J,, (p) J, (p)+nJ
k fL_ p

2xr (k2 - h2 ) nhf (N5,).M )*)d9 =4rc k p (p) J (p)
0

Equation 3:
2x

f:Ms".N5,)*)d 

0 0

(k2 -h2) nh

k p (P)

39

2[(

fvk 2 -h 2 yin r-i'(

(2.41)

(2.42)

(2.43)

)(~'nq+hz).

k2-h2j n(+P)



Equation 4: f (N5,". N,')*) dp
0

N N~nN) *)do p= fkk-h ihJ,(p)--nh " P+ 4k 2 -h 2j (nP) )

k p

k2 -h 2'2h

= k2- h2 2 (p)+ Jn2h2 J (p)+(k2 -h2)J (P) dP

-+
0 ] (2.44)

Now, let's solve terms 5 and 6 which contain the incident field, E,, for case I. Note that now we

change the subscript for the expansion coefficients to be A.,, and B,,,, to reflect case I,

2E

Equation 5: J E,. M(I~)~
0

2z2;

4(P, fM E* =E(-cos4 cosq+ cos4 sinq,^±sinV1)
00

.. k2 - 2 -iA - '4 77 ~{iJ,,(P)f

=Encos( k2 7-h2 e-i(kzcOs+hz) in

.J' (pD) fsinp -e i(kingcos9+

e-ik(rsincos4 +2cos)

(p) J e i(nr+hz)dg
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Because A,, and B,, must be independent of all coordinate variables, we can observe that

h = -kcos4 from the exponential term. Thus,

-(Ej, 4 .M( 1I)*P = Eoksin4cos4;
0

(2.45)

2x

6:

2xf

(E ,. N(,)*)q =J E0 (-cos cos~p r"± cos4sinqp^sin;z) eik(rinD+zCOS4).

0

hncos{ " sinJ (- e-/i;ceosq+nPd .
F-

2f (E, N5') }d = E,,ksin4; [_iCOS24,j, (P Cr(2)
0

2±nco(P) 3)
+ ncos n

p

(2.46)... +sin 2(J,, (P) an) ]

As we can see from (2.45) and (2.46), we must solve integrals of the form,

2xr

1)-i(pcospqng)d~p

2z

=r2 f cos y. - -P~s ~(
0

41

Equation

24r

0 En vk2k-hk 2

2m

0

[in " cel 2)

...- Ik 2 -h 2 2 (p) 2 2Z (P)- i(nq,+hzihzn' (p) rA- nh (P+ 4k - h n z e )dq

0

.+sin(-.k 2 - h2j P

- J', ( p) an3 I

E -N( p



an3 = sin p-e
0

where p =rk2-h2 = krsin4. To do so, we make use of the integral representation of the

Bessel function,

2z rJ, p= e1 ( 2ff nd

27c(i)~

We can use the complex conjugate noting that J, (p) must be real,

J. (p)= e-i(pe +n do (2.47)
2zc- 0

ad1 : From (2.47),

a l)= 27c(-i)n J, (p) (2.48)

a 2 ): To determine 2), we can take the derivative of all,

d (a) 2

dp = if cos (p-e d =-ia( = 2;_(-i)" J (p)

a x 2) = 2r i(-i)n J' (p) (2.49)

x 3): For a, we can derive the following expression,

=e-'(Pcow+nn-ePd p- 0i(pcos+np -e-*d9

= f ei(po+np . (cos o + isin p) dp - e e -(cos9 -isin p) dp
0 0

2;r

= 2i f e-'''***"? sin p d =2ia 3

0

C- ae_' -x, 1= 2iac4 (2.50)

If we use (2.50) with the following recurrence relation,

2nJ (p)
p n 1( ) + J + P
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we find that,

2iae = 2.7(-i)~' J,_, (p) - 21r(-i)"+' J,+, (p)

2iac 3 = 2ri(-i)" - 2nJ, (p) - (p) +2 r(-i)n J,+, (P)
p +1 )

(2.51)a(3) =2;c(-)n n-J,(p )
p

Using (2.48), (2.49) and (2.51), and the definition for h, we can now write all the solutions to the

integral terms to be,

Equation 1: O)(M. MS)*)dy

f(M -M).M()*)dp=2rk2sin2,[ n j2

Equation 2:
2x

f:(N(1- M)* )dp

(2.53)fJ(N(1).M(1)*)dpo=-4;fk2in24-Cos;n J, (P) Jn (P)
0 n np

Equation 3:
2xr

f:(M()- N5)*) dp

fJ(M(1) -N(1)*) d~q = -4,rk sin ~o4LJn (P) J' (P)
0 n np

n cos247j 2 (p) + sin 24jg2 (P)(N(" -N(')*) dp = 2;k 2sin 2( cos 2 (p) ±

2x

J(E .'MG)*

2wrJ E, M(I)* (p= Eksin ;cos4 [
0

-2;r (-i)n .J (p) Jn (p) - 21r (-i)n n j,
p p
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(2.52)

2E

Equation 4: J ('N5,TN,*)dy

(2.54)

Equation 5:

(2.55)

(P) Jn (P)]

(p0)+J',2 (p)]



2;r2

... +2" sin,, _P) J2

-- + (E,4- M"* =2-4zEksin4-cos2(- (p)J (P) (2.56)
p p

Equation 6: ( (EJ p E 2(
0

-+r A2

f (E,4. N( ')* )dq = E pksin4+ [2ncos2 (_j)" jJ 2 (p) + 2;rCOS24 (_j) n 2 (j)2±(P)
p p

Tosmlf thpxrsinw eieY . = 2 Ti ,( i nj 2(~

... +sin 24J 2 (p)] (2.57)

We can now substitute in (2.52-2.57) and solve for A,,,, and B,,1. For our first equation (2.39),

-,,47fk 2 sin 24,COS4 nJ, (P) J' (P)

[2cos4L;J (p, (p) E(n [2cos;LJn(pJ, (P) 1

To simplifyi the expression, we define,

2cos-nJ, (p)J,, (p)

pL jP 2 I . P
Thus,

A',=B,,Y- En Y (2.58)
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For our second equation (2.40),

2rEnksin4(-i) [cos2 p)+cos2 j2 (p)+sin2 j 2

=A,,,4rk2psin2(cos{ J, P)J {P)
p

2
...+B4 ,,,z*2sin2{j cos 2 J 2 2(p) +fcos24J2

-> = ~co2cos{( J(p)J, (p)

p

2cos{n J,
p

(p) + sin2 j 2 o)]

(p)J; (p)

We can again simplify this expression by defining,

X
cos 2  (p)+ cos2  (p) + sin2 2

p

2cos J,, (p) J (p)
p

Thus,

- ,, = B,,,,X - ks'Xkcsin{

Therefore, from (2.58) and (2.59),

EO (-i)"n E (-i)"n
'' ksin4 Y =" ksin{

E(-i)"
B,,,Y- X ) (Y -X)n', (Yksin{;

Bn-EO (-i)"

''ksin{-

(2.59)

(2.60)
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Then,

-+A =0 (2.61)

Thus, after all the arduous mathematics employed in this section, we find the expansion

coefficients (2.60) and (2.61) are simple expressions. Upon substituting (2.60) and (2.61) into

(2.38), we can now write the incident fields to be the following,

E = E. N(1 , H,4 = E, M( (2.62)
n=-<eCOP n=-,

where,

Eo (-i)"n
E, =B =0

ksin{

Internal and Scattered Fields

Now that the solutions to the incident fields are known, we can write the general form of the

internal fields, E14 and HI , and the scattered fields, ES4 and H.J. The form of these fields is

dictated by the boundary conditions, the orthogonality of the vector harmonics and the form of

the incident field.

For the internal field, we again require h = -kcos4 to ensure continuity at the boundary

of the cylinder in the z direction. We also require use of the Bessel function of the first kind,

J. (p), in order to avoid a singularity at the origin as before. The variable p, is determined by

the refractive index of the cylinder, m,

p, = rk/-h27 _ kVm2 -cos 2g

where k, = mk. The expansions for the internal fields thus take the following form,

E = jE[gn 1 M)+±fnN(1)], H =- E g jN)+fn M( (2.63)

where gn, and fn, are unknown coefficients for the internal field.

We can expand the scattered field in a similar manner. However in this case, because the

scattered field is an outgoing wave from the cylinder, we no longer need to restrict ourselves to a

particular Bessel function. To make use of both solutions to the Bessel equation, we use the
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Hankel functions. The two Hankel functions are defined as H , = +iY, and H 2) = =j, -iY,.

Since we are in the far-field regime, the asymptotic solutions to the Hankel functions are,

2

H 1 (P,) e''' (-i)" ei~''

where p, >>n 2 . Since we are concerned with outgoing waves, we only need Hjn (p,). We also

note that p, = p. Thus, the field expansions will take the following form,

E, = - E, [ia M( +b N N), H - E, [ia N()+b 1 M,3) (2.64)

where a. and b., are unknown coefficients for the scattered field. The sign convention is also

reversed to reflect the change in polarization of the field for an outgoing wave.

2.1.5 Application of Boundary Conditions

Solutions to Coefficients an and b.

Now that we have the forms for all the fields present in the system (2.62-2.64), we need to solve

for the unknown coefficients to obtain the field solutions. To do so, we make use of the

continuity boundary conditions (2.19, 2.20) at r =a. Since we are operating in a cylindrical

coordinate system, these boundary conditions become,

(E,+E,-E), x i=O (2.65)

(H1,+xH-1H), x 2= 0 (2.66)

The application of these boundary conditions is mathematically straight forward despite the

complexity of the terms involved. The cross product with r in (2.65) and (2.66) will lead to four

equations. Since we have four unknown coefficients, the problem is well defined. However it

should be noted that in the context of obtaining expressions for the efficiencies, we only require

solutions to a, and b, since we can obtain the absorption efficiency from the extinction and

scattering efficiency from (1.3). To begin, we apply (2.65) and (2.66) for a particular n,

[E. N5'-E, (ia) M Eb N )-E. (g, M5)+f, N(x))] = 0 (2.67)
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kE, M')+ikE, (ia, N (3+b, M +))± ± En(gnN )+f, M x)) ]x =0 (2.68)

The general expansion of the cross product will take the following form,

(a^+ bT^+ci)x r (0)+(c)^+(-b)i (2.69)

From (2.69), it is obvious we will obtain two equations from the (p -component terms and the ^ -

component terms in the vector harmonics. For the sake of brevity, we shall immediately isolate

these terms and derive each equation separately from (2.67) and (2.68),

Equation 1: E0 -component terms

Factoring E, from (2.67), we obtain the following for the E0 -component terms,

k 2 -h 2 k2 -h2 1 (P) ,(nq,+hz) - k2 - h2 2 -h2jHi (P) p ,e(np+hz)

k j h.nnI k j

k -h 2  
2 (n+ )f. k -kl-hJ(p 1 )en~ =0

Substituting h = -kcos( and k, = mk we obtain,

24;j 4;H (I (P) fk(m2 -cos2 ;). (I
ksin2 J (p) - bksin24H3'{p)- f -s J,{po)=0

m

Since p and p, are specified at r=a , we can define x=ka , {=xsin4 and

=x m2 - cos 24 to simplify the expression. We multiply the previous expression by ka2 to

obtain the first equation,

-+> 2J, (4)-b.(2H' ( )-f -J. (7)=0

Equation 2: Ez -component terms

Similarly for the E. -component terms,

nh 2 -h2 (ia 4 k 2 -h 2 HI' (p) e("+hz)
k p

...-bnh k 2(n-+hz) - 2g k - h 2 j (p) ei(nqP+hz)
k p
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..-fnh k-h 2 J" (PO i(We+') =0
k, p,

Substituting for h and k, as before,

-nksin4cos{ " - ia,ksin(H,1' (p) +b,,nksin cos{ n (P)
p p

m2 cos2 4Jn ( 1 )
g,,km 2 -cos 2{ J,(p)+f,nkcos4 = 0

If we use the parameters previously defined for Equation 1 and multiply by a, the radius, this

expression simplifies to become,

-ncos4J, ()- ia,Hn' (4) +b.,ncos4{Hn' ( {- gwqJ, (q)+...

... + f,, ncos4J,(,7)=0
m

Equation 3: HO -component terms

For the magnetic field terms from (2.68), we assume p, =

-,,k 'Nk2 -h2 42-2HU{jin+)-an[k -4 4Hii (p) e'(np***
k

.. g k, k -2 h k-h 2ink=
kcop k,h 2

Factoring all common factors and substituting variables yields,

-a,,k 2sin2(H 1) (p) + ig,k 2 (m2 - cos24) j, (p, p=0

Multiply by a2 , we obtain,

-> -a,, 2H l (4) + ig.,7 2J,, (7) =0

Equation 4: Hz -component terms

And finally for the Hz -component terms,

1 k 2 -2 h + ak, 2nh 4k2 -h2 H ' (p) e1(n)+hz)

COP n P k p

.. , kh2 H 1 (P) pe(n+) jk 1
cop copgn k n k, p
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fi k1 4 T2j" (p)i(np+hz) -
...- f,, !" j, -h2 - ie+) =0

Thus,

iksin('J, (p) -a,,,nksin4 cos{ (P -ib,,ksin4( '( p)+...
p

+ig,nkcos4m 2 -cos 2 4- n -if,,mkjm2 -cos 24j, (pI) =0
pi

Multiplying by a,

-+iJ, J )-a,,,ncos4(H () -ib,H,( )+ ig,,ncos4J,, () -if ,,mrJ',(rq) =0

To summarize, the four equations we need to solve are,

1: 2 J, ( b,,2Hn()-f, J, (7) =0 (2.70)
m

2: -ncos(;J,, (#)-ia,,Hnjl'( )+b,,ncos(;H (,'()- gnJ,,,rJ,(r)+...

...+f,, n-cos(;J, (q)=0 (2.71)
m

3: -a,,,2H() + ig,,772j,, (r7) =0 (2.72)

4: igJ, ()-a,,ncos(H' '()-ib,H' '()+g,,ncos4J,, (q) - ifmrJ' (rq)= 0 (2.73)

In order to solve for a,, and b,,, we isolate and substitute terms in (2.70-2.73) until we obtain

the solution. From (2.70),

f,= J, [, (g)-b,,H () (2.74)
r72J~ (rq)

From (2.72),

, = -ia H ( (2.75)

Substituting (2.74) and (2.75) into (2.71), we obtain,

-ncos(J, ()-ia, H '(g) +b,,ncos(HI, ( ) + aJ , 7 (77 +.
2 .(7) (1)+
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+ J ,, [ b () ,H () Cos(J, (r)= 0

Simplifying and grouping terms we get,

-ncos(J,, ({)+ ncos4(J, (4) +ia,, ' 1 ) J', (77)-4H 1 '(

... + b,, [ncos-H" (4) - -ncos(H (4) =0
77 2j

Solving for b,,

[2 H' (l ) ,
r7 J,, (r7)

L-ncos4'H 4 (4)

(r7) -Hn'

42

+ ncos(;H (g )

Simplifying,

J, (1) a.b,=Hn W # -,

iqqrH ) '(() J,,(rq)- gH )' (77)]

ncos'r7HH ') ( ) J,, (q) -1

We can simplify the expression by defining,

W =i [grH. "'(4)J,, (r)- 47 (4) J, (77)]

D, =ncos477H )(4)J, (r) -1

Thus,

Now we substitute (2.74-2.76) into (2.73) to get,

i4J' ()-a,,ncosH 4' ()-i { $)

+a 2 H(ncos(J,
rI772j,(7
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...- J, (W) -a, )H, () mJ'(r7) = 07 Fj ())J(4W H') 1 77,

Simplifying and grouping terms,

iJ',W (- i " H '() +a. -ncos(4H ()+if H ''({)+...

42 (1 n m2 I l(4I ,(qA

+ . ncos(H, '()-i J0
r7 2r7 J,, (r7) D

Thus,

a,(, n

-ncos4H~l) (4)+i4H ()' (4 + 2 ncosH( ( m242 HnO) (4)J (r7) W,

D,, r2 r7 J,, (r7) D,

If we multiply the numerator and denominator by ir/J,, (r7)D, and rearrange, we obtain,

fr/J',(), (r)D,- fr/" H) '( ) J,,(r)D,

incosr/H ' (4) J, (r7) -1 D,, + 4 [m24H 1) (4) J, (77) -r/Hnu' (4)J, ()] W

In the denominator we can observe D,, appears once again. In addition, we define,

V,, = 4 [m24H" (4) J, (r7) -r Hl' (4) J,, (7)]
Thus, the denominator becomes,

=incosgr/H(1 (4) J,, (77) -1 D,, +4 [m24H 4 J, (r/)-r/Ho'(4)J,, (77)]W,

=WV +iD2

For the numerator, if we expand Dn in the first term, we obtain,

= 7rJ' ( )J , (J)D H( ) ( )J (r)ncosKr/H n( (1)J (r) 1
=J' (J -rH 4 ( ) L (77) (
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If we define,

C,, = ncos~r;J,, ( ) J,, (r7) -1

Then,

=gr/J', () J,, (r7) D,, - gr/H 4'{J. (r7)C,,

In addition, we find that C,, and D,, are related by,

H' (4)Cn = J,, (4)D, (2.77)

Now if we add the following terms to the numerator and use (2.77),

=r;J', ( )J,, (r7)D,, -fr/Hn(l()J,, (r7)C,, +m2g2J', (r))H ( ( )C, --...

.. m2g2' (r;)H.(I (g)C,,

=4[m J, (j)H, (4()-r/Hj)' (4)J,, (7)] C,, - [m2j () j , 77 ()J,, (r)]D,,

Now V,, appears in the numerator. If we define,

B,, =( [m2 J (, ) ' (4) (1)]

The numerator becomes,

=C,, -B,,D,,

Therefore, a, is thus equal to,

a=C,, - B,, D,

"' W,, +iD2

Now if we substitute back into (2.76), we can find b,, ,

b,, = " - CA, -BD,, W B

H n ( W y, +i D nB

H,(1 ( g) Wf,, +iD W +iD,,2

WJy,,+i D -2 C, +W,,B,
W(,+ID

n Wn
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If we again use (2.77),

C" W, +iC,, -C, W WB,
D, D,

WFV +iD2

Thus,

W,,B,+iCD,
WV,,+iD2

+,0

After wading through all the algebra, we finally obtain the unknown coefficients and thus the

field solutions surrounding the cylinder. To summarize,

a,,= W- ,,+D ,b W,,B ,+iCD, (2.78)

where,

B,=[m2(J'r),( J' (7)).j,, (17)]

C, =ncos47qJ,, (4)J,, () -1

D,, = ncos~r/Hn () J,, (r))V - 1

V,,= =[m24HI (4)J, (7)-r/Hj' (4)J, (r7)]

and,

x = ka

= xsin4

7 =xm 2 -cos 24-

Properties of Coefficients

Now that we have the field solutions, the next step is to derive the efficiencies. However, at this

juncture, it would be appropriate to note a few useful properties in the coefficients in (2.78) to

aide us in this endeavor. In general, the two Bessel functions exhibit the following properties,

J_, =(-1)" j,,, Y_,, = (-1)" ,
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From these properties, the following holds true,

a, = -a,, ,,k = b1  (2.79)

In addition, it can be observed from (2.78) that when n =0,

a01 =0 (2.80)

2.1.6 Derivation of Efficiencies

General Formulation

Now that we have solutions to the fields in the system, we can determine the Poynting vector at

all positions in the system thus giving us information on the rate of energy scattered and

absorbed by the cylinder. From this we can determine the efficiencies of the cylinder. To start,

we first formulate the Poynting vectors needed for this analysis. The Poynting vector at any point

in the medium outside the particle can be written as,

S =- ReJE 2x H*)
2

S= Re E xH*+E xH*+(E,xH*+ExH*)) =S,+S,+S, (2.81)
2 1 Si'

where we have decomposed the total Poynting vector as a sum of three terms: S, is the Poynting

vector due to the incident field, S, is the Poynting vector due to the scattered field and S, is the

Poynting vector that arises from the interaction between the incident and scattered fields. The

subscript ext denotes extinction. Note that in order to determine all the efficiencies of the particle

we only need to consider the fields outside the particle. To demonstrate why this is possible, we

define the total absorbed power in an imaginary concentric cylinder of radius R to be,

,=-f Sr-dA (2.82)

where we assume r >>a to ensure that we are in the far-field regime. Since the medium is

assumed to be non-absorbing, the total absorbed power is in fact the absorbed power by the

cylinder. If we expand (2.82) using (2.81),

W,= S -dA SdAS- W -W,+W (2.83)
0

0
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The contribution by the incident field to the total absorbed power, W, as shown in (2.83) is zero

for a non-absorbing medium since this contribution does not include the presence of the cylinder.

Thus, upon rearranging the terms,

W =W,+±W, (2.84)

where,

,= S,-dA (2.85)

W =- S-exdA (2.86)

From (2.84-2.86) we find that the efficiencies are,

W W
Q,. = , Q, - W , Qbs, = Qex, -Q,,, (2.87)

GI, GI,

where G is the geometric cross section of the cylinder and I, is the incident intensity.

Derivation of Efficiencies

To determine the particular solutions to the efficiencies for a cylinder, we merely need to use the

field solutions we derived in Sec. 2.1.5 and follow the procedure outlined above. To start, we

derive the scattering efficiency, Q,,,,, by determining the Poynting vector of the scattered field,

S,, from (2.81),

S, IRe(E,x H*
2

S,= Re - E, [ia., M5,)+bk1 N5]x -ik E*[-ia*, N,*+b* M(3>-
2 Op=-

For now, we shall assume a particular n to simplify the derivation. In addition, from (2.85), we

only need to consider the r component. Thus,

(Ss,) = Re i IE 1 k Da j1 M() x N()*)r +iar b*, (3) X M ()*)-.
. , b2 [IP N * + bnI nnNr M.

ia*b. (3)x N3)*) 1I~u2 (~3) X M3)*)]
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Therefore, we need to solve the cross products of the vector harmonics. We can immediately

observe that the cross product of the vector harmonic with its complex conjugate will equal zero.

For the other terms,

(M3) xN (3*) 2 =-h2 i n-H)(p)r-H!'(p) 1e'"(n+) x...
n nr _ p P

..-. 4k -h2 ~ihH l)" ( p) r--nh H j"()+4k2-h 2 H()* ( p)2- einqhz

3

~~(M(i3)XN(3)*)= (k2 -h2) () (p) H(l)* (P)
k k

k 2 -h 2

( X Mx3)*), = k H)' p) H 2 ( J i(+*z) X )

3

(N (x M3)* (k2 -h 2 ihH '* (p) H ' )
r k p

Thus,

(SSI )r =-Ke i "E 1 (-| -h a, 1 ' {) (P) Hn() P' {p+ IbnJ 1 Hn I* ( p) H.(' ( p)

We can now use the asymptotic solution to the Hankel function to simplify the expression,

H 1 ) ~ --- '2 ip )"e~"'

The derivative is,

H (,) (-n-ie1' i -2 -, 1 2 1
nPSps 

2 'cp, p

Thus,

H (p)H.)* (p) ( e-'''' -i 2e 1  
n 2e (_e e,,; 4

S'rp 2 'rp, p icp,
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H *p4)Hi)=i)e'' -i _2,, 1 2 12 ,4

,rp, 2 7zp, p, ) p
-+H(~p) H){(p) =- i" +- -

n p, 2p,

Substituting,

(SI) = Re i jEI2 (k2 -h2)2 [-IaI2 21 -b 2 2 i}
2 u p, 2. 4 Ps irs 2p)

Taking only the real component yields,

JE 1(k 2 - h2)
{Se a|7rP2 +

Substituting in for En, h, and p, leads to,

S = o a 2 + b

We can also define the incident intensity to be,

I,_ (2.88)
2pc

Upon substituting (2.88) and using the definition for the speed of light, c, and the wave vector, k,
we find the scattered Poynting vector to be,

(S'), = 2 1 a 1 2 +Ibu I) (2.89)

where we are now looking at all possible n. Now if we plug (2.89) into (2.85), we find the total

scattered power to be,

W, = RL I 2 +Jbn 1 12 #

I~=41 (jaI 1 2 lbn 12) (2.90)
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From the definition of the scattering efficiency (2.87),

4 'I(a,| 2 +|bnj,|

QSC' = "~-"m""'' =2aLI,

Q.,= E(a, +b|
Xfl=--oo

Using the properties of the coefficients (2.79, 2.80), we can write,

= Q .[=bo, 12 +2 a2 +Ibn 12 (2.91)

We can derive the extinction efficiency in a similar manner using the asymptotic solution to the

Bessel functions of the first and second kind,

V2Y( 1 7C~
J,{)~cos p---

V2. nir ;
Y(p)- -sin p----

P 2 4)

We find the extinction efficiency to be,

Q.,, = 2 Re bo, + 2 1 b.I (2.92)
X n=1

Now that we have the scattering and extinction efficiency we can determine the absorption

efficiency from (2.87). In order to utilize these expressions to calculate efficiencies for different

materials, we must approximate the Bessel functions using upward and downward recurrence

relations. Additionally, the number of terms n we consider is dependent on the size of the object.

More information regarding the numerical calculation can be found in the appendices of Bohren

and Huffman. [6]

2.1.7 Perpendicular Polarization

As mentioned before, the problem of light interacting with a cylinder includes two possible

polarizations. Until now, we have dealt only with light that is polarized parallel to the cylinder

axis, case I. Given that we have all the necessary knowledge to derive the efficiencies, the results

will be summarized for the perpendicular polarization. Recall from (2.5) that the incident field in

this case is of the form,
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E,,I = E (sineo r+cosp vp) e-ik(rsinceosp+2cosc)

If we expand the field in the same manner as the first case, we will find that,

E,,, =-i E. Ml), H,, - E N(1) (2.93)
n=--oo IM COPn=-wJ n

Upon applying boundary conditions, we find the coefficients to be,

a _ V, -iC,,Dn b * C-- W, +ADn (2.94)
WV, +iD,2 W 0V +D2

where,

[=i (Ji )J ( ) - r/J, (q) J.'{)

All other terms are the same as before for case I. We can again observe some notable properties

in the coefficients,

a-,,1 = a., , b =-b,,, boll =0 (2.95)

Following the derivation of the efficiencies, we obtain the following,

=[,L=a.", 12 +2 (0a.1112 + b,1 12) (2.96)

Q,, =-2Re a +2 a,, (2.97)

We may also define the efficiencies for unpolarized light. This is simply the average of both

polarizations using (2.91, 2.92) and (2.96, 2.97),

Qsca = I(Qs", +Q"., (2.98)

Q, = (Qw, +Q",, 1) (2.99)

Based on the formulation of the efficiencies for both polarizations, we now have all the

necessary tools to compute theoretical solutions for silicon nanowires. We again note that the

code used for this calculation is based on the code provided in Bohren and Huffman translated to

MATLAB.
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2.2 Mie Theory Results for a Silicon Wire

Using the derived expressions for the Mie coefficients and the efficiencies in Sec. 2.1.5 through

Sec. 2.1.7, the absorption efficiency of a silicon nanowire was calculated as a function of

wavelength and radius. The wavelength was chosen to span from 300 nm to 1000 nm to capture

the resonant mode enhancement in the visible and near-infrared spectrum. The radius is chosen

to range from 10 nm to 500 nm. The purpose of calculating the absorption efficiency in this

manner is to determine regions where enhancement occurs as well as how it changes as a

function of wavelength and size. And finally, the optical constants for silicon must be specified

within this wavelength range. The optical constants were obtained from the Handbook of Optical

Constants[57] for intrinsic silicon are assumed to be temperature independent in the experiment.

We note that the dopant concentration of the silicon nanowires used in the experiment is

sufficiently low (n <101') to validate the use of this data. In addition, we neglect surface

roughness and assume the nanowire is homogenous. The refractive index of the surrounding

medium is assumed to be unity.

The results for parallel and perpendicular polarizations are shown in Fig. 2.3 for the case

of normal incidence illumination,
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Figure 2.3: The spectral absorption efficiency, Qb, , of a silicon nanowire for (a) parallel

polarization and (b) perpendicular polarization at normal incidence. Note that polarization is

relative to the wire axis.

From Fig. 2.3, we can observe the presence of several absorption peaks in the visible wavelength

spectrum for both polarizations which corresponds to the leaky mode resonances supported in a

silicon nanowire. In Fig. 2.3a, the strongest resonance for parallel polarization occurs at the

lowest order mode, or Frohlich mode, at a radius of r = 5 8 nm in the UV spectrum as predicted

by equation (2.1) for a particle operating in the Rayleigh limit. This indicates that for very small

nanowires, the dipole-field, as mentioned in Sec. 2.1, is approaching the behavior of an ideal

electrostatic point dipole source. This implies the field inside the wire is uniform. As the size

increases, the nanowire is able to support additional higher order leaky mode resonances in the

visible wavelength spectrum. And as one would expect in a classic resonator, the higher order

modes progressively lose their dipole-like behavior which ultimately results in weaker

absorption. [6, 17] A similar trend can be observed for perpendicular polarization in Fig. 2.3b. In

this case however, the second order mode is actually stronger than the first order mode. This is

due to the field distribution in the second order mode taking a more dipole-like form compared to

the first order mode. In both cases, these leaky mode resonances also exhibit a red shift as the
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size of the nanowire increases. This is due to finite size effects where the Rayleigh limit is no

longer applicable. It should be noted that the size independent fluctuations at the longer

wavelengths are due to the optical constants used and are thus non-physical.

For the experiment conducted in this study, the light source used in the experimental

setup emits unpolarized light. This will be verified in Ch. 4, Sec. 4.1.3. To determine the

corresponding plot for unpolarized illumination, we simply need to average the parallel and

perpendicular polarizations according to (2.98) and (2.99). The results are thus shown in Fig. 2.4,

Unpolarized Light
0.5

2.2

2

1.8

0.35 1,6

- 0.3 -1,4
00.25 1.4

10.2

0.8
0.15

0.6

0.10. 0.4

0.05 0.2

0.3 0.4 05 0.6 0.7 0.8 0.9 1
Waveiength (sm)

Figure 2.4: The spectral absorption efficiency, Q, , of a silicon nanowire for unpolarized

illumination at normal incidence.

As expected, the same trends observed for each polarization is retained in Fig. 2.4 after

averaging both polarizations. Therefore, to measure an absorption efficiency greater than 1, the

size of the silicon nanowire must be small enough to capture the lower order modes at their

peaks. To convey this behavior more clearly, Fig. 2.5 shows the efficiencies for silicon wire at a

fixed wavelength and a fixed radius,
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Figure 2.5: The efficiencies of a silicon wire for the following fixed parameters: (a) R 25 nm,

(b) A=392 nm. From (a) it can be seen that the absorption efficiency is greater than 1 in the UV

range. In (b), the absorption efficiency acquires additional modes which gradually lose their

dipole like behavior as the radius of the wire increases.

According to Fig. 2.4, the size of the nanowire must range from r =5 nm to r =75 nm. However,

since this experiment, as will be discussed in Ch. 3, is limited by the sensitivity of the system, the

actual nanowire measured is much larger in size (r t 500 nm). This is primarily for experimental

convenience and serves as a means to validate the experimental approach taken in this study.

However, it should be emphasized this is merely an intermediate step as the ultimate goal is to

probe the unique optical properties of smaller radii silicon nanowires, as shown in Figs. 2.4 and

2.5.

2.3 Summary

In summary, Ch. 2 established the theoretical foundation to describe the optical properties of

individual nanowires. Although the Rayleigh approximation is valid for particles exhibiting

small size parameters, the well known Mie theory is used to discern potential trends in the

absorption efficiency at all size parameters. A complete derivation of Mie theory for infinitely

long cylindrical particles is provided. This was followed by a set of theoretical results specific to
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silicon nanowires. As observed, it is possible to theoretically assess the size of the nanowire

needed to maximize the absorption efficiency at a particular wavelength. These results will be

used to compare experimental data in Ch. 4.
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Chapter 3

Experimental Investigation

The use of atomic force microscope (AFM) cantilever thermometry can enable the direct and

quantitative measure of the absorption efficiency. This is achieved by using a cantilever to

measure the radiative energy absorbed by a Si nanowire when illuminated by monochromatic

light. Coupled with the inherent high sensitivity of the sensor, this platform can be used to probe

optical phenomena on nanometer-sized particles. In this chapter, a general overview of the

experiment will be provided. It will begin with a general review on the theory behind the use of

an AFM cantilever as a thermal sensor. This will be followed by a brief overture on the synthesis

of the Si nanowires used in this experiment. Then, the process of attaching a nanowire to a

cantilever will be described. And finally, the experimental technique will be discussed. This will

include a general overview of the technique itself, the particular components used in the

measurement platform and the calibrations needed to extract the absorption efficiency from the

data measured.

3.1 Cantilever Theory

In this experiment, a bimorph AFM cantilever is used as a thermal sensor. These

cantilevers are typically composed of two layers of materials with different thermal expansion

coefficients. A variety of materials can be used. However, the most common consist of a

substrate of either silicon nitride or silicon and a reflecting layer of either gold or aluminum. The

deflection response of the cantilever due to a thermal expansion mismatch can be used to

measure the heat transfer through the cantilever. The cantilever chip can be modeled as a thermal

reservoir. As a result, the base temperature is constant. However, the tip temperature will be

proportional to the cantilever deflection. If the thermal conductance of the cantilever is known,

the heat flux can then be measured based on these two temperatures. Therefore, based on this

principle and with proper calibration, these cantilevers can be used as both a temperature and a

heat flux sensor.[32] As a point of emphasis, it is quite uncommon in the realm of thermal
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sensors for there to be a sensor capable of simultaneously measuring both temperature and heat

flux while neatly packaged as a single device. To measure this bending response, we use an

optical detection scheme consisting of a laser reflected off the tip of the cantilever onto a position

sensitive detector (PSD). When the cantilever bends, this will cause the beam spot to shift on the

PSD. This shift is thus correlated with the thermal input on the cantilever. It should be noted that

increasing the distance between the cantilever and the PSD will amplify the sensitivity of the

system. However, this amplification is ultimately limited by the increasing beam spot size

incident on the PSD.

In this particular study, we use a bimorph cantilever as a photodetector to measure the

absorption efficiency of Si nanowires. Hence, we use the cantilever solely as a heat flux sensor.

The particular cantilever used is a NanoWorld pyrex nitride gold coated tipless triangular

cantilever (Nanoworld PNP-TR-TL-Au). This cantilever is 200 prm long and each leg is 28 pm

wide. The nitride substrate is 540 nm thick and the gold coating is 60 nm thick. Figure 3.1 is an

image of the cantilever as viewed under a microscope,

Figure 3.1: Optical microscope image of an AFM bimorph cantilever (Nanoworld PNP-TR-TL-

Au). The image is taken viewing the SiNX side.
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The manner in which we extract heat flux data from the bending response of the

cantilever is based on a coupling of the heat conduction equation with beam theory. In the

following analysis, we shall assume for the sake of simplicity that the cantilever is rectangular.

This assumption was shown to be a good approximation. [28, 29] Radiation losses are also

assumed to be negligible due to small changes in temperature during the experiment. Figure 3.2

shows the coordinate system we shall adopt in this analysis,

L

SiNx

Au

Figure 3.2: Coordinate system used in the analysis of a bimorph AFM cantilever.

where x is the position along the cantilever and L is the length of the cantilever.

From beam theory, the deflection of the cantilever can be determined by the following

differential equation,[28, 58-60]

d___ 2Z t +t
d(x) =6('2 -71) t2+K (T (x)-T) (3.1)

where,

K=4+6 +4 + +
t2) t2, E2 t2) El t)

In (3.1), z(x) is the deflection of the cantilever at point x along the cantilever, T (x) is the

temperature distribution at point x along the cantilever, To is the reference temperature at zero

deflection, 7 is the thermal expansion coefficient, t is the thickness of the layers and E is the

Young's modulus of the layers. Based on the form of (3.1), we have neglected heat conduction in

the thickness direction by virtue of the aspect ratio of the cantilever where the length is

substantially larger than the thickness.

To solve (3.1), we must constrain the base of the cantilever. The boundary condition

becomes the following,
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BC 1: dz(x=L) =0 (3.2)
dx

We note here that we only solve for the slope of the bending response because the optical

detection scheme we employ is determined by changes in slope rather than changes in deflection.

In addition, we must determine the temperature profile along the cantilever. This will be

dependent on the heating condition we impose in the experiment. The laser we use to measure

the bending response will cause heating at the tip of the cantilever. In addition, light absorbed by

the nanowire will conduct as heat from the tip of the cantilever to its base. Therefore, we can

assume all heating occurs at the tip of the cantilever. Although the laser spot on the cantilever is

finite in size, it has been previously shown that this approximation will lead to a negligible

difference provided that the laser spot is much smaller than the length of the cantilever.[40]

Since the experiment is conducted in vacuum, the heat equation consists of the following form,

d2 T) =0 
(3.3)

dx2

The boundary conditions are,

dT(x=0) P
BC 1: =(3.4)

dx kA

BC 2: T(x=L)= T (3.5)

where P is the absorbed power at the tip of the cantilever, k is the effective thermal conductivity

and A is the cross section. Upon solving (3.3) using (3.4) and (3.5), we obtain,

T(x)-TO =- 1-- (3.6)
G L

where G is the thermal conductance of the cantilever. Now if we input (3.6) into (3.1) and solve,

we will find the slope to be,

dz (x) p ( x 2  L= 6H - x---- (3.7)
dx G 2L 2

where H = (72 -7)(t, +t 2)/t K . Since we only measure changes in slope at the tip, (3.7)

becomes,

dz(x=O) _3PL (3.8)
dx G
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In order to relate the slope to the beam shift on the PSD, we use the following,

dz(x=o) 1 Ad (39)
dx 2 s

where Ad is the beam shift on the PSD and s is the distance between the PSD and the cantilever.

Therefore, from (3.8) and (3.9),

HL
Ad = -6sP (3.10)

G

Note that we have assumed a small angle approximation by virtue of the small deflections

typically observed in the experiment.

From (3.10), we can observe that Ad is the parameter we measure in the experiment. It is

directly proportional to the absorbed power P via material and geometric constants in the system.

However, since we do not necessarily know the material properties, due to the deposition process

and thin-film effects, we must conduct a calibration to account for these unknowns. This will be

discussed in Sec. 3.4.3.2.

3.2 Nanowire Synthesis

In this study, Si nanowires were synthesized by Professor Ruiting Zheng at the Beijing Normal

University using an electroless etching (EE) technique. This technique has been used to

synthesize rough Si nanowires en masse and was made famous by studies on its thermoelectric

properties.[61] We exploit the high throughput of this technique to create wires with a wide

range of radii including those which theoretically exhibit enhanced absorptive properties, as

mentioned in Section 2.2. In this section, a brief overview of the concept behind the technique

will be provided. Further information can be found in several works by Peng et al.[62-64]

The foundation of the EE technique is based on the well established electroless metal

deposition (EMD) process, typically used in industry for low cost, high quality metal coatings on

silicon substrates. This process consists of several simultaneous micro-electro-chemical redox

reactions that do not require electrical power input. In this particular work, an n-type silicon

wafer was immersed in a solution containing silver nitrate and hydrofluoric acid (HF). Although

the wafer is n-type, the dopant concentration is on the order of 1016, thus the silicon is effectively

intrinsic. Silver nanoclusters will form on the silicon wafer from the reduction of silver ions in

the solution. This reduction is achieved by electron transfer from the HF species. While this
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reduction occurs, the silicon substrate is simultaneously oxidized. Since HF will etch silicon

oxide, the regions of the wafer that are still exposed to the HF solution will etch away. The key

to etching silicon nanowires is therefore dependent on controlling this etching process.

In other solutions, such as ammonium fluoride, the silver nanoclusters exhibit a strong

tendency to coalesce thus forming a continuous metallic film. This would lead to uniform

etching of the wafer. However, in the case of HF, the coalescence of the metallic nanoclusters is

offset by the formation of silver dendrites. As additional silver ions are deposited, the film will

grow in a fractal manner such that the dendrites retain their form. Therefore, these silver

dendrites form a pattern from which selective etching can proceed. It is believed that in the

selective etching of silicon, these localized dendritic structures function as individual nanoscale

electrolytic cells where the silver acts as a cathode and the silicon as an anode. Thus, as

additional silver ions are deposited, only the regions surrounding the silver dendrites are oxidized

and removed by the solution. Under proper conditions, this etching will proceed anisotropically

leaving behind silver capped nanowires. Finally, any excess silver is etched in a nitric acid bath.

Figure 3.3a shows a cross section of various samples made for this project courtesy of Professor

Ruiting Zhen. From Fig. 3.3b it can be observed that the chaotic nature of this process has

resulted in not only the creation of a variety of nanowires, but also regions of porous silicon. In

addition, the length is typically on the order of 100-200 pm,
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Figure 3.3: (a) A cross section image of a wafer containing Si nanowires synthesized for this

study. These nanowires were synthesized with a length of 100-200 pm. (image courtesy of

Professor Ruiting Zheng from the Beijing Normal University). (b) A top down view of a sample

taken with an SEM. The edge of the sample was intentionally broken to dislodge wires for

attachment. However, it can also be observed regions of porous silicon are also present.

3.3 Nanowire Attachment

To directly and quantitatively measure the absorption efficiency of a single nanowire, we must

be able to measure the heat absorbed by the nanowire when illuminated by monochromatic light.

To do so, we simply attach the nanowire to the cantilever. The nanowire thus functions not only

as the absorbing specimen, but also as a conduit for heat to conduct to the cantilever. The process

of attaching a nanowire to a cantilever consists of using a set of piezoelectric nanomanipulators

with tungsten probe tips (Kleindiek) in a dual column focus ion beam (FIB) system (JEOL JIB-

4500). In this instrument, the manipulators sit on a separate platform from the sample holder.

This process was conducted in the Integrated Sciences Cleanroom and Nanofabrication Facility

at Boston College.

The attachment process is based on previous manipulation and attachment of nanowires

using similar manipulators.[65] Since we are interested in the optical properties of these

nanowires, a particular effort was made to ensure the purity of the nanowires was retained in the

attachment process. Specifically, ion implantation from the gallium ion source and possible

contamination via metal deposition are common sources of impurities that may affect this
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measurement. Therefore, to avoid both, an ultra high vacuum adhesive known as SemGlu

(Kleindiek) was used to attach the nanowire to the cantilever. This particular adhesive is curable

when exposed to a high intensity electron beam; hence, the ion beam was not needed. The

acceleration voltage of the e-beam used was 5 kV.

For sample preparation, the wafer containing the nanowires was broken into smaller

pieces and placed on the sample holder for the FIB. By using smaller samples, more nanowires

were exposed at the edges of the samples, allowing for a greater pool of wires to choose from. In

addition, a small sample of the SemGlu is placed on the sample holder. And finally, a bimorph

cantilever (NanoWorld) attached to a small copper holder via silver epoxy is placed such that the

gold side is exposed to the e-beam. This was to ensure an electrically conducting surface was

exposed to the e-beam; otherwise, charge accumulation on the silicon nitride and the holder chip

would induce bending in the cantilever. Note that the silver epoxy was baked at 80 *C for at least

four hours to remove any remaining solvents in the epoxy. Alternatively, the nanowires were

sonicated in a solution of ethanol and deposited onto a glass substrate. However, this method

showed a tendency to fracture the wires as well as release a large amount of silicon particulates

from the porous regions thus contaminating the wires.

The following will be a step-by-step description of the process used to attach a nanowire

to the cantilever. All steps will be referred to Fig. 3.4,
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Figure 3.4: Nanowire attachment process: (a) A sufficiently long and uniform silicon nanowire at

the edge of a wafer. (b) A probe tip is then coated in SemGlu by dipping the manipulator into the

droplet of glue on the sample holder. (c) The probe tip is brought into contact with the nanowire

such that the tip of the nanowire is immersed in the glue. The glue is then cured by enlarging the

beam spot size and increasing magnification. (d) The result after breaking the nanowire free from
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the wafer. (e) The cantilever is then coated with glue to attach the free end of the nanowire. (f)

The nanowire is then carefully lowered until contact is made with the cantilever. The glue is

once again cured. (g) To break the nanowire free, a second probe tip is used to shear the

nanowire from the first probe tip. (h) An additional layer of glue is applied on top of the

nanowire to ensure the nanowire is fully anchored to the cantilever.

To begin, the first step is to choose a nanowire to extract from the wafer sample. The

choice is dictated by the uniformity, length and diameter of the wire. It was often observed that

many wires exhibited additional wires or blocks of porous silicon attached either at its base or

along its length. Thus, careful attention must be paid when assessing the uniformity of a

particular nanowire. Generally, longer nanowires (-100 pm) are preferable to minimize end

effects and to maximize the absorbed power to ensure a sufficiently high signal-to-noise-ratio

during measurement. Ideally, the diameter of the wire should be chosen according to the range

prescribed in Section 2.2 where enhancement in the absorption efficiency is theoretically

observed. However, the sensitivity of the platform used in this study was limited. Therefore, to

validate the operating principle of this technique, a larger diameter wire was chosen, as shown in

Fig. 3.4a.

Once a nanowire is chosen, the tip of the manipulator is coated with SemGlu by

repeatedly dipping the manipulator into the droplet of glue until enough is collected to immerse

the nanowire. It should be noted that an excess amount of glue will not provide a stable support

for the nanowire as the glue may be too thick to be sufficiently cured by the e-beam. This will

cause problems when attempting to pull the nanowire from the wafer. An example of a probe tip

coated in glue is shown in Fig. 3.4b.

Next, the probe tip is carefully positioned below the end of the nanowire and slowly

raised until contact is made. In this manner, the immersed end of the nanowire can still be seen

by the e-beam. This contact may occur suddenly due to charge accumulation between the

nanowire and the probe tip. If the nanowire is not securely attached to the wafer, this effect will

be even more pronounced. Once contact is made, the glue is cured by increasing both the

magnification of the e-beam and the beam spot size. Curing typically takes 5-10 minutes. This is

shown in Fig. 3.4c.
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Once the glue is cured, the nanowire is ready to be separated from the sample wafer. The

difficulty in breaking the nanowire from the wafer will vary depending on how strongly affixed

the nanowire is to the wafer. Generally, larger wires tend to be more difficult to separate by

virtue of their larger cross section. Therefore, the wire is generally pulled at an angle to induce

some shearing at its base. In some cases, use of an additional manipulator to more controllably

break the nanowire at its base may be needed. The separated nanowire is shown in Fig. 3.4d.

Now that the wire has been acquired, the next step is to use another manipulator to coat

the cantilever with SemGlu. In this case, a large amount of glue should be collected onto the

manipulator so that when the probe tip is in contact with the cantilever, a large drop of glue is

deposited. The goal here is to deposit enough glue so that the nanowire is once again fully

immersed onto the end of the cantilever. An example of a probe tip coated more heavily with

glue and the resulting deposit of glue on the cantilever is shown in Fig. 3.4e. However,

ascertaining whether enough glue has been placed is generally quite difficult given the opacity of

the glue when viewed under an e-beam. Generally, if variations in the contour of the glue can be

seen, as shown in Fig. 3.4e, this is an indication that enough glue was placed.

The next step is to attach the nanowire to the cantilever. First, the cantilever is rotated

until its length is parallel with the nanowire. Then, the manipulator holding the nanowire is

slowly lowered until the free end of the nanowire comes into contact with the glue on the

cantilever. Charge accumulation may deflect the nanowire away from the cantilever. However,

with sufficient patience, the nanowire can be placed directly on the center of the glue. Contact

may not be obvious without a high quality screen capture. In most cases, the nanowire will only

be partially immersed. However, if the glue surrounds the nanowire on both sides, this is

generally sufficient to hold the nanowire in place once it is broken free from the probe tip. Since

this attachment can be quite fragile, curing is done for at least 10 minutes to ensure the glue is

fully cured. The result is shown in Fig. 3.4f.

To free the nanowire from the probe tip, a second probe tip is used to shear the nanowire

at the point where the nanowire was originally glued to the first probe tip. This is done by

dragging the second manipulator across the first manipulator, catching the nanowire along the

way. Generally, this must be done several times until the nanowire is separated. The result is

shown in Fig. 3.4g.
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At this point, additional glue is placed on top to ensure the nanowire is sufficiently

anchored to the cantilever, as shown in Fig. 3.4h. Once the glue is cured, the nanowire is now

fully attached to the cantilever. Figure 3.5 shows a scanning electron microscope (SEM) image

of the final result.

SkV x160 100pm 19 50 SEMS %l-

Figure 3.5: A scanning electron microscope (SEM ) image of a silicon nanowire attached to an

AFM bimorph cantilever.

3.4 AFM Thermometry Technique

3.4.1 Overview

Now that we have the cantilever/nanowire sample, the next step is to measure its absorption

efficiency. To reiterate, AFM thermometry makes use of an AFM cantilever as a heat flux and

temperature sensor. In this work, we make use of the cantilever as a photothermal detector, as

originally proposed by Barnes et al,[27, 28] to directly and quantitatively measure the

absorption efficiency of a silicon nanowire. This is achieved by measuring the heat absorbed by
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the nanowire when illuminated with monochromatic light. From (2.87), we can deduce that the

absorption efficiency can be written as a ratio of the absorbed and geometric incident power,

Qabs (3.11)

where, Qb, is the absorption efficiency, P., is the total power absorbed by the wire and P,, is

the geometric incident power. From (3.11), the absorbed power can be defined in this experiment

to be,

Xb (3.12
/Sp

where X is the measure cantilever deflection response as a function of the wavelength of light,

,pis a correction factor that accounts for the frequency response of the cantilever and S, is the

power sensitivity obtained from the power calibration. The geometric incident power in (3.11) is

determined by,

P'.C= Pto (A)-f (3.13)

where P,,, is the total power from the optical fiber at a particular wavelength and f is the

fraction of the beam incident on the nanowire which includes the Gaussian beam profile of the

optical fiber. Therefore, to determine the absorption efficiency, Q,,b, , we must measure the

parameters in (3.12) and (3.13). The remainder of this subchapter is therefore devoted to the

measurement of these parameters.

First, the experimental setup used in this study will be presented in Sec. 3.4.2. This

includes a discussion on the various components and equipment used in Sec. 3.4.2.1, the

methodology applied to optically align the various components to the cantilever and the

nanowire in Sec. 3.4.2.2, a discussion on the implementation of frequency modulation in Sec.

3.4.2.3, and the calibration of the light source in Sec. 3.4.2.4.

This will be followed by the methods used to measure the parameters defined in (3.12)

and (3.13) in Sec. 3.4.3. To measure the absorbed power, P.,, in (3.12), we measure the bending

response of the cantilever. When the nanowire absorbs light, the energy will conduct across the

nanowire and the cantilever as heat. The small change in temperature that arises in the cantilever

will cause a thermomechanical bending response. The measurement of this response will be

discussed in Sec. 3.4.3.1. To correlate the bending response to an absorbed power, a power

78



calibration must be conducted. This calibration is based on varying the power of the detector

laser, a known heat input, and measuring the resulting bending response. This calibration will be

discussed in Sec. 3.4.3.2. In addition, since the light input in this experiment is modulated, the

magnitude of the thermomechanical bending response from the cantilever will depend on the

frequency of modulation. Generally, higher frequencies lead to a smaller response. As a result, a

correction factor must be measured to account for this attenuation. This will be discussed in Sec.

3.4.3.3.

To measure the geometric incident power, P,, in (3.13), we must measure the total

output power from the optical fiber at each wavelength. Then, the area fraction of the beam

incident on the nanowire must be determined. Because the beam profile is Gaussian, a simple

ratio of the nanowire cross section and the beam spot will not suffice. The method used to

determine this fraction will be discussed in Sec. 3.4.3.4.

3.4.2 Experimental Setup

3.4.2.1 Component Assembly

The experimental setup used in this study mirrors closely with the original setup created by

Bames et al. [28] Figure 3.6 provides an overview of the essential components used in this setup,
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Figure 3.6: A schematic diagram of the experimental setup used in this study to measure the

spectral absorptance of an individual Si nanowire. The setup itself can be broken into four

assemblies. The Sensor+Sample Assembly consists of the cantilever and the nanowire attached.

The Optical Detection Assembly consists of all the components used to measure the bending

response of the cantilever and the frequency response correction factor. This includes a CW laser,

TTL modulated laser and their respective optics. A position sensitive detector (PSD) is used to

track the bending response of the cantilever. The Sensor+Sample Assembly and the Optical

Detection Assembly are placed in a vacuum chamber. The Light Source Assembly consists of all

the components used to control the input light source. This includes a monochromator (and its

associated light source), an optical fiber, an optical fiber coupler, the optics to focus the output

light from the monochromator and an optical chopper for modulation. And finally, the Signal

Analysis assembly consists of the equipment used for signal analysis and acquisition. This

includes an amplifier for the PSD, a lock-in amplifier, several multimeters to measure data and a

computer for data acquisition.
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As shown in Fig. 3.6, the setup can be grouped into four assemblies of components

according to their function in the experiment. The Sensor+Sample Assembly and the Optical

Detection Assembly are mounted onto an optical breadboard and placed into a vacuum chamber

(Kurt J. Lesker Company, BX2424S) supported by rubber dampers and springs to minimize

vibration. Vacuum is used to eliminate convection losses. The Sensor+Sample Assembly

corresponds to the cantilever and nanowire sample. In order to mount the sample in the

experimental setup, the small copper plate supporting the cantilever is glued onto a larger copper

plate using silver epoxy. This is then mounted onto an optical breadboard such that the cantilever

is horizontal and on its side. Since the copper plates and the epoxy are thermally and electrically

conducting, they function as both a heat reservoir and an electrical grounding path during the

experiment. Grounding is achieved through the optical mounts and the optical breadboard, which

are filed down to ensure the underlying metal is exposed. A wire is then connected from the

breadboard to the vacuum chamber wall.

The Optical Detection Assembly corresponds to components used to measure the bending

response of the cantilever and the frequency response correction factor. To measure the bending

response, a CW diode laser (Lasermate Group, LTG6354AH) is focused and aligned onto the

cantilever via a mirror. An iris is placed immediately after the mirror to remove a surrounding

halo present in the laser beam. The laser is then reflected onto a two dimensional position

sensitive detector (PSD) (Ontrak Photonics, 2L4SP) which will measure the change in bending

from the cantilever by virtue of a shift in the beam spot on the detector. Since the cantilever is

typically mounted horizontally, only one axis needs to be measured during the experiment. To

measure the frequency correction factor, a TTL modulated diode laser (Lasermate Group,

LTC6702A5-T) is used. This laser can be operated in both continuous wave (CW) and

modulated modes. As before, this laser is focused and aligned via a mirror onto the cantilever.

However, due to size constraints on the breadboard, this optical path is positioned in a plane

above the cantilever. As a result, the modulated laser is aligned in a plane perpendicular to the

detector laser. This can be observed in Fig. 3.7a. Both lasers are powered by sourcemeters

(Keithley, 2425/2430). The frequency of the TTL modulated laser is controlled with a function

generator (HP, 8111 A) whose input is verified using an oscilloscope (Tektronix, TDS520A).

The Light Source Assembly corresponds to the components controlling the light input

incident on the nanowire. A xenon lamp source connected to a monochromator (SpectraMaster)
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is used in this study. This provides light in the visible wavelength range. Since the output light is

diverging, a lens is used to focus the light onto an optical fiber coupler. The light is then coupled

to the optical fiber (Thorlabs, BFL48-200-custom) as shown in Fig. 3.7b. This optical fiber is

then routed through an optical feedthrough into the vacuum chamber where an exposed end is

mounted onto the optical breadboard, as seen in Fig. 3.7a. Since this experiment requires

frequency modulation, an optical chopper, and its associated frequency modulator, (Scitec

Instruments, 300) is mounted before the optical coupler.

The Signal Analysis Assembly refers to the equipment used for signal analysis and data

acquisition. This consists of a position sensing amplifier (Ontrak Photonics, OT-301), a lock-in

amplifier (Stanford Research Systems, SR850), a pair of multimeters (HP, 34401A and Keithley,

182) and a computer for data acquisition. Furthermore, a powermeter (Newport, 1918C/818-UV)

is used in the experimental preparation, power calibration and the measurement of the geometric

incident power, as will be discussed in Secs. 3.4.2.2, 3.4.3.2 and 3.4.3.4, respectively.

(a) (b)

Figure 3.7: The actual assemblies used in this study. (a) An image of the Sensor+Sample

Assembly and the Optical Detection Assembly as viewed in the vacuum chamber. The red and

orange lines show the optical paths for the detector laser and modulation laser, respectively. (b)

An image of the Light Source Assembly.
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3.4.2.2 Experiment Preparation

For the experimental setup presented in Sec. 3.4.2.1, the input light source, the detector laser and

the modulated laser must all be manually aligned. In all cases, an optical scope is used to view

the cantilever and the optical fiber. First, the coupling efficiency of the Light Source Assembly is

optimized by moving the fiber coupler using a 3-axis positioning system and measuring the

output power using a powermeter. Once the power is maximized, no further changes need to be

made in this part of the setup. Note that the orientation of the optical fiber, particularly with

respect to the light source, is not crucial in this experiment as the light from the optical fiber is

unpolarized. This will be verified in Ch. 4, Sec. 4.1.3.

The angular orientation of the input light source, i.e. the optical fiber, is fixed in this

setup where the fiber axis is aligned with the y-axis as defined in Fig. 3.8. Therefore, to align the

optical fiber to the nanowire, the cantilever must be positioned such that the nanowire will be

illuminated at normal incidence, i.e. it must align with the x-axis. It should be noted here that

light from the optical fiber will diverge within a narrow exit cone. Therefore, alignment is taken

with respect to the angular component parallel with the fiber axis. The cantilever is securely

clamped and positioned using an optical mount. Figure 3.8 is a top down view of the cantilever

when placed into the experimental setup,
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Figure 3.8: An image of the optical fiber aligned to the nanowire attached to the cantilever taken

from a top-down view. Here, the optical fiber is retracted by -100 pm to more easily view the

nanowire. The nanowire can clearly be seen because of its strong scattering properties. Note that

this image is of a different cantilever/sample.

Generally, the scattering efficiency of silicon nanowires with a diameter of 100-1000 rm is quite

high in the visible wavelength spectrum. As a result, in Fig. 3.8, the nanowire attached to the

cantilever can clearly be seen when illuminated by the optical fiber. Note that this image is a

different cantilever/sample from before and is used merely as an example of what is typically

observed during alignment. Since this alignment is done by eye using an optical scope with

limited magnification, an inherent uncertainty arises. Fortunately, the absorption efficiency is

insensitive to small variations in the angle of incidence, as will be shown in Ch. 4, Sec. 4.1.4.

Once the angular orientation of the cantilever/nanowire is close to normal incidence, the

next step is to position the optical fiber via a 3-axis positioning system to illuminate a portion of

the nanowire. This system consists of two manual micrometer stages for the y, z-axes and a

motorized encoder mike (Oriel, 18008) for the x-axis. The goal is to illuminate 50% of the

nanowire to ensure no stray light from the optical fiber will see the cantilever; otherwise, the
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measured absorption efficiency will be a combination of the nanowire and the cantilever. This

value was chosen for experimental ease. First, the optical fiber is positioned approximately

50 pm from the nanowire along the y-axis. This distance is chosen to be small enough to avoid

problems with stray light and far enough to avoid possible force interactions between the optical

fiber and nanowire/cantilever which may arise due to charging. Once again, the use of an optical

scope will generally lead to an uncertainty when assessing the beam spot size due to the

divergence of the beam. However, it will be later shown in Ch.4, Sec. 4.1.4 that at such a small

separation distance, the divergence is negligibly small. Thus the beam spot size is effectively

constant over a range of several tens of microns.

The next step is to position the optical fiber along the z-axis. Ideally, the optical fiber

should be positioned so that the tip of the nanowire is centered to the optical fiber. However, the

optical fiber in this experiment was manually cleaved. In order to avoid the cleave initiation

point, the optical fiber was offset by 10 -15 pm. Since the light from the optical fiber follows a

Gaussian beam profile, uncertainty in the alignment along the z-axis could lead to more error in

the final result. For a 5 pm uncertainty, this will correspond to a variation of 10% in the

absorption efficiency from the area fraction parameter. This will be further discussed in Sec.

3.4.3.4.

The last step is to align the optical fiber along the x-axis. Again, uncertainty in this

alignment will lead to error in the absorption efficiency. However, the area fraction parameter

was found to be very sensitive to variations along the radial direction. As a result, the position of

the nanowire must be known very precisely in order to avoid substantial error. Therefore, a

motor mike is used to control the alignment along this axis. Although this motor includes a

controller which outputs position, it was deemed to be unreliable. Instead, the optical fiber was

positioned such that 50% of the nanowire was illuminated. This value was chosen as it can be

verified visually with relative ease based on the light scattered by the nanowire when illuminated.

The optical fiber was initially positioned such that the tip of the nanowire was at the center of the

optical fiber along the x-axis. From here, the optical fiber was very slowly moved until 50%

illumination was achieved.

As one can clearly see, despite efforts to improve the accuracy of aligning the optical

fiber to the nanowire, a great deal of uncertainty still remains. It should be noted that alignment

of the angle of incidence and the y-axis is done outside the vacuum chamber due to space
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limitations. However, no obvious variation in these alignments was observed upon transferring

the setup to the chamber. In addition, when the system is pumped down to vacuum, convective

losses are eliminated. The temperature of the cantilever will thus change which will result in a

bending response. Generally, this change is quite small (<< 10) therefore it is not expected that

this will cause significant changes in the alignment. However, these factors nonetheless add

uncertainty and if nothing else provide evidence that it would be worthwhile to pursue a better

method of alignment in the future.

Once the setup is situated in the vacuum chamber, the detector laser and modulated laser

must be aligned to the cantilever. The detector laser emits an elliptical beam. The orientation of

the laser is thus chosen in order to maximize the area illuminating the cantilever. Since the laser

is partially polarized, the orientation used corresponds to a TM wave. In addition, a halo around

the beam is typically observed from these lasers. As this could cause errors during the power

calibration, an iris is placed immediately after the mirror to partially remove this halo. Further

corrective effort is made as will be discussed in Sec. 3.4.3.2. Generally, it is preferable to choose

the incident angle of the laser to be as small as possible to reduce the size of the beam spot.

However, in this setup, it is imperative that stray light from the optical fiber does not hit the PSD.

This will cause an error as the measured response will include both the light source and the

cantilever. Based on the numerical aperture of the optical fiber, the half angle of the exit cone

was found to be -14 degrees. Therefore, a 20 degree angle of incidence was chosen to avoid this

problem.

The laser was then focused and aligned to the cantilever by maximizing the sum signal,

which is a measure of the total incident power on the PSD. The resulting diffraction pattern that

arises due to the large beam spot size (30x50 pm) can also be used to visually verify the signal

is indeed maximized. To compensate for the cantilever bending during pumpdown, the PSD is

shifted until the beam is at the edge of the detector. The difference signals are used to position

the beam on the PSD. As mentioned before, the sensitivity of this system can be amplified by

increasing the separation distance between the cantilever and the PSD. However, this is limited

by the diverging beam spot reflected by the cantilever. In this experiment, the PSD is typically

placed -7 cm from the cantilever. Fig. 3.9 is an image of the setup taken at an angle to show the

position of the laser spot on the cantilever. Again, this is an image of a different

cantilever/sample as before,
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Figure 3.9: An image of the cantilever under illumination by the detector laser. The beam spot,

as shown, is concentrated near the tip of the cantilever. Once again, this image is of a different

cantilever/sample (see Fig. 3.8).

Finally, all that remains is aligning the modulated laser to the cantilever. In this case, the

laser emits a circular beam profile. Again, the laser is focused and aligned as before. Since the

frequency correction factor is measured in vacuum, the need to precisely align and focus the

laser is not as stringent as the detector laser so long as the heating input is consistent throughout

the entire calibration. As discussed previously, size constraints in the setup necessitated raising

the laser to a plane above the cantilever. As a result, the laser is reflected by the mirror in the y-z

plane. The angle of incidence is again chosen to be approximately 20 degrees. To verify the laser

is focused and aligned, the laser was tested in both CW and modulated modes. If a response can

be clearly observed by the cantilever via the detector laser and PSD, the modulated laser is

properly aligned.

Upon completing all alignment procedures, all wires are taped down securely to the

vacuum chamber to ensure no connectivity issues in vacuum and to minimize vibration noise
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from loose wires. The next step is to then pump down the vacuum chamber for several hours.

Once the pressure reaches ~10 5 Torr, the experiment can proceed.

3.4.2.3 Frequency Modulation and Sensitivity

In order for the cantilever to reach its maximum power sensitivity, a lock-in amplifier is used to

significantly improve the signal-to-noise ratio. However, by using a lock-in amplifier, the input

light source must be modulated. This is achieved using an optical chopper and its associated

controller. The choice of the modulation frequency is dictated by several factors including the

temporal response of the cantilever and the nanowire as well as the frequency distribution of

system noise.

If we consider only the cantilever for a moment, a periodic heat input will cause the

cantilever to oscillate with a certain amplitude. As the frequency of this input increases, the

amplitude will decrease. This is due to the thermal response time of the cantilever where the

sensor simply cannot respond quickly enough to changes in the heat input. The attenuation of the

bending response due to this modulated input is what we refer to as the frequency response of the

cantilever.

The modulation frequency should ideally be as low as possible. However, at lower

frequencies, noise due to electrical sources, vibration, thermal drift, etc. will be more prevalent.

Therefore an optimal modulation frequency range must exist. To help determine this frequency

range, the thermal time constant can be estimated based on the Fourier number,[28, 66]

r 2 pLCkt1+P2C2t2  
(3.14)

2( k~t, +k2t2

where p is the density, C is the heat capacity and k is the thermal conductivity. The time

constant defined in (3.14) is simply an expansion of the effective thermal diffusivity of the

cantilever and represents the minimum time required for heat to diffuse across its length. The

factor of 2 is a crude correction to account for the temperature variation along the length of the

cantilever under a tip heating condition. [28] For the purposes of estimating the thermal time

constant, we may use bulk material properties for the two layers of the cantilever. Layer 1 refers

to the gold film with the following properties: p, =19,300 kg -m 3 , C, =129 J-kg-' K' and

k, = 296 W -m K -K' . Layer 2 refers to the silicon nitride substrate with the following
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properties: p2 =2400 kg -m-3 , C2 =691J.kg-'.K-1 and k2 =32 W-m'-K-1 .[29] Using the

dimensions of the cantilever mentioned previously in Sec. 3.1, the thermal time constant of the

cantilever is found to be r ~ 0.6 ms . Previous studies have experimentally measured a time

constant of r ~ 0.2- 0.3 ms using similar cantilevers.[28-30] The cantilever can be modeled as a

first order system, therefore the cut-off frequency can be estimated to be

f = 1/ 2;rr ~ 265 - 795Hz.

Since the attached nanowire will be used to conduct heat to the cantilever, the thermal

time constant of the nanowire must be considered as well to determine the modulation frequency.

The length of the nanowire is typically on the order of I ~100 pm. Hochbaum et al. showed the

thermal conductivity of rough silicon nanowires will be at a minimum k - 10 W -m-' -K-' for

nanowires with a diameter of D -150 nm .[61] This value is a conservative estimate since a

larger diameter, as is the case in this study, will result in a higher thermal conductivity.

Assuming the density and the heat capacity are similar to bulk values, the thermal diffusivity to

be on the order of c- 10-5 m2 -s'. Therefore, the time constant will be -r ;1 ms and the cut-

off frequency is f - 160 Hz.

Based on these estimations, we can conclude that the nanowire will be the dominating

factor in the thermal response of the system. This value is therefore an upper bound in the

frequency range. The lower bound is dictated by noise in the system. Below 100 Hz, vibration,

thermal drift and electrical noise are the primary sources of noise in this system. In particular,

power line noise (60 Hz) and its higher harmonics should be avoided. Therefore, the modulation

frequency is chosen to be 140 Hz.

The power resolution of a bimorph cantilever for thermal measurements is fundamentally

limited by the thermal noise present in the experiment.[28, 29] The thermal noise can be

formulated as,

z kbTB (3.15)

where zh is the thermal noise measured in A/ vHz, kb is the Boltzmann constant, T is the

temperature, B is the measurement bandwidth, k is the spring constant, eu0 is the resonant

frequency and Q is the quality factor of the resonance.
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Assuming thermal noise is the dominant source of noise at 140 Hz, the power sensitivity

of the cantilever can be maximized by using the lock-in amplifier to minimize the measurement

bandwidth. However, since a low pass filter controls the measurement bandwidth, an extremely

narrow bandwidth has the effect of increasing the response time of the system. As a result, a

measurement bandwidth of 2.7 mHz, corresponding to a time constant of 30 s, is chosen which is

similar to previous studies. [28-30]

The spring constant and resonant frequency in (3.15) is determined by the cantilever used.

Custom cantilevers can be designed to improve the power resolution further. This will be a

subject of future studies. The quality factor and temperature of the system meanwhile cannot be

significantly changed without implementing substantial modifications to the measurement

platform.

3.4.2.4 Monochromator Calibration

The monochromator was modified by adding slits to the input and output in order to improve the

wavelength resolution despite the penalty of an overall decrease in the throughput of the system.

Originally, the range of the output spectrum from the monochromator was limited by the motor

controlling the rotation of the diffraction grating. Therefore, the grating was manually rotated in

order to shift the output spectrum to include the near infrared. As a result of these changes, the

monochromator had to be recalibrated using a spectrometer (Ocean Optics, USB4000). The

spectrometer uses an optical fiber as its input. This optical fiber was simply switched with the

optical fiber used for the experiment. A filter was also placed along the optical path to prevent

saturation of the spectrometer.

The calibration was done with respect to the numerical controls on the monochromator.

Due to the finite range of the spectrometer, the calibration was conducted from 420 to 950 nm

using 10 nm increments. The centerline peak in the output was used to determine the true

wavelength. The full width half maximum was also measured to be 7-8 nm. Due to this finite

bandwidth, the theoretical solution used to compare with the experimental results will require

wavelength averaging based on this calibration, as will be discussed in Ch. 4, Sec. 4.1.2.

90



3.4.3 Measurement and Calibration

3.4.3.1 Absorption Measurement,X

To measure the absorption efficiency of a silicon nanowire, the cantilever bending response, X,

is measured at each wavelength of the input light source. Prior to measurement, the

monochromator was allowed to first thermalize for 1 hour to minimize variations in the

wavelength of the light output. Although the monochromator was calibrated for a broad range,

enhancement in the absorption efficiency for silicon nanowires is theoretically expected to occur

within the visible wavelength spectrum. Therefore, the absorption measurement was conducted

from 420 to 600 nm in 10 nm increments.

The use of a lock-in amplifier in this measurement enables control over the measurement

bandwidth and by extension, the signal-to-noise ratio. As mentioned previously, the choice of a

2.6 mHz bandwidth corresponds to a time constant of 30 s. Consequently, the response of the

system to changes in the light input ideally required several minutes to stabilize. However, the

presence of noise near the modulation frequency manifested itself as low frequency fluctuations

in the signal output. In order to obtain an accurate measurement of the bending response

amplitude, more data was needed to properly average these fluctuations. Therefore, the total

measurement time typically lasted several hours. Fortunately, thermal drift in the signal, which is

an issue for steady state measurements, can be eliminated using the lock-in amplifier.

Measurements are conducted several times where each measurement has its own corresponding

calibration in vacuum.

3.4.3.2 Power Calibration, S,

In order to extract quantitative data from the cantilever deflection response, a power calibration

must be conducted. This calibration correlates the measured bending response from the PSD to a

known heat input. From this correlation, we can determine the absorbed power by the nanowire

for all measured wavelengths. Previously, Shen et al. established a procedure from which the

effective thermal conductance of a cantilever can be measured directly by using a temperature

and power calibration.[32] Here, we use a slightly modified process to conduct the power

calibration. In essence, the idea is to vary the detector laser power and measure the resulting

bending response. Then, a powermeter is used to measure the power absorbed by the cantilever

for each laser power increment.
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The power calibration was typically conducted in vacuum following the absorption

measurement to ensure experimental conditions are similar. It is important to emphasize here that

the detector laser is the only heating source in this calibration. And unlike the absorption

measurement, the data was taken directly from the PSD rather than the lock-in amplifier as the

deflection response was much larger. Thus, this calibration was conducted under steady state

conditions. To change the laser power, the input voltage was varied from its turn-on voltage (3.8

V) to the saturation voltage (5 V). The difference and sum signals were then measured at each

voltage increment.

Ideally, the absorbed power should be measured simultaneously. However, due to

limitations in the platform, the absorbed power was measured under ambient conditions

following the completion of all measurements in vacuum. The presence of convective losses will

change the behavior of the cantilever. As a result, experiments in vacuum and ambient conditions

had to be treated as separate experiments. To bridge these measurements, the sum signal can be

used.

Generally, changing the laser power will lead to a corresponding change in the sum

signal measured by the PSD. The difference signal can therefore be measured as a function of the

sum signal in vacuum. In ambient conditions, the sum signal can be measured as a function of

the absorbed power. Although there will still be a bending response, it is typically much weaker.

Thus any variation can be assumed to have minimal effect on this measurement. The product of

these two parameters will result in the power sensitivity,

X X Sum (V )
S x (3.16)

P.bs Sum(V) Pbs

Cancelling the dependency on the sum signal in (3.16) is valid so long as the beam spot does not

change in size or shape between vacuum and air. In addition, the beam must be fully captured by

the PSD in both cases. Each term was measured several times and averaged.

In (3.16), the absorbed power, Ps, was measured indirectly from the incoming, reflected

and bypassed power using a powermeter and a photodiode. Figure 3.10 shows the schematic of

these contributions,
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Bypassed Power

Incoming Power Reflected Power

Figure 3.10: A schematic of the laser illuminating the cantilever. The cantilever will reflect,

scatter or absorb the incoming power. In addition, if the laser spot is large, a portion of it will

bypass the cantilever entirely. No transmission is expected as the cantilever is optically thick.

Based on these contributions, the incident power on the cantilever can be.defined as,

1 = P - P,, (3.17)

where P, is the incident power,PJ is the incoming power andP, is the bypassed power. Because

the cantilever is optically thick, no transmission will occur. The absorbed power is therefore

defined as,

Pab =i -P,f (3.18)

whereP,f is the reflected power. If the size of the beam is large, the edges of the cantilever will

scatter a portion of the laser. Unfortunately this cannot be accounted for in this setup and will

cause an overestimation of the absorbed power. Ideally, this source of error can be avoided if the

absorptivity of the cantilever is known. In this case, the error must be minimized by ensuring the

beam spot size is as small as possible.

To measure the reflected power, the photodiode is placed in the same location as the PSD.

The power is then measured at the same increments previously used. The bypassed power is

measured by placing the photodiode behind the cantilever. To measure the incoming power, the
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photodiode is normally placed in front of the cantilever. However, because the halo around the

laser is not entirely removed by the iris, the incoming power is measured behind the cantilever as

well. By moving the laser off the cantilever, the effect of the halo will be cancelled upon

subtracting the bypassed power from the incoming power. From these measurements, the

absorbed power, P., as a function of the laser power can be obtained using (3.17) and (3.18).

Again, these measurements are done multiple times and averaged.

Given the inherent uncertainty in these measurements, the accuracy of the absorbed

power can be verified by comparing the absorptivity measured with the theoretical value for gold.

From the measured values, the absorptivity is defined as,

a- abs (3.19)

The theoretical absorptivity was determined using a transfer matrix model for both polarizations.

The optical constants of silicon nitride and gold were obtained from the Handbook of Optical

Constants.[67, 681

The absorptivity of gold is typically quite low (0.06-0.07), thus variations in the

measured value from (3.19) can have a dramatic impact on the absorption efficiency. Since the

true absorptivity may vary depending on the deposition process used to create the gold film,

confidence in the calibration is assessed based on how close the measured absorptivity is to the

theoretical bulk value.

3.4.3.3 Frequency Response Calibration, p
The modulation of the input light source adds an additional layer of complexity as the thermal

response time of the cantilever is frequency dependent. As a result, the amplitude of the

deflection response is also frequency dependent. Since the power calibration is conducted at

steady-state, this discrepancy will result in an underestimation of the absorbed power. Therefore,

the frequency response of the cantilever must be corrected. A frequency correction factor is thus

defined as follows,

X(f =140 Hz)
X(f =Hz)(3.20)
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where X(f = 140 Hz) is the amplitude of the bending response when a periodic heat input at the

modulation frequency is applied and X (f = 0 Hz) is the amplitude of the bending response when

a steady state heat input is applied. Both parameters were measured by the difference signal from

the PSD as this signal is directly correlated with the bending response amplitude.

To measure f, an additional heat input is required. This is the reason for including a

modulated laser in the experimental setup, as mentioned previously. Although it would be ideal

to use the optical fiber itself for this measurement, the low output power simply made this

impractical. The laser can be operated in both CW and modulated modes. Care must be taken to

ensure that the output power is identical for both modes.

The measurement of X (f =0 Hz) simply requires turning the laser on and off. The

resulting change in the difference signal represents the peak-to-peak response of the cantilever.

The amplitude is therefore half of this value. To measure X (f =140 Hz), a frequency generator

was used to create a square wave output. The amplitude was then measured by a lock-in

amplifier as the frequency is high enough that averaging by the multimeters will smear this

response. Once these two measurements were obtained, a simple ratio, as shown in (3.20), will

result in/p.

This calibration was also conducted immediately following the absorption measurement,

but prior to the power calibration, to ensure experimental conditions are similar. Although the

input power from the modulated laser is orders of magnitude larger than the input light source,

this will not induce an error as the cantilever still operates in the linear regime. In this

calibration, p was measured several times and averaged. This parameter was highly repeatable

throughout the experiment.

3.4.3.4 Geometric Incident Power, P,

Recall from (3.13) the geometric incident power is defined as the product of the total power from

the optical fiber at a particular wavelength and the area fraction of the beam incident on the

nanowire,

}P=PI f
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To measure the total power, P,, from the optical fiber, a powermeter and a photodiode were

used. Due to space limitations, the optical fiber was moved as far away from the cantilever as

possible. The photodiode was then placed approximately 1 cm from the end of the optical fiber

to ensure optimal coverage of the detector. In this case, an attenuator attached to the photodiode

was removed since the total power is small. Note that this measurement was done last as this will

change the alignment of the input light source.

To measure the fraction of the beam incident on the nanowire, f , the position of the

nanowire must be precisely known. This was achieved by using the dimensions of the nanowire,

obtained from SEM images, and the positioning of the optical fiber to the nanowire, as discussed

in Sec. 3.4.2.2. Here, the average diameter of the nanowire was used. Determination of this

parameter was complicated by the fact that the beam profile of the optical fiber is Gaussian.

Therefore, the standard deviation of the Gaussian, o, at the distance separating the optical fiber

and the nanowire had to be measured. This will be discussed in Ch.4, Sec. 4.1.4 when assessing

the effects of variations in the angle of incidence.

Once the Gaussian profile is known, the next step is to use this information to calculate f.
Using the position and the dimensions of the nanowire, we simply have to integrate the fraction

of the beam incident on the nanowire. The diameter of the beam spot size was chosen to be 4a-.

A larger diameter can be used, but will not appreciably change f . By assuming the beam is

radially symmetric, the integral takes the following form,
2 (0) 2(0)

=-- e e 22 (3.21)

where the radial functions r (6) and r2(6) define the shape of the nanowire as a function of the

polar angle 6. To determine these radial functions, the cross section of the nanowire is defined

by a set of lines that outline the contour of the nanowire. Lines are then radially drawn from the

center of the beam spot as a function of 0. When these lines intersect the contour, the radial

position of this intersection is stored in the radial functions. Since this is an integral over an area,

we will always obtain a pair of intersection points, hence the two radial functions shown in

(3.21). Figure 3.11 shows the intersection points for both radial functions along the contour of

the measured nanowire,
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Figure 3.11: A schematic of the intersection points for the radial functions r, (6) and r2 (6) used

to correct for the Gaussian profile of the beam spot.

From Fig. 3.11, the nanowire is shown to be tilted at an angle. This is meant to reflect the actual

orientation of the nanowire which can be seen in Fig. 3.5. Note that the integral is already

normalized, thus (3.21) directly gives the area fraction.

From this calculation, it was shown that f is extremely sensitive to variations along the

radial direction (x-axis) while exhibiting modest sensitivity along the lateral direction (z-axis).

To reiterate, this sensitivity is an indication that the greatest source of uncertainty in this

experiment comes from the alignment of the optical fiber to the nanowire.

3.5 Summary

In summary, Ch. 3 provided an overview of the experiment undertaken in this thesis. The goal of

the experiment is to quantitatively and directly measure the absorption efficiency of an

individual silicon nanowire. This is achieved using a bimorph cantilever to directly measure the
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heat absorbed by a nanowire when illuminated with monochromatic light. A brief review of the

theory for bimorph cantilevers was presented. This was followed by a description of the

synthesis and attachment of the silicon nanowires. And finally, a thorough review of the AFM

thermometry technique for photothermal measurements was provided. This included the

preparation of the experimental setup and the choice of parameters used. Then, the methodology

used to measure the various parameters needed to extract the absorption efficiency was shown.

Although the current platform does not have the sensitivity to measure Si nanowires within the

size range necessary to observe absorption enhancement, we can still assess the validity of this

technique by measuring a larger diameter Si nanowire, as will be discussed in Ch. 4.
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Chapter 4

Results and Discussion

Now that the theoretical and experimental foundation has been laid out, the next step is to assess

the performance of this technique. In this chapter, the results for a larger diameter silicon

nanowire will be analyzed and discussed. However, due to inherent limitations in the

experimental setup, we must first modify the theoretical solutions computed in Ch. 2 to better

match experimental conditions. Additional measurements will be required to assess the effects of

size averaging, wavelength averaging, the polarization of the light source and the angle of

incidence. This will be followed by the analysis and discussion of the experimental results.

4.1 Modification of Theory

4.1.1 Size Average

One of the key assumptions made in Mie theory is the uniformity of the wire. In reality, however,

the Si nanowire samples made for this study exhibit size variation, particularly for the larger

diameter wires. To account for this variation, a weighted average is used as follows,

Qb's=-XQaI , (d) (4.1)
N n=i

where N is the total number of points averaged along the length of the nanowire, d, is the

diameter at each point and Q', is the size averaged absorption efficiency. In (4.1), the weighted

average manifests itself through the degeneracy of the diameter. The discretization of the

nanowire is accomplished by first superimposing several high magnification SEM images to

form a complete picture of the nanowire. The nanowire is then discretized in increments of 1%

of the total nanowire length. At each point, the diameter is digitally measured according to its

pixel width which is then compared to the corresponding scale bar to obtain the diameter in

nanometers. This process is shown in Fig. 4.1,
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Figure 4.1: A compilation of several SEM images that form a complete picture of the nanowire.

The nanowire is then discretized by the overlaid lines. The illuminated region used for size

averaging is highlighted, as shown.

From Fig. 4.1, only the region illuminated by the light source is considered for size averaging.

The average diameter of this region was found to be 983.1 nm with a standard deviation of 2.8

nm. Although this size averaging is a first order process, it is believed to be valid as there is no

significant variation in the diameter. The size averaged absorption efficiency, Q', is shown in

Fig. 4.2,
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Figure 4.2: The size averaged absorption efficiency, QL, obtained by (4.1) using Mie theory for

silicon. This is compared with the Mie theory solution for a uniform silicon wire with a diameter

of 983.1 nm.

4.1.2 Wavelength Average

In this experiment, the light from the monochromator is, ironically, not monochromatic and has a

bandwidth determined by the width of the slits placed at its input and output. Although the

bandwidth can be decreased to better match with theory, this will also reduce the throughput

power. Since this experiment is dependent on measuring the light absorbed by the nanowire, a

decrease in the light input may reduce the absorbed power to below the power sensitivity of the

system. Therefore, the bandwidth of the source, or full-width half-maximum (FWHM), was set

to a minimum of 7-8 nm to ensure the throughput power was unaffected. As a result, the

theoretical absorption efficiency must be averaged over the bandwidth of the light source.
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The FWHM at each wavelength was measured when calibrating the monochromator, as

mentioned in Ch.3, Sec. 3.4.2.4. To approximate the shape of the peak, a linear fit is used whose

slope is determined by the FWHM, as shown in Fig. 4.3,

Peak

CD Linear Fit FWHM

Figure 4.3: (a) An example of the monochromator output measured using an Ocean Optics

spectrometer at A = 550 nim (b) The linear fitting applied to the output using the full-width half-

maximum (FWHM).

The wavelength is then discretized into increments of 0. 1 nm and averaged as follows,

shown in4Fi

Figure 4.3 (ainsxmpeo the lierftinoegt noc hromatereoutpu an se usinglangt Oceragtic

aspto efercy tI50n () the lirfitting appormlied tod tetpulte using thafl with hf0t

herpea wnoismhelinedalue Ttin we 2antewveeghadd~i h wavelength averagedabopinefcnyQ Is

shown in Fig. 4.4,
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Figure 4.4: The size and wavelength averaged absorption efficiency, Q2, obtained with (4.1)

and (4.2) using Mie theory for silicon. This is compared with the size averaged absorption

efficiency, Q,, and the Mie theory solution for a uniform silicon wire with a diameter of 983.1

nim.

4.1.3 Polarization

From Ch. 2, it was shown that the Mie solutions are polarization dependent. The absorption

efficiencies calculated in Figs. 4.2 and 4.4 have assumed the incident light was perfectly

unpolarized. However, in the experiment, this may not necessarily be the case. To validate this

assumption, the Stokes parameters, which provides information on the polarization state, of the

light source was measured. The Stokes parameters consist of four numbers typically arranged as

a vector: So is the intensity of the source, S, and S2 are two linear polarization states and S3 is

the circular polarization state.
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In principle, only the first three Stokes parameters (S, ,S , ,2) need to be measured for

this experiment since a circular polarization state will not affect the final results. For the sake of

completion, we measure all Stokes parameters using an optical train consisting of a half-wave

plate and a linear polarizer as shown in Fig. 4.5,

02

Optical Fiber

Focusing Lens

Retarder

Linear Polarizer Detector

Figure 4.5: Optical train system used to measure the Stokes parameters of the light source.

where a lens is used collimate the light source from the optical fiber. All angles of rotation are

taken relative to the polarization axis for the linear polarizers and the fast axis for the waveplate.

In typical measurements, a quarter-wave plate must be used instead of a half-wave plate in order

to measure the circular polarization state. However the retardation of commercial wave plates is

a strong function of wavelength and is thus only rated at a particular wavelength when used. In

the case of a half wave-plate, so long as the wavelength of the source is different from its rated

wavelength, the retardation will not result in a 180 degree phase shift. Therefore, a half-wave

plate can still be used under these conditions to measure the circular polarization state in the

system so long as the phase shift is calibrated. In addition, we expect the polarization state could

vary with the wavelength of the source; hence, we measure the Stokes parameters at different

wavelengths spanning the range in which we conduct our experiment at (420 nm, 500 nm, 600

nm). Note that the half-wave plate is rated at 650 nm.

To calibrate for the unknown phase shift of the half-wave plate, we use an additional

linear polarizer placed in front of the half-wave plate. This system is shown in Fig. 4.6 below,
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Figure 4.6: Optical train system to measure the retardation of the half-wave plate.

In general, we can obtain all Stokes parameters of the source by measuring the output intensity

when the optical components are rotated to different positions. The rotation angles of the

components are controlled by rotational mounts. It is in this manner that we can obtain the phase

shift of the half-wave plate. To relate the source with the output intensity, we use a product of

Mueller matrices representative of the optical system used. In general, the Mueller matrix for a

linear polarizer rotated at an arbitrary angle is,

1 cos26 sin2O 0

M cos26 cos 2 26 sin26cos29 0 (43)
2 sin26 sin20cos29 sin 2 20 0

[ 0 0 0 0J

where 6 is the angle of rotation relative to the horizontal axis. Similarly, for a wave plate, the

Mueller matrix is,

0

cos 2 2 0 + cososin 2 29

(1- cos#0) sin20cos26

-sinbsin26

0

(1-cos#)sin20cos20

sin 2 26 + cos#cos 22

sincos20

0
sinqsin26

-sinbcos20

cos#

where # is the unknown phase shift. To relate the input source to the output

multiply the Mueller matrices in the order that they are placed in the system,

intensity, we
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S. =M3M 2M 1 Si (4.5)
M

where S, and S, are the Stokes vector for the input and output, respectively. Since we can only

measure the output intensity, we simply need the first row of the matrix M The result of

substituting (4.3) and (4.4) into (4.5) and assuming 6 = 03= 450 is thus,

1(6 2 )=(So +S)(+sin2262 + coscos2262) (4.6)

To cancel So and S3 , we can measure the intensity when the fast axis of the half-wave plate is

positioned at 02 =00 and 62=45*,

1(62 =O0)=(S +S3 )(1+ cos#)

I(62= 450) =(S +S)(2)

If we take the ratio and rearrange terms, we obtain,

cos#=2 1-(2 =00) (4.7)
I(62= 450)

We note that the absorption losses of the optical components are not accounted for in this

analysis. As will be shown in the measurement, this level of accuracy is not required.

Now, to measure the Stokes parameters of the source, we follow the same procedure.

From Fig. 4.5, we only need to account for the wave plate and one linear polarizer. The resulting

product is,

1

2

..+ [cos263 (cos2262 + cososin 2 262 + sin263 (1- cos#) sin262cos2 2] +...
2 1 (4.8)

.. +1 cos203(1-cos#)sin262cos262+ sin203(sin 2 202 +COScos 2 202)]+.

1
..- S3 [cos26 3sinsin262 -sin26 3sinqcos29 2]2
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To isolate each Stokes parameter in (4.8), the optical components are again rotated to different

positions as before. Only four configurations are needed,

1(62 = 450,63 = 00) = I(So + SIcosf + S3sin#)

I(62= 450,63 =900) = (So -SIcos#-Ssin#)
2 (4.9)

1(62 =45*,03= 450)= (S +S2)

1(62 = 0,63 = 450)= (SO +S 2cos# -Ssin#)

From (4.9), we can show that,

SO = I(62= 450=00)I(245063 = 900)

S, -1 [1(62= 450,63 =00)-1(02= 450 ,03 900) -Ssin#]
cos# 

(4.10)
S2 =2I(62 =450,63= 450) -So

S3= -2-I(2=0*,03=45*)+SO+S2cos#sin#

Therefore, to determine the polarization state of the light source, we simply need to

measure the intensity of the source at different optical configurations according to (4.7) and

(4.10). To measure the intensity, we once again use a powermeter and a photodiode (Newport,

1918C/818-UV) calibrated at the measured wavelengths. The results are summarized in Table

4.1,

Table 4.1: The measured Stokes parameters at different wavelengths.

Wavelength Phase Retardation Degree of
So (pW) S1 (pW) S2 (pW) S3 (pW) Dereo

(nm) (degrees) Polarization, P

420 46.2 643.7 -22.4 12.6 7.5 0.0416

500 114.4 952.9 12.2 2.4 -4.7 0.0139

600 159.6 637.5 -7.7 17.4 -89.5 0.1436

where the degree of polarization is defined as,

S +S0+S3
SO
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From Table 4.1, we can clearly see that the light source used in this experiment is for all intents

and purposes unpolarized as the Stokes vector at all wavelengths is close to the ideal Stokes

vector of S, = [1 0 0 0] for unpolarized light. Although the degree of polarization is relatively

high at 600 nm, this is primarily due to the presence of a circular polarization state which does

not affect the absorption efficiency in this experiment. Therefore, our original assumption that

the incident light in the experiment is unpolarized is validated.

4.1.4 Angle of Incidence

As discussed in Ch.3, Sec. 3.4.2.2, the cantilever is manually positioned to align the nanowire to

the optical fiber. Furthermore, light from the optical fiber will diverge within an exit cone

determined by the numerical aperture. In both cases, variations in the angle of incidence must be

assessed. In this section, the following analysis can be found in Collett.[69] We shall denote the

light transmitted by the optical fiber as a source positioned at the tip of the optical fiber. Since

the light source is Gaussian, the contributions from different angular components in the light

source must be appropriately weighed. In general, we can model a fluctuating, radiating light

source in the far-field limit as,

J(-) (s, v) =Z2 S (p,z; v) (4.11)

where J() is the radiant intensity, S is the spectral intensity, v is the frequency of light, z is

distance from the point of interest to the source along the fiber axis and p is the radial distance

from the source to the point of interest perpendicular to the fiber axis. Figure 4.7 shows the

system under consideration,

z

Figure 4.7: Coordinate system used to determine the radiant intensity, J()
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From (4.11), it can be observed that J is only a function of direction. Therefore, this is the

parameter that can be used to assess the angular distribution of the Gaussian divergence cone.

For a fixed wavelength, we can write the radiant intensity to be a function of the incident angle,

J(-) (6) 2 -S(z -tan6,z) (4.12)

where 6 is the incident angle. To determine J), we must first define S, the spectral intensity

appropriate for the light source in this experiment. This must account for both the Gaussian

intensity profile as well as the incoherency of the light source. The incoherency is evident from

the relatively large bandwidth of the source, as mentioned in Sect. 4.1.2. To account for these

characteristics, we use a Gaussian-Schell model for the light source.

In this model, the spectral intensity and the coherency are both defined as Gaussian

functions as follows,

So(p,z)= A(v) 2 .e 2, (4.13)

p,
2

g"(p',z)=e 2 2 (4.14)

where A is a wavelength dependent amplitude, a, is the standard deviation of the spatial term,

p'=P2 -p1 is the distance between two points in the system and og is the standard deviation of

the coherency function at the origin of the source, as denoted by the superscript. To determine

these distributions as a function of position, we use a cross-spectral intensity. In general, a cross-

spectral density is a measure of the correlation between the fluctuations of different components

at a given frequency,

W* (p,,P2 , v) = [So (p,,v)]1 2 [So (P2, v)]12 g" (P 2 - P, v) (4.15)

where p, and p2 denote two separated points. In the case where p, = p 2 , the cross-spectral

intensity is equal to the spectral intensity. Upon substituting (4.13) and (4.14) into (4.15), we can

obtain the following,

S(p,z) = A 2 -e 2[a.A(z)]2 (4.16)
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where,

2

A(z)= 1+ Tz (.7
2rco-,a

and,

1 1 1(4.18)
a2  (2.)2 + 9a (2-,) og

In (4.17), A is the wavelength of light. In (4.18), we can observe that for a spatially incoherent

source, o- >>-g , the coherency parameter can be approximated as a=_g . Since we are

operating in the far-field limit, (4.17) simplifies to become,

limA(z) = z(4.19)

Upon substituting (4.19) into (4.16) and subsequently (4.12), we will find the radiant intensity to

be,

2 12xatane)

J(*)6) 2;rcA e- J2Af) (6) = (2 ZCA JeI~9J
Since we are only interested in the angular dependence, this expression becomes,

J() (6) oc e2( = (4.20)

From (4.20), J(') can be determined by measuring o-g. The wavelength is determined based on

the previous calibration of the light source, as mentioned in Ch.3, Sec.3.4.2.4. To measure og,

we must go back to (4.16). In principle, if the standard deviation, a, -A (z), is measured at

different positions along z, we can then use (4.17) and guess values for o-, and og to fit the

data.

In order to measure the standard deviation, a., A(z), we measure the beam profile using

a knife-edge technique at a wavelength of 470 nm, which corresponds to the peak wavelength of

the source. Although J(') is wavelength dependent, the radiant intensity will not vary

significantly within the narrow wavelength range the experiment is conducted at. A razor blade

is mounted onto a motor mike along the x-axis to enable lateral movement relative to the optical
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fiber. The blade is then positioned so that the light source is completely blocked and then

retracted in increments until the light source is unblocked. At each position, the optical power is

measured using a powermeter. Assuming the profile is radially symmetric, the integral of the

intensity profile will be measured. Since the beam profile is Gaussian, the standard

deviation, a. -A (z), can be determined by fitting the data to an error function. Figure 4.8 shows

an example set of data measured at a distance of z =8 mm and the corresponding fitting,

0.9-

0.8-

0.7-
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Figure 4.8: An example set of data taken at z =8 mm using the beam profiling setup described. It

can be clearly observed that this data corresponds to an error function, as shown by the fitting.

This measurement is then repeated at several distances by moving the optical fiber from the

detector with a micrometer. Furthermore, dividing o, A(z) by a will normalize the data such

that A(z =0) =1 at the origin. The collective data for the standard deviation, A(z), is shown in

Fig. 4.9,
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Figure 4.9: The results for A(z) as a function of the separation distance z. Based on the fitting

the standard deviations a, and a, were determined to be 50 pm and 0.95 pm, respectively.

From Fig. 4.9, the standard deviations q, and cg were fitted using (4.17) with values of

50 pm and 0.95 pm, respectively. Based on this fitting, the radiant intensity, J, can now be

determined. From (4.20), the angular distribution of the light source is shown is shown in Fig.

4.10,
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Figure 4.10: The angular distribution, J(-). As shown, angular components above 15 degrees are

negligible.

As shown, angular components above 15 degrees are negligible and the most dominant

components are situated near the origin. Therefore, to account for this angular distribution in the

theoretical solution, we would utilize J(') as a weighing function. However, if we were to

simply calculate the Mie solution for a cylinder at the limiting angle of incidence at 15 degrees

and compare with the solution at normal incidence, we can observe that the difference between

solutions is quite small,
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Figure 4.11: The size averaged absorption efficiency at normal incidence and at 15 degrees angle

of incidence.

From Fig. 4.11, we can conclude that any variations in the angle of incidence due to the

divergence cone of the optical fiber do not significantly affect the results in this experiment.

Furthermore, any uncertainty in the alignment of the nanowire to the optical fiber will also not be

significant. Therefore we can simply use the solution at normal incidence to compare with the

experimental results.

4.2 Results/Discussion

Recall from Ch.3 the absorption efficiency can be written as follows,

r x()

Qn () - *-- '' (4.21)
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where the absorbed power and geometric incident power have been expanded into the relevant

experimental parameters. Note that in (4.21), only the deflection response, X, and the total

power,P , are a function of wavelength. For the absorption measurement, the raw deflection

response, X, was measured three times, as shown,
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3.0E+06

2.0E+06
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0 10000 20000 30000 40000 50000 60000
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Figure 4.12: The raw deflection response, X, as measured for the absorption measurement. Each

step in the data represents one wavelength interval incremented by 10 nm. The intervals are

averaged. Three sets of data were taken and as shown, are highly repeatable.

From Fig. 4.12, it can be observed that the absorption measurement is highly repeatable.

Furthermore, a clear trend can be observed which is indicative that the sample is well within the
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power sensitivity limitations of the system. Each wavelength interval for each set of data is

averaged.

The frequency correction factor, p, was then measured for each corresponding set of data

to ensure the parameter was obtained under consistent experimental conditions. The measured

values were 8 = 0.4032, 0.4032, 0.4030 for datasets 1, 2 and 3, respectively. Again, this

parameter is highly repeatable throughout the entire experiment. These values indicate the

significance of the cantilever frequency response as the amplitude exhibited nearly 40%

attenuation. This would suggest a lower modulation frequency should be used in the future,

provided the noise in the system can be reduced

A power calibration was then conducted to obtain the power sensitivity, S,,, for each

dataset. As discussed in Ch.3, this calibration requires measurements in both vacuum and

ambient conditions. In vacuum, measurements were again conducted for each data set to ensure

consistent experimental conditions. However, in air, the measurements conducted were applied

to all three datasets. The measured power sensitivities were S, = -104.1, -103.7, -103.9 V/mW

again for datasets 1, 2 and 3, respectively. Once again, this parameter was highly repeatable

throughout the experiment. To verify the accuracy of this calibration, the absorptivity measured

was on average 0.0643 for all laser powers. Using a transfer matrix model (TMM), the

absorptivity at an angle of incidence of 20 degrees was theoretically predicted to be 0.0607 and

0.0694 for TE and TM polarizations, respectively. Therefore, this calibration is in good

agreement with theory and can therefore be trusted.

Under ambient conditions, the geometric incident power,P , was also measured. First,

the total power from the optical fiber, P,,,, was measured at each wavelength. Two datasets were

measured and then averaged, as shown,
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Figure 4.13: The averaged total power, P,,,, as measured from the optical fiber. This data is

averaged only over two data sets as this was a highly repeatable measurement.

From Fig. 4.13, the light source exhibits a very strong spectral peak at 470 nmn. Although this

spectral peak did not increase the uncertainty at this particular wavelength, other sharp spectral

features were observed within this wavelength range when calibrating the monochromator. This

may be the reason for the repeatable variations observed in Fig. 4.12 which would suggest that

an alternative light source with a smoother spectrum should be used. However, at present, these

variations are not significant enough to require alterations to the system as the bandwidth of the

light output will average these variations.

To determine the fraction of light, f , incident on the nanowire, the position and the

geometry of the nanowire are used as mentioned before. The wire is approximately offset

15 pm along the z-axis. Based on this information, the fraction was determined to be
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f =9.83 x 104. Given that this fraction is quite small, uncertainty in the position of the nanowire

within the beam spot could change the absorption efficiency substantially. In fact, this parameter

exhibits the greatest uncertainty due to the alignment procedure, as outlined in Ch.3, Sec. 3.4.2.2,

thus an improved of alignment would be a worthwhile pursuit in future studies.

From (4.21), the absorbed power by the nanowire ranged from 352 pW at 600 nm to 1.08

nW at 470 nm. Likewise, the geometric incident power ranged from 856 pW at 600 nm to 1.589

nW at 470 nm. The absorption efficiency of the nanowire is shown in Fig. 4.14,
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Figure 4.14: The measured absorption efficiency, Qb,p for a silicon

580 600

nanowire with an average

diameter of D = 983.1 nm as measured along only the illuminated region. The data was averaged

over three sets of data. The error bars correspond to two standard deviations (95% confidence

interval) from the three data sets. This is compared to the size averaged absorption

efficiency, Q' ,, and the size and wavelength averaged absorption efficiency, Q".
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where Q,,,,,, is the measured absorption efficiency averaged over all three datasets and

compared to the averaged absorption efficiencies Q, and Q2. The error bars correspond to two

standard deviations, a 95% confidence interval, between the three datasets. Note that these error

bars are not indicative of the total uncertainty present in the measurement as this may be much

higher due to the issues previously mentioned.

The average absolute error was determined to be 4.69% with a minimum of 0.75% at 470

nm and a maximum of 14.2% at 580 nm. Overall, the data appears to follow the theoretical trend

where the absorption efficiency peaks near 470-480 nm and decreases at longer wavelengths.

However, additional spectral features at 440, 500 and 580 nm do appear which deviate from the

theoretical curve. This may be due to variations in the light source or more likely differences in

the nanowire, such as the optical constants due to the synthesis process, size variation effects not

captured by the averaging or even contamination from the attachment process, all of which are

not accounted in the theoretical solution.

Despite the differences from theory, the data, as shown in Fig. 4.14, is in overall good

agreement with the theoretical curves in terms of both the magnitude as well as the trend.

Although this particular Si nanowire does not exhibit any enhancement in the absorption

efficiency, the data measured nonetheless validates the use of AFM thermometry to measure the

absorption efficiency of nanostructures directly and quantitatively. Therefore, this sample serves

as a stepping stone from which future studies on smaller, more interesting samples can now be

pursued.

4.3 Summary

In summary, Ch.4 presented measured data on a larger diameter Si nanowire (D = 983.1 nm).

First, the theoretical solutions obtained from Mie theory had to be modified to account for

limitations in the experiment. This included both size averaging and wavelength averaging.

Fortunately, it was demonstrated that the light source is indeed unpolarized and variations in the

angle of incidence, due to the divergence of the source and misalignment, have minimal effect on

the theoretical results. Based on these modifications, it was shown that the measured data is in

good agreement in terms of both the magnitude and the trend. Although there are minor

differences with theory, the data is nonetheless conclusive evidence that AFM thermometry can

indeed be used to measure the absorptive properties of nanostructures. In order to measure
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samples which exhibit absorption enhancement, additional modifications must be made as will

be discussed in Ch. 5.
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Chapter 5

Summary and Future Outlook

5.1 Summary

The manipulation of optical properties in photonic nanostructures remains an active field of

study. In order to understand the effects of the geometry, periodicity and material choice for such

structures, conventional spectroscopy techniques have been used to assess the absorptive

properties. However, these techniques typically consist of either an indirect or qualitative

measurement of absorption. In this work, a method based on AFM cantilever thermometry is

presented which can be used to both directly and quantitatively measure the absorption

efficiency of individual nanostructures. Specifically, an individual silicon nanowire was

measured and shown to agree well with theory.

The motivation for the study on silicon nanowires is based on theoretical results which

predict strong enhancement in absorption (Qb,, >1) within the visible wavelength range. These

results are based on the well known Mie theory. The theory consists of analytical solutions to the

Maxwell equations solved for the particular case where a harmonic plane wave is incident on an

infinitely long cylinder. Based on these results, it was shown that silicon nanowires support

many leaky mode resonances. When the diameter of the wire is smaller than 150 nm, the lowest

order modes exhibit strong dipole-like behavior which results in an absorption efficiency greater

than 1. In addition, the size of the nanowire can be adjusted to tune the absorption peak within

the wavelength range.

To measure the absorption efficiency, an AFM bimorph cantilever is used as a

photothermal sensor. A single nanowire, synthesized using an electroless etching technique, was

first attached to the cantilever. By illuminating a portion of the nanowire with monochromatic

light, the absorbed power will conduct through the nanowire and the cantilever as heat. The

resulting change in temperature across the cantilever will then cause the cantilever to bend which

is measured optically. After appropriate calibrations, the absorption efficiency can be extracted.
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Based on this method, the absorption efficiency of a silicon nanowire with a diameter of

983.1 nm was measured from 420 nm to 600 nm. A larger diameter was chosen as the current

system does not have the necessary sensitivity to measure a wire with a diameter less than 150

nm. After modifying the theoretical solution to account for limitations in the experimental setup,

the measured results were shown to be in good agreement with theory in terms of both the

magnitude and trend. The average absolute error across the wavelength range was 4.69%.

Additional spectral features were observed in the data which deviate from theory. Possible

reasons may include a difference in the optical constants due to the synthesis process, size

variation effects which are not accounted for in the averaging or even possibly contamination of

the sample during the attachment process. Nonetheless, the results validate the use of this method

to directly and quantitatively measure the absorption efficiency of individual nanostructures.

5.2 Future Outlook

The results in this thesis represent an important step towards accomplishing the ultimate goal of

measuring nanostructures with an enhanced absorption efficiency. However, several

modifications need to be made to the experiment before these measurements can proceed. The

two key issues that must be addressed are the uncertainty and the sensitivity in the platform. A

comprehensive uncertainty analysis must be conducted to assess which aspects of the experiment

contribute most to the uncertainty. At present, the largest source of uncertainty is in the

alignment of the optical fiber and the nanowire. Since the fraction of light incident on the

sample, f , is quite small, the position of the nanowire in the incident beam spot must be known

with a high degree of precision. The power calibration should also be conducted entirely in

vacuum to eliminate uncertainties when correlating the PSD output between vacuum and

ambient conditions. In addition, an improved set of optics should be integrated to decrease the

size of the detector laser beam. This will also reduce uncertainties in the power calibration when

measuring the absorbed power.

To improve the sensitivity of the platform, the signal-to-noise ratio must increase. This

can be accomplished by increasing the throughput power and reducing the minimum detectable

power. The throughput power can be improved by using a higher intensity light source and better

optics to increase the coupling efficiency with the optical fiber. To reduce the minimum

detectable power, a new cantilever can be used. Recently, a bi-arm cantilever was proposed
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which decouples the sample from the bimorph, or detector.[70] The cantilever consists of a

single layer silicon nitride sample arm with a bilayer silicon nitride/gold detector arm connected

at its midpoint, as shown in Fig. 5.1,

(a)
Sample Section,
Absorber Patch

Au/SIN
Detector Armn

SiN
Sample Arn

Si Base 100 pm

Figure 5.1: Images of the bi-arm cantilever which can be used to improve the sensitivity of the

platform and to better isolate the sample from the detector arm. (a) An optical microscope image

of the bi-arm cantilever. (b) A corresponding SEM image of the bi-arm cantilever.

By introducing a high thermal resistance between the detector arm and the base of the cantilever,

the sensitivity improved by over one order of magnitude. The use of the sample arm can enable

complete illumination of the sample and provide an easier means of attaching the sample to the

cantilever. It is believed that by implementing these modifications, the system will have the

sensitivity necessary to measure smaller samples.

Overall, this technique offers the advantages of direct and quantitative absorption

characterization within the visible wavelength range and high sensitivity inherent in the detector.

In addition, a newly proposed technique combining Fourier transform infrared (FTIR)

spectroscopy and AFM cantilever thermometry was recently developed which spans the infrared

wavelength range.[71] Ultimately, the hope is that the combination of these techniques will
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provide a means of probing optical phenomena over a broad range of wavelengths which have

been previously unattainable using conventional methods.
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