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Abstract

In this thesis, a fully autonomous and persistent bistatic anti-submarine warfare (ASW) surveillance solu-
tion is developed using the autonomous underwater vehicles (AUVs). The passive receivers are carried
by these AUVs, and are physically separated from the cooperative active sources. These sources are as-
sumed to be transmitting both the frequency-modulated (FM) and continuous wave (CW) sonar pulse sig-
nals. The thesis then focuses on providing novel methods for the AUVs/receivers to enhance the bistatic
sonar tracking performance.

Firstly, the surveillance procedure, called the Automated Perception, is developed to automatical-
ly abstract the sensed acoustical data from the passive receiver to the track report that represents the situa-
tion awareness. The procedure is executed sequentially by two algorithms: (i) the Sonar Signal Pro-
cessing algorithm - built with a new dual-waveform fusion of the FM and CW signals to achieve reliable
stream of contacts for improved tracking; and (ii) the Target Tracking algorithm - implemented by ex-
ploiting information and environmental adaptations to optimize tracking performance.

Next, a vehicular control strategy, called the Perception-Driven Control, is devised to move the
AUV in reaction to the track report provided by the Automated Perception. The thesis develops a new
non-myopic and adaptive control for the vehicle. This is achieved by exploiting the predictive infor-
mation and environmental rewards to optimize the future tracking performance. The formulation eventu-
ally leads to a new information-theoretic and environmental-based control.

The main challenge of the surveillance solution then rests upon formulating a model that allows
tracking performance to be enhanced via adaptive processing in the Automated Perception, and adaptive
mobility by the Perception-Driven Control. A Umified Model is formulated in this thesis that amalgam-
ates two models: (i) the Information-Theoretic Model - developed to define the manner at which the FM
and CW acoustical, the navigational, and the environmental measurement uncertainties are propagated to
the bistatic measurement uncertainties in the contacts; and (ii) the Environmental-Acoustic Model - built
to predict the signal-to-noise power ratios (SNRs) of the FM and CW contacts. Explicit relationships are
derived in this thesis using information theory to amalgamate these two models.

Finally, an Integrated System is developed onboard each AUV that brings together all the above
technologies to enhance the bistatic sonar tracking performance. The system is formulated as a closed-
loop control system. This formulation provides a new Integrated Perception, Modeling, and Control
Paradigm for an autonomous bistatic ASW surveillance solution using AUVs. The system is validated
using the simulated data, and the real data collected from the Generic Littoral Interoperable Network
Technology (GLINT) 2009 and 2010 experiments. The experiments were conducted jointly with the
NATO Undersea Research Centre (NURC).
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Chapter 1

Introduction

1.1 Motivation

The international shipping industry plays a vital role in modern day economy. As cited in [96], approxi-

mately 90% of world trade is transported over maritime routes. The primary routes - designated as sea

lines of communication (SLOC) - serving between maritime ports and facilities are the lifeblood for sea-

borne trade during peace times, and strategic arteries for naval operations in periods of tension [74]. The

maritime choke points are narrow sea passages - most often in littoral waters - where the SLOC converge

and high shipping traffic occur [1]. Some examples include the Strait of Gibraltar and Suez Canal. Pro-

tecting and clearing the vital maritime ports, facilities, and choke points - at littoral zones - from ever-

present underwater dangers become exceedingly important. Disrupting shipping traffic at these areas will

definitely hamper trade and potentially cause an unsettling international incident.

Submarines and mini-submarines are submersible vessels that commonly threaten the littoral wa-

ters. With the lowered cost and increased capabilities in these threats, they can be easily launched by hos-

tile forces and terrorist initiatives. Balancing the tactical asymmetry and countering these underwater tar-

gets become an imperative task. Anti-submarine warfare (ASW), that grew out from World War I and

reached its pinnacle during Cold War, continues to prevail as the necessary naval focus to secure the litto-

ral zones from these elusive threats [19]. The first step in the ASW concept of operations (CONOPS) is

centered on executing proper surveillance procedures to gather as much information about these oppo-

nents as possible.

The ASW surveillance has long been evolving with time to thwart the technological advancement

of these adversaries. Passive sonar systems have traditionally been used for ASW surveillance, since ra-

dar systems have limited success in dealing with these predominantly submerged threats. As shown in

Figure 1.1(a), the surveillance procedures are accomplished by utilizing passive receivers or sensors to

sense or listen to the underwater acoustic noise radiated from these rogue targets. Nonetheless, over the

past few decades, these submersible targets are becoming so quiet that they are virtually masked off by

the ambient sea noise. Active monostatic sonar systems - where co-located active sources or transmitters

are operating in conjunction with passive receivers - have been adopted as the common ASW surveil-
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lance solution. From Figure 1.1(b), the surveillance procedures are now achieved by using active sources

to ensonify the underwater targets, and then utilizing co-located passive receivers to sense the underwater

acoustic energy backscattered from these threats.

In recent years, the development of stealth technology in these elusive targets has resulted in

complex and directional underwater acoustic scattering patterns. The backscattered energy is becoming

too weak for detection. It is also evident that the best ensonifying target aspect is usually not the same as

the best receiving target aspect [117]. This leads to a progressive shift of ASW surveillance paradigm

where active multistatic sonar systems - with physically separated active sources and passive receivers -

are considered as the potential solution [16-18,38,119,126,142]. The spatial separation of the active

sources and passive receivers is now able to provide the geometric diversity for multiple aspect and com-

plementary observations. It also allows active underwater acoustic picture to be built up without giving

away the positions of the covert passive receivers. Both the geometric diversity and probable coverage

covertness can now increase the resilience to electronic countermeasures, and complicate the counter tac-

tics for the enemies. The target detection range can be further increased by moving the covert passive

receivers closer to the threats. However, the system complexity is expected to increase since extra efforts

are required to coordinate and exchange information between multiple multistatic assets - comprising

active sources and passive receivers. In its simplest configuration, the surveillance procedures for active

bistatic sonar systems - consisting of a single non-co-located active source and passive receiver pair - are

illustrated in Figure 1.1(c).

0

Target Target Source Target Source

Receiver Receiver Receiver

0

(a) Passive sonar (b) Active monostatic sonar (c) Active bistatic sonar

Surveillance of target is performed Surveillance of target is performed Surveillance of target is performed
by sensing underwater acoustic by sensing underwater acoustic by sensing underwater acoustic

noise radiated by target energy backscattered from target, energy scattered from target,
which is ensonified by source which is ensonified by source

Figure 1.1: Illustration of different sonar systems.
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The multistatic assets - comprising sources and receivers - can be installed on different platforms

as either manned or unmanned assets. Some examples of manned assets are deployed from helicopters,

surface ships, and submarines [18,119,126,142]. The deployment of these platforms is typically costly

and ineffective in balancing tactical asymmetry. It also lacks the ASW surveillance persistence with po-

tential vulnerability to adversaries. In fact, if submarines are used to deploy the receivers, the enemies are

able to intercept the source ensonification and subsequently "steal the ping" to bistatically detect the sub-

marines. The unmanned assets can be mounted on a variety of platforms, operating at depths from sea

surface to sea bottom [16-18,126,142]. Over the last two decades, the advances in embedded and battery

technologies have led to such unmanned assets becoming smaller and inexpensive, but offering higher

level of computational power and operating endurance than ever before. These assets can now be rapidly

and cheaply inserted into tactical situations, and yet equipped with better processing capability and stami-

na. More of these assets can then be easily deployed to expand the coverage of the surveillance region,

provide the force multiplication to balance the tactical asymmetry, and cater for operational redundancy.

More importantly, these assets can be used for persistent surveillance over long duration in harsh and hos-

tile environments without risking manned human operators to harm's way.

The sonobuoys have commonly been used as the fixed unmanned assets for active multistatic so-

nar systems. These stationary assets are carrying the receivers and sometimes the sources. They are also

used in conjunction with the dipped sources from helicopters. These assets are generally laid out on a

preplanned fixed grid, and the quantity and grid spacing are strictly stipulated by the coverage and resolu-

tion of the surveillance region respectively. Since the spatial coverage of each sonobuoy is limited to a

small area around its position, numerous of these assets are needed to achieve wide coverage and fine res-

olution. Operating with an extensive network of sonobuoys is always unnerving. Effective

source/receiver management is required to select the right subset of assets to simultaneously sample the

tactical scene from multiple vantage points with best receiving target aspects [55,70,102,103,128-130].

Increased command, control, and communications (C3) capacity is also required to coordinate and ex-

change information between these assets. Laying out a fine grid of numerous sonobuoys is obviously not

feasible since the installation takes time. Clearly, the system lacks the ability to adjust the coverage of the

surveillance region against the underwater threats. The loading/laying of the sonobuoys on/from the

ASW aircraft are shown in Figure 1.2 [43].

Introducing adaptive mobility to the unmanned assets for active multistatic sonar systems natural-

ly alleviates the requirement for excessive quantity. The adaptive mobility allows the coverage of the

surveillance region and their receiving target aspects to be adjusted according to the tactical situations by

effecting appropriate maneuvers on the assets to track and trail the underwater threats. It also allows dif-

ferent missions to be easily reconfigured on the fly. The adaptive mobility obviously involves in making
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non-preplanned maneuvering decisions in real time, based on situation awareness construes from the

sensed acoustical data of the surrounding. The reaction to the acoustical data from the receivers greatly

enhances the ASW surveillance capability of the systems. These adaptive mobile unmanned assets are

typically carried by the unmanned surface vehicles (USVs) and autonomous underwater vehicles (AUVs).

Examples of these platforms are depicted in Figure 1.3 [26,131].

Courtesy of [431 Courtesy of [43]

(a) Loading of sonobuoys (b) Laying of sonobuoys

Figure 1.2: Loading/laying of sonobuoys on/from ASW aircraft.

Courtesy of [131] Courtesy of M. Beniamin

(a) Fleet Class USV (b) Bluefin-21 (BF-2 1) AUV

Figure 1.3: Examples of USV and AUV.
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Although the USVs are sometimes considered for deploying the sources, they are generally not

deemed suitable here for carrying the receivers. These platforms are potentially overt and lack the ability

to conceal the receiver positions [131]. If the receivers are deployed close to the sea surface with limited

depth control ability, poor ASW surveillance is expected. As the sound-speed profile at littoral zones is

typically downward refracting, the trapping of the underwater acoustic energy in deeper waters suggests

that better performance is expected if the receivers are placed at larger depths. This is depicted in Figure

1.4 by the underwater acoustic ray picture of propagation in a shallow-water duct of 100 m [71]. The

sound-speed profile is typical of the Mediterranean Sea in the summer. The warm sea surface causes

downward refraction, and results in confining most of the propagation paths in deeper waters - interacting

repeatedly with the sea bottom. This effect becomes even more pronounced when the underwater threats

submerge deeper. This makes the USVs even more unattractive for consideration.

Consequently, the AUVs are preferred here because they are able to carry the receivers covertly to

the desired depths for optimal sensing [132]. The AUVs are untethered platforms operating independent-

ly. The success of multistatics then hinges heavily on reliable wireless communications between these

submerged assets. The underwater acoustic communications (UWACOMMS) is the only effective means

of providing this communication link [123]. However, due to the propagation constraints imposed by the

ocean environment, the bandwidth and intermittency of UWACOMMS are inherently low. Therefore, the

transmission rates are orders of magnitude lower than that of radio frequency (RF) and fiber optic com-

munications [123]. In order to keep the C3 load down, minimal human intervention or remote control on

the AUVs is enforced. The role of human operators in the loop is reduced - especially in proprioceptive

Courtesy of [71]
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Figure 1.4: Shallow-water propagation in Mediterranean Sea in summer with downward refracting sound-
speed profile (denoted as SV). For source depth (SD) at 50 m (middle of water column), underwater

acoustic ray diagram shows most of propagation paths are trapped in deeper waters.
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functions such as interpreting the information about the threats, and planning the paths of the AUVs in

real-time - to just being involved in defining mission-level objectives. This requires the platforms to be

fully autonomous in order to operate independently. The AUVs are sometimes considered for deploying

the sources since they are able to achieve better deployment depth control. However, they provide no

tactical advantage since their positions are given away with the loud transmission from the onboard

sources. Nonetheless, the use of AUVs - as platforms for unsupervised, adaptive mobile unmanned as-

sets for active multistatic sonar systems - is an attractive proposition for a fully autonomous and persis-

tent ASW surveillance concept [132]. The goal is to adapt the survey paths of the AUVs autonomously in

real-time by controlling the vehicular motions, based on the information collected under the current tacti-

cal situations. This is different from the conventional multistatic sonar tracking found commonly in nu-

merous publications such as [25,34,37,42,51,53,64,80,81,89,144], where the mobile assets - surface ships

or AUVs - were primarily limited to preplanned fixed surveillance missions. These mobile assets were

moving along non-adaptive, fixed survey paths where the sensed acoustical data were merely stored for

offline retrieval and analysis. The mobile assets were not reacting to the acoustical data, but only to the

navigational data to ensure that they stayed on the preplanned courses.

The effectiveness of the active multistatic sonar systems relies heavily on the communication of

high-bandwidth information within the network of spatially dispersed AUVs carrying the receivers. Since

the C3 capacity is heavily limited for UWACOMMS, the amount of information that can be exchanged is

generally prohibitive. Moreover, excessive information exchanges between the AUVs might give away

the receiver positions. Although covert UWACOMMS has been an active research, it is still difficult to

communicate covertly under all circumstances [141]. As such, a decentralized architecture [95] provides

a practical solution - where the information exchanges within the network are minimized. This means

that each AUV with the receiver must be capable of operating by herself independently in at least bistatic

configuration even when no information is streaming in from collaborative AUVs. Each AUV is then a

modular unit with localized bistatic processing and path planning capability. Scalability and survivability

of the system is then simply a matter of adding additional heterogeneous AUVs.

The purpose of this thesis is to develop a fully autonomous and persistent bistatic ASW surveil-

lance solution against hostile underwater target in littoral waters using AUVs. The covert receivers are

onboard the AUVs, while the sources are cooperative assets deployed from fixed or mobile unmanned

platforms. Since the sources are transmitting loudly, there is no stringent covert requirement for the de-

ploying platforms. These platforms are assumed either stationary or moving on fixed path. The research

in this thesis focuses on providing novel methods for the AUVs to optimize the bistatic sonar tracking

performance based on the information collected under the current tactical situations. Optimized tracking

is achieved by autonomously and in real-time adapting the field of view (FOV) for the surveillance pro-
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cedures, and adjusting the survey paths to maintain the target in the FOV. The main challenge then rests

upon formulating a model that governs the autonomous adaptations. The model is driven by situation

awareness construes from the sensed acoustical data of the surrounding. These approaches are orchestrat-

ed to improve the ASW surveillance solution. So in the context of ASW CONOPS, surveillance proce-

dures are executed by gathering information about these hostile targets by tracking and trailing them as

they enter into the surveillance region or tactical scene. The information of these threats is then handed

off to other platforms with tactical superiority later. These other platforms will either execute more ad-

vanced surveillance procedures, or make decisions regarding the immobilization or neutralization of the

threats.

1.2 Problem Description

This section formally describes the problem of using AUVs to provide a fully autonomous and persistent

bistatic ASW surveillance solution that optimizes the bistatic sonar tracking performance. The problem

entails the deployment of several underwater assets in littoral waters. The underwater assets and operat-

ing environment presented in Sections 1.2.1 and 1.2.2, respectively, are used to exemplify the typical

scope for the problem. A graphical depiction of the bistatic geometry involving the underwater assets is

furnished in Section 1.2.3 to highlight the methodology at which typical contact reports are obtained from

the sensed acoustical data. These reports then generalize the way at which the solution operates. A sneak

preview of the result is given in Section 1.2.4 to illustrate the problem, and provide the foretaste for the

problem statement detailed in Section 1.2.5.

1.2.1 Bistatic Assets

The bistatic assets considered in this thesis include the active sources, AUVs, passive receivers, and tar-

get. To exemplify the typical types of assets considered in the thesis, the assets from the Generic Littoral

Interoperable Network Technology (GLINT) 2009 [67] and 2010 [68] experiments - conducted jointly by

the NATO Undersea Research Centre (NURC) and Massachusetts Institute of Technology (MIT) - are

used. The specific details of these assets are furnished in Sections 1.2.1.1 to 1.2.1.4 respectively.
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1.2.1.1 Active Sources and Sonar Pulse Signals

The Deployable Multistatic Sonar (DEMUS) source [56], developed by NURC and depicted in Figure

1.5, is the primary active source or transmitter considered in this thesis. This source is constructed with

an acoustic aperture of eight free-flooded rings, and is bottom-tethered or moored to operate as a station-

ary source. The DEMUS source is physically connected to a spatially separated surface buoy that pro-

vides both UWACOMMS and RF communications for remote source actuation and wireless message

broadcast - both underwater and over the water respectively. The buoy is also equipped with a global

positioning system (GPS) to provide accurate positional estimates for the source and precision timing for

transmission, which are critical for accurate bistatic processing. The operating frequency bandwidth and

maximum source level (SL) of this source are nominally 2000 to 4200 Hz, and 217 dB re 1 p.Pa and 1 m

respectively.

The Towed Sound Source for AUV (TOSSA) [92,93], developed by NURC and shown in Figure

1.6, is the alternate and probable active source. This source is constructed from two transducers that

achieve separate frequency bandwidths of 800 to 1400 Hz and 1400 to 3400 Hz, and is towed by the

Ocean Explorer (OEX) AUV (to be described in Section 1.2.1.2) to operate as a moving source. The total

operating frequency bandwidth and maximum SL of this source are nominally 800 to 3400 Hz, and 180

dB re 1 pPa and 1 m respectively. As the maximum SL is substantially lower than the DEMUS source

(about 37 dB lower), the coverage area provided by TOSSA source is significantly reduced. Although the

formulation of the solution in this thesis provides for this moving source, the performance evaluation for

this thesis only focuses on the stationary DEMUS source. This is to be consistent with GLINT experi-

mental data considered here, where the stationary source was used.

Two sonar pulse signals are considered in this thesis, and they are assumed to be transmitted sim-

ultaneously from the source. They are the continuous wave (CW) and up-chirp frequency-modulated

(FM) sonar pulse signals. For the FM signal, either the linear FM (LFM) or hyperbolic FM (HFM) signal

is used. These signals are considered so as to be consistent with the signals utilized in the experimental

data examined in this thesis. The LFM and HFM signals were used during the GLINT 2009 and 2010

experiments respectively. The specifications of the sonar pulse signals transmitted from the DEMUS

source are tabulated in Table 1.1. Other sonar pulse signals, such as those suggested by Collins and At-

kins [31], and Pecknold [108], can also be considered. However, these signals are outside the scope of

this thesis.
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Courtesy of [18]

Courtesy of [17]
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Figure 1.5: Photos and diagram of DEMUS source.

Courtesv of NURC

Disassembled TOSSA source
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Attaching TOSSA source to OEX AUV on
deck of NRV Alliance

Recovering OEX AUV with
attached TOSSA source on tow

Figure 1.6: Photos of TOSSA source.
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Experiment GLINT 2009 GLINT 2010

Sonar pulse signal LFM CW HFM CW

SL(dBreIpPaandIm) 212 210

Fc (Hz) 2800 2500 2800 2500

Fb, (Hz) 400 1/TW 400 1/TW

TW (s) 1 1

T, (s) 12 12

Fc : carrier frequency of sonar pulse signal in Hz T: pulse width (PW) of sonar pulse signal in s
FbW : bandwidth (BW) of sonar pulse signal in Hz T, pulse repetition interval (PRI) of sonar pulse signal in s

Table 1.1: Specifications of sonar pulse signals transmitted from DEMUS source for experimental data
examined in this thesis.

1.2.1.2 Autonomous Underwater Vehicles

The Ocean Explorer (OEX) AUV, developed by Florida Atlantic University (FAU) and depicted in Figure

1.7 [8,120], is considered in this thesis. Two such AUVs, named Groucho and Harpo, were used in the

GLINT experiments. Both are very similar in dimensions with approximate length of 4.2 m and diameter

of 21 in (or 0.53 m), and have a maximum operating depth of 300 m. The hull is flooded fiberglass fair-

ing with individual pressure enclosures to house the electronics. The AUVs are equipped with radio sys-

tem and UWACOMMS modems. The navigation suite onboard uses GPS when surfaced, and utilizes a

combination of inertia navigation system (INS) and acoustic Doppler velocity log (DVL) when sub-

merged. The AUVs are used to tow, in any possible combination, the TOSSA source (described in Sec-

tion 1.2.1.1) and/or the BENS passive receiver array (to be described in Section 1.2.1.3). They have a

maximum speed of 5 kts (or 2.57 m/s) without towing anything, and a maximum of speed of 3 kts (or

1.54 m/s) when towing the BENS array. The maximum endurance is 7 hrs at speed of 1.2 m/s (or 2.33

kts). The conductivity, temperature, and depth (pressure) (CTD) sensor onboard is used to provide the

CTD information for computing the sound speed of the underwater environment. The AUVs are positive-

ly buoyant, a security feature which ensures that the vehicles surface if all power is cut.

The Bluefin-21 (BF-21) AUV, developed by Bluefin Robotics Corporation and previously shown

in Figure 1.3(b) [26], is the alternate and similar mobile unmanned platform. This AUV has an approxi-

mate length of 3 m and diameter of 21 in (or 0.53 in). The hull is also free-flooded with individual pres-

sure enclosures to house the electronics. The AUV is equipped with radio system, UWACOMMS
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Mechanical drawing of OEX AUV

Courtesy of NURC Courtesy of NURC

Deploying Groucho OEX AUV, with Harpo (left) and Groucho (right) OEX AUVs on
TOSSA source and BENS array on tow deck of NRV ALLIANCE

Figure 1.7: Photos and diagram of Groucho and Harpo OEX AUVs.

modem, navigation system, and CTD sensor. Although the BF-21 AUV was used during the GLINT 2010

experiment, the primary mission was not dedicated to multistatic experiment. Therefore, the focus of this

thesis is still on the OEX AUVs.

1.2.1.3 Passive Receivers

The passive receiver or sensor considered in this thesis is the BENS slim towed array developed by

NURC [92,93]. The mechanical drawing and specifications of this array are furnished in Figure 1.8 and

Table 1.2 respectively. This receiver consists of 83 hydrophones nested in four array apertures or oc-

taves. These octaves, denoted from A to D, are each designed as a uniform linear array (ULA) with 32

hydrophones. For the specifications of the sonar pulse signals given in Table 1.1, octave A with a hydro-

phone spacing of 0.21 m is used here. Since the receiver is a ULA, it unfortunately lacks the ability to
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resolve the left-right or port-starboard ambiguity. The array also contains three compasses and two depth

sensors to aid the reconstruction of the array dynamics. A temperature sensor is also included in the array.

The distance between the connector and first hydrophone is 9.15 m. The BENS array was towed by the

OEX AUV during the GLINT experiments through the connector. Maguer et al. [92,93] noted that when-

ever the AUV made a 900 turn, the array required not more than 80 s for it to be sufficiently straight to

collect the acoustic data. Using the settings in Table 1.1, this implies that it takes at most 7 pings - fol-

lowing a 900 turn - before the array is acoustically straight. Operationally, this means that the towing

AUV needs to avoid sharp and abrupt maneuvers that hamper the acoustic performance in the array.

The BEN-triplet array, developed by NURC, is an alternate and possible passive receiver. The

photos and specifications of this array are provided in Figure 1.9 and Table 1.3 respectively. The receiver

adds on 5 hydrophones to the BENS array to create the fifth nested array aperture or octave. The triplet

array octave, denoted E, is designed with a ULA of 23 hydrophones and a triplet array of 9 hydrophones,

Courtesy of [92,93]

BENS TOWED ARRAYIROPE TL I TOWED SOURCE I OEXC VEHICLE
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Figure 1.8: Mechanical drawing of BENS array (with TOSSA source).

Octave A B C D

Hydrophone sensitivity (dBV re 1p Pa ± 1 dB) -202

Design frequency (Hz) 3160 1580 790 630

Number of hydrophones 32 32 32 32

Hydrophone spacing (m) 0.21 0.42 0.84 1.05

Amplification gain (dB) 32.5

ADC resolution (bits) 24

ADC sampling frequency (kHz) 200

ADC : analog-to-digital conVertor

Table 1.2: Specifications of BENS array.
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giving a total of 32 hydrophones for this octave. The triplet array of 9 hydrophones is configured in three

triplet sections of 3 hydrophones each to allow the BENS-array to resolve the left-right ambiguity prob-

lem. The array also contains four compasses, two depth sensors, four pitch sensors, and two roll sensors.

An example of the beampatterns for octave E of the array is shown in Figure 1.10. The acoustic signal of

F = 3100 Hz is assumed to be impinging the array at azimuthal angle 8 = 450 and elevation angle #P =

00 '. The frequency Fsteer, azimuthal angle 0 steer, and elevation angle Csteer of the array at octave E are

steered at 3100 Hz, between -180* and 180*, and between -90* and 90* respectively. The beampattern

plot for the ULA of 23 hydrophones is shown in Figure 1.10(a), while that of the triplet array of 9 hydro-

phones is depicted in Figure 1.10(b). The plot for the combined ULA and triplet array is provided in Fig-

ure 1.10(c). By comparing the results in Figures 1.10(c) with 1.10(a), the left-right ambiguity at 8 steer =

450 and 3150 for the ULA on the horizontal x-y plane (that is at esteer = 00) has been resolved. This is

clearly shown by the lower peak amplitude at 6steer = 3150 for the combined ULA and triplet array.

Although the BENS-triplet array demonstrates the additional capability in resolving the left-right ambigu-

ity problem, this receiver is not considered here since the experimental data utilized in this thesis are tak-

en solely from the BENS array. The solution formulated in this thesis using BENS array accounts for the

additional complexity due to the inherent left-right ambiguity. If BENS-triplet array is used instead, the

solution is easily simplified.

Courtesy of NURC

Figure 1.9: Photos of triplet assembly in BENS-triplet array.

The azimuthal angle 6 is residing on the horizontal x-y plane with 00 along positive x-axis and 900 along positive y-axis. The
elevation angle < is the vertical angle with -90* along negative z-axis, 00 on the horizontal x-y plane, and 900 along positive
z-axis.
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Octave name A B C D E

Hydrophone with amplification sensitivity -168
(dBV re 1pPa± dB)

Design frequency (Hz) 3160 1580 790 630 3160

Number of hydrophones 32 32 32 32 9 in triplet
0.23 inULA

Hydrophone spacing (m) 0.21 0.42 0.84 1.05 tr0.21 in
_____________________________ _ ____ ____________ _________ _________ triplet & ULA

ADC resolution (bits) 24

ADC sampling frequency (Hz) 200

Table 1.3: Specifications of BENS-triplet array.

(b) Triplet array
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(c) Combined ULA and triplet array
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Figure 1.10: Example of beampatterns obtained for octave E of BENS-triplet array with acoustic signal of

F= 3100 Hz impinging at azimuthal angle 6 = 450 and elevation angle P = 00. The frequency Fsteer,
azimuthal angle 6 steer, and elevation angle #steer of array are steered at 3100 Hz, between -180* and

1800, and between -90* and 900 respectively. The radial axis represents amplitude of beam response.
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1.2.1.4 Target Type and Dynamic Model

From Section 1.1, the underwater targets that the thesis concerns are the submarines and mini-submarines.

The Echo Repeater (ER), developed by NURC and depicted in Figure 1.11, is presumed to be the target in

this thesis. The ER is essentially used to simulate the underwater acoustic scattering of a target, at desired

target strength (TS) in dB re 1 m with stipulated echo-repeater delay in seconds. The ER operates by first

recording the ensonification of the sonar pulse signals from the active source. After the predetermined

echo-repeater delay, the recorded sonar pulse signals are re-transmitted at defined amplitude gain set by

the TS to simulate the scattering cross-section of the target. Such features are beneficial for a reproduci-

ble and controllable experimental target, which provide the flexibility to collect experimental data for tar-

get with desired kinematic and acoustical properties. The ER was towed by the Coastal Research Vessel

(CRV) Leonardo during the GLINT experiments to operate as a stationary or moving simulated target,

depending on whether the towing vessel was station-keeping or moving. The operating bandwidth and

maximum SL of the ER are nominally from 800 to 3500 Hz, and 180 dB re 1 gPa and 1 m respectively.

In this thesis, the ER is assumed moving at nearly constant velocity (NCV). As such, the NCV

target dynamic model, where the target acceleration is assumed a white noise process, is sufficient to rep-

resent the target dynamics. The details of this model is presented in [24,109] and the usage is discussed in

ER on deck of CRV Leonardo CRV Leonardo

Figure 1.11: Photos of ER.
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the thesis later. Other possible target dynamic models, such as the nearly constant acceleration (NCA),

nearly constant speed turn (NCT), and others, can be easily incorporated by interacting multiple model

(IMM) should the need arises [24,109]. However, the thesis limits the discussion to just the NCV model

since the ER was abiding to this model during the experiments.

1.2.2 Operating Environment

From Section 1.1, the thesis is interested in using the active sources, AUVs, and passive receivers (de-

scribed in Sections 1.2.1.1 to 1.2.1.3 respectively) to provide a fully autonomous and persistent bistatic

ASW surveillance solution for securing vital maritime ports, facilities, and choke points - at littoral zones

- from the hostile underwater targets. The operating environment of the GLINT 2009 and 2010 experi-

ments is a typical environment at which such solution is implemented, and is assumed for the discussion

in this thesis. The experiments were conducted at the Tyrrhenian Sea, Italy - north of Isola del Giglio and

north-west of Porto Santo Stefano - as shown in Figure 1.12. The bathymetry of this area of operation is

provided in Figure 1.13. The area typifies a shallow-water duct of 80 m to 160 m with very gradual

slope.

The GLINT 2009 and 2010 experiments were conducted from Jun. 25 to Jul. 23, 2009 [67], and

from Jul. 26 to Aug. 18, 2010 [68] respectively. Using the real CTD data collected in the summer months

from the MREA 2003 experiment [113] at the same area of operation as the GLINT experiments, the

sound-speed profile is computed using Medwin and Clay's sound-speed formula in [100]. This profile is

plotted in Figure 1.14 with the mean profile and one standard deviation (SD) bounds depicted in red and

blue respectively. The sound-speed profile calculated from one CTD cast on Jul. 30, 2010 during the

GLINT 2010 experiment is plotted in black, and is observed to fall within the one SD bounds. The com-

puted sound-speed profile from the MREA 2003 experiment is then used as a model in this thesis later.

By comparing the profile in Figure 1.14 with that in Figure 1.4, the operating environment con-

sidered in this thesis is downward refracting where underwater acoustic energy is trapped in deeper wa-

ters. In most cases, the targets are operating at such depths. Therefore, better ASW surveillance perfor-

mance is expected when the AUVs, towing the receivers, are placed at larger depths.
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Figure 1.12: Area of operation for GLINT 2009 and 2010 experiments.
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Figure 1. 13: Bathymetry of area of operation for GLINT 2009 and 2010 experiments with colors denoting
shallow-water depths in m.
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Figure 1.14: Sound-speed profile computed from CTD casts during MREA 2003 experiment with mean
profile plotted in red and one SD bounds plotted in blue, and sound-speed profile computed from one

CTD cast during GLINT 2010 experiment plotted in black.
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1.2.3 Bistatic Geometry and Measurements

In this section, the bistatic geometry involving the underwater assets (described in Section 1.2.1) is used

to highlight the methodology at which typical contact reports are obtained from the sensed acoustical data

at the passive receiver. These reports then generalize the way at which the solution operates. Since the

receiver is constructed as an array of hydrophones as discussed in Section 1.2.1.3, the sensed acoustical

data is also known as the hydrophone data. The bistatic geometry involving an active source (denoted S),

target (denoted T), and passive receiver (denoted R) at a particular time tk is depicted in Figure 1.15.

Here, tk represents the time at which the sonar pulse signals are transmitted from the source, and is

known as the ping or scan time. Subscript k then denotes the ping or scan number. The dependency of

the quantities in the geometry on tk is implied, and the notations of the quantities related with the geome-

try are tabulated in Table 1.4. As with Section 1.2.1.1, the source is assumed to be transmitting FM and

CW signals simultaneously with carrier frequencies FFM and Fw, bandwidths (BWs) FF," and Fb,w, and

pulse widths (PWs) Tw = TFM = Tw. The signals are transmitted at times ti < t2 < -- < tk < tk+1 <

with pulse repetition intervals (PRIs) Ty = TFM - TCW, implying that tk+1 = tk + T,. ThroughoutP P -P

this thesis, the superscripts FM and CW are used to represent the quantities relating to FM and CW sig-

nals respectively. The signals arrive at the receiver as two distinct signals: the direct blast is the signal

traveling straight from the source to receiver; and the indirect blast is the signal traveling from the source

to receiver via scattering at the target. Since the receivers presented in Section 1.2.1.3 are intrinsically

horizontal ULAs that lack the ability to determine the target depth (see Figures 1.10(a) and 1.10(c)), it is

not very useful to steer the elevation angle #steer. As such, the thesis simply sets #steer = 0' and exam-

ines the problem entirely on the horizontal plane. This then confines the geometry in Figure 1.15 to two

dimensions. However, it is clear from Section 1.2.2 that the receiver has to be placed at sufficient depths

to overcome the downward refracting sound-speed profile. In the experimental data considered in this

thesis, the AUV has been commanded to tow the receiver at approximately middle of the water column.

The basic problem of the bistatic geometry in Figure 1.15 is to estimate the kinematic state vector

of the target defined as

Xt(tk) = [xt(tk) Yt(tk) it(tk) pt(tk)] T . (1.1)
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Figure 1.15: Two-dimensional bistatic geometry involving active source (S), target (T), and passive re-
ceiver (R). Dependency of quantities on tk is implied.

Notation Description

Xs/t/r, Ys/t/r Cartesian position of S/T/R in m

is/t/r, is/t/fr Cartesian velocity of S/T/R in m/s

Vs/t/r, #s/t/r Speed and heading of S/T/R in m/s and degrees respectively

6 d, 6, DOAs of direct and indirect blasts at R in degrees

6 b, 6s, 9 a Bistatic, separation, and aspect angles in degrees

rs/r, Ts/r, TLs/r Range, travel time, and TL from S/R to T in m, s, and dB re 1 m respectively

rb (Baseline) range from S to R in m

Td, Ti Travel times (TOAs) of direct and indirect blasts in s

Fd, F Frequencies of direct and indirect blasts detected at R in Hz

DOA, TOA, TL - direction-of-arrival, time-of-arrival, and transmission loss

Table 1.4: List of notations for quantities related with Figure 1.15

2 In this thesis, both the heading and DOA are measured in counter-clockwise direction. For the heading, a 0* is along positive
x-axis and a 900 is along positive y-axis.
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At each ping k, the following quantities are assumed available at the receiver3:

* The ping time tk at which the sonar pulse signals are transmitted from the source.

* The set of acoustical measurements of the indirect blasts -r [k] = {r_[k]$ , O[[k] =

{6jm[k]1}[k] and Fi[k] = {Fim[k]}MI 4, where m[k] denotes the number of indirect blasts re-

ceived.

Note: These indirect blasts represent the sonar contacts originating from target, interferers, or

clutter. In this thesis, each contact is assumed to be from different origin. These measurements

are estimated from the sensed acoustical or hydrophone data at the receiver, and the details are

discussed later.

e The navigational measurements of the source xS(t), ys (tk), *s(tk), s(tk), vs (tk), and Ps(tk).
Note: These measurements are based on the position where the source transmits. Since the

sources considered in Section 1.2.1.1 are cooperative assets, the measurements are known either a

priori, or in-situ via UWACOMMS broadcast from the source. These measurements are typically

estimated by a navigational algorithm, expressed as the state vector of the source xS(tk) =

[xS(tk) ys(tk) ±s(tk) ps(tk) ]T. Additional navigational algorithm for the source can be set

up at the receiver to cater for intermittent source information sent over UWACOMMS. The navi-

gation algorithm is assumed to be implemented and is outside the scope of this thesis.

* The set of navigational measurements of the receiver xr (tk + Tim[k]), Yr (tk + Tim[k]), tr(tk +

Tim[k]), fr(tk + Tim[k]), vr(tk + r6[k]), and (Pr(tk + rim[k]), where m = 1, ...,m[k].

Note: These measurements are specific to the received indirect blasts to account for the intra-

ping effects [36,37]. In addition to that, the measurements at ping time tk are known. Similarly,

the measurements are typically estimated by a navigational algorithm, expressed as the state vec-

tor of the receiver xr(-) = [ xr(') yr(-) ±r(-) f (-)]T. The navigational algorithm is also as-

sumed to be implemented and is outside the scope of this thesis.

3 The continuous and discrete function dependencies are represented using (-) and [. respectively. Perfect continuous function
dependency is not realizable in reality as all such measurements are acquired digitally. Nonetheless, the granularities of the
measurements are sufficiently fine enough for continuous function dependency to be assumed.

4 The acoustical measurements of the direct blast Td[k], 8d [k], and Fa [k] are also available as by-products, but they are not
used in the thesis.
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* The environmental measurement c(tk) representing the average underwater sound speed along

the traveling paths taken by the direct and indirect blasts.

Note: For the thesis, this measurement is extracted directly from the MREA 2003 experimental

model shown in Figure 1.14. It could be complimented by any recent CTD casts of the operating

environment, and the onboard CTD sensors.

With the above quantities known at the receiver, several derived measurements are computed as

follows. The m* time-difference of arrival (TDOA) between the m* indirect blast and direct blast is ob-

tained as

Arm[k] = i[k] rb m[k] (1.2)

where the m* baseline range is given by

rbm[k] = s(XS(tk) - Xr (tk + + (Ys(tk) - Yr(tk + Tim[k])) (13)

The m* bistatic angle is computed from cosine rule as

Ob[k] = coS- 1 (c(tk) rim[kl)2 -rbm[k] (1.4)
2 rsm[k] rrm[k]

The m" separation angle is obtained as

Osm[k] = tan- 1 (Ys(tk) -Yr(tk+im[k]) 6i,[k] - <r(tk + -r[k]). (1.5)

By applying cosine rule to the separation angle, the ranges from the source and receiver to the m* contact

are computed as

rs [k] = (c(tk) -im[k])2 + T[k] - 2 rbm[k] c(tk) rim[k] cos Osm[k] (1.6)
2 (C(tk) Trim[k] - rbm[k] cos Osm[k])

rm [k] = (C(tk) Tim[k])2 - r[k]
2 (c(tk) Tim [k] - rbm[k] cos Osm [k]) '

The Cartesian position of the mth contact, assuming ensonification at time tk, is calculated as
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Xt,[k] = xr(tk + Tjm[k]) + rrm[k] cos (6im[k] + Pr(tk + 8 [k])),

Ytm[k] = yr(tk + Tim[k]) + rrm[k] sin (6 [k] + #r(tk + T [k])) . (1.9)

Ideally, the ensonification is at time tk + Tsm[k]. However, for mathematical convenience, the ensonifi-

cation at time tk is assumed. It is probable that one of the m[k] contacts originates from the target. In

this thesis, the BENS array is considered. The inherent left-right ambiguity of this ULA presents another

measurement for Ojm[k]. Consequently, this produces additional measurement for obm[k], 6sm[k],

rsm[k], rrm[k], xtm[k], and ytm[k] that manifests as the ghost contact in Figure 1.15.

For the purpose of generalizing the problem, six typical variants of the bistatic measurement vec-

tors are considered. They are constructed from the derived measurements of the m* contact as

z =[k] [xtm[k] ytm[k]]T, (1.10)

zn [k] = [(z )[k])T F [k]] T , (1.11)

zl [k] = [ATm[k] Oj [k]]T, (1.12)

z [k] = [(z [k])T F [k]] T , (1.13)

Z [k] = [rrm[k] Om[k]]T, (1.14)

zM [k] = [ (z )[k])T F [k]] T , (1.15)

or compactly as z2 [k] E RNx1, where j E {1, ... , 6}. Here, N is the size of the bistatic measurement vec-

tor with N = 2 for j E1,3,5} and N = 3 for E {2,4,6}. Clearly, forj E {1,3,51, z[k] is derived from

the TOA and DOA measurements of the m* indirect blast. Similarly, for j E {2,4,6}, z [k] is derived

from the TOA, DOA, and frequency measurements of the m* indirect blast. Other variants at which

Doppler frequency shift and range rate are used instead of frequency can also be considered without loss

of generality. The contact report is then made up from a set of bistatic measurement vectors given by

ZU) ZW[= tz2-m[2 ] j E {,...,6}, (1.16)

where the number of contacts increases from m[k] to 2 - m[k] due to the left-right ambiguity of the

BENS array. By generalizing, the thesis demonstrates that same solution is applicable irrespective on the

choice of the variant of the contact report. In this thesis, the term bistatic measurement vector is used in-

terchangeably with the term bistatic measurement.

49

(1.8)



1.2.4 Problem Illustration

In this section, an example scenario in Figure 1.16 is used to illustrate the problem. The stationary DE-

MUS source (described in Section 1.2.1.1) is used with the OEX AUV (described in Section 1.2.1.2),

towing the BENS array (described in Section 1.2.1.3), to provide ASW surveillance against underwater

threat at barrier and vital maritime installation at littoral zone (described in Section 1.2.2). The underwa-

ter target is simulated by the moving Leonardo-towed ER (described in Section 1.2.1.4). The rogue target

is breaking the barrier from west and heading east toward the maritime installation. Figure 1.16(a) de-

picts the case when the AUV is set on a preplanned fixed surveillance mission with the vehicle on a fixed

survey path. Clearly, bistatic sonar tracking performance is not optimized given this path, especially

when the target presents an unfavorable bistatic geometry to the receiver. Examples of such geometry

include the cases when the target enters the endfire of the receiver, or when the kinematic state of the tar-

get results in high bistatic reverberation (or bistatic clutter) to the receiver. Figure 1.16(b) shows the case

when the AUV is set on a fully autonomous surveillance mission. The AUV starts the mission by moving

in fixed survey path. As the rogue target enters into the surveillance region, the survey path of the vehicle

is autonomously adjusted in real-time, for tracking and trailing the target, based on the information ob-

tained from any variant of the contact report (discussed in Section 1.2.3). The adaptation effectively tries

to keep the target in the FOV of the receiver to ensure optimized bistatic sonar tracking. The FOV for the

surveillance procedure is concurrently adapted to ensure optimized tracking. The information of the

rogue target can be handed off to other platforms later for engagement. The example scenario clearly

provides the sneak preview of the result that the thesis is intending to achieve. The problem statement in

the next section is going to describe the issues at which the thesis needs to address before formulating the

solution illustrated in this preview.

1.2.5 Problem Statement

The problem statement for this thesis is formally detailed in this section. As illustrated in Section 1.2.4,

the purpose of the thesis work is to develop a fully autonomous and persistent bistatic ASW surveillance

solution for securing vital maritime ports, facilities, and choke points in littoral waters from moving un-

derwater threats. The solution is implemented using the active sources, AUVs, and passive receivers de-

scribed in Sections 1.2.1.1 to 1.2.1.3 respectively, while the littoral zones are typified by the example in

50



(a) Preplanned fixed surveillance mission. AUV/receiver is on fixed survey path, and not optimizing bistatic sonar
tracking performance.

(b) Fully autonomous surveillance mission. AUV/receiver is initially on fixed survey path. Upon tracking entry of
rogue target, AUV/receiver switches to adaptive survey path that tracks and trails target to optimize bistatic sonar

tracking performance.

Figure 1.16: Example scenario of persistent bistatic ASW surveillance mission against adversaries at bar-
rier and vital maritime installation. Source is stationary DEMUS source. AUV/receiver is OEX AUV

towing BENS array. Underwater target is simulated by moving ER, towed by CRV Leonardo, breaking
barrier from west and heading east toward maritime installation.

51



Section 1.2.2. The covert receivers are towed by the AUVs, while the sources are cooperative assets de-

ployed from fixed or mobile unmanned platforms. The problem motivates the development of novel

methods for the AUVs to optimize the bistatic sonar tracking performance. This is accomplished by using

the information obtained from any variant of the contact report discussed in Section 1.2.3. Optimized

tracking is achieved by autonomously and in real-time adapting the FOV for the surveillance procedures,

and adjusting the survey paths to maintain the target in the FOV. The main challenge then rests upon the

formulation of a model that governs the autonomous adaptations. The model is driven by situation

awareness construes from the sensed acoustical data of the surrounding. These approaches are collective-

ly applied to improve the ASW surveillance solution. In order to arrive at this solution, several enabling

technologies, spanning across disciplines, are required and they are introduced in the following sections.

1.2.5.1 Automated Perception

The surveillance procedure is required to abstract the vast sensed acoustical or hydrophone data from the

passive receiver to a higher representation for the situation awareness. From Section 1.2.3, the hydro-

phone data at ping k is used to provide the set of acoustical measurements of the indirect blasts Ti [k] =

{rim[k]} mLk], O[k] = {6im[k] } , and Ft[k] = {Fim[k]} k]. If the left-right ambiguity of the receiver

array is considered, the number of contacts in the set of DOA measurements O [k] increases from m[k] to

2 - m[k]. Since both FM and CW sonar pulse signals are transmitted from the active source, each indirect

blast comprises FM and CW return signals. For the FM signal, either the LFM or HFM signal is used. It

is commonly known that the FM signal can provide good TOA and frequency estimates, but it requires

one of the estimates to be known first before it can achieve good estimate for the other [98,138]. This is

because of the undesirable coupling effect of the estimation errors in both TOA and frequency prevalent

with the skewed ambiguity function of the signal (see Figures 1.20(a) and 1.20(b)). The effect is more

severe in the LFM signal than in the HFM signal. This means that good TOA estimate is only obtained if

the frequency is known, and conversely, good frequency estimate is only obtained if the TOA is known.

Similarly, it is commonly known that the CW signal can provide good TOA or frequency estimate, but not

both at the same time [98,138]. A long CW signal provides good frequency estimate at the expense of

poor TOA estimate (see Figure 1.20(c)), while a short CW signal provides good TOA estimate at the ex-

pense of poor frequency estimate. In this thesis, a long CW signal is used since a short CW signal is prac-

tically not feasible. In order to achieve the same transmission energy as a long CW signal, the transmis-

sion power for a short CW signal might be unacceptably high to be realized by any physical active source.

In almost all cases, the FM processing is operating at one particular frequency, most often at the carrier
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frequency FFM. This implies that zero Doppler frequency shift is assumed in the FM return signal. If the

actual Doppler frequency shift is at a different frequency, then the TOA estimate by the FM signal is in-

correct due to the undesirable coupling effect mentioned earlier. With a good frequency estimate provid-

ed by the CW signal, the actual Doppler frequency shift is available to correct and achieve good TOA es-

timate by the FM signal. Since the carrier frequency of the FM signal is higher than CW signal (see Table

1.1), narrower beamwidth is obtained for the FM signal [72,139]. This is exemplified in Figure 1.7 by the

beampatterns obtained for the CW signal of Fcc' = 2500 Hz (lower frequency) and FM signal of FFM

2800 Hz (higher frequency) impinging octave A of the BENS array at DOA 1 = 900. The frequency

Fsteer of the array is steered at 2500 Hz and 2800 Hz respectively, while the azimuthal angle 8 steer of the

array is steered between -180 and 180*. This means that the FM signal provides better DOA estimate

than the CW signal, given the specifications in Table 1.1. Consequently in this thesis, the FM signal is

used to provide the set of TOA measurements tr [k] and set of DOA measurements 0, [k], while the CW

signal is used to provide the set of frequency measurements Ft[k]. The entire operation described above

is implemented using a new dual-waveform fusion in this thesis, which takes advantage of the comple-

mentary and desirable features of the FM and CW signals, and obtains a reliable set of acoustical meas-

urements from the hydrophone data. Reliable stream of contacts needs to be maintained even at unfavor-

able bistatic geometry, particularly one that results in high bistatic reverberation in the CW signal.
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Figure 1.17: Example of beampattern illustrating wider beamwidth for CW signal of FCC= 2500 Hz
(lower frequency) than that for FM signal of FFM = 2800 Hz (higher frequency) impinging octave A of
BENS array at DOA 0, = 90'. The frequency Fsteer of array is steered at 2500 Hz and 2800 Hz respec-

tively, while azimuthal angle 6 steer of array is steered between -180' and 1800.
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Figure 1.18: Data flow diagram from sensed acoustical data to contact report.

The acoustical measurements are used with the navigational and environmental measurements to

obtain the derived measurements presented in Section 1.2.3. The derived measurements are subsequently

used to construct any variant of the bistatic measurement vector z [k], at specific j E t1, ..., 6}, ex-

pressed in (1.10) to (1.15). Finally, the set of bistatic measurement vectors represents the corresponding

variant of the contact report ZU) [k] = {zQ [k]}%2-k], at particular j E {1, ... , 6}, in (1.16). The data flow

diagram (DFD) from the sensed acoustical data to the contact report is depicted in Figure 1.18. The sonar

signal processing algorithm needs to be developed in this thesis to transform the data shown in the DFD.

In the context of this thesis, the following is offered as an explicit definition of sonar signal processing.

Definition 1.1: Sonar signal processing

The sonar signal processing algorithm processes the sensed acoustical or hydrophone data from

the passive receiver to any variant of the contact report - using essential signal processing

techniques, and utilizing new dual-waveformfusion to achieve reliable stream of contacts.

54

M M M

8

a

0 a 0

LN iviqational

Bistatic
mne a sutremfie n7t

*vector of mi
contact

cont'1 7t 1 C- I" o It

4D Bistatic
measurement
vector of mn[k]!

contact



Since the indirect blasts represent the sonar contacts originating from target, interferers, or clutter,

it is imperative to gate and associate the right bistatic measurement vectors to the appropriate tracks, and

estimate the corresponding state vectors expressed in the same form as (1.1). This can be performed us-

ing the probabilistic data association filter (PDAF) - implemented using probabilistic data association

(PDA) and extended Kalman filter (EKF) - in this thesis [13,24]. Several bistatic measurement vectors

can fall into the validation gate, and they are probabilistically weighted to obtain the measurement vector

for the EKF. For simplifying the discussion in this problem statement, only one bistatic measurement

vector z [k] is assumed present in the validation gate. Therefore, the problem statement is just going to

discuss in the context of z2[k] instead of the probabilistically weighted bistatic measurement vector.

Each track is then formed by a sequence of state estimates associated over pings. Example of a target

track is depicted by the magenta trajectory plotted in Figure 1.16(b). Several tracks are then compiled

into track report, which provides the situation awareness. The target tracking algorithm needs to be de-

veloped in this thesis to provide these reports using PDAF. Track management is necessary to automate

the algorithm fully by according track initiation, confirmation, maintenance, prioritization, and termina-

tion [13,24]. This equips the tracker with the ability to automatically handle appearing and disappearing

targets, and prioritize the tracks in the tactical scene. This also aids the AUV later to make unsupervised

decisions in adapting the survey path in real-time.

The acoustical measurements of the m* indirect blast ri[k], O[k], and Fm[k] are essentially

random processes with corresponding measurement uncertainties. These uncertainties are not fixed and

are dependent on the bistatic geometry. For example, the uncertainty of 6 [k] increases expectedly due

to the widening beamwidth when the m* contact enters the endfire of the receiver array [72,139]. The

navigational and environmental measurements highlighted in Figure 1.18 are also random processes with

corresponding measurement uncertainties. The acoustical, navigational, and environmental measurement

uncertainties are propagated to the derived measurements, and then to the bistatic measurement vector

z4 [k]. The bistatic measurement uncertainty is essentially a function of the underlying bistatic geome-

try, as well as acoustical, navigational, and environmental measurements with associated uncertainties.

The signal-to-noise power ratios (SNRs) of the FM and CW return signals for the m* indirect blast are

likewise not fixed and are dependent on the bistatic geometry. For example, the SNRs lower substantially

due to excessive reverberation when the m* contact comes between the active source and passive receiver

[62,63]. The SNR of the CW signal reduces considerably due to high reverberation when the m* contact

in the bistatic geometry presents a bistatic Doppler frequency shift that approaches that observed at bistat-

ic reverberation ridge [55,57,70,79]. Therefore, if the m*" contact ends up having high bistatic measure-

ment uncertainty and low SNRs, it is intuitively logical and acceptable to use a larger validation gate to
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increase the chance of gating z,( j[k] for data association in the target tracking algorithm. Conversely, if

the m* contact has low bistatic measurement uncertainty and high SNRs, smaller validation gate is need-

ed. In this thesis, the bistatic measurement uncertainty and SNRs can be computed using representative

models developed based on information theory and environmental acoustics respectively, which quantify

the pertinent information and environmental characteristics of the ma contact correspondingly. Infor-

mation theory can be used to explain the connection between the bistatic measurement uncertainty at the

output of the sonar signal processing algorithm, and the information construed from the hydrophone data

at the passive receiver. Environmental acoustics can be utilized to model the underwater acoustic propa-

gations, target scattering, and bottom-surface scattering of the FM and CW sonar pulse signals in bistatic

configuration. The details of these models are discussed in Section 1.2.5.3. The computations in these

models require the knowledge of the bistatic geometry. Since the true state vector of m* contact xtm[k],

expressed in the same form as (1.1), is never known tactically, the state estimate from the PDAF is used in

lieu of xtm[k]. Information and environmental adaptations can be applied to the target tracking algo-

rithm by adjusting the validation gate adaptively, in real-time, to achieve optimized bistatic sonar tracking

performance. Changing the validation gate is clearly equivalent to adjusting the local FOV for each con-

tact in the surveillance procedure. So in the context of this thesis, the following is offered as an explicit

definition of target tracking.

Definition 1.2: Target tracking

The target tracking algorithm automatically processes any variant of the contact report to the

abstracted data of track report - using essential information processing techniques, and

exploiting information and environmental adaptations to optimize bistatic sonar tracking

performance.

In this thesis, the surveillance procedure, acting as the perception, can be completely executed

and fully automated by the sonar signal processing and target tracking algorithms. The perception prob-

lem is arguably the toughest problem here. The sensed acoustical or hydrophone data of the surrounding

is ambiguous, partially observable, filled with interferers, and heavily cluttered. The surveillance proce-

dure needs to be designed to handle all these undesirable effects. In the context of this thesis, the follow-

ing is offered as an explicit definition of automatedperception.
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Definition 1.3: Automated perception

The automated perception is the surveillance procedure that automatically compresses the vast

sensed acoustical or hydrophone data from the passive receiver to the abstracted data of track

report that readily represents the situation awareness. The sequential execution of the sonar

signal processing algorithm with dual-waveform fusion, and target tracking algorithm with

information and environmental adaptations - in any variant of the contact report - automates this

procedure.

1.2.5.2 Perception-Driven Control

The perception-driven control is used to allow the AUV to make unsupervised decisions in adjusting the

survey path adaptively by controlling the vehicular motion, based on the situation awareness provided by

the automated perception. In this thesis, the control can be implemented using the reactive behavior-

based autonomy algorithm. At any one point in time, the AUV is operating in a particular behavioral

mode, namely deploy, search, interrogate, prosecute, return, or recover. In each mode, multiple autono-

mous behaviors can be active and competing for influence on the speed, heading, and depth decisions to

control the vehicular motion. Both the deploy and recover modes basically operate behind the scene by

commanding the AUV to move from the launch point to the fixed survey path, and then back to the re-

covery point respectively. By referring to the illustration in Figure 1.16(b), the AUV commences the mis-

sion in search mode by first moving in fixed survey path to sense for the entry of the rogue target. Upon

tracking the threat, the vehicle transits to interrogate mode to resolve the left-right ambiguity in the pas-

sive receiver. The AUV then adjusts the survey path of the vehicle adaptively in real-time to track and

trail the target in prosecute mode, using the track report from the automatedperception. When the threat

exits the region, the information is handed off to other platforms before the vehicle heads back to fixed

survey path in return mode.

The thesis concems the development of the prosecute behavior that adjusts the survey path of the

vehicle adaptively in real-time to maintain the target in the FOV for optimizing the bistatic sonar tracking

performance. This is done by varying the speed and heading at fixed depth to control the vehicular mo-

tion. No depth decision is considered for this behavior since the bistatic geometry in Figure 1.15 is two-

dimensional. In the most straightforward control formulation, the tracking performance is assumed opti-

mized by the explicit vehicular-motion objective derived based on heuristics. Examples of these heuristic

rules include controlling the AUV to keep the target at the broadside of the passive receiver, and to keep

the target at the broadside and closed-in range of the passive receiver. The assumption is that if the mo-
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tion objective is achieved, the bistatic sonar tracking performance will be optimized. These heuristic

rules - albeit intuitively logical - are shown to be sub-optimal in this thesis, since they lack the ability to

account for several intricate effects inherent in bistatic configuration. Due to the eccentricity of the equi-

TOA ambiguity ellipse in the bistatic geometry (see Figure 1.15), it is possible that having the target at the

broadside (and closed-in range) does not necessarily lower any variant of the bistatic measurement uncer-

tainty for the target-originated contact [33]. As discussed in Section 1.2.5.1, allowing the target to come

between the source and receiver results in excessive reverberation that lowers the SNRs of the FM and

CW return signals for the target-originated contact [62,63]. This occurs even for broadside (and closed-

in) target. Under some conditions, keeping the target at the broadside (and closed-in range) might lead

the receiver toward a scenario where the bistatic Doppler frequency shift approaches that observed at bi-

static reverberation ridge. The high reverberation is going to reduce the SNR of the CW signal consider-

ably [55,57,70]. Due to the complex scattering pattern of the target, having the target at the broadside

(and closed-in range) might also direct the receiver away from the best receiving target aspect. With all

the above constraints, together with a host of other constraints, it is extremely difficult to define a com-

prehensive set of heuristic rules for the prosecute behavior that optimizes the tracking performance. This

elicits the needs to formulate alternate adaptive control in the thesis.

Since the PDAF is used in this thesis to estimate the target state expressed in the form of (1.1),

the uncertainty about the probabilistic target state estimation process can be used directly to evaluate the

bistatic sonar tracking performance. A high estimation uncertainty is a measure of poor tracking perfor-

mance, while a low estimation uncertainty implies otherwise. The estimation uncertainty is related to the

entropy about the estimation process, which measures how much information any variant of the bistatic

measurement vector for the target-originated contact contributes to the estimation process. As more bi-

static measurements are obtained over several pings, the estimation entropy and therefore the estimation

uncertainty becomes smaller. Bistatic measurements at different receiver states produce different amounts

of entropy in the estimation process. Some receiver states yield more information in the bistatic meas-

urement for the estimation process, while some produce lesser information. The goal of this thesis is to

control the AUV to tow the receiver through a time-sequence of carefully selected receiver states that re-

sults in the highest amount of information about the target and the smallest possible estimation entropy

about the estimation process. The time-sequence of selected receiver states is the planned survey path

taken by the AUV. Therefore, a specific bistatic autonomous behavior in prosecute mode needs to be

developed in this thesis. This behavior then computes, in real-time, the explicit vehicular-motion objec-

tive for the AUV. The objective is calculated based on the perceptive objective. For a single active be-

havior, the adaptive control problem can be posed as an optimization problem that minimizes the estima-
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tion uncertainty, and consequently optimizes the bistatic sonar tracking performance, while at the same

time considers the vehicular dynamical restrictions and operational constraints.

As mentioned in Section 1.2.5.1, the bistatic measurement uncertainty and SNRs for the target-

originated contact quantify the pertinent information and environmental characteristics respectively.

These can be computed using the representative models developed based on information theory and envi-

ronmental acoustics. The details of these models are discussed in Section 1.2.5.3. The pivotal relation-

ships of the estimation uncertainty with the bistatic measurement uncertainty and SNRs are established

and adopted in this thesis. With these relationships, the adaptive control problem of minimizing the esti-

mation uncertainty for optimized tracking performance is equivalent to minimizing any variant of the bi-

static measurement uncertainty and maximizing the SNRs simultaneously. It is clear from Figure 1.18

that the bistatic measurement uncertainty is dependent on the underlying bistatic geometry, as well as

acoustical, navigational, and environmental measurements with associated uncertainties. Given the nature

of the measurements, these uncertainties are unavoidable and can sometimes be unacceptably large.

However, by minimizing the bistatic measurement uncertainty (that represents the inverse of the infor-

mation-theoretic reward or control objective), the optimization problem accounts for the uncertainties

from all these origins, and the solution is one that minimizes all these uncertainty effects. The SNRs of

the FM and CW return signals are also dependent on the underlying bistatic geometry, which determines

the way that the underwater acoustic propagations, target scattering, and bottom-surface scattering tran-

spire in the operating environment. By maximizing the SNRs (that represent the environmental-based

rewards or control objectives), the optimization problem considers these underwater acoustical phenome-

na, and the solution is one that maximizes the detection of the FM and CW signals. In other words, the

bistatic autonomous behavior controls the AUV by varying the speed and heading toward a receiver state

that provides the highest utility on the information and environmental reward surfaces at the next ping.

This is defining characteristic of the class of control formulated in this thesis. The formulation considers

not only the information-theoretic control, but also includes the environmental-based control. Mathemat-

ically, the optimized speed -r and heading Or are computed by maximizing the objective function, based

on information reward finformation reward(-) and environmental reward fenvironmentai reward(-), defined

over a decision space of the design speed v, and heading #r:

[Vr Or ] = arg max[ r finformation reward([ Vr r I fenvironmental reward([ Vr #r ]T }

s.t. [ vr #r ]T abiding to vehicular dynamical restrictions and operational constraints. (1.17)

where "arg max" stands for the argument of the maximum. The information and environmental rewards

can be easily computed from the representative models based on the predicted bistatic geometry - using
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the predicted source and receiver states, and the predicted target state estimate from the PDAF - as well

as the predicted acoustical, navigational, and environmental measurements with associated uncertainties

at the next ping. By increasing the forward-time horizon to look at K pings ahead (beyond the next ping),

the adaptive control becomes non-myopic and allows long-term effects to be accounted in the survey path

planning. Such control can be implemented in this thesis to optimize the future bistatic sonar tracking

performance. Therefore, in the context of this thesis, the following is offered as explicit definition of re-

active behavior-based autonomy.

Definition 1.4: Reactive behavior-based autonomy

The reactive behavior-based autonomy algorithm operates by transiting through different

behavioral modes in the fully autonomous surveillance mission, with multiple behaviors

competing for the speed, heading, and depth decisions in each mode to control the AUV motion.

Bistatic autonomous behavior in prosecute mode specifically executes a new non-myopic and

adaptive control for the vehicle that exploits predictive information and environmental rewards -

in any variant of the contact report - to optimize future bistatic sonar tracking performance.

With the perception-driven control, the AUV is able to achieve full autonomy now and it is clear

that the vehicle can operate independently in an intelligent fashion, thus removing the need for human

involvement in proprioceptive functions. Cognition is then achieved by integrating both the automated

perception and perception-driven control. The probabilistic target state estimation process in the auto-

mated perception, and the optimization process in the perception-driven control run in sequence and are

updated in real-time. In this thesis, collaborative control with other AUVs, if available, is not investigat-

ed. In the context of this thesis, the following is offered as explicit definition of perception-driven con-

trol.

Definition 1.5: Perception-driven control

The perception-driven control allows the A UV to make unsupervised decisions in adjusting the

survey path adaptively by controlling the vehicular motion, based on the situation awareness

provided by the automated perception. The adaptive control is implemented using the reactive

behavior-based autonomy algorithm with predictive information and environmental rewards - in

any variant of the contact report.
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1.2.5.3 Unified Model

Representative models need to be developed in this thesis to enable the information and environmental

adaptations in the target tracking algorithm, and to compute the predictive information and environmental

rewards in the reactive behavior-based autonomy algorithm. These models are formulated in this thesis

using information theory and environmental acoustics, based on the situation awareness provided by the

automated perception. The models are used to compute any variant of the bistatic measurement uncer-

tainty, and to compute the SNRs of the FM and CW return signals for the indirect blast contact. These

calculations can be used to quantify the pertinent information and environmental characteristics of the

contact respectively.

In Sections 1.2.5.1 and 1.2.5.2, the uncertainties about the acoustical, navigational, and environ-

mental measurements propagate to any variant of the bistatic measurement vector, based on the underly-

ing bistatic geometry and their corresponding measurements, and subsequently couples to the target state

estimate have been discussed. For the automated perception in Section 1.2.5.1, the acoustical measure-

ments of TOA ri and DOA 6; are estimated using the FM signal, while the acoustical measurement of

frequency Fj is estimated using the CW signal. For the perception-driven control in Section 1.2.5.2, these

acoustical measurements are calculated from the predicted bistatic geometries at the next ping to K pings

ahead. Throughout this thesis, the uncertainty about a measurement is assumed to be normally (or Gauss-

ian) distributed with associated standard deviation or variance. By denoting x as the measurement, Xtrue

as the true quantity, 02 as the variance of the uncertainty, and N(-) as the normal probability density

function (PDF), the measurement is represented as

x ~ N(Xtrue, 07)- (1.18)

The standard deviations of these acoustical measurement uncertainties can then be postulated as

on = frFM' SN FM)1 (1.19)

o-oi = fo(S ' SN6FM)M (1.20)

F = fF CW' SN6F cw (1.21)

where fx(-) represents the functional relationship for measurement x. Here, (i) STFM oc 1/FUm is related

to the TOA estimation resolution of the FM matched filter in the sonar signal processing algorithm for

given FM sonar pulse signal [98,138]; (ii) 6 8 fM is related to the beamwidth of the FM beamformer in the

sonar signal processing algorithm for given DOA 6Q, spatial weighting (such as Hanning, Hamming and
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many others [61]), and array specifications [72,139]; and (iii) SFCw oc 1/Tcw = 1/T, is related to the

frequency estimation resolution of the CW matched filter in the sonar signal processing algorithm for

given CW sonar pulse signal [98,138]. The SNRs of the FM and CW return signals for the indirect blast

contact, denoted SNRFM/cw, at the output of the matched filters can be calculated using the representative

model derived based on environmental acoustics. The explicit relationships in (1.19) to (1.21) needs to be

derived in this thesis, and these are achieved using information theory. Figure 1.19 illustrates the beam-

patterns obtained for the FM signal of FFM = 2800 Hz impinging octave A of the BENS array at different

DOAs 6. Here, the frequency Fsteer and azimuthal angle 6 steer of the array are steered at 2800 Hz and

between -180* and 1800 respectively. Clearly, the beamwidth varies according to the different DOAs 6;

- being narrowest at e, = 900 (broadside), and widening when 6L approaches 00 or 1800 (forward or aft

endfire respectively). Figure 1.20 shows the ambiguity functions obtained for different sonar pulse sig-

nals specified in Table 1.1. Evidently, the TOA and frequency estimation resolutions are very much de-

pendent on the shape of the ambiguity functions.

The manner at which the aforementioned acoustical measurement uncertainties, together with the

navigational and environmental measurement uncertainties, based on the underlying bistatic geometry and

their corresponding measurements, propagate to any variant of the bistatic measurement vector is investi-

gated in this thesis. For the automated perception, the navigational and environmental measurements are

taken from corresponding instrumentations. For the perception-driven control, the navigational and
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Figure 1. 19: Example of beampatterns illustrating varying beamwidth for FM signal of Fecw = 2800 Hz
impinging octave A of BENS array at different DOAs 0,. The frequency Fsteer and azimuthal angle

6 steer of array are steered at 2800 Hz and between -180* and 1800 respectively. The radial axis repre-
sents power of beam response in dB.
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Figure 1.20: Ambiguity functions of different sonar pulse signals, specified in Table 1.1, used to elucidate
TOA and frequency estimation resolutions. Intensities represent values of ambiguity function computed

at each TOA estimation error Ar and frequency estimation error AF.

environmental measurements are predicted at the next ping to K pings ahead. Figure 1.21 illustrates some

examples of the effects of different measurement uncertainties on one variant of bistatic measurement

vector z( 1) = [ Xt Yt ]T, which is also the Cartesian position of the target. The way at which the uncer-

tainty in any variant of the bistatic measurement vector couples to the target state estimate, expressed in

the same form as (1.1), is also examined here. Specifically, the information-theoretic model is formulated

in this thesis, and is necessary to compute any variant of the bistatic measurement uncertainty at the
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output of the sonar signal processing algorithm. For the automated perception, the computation in this

model requires the knowledge of the bistatic geometry - but with the state estimate from the target track-

ing algorithm used in lieu of the true state vector - as well as acoustical, navigational, and environmental

measurements with associated uncertainties. For the perception-driven control, the computation in this

model requires the knowledge of the predicted bistatic geometry - using the predicted source and receiver

states, and the predicted target state estimate from the target tracking algorithm - as well as the predicted

acoustical, navigational, and environmental measurements with associated uncertainties at the next ping

to K pings ahead. So in the context of this thesis, the following is offered as explicit definition of infor-

mation-theoretic model.
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Definition 1.6: Information-theoretic model

The information-theoretic model computes any variant of the bistatic measurement uncertainty, at

the output of the sonar signal processing algorithm, propagated from the acoustical,

navigational, and environmental measurement uncertainties, based on the underlying bistatic

geometry and their corresponding measurements. By using information theory, the acoustical

measurement uncertainties are dependent on the underlying estimation process in the sonar

signal processing algorithm, and the corresponding SNRs of the FM and CW return signals for

the indirect blast contact.

A representative model using environmental acoustics needs to be developed to compute the

SNRs of the FM and CW return signals for the indirect blast contact. For the automated perception, the

computation in this model requires the knowledge of the bistatic geometry - but with the state estimate

from the target tracking algorithm used in lieu of the true state vector. For the perception-driven control,

the computation in this model requires the knowledge of the predicted bistatic geometries - using the pre-

dicted source and receiver states, and the predicted target state estimates from the target tracking algo-

rithm - at the next ping to K pings ahead. Figure 1.22 illustrates how a particular FM or CW sonar pulse

signal of source level (SL) reaches the receiver as indirect blast in two parts, namely the echo and rever-

beration signals. The echo signal, received at an echo level (EL), is dependent on the transmission losses

(TLs) from the source/receiver to the target, denoted TLs/r, and the target scattering quantified by the bi-

static target strength (TS). The reverberation signal, received at a reverberation level (RL), is dependent

on the transmission losses (TLs) from the source/receiver to the bottom-surface scattering patch, denoted

TLsp/rp, and the bottom-surface scattering quantified by the bistatic bottom-surface target strength (BTS).

To detect the target, the receiver has to sense the echo signal in the presence of contending reverberation

and noise signals. The noise signal is received at a noise level (NL). Specifically, the environmental-

acoustic model is formulated in this thesis, and is necessary to compute the acoustical components - tran-

spiring in the operating environment - to predict the SNRs of the FM and CW return signals for the indi-

rect blast contact. Since the bistatic geometry in Figure 1.15 is two-dimensional, the SNRs need to be

depth-averaged to consider the propagations spanning across the water column. In the context of this the-

sis, the following is offered as explicit definition of environmental-acoustic model.
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Figure 1.22: Example illustrating FM or CW sonar pulse signal reaching receiver as indirect blast in two

parts, namely echo and reverberation signals.

Definition 1.7: Environmental-acoustic model

The environmental-acoustic model uses environmental acoustics to compute the acoustical

components, based on the underlying bistatic geometry, for predicting the SNRs of the FM and

CW return signals for the indirect blast contact.

The information-theoretic and environmental-acoustic models are needed to enable the infor-

mation and environmental adaptations in the target tracking algorithm, and to compute the predictive in-

formation and environmental rewards in the reactive behavior-based autonomy algorithm. These models

are used in the thesis to quantify the pertinent information and environmental characteristics of the indi-

rect blast contact respectively. With the explicit relationships postulated in (1.19) to (1.21), the effects of

the SNRs of the FM and CW return signals for the indirect blast contact are essentially embodied in the

acoustical measurement uncertainties, and subsequently in any variant of the bistatic measurement uncer-

tainty. This means that the environmental characteristics are enclosed in the information characteristics
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of the contact. By implementing the information adaptation in the target tracking algorithm, the envi-

ronmental adaptation is accounted simultaneously. Similarly, by computing the predictive information

reward in the reactive behavior-based autonomy algorithm, the predictive environmental reward is in-

cluded concurrently. Since the uncertainty about the probabilistic target state estimation process can re-

late with any variant of the bistatic measurement uncertainty using information theory, the explicit rela-

tionships in (1.19) to (1.21) are pivotal in encapsulating the effects of the SNRs in the estimation uncer-

tainty. These explicit relationships are used extensively in this thesis to set up the unified model, which

amalgamates the information-theoretic and environmental-acoustic models. Therefore, in the context of

this thesis, the following is offered as explicit definition of unified model.

Definition 1.8: Unified model

The unified model amalgamates both the information-theoretic and environmental-acoustic

models by using the explicit relationships that embodies the effects of the SNRs of the FM and CW

return signals for the indirect blast contact in the acoustical measurement uncertainties, and

subsequently in any variant of the bistatic measurement uncertainty.

1.3 Thesis Objectives

The purpose of the thesis work is to develop a fully autonomous and persistent bistatic ASW surveillance

solution - using active sources, AUVs, and passive receivers - for securing vital maritime ports, facilities,

and choke points in littoral waters from hostile moving underwater targets. Several enabling technolo-

gies, spanning across disciplines, are described in Definitions 1.1 to 1.8 of Section 1.2.5. The first objec-

tive of this thesis is to integrate these technologies into a system, called the integrated system, onboard

each AUV to allow them to work in tandem for improving the bistatic ASW surveillance solution. It is

not always clear where the separation of the automated perception (see Definition 1.3) and perception-

driven control (see Definition 1.5) lies in the application. In this thesis, the perception-driven control is

defined as the "process refinement" of the automatedperception. Therefore, the problem is formulated as

a closed-loop control system depicted in Figure 1.23. The mission-level objectives provide the reference

input to the system, while the automated perception on the feedback path provides the perceptive feed-

back in the form of abstracted data represented by track report. The perception-driven control, serving as

the controller on the feedforward path, deliberates the perceptive feedback against the reference input to

provide the AUV-motion decision in speed, heading, and depth. The decision is the controller action that
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drives the A UV motion, which is equivalent to the plant on the feedforward path, to the desired receiver

state that improves the next perceptive feedback, which is inferred from the newly sensed acoustical or

hydrophone data. The unified model (see Definition 1.8) is used to provide the information and environ-

mental adaptations to the automated perception, and the predictive information and environmental re-

wards to the perception-driven control. The model then represents the belief about the perceptive feed-

back. The intimate relationships between these technologies are examined in this thesis. The closed-loop

control system provides a new Integrated Perception, Modeling, and Control Paradigm for the bistatic

ASW surveillance solution using AUVs.

With the system formulated in Figure 1.23, the solution involves the development of novel meth-

ods for the AUVs to optimize the bistatic sonar tracking performance. This is carried out autonomously

and in real-time. Therefore, the second objective of the thesis work is to improve the tracking perfor-

mance directly at the output of the automatedperception. This is achieved by using the sonar signal pro-

cessing algorithm with dual-waveform fusion (see Definition 1.1), and target tracking algorithm with in-

formation and environmental adaptations (see Definition 1.2). The sonar signal processing algorithm

processes the sensed acoustical or hydrophone data from the passive receiver to any variant of the contact

report using essential signal processing techniques. Different variants of the contact report are considered

here to allow the solution in this thesis to be generalized. A reliable stream of contacts is maintained even

at unfavorable bistatic geometry, particularly one that results in high bistatic reverberation in the CW sig-

nal. This is done by using a new dual-waveform fusion developed in this thesis. The target tracking al-

gorithm automatically processes any variant of the contact report to the abstracted data of track report.

This is done by using essential information processing techniques that manage the contacts efficiently,

and automatically track the appearance and disappearance of target - in the presence of interferers and

clutter - within the tactical scene. The algorithm is modified from the standard implementation in this

thesis to support the dual-waveform fusion in the sonar signal processing algorithm. Information and

environmental adaptations are also applied to the algorithm by adjusting the validation gate adaptively, in

real-time, to achieve optimized bistatic sonar tracking performance. As the name implies, the automated

perception automates the surveillance procedure by compressing the vast sensed acoustical or hydrophone

data to the abstracted data of track report that readily represents the situation awareness. The automation

is one important characteristic that contributes to a fully autonomous system that the thesis aims to attain.

The third objective of the thesis work is to formulate the unified model that governs the autono-

mous adaptations. The bistatic sonar tracking performance is enhanced by adaptive processing in the au-

tomatedperception, and adaptive mobility by the perception-driven control. The uniped model amalgam-

ates both the information-theoretic and environmental-acoustic models (see Definitions 1.6 to and 1.7

respectively) using the explicit relationships postulated in (1.19) to (1.21). The information-theoretic
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model computes any variant of the bistatic measurement uncertainty propagated from the acoustical, nav-

igational, and environmental measurement uncertainties, based on the underlying bistatic geometry and

their corresponding measurements. By using information theory, the explicit relationships in (1.19) to

(1.21) are derived in this thesis - revealing that the acoustical measurement uncertainties are dependent

on the underlying estimation process in the sonar signal processing algorithm, and the corresponding

SNRs of the FM and CW return signals for the indirect blast contact. The environmental-acoustic model

uses environmental acoustics to compute the acoustical components, based on the underlying bistatic ge-

ometry, for predicting these SNRs for the explicit relationships in (1.19) to (1.21). Since the bistatic ge-

ometry in Figure 1.15 is two-dimensional, the SNRs are depth-averaged by considering the propagations

spanning across the water column.

The fourth andfinal objective of this thesis is to devise a control strategy that moves the AUV to

a desired receiver state that optimizes the bistatic sonar tracking performance. This is accomplished by

using the perception-driven control to allow the AUV to make unsupervised decisions in adjusting the

survey path adaptively by controlling the vehicular motion, based on the situation awareness provided by

the automatedperception. The adaptive control is implemented using the reactive behavior-based auton-

omy algorithm with predictive information and environmental rewards (see Definition 1.4). The algo-

rithm operates by transiting through different behavioral modes in the fully autonomous surveillance mis-

sion, with multiple behaviors competing for the speed, heading, and depth decisions in each mode to con-

trol the A UV motion. It is capable of commanding the AUV from fixed survey path in search mode to

adaptive survey path in prosecute mode upon tracking the target. The thesis then develops a specific bi-

static autonomous behavior in prosecute mode that executes, in real-time, a new non-myopic and adaptive

control for the vehicle. This is done by exploiting the predictive information and environmental rewards

to improve the future bistatic sonar tracking performance by minimizing the predicted estimation uncer-

tainty. This provides a convenient and theoretically elegant integration with the probabilistic target state

estimation process in the target tracking algorithm. The predictive rewards are computed based on the

predicted bistatic geometries, as well as predicted acoustical, navigational, and environmental measure-

ments with associated uncertainties, and can operate on any variant of the contact report. The predicted

bistatic geometries are established using the future source and receiver states, and the future target states

predicted from the track report. This is defining characteristic of the class of control formulated in this

thesis. The formulation considers not only the information-theoretic control, but also includes the envi-

ronmental-based control.

Although innumerable efforts have been expended in coordinating and processing the experi-

mental data from numerous bistatic assets in both GLINT 2009 and 2010 experiments, they are not be

discussed here since the focus of the thesis is on the theoretical aspect of the bistatic ASW surveillance
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solution. Interested reader can refer to the planning instructions of the experiments [67,68] for glimpse on

the type of experimental data collected.

1.4 Dissertation Roadmap

With the thesis objectives given in Section 1.3, the dissertation is organized as shown in Figure 1.24. The

introduction to the thesis is provided here in Chapter 1, where the motivation of the problem is first pre-

sented. This problem is then described by providing the scope for the bistatic assets and operating envi-

ronment, and highlighting the different variants of the contact reports used to generalize the solution. A

sneak preview of the solution is subsequently presented, before stating the problem formally. The thesis

objectives are then provided, with the dissertation roadmap presented here in this section. With the prob-

lem described in this chapter, a literature review of the related work, that covers the multifaceted disci-

plines given in Definitions 1.1 to 1.8, are included in Chapter 2. The thesis contributions are furnished

concurrently for immediate comparative analysis with the related work.

The primary contributions of this thesis are contained in Chapter 3 to Chapter 6, and they address

the four broad thesis objectives listed out in Section 1.3. The overview of the solution for this thesis is

presented in Chapter 3, by providing the architecture of the Integrated Perception, Modeling, and Control

Paradigm for each AUV. The specific details in the architecture are then described in Chapter 4 to Chap-

ter 6. The automatedperception, using the sonar signal processing and target tracking algorithms, is dis-

cussed in Chapter 4. The unified model is formulated in Chapter 5 by amalgamating the information-

theoretic and environmental-acoustic models. The explicit relationships that bind both models are also

derived. The data from the GLINT 2009 and 2010 experiments are used to validate the automated per-

ception and unified model in various sections of Chapter 4 and Chapter 5 respectively. The perception-

driven control, implemented using the reactive behavior-based autonomy algorithm, is then presented in

Chapter 6. The synthetic data are used to exemplify the perception-driven control, and subsequently

demonstrate the workings of the entire integrated system.

The conclusion to this thesis is provided in Chapter 7 to summarize the work and contributions,

and recommend the future work. The detailed mathematical formulations are included in the appendices.
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Chapter 2

Related Work and Thesis Contributions

The problem of a fully autonomous and persistent bistatic ASW surveillance using AUVs has several re-

lated areas of research. The tasks of sonar signal processing and target tracking have been studied exten-

sively in many different contexts. Specific works in the multi/bistatic sonar context include [41,69,89,91]

for sonar signal processing, and [25,34,35,37,39,40,42,46,49-51,53,64,65,77,79-82,90,91,97,144] for tar-

get tracking. Performance and uncertainty analysis have been explored in [32,33,35,90,91,99,116] to

evaluate the multi/bistatic sonar tracking, and these works are vital to the formulation of the information-

theoretic model in this thesis. The manner at which the underwater acoustic signal transmits in the operat-

ing environment, and scatters at the target and bottom-surface scattering patch have also been examined

in [38,45,55,57,62,63,70,79,90,91,117] - either partially or fully to build up an environmental-acoustic

model for the multi/bistatic sonar application. Traditionally, these works have been primarily limited to

preplanned fixed surveillance missions, where the assets were either stationary or moving along non-

adaptive, fixed survey paths to solve the multi/bistatic sonar problem. The texts in

[55,60,73,83,84,90,91,102,103,128,129] provide several examples to source/receiver management that

elicit the development of adaptive mobility for the AUVs in this thesis. This adaptive mobility is obvi-

ously realized in perception-driven control where non-preplanned maneuvering decisions are made. It is

clear that these research areas need to be integrated together into an integrated system to achieve the solu-

tion in this thesis.

These related areas of research are described in detail in the following sections. The integrated

system is first presented in Section 2.1. This is then followed by the sonar signal processing and target

tracking given in Sections 2.2 and 2.3 respectively. The performance and uncertainty analysis are pro-

vided in Section 2.4, together with the environmental-acoustic model furnished in Section 2.5. The

source/receiver management is subsequently discussed in Section 2.6. In addition to the numerous litera-

tures cited in the previous paragraph above, several additional and notable works outside the scope of

multi/bistatic sonar problem are also included in these sections to draw lessons from their solutions.

These citations are not exhaustive, but have been stated here to introduce the related work that most influ-

ence the thesis. The primary contributions of this thesis are also provided in these sections for immediate
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comparative analysis, particularly to highlight their differences. Such comparisons then place the thesis

work very well in the context of previous areas of research.

2.1 Integrated System

The problem of a fully autonomous and persistent bistatic ASW surveillance entails the integration of

several enabling technologies into a system onboard each AUV to allow them to work in tandem. Several

pieces of related work are listed in Table 2.1 with solutions summarized in the context of the enabling

technologies described in Definitions 1.1, 1.2, and 1.5 to 1.7 of Section 1.2.5. The primary contribution

of this thesis is listed in the last row of the table for comparison.

The related work clearly shows how others approached their problems and developed their sys-

tems - in either entirely different or similar domain. Eickstedt et al. [47,48] examined the problem with

USV in simulated passive sonar ranging application. The DOA measurements were simulated from the

communicated GPS information of the target. The control strategy was heuristic-based and intuitively

logical. However, this form of control is shown to be sub-optimal since it lacks the ability to account for

several intricate effects inherent in bistatic configuration. More details are revealed in Section 6.1.4.1

later. Grocholsky et al. [58,59], Ryan et al. [114,115], and Ponda [110] studied the problem in different

operating environment with unmanned aerial vehicle (UAV) or unmanned grounded vehicle (UGV) in

passive ranging context. The control strategies were based entirely on information theory using a variety

of different objective functions. Page [107] extended these works to an active monostatic application

with UAV or UGV. In all the above works, data association was not implemented in target tracking.

Therefore, the solutions offered are not realistic as the filtering and prediction in target tracking would

not be able to cope with the presence of interferers, clutter, and missing target. The following pieces of

work by NURC [60,73,83,84] then examined the problem with AUV in active bistatic sonar context -

similar to the problem that the thesis is solving. A variety of control strategies was discussed, namely

based on heuristics as presented by Hamilton et al. [60], information theory as demonstrated by Kemna et

al. [73], or environmental acoustics as reported by LePage et al. [83,84]. The environmental-based con-

trol - where underwater acoustical effects were considered - provided a different approach to solving the

control problem. In all the above works by NURC [60,73,83,84], only the FM sonar pulse signal was

considered.

Evidently, the solutions provided by the related work in Table 2.1 have not completely addressed

the problem considered in the thesis. The thesis work here extends the solutions of these works to equip
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Related work & Sonar Target tracking - Target tracking - Information- Environmental-
thesis Application signal data filtering & Perception-driven theoretic acoustic

contribution processing association prediction contrl model model

Eickstedt et a. USV Heuristic-based
[47,481 Simulated passive sonar control

Grocholsky et a. UAV/UGV
[58,59] Generic passive

Ryan et a.
[114,115] UAV 

Information-theoretic

Ponda Passive EO control

[110]

Page UAV/UGV
[107] Generic active monostatic

Hamilton et al. Heuristic-based
[601 control X

(using only FM signal)

Kemna et a AUV Only FM Only FM Information-theoretic
[73] Active bistatic sonar active tracking control

processmg (using only FM signal)

LePage et al. Environmental-based
[83,84] a control

(using only FM signal)

Both Both Information-theoretic
Thesis work AUV FM & CW FM & CW & environmental-based

here Active bistatic sonar active control
_ processing (using both Mtracking ctrol

processing (using both FM & CW signals) __________

denotes that particular technologies is not implemented

denotes that particular technologies is implemented

UAV - unmanned aerial vehicle UGV - unmanned grounded vehicle EO - electro-optics

Note: Without data association, the problem assumes that no interferers, clutter, and missing target is present - which is not realistic in practice

Table 2.1: Integrated system - Related work and thesis contribution.
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the system with the ability to use both the FM and CW sonar pulse signals. Therefore, the enabling tech-

nologies in the integrated system are modified to handle the additional CW signal. The thesis work also

extends the control strategy to exploit both information theory and environmental acoustics concurrently,

with the simultaneous use of the FM and CW signals. This then requires the setup of both the infor-

mation-theoretic and environmental-acoustic models. The system is then formulated as a closed-loop

control system that allowed all the enabling technologies to work in tandem. Clearly, this closed-loop

control system provides a new Integrated Perception, Modeling, and Control Paradigm to enhance and

achieve a fully autonomous and persistent bistatic ASW surveillance solution using AUVs. The details of

this new paradigm are provided in Chapter 3.

2.2 Sonar Signal Processing

The development of sonar signal processing in the context of active monostatic sonar applications has a

rich history amounting to decades of research. The numerous related work in monostatic can be readily

extended to bistatic. For a given sonar pulse signal transmitted from the source, sonar signal processing

is employed to estimate the TOA, DOA, and frequency of the indirect blast using essential signal pro-

cessing techniques. As with most sonar signal processing methods, a beamformer is used to estimate the

DOA of the indirect blast. There are numerous texts such as [72,139] dedicated to the in-depth discussion

of the theory of various beamforming techniques. The matched filter is then employed to estimate the

TOA and frequency of the indirect blast. The literatures in [98,134,138] provide excellent resources to

study this topic further. For active sonar applications, reverberation is a main source of interference that

often makes the detection of the indirect blast exceedingly difficult. In monostatic configuration, rever-

beration is due to backscatter, while in bistatic configuration, reverberation can be due to forward scatter

and out-of-plane scatter [136]. The variability of reverberation, together with the variability of noise

background, produces a test statistic without a known distribution, thereby making it impossible to apply

directly a detector threshold for a desired false alarm rate. For this reason, these variabilities have to be

estimated first and then removed using a normalization process. The combined usage of the normaliza-

tion and detector thresholding with fixed threshold is commonly known as a constant false alarm rate

(CFAR) detector. This has been discussed in numerous literatures such as [3,9,10,98,101,104]. The indi-

rect blasts that pass the detector thresholding test are then extracted out, with the corresponding TOAs,

DOAs, and frequencies used to construct any variant of the contact report. These signal processing tech-

niques have been applied together in the works by Baldacci and Haralabus [11,12] , de Theije and Groen
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[41], and Hughes and Micheli [69]. The thesis work here adapts these works and improves them, so that

the data transformation depicted by the DFD in Figure 1.18 is implemented.

Since both the FM and CW sonar pulse signals are assumed to be transmitted simultaneously

from the active source, two separate FM and CW processing chains are developed from the different

modules discussed in the previous paragraph to process these two return signals for the indirect blasts

concurrently. The TOAs and DOAs of the extracted FM peaks for the indirect blasts are estimated from

the FM processing, while the TOAs, DOAs, and frequencies of the extracted CW peaks for the indirect

blasts are estimated from the CW processing. These extracted peaks from the indirect blasts are originat-

ed from target, interferers, or clutter. It is evident from [55,57,70,79] that the CW peak is very sensitive

and performs poorly at unfavorable bistatic geometry, particularly one that results in high bistatic rever-

beration and consequently in low CW SNR. The FM peak is more resilient as the FM SNR might not be

so adversely affected by this reverberation [55,57,70,79]. It is then probable that the CW SNR falls way

below the detector threshold for CW processing, resulting in the corresponding CW peak not being ex-

tracted. Consequently, the CW peak vanishes even though the corresponding FM peak is still present.

This is an important consideration when fusing the information from the extracted FM and CW peaks.

The fusion can be performed at the output of target tracking such as that discussed by Daun et al.

[39,40,46], or at the output of FM and CW processing such as that presented by Hughes and Micheli [69].

These two pieces of related work on dual-waveform fusion in bistatic sonar application are summarized in

Table 2.2, with the primary contribution of the thesis listed in the last column of the table for comparison.

In the work by Daun et al. [39,40,46], two separate FM and CW trackers were used to track the

extracted FM and CW peaks independently. The use of an additional tracker then incurred additional

computational load. This is not an issue for a ship-borne system considered in [39,40,46], but is definite-

ly unattractive for an AUV-borne system considered in the thesis. The fusion was then carried out at the

output of target tracking, adopting a more complex fusion strategy implemented by track-to-track asso-

ciation. From Section 1.2.5.1, it is clear that the each FM peak possesses the undesirable coupling effect

of the estimation errors in both the TOA and frequency. The TOAs from the FM peaks were corrected

using the frequencies (or equivalently Doppler frequency shifts) estimated from the prior target state es-

timates in target tracking. Such TOA correction has potential pitfalls, since an incorrectly initiated target

state estimate can lead to subsequent wrong TOA correction in the FM peak. Nonetheless, the merit of

this fusion strategy is that even when the CW peaks vanish at unfavorable bistatic geometries, the corre-

sponding FM peaks are still available to ensure track continuity.

In the work by Hughes and Micheli [69], the fusion was carried out at the output of FM and CW

processing, resulting in the need for only one tracker. The fusion strategy was devised such that the
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Rte corbo &Daun et al. [39,40,46] Hughes & Micheli [69] Thesis work here

Location of fusion Output of Output of Output of
target tracking FM & CW processing FM & CW processing

FM: TOA & DOA FM: TOA & DOA FM: TOA & DOA

etated FMparametes CW: TOA, DOA, & CW: TOA, DOA, & CW: TOA, DOA, &
frequency frequency frequency

Fusion strategy Track-to-track association Using CW peak to search Using FM peak to search
for FM peak for CW peak

Format of TOA & DOA from FM peak TOA & DOA from FM peak

bistatic measurement Not applicable with with
frequency from CW peak frequency from CW peak

Correction of TOA in Using frequency estimated Using frequency of
extracted FM peak from Not mentioned matched CW peak

prior target state estimate

2
Number of trackers (separate & independent 1

FM & CW trackers)

Table 2.2: Dual-waveform fusion - Related work and thesis contribution.

extracted CW peaks were used to search for matching extracted FM peaks. The sets of TOA and DOA

measurements were obtained from the matched FM peaks, while the set of frequency measurements was

obtained from the initiating CW peaks. The set of bistatic measurement were then constructed similar to

the discussion given in Section 1.2.3. However, such fusion strategy suffers from two main drawbacks.

From the results in Section 4.1.4 later (see Figures 4.7 and 4.8) and the observations by Hughes and

Micheli [69], there is significantly lesser number of CW peaks extracted than the FM peaks. This implies

that there is higher chance of missing valid detections if CW peaks are used to initiate searches. Moreo-

ver, the CW peaks are unreliable at times and are likely to vanish due to unfavorable bistatic geometries.

It is then probable that the CW peaks might not exist to initiate searches to produce the TOA, DOA and

frequency measurements, and consequently the bistatic measurements, even when the corresponding FM

peaks are present. With the prolonged disappearance of the bistatic measurements, it is probable that ear-

ly track termination might occur.

In the thesis work here, a new dual-waveform fusion of the extracted FM and CW peaks is devel-

oped that adapts and modifies the work by Hughes and Micheli [69], and yet provides the reliability simi-

lar to that observed by Daun et al. [39,40,46]. The fusion strategy is devised such that the FM peaks are

used to search for matching CW peaks. The sets of TOA and DOA measurements are obtained from the

initiating FM peaks, while the set of frequency measurements is obtained from the matched CW peaks.
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By following through the discussion in Section 1.2.3, the set of bistatic measurements are obtained in

(1.16). Since there is significantly more FM peaks than the CW peaks, there is lower chance of missing

valid detections when FM peaks are used to initiate searches. This allows the tracks in target tracking to

be better maintained and continued, which eventually helps in improving the bistatic sonar tracking per-

formance. Although more false alarms are created, they are easily removed downstream by target track-

ing. In addition, the FM peaks are more resilient than the CW peaks in unfavorable bistatic geometries,

and are readily available to initiate searches for matching CW peaks. With such fusion strategy, the TOA

and DOA measurements, and consequently the bistatic measurements, are always reliably produced. If

the CW peaks are present, the frequency measurements are included in tracking and used to correct the

respective TOA measurements. If the CW peaks are missing, the bistatic measurements are still reliably

produced to ensure that tracking is still reliably maintained. Therefore, with this new dual-waveform fu-

sion, the complementary and desirable features of the FM and CW signals are fully exploited. The utili-

zation of both FM (which is Doppler resilient with high pulse compression ability) and CW (which is

Doppler sensitive with low pulse compression ability) signals increases the amount of information to ac-

curately localize the target and quickly infer the velocity. At the same time, a reliable stream of contacts

(with good TOA, DOA , and frequency measurements, and therefore good bistatic measurements) is

maintained even at unfavorable bistatic geometry, particularly one that results in high bistatic reverbera-

tion in the CW signal.

The details of sonar signal processing are provided in Section 4.1, with the specific discussion of

the dual-waveform fusion furnished in Section 4.1.2. Part of the thesis work here is also reported in

[89,91].

2.3 Target Tracking

The development of target tracking also has rich history in numerous contexts ranging from passive, ac-

tive monostatic, active bistatic, to active multistatic applications. Specific examples in active mul-

ti/bistatic sonar tracking include [25,34,35,37,39,40,42,46,49-51,53,64,65,77,79-82,97,144], and this list

is by no means exhaustive. The task of target tracking can be categorically divided into three sub-tasks:

they are track management, data association, and filtering and prediction. There are numerous standard

texts such as [13,24,112,124] that examined a plethora of techniques for each sub-task.

The track management plays an extremely important role in handling the track initiation, confir-

mation, maintenance, and termination. This sub-task allows target tracking to continuously handle ap-

pearing and disappearing targets, and prioritize the tracks in the tactical scene. The track management
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can be broadly segregated into two popular approaches: the logic-based approach similar to that described

by Coraluppi and Grimmett [37]; and the score-based approach akin to that presented by Blackman and

Popoli [24]. The former approach operates by counting the number of associations for each track over

time, and using that as a criterion to ascertain whether to confirm or terminate the track. The latter ap-

proach operates by computing the track score for each track accumulated over time, and using the score to

determine whether to confirm or terminate the track. It can be shown that the track score is eventually

dependent on the cumulated effect of the SNRs of the associated bistatic measurements over time. This

implies that a track with higher SNRs in the associated bistatic measurements has higher track score than

one with lower SNRs. The logic-based approach from [37] is adapted in this thesis, because it is easier to

envisage the track management using this approach, as well as to determine the track at which the unsu-

pervised decision-making process acts upon for perception-driven control.

For the data association, the nearest neighbor association (NNA) and strongest neighbor associa-

tion (SNA) [13,24] are most easily implemented. The idea behind these association methods is simple.

The nearest validated bistatic measurement to the prior bistatic measurement in the validation gate or the

strongest validated bistatic measurement in the validation gate is associated for use, respectively, in the

filtering andprediction. However, for a highly cluttered environment with numerous false alarms, such

association methods are not suitable since it is probably that several other validated bistatic measurements

in the validation gate are discarded. The probabilistic data association (PDA) [13,24] provides a more

optimal approach where a probabilistically weighted sum of all the validated bistatic measurements is

used instead. The implementation of the PDA is sufficient to achieve the tracking objective for this thesis

because multiple targets can still be tracked as long as their corresponding bistatic measurements in N-

dimensional vector space are not close to one another. If tracking is required for multiple targets with

closely-spaced bistatic measurements, the joint PDA (JPDA) and multiple hypotheses tracking (MHT)

[13,24] are possible considerations. These are not examined in this thesis, but they can be easily utilized

if required.

The sub-task of the filtering and prediction is commonly implemented using a recursive non-

linear Bayesian filter (BF) kernel. Implementation examples include the approximate grid-based method

[124], Monte-Carlo method (or particle filter (PF)) [7,112], Gaussian-mixture method (or Gaussian-sum

filter (GSF)) [23,121], or the ubiquitous extended Kalman filter (EKF) [13,24,35,37,82]. The initial prior

and posterior distributions of the target state estimate are generally not widely spread. As the

AUV/receiver moves through the operating environment and tracks the target, it produces decreasing pri-

or and posterior distributions, leading to convex and unimodal distributions. In addition, the use of per-

ception-driven control keeps these distributions intact. Therefore, the use of EKF suffices in most practi-
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cal situations. The combined usage of the PDA and EKF then results in the probabilistic data association

filter (PDAF) that performs the probabilistic target state estimation process.

The information processing techniques of track management, data association, and filtering and

prediction are then put together in this thesis for target tracking to track the appearance and disappearance

of target automatically - in the presence of interferers and clutter - within the tactical scene. In this the-

sis, the bistatic Doppler frequency shift is used for tracking. Although the Doppler frequency shift has

been well-understood and utilized in radar, passive sonar, and active monostatic sonar tracking, the appli-

cation of bistatic Doppler frequency shift in active bistatic sonar tracking was only first reported by Lang

and Hayes [82], and then subsequently presented by Coraluppi et al. [35]. These two papers have been

primarily focused on demonstrating the use of the filtering andprediction on synthetic data. In the papers

by Daun et al. [39,40,46] after that, the application of bistatic Doppler frequency shift was extended to

include the data association for tracking experimental data collected out at-sea. In the thesis work here,

the bistatic Doppler frequency shift is provided in a form of the frequency measurement obtained from the

dual-waveform fusion in sonar signal processing. Modifications are therefore carried out in target track-

ing to support the dual-waveform fusion implemented here.

As described in Section 1.2.5.1, it is intuitively logical and acceptable to use a larger validation

gate to increase the chance of gating the bistatic measurement of an indirect blast contact with high meas-

urement uncertainty and low SNR, and vice versa. As the contact moves in the tactical scene, it is clear

that the underlying bistatic measurement uncertainty and SNR fluctuate with the varying bistatic geome-

try. Therefore, the tracker settings that define the validation gate need to be adjusted in response to the

moving contact. In the context of multi/bistatic sonar tracking, Coraluppi et al. [35,37], and Lang and

Hayes [82] adopted fixed settings in their implementation. However, such approach implies that different

fixed settings would be required to optimize the tracking performance whenever the tracking scenario

experiences significant information and environmental fluctuations. Different fixed tracker settings can

be manually applied for different tracking scenarios. In the problem examined in this thesis, it is not pos-

sible for the tracker settings to be manually redefined on the fly - particularly by a manned human opera-

tor. Therefore, the use of variable tracker settings is imperative and has been suggested by Blackman and

Popoli [24], and Kurien [78] for radar tracking application. Specifically, the explicit relationships in

(1.19) to (1.21) were used. The idea of adaptive setting, in the context of multi/bistatic sonar tracking,

has been recently discussed by Daun et al. [39,40,46], where the probability of detection was adjusted

adaptively to account for poorer CW detection in the presence of high contending bistatic reverberation.

In this thesis, information and environmental adaptations are similarly used to furnish the adaptive track-

er settings autonomously in real time. These adaptations are computed using the unied model, based on
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Related work & Coraluppi et a. [35,37], & Blackman & Popoli [241, & Daun eta!. [39,40,46] Thesis work here

tri Lang & Hayes [82] Kurien [78]

Multi/bistatic sonar Multi/bistatic sonar Bistatic sonar
Applications tracking Radar tracking tracking tracking

Tracker settings Fixed Adaptive Adaptive Adaptive

Table 2.3: Information and environmental adaptations - Related work and thesis contribution.

the belief about the pertinent information and environmental characteristics of the indirect blast contact.

With these adaptations, the PDAF presented earlier becomes the adaptive PDAF. The aforementioned

related work and the primary contribution of this thesis are tabulated in Table 2.3.

The details of target tracking are provided in Section 4.2, with the specific discussion of the in-

formation and environmental adaptations furnished in Section 4.2.6. Part of the thesis work here is also

reported in [90,91].

2.4 Performance and Uncertainty Analysis

Since the PDAF is used in this thesis to estimate the target state expressed in the form of (1.1), the uncer-

tainty about the probabilistic target state estimation process can be used directly to evaluate the bistatic

sonar tracking performance. A high estimation uncertainty is a measure of poor tracking performance,

while a low estimation uncertainty implies otherwise. Several performance metrics can be used to quanti-

fy this estimation uncertainty in target tracking. The material by Page [107] provides a good review of

some popular metrics. Examples include: (i) the target state estimation covariance matrix (or state covar-

iance matrix for short); (ii) the Cramdr-Rao lower bound (CRLB) matrix (which is the CRLB of the state

covariance matrix); (iii) the Fisher information matrix (FIM) (which is the inverse of the CRLB matrix);

(iv) the Shannon information (or inversely the Shannon entropy) of the probability density function (PDF)

of the target state estimate; (v) the mutual information relating the current FIM to previous FIM; and oth-

ers. In this thesis, the state covariance matrix, CRLB matrix, and FIM are used. Using these performance

metrics are intuitive, since the square-root traces of the state covariance matrix and CRLB matrix give the

root-mean square (RMS) estimation error (RMSE) and the CRLB of the RMSE, respectively. The lower

bound is used to give an indication of the performance limits. A novel and simple derivation of the CRLB

matrix for discrete-time non-linear filtering was first developed by Tichavskf et al. [133]. This Riccati-
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like recursive computation of the CRLB matrix [133] was nicely analyzed in the text by Ristic et al.

[112]. Both Petsios et al. [109] and Van Trees et al. [140] then applied the computation of the CRLB ma-

trix in the multi/bistatic radar context. The recursive computation clearly reveals the pivotal relationship

of the CRLB matrix with the bistatic measurement uncertainty, and measures how much information the

bistatic measurement contributes to the estimation process. As more bistatic measurements are obtained

over several pings, the CRLB matrix and therefore the CRLB RMSE change. Bistatic measurement with

small measurement uncertainty yields more information for the estimation process, while that with large

measurement uncertainty produces lesser information. This pivotal relationship is examined further in

Section 4.2.5. In this thesis, the optimality of the bistatic sonar tracking performance is then defined with

respect to these performance metrics. These metrics are then used to represent the utility values for per-

ception-driven control.

The bistatic measurement uncertainty has mainly been studied in the context of the target locali-

zation accuracy, which is the uncertainty of the bistatic measurement for z (1 = [ Xt yt ]T given in (1.10).

Some examples of the effects of different measurement uncertainties on the target localization accuracy

are illustrated in Figure 1.21. In the work by Farina and Hanle [52], the effects of the uncertainties in the

bistatic range r, + rr (see Figure 1.15) and DOA measurements on the bistatic radar localization accuracy

were studied. The work by Sandys-Wunsch and Hazen [116] examined the effect of the receiver position

uncertainty on the localization accuracy, while the work by McIntyre et al. [99] considers the additional

effect of the source position uncertainty - both in multistatic sonar context. Recently, the papers by

Coraluppi et al. [32,33,35] presented comprehensive analysis of the uncertainties in the TOA and DOA

measurements, navigational measurements of source and receiver, and underwater sound speed measure-

ment on the bistatic sonar localization accuracy. The derivations in [32,33,35] then provide excellent re-

sources for this thesis to consider the propagation effects of these various sources of measurement uncer-

tainties on any variant of the bistatic measurement given in (1.10) to (1.15). The details of the propaga-

tion effects are furnished in Section 5.1.2.1 and Appendix B. The DFD in Figure 1.18 can also be used to

explain the propagation of these measurement uncertainties visually. This development then forms the

backbone for the information-theoretic model formulated in this thesis, which provides the belief about

the pertinent information characteristic of the indirect blast contact. This belief then allows the infor-

mation adaptation in target tracking and the predictive information reward in perception-driven control to

be computed.

The uncertainties in the acoustical measurements, specifically the TOA, DOA, and frequency

measurements, are functions of the underlying estimation process in sonar signal processing, and the cor-

responding SNRs of the FM and CW return signals at which these acoustical measurements are obtained.

These functional relationships have been postulated by the explicit relationships in (1.19) to (1.21). It
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follows from [15,24,30,75,76,78,145] that these relationships are expressed by the well-known Woodward

relations

or oC 3rFM/VSNRFM, (2.1)

O, oc 86fM/VSNRFM (2.2)

CF, oc 5FcW/VSNRCw, (2.3)

for high SNR indirect blast contact. For low SNR indirect blast contact, the alternate relations are ob-

tained with slight variations [15,75,76]

oT oc rFM1SNRFM + 1/SNRFM, (2.4)

o 0 OFMVSNRFM +1/SNRFM , (2.5)

oFi C SFcwVSNRcw + 1/SNRcw. (2.6)

These relations are validated in this thesis based on the implemented sonar signal processing by adapting

from the related work by Dogandzi and Nehorai [44], and Van Trees [138,139]. Specifically, the uncer-

tainties in the acoustical measurements are considered jointly and then derived using the Cramdr-Rao

lower bound (CRLB). The detailed expressions of the Woodward and alternate relations are given in Sec-

tion 5.1.2.2, and the in-depth formulations are furnished in Appendix C.

The SNRs of the FM and CW return signals for the indirect blast contact in the Woodward rela-

tions of (2.1) to (2.3) and the alternate relations of (2.4) to (2.6) are predicted by the environmental-

acoustic model. Since the acoustical measurement uncertainties in these relations are propagated to any

variant of the bistatic measurement uncertainties mentioned earlier in the information-theoretic model, it

is clear that these relations, or more generally the explicit relationships in (1.19) to (1.21), are used to

amalgamate the information-theoretic and environmental-acoustic models to the unfied model. There-

fore, the information adaptation in target tracking embodies the environmental adaptation, and the predic-

tive information reward in perception-driven control encloses the predictive environmental reward. The

concept of this unified model is also reported in [90,91].

2.5 Environmental-Acoustic Model

The SNRs of the FM and CW return signals for the indirect blast contact in the explicit relationships of

(1.19) to (1.21) are predicted by the environmental-acoustic model. This model is vital in providing the
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belief about the pertinent environmental characteristic of the indirect blast contact. This belief then al-

lows the environmental adaptation in target tracking and the predictive environmental reward in percep-

tion-driven control to be computed. To implement an exceptionally accurate model is non-trivial, given

the complexity of the underwater acoustic environment. Even if high fidelity model is attempted, it is

usually the case that the model input parameters are not known to the degree necessary to arrive at such

high fidelity solution. As such, the approach undertaken in this thesis is one that captures the gross fea-

tures using simplified physics-based method. To predict these SNRs, the acoustical components transpir-

ing in the operating environment as shown in Figure 1.22 are computed. Numerous open literatures are

available to discuss the development of this model, either partially in terms of the acoustical components

or fully in terms of the SNRs, in bistatic sonar context. Both Cox [38] and Dondey [45] provided excel-

lent description for the combined form of noise- and reverberation-limited bistatic sonar equation, which

then offers as a good starting point to developing the model in the thesis.

The transmissions of the underwater acoustic signal from the source/receiver to the target and

bottom-surface scattering patch are quantified by the transmission losses (TLs). The calculation of these

losses can be based on any of the standard numerical methods - such as ray tracing, parabolic equation,
wavenumber integration, normal modes, and others - and may be either range dependent or range inde-

pendent [71,118]. However, such numerical methods are computationally demanding for real-time reali-

zation on the AUV, particularly for the bistatic sonar problem considered in this thesis. The recent works

by Harrison [62,63] presented a compelling solution where the closed-form expressions were used for the

fast computation of the TLs in active bistatic sonar application. The derivation of the expressions was

based on taking the incoherent eigenray sum (or equivalently incoherent mode sum) expressed as the ver-

tical grazing angle integral of the boundary reflection coefficient with spreading losses from 0* to the crit-

ical angle 0, of the seabed. The result is equivalent to the well-known mode-stripping formula, where

higher-order modes with steeper grazing angle are attenuated more. The formulation was then extended

to handle variable bathymetry (range-dependent) scenario. The closed-form expressions by Harrison are

adapted in this thesis to provide the fast calculation of the TLs required in estimating the SNRs.

The scattering of the underwater acoustic signal at the target is quantified by the bistatic target

strength (TS). For the problem examined in this thesis, the TS depends on the type of target. For subma-

rine and mini-submarine, the actual TS is usually provided by naval intelligence. A generic example of

such TS includes the TAP model presented in [117]. The underwater target has been modeled to consist

of four scattering mechanisms: (i) the backscattering from a finite cylinder, (ii) forward scattering from a

finite cylinder, (iii) scattering from hemispherical end-caps, and (iv) scattering of elastic waves in the cyl-

inder. For the experimental data considered in this thesis, the Echo Repeater (ER) (described in Section

1.2.1.4) is essentially a point target with constant TS at all aspect and bistatic angles.
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The scattering of the underwater acoustic signal at the bottom-surface scattering patch at the tar-

get position is quantified by the bottom-surface target strength (BTS). In the similar papers by Harrison

[62,63], diffused reverberation was assumed for the bottom-surface scattering. Specifically, the Lam-

bert's law, with angle-separable scattering law, has been used. The end result is an elegant integration of

the BTS with the calculation of the TLs between the source/receiver and bottom-surface scattering patch.

As pointed out by Stewart and Westerfield [122], Glisson et al. [54], and Collins and Atkins [31],

the choice of the sonar pulse signal has direct impact on the ability of the echo signal to contend with the

reverberation signal - from the bottom-surface scattering patch - in the matched filter. This reverberation

signal is represented by a reverberation scattering function distributed in the TOA-frequency plane,

alongside with the ambiguity function of the sonar pulse signal. Westerfield et al. [143] provided the ana-

lytical definition of the processing gain against reverberation in the matched filter, which can then be used

to characterize the signal-to-reverberation power ratio (SRR) gain. Both Angelari [4] and Van Trees [138]

subsequently provided similar analytical expressions to compute this gain. The inverse of the processing

gain is the Q-function of the matched filter. It is clear that the effect of the reverberation signal on the

echo signal is very much dependent on the amount of overlapping area between the reverberation scatter-

ing function and the ambiguity function of the sonar pulse signal. For the data obtained from the GLINT

2009 and 2010 experiments (see Figure 4.8(c)), the reverberation energy is observed to be (i) extended in

TOA way beyond the pulse width of the respective sonar pulse signal, and (ii) tapered off from its peak

with respect to the frequency (or equivalently Doppler frequency shift). Therefore, the reverberation scat-

tering function can be modeled as two separable functions: (i) a constant reverberation scattering function

invariant in TOA within the pulse width; and (ii) a variable reverberation scattering function with respect

to the frequency. The reverberation scattering function is then represented by a bistatic reverberation

ridge centered at the frequency of the reverberation from the bottom-surface scattering patch, with con-

stant energy with respect to the TOA, in the TOA-frequency plane. By incorporating these observations

with further assumption on narrow bistatic reverberation ridge, the expressions for the processing gain

against reverberation and the Q-function are greatly simplified. The simplified processing gain and Q-
function were examined in similar form by Brill et al. [28], Collins and Atkins [31], and Pecknold [108].

In the context of multi/bistatic sonar, they were described in [55,57,70,79]. By using different sonar pulse

signals, the processing gains against reverberation and Q-functions vary accordingly. Therefore, the dif-

fering effects of the bistatic reverberation on the matched filter imply that different amounts of SRR (or

more generally SNR) are obtained. The concept of this processing gain and Q-function is therefore in-

corporated in the thesis to consider the differing effects arising from the use of the FM and CW signals.
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By putting all the above related work for the acoustical components into the combined form of

noise- and reverberation-limited bistatic sonar equation, the SNRs of the FM and CW return signals for

the indirect blast contact are easily predicted. The details of the environmental-acoustical model are pro-

vided in Section 5.2. This model is then amalgamated with the information-theoretic model to yield the

unified model. Part of the thesis work here is also reported in [90,91].

2.6 Source/Receiver Management

The problem of source/receiver management has been examined in numerous literatures and applied in a

variety of applications. The management involves the planning and control of the assets carrying the

sources and receivers. In both passive and active monostatic contexts, this form of management is also

commonly known as sensor management (SM). The control is executed by placing the fixed unmanned

assets on the planned configuration or moving the unmanned mobile assets along the planned survey

paths - both with the intent to improve the perceptive task. Several pieces of related work are listed in

Table 2.4 for the following discussion, and the primary contribution of this thesis is listed in the last row

of the table for comparison.

In the works by Eickstedt et al. [47,48] and Benjamin et al. [21], heuristic-based vehicular control

strategies were applied on USV and AUV, respectively, in simulated passive sonar ranging application.

Eickstedt et al. [47,48] simulated the DOA measurements from the communicated GPS information of the

target, and then applied them in the passive sonar tracker on the USV. Specifically, target motion analysis

(TMA) was used in the tracker to estimate the kinematic state of the target. As shown in Figure 2.1, the

mission commenced with the two USVs moving along their fixed orbiting survey paths. Upon tracking

the target, the estimated target state was used by the path planner on each vehicle to adapt its survey path.

Each USV was subsequently controlled to keep the target at the broadside and closed-in range of its re-

ceiver. Benjamin et al. [21] simplified the experimental setup by skipping the perception altogether, and

utilized the simulated position and trajectory information of a synthetic target communicated from the

top-side via UWACOMMS. As depicted in Figure 2.2, the simulated information was used by the path

planner to adapt the survey path of the AUV. The vehicle was controlled to close in on the target. If the

receiver on the AUV was a towed array, such survey path would certainly place the target at the endfire of

the receiver array. From Figure 1.19(c), the uncertainty of the DOA measurement would become too

large for accurate passive ranging. In the heuristic-based control strategies mentioned here,
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Table 2.4: Source/receiver management - Related work and thesis contribution.

X denotes that particular technologies is not implemented V denotes that particular technologies is implemented

t wInformation- Environmental- Non-myopic /
Related work & PepApplication Pective Perception-drven theoretic acoustic predictive

thesis contribution objective control model model control

Heuristic-based vehicular
Eickstedt eta. Path planning of control by keeping target at

[47,48] USV Improve broadside & closed-in range of receiver
simulated passive sonarsimulted pssivesonarHeuristic-based vehicularX

Benjamin et aL. Path planning of detection performance control by keeping target at
[21] AUV closed-in range of receiver

Grocholsky et aL Path planning of Optimize Information-theoretic vehicular Using mutual
[58,59r UAV/UGV generic passive tracking control by maximizing information

performance mutual information

Ryan eta!. Information-theoretic vehicular Using
Ryan15 ettalcontrol by minimizing Shannon

[114,p15]zPath planning of Otie Shannon entropy entropy

[114,115 P UAV passive EO tracking Information-theoretic vehicular Using CRLB
Ponda performance control by minimizing Usi
[110] CRLB matrix m

planning Optimize Information-theoretic vehicular
Page Path ofgeneric active monostatic control by mini-maximizing uing mtual

tracking performance mutual information

Path planning of helicopter- Optimize Information-theoretic multistatic
Tharmarasa et aL deployed sources, & selecting multistatic sonar tracking asset placement control by Using CRLB

[128,129] receiver subset from field of ma
stationary sonobuoy receivers performance minimizing CRIB matrix

Environmental-based multistatic

Ngatchou et aL. asset placement control by Using

[102,103] uigF SE(SN)FM SE
Placement planning of Improve using FM SE (= SNR)

stationary sonobuoy multistatic sonar detection (using only FM signal)
sources & receivers performance Environmental-based multistatic Using

Grinmett asset placement control by FM & CW
[55] using FM & CW SE (= SNR) SEs

(using both FM & CW signals)
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Table 2.4: Source/receiver management - Related work and thesis contribution.

X denotes that particular technologies is not implemented / denotes that particular technologies is implemented

Related work & Perceptive Perception-driven Information- Environmental- Non-myopic /
thesis contribution Application objective control theoretic acoustic predictive

model model control

Improve Heuristic-based vehicular
Hamilton et al bistatic sonar detection control by keeping target at

[60]performance broadside of receiver
(using only FM signal)

Information-theoretic vehicular Using bistatic
Kemna et al Optimize measurement

[73] bistatic sonar tracking control by minimizing uncertainty
perormncebistatic measurement uncertainty derived from

Path planning of performance (using only FM signal) FM signal
AU V/receiver

Environmental-based vehicular
LePage control by maximizing Using

[83] Optimize FM SNR FM SNR

bistatic sonar detection (using only FM signal)
performance Environmental-based vehicular

LePage et al. control by maximizing Using
[84] FM SE (a SNR) FM SE

(using only FM signal)

Information-theoretic &
environmental-based vehicular Using CRLB

Thesis work Path planning of Optimize control by minimizing matrix Using
here AUV/receiver bistatic sonar tracking CRLB matrix (= maximizing derived from FM & CW $

performance predictive information & FM or CW SNRs
environmental rewards) signals

(using both FM & CW signals) III
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Figure 2.1: Related work by Eickstedt et al. [47]. Path planning of USVs for simulated passive sonar ap-
plication using heuristic-based vehicular control with each keeping target at broadside and closed-in range

of corresponding receiver.
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optimized tracking might or might not be achieved with the explicit vehicular-motion objective derived

based on heuristics. These heuristic rules - albeit intuitively logical - are shown to be sub-optimal in this

thesis. The performance of these control strategies are examined in Section 6.1.4.1 later.

The works by Grocholsky et al. [58,59], Ryan et al. [114,115], and Ponda [110] studied the ve-

hicular control problem - in different operating environment with UAV or UGV in passive ranging con-

text - based on information theory. The target state was similarly estimated by TMA in the passive track-

er on the vehicle, and then utilized by the path planner to adapt its survey path. Specifically, at each dis-

crete planning step, a set of possible discrete sensor actions was considered. Each of the sensor actions

then induced a PDF on the predicted target state estimate. A selected tracking performance metric -

namely the mutual information, Shannon entropy, or CRLB matrix respectively - was predicted for this

induced PDF, and provided a utility value on each sensor action. By mapping the predicted performance

metric into an objective function and formulating the control as an optimization problem, the best sensor

action was selected for actuation. The control was carried out with the intent to increase the "informa-

tiveness" or reduce the uncertainty about the predicted target state estimate. It then followed the tracking

performance was optimized with the explicit vehicular-motion objective derived based on information

theory. The results from Ponda [110] in Figure 2.3 clearly illustrates the adaptive survey path planned for

the UAV in response to the tracking of a constant velocity target. The work by Page [107] then extended

the information-theoretic vehicular control to active monostatic application. In the works by Grocholsky

Courtesy of [110]
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Figure 2.3: Related work by Ponda [110]. Path planning of UAV for passive EO application using infor-
mation-theoretic vehicular control by minimizing CRLB matrix of target state estimate.
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et al. [58,59], Ryan et al. [114,115], and Page [107], non-myopic or predictive control was carried out,

where an optimal sequence of sensor actions over a predefined planning horizon was computed. As cited

by Page [107], the use of the non-myopic control has demonstrated increased tracking performance be-

cause it has the potential to allow the long-term ramification effects in myopic control to be accounted.

The problem of source/receiver management has also been studied extensively in active mul-

ti/bistatic sonar applications. Traditionally, the problem has been primarily involved in the multistatic

asset placement control of sonobuoy receivers. Such control has similarly been formulated as an optimi-

zation problem that explored the decision space of possible sonobuoy configurations and compared their

associated performance metrics to identify the most suitable solution. In the work by Tharmarasa et al.

[128,129], the problem was examined in the context of the path planning of helicopter-deployed sources

and the adaptive selection of receivers from a field of stationary sonobuoy receivers. Specifically, the

CRLB matrix was utilized as the objective function in the optimization problem. The information-

theoretic multistatic asset placement control was then carried out as shown in Figure 2.4 with the intent to

optimize the tracking performance of moving underwater targets.

In the works by Ngatchou et al. [102,103] and Grimmett [55], the placement planning problem of

stationary sonobuoy sources and receivers was investigated using an altogether different environmental-

based approach. In essence, the intent was to improve the multistatic sonar detection by seeking place-

ment solution that enhanced the signal excesses (SEs) of the FM and CW return signals for the indirect

blast due to target. The SE is equivalent to the SNR, but computed in excess of the detector threshold

(DT). A positive SE means that the SNR is above the DT, while a negative SE implies the opposite. The

results from Ngatchou et al. [103] in Figure 2.5 clearly depicts the optimal placement solution obtained to

achieve 37% surveillance coverage with positive SE of the FM signal. The intensity on the plot repre-

sents the SE if the target was at that Cartesian position. The plot is also known as the SE map, computed

from an environmental-acoustic model. Grimmett [55] similarly utilized the SE map to determine the

different placement configurations of sonobuoy sources and receivers. Three different SE maps were ex-

amined, namely that of the (i) FM signal, (ii) CW signal, and (iii) "OR" fusion of the FM and CW signals.

The "OR" fusion merely took the maximum SE of the FM and CW signals. The fusion was applied pri-

marily in the context of evaluating the multistatic sonar detection performance. If similar approach was

utilized in fusing the acoustical measurements for target tracking, the differing uncertainties of the TOA

and frequency measurements - from two intrinsically different signals - should be considered. Such dif-

fering acoustical measurement uncertainties are clearly illustrated by the ambiguity functions of the FM

and CW signals in Figure 1.20. Evidently, the control strategies in Ngatchou et al. [102,103], and Grim-

mett [55] were applied offline and typically before the mission commenced. This is greatly contrasted
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Figure 2.4: Related work by Tharmarasa et al. [129]. Path planning of helicopter-deployed sources, and
selecting receiver subset from field of stationary sonobuoy receivers using information-theoretic multi-

static asset placement control by minimizing CRLB matrix of target state estimates.
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Figure 2.5: Related work by Ngatchou et al. [103]. Placement planning of stationary sonobuoy sources
and receivers using environmental-based multistatic asset placement control to achieve 37% surveillance

coverage with positive SE of FM signal.
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from the other related work discussed herein, where the control strategies were applied online, and were

adaptive in real time and over time.

The following pieces of work by NURC [60,73,83,84] then examined the vehicular control prob-

lem of AUV in active bistatic sonar context with stationary source - similar to the problem that the thesis

is solving. In these works, only the FM sonar pulse signal was used. No CW sonar pulse signal was con-

sidered. The TOA and DOA measurements, and subsequently the bistatic measurement - such as that in

(1.10) - were readily estimated from the FM signal. The bistatic measurement was then used in the FM

tracker. Upon tracking the target, the estimated target state was used by the path planner to adapt the sur-

vey path of vehicle. Hamilton et al. [60] adapted the work of Eickstedt et al. [47,48] by demonstrating

the use of heuristic-based vehicular control as shown in Figure 2.6. The AUV was controlled to keep the

target at the broadside of its receiver. However, in Section 6.1.4.1 later, the adaptive survey path planned

for the vehicle using this heuristic-based approach is noted as sub-optimal in terms of the bistatic sonar

tracking. Kemna et al. [73] then extended the work of Hamilton et al. [60] by using information-theoretic

vehicular control as shown in Figure 2.7. Specifically, the control was accomplished by finding the best

AUV-motion decision that minimized the bistatic measurement uncertainty. In parallel, the works by

LePage et al. [83,84] utilized the environmental-based vehicular control. The control was achieved by

determining the optimal AUV-motion decision that maximized the SNR or SE of the FM return signal.

With a fixed DT, optimizing the SNR or SE would lead to the same solution. In all the above works by

NURC [60,73,83,84], myopic control was carried out based on the current bistatic geometry. However,

the actuation of the computed AUV-motion decision is only going to take effect at least at the next plan-

ning step. Clearly, the actuation at the next planning step might not optimize the subsequent perceptive

task with different bistatic geometry. Therefore, the use of non-myopic control becomes crucial if the

geometry is highly dynamical.

Three different approaches of control strategies have been discussed in the related work of Table

2.4, they are the heuristic-based, information-theoretic, and environmental-based controls. The infor-

mation-theoretic control relies on an information-theoretic model to plan the vehicular motion or asset

placement to increase the "informativeness" or reduce the uncertainty about the target state estimate.

Such control strategy is very well established in the literature. It provides convenient and theoretically

elegant integration with the probabilistic target state estimation process in target tracking. It is clear that

the measurement feeding into the tracker with small uncertainty yields more information for the estima-

tion process, while that with large uncertainty produces lesser information. In most cases, this measure-

ment uncertainty is propagated from various sources. Therefore, when the control seeks to reduce the

estimation uncertainty, it is effectively trying to strike a balance in minimizing the ill effects from these
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Figure 2.6: Related work by Hamilton et al. [60]. Path planning of AUV for bistatic sonar application
using heuristic-based vehicular control by keeping target at broadside of receiver.

Courtesy of [73]
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Figure 2.7: Related work by Kemna et al. [73]. Path planning of AUV for bistatic sonar application using
information-theoretic vehicular control by minimizing bistatic measurement uncertainty of target.
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various sources. On the other hand, the environmental-based control utilizes a physics-based environmen-

tal-acoustic model to plan the vehicular motion or asset placement to increase the detection of the under-

lying sonar pulse signals. With the increased detection, the assumption is that better measurements are

obtained.

The use of the information-theoretic and environmental-acoustic models is particularly important

in multi/bistatic sonar applications. This is because the understanding of the performance is not intuitive,

and the use of these two models provides the appropriate tactical support for the decision-making process

here. By using the explicit relationships in (1.19) to (1.21) (or specifically the Woodward relations of

(2.1) to (2.3), or the alternate relations of (2.4) to (2.6)), a new information-theoretic and environmental-

based vehicular control for the AUV in bistatic sonar tracking is devised. The virtue of such approach is

that it inherits the advantages of both controls. It allows the pertinent information and environmental

characteristics to be combined, and represented by the utility value based on entropic information. The

entropic information then represents the compactness of the PDF of the target state estimate conditional

on the AUV-motion decision. In the thesis, the target state is estimated by target tracking and utilized in

perception-driven control. At each discrete planning step, a set of possible discrete AUV-motion deci-

sions is considered. Each of the decisions then induces the SNRs of the FM and CW return signals due to

predicted target state estimate. Since non-myopic control is considered in this thesis, multi-step predic-

tion similar to Page [107] is carried out. By using the explicit relationships in (1.19) to (1.21) (or specifi-

cally the Woodward relations of (2.1) to (2.3), or the alternate relations of (2.4) to (2.6)), the correspond-

ing acoustical measurement uncertainties from the FM and CW signals are computed for each AUV-

motion decision. These acoustical measurement uncertainties are subsequently propagated to the bistatic

measurement uncertainty, together with various sources of measurement uncertainties, and eventually into

the CRLB matrix using the pivotal relationship mentioned in Section 2.4. Using the CRLB matrix is intu-

itive since its square-root trace gives the CRLB of the RMSE about the probabilistic target state estima-

tion process in target tracking. This predicted tracking performance metric then provides a utility value

on each decision. By mapping the performance metric into an objective function and formulating the

control here as an optimization problem, the best AUV-motion decision is selected for actuation. It fol-

lows that bistatic sonar tracking performance is optimized with the explicit vehicular-motion objective

derived using the predictive information and environmental rewards from both FM and CW signals. The

details of this new vehicular control are provided in Chapter 6. Part of the thesis work here is also report-

ed in [90,91].
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Chapter 3

Integrated Perception, Modeling, and Control

Paradigm

The purpose of the thesis work is to develop a fully autonomous and persistent bistatic ASW surveillance

solution for securing vital maritime ports, facilities, and choke points in littoral waters from moving un-

derwater threats. The solution is implemented using the active sources, AUVs, and passive receivers.

The covert receivers are towed by the AUVs, while the sources are cooperative assets deployed from

fixed or mobile unmanned platforms. The veryfirst objective of this thesis is to integrate several enabling

technologies, described in Definitions 1.1 to 1.8 of Section 1.2.5, into a system onboard each AUV to al-

low them to work in tandem for improving the bistatic ASW surveillance solution. The problem has been

formulated previously as a closed-loop control system shown in Figure 1.23 of Section 1.3. The system is

called the integrated system, which offers a new Integrated Perception, Modeling, and Control Paradigm

for solving the bistatic ASW surveillance problem using AUVs. The representation in Figure 1.23 pro-

vides the overview of the solution for this thesis, and highlights the intimate relationships between these

technologies. By expanding this representation, the detailed system architecture is designed as shown in

Figure 3.1, where the dependencies of the navigational and environmental measurements are also includ-

ed. The architecture is based on the backseat-driver design philosophy suggested by Benjamin et al.

[21,22]. Thefrontseat in the main vehicle computer (MVC) maintains the AUV navigation, and performs

the low-level vehicular control on the A UV motion by asserting forces directly on the propulsion and

steering systems, while the backseat in the payload computer runs the high-level mission-related tasks

and computes the speed, heading, and depth decisions. Such design philosophy allows the AUV to be

easily reconfigured on the fly for different missions by just defining appropriate mission-level objectives.

This design philosophy has been adopted by the OEX AUVs during the GLINT 2009 and 2010 experi-

ments.

The automatedperception automates the surveillance procedure locally on each AUV/receiver by

abstracting the vast hydrophone data from the passive receiver to the track report, which readily repre-

sents the situation awareness and provides the perceptive feedback in the closed-loop control system. The
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automation is one important characteristic that contributes to a fully autonomous system that the thesis

attains. The surveillance procedure is put into action by the sonar signal processing algorithm with dual-

waveform fusion, and target tracking algorithm with information and environmental adaptations. The

sonar signal processing algorithm processes the hydrophone data to any variant of the contact report us-

ing essential signal processing techniques reviewed in Section 2.2. The data transformation offered by the

algorithm is depicted by the data flow diagram (DFD) in Figure 1.18, and the acoustical measurements

are estimated in the algorithm internally. Different variants of the contact report are considered here to

allow the solution in this thesis to be generalized. As suggested in Section 2.2, a new dual-waveform fu-

sion is developed to ensure that the stream of contacts is reliably maintained even at unfavorable bistatic

geometry, particularly one that results in high bistatic reverberation in the CW signal. The target tracking

algorithm automatically processes any variant of the contact report to the track report. As reviewed in

Section 2.3, this is done by using essential information processing techniques that automatically track the

appearance and disappearance of target - in the presence of interferers and clutter - within the tactical

scene. The algorithm is modified from the standard implementation in this thesis to support the dual-

waveform fusion in the sonar signal processing algorithm. As suggested in Section 2.3, information and

environmental adaptations are also applied to the algorithm by adjusting the validation gate adaptively, in

real-time, to achieve optimized tracking performance. If track reports from other AUVs/receivers are

available, data fusion is carried out to produce the fused or global track report. Since only bistatic config-

uration is considered here, data fusion is not discussed and evaluated. The two algorithms in the auto-

matedperception are described further in Chapter 4.

The perceptive feedback in a form of track report is utilized by both the unified model and per-

ception-driven control. The unified model amalgamates both the information-theoretic and environmen-

tal-acoustic models by using the explicit relationships postulated in (1.19) to (1.21). By using infor-

mation theory as suggested in Section 2.4, these postulated relationships are derived in this thesis - re-

vealing that the acoustical measurement uncertainties are dependent on the underlying estimation process

in the sonar signal processing algorithm, and the corresponding SNRs of the FM and CW return signals

for the indirect blast contact. As discussed in Section 2.4, the information-theoretic model then computes

any variant of the bistatic measurement uncertainty propagated from the acoustical, navigational, and en-

vironmental measurement uncertainties, based on the underlying bistatic geometry and their correspond-

ing measurements. This means that the effects of the SNRs of the FM and CW return signals, embodied

in the acoustical measurement uncertainties, are encapsulated in any variant of the bistatic measurement

uncertainty. By implementing the information adaptation in the target tracking algorithm for adaptive

processing, the environmental adaptation is accounted simultaneously. Similarly, by computing the pre-

dictive information reward in the reactive behavior-based autonomy algorithm for adaptive mobility, the
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predictive environmental reward is included concurrently. The pivotal relationship, linking up any variant

of the bistatic measurement uncertainty with the estimation uncertainty, is established later in this thesis.

This implies that the effects of the SNRs, encapsulated in any variant of the bistatic measurement uncer-

tainty, are also contained in the estimation uncertainty. As discussed in Section 2.5, the environmental-

acoustic model uses environmental acoustics to compute the acoustical components, based on the under-

lying bistatic geometry, for predicting the SNRs of the FM and CW return signals for the indirect blast

contact. These SNRs are used in the explicit relationships in (1.19) to (1.21). Both the information-

theoretic and environmental-acoustic models are discussed further in Chapter 5.

Finally, the perception-driven control deliberates the perceptive feedback against the mission-

level objectives to make unsupervised decisions in determining the speed, heading, and depth for the A UV

motion. By controlling the A UV motion, the survey path of the vehicle is adjusted adaptively. The per-

ception-driven control is implemented using the reactive behavior-based autonomy algorithm with pre-

dictive information and environmental rewards. At any one point in time, the AUV is operating in a par-

ticular behavioral mode, namely deploy, search, interrogate, prosecute, return, or recover. The algorithm

then operates by transiting through these behavioral modes in the fully autonomous surveillance mission,

with multiple behaviors competing for the speed, heading, and depth decisions in each mode to control

the A UV motion. It is capable of commanding the AUV from fixed survey path in search mode to adap-

tive survey path in prosecute mode upon tracking the target. A specific bistatic autonomous behavior in

prosecute mode is developed to execute, in real-time, a new non-myopic and adaptive control for the ve-

hicle. As suggested in Section 2.6, this is done by exploiting the predictive information and environmen-

tal rewards, and using the pivotal relationships - establish later in the thesis - to link up with the predicted

uncertainty about the probabilistic target state estimation process in the target tracking algorithm. The

predictive rewards are computed based on the predicted bistatic geometries, as well as predicted acousti-

cal, navigational, and environmental measurements with associated uncertainties, and can operate on any

variant of the contact report. Since the estimation entropy is related to the estimation uncertainty, a high

estimation entropy is a measure of poor bistatic sonar tracking performance, and vice versa. For a single

active behavior, the control problem is then posed as an optimization problem that minimizes the predict-

ed estimation entropy. The solution is one that moves the AUV toward a desired receiver state that opti-

mizes the future tracking performance. With the pivotal relationships, the problem of minimizing the

predicted estimation entropy is equivalent to maximizing the predictive information and environmental

rewards concurrently. This is defining characteristic of the class of control formulated in this thesis. The

formulation presents a new information-theoretic and environmental-based control, which is greatly con-

trasted from the traditional approach of either information-theoretic control or environmental-based con-
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trol (but not both at the same time). In this thesis, collaborative control with other AUVs, if available, is

not investigated. This algorithm in the perception-driven control is described further in Chapter 6.

The execution of the integrated system in Figure 3.1 is outlined in Algorithm 3.1. It is clear that

the automated perception, unied model, and perception-driven control are carried out locally and in se-

quence onboard each AUV/receiver to improve the bistatic ASW surveillance solution.

Algorithm 3.1: Integrated system -A new Integrated Perception, Modeling, and Control Paradigm

1: k = 1.
2: while k K do
3: Use data acquisition to obtain hydrophone data at ping k.
4: Perform automated perception.
5: Apply sonar signal processing algorithm with dual-waveform fusion to process hydrophone

data to any variant of contact report. Algorithm is also a function of navigational and envi-
ronmental measurements.

6: Apply target tracking algorithm with information and environmental adaptations to process
any variant of contact report to track report. Algorithm is also a function of (i) navigational
and environmental measurements, (ii) track reports from other AUVs/receivers (if available),
and (iii) settings for information and environmental adaptations. Algorithm performs internal
functional call on unified model: information-theoretic and environmental-acoustic models.

7: Perform perception-driven control.
8: Apply reactive behavior-based autonomy algorithm with predictive information and environ-

mental rewards to determine speed, heading, and depth decisions for AUV using perceptive
feedback in a form of track report. Algorithm is also a function of (i) navigational measure-
ments, (ii) mission-level objectives from C3 center, and (iii) settings for predictive infor-
mation and environmental rewards. Algorithm performs internal functional call on unified
model: information-theoretic and environmental-acoustic models.

9: Issue speed, heading, and depth decisions to MVC, which moves AUV to desired receiver state
that optimizes bistatic sonar tracking performance.

10: k = k + 1.
11: end while.
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Chapter 4

Automated Perception

With the architecture of the integrated system designed in Figure 3.1, the solution involves the develop-

ment of novel methods for the AUVs to optimize the bistatic sonar tracking performance. The second

objective of the thesis work is to improve the tracking performance directly at the output of the automated

perception. As the name implies, the automated perception automates the surveillance procedure locally

on each AUV/receiver by abstracting the vast hydrophone data to the track report that readily represents

the situation awareness. The automation is one important characteristic that contributes to a fully auton-

omous system that the thesis attains. The surveillance procedure is put into action by the sonar signal

processing algorithm with dual-waveform fusion described here in Section 4.1, and the target tracking

algorithm with information and environmental adaptations examined here in Section 4.2.

4.1 Sonar Signal Processing with Dual-Waveform Fusion

The sonar signal processing algorithm is developed for this thesis to process the hydrophone data from

the passive receiver to any variant of the contact report. The data transformation offered by the algorithm

is depicted by the data flow diagram (DFD) in Figure 1.18. Different variants of the contact report are

considered here to allow the subsequent processing of the solution in this thesis to be generalized. The

algorithm is implemented using essential signal processing techniques adapted and improved from

[11,12,41,69]. A new dual-waveform fusion is developed here to ensure that the stream of contacts is re-

liably maintained even at unfavorable bistatic geometry, particularly one that results in high bistatic re-

verberation in the CW signal. The sonar signal processing algorithm is shown in Figure 4.1, where de-

pendency of the quantities in the algorithm on ping k is implied.

The execution of the sonar signal processing algorithm with dual-waveform fusion at each ping k

is outlined in Algorithm 4.1.
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Algorithm 4.1: Sonar signal processing with dual-waveform fusion at each ping k

1: Apply FM processing to process hydrophone data, and estimate TOAs, DOAs, and SNRs of extracted
FM peaks. SNRs obtained are by-products for evaluation purpose.

2: Apply CW processing to process hydrophone data, and estimate TOAs, DOAs, frequencies, and SNRs
of extracted CW peaks. SNRs obtained are by-products for evaluation purpose.

3: Apply dual-waveform fusion to fuse information of extracted FM peaks with that of extracted CW
peaks. Fusion strategy results in set of corrected TOA measurements t1 [k], set of DOA measurements
01 [k], and set of SNR measurements SNRFM [k] from FM peaks; with set of frequency measurements
Fj [k], and set of SNR measurements SNRc'[k] from matched CW peaks. Similarly, both SNRFM [k]
and SNRw [k] are by-products for evaluation purpose.

4: Construct any variant of contact report Z 0) [k], at specific j E [1, 6}, from set of acoustical meas-
urements ij [k], 01 [k], and F [k], before using it in target tracking algorithm (to be discussed in Sec-
tion 4.2).

The details of the FM and CW processing are described in Section 4.1.1, while the strategy of the dual-

waveform fusion is presented in Section 4.1.2. The construction of the contact report is discussed in Sec-

tion 4.1.3, before the experimental results from the algorithm are provided in Section 4.1.4.

4.1.1 FM and CW Processing

Since both the FM and CW sonar pulse signals are assumed to be transmitted simultaneously from the

active source, two separate processing chains as shown in Figure 4.1 are developed in this thesis to pro-

cess these two return signals for the indirect blasts concurrently. The modules for the FM and CW pro-

cessing chains are identical except for different operating settings. The details of these modules are fur-

nished in Sections 4.1.1.1 to 4.1.1.6 as follows.

4.1.1.1 Demodulation

Complex demodulation is used to frequency-shift or heterodyne the hydrophone data from passband to

baseband before decimating it to lower sampling frequency [105,106,111]. The baseband data is the fre-

quency-shifted, decimated version of the hydrophone data. It contains the complex envelope of the band-

pass hydrophone data, with the real and imaginary parts representing the in-phase and quadrature compo-

nents respectively. Decimation is applied to reduce the amount of data for subsequent signal processing.

The processing bandwidths in the baseband data, denoted F, ceSSbw for the FM processing and Fprocessbw

for the CW processing, must be larger than or equal to Fgw and 2P -Fdoppier respectively. Here,
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2P - 6 FdoppIe is the range of bistatic Doppler frequency shift considered in the CW processing, where

the denotation and details are discussed later in Section 4.1.1.3 that describes the matched filtering. The

sampling interval of the baseband data must be within the TOA estimation resolution of the underlying

sonar pulse signal, denoted 6TFM oc 1/Fwm for FM signal and &rcW oc Tw = T, for CW signal

[98,138], to achieve the required resolution for the matched filtering.

4.1.1.2 Beamforming

Broadband beamforming is employed to filter the baseband data to various spatial angular beams steered

at different azimuthal angles or bearings 0 steer, and reject any probable directional interferences [72,139].

Specifically, conventional narrowband beamforming is applied at each frequency bin of the baseband data

in frequency domain, obtained through fast Fourier transform (FFT) [105,111]. To leverage on the radix-

2 FFT operation, the size of the FFT is selected to be the next higher power of two greater than the num-

ber of time samples in each pulse repetition interval (PRI). It then follows that the time duration for each

PRI, governed by T, = TFM = TpCW, must be much larger than the propagation time across all the hydro-

phones in the array. This is to ensure that the propagation time delay between the two furthest spatially

separated hydrophones is well captured in each FFT snapshot. A more stringent but necessary narrow-

band array assumption then requires the pulse width Tw = TFm = TcW to be much larger than the propa-

gation time across all the hydrophones in the array. In addition, the bearing spacing must be smaller than

or equal to the Rayleigh resolution limit defined by the peak-to-null broadside beamwidth, which is then

dependent on the spatial weighting and array specifications. An important but conflicting consideration

requires the bearing spacing to be sufficiently large to ensure that the spatially moving indirect blasts re-

main within the same beam throughout the entire time duration of the sonar pulse, dictated by T, =

TSM = TSW. The inverse FFT (IFFT) is then applied on the beamformed data in frequency domain to

transform it back to time domain.

4.1.1.3 Matched Filtering

Matched filtering with magnitude squaring is applied to maximize the SNR of the beamformed data

[98,134,138]. This is achieved by correlating the data with the time-reversed complex-conjugated base-

band FM and CW sonar pulse replica signals at appropriate Doppler frequency shift. With magnitude
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squaring, both the in-phase and quadrature amplitude components are combined to eliminate phase sensi-

tivities and yield real power measurement in the matched-filtered data.

For the FM processing, one (1) matched filter is utilized that assumes the FM return signals for

the indirect blasts in the beamformed data have a bistatic Doppler frequency shift of

0 Hz, or equivalently a measured frequency of FFM. For the CW processing, a bank of 2P + 1 matched

filters is employed that allows the CW return signals for the indirect blasts in the beamformed data to ex-

hibit different bistatic Doppler frequency shifts at -P -8Foppier ., -Fdoppier, 0, +6 Fdoppier,-

+P -SFaoppier, or equivalently different measured frequencies at (Fcw - P -8Fdoppler), ---, (Fccw -

8Fdaoppier), Fccw, (Fccw + SFdoppier), ---, (Fccw + P- SFdoppler). Here, SFoppi is the selected bistatic

Doppler spacing, and +P - Fdoppler is the maximum positive/negative bistatic Doppler frequency shift

considered in the CW processing. The frequency estimation resolution of each CW matched filter is giv-

en by 8Fcw oc 1/TCW = 1/T, [98,138]. This suggests that SFdoppier must be smaller than or equal to

SFCW for the CW processing to achieve the frequency estimation resolution. The minimum value for P is

obtained as

tminFCW

P - Soppi Fop piermax = c

p i min Fccw
C SFdoppler

Pmin trin C 
(4.1)

C SFdoppler

or

-P -Fdoppier Fdopper = rmaxFccw

P > mxFc
c SFdoppler

Pmin = [ Fop (4.2)

where c is the average underwater sound speed assumed for the operating environment, and [1 is the

ceiling operator. Here, Fdoppi, is the maximum and positive bistatic Doppler frequency shift that

can be experienced by the CW return signals for the indirect blasts, imin is the corresponding minimum

and negative (that is maximum negative) bistatic range rate, and Imin I< c. Similarly, Fdopplermi is the

minimum and negative (that is maximum negative) bistatic Doppler frequency shift that can be experi-

enced by the CW return signals for the indirect blasts, tmax is the corresponding maximum and positive
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bistatic range rate, and fmax K«c. In this thesis work, the following worst case scenario is assumed to

determine imin and tmax:

imin = -fmax

=-(s + vt + pt. + vra) = + 2 vtmax + v,.x), (4.3)

where vsmx, vtm., and vr.ma are the maximum possible speeds that can occur in the active source (S),

target (T), and passive receiver (R) respectively. The scenario for imin/ max occurs when the fastest

source and target pair, and the fastest target and receiver pair are all approaching/receding at their maxi-

mum speeds toward/away from one another. The separation ranges in these two pairs are thus decreas-

ing/increasing at the maximum rates with time. In this thesis, the narrowband signal approximation has

been invoked in the CW matched filters where time compression of the replica signals for approaching

bistatic assets (with decreasing separation ranges), and time expansion of the replica signals for receding

bistatic assets (with increasing separation ranges) are ignored. This approximation is valid when

TcWFcw << Fc (4.4)

time-bandwidth IFdopplermin/max
product

where the rule of thumb specifies

TwF, < 1 c
4lFdopplermin/max

IFdop < - (4.5)F'| 1 F"aoppiermin/max 4 T F

Using (4.1), (4.2), and (4.5), the maximum value for P is stated as

1 Fcm
P < C

4TFbw SFdoppler

max = - F (4.6)nta 4T WFb SFdoppler

where [ is the floor operator. By combining (4.1), (4.2), and (4.6), the allowable range of P is

r"min Fc P<1 (4.7)
c 8Fdoppler ~ 4 T 'F 'S'Fdoppler

or
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Y'max FcC 1 Fctmax: Fg 1 FcW (4.8)
c 8Fdoppler ~ 4TCWFCIf6Fdopp1er

By assuming -imin = fmax = 8 m/s, c = 1510 m/s (see Figure 1.14), and 8Fdoppler = 0.25 Hz, as well

as using the specifications of CW sonar pulse signal tabulated in Table 1.1, the range of P is then obtained

as 52.9 ; P < 2500. Choosing P = 53 implies that a bank of 2P + 1 = 107 CW matched filters is used.

This value of P allows the CW processing to account for the maximum bistatic range rate that can be ex-

perienced by the CW return signals, while at the same time satisfies the narrowband signal assumption for

the CW matched filters.

The matched filtering operation in time domain described above is just one possible implementa-

tion. The time-domain convolution can be replaced with frequency-domain multiplication. To do so, FFT

is first performed on the time-reversed complex-conjugated baseband FM and CW sonar pulse replica

signals at appropriate Doppler frequency shift. Each replica signal in frequency domain is then multiplied

with the beamformed data in frequency domain, before applying IFFT with magnitude squaring to obtain

the matched-filtered data (in time domain). In order to ensure that the frequency-domain multiplication is

equivalent to the linear time-domain convolution (and not the circular time-domain convolution), the FFT

size must be next higher power of two greater than twice the number of time samples in each pulse repeti-

tion interval (PRI) [105,111].

4.1.1.4 Spatio-Temporal Normalization

Two-pass spatio-temporal normalization is utilized to remove the spatial and temporal variabilities of re-

verberation and background noise in the matched-filtered data [3,9,10,98,101,104]. The noise power is

first estimated and then divided from the matched-filtered data to obtain the normalized data. Under the

null hypothesis HO where only noise is present in the matched-filtered data, the normalized data is ideally
noise power .

estmatd nisepowr ~1. This means that the SNR of the matched-filtered data under this hypothesis is 1estimated noise power

or equivalently 0 dB. Under the alternate hypothesis 1 where both received signal and noise are present

in the matched-filtered data, the normalized data is signal power + noise power signal power This
estimated noise power estimated noise power'

is clearly the underlying SNR of the matched-filtered data.

The estimation of the noise power is then carried out by adapting the two-pass split-window algo-

rithm by Nielsen [104] in one-dimensional measurement space and modifying it into multiple dimensions.

For the FM processing, the measurement space of the matched-filtered data is discretized into cells, each

with specific bearing and time. The noise power at a particular cell of the matched-filtered data, also
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known as test cell, is estimated from the local mean calculated from the auxiliary data. The auxiliary data

is gathered from cells in a two-dimensional annular region in spatial and temporal (time) vicinity around

this test cell. The noise power for the entire measurement space is then obtained by sliding the annular

region through all the cells and computing the corresponding local spatio-temporal means. Similarly, for

the CW processing, the measurement space of the matched-filtered data is discretized into cells, each with

specific bearing, time, and frequency (or equivalently Doppler frequency shift). The noise power at a test

cell is estimated from the local mean computed using auxiliary data. The auxiliary data here is gathered

from cells in three-dimensional shell region in spatial and temporal (time and frequency) vicinity around

the test cell. A guard region is established between the test cell and the cells where auxiliary data is gath-

ered. This is to prevent any probable received signal power in and around the test cell - caused by

spreading and leakages in any one or more dimensions of the measurement space - from spilling over to

the annular region and contaminating the auxiliary data. Figure 4.2 illustrates the two-dimensional

Time

Figure 4.2: Two-dimensional annular region with guard region in FM processing at a test cell of matched-
filtered data. Annular region slides through time and bearing to gather auxiliary data and compute local
spatio-temporal mean, which estimates the noise power, at each test cell. Spatio-temporal normalization

is performed by dividing matched-filtered data with estimated noise power.
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annular region with guard region in FM processing at a test cell of the matched-filtered data. There are

two main benefits in extending the estimation of noise power from one dimension (typically in time) to

two dimensions (in bearing and time), and even three dimensions (in bearing, time, and frequency). With

a multi-dimensional annular region, more auxiliary data are gathered for each test cell, which helps in

improving the estimated noise power [101]. It also allows both spatial and temporal variabilities to be

accounted concurrently during the noise power estimation. For the two-pass algorithm, the noise power is

estimated in two passes: the first pass removes the prevailing sharp peaks in the matched-filtered data;

and the second pass computes the local spatio-temporal mean that represents the noise power.

4.1.1.5 Detector Thresholding

Detector thresholding is used to pass the normalized data (or equivalently SNRs of the matched-filtered

data) above the predetermined detector threshold (DT) [98,138]. The setting for this threshold is subse-

quently conveyed to the target tracking algorithm (to be discussed in Section 4.2) since the threshold has

direct impact on the probability of false alarm. By combining the normalization and detector thresholding

with fixed threshold, the constant false alarm rate (CFAR) detector is achieved [3,9,10,98,101,104].

4.1.1.6 Peak Extraction

Peak extraction is developed in this thesis to pick the TOAs, DOAs, frequencies, and heights of the ex-

tracted peaks from the thresholded data. The heights of the extracted peaks are equivalent to the SNRs of

the peaks in the matched-filtered data, and they are due to the indirect blasts originating from target, inter-

ferers, or clutter. For the FM processing, a small two-dimensional moving-average filter in bearing and

time is first used to reject small spurious peaks in the thresholded data. Image processing technique is

then used to search for peaks satisfying as two-dimensional regional maxima. Each of these regional

maxima is a cluster of connected cells having the same height and meeting the cluster size requirement,

with the external cells surrounding the cluster having lower height. Clusters that appear as spatial side-

lobes of another cluster with higher height are also not accepted. The clusters are the extracted FM peaks.

The TOA and DOA of each peak are the time and bearing associated with the cell at the center of the cor-

responding cluster. The SNR of each peak is then obtained by simply reading off the height of the

thresholded data at this cell. For the CW processing, only clustering is applied on the thresholded data to

find the three-dimensional clusters. No filtering is required since there is significantly lesser number of

CW peaks observed in the thresholded data than that for FM peaks (see Figures 4.7 and 4.8 in Section
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4.1.4). This is consistent with the observation noted by Hughes and Micheli [69]. The clusters are the

extracted CW peaks. The TOA, DOA, and frequency of each peak are the time, bearing, and frequency

(or equivalently Doppler frequency shift) associated with the cell at the center of the corresponding clus-

ter. Similarly, the SNR of each peak is then obtained by simply reading off the height of the thresholded

data at this cell. A dual-waveform fusion is discussed next in Section 4.1.2 to show how the TOAs,

DOAs, and SNRs of the extracted FM peaks are fused with the TOAs, DOAs, frequencies, and SNRs of

the extracted CW peaks. The SNRs obtained here are the SNRs of the peaks in the matched-filtered data,

and they are by-products used for evaluation purpose in Section 5.3 later.

4.1.2 Dual-Waveform Fusion

With the FM and CW processing in Section 4.1.1, the TOAs, DOAs, and SNRs of the extracted FM peaks

for the indirect blasts are provided, while the TOAs, DOAs, frequencies, and SNRs of the extracted CW

peaks for the indirect blasts are furnished. In this section, a new and simple dual-waveform fusion is pre-

sented to show how the information from the FM peaks is fused with that from the CW peaks.

As reviewed in Section 2.2, the fusion of the information from the extracted FM and CW peaks

can be performed at the output of the FM and CW processing or the output of the target tracking algo-

rithm. It is clear from the review that the thesis is not concerned with the fusion of information at the

output of the target tracking algorithm because of (i) the increased computational load required for the

additional CW tracker, (ii) the need for more complex fusion strategy at the output of the separate FM and

CW trackers, and (iii) the potential pitfalls in the TOA correction for the FM peaks. The TOA correction

is necessary because the skewed ambiguity function of the FM signal (see Figures 1.20(a) and 1.20(b))

results in the undesirable coupling effect of the estimation errors in both TOA and frequency [98,138].

By having the fusion done after target tracking, it can be challenging in determining the right frequencies

to use for correcting the TOAs of the FM peaks.

In this thesis, the fusion is carried out at the output of the FM and CW processing. As with the

discussions in Sections 1.2.5.1 and 2.2, the set of TOA measurements ri[k] = {rTm jm}~L and set of

DOA measurements 0[[k] = {6i[k]}$ are obtained from the TOAs and DOAs of the extracted FM

peaks, while the set of frequency measurements Fi[k] = {Fj[k]})Mk are obtained from the frequencies

of the extracted CW peaks. The set of SNR measurements SNRFM [k] = {SNRm' [k])rIlk] - obtained

from the SNRs of the extracted FM peaks - and the set of SNR measurements SNRCW[k]=

{SNRcw[k]}M~k - obtained from the SNRs of the extracted CW peaks - are both by-products used for
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evaluation purpose in Section 5.3 later. If the left-right ambiguity of the receiver array is considered, the

number of contacts in the set of DOA measurements 0;[k] increases from m[k] to 2 - m[k].

Although the work by Hughes and Micheli [69] demonstrated the fusion at the output of the FM

and CW processing, the fusion strategy is not appropriate for the thesis work here. The strategy utilized

the TOAs and DOAs of the CW peaks to search for the FM peaks with matching uncorrected TOAs and

matching DOAs respectively. The set of TOA measurements Ti [k] and set of DOA measurements 01 [k]

are then obtained from the matched FM peaks, while the set of frequency measurements Fi[k] are simply

that from the CW peaks. However, such fusion strategy suffers from two main drawbacks. From the re-

sults in Section 4.1.4 later (see Figures 4.7 and 4.8) and the observations by Hughes and Micheli [69],

there is significantly lesser number of CW peaks extracted than the FM peaks. This implies that the num-

ber of contacts m[k] is going to be low with higher chance of missing valid detections. Moreover, the

SNRs of the CW peaks are very sensitive to reverberation. These CW peaks are likely to vanish at times

due to the significant reduction in the corresponding SNRs below the detector threshold for CW pro-

cessing. From the results in Section 4.1.4 later (see Figures 4.9 and 4.13), this occurs when the underly-

ing DOAs approach the endfire of the receiver array [38,62,63,83], and when the underlying bistatic

Doppler frequency shifts approach that observed at bistatic reverberation ridge [55,57,70,79]. It is proba-

ble that no CW peak might exist to initiate search for the corresponding FM peak. The details of the end-

fire and bistatic reverberation ridge, and their effects on the SNRs of the FM and CW signals for the indi-

rect blast are provided later in Section 5.2.

Therefore, a new dual-waveform fusion is implemented in this thesis by modifying the fusion

strategy in [69] and using the Doppler decision shown in Figure 4.1. The TOAs and DOAs of the extract-

ed FM peaks are now used to search for the corresponding extracted CW peaks with matching TOAs and

DOAs. The search region for the CW peak is centered at the TOA and DOA of the initiating FM peak,

and the search size is bounded by factors of the TOA and DOA estimation resolutions for the CW signal.

It is easier to search for the CW peak (than the FM peak in [69]) because the TOA estimation resolution

ST c oc Tcw = Tw for CW signal in the matched filter is much larger than the TOA estimation resolution

STFM oc 1/FbFw for FM signal in the matched filter [98,138]. Similarly, the DOA estimation resolution

S6w for the CW signal in the beamformer is slightly larger than the DOA estimation resolution 6 0[M for

the FM signal in the beamformer. This is because of a marginally wider beamwidth in the beamformer at

lower carrier frequency (see Figure 1.17) [72,139]. The new fusion strategy using the Doppler decision is

illustrated in Figure 4.3. The set of TOA measurements Ti[k], set of DOA measurements 0; [k], and set of

SNR measurements SNRFM [k] are then obtained from the FM peaks, while the set of frequency meas-

urements Fi [k], and set of SNR measurements SNRCW[k] are simply that from the matched CW peaks.
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Figure 4.3: Illustration of dual-waveform fusion using Doppler decision. The TOA and DOA of a particu-
lar FM peak are used to search for CW peak with matching TOA and DOA. The search region for CW

peak is within specified ranges of TOA and DOA of initiating FM peak. The Doppler decision determines
matched CW peak, which subsequently provides corresponding frequency and SNR.

The set of frequency measurements Fi [k] (from matched CW peaks) are then used to correct the

set of TOA measurements T1 [k] (from FM peaks) using the TOA correction depicted in Figure 4.1. By

denoting the chirp or sweep rate of the FM signal as y = FM/ TFM = FI/Tw, the ambiguity functions

of the FM signals in Figures 1.20(a) and 1.20(b) suggest that the TOA estimation error AT and frequency

estimation error AF are related by AT = AF/pu. Using this relationship in the plot of Figure 4.4, the m*

TOA measurement, denoted rim [k], is easily corrected using the m* frequency measurement, denoted

Fim [k], as

Tim [k] corrected
(4.9)= Tim[k]| + (Fim [k] - Fecw). F 1uncorrected -F

Bistatic Doppler
frequency shift
Fdopplerim[k]

This means that for approaching/receding bistatic assets, the bistatic Doppler frequency shift

Fdopplerim[k] of the mth contact is going to be positive/negative. This connotes that rim [k] I corrected is
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going to be higher/lower than rim [k] |uncorrected The factor FCFM/Fccw is included to transform the bi-

static Doppler frequency shift Fdoppleri [k] experienced by the CW peak at carrier frequency Fccw to that

experienced by the FM peak at carrier frequency FM.

The execution of the dual-waveform fusion at each ping k is then outlined in Algorithm 4.2.

Algorithm 4.2: Dual-waveform fusion at each ping k

1: m[k] = number of extracted FM peaks.
n[k] = number of extracted CW peaks.
It follows that m[k] > n[k].

2: m = 1.

3: while m m[k] do
4: Tim [k] = TOA of mth extracted FM peak.

8im [k] = DOA of mth extracted FM peak.
SNR FM [k] = SNR of mth extracted FM peak.

5: Apply Doppler decision to search for corresponding extracted CW peak (from list of n[k] extract-
ed CW peaks) within specified ranges of Tim [k] and 68m [k].

6: if match found

7: Fim [k] = frequency of matched CW peak.
SNRcw[k] = SNR of matched CW peak.

8: Apply TOC correction on Tim [k] using (4.9).

9: Remove matched CW peak from list of extracted CW peaks.
n[k] = n[k] - 1.

10: else

11: Fim[k] = 0 (empty value).
SNRcw[k] = 0 (empty value).

12: No TOC correction applied on Tim [k].

13: end if.
14: m = m +1.

15: end while.

From the results in Section 4.1.4 later (see Figures 4.7 and 4.8) and the observations by Hughes

and Micheli [69], more FM peaks are extracted than the CW peaks at the output of the FM and CW pro-

cessing respectively (that is m[k] > n[k]). This implies that the number of contacts m[k] is going to be

high with lower chance of missing valid detections. Although there is a corresponding increase in the

number of false alarms, they are easily removed downstream using the target tracking algorithm. More

importantly, from the results in Section 4.1.4 later (see Figures 4.9 and 4.13), the CW peaks are likely to

vanish at endfire and bistatic reverberation ridge that result in missing frequency measurement Fm[k].
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Figure 4.4: Use of ambiguity function of FM signal to determine TOA correction. Dependencies of quan-
tities on m and k are implied.

Under such instances, the acoustical measurements are still reliably produced with TOA measurement

Tim [k] and DOA measurement 6 im [k] from the FM peak. In fact, it is because of the resilient of the FM

peak that its DOA is used. This is because both rim [k] and 6 im [k] need to be present at the same time to

ensure that the Cartesian position measurements, xtm[k] in (1.8) and ytm[k] in (1.9), can be readily com-

puted. If the variant of bistatic measurement vector zm) [k] in (1.10), z( [k] in (1.12), or z( [k] in

(1.14) is used, no frequency measurement Fim [k] (or equivalently bistatic Doppler frequency shift) is in-

cluded. The presence of the endfire and/or bistatic reverberation ridge is not going to affect the bistatic

measurement at all. However, if the variant of bistatic measurement vector zM [k] in (1.11), z [k] in

(1.13), or z (' [k] in (1.15) is used, frequency measurement Fim [k] (or equivalently bistatic Doppler fre-

quency shift) is included. The presence of the endfire and/or bistatic reverberation ridge is not going to

remove the bistatic measurement completely (as opposed to the fusion strategy presented by Hughes and

Micheli [69]), but only to provide an empty value for the frequency measurement Fim [k]. This is equiva-
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lent to switching the bistatic measurement vector to z ' [k], z'3' [k], or z( [k] respectively. This means

that the target tracking algorithm is always and reliably fed with the TOA measurement 'rim[k] and DOA

measurement 06 [k]. The addition frequency measurement Fim[k] is supplemented for zf [k], zf [k],

or zf [k] whenever the underlying DOA is away from the endfire of the receiver array, and/or the under-

lying bistatic Doppler frequency shift is away from that observed at bistatic reverberation ridge. This fur-

ther implies that the track formed in the target tracking algorithm is continued and not terminated with

this fusion strategy (as opposed to the fusion strategy presented by Hughes and Micheli [69]) whenever

the frequency measurement Fim [k] goes on occasional or prolonged time of disappearance. However,

modifications to the target tracking algorithm must be carried out in this thesis to support this variant of

bistatic measurement vector. In essence, this new fusion strategy has clearly taken advantage of the com-

plementary and desirable features of the FM and CW signals, and yet allow the sonar signal processing

algorithm to continue producing a stream of contacts reliably, albeit the vanishing CW information at

endfire and/or bistatic reverberation ridge. The reliability is a paramount requirement since there are nu-

merous occurrences of the vanishing CW information because of the time-varying bistatic geometry. The

dual-waveform fusion here has effectively combined the FM and CW processing into a powerful dual-

waveform processing framework that provides a set of acoustical measurements (and two sets of SNR

measurements) of the indirect blasts. It has successfully merged the FM and CW information together,

and this premise is assumed in the subsequent design of the target tracking algorithm in Section 4.2, uni-

fied model in Chapter 5, and perception-driven control in Chapter 6. Evidently, including the set of fre-

quency measurements F [k] from the CW peaks lead to better tracking results. This is demonstrated later

in Section 4.2.7.

4.1.3 Construction of Contact Report

Following the dual-waveform fusion in Section 4.1.2, a set of acoustical measurements of the indirect

blasts -c[k] = {im[k ], Oi[k] = {6jm[k]1}', and Fi[k] = {Fjm[k]jk are obtained, together two

sets of SNR measurements SNRFM[k] = {SNRm[k]})M'k and SNRCW[k] = {SNRcmw[k]1[k. If the

left-right ambiguity of the receiver array is considered, the number of contacts in the set of DOA meas-

urements Og [k] increases from m [k] to 2 - m[k]. The measurement conversion in Figure 4.1 is then used

to transform the set of acoustical measurements to a set of derived measurements, namely xt[k] =

fxtm[k]} I I ,[k] ye[k] = {ytm[k]} J ,k] AT[k] = {&Tm[k]}k , rr[k] = {rrm[k]}%"k, 0[k] =
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{6m[k]}m3, and Fi[k] = {Fim[k]}m, described in Section 1.2.3. The navigational measurements of

the source, the set of navigational measurements of the receiver, and the environmental measurement are

also used in this data transformation. The contact report construction in Figure 4.1 is then used to trans-

form the set of derived measurements to any variant of the contact report ZW[k] = {zm [k]}mjf, at

specific j E (1, ..., 6}, given in (1.16). The contact report is made up from a set of bistatic measurement

vectors. The six variants of the bistatic measurement vectors are constructed from the derived measure-

ments in (1.10) to (1.15), and they are provided below again as

z$ 2[k] = [xtm[k] ytm[k] ]T, (4.10)

[k] = [ (z [k])T F [k] ]T , (4.11)

zn [k] = [EAm[k] Oim[k] ]T, (4.12)

z' [k] = [ (z )[k])T F [k] ]T, (4.13)

z [k] = [rrm[k] jk] ]T , (4.14)

z(6 [k] = [(z()[k])T F [k] ]T. (4.15)

Here, N is the size of the bistatic measurement vector with N = 2 for j E {1,3,5} and N = 3 for j E

{2,4,6}. Clearly, z [k], z$4 [k], and z [k] provides the Doppler augmentation to z [k], z [k], and

z [k], respectively, by including additional frequency measurement Fjm[k] from the corresponding CW

peak. Although the SNR measurements SNRF[k] and SNRw[k] can be included in the bistatic meas-

urement vector, they are not considered here because they increases the complexity of the target tracking

algorithm. Nonetheless, these additions can be considered for future implementation. The SNR meas-

urements are used strictly for evaluation purpose here as examined in Section 5.3. The data transfor-

mation described above is also illustrated by the DFD in Figure 1.18. Aforementioned, different variants

of the contact report are considered here for generalization. This is to show that the subsequent pro-

cessing of the solution in this thesis is applicable irrespective on the choice of the variant of the contact

report - with or without including the effects caused by the bistatic Doppler frequency shift in the CW

return signal for the indirect blast. The contact report ZO U[k] = {z2 [k]1},7J 1,, at particular j E

6}, is then fed into the target tracking algorithm.
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4.1.4 Results

In this section, the experimental results from the sonar signal processing algorithm are presented. The

results are obtained by processing the data collected from two experimental runs. The first run is called

the GLINT 2009 Run, it is an experimental run from the GLINT 2009 experiment on July 3, 2009 at

09:10:00 am Coordinated Universal Time (UTC). The second run is called the GLINT 2010 Run, it is an

experimental run from the GLINT 2010 experiment on Aug 4, 2010 at 12:47:00 pm UTC. The results for

the first run are provided in Section 4.1.4.1, while that for the second run are furnished in Section 4.1.4.2.

4.1.4.1 GLINT 2009 Run

For the GLINT 2009 Run, the DEMUS source (described in Section 1.2.1.1) was deployed to transmit

both the FM and CW sonar pulse signals (as specified in Table 1.1) concurrently. Specifically, the LFM

sonar pulse signal was used. The ER (described in Section 1.2.1.4), towed by the CRV Leonardo (de-

scribed in Section 1.2.1.4) at 40 m depth, was used to simulate a target by re-transmitting the recorded

FM and CW sonar pulse signals from the source. The echo repeater was programmed with a TS of 15 dB

re 1 m, and an echo-repeater delay of 2 s. An up-chirp LFM tag, sweeping from 2000 to 2100 Hz with a

PW of 0.1 s and SL of 180 dB re 1 ptPa and 1 m, was transmitted at the ER 0.5 s after the recorded signal

re-transmission. This tag is only used to verify the presence of the target in the event that it cannot be

found. It is not used in this thesis, and is temporally filtered off in the demodulation module of the sonar

signal processing algorithm subsequently. The passive receiver was the BENS array (described in Sec-

tion 1.2.1.3), towed by the OEX AUV (described in Section 1.2.1.2) also at 40 m depth. Thirty-two (32)

hydrophones from octave A of the array (with hydrophone spacing of 0.21 m) were used. The ground

truths of this experimental run are depicted in Figure 4.5, with the current speed and heading indicated by

the length and direction of the arrow at current position. The target was cruising westward at 2 m/s for

the entire run from ping k = 1 to 213. The AUV was moving at 1 m/s on a fixed survey path, headed

south first before making a turn and headed north. When the AUV was making a turn between pings k =

132 and 151, the target appeared near the forward endfire at 0' of the receiver array.

The time-series and spectrogram plots of the hydrophone #5 data from this experimental run at

ping k = 126 are depicted in Figure 4.6. Here, the direct FM/CW blast refers to the FM/CW return signal

for the direct blast, while the indirect FM/CW blast refers to the FM/CW return signal for the indirect
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Figure 4.5: Ground truths for GLINT 2009 Run. DEMUS source is plotted in green, OEX AUV towing
BENS array is plotted in red, and CRV Leonardo towing ER is plotted in gray. OEX AUV commenced

preplanned fixed surveillance mission at 1 m/s, headed south first before making a turn and headed north.

CRV Leonardo was cruising at 2 m/s, westward away from source and receiver.

blast. Both the direct blast and tag are visually obvious, while the indirect blast due to the ER is faintly

shown. Sonar signal processing is thus used to remove the tag and enhance the indirect blast due to the

ER.

The experimental results from this run using the FM and CW processing of the sonar signal pro-

cessing algorithm at ping k = 126 are provided in Figures 4.7 and 4.8 respectively. The matchedfiltering

in the FM processing has achieved the desirable pulse compression for the FM return signals in Figure

4.7(c), as opposed to the matchedfiltering in the CW processing with long pulse obtained for the CW re-

turn signals in Figure 4.8(c). This is consistent with the discussion in Section 4.1.2 where the TOA esti-

mation resolution 6rFM oc 1/FbFw for FM signal in the matched filter is much smaller than the TOA esti-

mation resolution Srcw oc Tw = Tw for CW signal in the matched filter. This implies that it is much

easier to search for a CW peak than a FM peak. Clearly, the spatial and temporal variabilities of reverber-

ation and background noise in the matched-filtered data have been removed in the normalized data, as

depicted in Figures 4.7(d) and 4.8(d), after applying the spatio-temporal normalization. The extracted
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Figure 4.6: Time-series and spectrogram plots of hydrophone #5 data from GLINT 2009 Run at ping k =
126. Direct FM/CW blast refers to FM/CW return signal for direct blast, while indirect FM/CW blast

refers to FM/CW return signal for indirect blast. Direct blast and tag are visually obvious, while indirect
blast due to ER is faintly shown. Tag is temporally filtered off later.

FM and CW peaks of the direct blast and indirect blasts are highlighted with white circle in the FM and

CW thresholded data shown in Figures 4.7(e), 4.8(e), and 4.8(f). The FM and CW peaks for the direct

blast are by-products, and only the peaks for the indirect blasts are used for subsequent processing. Clear-

ly, the number of extracted FM peaks in Figure 4.7 is significantly more than that for the extracted CW

peaks in Figure 4.8. This is consistent with the statement mentioned earlier in Section 4.1.2 and the ob-

servation noted by Hughes and Micheli [69]. As such, the new dual-waveform fusion in Algorithm 4.2 is

suitable here.

By collapsing the FM and CW thresholded data in Figures 4.7(e), 4.8(e), and 4.8(f) into one di-

mension (in time, bearing, and frequency), and then stacking them for ping k = 1 to 213, the stacked

thresholded data for this experimental run is obtained in Figure 4.9. The direct blast is clearly shown to

evolve through time. The indirect blast due to the ER is similarly observed, except in bearing as shown in

Figure 4.9(b) where the direct blast is masking it off visually. Evidently, poorer performance is observed
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Figure 4.7: Experimental results from GLINT 2009 Run using FM processing of sonar signal processing
algorithm at ping k = 126. Extracted FM peaks of direct blast (by-product) and indirect blasts are high-

lighted with white circle in thresholded data. Number of extracted FM peaks is significantly more than
that for extracted CW peaks in Figure 4.8.
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sion, while Doppler-collapsed data is the data collapsed along the Doppler or frequency dimension. Ex-
tracted CW peaks of direct blast (by-product) and indirect blasts are highlighted with white circle in
thresholded data. Number of extracted CW peaks is significantly less than that for extracted FM peaks in
Figure 4.7.
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for the indirect CW blast due to the ER in Figure 4.9(c) when the ER was near the forward endfire of the

BENS array - occurring when the OEX AUV was making a turn between pings k = 132 and 151. The

SNR of the indirect CW blast due to the ER has reduced because of the higher reverberation experienced

with a wider beamwidth near the endfire. This effect is less pronounced for the SNR of the indirect FM

blast signal due to the ER. This could probably be due to a narrower endfire beamwidth at higher carrier

frequency for the FM signal as shown in Figure 1.17 compared with that for the CW signal (see Table 1.1

also). Aforementioned, the details of the endfire and its effect on the SNR for the indirect blast are pro-

vided later in Section 5.2. Although the tag has been temporally filtered off in the demodulation module,

the exceptionally high received power of the tag, as shown in Figure 4.6, has unfortunately leaked

through the sidelobes of the filter, and appeared visibly in Figures 4.9(a) and 4.9(c). Interestingly, the

overall SNR for the CW processing in Figure 4.9(c) between pings k = 132 and 151 has reduced as well.

This is because the tag was similarly near the forward endfire of the BENS array.

By applying the new dual-waveform fusion on the extracted FM and CW peaks at the output of

the FM and CW processing for ping k = 1 to 213 of this experimental run, the set of TOA measurements

ui [k] = {Tm[k]}l and set of DOA measurements Ot [k] = {Oim [k]}%l'k from the FM peaks, and the

set of frequency measurements Ft[k] = {Fim[k]}ik from the matched CW peaks are obtained as shown

in Figure 4.10. Each measurement corresponds to a peak of indirect blast extracted from the thresholded

data depicted in Figure 4.9. Peaks of direct blast are not present in this set of acoustical measurements.

The measurements due to the ER are shaded as shown. Similarly, poorer performance is observed for the

indirect CW blast due to the ER in Figure 4.10(c) when the ER was near the forward endfire of the BENS

array. Some frequency measurements due to the ER are missing because the corresponding CW SNRs

have fallen below the detector threshold for CW processing. Although these frequency measurements are

missing, the corresponding TOA and DOA measurements are still available since the respective FM SNRs

have not been so severely affected and have been above the detector threshold for FM processing. The

acoustical measurements are still reliably produced here for subsequent processing. This further reinforc-

es the reason for using the new dual-waveform fusion in Algorithm 4.2. As with the observation in Figure

4.9, the measurements due to the tag are unfortunately present in Figure 4.10.

Since the ER was used to simulate a target with an echo-repeater delay of 2 s, the TOA measure-

ment Tim [k] due to the ER at each ping k in Figure 4.10(a) is compensated by this delay. For a real tar-

get, such as a submarine or mini-submarine, this compensation is not required. Additional compensation

is also required to align the start time of data recording at each ping k with the ping time tk. The set of

acoustical measurements Ti [k] (with echo-repeater delay and data time compensations), Ot [k], and F [k]

for ping k = 1 to 213 of this experimental run are used in the measurement conversion to produce the set
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of derived measurements depicted in Figure 4.11. The set of derived measurements include (a) xt [k] =

{xtmk (b) yt[k] = fyt [k]} k], (c) At[k] = {Ag[k]}2 , (d) rr[k] = {rrm[k]} ,k] (e)

e, [k] = {im [k]} 7 1k, and (f) Fj[k] = {Fim [k]} M1. The measurements relating to the ground truths of

the ER and its ghost (due to the left-right ambiguity of the BENS array) are also plotted. For the set of

derived measurements containing ghost, the number of contacts increases from m[k] to 2 - m[k]. The set

of derived measurements in Figure 4.11 is then used to construct any variant of the contact report

Z( [k] = {2[k]} ,k] at specific j E {1, ... , 6}, in the contact report construction. This is then fed

into the target tracking algorithm described next in Section 4.2. Since the tag is an unnatural artifact in-

troduced during the experiment for verification purpose, most of the measurements due to the tag have

been removed as shown. The remaining measurements due to the tag have no adverse effect on the target

tracking algorithm, since its TOA and frequency measurements in Figures 4.10(a) and 4.10(c), respective-

ly, are not close to the TOA and frequency measurements due to the ER. For a real target, this tag does

not exist.
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Figure 4.9: Experimental results from GLINT 2009 Run for stacked thresholded data from sonar signal
processing algorithm for ping k = 1 to 213. Direct blast is visually obvious, indirect blast due to ER is
also visually obvious except in bearing where direct blast masks it off, and tag is present because of side-
lobe leakages in temporal filter. Poorer performance is observed for indirect CW blast due to ER when
ER was near forward endfire of BENS array. Overall SNR for CW processing also reduces during this
time period because tag was similarly near forward endfire of BENS array.
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Figure 4.10: Experimental results from GLINT 2009 Run for (a) set of TOA measurements t,[~k] =

{ r ,k] }m . k, (b) set of DOA measurements 90[k] = { 6,,,,[] }m .mk, and (c) set of frequency
measurements F,[~k] = { Fi,,k] }m-.=1,] obtained after dual-waveform fusion in sonar signal processing
algorithm for ping k = 1 to 213. Each measurement corresponds to peak of indirect blast extracted from
Figure 4.9. Measurements due to ER are shaded in green, and measurements due to tag are present.
Poorer performance is observed for indirect CW blast due to ER when ER was near forward endfire of
BENS array.
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4.1.4.2 GLINT 2010 Run

The experimental results from the GLINT 2009 Run in Section 4.1.4.1 clearly showed the workings of the

sonar signal processing algorithm. It also demonstrated the suitability of the new dual-waveform fusion

in Algorithm 4.2 for use in this thesis. The idea of using the extracted FM peak to search for the extracted

CW peak is appropriate here. This was exemplified by the significantly more extracted FM peaks ob-

tained than the extracted CW peaks, and the missing frequency measurements when the ER was near the

forward endfire of the BENS array. Reliable acoustical measurements, involving the TOA and DOA

measurements, were produced despite having missing frequency measurements. In this section, the

GLINT 2010 Run is used to further illustrate the need for the new dual-waveform fusion outlined in Algo-

rithm 4.2.

For the GLINT 2010 Run, the DEMUS source was similarly deployed to transmit both the FM

and CW sonar pulse signals (as specified in Table 1.1) concurrently. However, unlike the GLINT 2009

Run, the HFM sonar pulse signal was used instead. The ER, towed by the CRV Leonardo at 40 m depth,

was likewise used to simulate a target by re-transmitting the recorded FM and CW sonar pulse signals

from the source. The echo repeater was programmed with a TS sequence of 5, 10, and 15 dB re 1 m, and

an echo-repeater delay of 2 s. No LFM tag was transmitted during the experiment. The passive receiver

was the BENS array, towed by the Harpo OEX AUV (described in Section 1.2.1.2) also at 40 m depth.

Similarly, thirty-two (32) hydrophones from octave A of the array (with hydrophone spacing of 0.21 m)

were used. The ground truths of this experimental run are depicted in Figure 4.12, with the current speed

and heading similarly indicated by the length and direction of the arrow at current position. The AUV

was moving at 1.2 m/s on a fixed survey path for the entire run from ping k = 1 to 235, headed west first

before making a gradual turn on curved path and headed east. The target was cruising northward at varia-

ble speed, trying to keep the target away from the forward and aft endfires of the receiver array. At the

middle of the run, the AUV was making a gradual turn on curved path and moving alongside with the tar-

get. This run was carried out to investigate the effect of the bistatic reverberation ridge on the sonar pro-

cessing algorithm presented here, as well as the target tracking algorithm in Section 4.2, unified model in

Chapter 5, and perception-driven control in Chapter 6 later. As demonstrated in Section 6.1.4, the path

taken by the AUV resembles the adaptive survey path that the thesis aims to attain.
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Figure 4.12: Ground truths for GLINT 2010 Run. DEMUS source is plotted in green, Harpo OEX AUV
towing BENS array is plotted in red, and CRV Leonardo towing ER is plotted in gray. Harpo OEX AUV

commenced preplanned fixed surveillance mission at 1.2 m/s, headed west first before making a gradual

turn on curved path and headed east. CRV Leonardo was cruising northward at variable speed, trying to

keep target away from forward and aft endfires of receiver.

The stacked thresholded data from the sonar signal processing algorithm for ping k = 1 to 235 of

this experimental run is obtained in Figure 4.13. The direct blast is clearly shown to evolve through time.

The indirect blast due to the ER is likewise observed, except in bearing as shown in Figure 4.13(b) where

the direct blast is masking it off visually. Clearly, very poor performance is observed for the indirect CW

blast due to the ER in Figure 4.13(c) when the ER was moving alongside with the BENS array - occur-

ring when the Harpo OEX AUV was making a gradual turn on curved path. The SNR of the indirect CW

blast due to the ER has reduced significantly because of the high reverberation experienced when the un-

derlying bistatic Doppler frequency shift approaches that observed at bistatic reverberation ridge. Afore-

mentioned, the details of the bistatic reverberation ridge and its effect on the SNR for the indirect blast are

provided later in Section 5.2.
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The set of acoustical measurements -ri [k] = {Tim [k]}m k], 0[k] = {6im[k]} mk, and Fi [k] =

{Fim [k]}2 obtained after the new dual-waveform fusion in the sonar signal processing algorithm for

ping k = 1 to 235 of this experimental run is shown in Figure 4.14. Each measurement corresponds to a

peak of indirect blast extracted from the thresholded data depicted in Figure 4.13. Peaks of direct blast

are not present in this set of acoustical measurements. The measurements due to the ER are shaded as

shown. Similarly, very poor performance is observed for the indirect CW blast due to the ER in Figure

4.14(c) when the ER was moving alongside with the BENS array. Frequency measurements due to the

ER are missing because the corresponding CW SNRs have fallen way below the detector threshold for

CW processing. Although these frequency measurements are missing, the corresponding TOA and DOA

measurements are still available. The acoustical measurements are still reliably produced here for subse-

quent processing. This certainly adds on to the reasons noted in Section 4.1.4.1 for using the new dual-

waveform fusion in Algorithm 4.2.

This set of acoustical measurements Tri [k] (similarly with echo-repeater delay and data time com-

pensations), 01 [k], and Fj[k] for ping k = I to 235 of this experimental run can then be sent to the meas-

urement conversion to produce the set of derived measurements, before using the contact report construc-

tion to construct any variant of the contact report Z U) [k] = {zQ ([k]}2-k], at specific j E {1, ..., 6). This

is then fed into the target tracking algorithm described next in Section 4.2.
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Figure 4.13: Experimental results from GLINT 2010 Run for stacked thresholded data from sonar signal
processing algorithm for ping k = 1 to 235. Direct blast is visually obvious, and indirect blast due to ER
is also visually obvious except in bearing where direct blast masks it off. Very poor performance is ob-
served for indirect CW blast due to ER when ER was moving alongside with BENS array.
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Figure 4.14: Experimental results from GLINT 2010 Run for (a) set of TOA measurements rj[k] =
{ r,,[k] }m =1 m[k], (b) set of DOA measurements 01[k] = { 91 ,[k] }m = 1, m[k], and (c) set of frequency
measurements F,[k] = { F,,[k] }m ,.m[k] obtained after dual-waveform fusion in sonar signal processing

algorithm for ping k = 1 to 235. Each measurement corresponds to peak of indirect blast extracted from
Figure 4.13. Measurements due to ER are shaded in green. Very poor performance is observed for indi-
rect CW blast due to ER when ER was moving alongside with BENS array.
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4.2 Target Tracking with Information and Environmental
Adaptations

The target tracking algorithm is developed in this thesis to automatically process any variant of the con-

tact report ZU)[k] = {zm4j)[k]} 2jf3, at particular j E {1,...,6}, from the sonar signal processing algo-

rithm (discussed in Section 4.1) to the track report. The algorithm is implemented using essential infor-

mation processing techniques adapted and improved from [13,24]. These techniques are used to manage

the contacts efficiently, and automatically track the appearance and disappearance of target - in the pres-

ence of interferers and clutter - within the tactical scene. As mentioned, the automation is one important

characteristic that contributes to a fully autonomous system that the thesis attains. The target tracking

5,6
algorithm is shown in Figure 4.15', where superscript (j) on the quantities is implied. At the heart of the

algorithm lies the track management, which works in tandem with the trackfile and contact removal, to

control the flow of the algorithm. The trackfile is used to keep a record of all the active and inactive

tracks. The active tracks comprise the unconfirmed and confirmed tracks, while the inactive tracks are

the terminated tracks. The details of the track management and its role in the algorithm are described in

Section 4.2.1. For each active track, the tracker is applied to compute the corresponding track solution.

It is iterated over all the active tracks one at a time according to the order prescribed by the active track

priority list that resides in the trackfile. The tracker is essentially made up from the data association, and

thefilter andprediction modules. The data association is discussed in Section 4.2.2. It is responsible for

gating and associating the right bistatic measurement vectors from the Z W [k] to the active track. The

process and measurement models assumed for the filtering and prediction are provided in Section 4.2.3.

These models serve as the bases for the presentation of the active track solution computed by the filter

and prediction given in Section 4.2.4. The dual-waveform fusion, as outlined in Algorithm 4.2, in the

sonar signal processing algorithm has provided a reliable stream of contacts even at unfavorable bistatic

geometry, particularly one that results in high bistatic reverberation in the CW signal. As a result, some of

these contacts may not have frequency measurements (see experimental results in Section 4.1.4). Modifi-

cations to the data association, and filtering and prediction in this thesis are discussed to cater for these

affected contacts. The performance metrics relating to each active track solution are also computed, and

5 The functional dependency [kI k - 1] indicates the value of the quantity at ping k, conditional on the measurement information

from the contact report obtained up to ping k - 1. This notation is adopted throughout this thesis.
6 Whenever the term state is used in this thesis, it implies the target state. This is not to be confused with the terms source state

and receiver state.
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SNR - Signal-to-noise power ratio
FIM - Fisher information matrix
CRLB - Cramer-Rao lower bound Unified model for
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Figure 4.15: Target tracking algorithm with information and environmental adaptations for each receiver.
Superscript (j) on quantities is implied. Track file is used to keep record of all active (unconfirmed and
confirmed), and inactive (terminated) tracks. For each active track, tracker is applied to compute corre-
sponding track solution. It is iterated over all active tracks one at a time in order of active track priority.

All confirmed track solutions in track file, as well as confirmed track priority, are then combined for pub-
lication as track report.

135



the details are provided in Section 4.2.5. Information and environmental adaptations are applied to each

tracker by adaptively varying its settings in real-time through the detection statistics - namely the proba-

bility of detection P [k Ik - 1] and probability of false alarm P [kIk - 1] - and the measurement co-

variance matrices RU) [k Ik - 1] and RU) [k Ik]. The consequence of varying RW [k Ik - 1] adaptively is

the corresponding adjustment of the validation gate in the data association. Although the notion of vary-

ing P ([kIk - 1] and P [kIk - 1] adaptively has not been mentioned so far, it is evident later that they

also provide the necessary adaptations for the tracker. All the adaptations are applied - via P' [k Ik -

1], P [kIk - 1], and RU [k Ik - 1] - with the intent to achieve optimized bistatic sonar tracking per-

formance in the automatedperception. The adaptations are computed using the unified model, as present-

ed in Chapter 5, based on the belief about the pertinent information and environmental characteristics of

the prior bistatic measurement vector 2 W[k Ik - 1] (having the same form as the bistatic measurement

vector from the sonar signal processing algorithm). This belief then requires the knowledge of the under-

lying bistatic geometry - which is easily established from the (i) navigational measurements of the source,

(ii) navigational measurements of the receiver, and (iii) prior state vector i( [k Ik - 1] gathered from the

active track solution - as well as the environmental measurement, and a host of other dependencies that

will be investigated later. On the other hand, the matrix RU) [k I k] is the posterior computation from the

unified model that utilizes the posterior state vector i'j [kIk] instead. This matrix is used exclusively for

initializing the filtering and prediction, and performance metric computation. The details of the infor-

mation and environmental adaptations are furnished in Section 4.2.6. All the confirmed track solutions (a

subset of all the active track solutions) in the trackfile, as well as the confirmed track priority (a subset of

the active track priority), are then combined for publication as the track report. The algorithm adopts a

decentralized architecture [95] where the processing utilizes only information available at each receiver.

If track reports from other AUVs/receivers are available, datafusion is carried out to produce the fused or

global track report. Since only bistatic configuration is considered here, datafusion is not discussed and

evaluated. The track report is then utilized by the perception-driven control described in Chapter 6. The

experimental results from the algorithm are provided in Section 4.2.7.
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4.2.1 Track Management

At the heart of the target tracking algorithm lies the track management that handles the track initiation,

confirmation, maintenance, and termination. This allows the algorithm to continuously handle appearing

and disappearing targets, and prioritize the tracks in the tactical scene. The implementation can be broad-

ly segregated into two popular approaches: the logic-based approach similar to that described by

Coraluppi and Grimmett [37]; and the score-based approach akin to that presented by Blackman and

Popoli [24]. The former approach operates by counting the number of associations for each track over

time, and using that as a criterion to ascertain whether to confirm or terminate the track. The latter ap-

proach operates by computing the track score for each track accumulated over time, and using the score to

determine whether to confirm or terminate the track. It can be shown that the track score is eventually

dependent on the cumulated effect of the SNRs of the associated bistatic measurement vectors over time.

This implies that a track with higher SNRs in the associated bistatic measurements has higher track score

than one with lower SNRs. The logic-based approach from [37] is adapted in this thesis, but modified by

utilizing the track score partly to determine the active track priority list. This is because it is easier to en-

visage the track management using this approach, as well as to determine the track at which the unsuper-

vised decision-making process acts upon for the perception-driven control in Chapter 6.

The flow of the target tracking algorithm in Figure 4.15, as controlled by the logic-based track

management, is given as follows:

e At the first ping k = 1, each of the bistatic measurement vectors in Z U [1] is used to initiate an

unconfirmed track.

" At each subsequent ping k 2, the track file has a record of all the active (confirmed and uncon-

firmed) tracks. These tracks are ranked in order of priority - the confirmed tracks have higher

priority than the unconfirmed tracks, and the longer tracks (based on the time of track initiation)

have higher priority than the shorter tracks. If two or more tracks have the same time length, the

tracks with higher track scores have higher priority than the ones with lower track scores. This is

as opposed to the approach suggested by Coraluppi and Grimmett [37] where the priorities for the

tracks having equal time length were randomly assigned. Since the performance metrics are

computed for each track, they are valid candidates for the track score. Two of the metrics calcu-

lated in this thesis are the Fisher information matrix (FIM) J [k] and the Cramdr-Rao lower

bound (CRLB) matrix PcLB[k]. From Sections 4.2.5 and 4.2.6 later, these metrics utilize the ex-

plicit relationships postulated in (1.19) to (1.21). This means that the metrics are predominantly

dependent on the SNRs of the associated bistatic measurements, and subsequently the underlying

137



bistatic geometry. The previously mentioned track score given by Blackman and Popoli [24] also

exhibit very similar predominant dependency. The active track priority then dictates the order at

which the active tracks are processed by their corresponding trackers.

* For each active track, the data association is used to first gate (or validate) the bistatic measure-

ment vectors from ZO) [k] that fall within a validation gate. This is then followed by utilizing the

set of validated bistatic measurement vectors and corresponding probabilities to associate with

this active track, made up for a set of past associated bistatic measurements. The weighted inno-

vation vector 2EU)[kjk - 1] is then produced from the data association. In this thesis, the bistatic

measurements from Z W [k] are assumed to originate from target, interferers, or clutter.

* The weighted innovation vector U)[kIk - 1], together with the set of validated bistatic meas-

urement vectors and corresponding probabilities, for each active track is then used to probabilisti-

cally filter for the corresponding track solution that consists of the posterior state vector 9 )[kIk]

and posterior state covariance matrix P U) [k k], where the matrix P (J) [k Ik] readily quantifies the

uncertainty about the state estimate i )[klk]. At the same time, it also probabilistically predicts

the prior state vector 23[klk - 1], prior state covariance matrix P0 )[kik - 1], prior bistatic

measurement vector 2 U) [k 1k - 1], and prior innovation covariance matrix SU) [k].

" The bistatic measurement vectors that have been validated are then removed from Z U) [k] by the

contact removal, so that they are not considered for the subsequent active tracks on the active

track priority list.

" After processing all the active tracks, the remaining bistatic measurement vectors in ZU [k],

known as the non-validated bistatic measurement vectors, are then used to initiate new uncon-

firmed tracks.

" The track confirmation is then based on the commonly used K1 out of K2 (or K1 /K 2) detection

logic, where an unconfirmed track is confirmed after having obtained K1 associations over a time

length of K 2 pings. A confirmed track is terminated if consecutive K 3 associations are missing in

the track, or if the prior state covariance matrix PU)[k k - 1] for the track becomes ill-

conditioned. The terminated tracks are then archived in the track file as inactive (terminated)

tracks. The life cycle of a track is thus illustrated in Figure 4.16.
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Figure 4.16: Life cycle of a track, transiting from unconfirmed track to terminated track.

4.2.2 Data Association

For each active track, the data association in Figure 4.15 is performed using a yU) [k 1k - 1]-sigma el-

lipsoidal validation gate with probabilistic data association (PDA) [13,24]. The implementation of the

PDA is sufficient to achieve the tracking objective for this thesis because multiple targets can still be

tracked as long as their corresponding bistatic measurements in N-dimensional vector space are not close

to one another. This implies that their acoustical measurements in TOAs, DOAs, and frequencies (or

equivalently Doppler frequency shifts) are not near. In fact, a simulated scenario is presented for the per-

ception-driven control in the Chapter 6 where two targets, exhibiting distant acoustical measurements, are

concurrently tracked in the tactical scene. If tracking is required for multiple targets with closely-spaced

bistatic measurements, the joint PDA (JPDA) and multiple hypotheses tracking (MHT) [13,24] are possi-

ble considerations. These are not examined in this thesis, but they can be easily utilized if required. From

the experimental results in Figure 4.11, the set of derived measurements was observed to be highly clut-

tered with numerous false alarms. Therefore, both the nearest neighbor association (NNA) and strongest

neighbor association (SNA) [13,24] might not be suitable here. Such association methods only associate

the validated bistatic measurement nearest to the prior bistatic measurement vector ZU) [k Ik - 1] or the

validated bistatic measurement with strongest SNR in the validation gate respectively, and then discard

the rest of the validated bistatic measurements.
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By using a y [kik - 1]-sigma ellipsoidal validation gate for this active track, the validated bi-

static measurement vectors from ZU)[k] = fzmQ [k]}M=k, at a particular choice of j E {1, ..., 6}, are

those satisfying the gating condition [13,24]

d [kk - 1])2 = [ - 1] D(SO)[k])

(i [k4Ik - 1]) -(S()[k])[-i2[klk-1] 5 yU)[kjk-1] , (4.16)

where d$Q [k1k - 1] is the quadratic e 2 -norm of the innovation vector, and i( [k Ik - 1] is the innova-

tion (or residual) vector defined as

iQ[klk - 1] = z[k] - Z()[klk - 1] . (4.17)

For the variants of bistatic measurement vector z [k], with j E {3, ..., 6}, that include the DOA meas-

urement 6im[k], the residual DOA measurement (6im [k] - [kIk - 1]) in (4.17) must be wrapped to

1800. It follows that dj [kIk - 1] is the normalized distance of the bistatic measurement vector z U) [k]

from the centroid of the validation gate 2(')[kIk - 1] for this active track. Here, y U) [kIk - 1] is the gat-

ing threshold given by [24]

yU)[klk - 1] = 2 1n [(1-PPkik-1]) P~ j)[kI k- 1 ] (4.18)

The new source density #U) [klk - 1] consists of new target density and false alarm density. In practice,

the false alarm density is significantly larger than the new target density. Therefore, the new source den-

sity is assumed to be [24]

flU)(klk - 1] ~ PW*[kjk - 1]|Vj)(klk - 1] , (4.19)

where VU) [klk - 1] is the measurement volume element at U )[klk - 1]. Taking j = 4 as an example,

the measurement volume element is the volume of the three-dimensional measurement cell at Z [k Ik -

1] = [ S'c[klk - 1] &Jklk - 1] Pi[klk - 1] ]T. By using a y U)[klk - 1]-sigma ellipsoidal validation

gate on the N-dimensional bistatic measurement vector z2[k], the normalized distance-squared

(d5Q[klk - 1])2 is then assumed to have a chi-squared distribution with N degrees of freedom [13,24],

represented as X'. The probability of the bistatic measurement vector zm [k] falling within this ellipsoi-
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dal validation gate is also the probability at which the gating condition in (4.16) is satisfied. This proba-

bility, denoted by P (j' [kIk - 1], is then obtained from [13,24] as

P j)[kjk - 1] - Probt (d[kk - 1] ~Xb; (d$2[klk - 1]  < y(')[kjk - 1]

(1- e-y [klk-1]/2 ,N 
= 2

2 f jyW[kjk-1] e _U 2 /2 du 2 yO[klk-1] ey) [klk-1]/2 , N = 3;~i 0 7

By assuming that there are I[k] validated bistatic measurements from Z CD [k] that satisfy the gating condi-

tion in (4.16), the set of validated bistatic measurement vectors is then given by

2()[k] = {zW' 1[k] , I[k] ! 2 -m[k]; ( U)[k] 9 Z(j) [k]I 1=1 (4.21)

at a particular choice ofj E {1, ..., 6}.

Therefore, according to the PDA formulation, 1 [k] + 1 hypotheses can be formed for this active

track. By denoting the null hypothesis as Io where none of the validated bistatic measurement is valid,

and the alternate hypotheses as H, where the la validated bistatic measurement is valid, the correspond-

ing probabilities of the hypotheses with Poisson clutter model (that is assuming parametric model for clut-

ter or false alarms) are obtained as [13,24]

Probt KO|{f2Cj[x]} l= 0
p j)[k] = b[ } 1 = 0

Prob{Ki{2Ci[]} } , 1 I 1[k]

AOY~L
AO + , l =k] 0{ Aj (4.22)

AO +Z ,[k] 1 A 1[k]

AO = (1 - P)[klk -1] P()[klk -1]) (27r)N/2 j(Di[kjk-1] i _T7)[k]I, (4.23)

Ai = P ' [k~k -1] (4.24)

Here, dh [kjk - 1] is obtained using (4.16). The probabilistically weighted innovation vector is then

obtained as [13,24]

2(j[k~k -1] = l[k] pli)[k] if )[k~k -1] = Zkpli) ][k] (7ik] - 2(')[kjk -1]), (4.25)

z1) [k]EZ [k]
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at a particular choice of j E {1, ... , 61, for this active track. Similarly, for the variants of bistatic meas-

urement vector zj) [k], with j E {3, ..., 61, that include the DOA measurement il [k], the residual DOA

measurement (Oil [k} - 6^[kIk - 1]) in (4.25) must also be wrapped to ±180*.

For the variants of the contact report Z U)[k] = {z [k] }2mk], with j E {2, 4, 61, that include the

set of frequency measurements constructed from Fi[k] = {Fim[k]}ml , some of the contacts may have

missing frequency measurements. This is because the dual-waveform fusion, as outlined in Algorithm

4.2, in the sonar signal processing algorithm has provided a reliable stream of contacts even at unfavora-

ble bistatic geometry, particularly one that results in high bistatic reverberation in the CW signal. In order

to support this fusion strategy, the data association discussed above is modified in this thesis. Specifical-

ly, the modification devised here entails the computation on reduced dimension for these affected con-

tacts. This means that the dimension involving the frequency measurement in 2(D [k1k - 1] and S ()[k]

are not used in (4.16) to (4.20) for these contacts, with N = 2 used instead of N = 3. By assuming that

there are still 1 [k] validated bistatic measurements from Z U)[k], but with 10 [k] of them without frequency

measurements and 1,[k] of them with frequency measurements, the sets of validated bistatic measurement

vectors are modified from (4.21) as

2 [k] = tzM [k] 10[k, 10[k] 1[k]; 2 )[k] 9 ZU)[k] , (4.26)

W [kk] = [kzin [k] , l[k] :s 1[k]; 2( )[k] 9 2(i)[k] , (4.27)2(j) [k] = t 1=lg[k]+1

2)[k] = 2()[k],2y)[k], 10 [k] +1j[k]= I[k] 2-m[k]; 2U)[k] Z()[k]. (4.28)

Here, 2( [k] and 2( [k] are the sets of validated bistatic measurement vectors without and with frequen-

cy measurements respectively.

Although there are still I [k] + 1 hypotheses formed for this active track, the probabilities of the

hypotheses are modified from (4.22) as
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A0
S10 [k] 10 [k+1 1[k] A 1AO + I A0 1 + 1=l 0[kI+ A5l

pr4)[k] = A 0+ k] A01 10[kI+1[kI , 1 1 ! 5 10[k]
I AO +,El_ A0 1 + ZX11 0 [k]+i All

A11

A 0  10[kJ+15[k A11  (10[k] + 1) 1 (10 [k] + 11[k])AO + ZlE A01 + Z l=logl+1 All5k

(4.29)

where (i) AO here is computed from (4.23) on full dimension (that is including the dimension involving

the frequency measurement) with N = 3, (ii) AO, is computed from (4.24) on reduced dimension (that is

excluding the dimension involving the frequency measurement), and (iii) A,, is computed from (4.24) on

full dimension. If the subscript (i:j) in z(;:j) is used to index the ih to j* elements of the vector z, then

the probabilistically weighted innovation vector is modified from (4.25) as

i(j)[k~k - 1]

(Z(2)[k] -2 [klk -1]) + p (j) [k] (zU [k] - 2 [k k-]

ZpJ[kk]E[k]- [ 1 [k]e2

0 ~ ~ ( Zi [kg2U[

1 0k]+ul[kI ( [kU] -2 k
PO k] 1o1[kI+l PI [k]

Y-1=1~ pi~[k Q1:f2)[ - Z(1:2)[kI k - 1])

1[k]k +z~~ PP (0)[kk]2 i ~ k- ] (4.30)

Similarly, wrapping to ±180* must be carried out for the residual DOA measurement (z%[k] -

2j[klk -1]) = (6;,[k] - [kIk -1]) at jE {4,6}. Clearly, (4.30) is similar to (4.25) except that the

residual frequency measurement (z [k] - 2 [kIk - 1]) = (F;,[k] - R[kIk - 1]) is computed from

2WJ [k] instead of 2() [k] with the probabilistic weights marginalized.

In the event that 2 [k] is a null set (that is all the validated bistatic measurement vectors have

no frequency measurement), the weighted residual frequency measurement in (j)[klk - 1] becomes

empty. It is then clear from the dual-waveform fusion, as outlined in Algorithm 4.2, in the sonar signal

processing algorithm that no TOA correction using (4.9) has been applied in 2U) [k] since all the validat-

ed bistatic measurement vectors have no frequency measurement. The prior frequency measurement
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28 [kIk - 11 = P[kIk - 1] is then used to perform the TOA correction using (4.9) on the probabilistical-

ly weighted innovation vector iCD[kjk - 1]. However, this is only performed after this active track is

sufficiently long (based on the time of track initiation). This is to allow adequate time for possibly incor-

rectly-initiated posterior Cartesian velocities (see (4.54)) to become accurate enough to provide good pri-

or frequency measurement 28' [klk - 1] = Rj[kjk - 1] to perform the TOA correction using (4.9). Both

the posterior root-mean-square (RMS) speed estimation error (see (4.75)) and the CRLB RMS speed es-

timation error (see (4.89)) provide good indications on the accuracy of the posterior Cartesian velocities.

The usage of i() [k Ik - 1]) with missing weighted residual frequency measurement is examined later in

Section 4.2.4.

Therefore, there are three distinct cases associated with the TOA correction in this thesis. If the

frequency measurement is present, the TOA correction is carried out in the dual-waveform fusion, as out-

lined in Algorithm 4.2, in the sonar signal processing algorithm. If the frequency measurement is absent,

the TOA correction is then performed in the target tracking algorithm as discussed above. If the posterior

RMS speed estimation error or the CRLB RMS speed estimation error for this active track is too large, no

TOA correction is executed in the target tracking algorithm. The transition between these three distinct

cases is presently abrupt. As part of the future work, smoother transition from the TOA correction in the

dual-waveform fusion of the sonar signal processing algorithm to that in the target tracking algorithm is

desired. One possibility is to use the posterior RMS speed estimation error or the CRLB RMS speed es-

timation error to weight the frequency information provided by these two extreme cases.

From the discussion above, the data flow diagram (DFD) is depicted in Figure 4.17 to illustrate

the flow of data in the data association for each active track, where superscript (j) on the quantities is

implied. The DFD clearly reveals the information and environmental adaptations provided by adaptively

varying the settings of the detection statistics - namely the probability of detection P () [k Ik - 1] and

probability of false alarm P [kIk - 1]. Both P"[kjk -1] and f'[kjk -1] are computed based on

the belief about the detection statistics of the prior bistatic measurement vector (j)[klk - 1]. The calcu-

lation of P ([k Ik - 1] then requires the knowledge of the underlying bistatic geometry - which is easily

established from the (i) navigational measurements of the source, (ii) navigational measurements of the

receiver, and (iii) prior state vector ( [k Ik - 1] (to be described in Section 4.2.4) - as well as the envi-

ronmental measurement. The approaches taken to compute Pd'[k~k - 1] and P1 '[kIk - 1] are given in
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Section 4.2.6, but the detailed calculations are provided in Section 5.1.1. From the DFD, the prior inno-

vation covariance matrix S(i) [k] from the filtering and prediction also plays an important role in the set-

ting of the data association. Clearly, increasing/decreasing SC[k] is equivalent to enlarging/shrinking

the ellipsoidal validation gate here. The details of this matrix are provided in Section 4.2.4.

I

9
From filtering &

prediction
(see Section 4.2.4)

i I
TI

C,

-L2

Q~k To filtering &
P- prediction 4-

(see Section 4.2.4)

Figure 4.17: Data flow diagram illustrating flow of data in data association for each active track. Super-

script (j) on quantities is implied. Information and environmental adaptations are provided by adaptively

varying settings of detection statistics P) [k Ik - 1] and Pj) [k Ik - 1]. Prior innovation covariance ma-

trix SU) [k] also plays important role in the setting of data association.
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4.2.3 Process and Measurement Models

In this section, the process and measurement models assumed for the filtering andprediction are provided

here to serve as the bases for the presentation of the active track solution computed by the filter andpre-

diction given in Section 4.2.4. All the quantities in these two models that pertain to angles are manipulat-

ed in radians instead of degrees. Nonetheless, they are subsequently converted back to degrees for the

ease of visualization in this thesis.

As mentioned in Section 1.2.3, the basic problem of the bistatic geometry in Figure 1.15 is to es-

timate the kinematic state vector of the target xt[k] = xt(tk) defined in (1.1). By assuming a linear and

nearly constant velocity (NCV) target dynamic model, the process model with additive white Gaussian

noise (AWGN) is approximated as [24,109]

xt[k + 1] = F -xt[k] + w[k] , (4.31)

where F E R 4X 4 is the state transition matrix given by [24,109]

1 0 Ty 0

F= 0 1 0 TP . (4.32)
0 0 1 0
0 0 0 1.

Here, w[k]- (04x 1, Q) is the zero-mean white Gaussian process noise with covariance matrix Q =

E{w[k] WT[k]} E R4X4. The linear transformation in (4.31) implies that xt[k + 1]- N(F -xt[k], Q).

The process covariance matrix is then obtained using the NCV model [14,24,109]

-0 q(Tp)2  0 ]
S 2 }q(Tp)3  0 0(p)2 (4.33)

} qx(Tp)2 0 qxTp 0

0 P)2 0 q T,

where qx and qy are the power spectral density (PSD) levels of the continuous Cartesian target accelera-

tions, and are tuning parameters that can be increased to model a more maneuverable target. The target

dynamic model can be easily extended to include the nearly constant acceleration (NCA) and nearly con-

stant speed turn (NCT) models [24,109]. However, such extension requires the setup of an interacting

multiple model (IMM) - which is implemented by a bank of models, with each model having its ownfil-

tering andprediction to estimate the target state vector. These models are then combined according to a

Markov chain that allows the transition or switching between the target state vectors across models
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[24,109]. As with the discussion in Section 1.2.1.4, such setup is not examined here. The NCV model is

sufficient because the target, simulated by the ER, was abiding to this model throughout the experimental

data utilized in this thesis.

Using (4.10) to (4.15), the corresponding six variants of the measurement models with AWGN are

compactly defined as [24,109]

z(j)[k] = h(j)(xt[k]) + vU)[k]. (4.34)

Here, v0) [k]- N(ONx1, RU) [k]), at specific j E { 1,...,6}, is the zero-mean white Gaussian measure-

ment noise with covariance matrix RM [k] = E{vU) [k] (U) [k])T} E RNXN, and is assumed to be uncor-

related with the process noise w[k]. Similarly, the linear transformation in (4.34) implies that

z 0)[k]~ - N(hU)(xt [k]), RU)[k]). From (1.18) of Section 1.2.5.3, the acoustical, navigational, and envi-

ronmental measurement uncertainties are assumed to be normally (or Gaussian) distributed with associat-

ed variances. In Section 5.1.2, the propagations of these uncertainties to the derived measurements, and

then to the bistatic measurement vector z 0)[k] are examined. In order for the bistatic measurement vec-

tor z )[k] to be normally distributed about hU) (Xt [k]) with measurement covariance matrix RW [k],

small uncertainties in the acoustical, navigational, and environmental measurements are required. The

uncertainties in the bistatic measurements are characterized by the measurement covariance matrices

RM'~ [k] = [ix2t [k] axty [k] ]

R(2 )[k] = R)[k] 02x, (4.36)E1x2 u2[k]

R(3 )[k] = A12 a k] , (4.37)l o[k]2x 1

R( 4)[k] = 2x,. (4.38)
0lx ua2[k]

01x2 uo [k] '

where 2 [k] is the variance of the uncertainty in measurement p, and opq[k] is the covariance of the un-

certainty between measurements p and q. In (4.36), (4.38), and (4.40), the covariances of the uncertainty
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between frequency measurement F1[k] and other derived measurements are assumed zero. This is not

true in reality since the TOA correction, as expressed in (4.9) or depicted in Figure 4.4, in the dual-

waveform fusion implies that the uncertainty in frequency measurement F[k] leads to the increased un-

certainty in TOA measurement ri [k], and consequently the increased uncertainty in other derived meas-

urements. However, this increase is negligible and ignored in this thesis to reduce the complexity. By

using the bistatic geometry in Figure 1.15 and [35,37,82], the non-linear transformation vectors

h0 )(xt[k]) E RNx1, where j E {1, ... , 6}, relating the state vector xt[k] to the bistatic measurements are

obtained as

h(1)(xt[k]) =

h(3) (xt

h(4)(xt

h(s) (Xt

[hxt (Xt [k]) 1 10001 xt[k]
hy(xtt[k])] k0100]

[k]) hF)(xt[k])

hAT(xt[k])

[k]) = h (xt[k )

[k]) h(3)(xt[k])

hF(Xt

[k]) =k]

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

where

hA,(xt[k]) = 1-(r[k] + rr[k] - rb[k]),
C(tk)

hr,(xt[k]) = rr[k],

ho. (xt[k]) = a (yt[k] pYrrk) ) r(tk),kxt[k] - xr(tk)/

hFi(Xt[k]) s r[k])) F

The ranges rs [k], rr[k], and rb[k], and the range rates is [k] and tr [k] are calculated as

(4.47)

(4.48)

(4.49)

(4.50)
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rs/r[k] = (xt[k] - xs/r(tk)y + (yt[k] - Ys/r(tk)y (4.51)

rb[k] (xS(tk) - x 2 + (yS(tk) ~ yr(tk)) 2 , (4.52)

itr[k] = (xt[k] - xsrfr(tk))(xtrk] - XsrT(tk))+ (yt[k] - Yslr(tk))(t[k] - s/r(tk))
rs/r[k]

Clearly, a decreasing/increasing separation range between two bistatic assets with time results in a nega-

tive/positive range rate in (4.53). If the bistatic range rate (is [k] + tr[k]) in (4.50) is negative/positive,

the bistatic Doppler frequency shift (-Fccw (s[k] + ir[k])/c(tk)) is positive/negative. This implies that

hFi(xt[k]), with Iis[k] + ir [k] I «c(tk), is higher/lower than Fcw. In the non-linear transformation vec-

tors given above, a common time at ping time tk is used instead of time (tk + i [k]) for all the continu-

ous functional dependency to simplify the problem. This does not affect the contact report, but introduces

a small state estimation error in thefiltering andprediction [36,37].

Although the Doppler frequency shift has been well-understood and utilized in radar, passive so-

nar, and active monostatic sonar tracking, the application of bistatic Doppler frequency shift in active bi-

static sonar tracking was only first reported by Lang and Hayes [82], and then subsequently presented by

Coraluppi et al. [35]. These two papers have been primarily focused on demonstrating the use of the fil-

tering andprediction on synthetic data. In the papers by Daun et al. [39,40,46] after that, the application

of bistatic Doppler frequency shift was extended to include the data association for tracking experimental

data collected out at-sea. In this thesis, the bistatic Doppler frequency shift is clearly employed in the

tracker - that encompasses both the data association, andfiltering andprediction. The availability of the

bistatic Doppler frequency shift is provided in a form of the frequency measurement obtained from the

dual-waveform fusion, as outlined in Algorithm 4.2, in the sonar signal processing algorithm.

4.2.4 Filtering and Prediction

With the process and measurement models discussed in Section 4.2.3, the filtering andprediction module

in Figure 4.15 is described in this section to show how the track solution is being computed for each ac-

tive track - regardless of whether it is unconfirmed or confirmed. At the core of the filtering andpredic-

tion resides the recursive non-linear Bayesian filter (BF) kernel. Since the process and measurement

noise are assumed to be drawn from normal (or Gaussian) distributions, with Gaussianity further pre-

sumed for the prior and posterior state estimates, the extended Kalman filter (EKF) is adopted in this the-

sis as the filter kernel. The combined usage of the PDA in Section 4.2.2 and the EKF in this section re-
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sults in the probabilistic data association filter (PDAF) that performs the probabilistic target state estima-

tion process for the tracker. Recalling from Section 4.2.1, all the bistatic measurement vectors in Z0 )[1]

at ping k = 1, and the non-validated bistatic measurement vectors remaining in Z U) [k] at ping k 2 are

initiated as unconfirmed tracks. By generalizing k' as the ping at which initiation occurs for an uncon-

firmed track, the filtering andprediction steps are presented here by adapting and modifying the material

in [13,24,35,37,82].

Initialization at ping k =k'

When initiation occurs for an unconfirmed track, the corresponding posterior state vector and

posterior state covariance matrix are initialized as [13,35,37]

tRe [k'\k'] = [xt[k'] yt[k'] 0 0 ]T (4.54)

I R()[k'\k'] R(l)[k'|k']/Ty 1

where xt[k'] and yt[k'] are the derived measurements obtained from the corresponding bistatic meas-

urement vector in ZU) [k'] using (1.8) and (1.9), and RM [k'| k'] is the (posterior) measurement covari-

ance matrix. The covariance matrix RM [k'k'] is computed using (4.35) based on the knowledge of the

underlying bistatic geometry - which is easily established from the (i) navigational measurements of the

source, (ii) navigational measurements of the receiver, and (iii) posterior state vector t)[k'| k'] given in

(4.54) - as well as the environmental measurement, and a host of other dependencies that will be investi-

gated later. The approach taken to compute RM [k'k'] is given in Section 4.2.6, but the detailed calcula-

tion is provided in Section 5.1.2. An interesting note here is that even if the variant of the corresponding

bistatic measurement vector in ZU)[k'], at particular j E { 2,4, 6}, includes the frequency measurement,

the posterior Cartesian velocities are not initialized here. This is because the velocities cannot be ob-

tained directly from the frequency measurement, but only through inference using the EKF after several

ping recursions.
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Prediction at ping k > k' + 1

Following the initiation, the active track is either unconfirmed or confirmed, depending on where

it is in the life cycle as shown in Figure 4.16. Both unconfirmed and confirmed tracks are similarly treat-

ed here. The prior state vector, prior state covariance matrix, prior bistatic measurement vector, and

prior innovation covariance matrix for this active track are then predicted as [13,24]

i2j)[kk -1] = F - -[k - 1k - 1], (4.56)

PU)[klk - 1] = F -P()[k - 1|k - 1] - FT + Q, (4.57)

2(j)[klk -1] = hUj) (2t [kk - 1]), (4.58)

SU)[k] = HU)(i'j[kjk - 1]) -PG)[kik - 1] - (H c)(28[kjk - 1 ]))T + R(')[klk - 1] , (4.59)

where H (2(j) [k Ik - 1]) E RNx4 is the linearized measurement matrix used to linearize the non-linear

transformation vector h(j)(xt[k]) locally. This matrix is a Jacobian matrix computed by taking the first-

order gradient of h(j)(xt) E RNx1 with respect to xt E R4X1, evaluated at xt = ~[kk - 1], as [13,24]

H U) (iD' [kIk - 1]) = VT (h()(xt))TI (4.60)

The detailed expressions of the linearized measurement matrices, where j E {1, ..., 6}, are provided in

Appendix A. They are computed in the similar manner as [35,82], but have been modified here to suit the

different variants of bistatic measurement vectors constructed in (4.10) to (4.15). The prior bistatic meas-

urement vector 2 U) [k Ik - 1] is then used to compute the weighted innovation vector ZiU) [k Ik - 1] in

(4.25) or (4.30), while the prior innovation covariance matrix S(2[k] serves several computations in

(4.16), (4.18), (4.23), and (4.24) via df' [kIk - 1] mentioned earlier, and (4.63) and (4.68) presented lat-

er.

Update at ping k > k' + 1

The posterior state vector and posterior state covariance matrix for this active track are then up-

dated, upon the receipt of weighted innovation vector EU) [k Ik - 1], as [13,24]
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ij[kjk] = 2([klk - 1] + K(U)[k] -2()[kk - 1],

P(')[kk] = Pf j[klk] + AP(i)[k], (4.62)

where K U)[k] E(- R 4
xN is the Kalmanfilter gain expressed as [13,24]

K(')[k] = P()[klk - 1] -(HU)(2i)[kk - 1]))T - (SU)[k]) . (4.63)

If 2(J)[k k - 1], at particular j E {2,4, 6}, is used, the weighted residual frequency measurement is as-

sumed to be present for this update step. Here, PP [k Ik] is the covariance matrix for the case when a

single validated bistatic measurement vector was present and valid for this active track, and is obtained as

[13,24]

PP')[klk] = pf,)[k] -PU)[kjk - 1] + (1 -pf,)[k]) -P?)[klk] , (4.64)

where PY) [kIk] is the state covariance matrix in standard EKF expressed as [13,24]

PY) [k k] =

14x4 - K0 )[k]- H()(4i'[klk - 1]))- P') [kik -1]- 14x4 - KU)[k] -Hj)(Rj[kjk - 1 ]))T

+ KU)[k] - RU)[kIk - 1] - (K(i)[k] )T. (4.65)

The Joseph's form update is utilized in (4.65) that results in symmetrical matrix for numerical stability.

The matrix AP U)[k] in (4.62) is the incremental covariance matrix that accounts for the effect of uncer-

tain association in this active track, and is computed as [13,24]

ZIEk] p [k] il)k[k - 1] (z)[kk -1]

AP(')[k] = K()[k]- 2 [kik-1]=2 'F[kI-2()[klk-1]; z)[ke2()[k] (KU)[k]) . (4.66)

2j) [k lk - 1] ((0)[k lk - 1])T

If zj [k 1k - 1], at particular j E {2, 4, 6), is used, and contains some missing residual frequency meas-

urements, (4.66) is modified as
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10[p [k] if()[klk -1] (:[kk - 1]T +

|~ kk-11=ZWe [kl-2 [kjk-13: z? [Ei? Ek1

APM)[k] = K(j)[k] - 1=1 0 rk+1Pl[k] z j[kjk-11 (i')[kIk- 1 ])- - (K()[k])T.

(I)k-1= z[kl-tm[kjk-11: z'[kjE2D[kl

1 1]
.2)[kjk - 1](2()[kjk - 1])T

(4.67)

Clearly, (4.67) is similar to (4.66) except that the set 2 U) [k] is obtained from (4.28) instead of (4.21), the

probabilities p,() [k] are computed from (4.29) instead of (4.22), and the weighted innovation vector

2W [k Ik - 1] is calculated from (4.30) instead of (4.25). The modification in (4.67) is specially formu-

lated in this thesis to support the dual-waveform fusion, as outlined in Algorithm 4.2, in the sonar signal

processing algorithm.

Modified update for missing weighted residual frequency measurement at ping k k' + 1

If EU)[kIk - 1], at particular j E {2,4, 61, is used, it is possible that the weighted residual fre-

quency measurement is missing at times. This implies that all the residual frequency measurements in

i( [kIk - 1], for 1 1 1[k], are also missing. In such situation, j [k] in (4.27) becomes a null set

because all the validated bistatic measurement vectors contain no frequency measurement. The modified

update step implemented in this thesis then follows exactly the same as that for the update step presented

earlier in (4.61) to (4.65), and (4.67), but now operates on reduced dimension (that is excluding the di-

mension involving the frequency measurement). With this modification, the update step is able to support

the dual-waveform fusion in the sonar signal processing algorithm.

Modified prediction for missing detection at ping k k' + 1

In the event that there is no validated bistatic measurement vector for this active track (that is

E )[k Ik - 1] is empty), this is an indication that the prior state covariance matrix P U) [kIk - 1] in (4.57)

may be smaller than the actual tracking uncertainty. By following the discussion in [24,86,88], the modi-

fiedprior state covariance matrix, denoted P, [k Ik - 1], for this active track is computed as
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P [klk - 1] = PU)[klk - 1] + P (1-CT) K(j)[k] s(D[k] -(K(i)[k])T,
1-P [kk-1] P [kk-1]

(4.68)

where the quantity CT is defined as

r y(i)[klk- 1 ]/2((N/2)+1)
CT N (4.69)

2 rY0J[klk-1]/2(N/2)

Here, ra(x) is the incomplete Gamma function given by

F,(x) = fuxleudu. (4.70)

Taking j e {1,3,5} with N = 2 as an example,

-y()[k~k-1] _ -yU)[k~k-1]/2

CTIN=2 = 1 2e-y0J[kk-1]/2

In (4.68), S U)[k] and KW [k] are obtained from the earlier prediction and update steps at the current ping,

just before this modified prediction step is applied. With P, [kIk - 1] obtained in (4.68), the modiped

prior innovation covariance matrix, denoted S( [k], for this active track is computed, by using (4.59), as

S$Q[k] = H()(gi~)[kik - 1]) -Pf [klk - 1] - (H0)(i2j[kk - 1]))T +RU)[kk-1]. (4.72)

With this modified prediction step, an increased in Pmj[klk - 1] from PW)[kJk - 1] results in a corre-

sponding growth in S2 [k] from SU) [k]. The new S [k] is then used in the data association. It follows

from Section 4.2.2 that this effectively enlarges the ellipsoidal validation gate, which subsequently in-

creases the chance of gating bistatic measurement vector(s) to prevent missing detection.

Modified update for missing detection at ping k > k' + 1

If validated bistatic measurement vector exists for this active track after the modified prediction

step (that is 20U)[kIk - 1] is no longer empty), the modified update step then follows exactly the same as

that for the update step presented earlier in (4.61) to (4.67). The only differences are that P2 [kik - 1]

and Sn [k] are used instead of P i)[k k - 1] and S()[k] respectively. In this modified update step, the

modifiedKalmanfilter gain, denoted Kj) [k], is computed using (4.63) to replace the previously obtained

154



K)[k] used in (4.68). If 2') [kIk - 1], at particular j E {2, 4, 6), is used, it is possible that the weighted

residual frequency measurement is missing at times. In such situation, the aforementioned modified up-

date step for the missing weighted residual frequency measurement is then applied.

In the event that there is further missing detection after the modified prediction step (that is

zU) [k Ik - 1] is still empty), no further iteration is carried out to modify the prior state covariance matrix.

Instead, the null hypothesis 1-Co in the PDA is fully assumed and this leads to I [k] = 0 with po/j [k] = 1 in

(4.22) or (4.29). In such situation, the modified Kalman filter gain is set to K$,Q [k] = 0
4xN- This result

in the posterior state vector Ri [k 1k] and posterior state covariance matrix P () [k 1k] taking on the values

of R ([kIk - 1] and P, ([kIk - 1] (which is larger than P U) [klk - 1]) respectively.

From the discussion above, the DFD is depicted in Figure 4.18 to illustrate the flow of data in the

filtering andprediction for each active track, where superscript (j) on the quantities is implied. The DFD

clearly reveals the information and environmental adaptations provided by adaptively varying the settings

of the detection statistics - namely the probability of detection PPj)[k1k - 1] and probability of false

alarm P [k 1k - 1] (via the data association) - and the measurement covariance matrix RU [k Ik - 1].

The matrix RW[k Ik - 1] is computed based on the belief about the uncertainty of the prior bistatic

measurement vector 2(h[k1k - 1]. The calculation of RW[k1k - 1] then requires the knowledge of the

underlying bistatic geometry - which is easily established from the (i) navigational measurements of the

source, (ii) navigational measurements of the receiver, and (iii) prior state vector i4'( [k1k - 1] given in

(4.56) - as well as the environmental measurement, and a host of other dependencies that will be investi-

gated later. As described in (4.59), the adaptive adjustment of RU [k 1k - 1] directly varies the innova-

tion covariance matrix S U [k], which subsequently tunes the (i) ellipsoidal validation gating in (4.16) and

(4.18), as well as (4.68), (ii) probabilities of the hypotheses (in the PDA) in (4.23), and (4.24) via

df [klk - 1], (iii) Kalman filter gain in (4.63). As mentioned in Section 4.2.2, the computation of

Pf [k1k - 1] also requires the knowledge of the underlying bistatic geometry and the environmental

measurement. The relationships of R(i[k1k - 1] and Pfj [k1k - 1] with if [k1k - 1] are not shown in

this DFD, but they are examined later in Section 4.2.6. The approaches taken to compute PPj)[klk - 1],

P W [klk - 1], and RU [klk - 1] are given in Section 4.2.6, but the detailed calculations are provided in

Sections 5.1.1 and 5.1.2. To simplify the DFD here, the initialization step (that requires RM'[k'|k']), and
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the modified prediction and update steps for missing detection (that is 20) [k Ik - 1] is empty) are not in-

cluded. With the information and environmental adaptations, the PDAF presented in this thesis is also

called the adaptive PDAF.

From data
association -*

(see Section 4.2.2)

To active

track solution

11

Figure 4.18: Data flow diagram illustrating flow of data in filtering and prediction for each active track.
Superscript (j) on quantities is implied. Information and environmental adaptations are provided by

adaptively varying settings of detection statistics Pi [k1k - 1] and Pl)[kjk - 1] (via data association),

and measurement covariance matrix RU) [k 1k - 1].
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4.2.5 Performance Metrics

Since the thesis is interested in providing novel methods for the AUVs to optimize the bistatic sonar

tracking performance autonomously and in real-time, it is imperative to define the performance metrics to

evaluate the tracking performance. The adaptive PDAF implemented in this thesis performs the probabil-

istic target state estimation process for each active track by obtaining the posterior state vector

i'j[kIk] e R 4 X1 in (4.61). The posterior state covariance matrix PU)[kIk] E R 4 X4 in (4.62) is also at-

tained to quantify the uncertainty about the estimation process, or more specifically, the mean-square

(MS) estimation error (MSE) matrix in the target state. The matrix P U)[k Ik] is thus employed in this the-

sis as a performance metric to assess the bistatic sonar tracking performance relating to each active track

solution shown in Figure 4.15. A high estimation uncertainty is a measure of poor tracking performance,

while a low estimation uncertainty implies otherwise. The posterior root-mean-square (RMS) estimation

error denoted by RMSE j [k 1k] is then related to the square-root trace of P )[k1k] given by

RMSEU)[kIk] = Ext[k] xt[k] - )[klk]||2 I Z)[]} j

= EXk] t(xt[k] - ) [kk])T (xt[k] -2 [k Ik]) I {2U)[K]f}

= E[k] trace[(xt[k] - 2 'j[kjk])(xt[k] - 2J)[klk])T] I {z)[K]1>} 1 1

= trace [Ext[k t(xt [k] - 2Jj [kIk])(xt [k] - i) [kIk])T I {2U)[K] k=lj]

= trace[P(j)[kjk]], (4.73)

where E{ -} is the expectation operator with respect to x, and trace[ - is the trace operator. Here,

{2(j) [K]} K 1 denotes the set of validated bistatic measurement vectors 2U) [k] from ping K = 1 to k. The

scalar performance metric in (4.73) provides a straightforward evaluation of the tracking performance for

this active track using the PDAF. If the subscript (i: j, k: 1) in P(i:j,k:1) is used to extract a subset matrix

indexed from the i*h to ja rows, and k* to 1 columns of the matrix P, the posterior RMS position estima-

tion error, denoted RMSE, 0sition[kjk], and the posterior RMS speed estimation error, denoted

RMSE0gped [k Ik], are computed as
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RMSE, trace P( [kIk]], (4.74)

RMSEU,,[k)k] = trace P [klk]]. (4.75)

It follows that RMSE 0i[kIk] is related to RMSE ad RMSEsUeed[k)k] by

(RMSE ()[kk]) 2 = (RMSEsitiof n[kIk] + (RMSEsek , (4.76)

roitinkk speed [k (4.76

where the square of RMSE is also known as the MSE. However, by applying dimensional analysis, the

unit of R[klk] in (4.74) is m, and the unit of RMSEspeed[klk] in (4.75) is m/s. Therefore,

the use of RMSEW [kik] in (4.73) and (4.76) is just a mathematical performance metric that does not rep-

resent any physical quantity with meaningful unit.

The lower limit of the posterior state covariance matrix P U) [k Ik] for this active track using the

PDAF is bounded by the Cramer-Rao lower bound (CRLB) matrix denoted by Pc~L [k] E R4 X4, and is

expressed as [109,112,133,140]

PG')[k~k] CLB ' [k] (4.77)

where j), [k] E R 4 x 4 is the Fisher information matrix (FIM). It follows that the matrix inequality indi-

cates that PG)[k k] - ] - (Jr [k]) 1 is a positive semi-definite matrix. Other

commonly-used names for these matrices include the Bayesian or posterior CRLB matrix, and the Bayes-

ian information matrix [140]. Since both the information and lower bound matrices define the best

achievable tracking performances, they can consequently be used to determine whether the imposed per-

formance requirements are realistic or not. Increasingly, these matrices have been used extensively as

tools for source/receiver management, and several examples have been cited previously in Section 2.6. In

fact, it is because of their uses in this application and consequently in the perception-driven control (to be

discussed in Chapter 6) that these two matrices are thus employed as the performance metrics relating to

each active track solution shown in Figure 4.15.

In the following discussion, the FIM and CRLB matrix are going to be examined in the context of

the standard EKF. This is done without accounting for (i) the uncertainty in the measurement origin due
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to the presence of the clutter or false alarms, (ii) the missing weighted residual frequency measurement if

the weighted innovation vector 20 )[klk - 1] in (4.30), at particular j e {2,4, 6}, is used, and (iii) the

missing detection when the weighted innovation vector ZQ) [kIk - 1] in (4.25) or (4.30) is empty. For a

recursive computation in the standard EKF, the FIM is then obtained from [109,112,133,140] as

Jg) [k] = j) [k] + j i)[k] , (4.78)

where J) [k] and j [k] are the prior information and data matrices computed in Riccati-like recursion

as [109,112,133,140]

JU [k] F - (JU) [k - 1] - FkT + Q) (4.79)

j0 [k] = Ext[k] H 0)(xt[k])) - (RO) [k])'- H 0)(xt[k])}. (4.80)

An important note in (4.80) is that the linearized measurement matrix H 0) (xt[k]) and measurement co-

variance matrix RUj)[k] are both computed using the true state xt[k] instead of the estimated state

Si [kIk - 1]. The data matrix JJj [k] is the expected measurement information for the given measure-

ment model. As mentioned in [109,112,140], the implementation of the expectation operator in (4.80)

requires a Monte Carlo averaging over multiple realizations of the target trajectories to approximate the

theoretical J [k]. Plugging (4.79) and (4.80) into (4.78), together with the use of (4.77), yields

JO)[k] = F - (i) [k - 1]) - F T + Q + Ext[k] H (H (xt[k]) T . (R [k])Y - H(J)(xt[k])

(4.81)

c' = (F -c [k 1] FT + Q) + Ex,[g] tH)(xt[k])) . (RU)[k]) 1 - H(J)(xt[k])}.

(4.82)

Both the FIM J 1 [k] in (4.81) and the CRLB matrix Pc Bs[k] in (4.82) are expressed in the con-

text of the standard EKF. Previously, in Section 4.2.4, the consideration of the uncertainty in the meas-

urement origin have resulted in additional components to be included for the update of the posterior state

covariance matrix P 0) [kIk] in (4.62), compared with the update for the standard EKF given in (4.65).

The computation of P U [k Ik] has been further complicated with the modified update and prediction steps

to account for the missing weighted residual frequency measurement and missing detection. In such cas-

es, the posterior state covariance matrix PU)[kIk] increases and is larger than that from the standard EKF
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P' [kIk] given in (4.65). Therefore, the CRLB matrix Pc!JB [k] obtained in (4.82) is conservative, and

is the lowest possible bound in the absence of all these additional components and modifications. The

following are offered as suggestions that can be used to account for these additional components and

modifications:

" The uncertainty in the measurement origin can be. addressed by introducing an information reduc-

tion matrix (IRM) to the second term on the right-hand-side of (4.81) and (4.82) (that is the data

matrix JW[k] in (4.80)). From [127,130,146], the IRM can be placed between the

(H(J)(xt[k]))T and H U)(xt[k]) terms in (4.81) and (4.82). The IRM is then dependent on the

settings of the PDAF, and it reduces to an identity matrix in the absence of the uncertainty in the

measurement origin.

" The modified update step to cater for the missing weighted residual frequency measurement can

be addressed by having the second term on the right-hand-side of (4.8 1) and (4.82) (that is the da-

ta matrix JDji) [k] in (4.80)) to operate on reduced dimension (that is excluding the dimension in-

volving the frequency measurement). Clearly, the absence of the frequency measurement leads to

an information reduction in J( [k].

" The modified prediction step to cater for the missing detection, with the use of the modified prior

state covariance matrix P, [kIk - 1] in (4.68), can be tackled by introducing an additional term

to the first term on the right-hand-side of (4.81) and (4.82) (that is the prior information matrix

JP)[k] in (4.79)). From (4.68), the second term was added to PU)[k1k - 1] to increase the prior

state covariance matrix to P, [kIk - 1]. Inituitively, the additional term in Jp [k] should be a

function of the second term in (4.68).

" The modified update step to cater for further missing detection after the modified prediction step,

with the posterior state covariance matrix P U) [k Ik] assigned to the modified prior state covari-

ance matrix P, [k1k - 1], can be resolved by including an information reduction factor (IRF) or

enumeration to the second term on the right-hand-side of (4.81) and (4.82) (that is the data matrix

JD [k] in (4.80)). From [66], the matrix JDj [k] can be multiplied by a factor - either a scalar IRF

obtained from the true probability of detection PI [k], or an enumeration binary value with 1

implying a detection and 0 implying a missing detection. The means that the information in

JDf)[k] is either scaled down (since PdPi)[k] < 1), or available when there is detection and re-

moved when there is missing detection.
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In all the suggestions offered above, the intent is to refine the CRLB matrix PCLB[k], obtained for the

standard EKF, to one that approximates the tracker implementation in this thesis. The eventual outcome

of the refined CRLB matrix is that it increases to a value closer to that of the posterior state covariance

matrix P U) [k Ik - 1]. Notwithstanding a more accurate representation is attained, the computation of the

refined CRLB matrix requires the set of validated bistatic measurement vectors 2U)[k] in (4.21) or (4.28)

to be known first. This is clearly different from the CRLB matrix PcRLB[k], obtained for the standard

EKF, where the theoretical performance limitation can be computed even before 2 W [k] is obtained (that

is before the contact report at ping k is available). This feature is preferred since it allows the CRLB ma-

trix to be predicted and served as the predictive information and environmental rewards in the perception-

driven control. Therefore, the computation of the CRLB matrix PcLB[k] in (4.82) (or equivalently the

FIM J}% [k] in (4.81)) for the standard EKF is adopted in this thesis.

However, in a real-time target tracking scenario, the setup of the Monte Carlo approximation to

implement the expectation operator in (4.81) and (4.82) is implausible and notoriously difficult. In some

cases [109,112,140], modest amount of process noise (that is Q ; 0 4x4) can be assumed in (4.81) and

(4.82). This then implies that the evolution of the true state xt [k] (or target trajectory) given in (4.31)

becomes more deterministic, and the expectation operator in (4.81) and (4.82) turns out to be more trivial

and can be dropped out. However, the disadvantage of doing so is that it is probable (depending on the

bistatic geometry) that the FIM j }) [k] in (4.81) approaches infinity, and the CRLB matrix Pc~B[k] in

(4.82) approaches zero as ping k becomes very large without the presence of Q.
Since the main motivation for using the FIM and CRLB matrix is to establish the theoretical per-

formance limitations for use in the perception-driven control, the certainty equivalence principle [137] is

invoked where the conditional expectation Ex,[k]xt[k] I [{U)[K]} } is used in lieu of the stochastically

varying true target state xt[k] in (4.81) and (4.82). This is particularly useful, as the true state xt[k] is

never known in practice. It follows from [13,24] that EX k]xt[k] I{2)[x]}&}= [tu)[klk - 1].

Therefore, using it [k~k - 1] in place of xt[k] leads to

W) [k] =F -() ([k - 1] - FT + Q_

+ (H U (t [kIk - 1])) -(R()[kk- 1]) 1 -H(j) (2t)[klk-1]) (4.83)

(PC)LB[k]7 F = (F. -CRLB[k-] -FT + Q)

+ HU) (At)[kk - 1])). (RU)[kjk - 1])_1 - H) (it0)[klk - 1]), (4.84)
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where the expectation operator becomes trivial, and it can be dropped out. Although one can argue on

removing Q in the above expressions, it is kept there to ensure that the CRLB matrix P(LB [k] follows

closely to the posterior state covariance matrix P0 )[kIk] (since Q is utilized in the calculation as shown

in (4.57)). By applying the matrix inversion lemma to (4.84), and replacing PCLB [k] and PCLB

with Pc [kIk] and PU)[k - 1|k - 1] respectively, the posterior state covariance propagation of the

standard EKF in (4.65) is resulted. It is then clear that (4.84) is the inverse posterior state covariance

propagation in the standard information filter [13,95]. Therefore, the CRLB matrix PC$L [k] defined in

the thesis is also the posterior state covariance matrix of the standard EKF. From the experimental results

in Section 4.2.7, the CRLB matrix PCLB [k] in (4.84) using XP[kIk - 1] is compared with the posterior

state covariance matrix P Q)[kIk] in (4.62) to make sure that it is indeed achieving the lower bound (see

Figures 4.24 and 4.27). This comparison is essential to verify that the CRLB matrix utilized here can be

used in the perception-driven control later. As with the discussion in Section 4.2.4, if k' denotes the ping

at which initiation occurs for an unconfirmed track, the CRLB matrix and FIM for this track are then ini-

tialized as

PC$LB[k'] = P0 3[k'k'], (4.85)

()]= (PUj)[k'jk']j_ 1  (4.86)

where the posterior state covariance matrix P0)[k'Ik'] is obtained from (4.55). The scalar performance

metric of PCRLB[k] then provides a straightforward evaluation of the lower bound of the tracking perfor-

mance. The CRLB RMSEs for this active track are obtained, in similar fashion as that from (4.73) to

(4.76), as

RMSEC)LB[k] = trace PC LB[k] (4.87)

RMSEU)(j [[nk]l4.8CRLB,position [k] = trace P CRLB(1:21:2 (88)

RMSECRLBspeed[k] = trace [ ) [k] (4.89)

RMSE= i CLB,range - (4.90)(RSELB [k] ) =(RMSELB~position [kI)+ (ranSg(i [k])
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Similarly, by applying dimensional analysis, the unit of RMSEc isposit ion[k] in(4.88) is m, and the unit

of RMSEU) Fl n4
CRLB,speed [k] in (4.89) is m/s. Therefore, the use of RMSE 0 3 [kik] in (4.87) and (4.90) is just a

mathematical performance metric that does not represent any physical quantity with meaningful unit.

From the discussion in this section, the flow of data in the performance metric computation of

the CRLB matrix Pc4tB[k] and FIM J) [k] for each active track is illustrated by the DFD in Figure

4.19, where superscript (j) on the quantities is implied, while the performance metric computation of the

posterior state covariance matrix PUi)[kik] was previously shown in Figure 4.18. The DFD here clearly

reveals the dependency of the computation on the information and environmental adaptations provided

by the adaptive setting of the measurement covariance matrix RUj)[k Ik - 1]. This diagram has estab-

lished the pivotal relationship of the lower bound of the estimation uncertainty, represented by PCtB[

with the bistatic measurement uncertainty, represented by RU)[kIk - 1]. As mentioned in Section 4.2.4,

the computation of RU)[k Ik - 1] requires the knowledge of the underlying bistatic geometry, the envi-

ronmental measurement, and a host of other dependencies that will be investigated later. The approach

From active track
solution

I I

To active track
solution

Figure 4.19: Data flow diagram illustrating flow of data in performance metric computation for each ac-
tive track. Superscript (j) on quantities is implied. Information and environmental adaptations are pro-

vided by adaptive setting of measurement covariance matrix RU) [k Ik - 1].
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approach taken to compute R) [kIk - 1] is furnished in Section 4.2.6, and the relationship of RU) [kIk -

1] with ([k Ik - 1] is not depicted in this DFD. To simplify the DFD further, the initialization step

(that requires RM'[k'Ik'] via P U)[k'Ik']) is also not included.

4.2.6 Information and Environmental Adaptations

Although the use of variable settings for target tracking has been suggested by Blackman and Popoli [24],

and Kurien [78], the simple approach is to utilize a set of fixed settings for parameterization. The papers

by [35,37,82] have clearly adopted fixed settings for multi/bistatic sonar tracking applications, but such

approach is only valid if the tracking scenarios are not subjected to significant information and environ-

mental fluctuations. The idea of adaptive setting, in the context of multi/bistatic sonar tracking, was re-

cently discussed by Daun et al. [39,40,46], where the probability of detection was adjusted adaptively to

account for poorer CW detection in the presence of high contending bistatic reverberation. In this thesis,

information and environmental adaptations are applied to each tracker, as shown in Figure 4.15, by adap-

tively varying the settings for the data association (described in Section 4.2.2), filtering and prediction

(presented in Section 4.2.4), and performance metric computation (discussed in Section 4.2.5). The adap-

tations are carried out in real-time through the detection statistics - namely the probability of detection

P4() [klk - 1] and probability of false alarm Pj) [kIk - 1] - and the measurement covariance matrices

RU) [k k - 1] and RU) [k Ik]. This is clearly an extension to the adaptive setting of the probability of de-

tection adopted in [39,40,46], and the adaptive settings selected for this thesis allow tracking in scenarios

that experience significant information and environmental changes. With these adaptations, the PDAF

presented in this thesis becomes the adaptive PDAF. For the adaptive settings of P$)[k1k - 1],

P M [kIk - 1], and RU)[klk - 1] as depicted in Figures 4.17 to 4.19, they are computed using the unified

model (to be examined in Chapter 5) based on the belief about the pertinent information and environmen-

tal characteristics of the prior bistatic measurement vector 20)[k1k - 1] (having the same form as the

bistatic measurement vector from the sonar signal processing algorithm). This belief then requires the

knowledge of the underlying bistatic geometry - which is easily established from the (i) navigational

measurements of the source denoted by x (t), (ii) navigational measurements of the receiver denoted by

xr(tk), and (iii) prior state vector x )[kIk - 1] gathered from the active track solution - as well as the

environmental measurement c(t), and a host of other dependencies. These other dependencies are not

investigated here, but will be examined in detailed later in Section 5.1.2. The intent here is to adjust the

settings adaptively, based on the knowledge of the underlying bistatic geometry, to achieve predicted op-
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timized bistatic sonar tracking performance in the automated perception. The matrix RU) [k Ik], on the

other hand, is the posterior computation from the unified model that utilizes the posterior state vector

iX'(j [k Ik] instead. This matrix is used exclusively for initializing the filtering andprediction, and perfor-

mance metric computation. Specifically, the matrix R' [k Ik] is computed for the purpose of initializa-

tion as shown in (4.55). From (4.35), this matrix only involves the uncertainties of the TOA and DOA

measurements and not that of the frequency measurement.

The flow of data in the information and environmental adaptations for each active track is illus-

trated by the DFD in Figure 4.20, where superscript (j) on the quantities is implied. The DFD clearly

reveals how the adaptive settings of PU)[kjk - 1], P j)[klk - 1], RU')[kjk - 1], and RU)[klk] (or more

precisely RN')[kk]) are computed, and their dependencies on the prior and posterior state vectors

i ) [k Ik - 1] and R( [k Ik]. These settings are calculated using the information-theoretic model (to be

described in Section 5.1). As mentioned before, the explicit relationships postulated in (1.19) to (1.21)

are used to encapsulate the effects of the SNRs in the computation of the measurement covariance matri-

ces RU) [klk - 1] and RU) [kIk] (or more precisely R' [kIk]), via the acoustical measurement uncertain-

ties characterized by 8y[kIk - 1], 8o[kIk - 1], dFikI k - 1]8F, [kIk], and 68 -kIk]. From the DFD, an

additional explicit relationship is postulated to relate the probability of detection P) [kik - 1] with the

underlying SNR, and it is given by

P [klk - 1] = fp, ( DTFM SNR(j),F[kjk-1)* (4.91)

where f( represents the functional relationship for the probability of detection, and DTFM [k] denotes

the detector threshold used in the FM processing of the sonar signal processing algorithm (see Figure

4.1). The prior and posterior estimates of SRR(),FM/CW[klk - 1] and SRR(U),FM/cw[kjk] in the DFD,

provided by the environmental-acoustic model (to be discussed in Section 5.2), are the driving forces be-

hind the adaptive settings. The superscripts FM and CW represent the quantities relating to the FM and

CW processing, respectively, in the sonar signal processing algorithm. These ratios are the SNR esti-

mates at the matched-filtered data. The coupling effect between the FM and CW SNR estimates, as a re-

sult of the TOA correction in (4.9) or Figure 4.4, is negligible and ignored in this thesis to reduce the

complexity. The expression in (4.91) is the detection-statistics parallel to the explicit relationships postu-

lated in (1.19) to (1.21), and it is also used to amalgamate both the information-theoretic and environmen-

tal-acoustic models to the unified model. Therefore, with the explicit relationships postulated in (1.19) to

(1.21), and (4.91), the pertinent environmental characteristics are embodied in the information character-

istics whenever the adaptive settings from the information-theoretic model are used. By implementing the
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information adaptation in the target tracking algorithm, the environmental adaptation is accounted simul-

taneously. This allows the settings for the algorithm, in the context of bistatic sonar tracking, to be

adapted. Both Pi [k Ik - 1] and P [k Ik - 1] are only used in the target tracking algorithm, and the

detailed calculations of these adaptive settings are given in Section 5.1.1. As for the matrices RU) [k Ik -

1] and RU) [kIk] (or more precisely R(1 ) [k Ik]), they are used in the target tracking algorithm, as well as

in the perception-driven control (but with slight variation) described in Chapter 6. The detailed calcula-

tions of the adaptive settings for these matrices are furnished in Section 5.1.2.

Environmental-acoustic model

From active track
solution

I I? I
-1--i

1TT~P]

U
I I I

Information-theoretic model

Figure 4.20: Data flow diagram illustrating flow of data in information and environmental adaptations for

each active track. Superscript (j) on quantities is implied. Diagram depicts the flow to compute adaptive

settings of detection statics P- [k I k - 1] and PU) [k k - 1], and measurement covariance matrices

RU) [klk - 1] and RU) [kIk] (or more precisely R(1 ) [kik]). The dependencies of measurement covari-

ance matrices on navigational and environmental measurement uncertainties are not included here to sim-

plify illustration. More information is available in Section 5.1.2.
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The execution of the target tracking algorithm with information and environmental adaptations at

each ping k is then outlined in Algorithm 4.3. Here, the track management - involving the track initia-

tion, confirmation, maintenance, and termination, as well as the trackfile updating, active track priority

ranking, and contact removal - is not included to simplify the presentation.

Algorithm 4.3: Target tracking with information and environmental adaptations at each ping k
(excluding track management for simplified presentation)

1: Read trackfile.
t[k] = number of active (unconfirmed and confirmed) tracks.
Note: Active tracks are ranked in active track priority list.

2: t = 1.

3: while t :; t[k] do

4: Access t* active track solution obtained at ping k - 1 from trackfile.

5: Invoke environmental-acoustic model to compute SNRU),FMIw [kIk - 1] (environmental adapta-

tion) using (i) x,(tk), (n) Xr(tk), (iiij)2 ?[kIk - 1] (from t" active track solution), and (iv) c (tk).

6: Invoke information-theoretic model to compute P(4'[kjk - 1], PU)[kik - 1], and RU)[klk - 1]

(information adaptation) using (i) SR R)FM/CW [k Ik - 1], (ii) xS(tk), (ni) Xr tk), (iv
1] (from t* active track solution), (v) c(t), and (vi) navigational and environmental measurement
uncertainties (see Section 5.1.2).

7: Proceed with adaptive PDAF (parameterized by adaptive settings from unified model) by using
non-validated bistatic measurement vectors remaining in any variant of contact report Z U) [k], at
specific j E {1.6}, to update t* active track solution at ping k. Adaptive PDAF includes modi-
fications to support reliable stream of contacts by dual-waveform fusion in sonar signal pro-
cessing algorithm.

8: Compute performance metrics and update th active track solution at ping k.

9: Write updated t* active track solution at ping k to track file.

10: t = t + 1.

11: end while.

4.2.7 Results

In this section, the experimental results from the target tracking algorithm are presented. The results are

obtained by processing any variant of the contact report Z0 U[k] = {z. [k]}m.,, at particular

j e {1, ... , 6}, constructed by the sonar signal processing algorithm using data collected from two experi-

mental runs, namely the GLINT 2009 Run and GLINT 2010 Run (presented earlier in Sections 4.1.4.1 and

4.1.4.2 respectively). The target tracking results for the first run are provided in Section 4.2.7.1, while

that for the second run are furnished in 4.2.7.2.
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4.2.7.1 GLINT 2009 Run

The bistatic assets utilized for the GLINT 2009 Run are described in Section 4.1.4.1, with the ground

truths of this experimental run depicted in Figure 4.5. The target was cruising westward at 2 m/s for the

entire run from ping k = 1 to 213. The AUV was moving at 1 m/s on a fixed survey path, headed south

first before making a turn and headed north. When the AUV was making a turn between pings k = 132

and 151, the target appeared near the forward endfire at 0* of the receiver array. By using the contact re-

port ZU) [k] = {z2?n[} k, at particular j E (1, ..., 6}, from the sonar signal processing algorithm, the

target tracking algorithm is readily applied. According to Algorithm 4.3, the adaptive settings of

Pd\ [klk - 1], PU[kik - 1], and R0 )[klk - 1] are first computed using the unified model before em-

ploying them in the adaptive PDAF and performance metric computation.

The experimental results from this run using the target tracking algorithm at different pings k

with the contact report Z(2 )[k] as the input are provided in Figure 4.21. The confirmed tracks are clearly

plotted, and the information pertaining to these tracks are depicted. For the confirmed track due to the

ER, the information "t16:k = 210/rank = 1" in Figure 4.21(i) implies that track #16 (due to the ER)

has been active for 210 pings since initiation and is ranked #1 in the active track priority. Evidently, the

ER is being tracked throughout the experimental run (except for the first three pings where it takes time

for the track initiation to automatically kick in). Figure 4.22 provides the zoomed-in plots of Figure

4.2 1(e) at ping k = 120. The confirmed track due to the ER (that is track #16) is presently ranked #2 in

the active track priority, with the confirmed track due to the ghost of the ER (that is track #15 as shown in

Figure 4.21(e)) presently ranked ahead as #1. The cause of the ghost is due to the inherent left-right am-

biguity of the BENS array, as recalled from Section 1.2.3. However, after the OEX AUV maneuvered

with a turn, as shown from Figure 4.21(f) onward, the track due to the ghost of the ER (that is track #15)

is terminated. This allows the track due to the ER (that is track #16) to be ascended to rank #1. From this

observation, it is clear that a simple maneuver in the AUV can effectively resolve the left-right ambiguity.

In fact, this maneuver is executed during the interrogate mode (mentioned in Section 1.2.5.2) when the

AUV is programmed on an adaptive survey path using the perception-driven control (to be discussed in

Chapter 6). Returning to Figure 4.22(a), the CRV Leonardo towing the ER was cruising due west at

2.1 m/s, and this is reflected by the current and historical ground truth xt[k]. The current and historical

posterior state estimates R2 )[kjk] of track #16 (due to the ER) are depicted in Figure 4.22(b), with the

current posterior state covariance matrix P( 2) [kIk] shown. Clearly, the estimated state 2 )[kIk] of track

#16 is observed to be close to the actual state xt[k] of the ER.
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Figure 4.21: Experimental results from GLINT 2009 Run using target tracking algorithm at different

pings k with contact report Z(2 )[k] as input. Ground truths of DEMUS source is plotted in green, OEX
AUV towing BENS array is plotted in red, and CRV Leonardo towing ER is plotted in gray. Bistatic am-
biguity ellipses for current contacts are plotted as light gray (nearly) elliptical rings, and contacts from

{Z([K]} K1 are plotted as dark gray dots (with more cluttering as k increases). Confirmed tracks are
plotted in magenta, and information pertaining to these tracks are depicted. For confirmed track due to
ER, information "t16: k = 210/rank = 1" in Figure 4.21(i) implies track #16 has been active for 210
pings since initiation and is ranked #1 in active track priority.

(a) k = 10 (b) k = 20

(c)k= 50 (d)k = 100
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Figure 4.21: Experimental results from GLINT 2009 Run using target tracking algorithm at different
pings k with contact report Z(2)[k] as input. Ground truths of DEMUS source is plotted in green, OEX
AUV towing BENS array is plotted in red, and CRV Leonardo towing ER is plotted in gray. Bistatic am-
biguity ellipses for current contacts are plotted as light gray (nearly) elliptical rings, and contacts from

{Z(2) [K]= 1 are plotted as dark gray dots (with more cluttering as k increases). Confirmed tracks are
plotted in magenta, and information pertaining to these tracks are depicted. For confirmed track due to
ER, information "t16: k = 210/rank = 1" in Figure 4.21(i) implies track #16 has been active for 210
pings since initiation and is ranked #1 in active track priority.

(e)k = 120 (fk = 150

(g) k = 180 (h) k = 200
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Figure 4.21: Experimental results from GLINT 2009 Run using target tracking algorithm at different
pings k with contact report Z(2)[k] as input. Ground truths of DEMUS source is plotted in green, OEX
AUV towing BENS array is plotted in red, and CRV Leonardo towing ER is plotted in gray. Bistatic am-
biguity ellipses for current contacts are plotted as light gray (nearly) elliptical rings, and contacts from
{Z [K]}K 1 are plotted as dark gray dots (with more cluttering as k increases). Confirmed tracks are
plotted in magenta, and information pertaining to these tracks are depicted. For confirmed track due to
ER, information "t16: k = 210/rank = 1" in Figure 4.21(i) implies track #16 has been active for 210
pings since initiation and is ranked #1 in active track priority.

(i) k = 213
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(a) Current and historical ground truth xt [k] of CRV Leonardo towing ER

(b) Current and historical posterior state estimate 2(2)[kIk] of track #16 (due to ER), with magenta ellipse
representing current posterior state covariance matrix p(2 ) [kIk]

Figure 4.22: Experimental results from GLINT 2009 Run using target tracking algorithm at ping k = 120
with contact report Z(2)[k] as input (zoomed-in plots of Figure 4.21(e)). Ground truth of CRV Leonardo
towing ER is plotted in gray. Confirmed track due to ER is plotted in magenta. Information pertaining to
this confirmed track is depicted as "t16: k = 117/rank = 2", indicating track #16 has been active for
117 pings since initiation and is ranked #2 in active track priority (with its ghost presently ranked #1).
Current speed and heading indicated by length and direction of arrow at current position
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From the set of derived measurements shown in Figure 4.11, the constructed bistatic measure-

ments in the contact report Z 2 [k] = {z) [k]})* = { xtm [k] ytm[k] Fim[k] ]T}%nk are plotted in

Figure 4.23 for ping k = 1 to 213. The three-dimensional /yUJ)[klk - 11-sigma ellipsoidal validation

gating for track #16 (due to the ER) on Z(2 ) [k] in the target tracking algorithm is also shown. Evidently,

poorer performance is observed in Fi[k] = {Fm[k]} Mk] of Figure 4.23(c) when the ER was near the

forward endfire of the BENS array - occurring when the OEX AUV was making a turn between pings

k = 132 and 151. Some frequency measurements due to the ER are missing during this time because the

corresponding CW SNRs have fallen below the detector threshold for CW processing. The underlying

CW SNRs of these frequency measurements due to the ER have reduced because of the higher reverbera-

tion experienced with a wider beamwidth near the endfire. Although some frequency measurements are

missing near the endfire, the Cartesian position measurements, as derived in (1.8) and (1.9), due to the ER

are still available because the respective FM SNRs have not been so severely affected and have been

above the detector threshold for FM processing. The underlying FM SNRs of these Cartesian position

measurements due to the ER have not been so severely affected. This could probably be due to a narrow-

er endfire beamwidth at higher carrier frequency for the FM signal as shown in Figure 1.17 compared

with that for the CW signal (see Table 1.1 also). Aforementioned, the details of the endfire and its effect

on the SNR for the indirect blast are provided later in Section 5.2. Therefore, by using the dual-waveform

fusion, as outlined in Algorithm 4.2, in the sonar signal processing algorithm, a reliable stream of con-

tacts is maintained. With this fusion strategy, the track formed is continued whenever the frequency

measurements disappear occasionally. This is unlike the fusion strategy by Hughes and Micheli [69]

where the bistatic measurements can be totally missing, and thereby resulting in probable early track ter-

mination. When the OEX AUV was making sharp 900 turns at pings k = 132 and 151, the BENS array

became exceptionally curved. From Section 1.2.1.3, it was noted that the array requires not more than 7

pings to resume its acoustical straightness [92,93]. Since curvature information is not accounted in the

sonar signal processing algorithm, this results in the loss of associations as shown in Figure 4.23 at these

junctures. Operationally, this means that the adaptive survey path executed in the perception-driven con-

trol must avoid sharp and abrupt maneuvers that hamper the performance of the automatedperception.

The performance metrics for the track due to the ER in the target tracking algorithm using all

variants of the contact reports Z U[k], where j E { 1, ..., 6}, are depicted in Figure 4.24 for ping k = 1 to

213. Specifically, both the posterior RMSEs (that is RMSE 0W[kik], RM psition[kk], and

RMSRMSW W
RMSEseed[klk]) in (4.73) to (4.75), and CRLB RMSEs (that is RMSECRLB[k], RMSECRLBposition [k],

and RMSE CRLBspeed [k]) in (4.87) to (4.89) are used. From (4.85) and then (4.55), same initial condition
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is applied to all variants of the RMSE computation. From the results, the posterior RMSEs are indeed

observed to be lower-bounded by the CRLB RMSEs (for example in Figure 4.24(a), RMSE 0W[kk] >

RMSECLB[k]). This is because the CRLB RMSEs are derived from the CRLB matrices PCLB[k] ob-

tained in (4.84), which are meant for the standard EKF. The matrices are conservative, and are the lowest

possible bounds in the absence of all the additional components and modifications suggested in Section

4.2.5. The matrices can be computed at each ping even before the contact reports Z W [k] are available.

As a result, the CRLB RMSEs are not affected by any missing detections, unlike the posterior RMSEs

that spike whenever missing detections occur (for example in Figure 4.24(a), missing detections affect

RMSEU)[klk] but not RMSECLB[k]). With the posterior RMSEs derived from the posterior state covari-

ance matrices P) [k 1k], these matrices increase with missing detections because of the modified predic-

tion step mentioned in Section 4.2.4 that uses the modified prior state covariance matrices PM$2 [k 1k - 1]

in (4.68). Further missing detections after the modified prediction step lead to P0W[klk] assuming

P [kIk - 1] directly. The observations here are essential to affirm the use of the CRLB matrix in the

perception-control later. When the OEX AUV was making a turn from ping k = 132 to 151, resulting in

the ER appearing near the forward endfire at 00 of the BENS array, the RMSE)so[kik] and

RMSECLB,position[k] in Figure 4.24(b) (and the RMSEW0 [klk] and RMSE CL[k] in Figure 4.24(a)) in-

crease as shown. This is because the underlying FM SNRs of the TOA and DOA measurements have re-

duced, resulted from the higher reverberation experienced with a wider beamwidth near the endfire. Us-

ing the explicit relationships postulated in (1.19) and (1.20), the uncertainties in the TOA and particularly

the DOA measurements increase accordingly. This leads to a corresponding raise in the measurement

covariance matrices RU)[klk - 1], and therefore the RMSEs. As mentioned, the details of the endfire

and its effect on the SNR for the indirect blast are provided later in Section 5.2. Looking at Figure 4.24

again, it is clear that the RMSEs (both posterior and CRLB RMSEs) with only FM information (or with-

out Doppler information) (that is j E {1, 3, 5}) are worse than (higher than) the RMSEs with both FM and

CW information (or with Doppler information) (that is j E {2, 4, 6}). In this thesis, the subtle differences

in the RMSEs between j = 1, 3, and 5, and between j = 2, 4, and 6 are not compared. This means that

the thesis is not going to examine the specific differences between the different variants of the contact

report, that is comparing between ZW[k], Z(3) [k], and Z(5)[k], and between Z(2) [k], ZW[k], and

Z(6 [k]. Clearly, tracking with Z' [k] and Z(2 ) [k] utilizes the derived Cartesian position measurements

given in (1.8) and (1.9). This implies that the simple Kalman filter (KF) can be used in placed of the EKF

- that linearizes the non-linear transformation vectors - for these measurements. However, it is known

from [85,87] that the derived Cartesian position measurements are inherently biased. Although debiasing
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can be carried to achieve better target tracking results, it is not considered in this thesis. Essentially, the

purpose of considering the different variants of the contact report is to demonstrate that the same solution

in this thesis is applicable irrespective on the choice of the variant, albeit that the variants with both FM

and CW information outperform the variants with only FM information as seen here. The loss of associa-

tions at pings k = 132 and 151 in Figure 4.23, when the BENS array was bending due to the sharp 90'

turns made by the OEX AUV, has led to missing detections and thus increased posterior RMSEs depicted

in Figure 4.24. Finally, it is also evident that the RMSEs in Figure 4.24(a) are approximately the same as

the RMSEs of position in Figure 4.24(b). This is because the RMSEs of speed in Figure 4.24(c) are too

small to contribute to the RMSEs in Figure 4.24(a). This is the problem with the way that the RMSEs in

(4.76) and (4.90) are defined, where the RMSEs of position here are overpowering the RMSEs of speed.

Therefore, the RMSEs in Figure 4.24(a) are just mathematical performance metrics that do not represent

any physical quantities with meaningful unit.
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Figure 4.23: Experimental results from GLINT 2009 Run showing three-dimensional ellipsoidal valida-
tion gating (bounded by magenta lines) for track #16 (due to ER) on contact report Z(2

1[k] =
{ Zm 2)[k] }m= 1, ..., 2-m[k] = { [XIm[k] ytm[k] Fm[k]]TI }= 1, .2*mlk] (red crosses) in target tracking algorithm

for ping k = 1 to 213. Prior bistatic measurement vector 2( [k Ik - 1] (green line) and associated bistat-
ic measurement vector (2 [klk - 1] + 29[klk - 1]) (blue circles) for this track are depicted. Track
#16 is not terminated despite occasional missing frequency measurements when ER was near forward
endfire of BENS array.
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(a) RMSE ')[kik] and
RMSE CRLB [k]

(b) RMand(b) RMSEposition [kIk] and

RSCRtB,position [k]
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Figure 4.24: Experimental results from GLINT 2009 Run showing performance metrics (using RMSEs)
for track due to ER in target tracking algorithm for ping k = 1 to 213. RMSEs with only FM information
(that is j E {1, 3, 5}) are plotted in yellow, cyan, and green, while RMSEs with both FM and CW infor-
mation (that is j E {2, 4, 6}) are plotted in red, blue, and gray. Although not visible, RMSEs for j = 3
(cyan) are plotted below that of j = 5 (green). Similarly, RMSEs for j = 4 (blue) are plotted above that
of j = 6 (gray). The CRLB RMSEs are plotted in thinner lines than that of the posterior RMSEs. RMSEs
with only FM information (that is j E {1, 3, 5}) are worse than RMSEs with both FM and CW information
(that is j E {2, 4, 6}). Poorer performance is observed when ER was near forward endfire of BENS array.
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4.2.7.2 GLINT 2010 Run

The bistatic assets utilized for the GLINT 2010 Run are described in Section 4.1.4.2, with the ground

truths of this experimental run depicted in Figure 4.12. The AUV was moving at 1.2 m/s on a fixed sur-

vey path for the entire run from ping k = 1 to 235, headed west first before making a gradual turn on

curved path and headed east. The target was cruising northward at variable speed, trying to keep the tar-

get away from the forward and aft endfires of the receiver array. At the middle of the run, the AUV was

making a gradual turn on curved path and moving alongside with the target. By using the contact report

ZW [k] = {zj [k]} 2jk], at particular j E {1, ..., 6}, from the sonar signal processing algorithm, the tar-

get tracking algorithm is readily applied. Similarly, according to Algorithm 4.3, the adaptive settings of

PU) [klk - 1], P' [kIk - 1], and RU) [kIk - 1] are first computed using the unified model before using

them in the adaptive PDAF and performance metric computation.

The experimental results from this run using the target tracking algorithm at ping k = 234 with

the contact report Z(2)[k] as the input are provided in Figure 4.25. Both the confirmed and terminated

tracks are clearly plotted, and the information pertaining to these tracks are depicted. For the confirmed

track due to the ER, the information "t82: k = 173/rank = 3" implies that track #82 (due to the ER) has

been active for 173 pings since initiation and is ranked #3 in the active track priority. It can be seen that

two confirmed tracks, namely tracks #11 and #32, are ranked higher at #1 and #2 respectively. These

tracks are due to the prominent fixed but unknown underwater objects that were persistently present since

the start of the experimental run. The contacts due to the ER were not detected during the earlier part of

the run. Apart from that, the ER has been successfully tracked as shown. The ghost of the ER, on the

other hand, has not been well tracked because the constant maneuver by the Harpo OEX AUV, particular-

ly during the gradual turn on curved path, has caused the corresponding contacts to fall short from the

nearly constant velocity (NCV) target dynamic model assumed in Section 4.2.3. This clearly reinforces

the statement made earlier in Section 4.2.7.1, where a simple maneuver in the AUV can effectively re-

solve the left-right ambiguity. In fact, the path taken by the AUV here resembles the adaptive survey path

that the thesis aims to attain.

The constructed bistatic measurements in the contact report Z( 2) [k] ={ zf [k]} mk] -

{[ Xtm [k] ytm [k] Fim [k] ]T}M2=nk] for this experimental run are plotted in Figure 4.26 for ping k = 1 to

235. The three-dimensional Ay([klk - 1]-sigma ellipsoidal validation gating for track #82 (due to the

ER) on Z(2 ) [k] in the target tracking algorithm is also shown. The validation gates in both Figures
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Figure 4.25: Experimental results from GLINT 2010 Run using target tracking algorithm at ping k = 234
with contact report Z(2)[k] as input. Ground truths of DEMUS source is plotted in green, Harpo OEX
AUV towing BENS array is plotted in red, and CRV Leonardo towing ER is plotted in gray. Bistatic am-
biguity ellipses for current contacts are plotted as light gray (nearly) elliptical rings, and contacts from
{Z([K]} =1 are plotted as dark gray dots. Confirmed tracks are plotted in magenta, terminated tracks are
plotted in black, and information pertaining to these tracks are depicted. For confirmed track due to ER,
information "t82: k = 173/rank = 3" implies track #82 has been active for 173 pings since initiation
and is ranked #3 in active track priority (with two confirmed tracks, tracks #11 and #32, due to prominent
fixed but unknown underwater objects, ranked #1 and #2 respectively).
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4.26(a) and 4.26(b) are zigzag-shaped due to the fluctuation in the estimated SNR(),FM[klk - 1] that

models the TS sequence of 5, 10, and 15 dB re 1 m in the echo repeater. Evidently, very poor perfor-

mance is observed in Fi[k] = {Fjm [k]} k] of Figure 4.26(c) when the ER was moving alongside with

the BENS array - occurring when the Harpo OEX AUV was making a gradual turn on curved path. Fre-

quency measurements due to the ER are missing because the corresponding CW SNRs have fallen way

below the detector threshold for CW processing. The underlying CW SNRs of these frequency measure-

ments due to the ER have reduced significantly because of the high reverberation experienced when the

underlying bistatic Doppler frequency shifts approach that observed at bistatic reverberation ridge.

Aforementioned, the details of the bistatic reverberation ridge and its effect on the SNR for the indirect

blast are provided later in Section 5.2. Although the frequency measurements are missing when ap-

proaching bistatic reverberation ridge, the Cartesian position measurements, as derived in (1.8) and (1.9),

due to the ER are still available. This is due to the reliable stream of contacts provided by the dual-

waveform fusion, as outlined in Algorithm 4.2, in the sonar signal processing algorithm. With this fusion

strategy, the track formed is continued whenever the frequency measurements disappear for a prolonged

time. This is unlike the fusion strategy by Hughes and Micheli [69] where bistatic measurements can be

totally missing, and thereby resulting in unnecessary early track termination.

The performance metrics for the track due to the ER in the target tracking algorithm using all

variants of the contact reports Z U) [k], where j E {1, ..., 6), are depicted in Figure 4.27 for ping k = 62 to

235. For this experimental run, the initiation of the tracks due to the ER commences at different pings

with different variants of the contact reports Z U) [k]. Ping k = 62 is conveniently chosen here because all

these tracks (due to the ER) have achieved the confirmed status. Specifically, both the posterior RMSEs

(that is RMSE 0 1[klk], R and RMSEiee[kIk]) in (4.73) to (4.75), and CRLB RMSEs

(that' isMSEE ) U (j
(that is RMSECLB[k], RMSECRLBposition[k], and RMSECRLBseed[k]) in (4.87) to (4.89) are used. From

(4.85) and then (4.55), same initial condition is similarly applied to all variants of the RMSE computa-

tion. From the results, the posterior RMSEs are likewise observed to be lower-bounded by the CRLB

RMSEs (for example in Figure 4.27(a), RMSE0'1 [klk] > RMSEU)s[k] CleCRLBk]J. Clarly, the CRLB RMSEs are

also not affected by any missing detections, unlike the posterior RMSEs that spike whenever missing de-

tections occur (for example in Figure 4.27(a), missing detections affect RMSE03)[kik] but not

RMSECLB [k]). The observations here further affirm the use of the CRLB matrix in the perception-

control later. When the Harpo OEX AUV was making a gradual turn on curved path, resulting in the ER

moving alongside with the BENS array, the RMSEe [kik] and RMSpe [k with both FM and

CW information (or with Doppler information) (that is j E {2, 4, 6}) in Figure 4.27(c) increase and ap-
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proach the RMSEWspeed [k1k] and RMSECRLBspeed[k] with only FM information (or without Doppler in-

formation) (that is j E {1, 3, 5}) from ping k = 100 to 155. The frequency measurements due to the ER

are missing during this time because the ER was approaching the bistatic reverberation ridge. It is evident

that tracking using Z( 2) [k], Z(4)[k], or Z(6)[k] (with frequency measurements) becomes equivalent to

tracking using Z (1 [k], Z( 3)[k], or ZMs>[k] (without frequency measurements). This is clearly unique due

to the unique feature provided by the dual-waveform fusion in this thesis. In addition, the RMSEs (both

posterior and CRLB RMSEs) with only FM information (or without Doppler information) (that is

j E {1, 3, 5}) are worse than (higher than) the RMSEs with both FM and CW information (or with Dop-

pler information) (that is j E {2, 4, 6)). Likewise, the subtle differences in the RMSEs between j = 1, 3,

and 5, and between j = 2, 4, and 6 are not evaluated in this thesis. Finally, it is also evident that the

RMSEs in Figure 4.27(a) are approximately the same as the RMSEs of position in Figure 4.27(b). This is

due to the way that the RMSEs in (4.76) and (4.90) are defined, where the RMSEs of position here are

overpowering the RMSEs of speed. Therefore, the RMSEs in Figure 4.27(a) are just mathematical per-

formance metrics that do not represent any physical quantities with meaningful unit.
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Figure 4.26: Experimental results from GLINT 2010 Run showing three-dimensional ellipsoidal valida-
tion gating (bounded by magenta lines) for track #82 (due to ER) on contact report Z(2)[k] =
{ Zm,2 [k] }.m= 1, ..., 2m[k] = { [ xtmjk] Y,,[k] F,,,,[k]]T }n. 2 nlk] (red crosses) in target tracking algorithm

for ping k = I to 235. Prior bistatic measurement vector 2( 2)[kIk - 1] (green line) and associated bistat-
ic measurement vector (z 2 [kik - 1] + 2( 2)[klk - 1]) (blue circles) for this track are depicted. Track
#82 is not terminated despite prolonged missing frequency measurements when ER was moving along-
side with BENS array.
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Figure 4.27: Experimental results from GLINT 2010 Run showing performance metrics (using RMSEs)
for track due to ER in target tracking algorithm for ping k = 62 to 235. RMSEs with only FM infor-
mation (that is j E {1, 3, 5}) are plotted in yellow, cyan, and green, while RMSEs with both FM and CW
information (that is j E {2, 4, 6}) are plotted in red, blue, and gray. Although not very visible, RMSEs for
j = 3 (cyan) are plotted below that of j = 5 (green). Similarly, RMSEs for j = 4 (blue) are plotted above
that of j = 6 (gray). The CRLB RMSEs are plotted in thinner lines than that of the posterior RMSEs.
RMSEs with only FM information (that is j E {1, 3, 5}) are worse than RMSEs with both FM and CW
information (that is j E {2, 4, 6}). RMSEs of speed with both FM and CW information (that is j E
{2, 4, 6}) approaches RMSEs of speed with only FM information (that is j E {1, 3, 5)) when ER was mov-
ing alongside with BENS array.
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Chapter 5

Unified Model

With the architecture of the integrated system designed in Figure 3.1, the solution involves the develop-

ment of novel methods for the AUVs to optimize the bistatic sonar tracking performance. This is accom-

plished by improving the tracking performance directly at the output of the automated perception, as de-

scribed in Chapter 4, and by using the perception-driven control, described later in Chapter 6, to move the

AUV to a desired receiver state that optimizes the tracking performance. For the automated perception,

information and environmental adaptations are applied to the target tracking algorithm, discussed in Sec-

tion 4.2, by adjusting the validation gate adaptively, in real-time, to achieve optimized tracking perfor-

mance. At the same time, the control strategy for the perception-driven control is implemented using the

reactive behavior-based autonomy algorithm, presented later in Section 6.1, that exploits the predictive

information and environmental rewards to make unsupervised decisions in adjusting the survey path

adaptively, in real-time, to achieve optimized tracking performance.

Therefore, the third objective of the thesis work is to formulate the uniped model that governs the

autonomous adaptations in the target tracking and reactive behavior-based autonomy algorithms. Alt-

hough the autonomous adaptations in the latter algorithm are discussed later in Section 6.1, much of the

autonomous adaptations in the former algorithm as described in Section 4.2 bear numerous similarities.

The unfied model is discussed now to highlight how it amalgamates the information-theoretic and envi-

ronmental-acoustic models to carry out the autonomous adaptations. The detailed presentations of these

two models are given in Sections 5.1 and 5.2 respectively. The unified model is evaluated and validated

in Section 5.3 using the experimental data. This section is useful in ascertaining the performance ob-

served in the automated perception, and particularly important to verify the validity of the model before

using it in the perception-driven control.
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5.1 Information-Theoretic Model

In this section, the information-theoretic model is presented to show the essential calculations necessary

to implement the information adaptations for adaptive processing in the target tracking algorithm, and

compute the predictive information reward for adaptive mobility in the reactive behavior-based autonomy

algorithm. In essence, any variant of the detection statistics - namely the probabilities of detection and

false alarm - and the bistatic measurement uncertainty - characterized by the measurement covariance

matrix - are computed in thesis to serve as the foundations for the information-theoretic model. The us-

age of the detection statistics and measurement covariance matrix then allows the pertinent information

characteristics of each contact to be modeled. Although the notion of varying the detection statistics

adaptively has not been mentioned earlier before but only introduced during the discussion of the target

tracking algorithm in Section 4.2, it is evident that they also provide the necessary adaptations for this

thesis. As such, the calculations of the detection statistics for the target tracking algorithm are presented

in Section 5.1.1 for completeness, and the explicit relationship postulated in (4.91) that relates to the envi-

ronmental-acoustic model is also shown. The calculation of the measurement covariance matrix for both

the target tracking and reactive behavior-based autonomy algorithms is formulated in Section 5.1.2, and

the explicit relationships postulated in (1.19) to (1.21) that relate to the environmental-acoustic model are

examined.

5.1.1 Detection Statistics

From the discussion of the target tracking algorithm in Section 4.2, it is clear that any variant of the de-

tection statistics - namely the probability of detection Pd[klk - 1] and probability of false alarm

pjU[kIk - 1] - at particular j E {1, ... , 6}, are computed based on the belief about the detection statistics

of the prior bistatic measurement vector 2U) [kik - 1] shown in Figure 4.15 (having the same form as the

bistatic measurement vector from the sonar signal processing algorithm). Since the detection statistics

are only used in the target tracking algorithm, the information-theoretic model relating to the detection

statistics is presented here in the context of this algorithm to compute the adaptive settings. As the belief

pertains to the output from the sonar signal processing algorithm, the discussion here is going to refer

Figure 4.1 of Section 4.1 quite frequently.

The received signal of the indirect blast at the matched-filtering output (that is the matched-

filtered data before magnitude squaring) is essentially subjected to time delay, Doppler frequency shift,

and attenuation effects as it travels from the source to receiver via scattering at the contact. As discussed

186



in Section 4.1.1.3, the time compression or expansion effect of this signal has been ignored with the use

of the narrowband signal approximation. In this thesis, the effects of this signal are assumed to be fixed

(upon reception) at each ping, but varying over pings. The time delay and Doppler frequency shift are

easily observed from the TOA and frequency measurements of the indirect blast. Two types of targets are

considered for the attenuation, they are the slowly fluctuating target (FT), and constant non-fluctuating

target (NFT). The attenuation for the FT is modeled as a normally (or Gaussian) distributed random vari-

able, while that for the NFT is modeled as an unknown constant amplitude. In both cases, additive com-

plex7 Gaussian noise background is assumed at the matched-filtering output.

The uncertainty in the measurement origin is then characterized by the probability of detection

Pa [klk - 1] and probability of false alarm P [kik - 1] under the hypotheses H1 and Ho respectively.

The null hypothesis Ho assumes only noise is present at the matched-filtering output, while the alternate

hypothesis 31 assumes both received signal (for either the NFT or FT) and noise are present. From

[27,104,138], the underlying distribution of the magnitude (or envelope) of the matched-filtering output is

observed to be: (i) Rayleigh, parameterized by the noise variance, under hypothesis HO; (ii) Rayleigh,

parameterized by the received signal attenuation variance and noise variance, under hypothesis 1 with

FT; and (iii) Rician, parameterized by the received signal attenuation amplitude and noise variance, under

hypothesis 1 with NFT. From [24,27,94,125], the underlying distribution of the matched-filtered data,

obtained after magnitude squaring (or taking the power) of the Rayleigh distributed matched-filtering

output, is exponential. With the spatio-temporal normalization in the sonar signal processing algorithm

(described in Section 4.1.1.4), the distribution of the normalized data becomes Fisher-Snedecor (or simply

Snedecor's F) [98,101]. With ideal normalization, the distribution of the normalized data reverts to expo-

nential [98].

Under the null hypothesis HO, the normalized data should ideally be noise power 1.
estimated noise power

This means that the SNR of the matched-filtered data under this hypothesis is 1 or equivalently 0 dB. The

probability of false alarm in the thresholded data after detector thresholding in the sonar signal processing

algorithm (presented in Section 4.1.1.5) is then calculated as [24,94,125,138]

pU)[kW k1] = Pf[k] = -DTFM[k], (5.1)

7 Recall from Section 4.1.1.3, the data after correlating with the sonar pulse replica signal and before magnitude squaring is
complex with both in-phase and quadrature amplitude components.
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where DTFM [k] is the detector threshold used in the FM processing of the sonar signal processing algo-

rithm (see Figure 4.1). This threshold represents the quantity that the detection statistics must exceed in

order for an alarm to be declared. The threshold from the FM processing is used instead of that from the

CW processing because the dual-waveform fusion, as outlined in Algorithm 4.2, in the sonar signal pro-

cessing algorithm requires the extracted FM peak to be present first before a search for corresponding

extracted CW peaks is performed. Under the alternate hypothesis Ifi, the normalized data should ideally

be signal power + noise power = 1 + SRO),FM[k k - 1] SRO),FM[kIk - 1], where SR),FM
estimated noise power

1] is the prior estimate of the SNR at the FM matched-filtered data. For a slowly fluctuating target (FT),

the probability of detection in the thresholded data is obtained as [24,94,125,138]

p0{)[k~k - 1] - DTF M [k]/(1+S R(j),FM [kjk-1])

= PJ) [kk- 1]1/(1+sNR()F M [klk-1]) (5.2)

and this is equivalent to that obtained for the Swerling 1/11 model. For a constant non-fluctuating target

(NFT), the probability of detection in the thresholded data is computed as [24,94,104,125]

Pa [kik - 1] = Qm  2 SIRO),FM[kjk - 1], 2 DTFM[k], (5.3)

and this is equivalent to that obtained for the Swerling 0/V model. Here, Qm ( - ) is the Marcum Q-

function. The calculations in (5.1) to (5.3) represent the information-theoretic model used to compute the

pertinent information characteristic of the prior bistatic measurement vector 22 [kik - 1]. Since the

probabilities of detection P4 [kIk - 1] for the FT in (5.2) and NFT in (5.3) are also dependent on the

prior estimate S1 RO),FM [kIk - 1] provided by the environmental-acoustic model presented in Section

5.2, the pertinent environmental characteristic is also embodied in the information characteristic. It fol-

lows from Section 5.2 that the model requires the knowledge of the underlying bistatic geometry - which

is easily established from the (i) current source state xs(tk), (ii) current receiver state Xr(tk), and (iii)

current prior target state estimate it [kik - 1] from the target tracking algorithm - as well as the current

average underwater sound speed c(tk). The expressions in (5.2) and (5.3) have expanded the explicit

relationship postulated earlier in (4.91), which has been quoted as the detection-statistics parallel to the

explicit relationships postulated in (1. 19) to (1.21). These two expressions are used to amalgamate both

the information-theoretic and environmental-acoustic models for the detection statistics into the unified

model. This means that the implementation of the information adaptation in the target tracking algorithm,

via the detection statistics, is simultaneously applying the environmental adaptation. In essence, the in-

188



tent here is to adjust the detection statistics adaptively, based on the knowledge of the underlying bistatic

geometry, to achieve predicted optimized bistatic sonar tracking performance in the automated percep-

tion.

In the discussion so far, the noise background has been assumed Gaussian, other heavier-tailed

distributions such as Weibull and K are considered in [2,27]. This leads to a larger Pj g[kik - 1] than the

one computed in (5.1). However, since a small two-dimensional moving-average filter in bearing and

time is applied during the peak extraction in the sonar signal processing algorithm (presented in Section

4.1.1.6) to reject small spurious peaks in the thresholded data, the number of false alarms should reduce.

As a result, the smaller PU) [kIk - 1] obtained in (5.1) should be good enough to provide the adaptive

setting in the target tracking algorithm.

5.1.2 Measurement Covariance Matrix

The calculation of the measurement covariance matrix for both the target tracking and reactive behavior-

based autonomy algorithms is formulated in this section, and the explicit relationships postulated in (1.19)

to (1.21) that relate to the environmental-acoustic model are examined.

For the target tracking algorithm in Section 4.2, the setting of the measurement covariance matrix

RU)[kIk - 1] is calculated to implement the information adaptation in adaptive processing. The compu-

tation is done based on the belief about the uncertainty in the prior bistatic measurement vector

2')[kIk - 1] shown in Figure 4.15 (having the same form as the bistatic measurement vector from the

sonar signal processing algorithm). This belief then requires the knowledge of the underlying bistatic

geometry - which is easily established from the (i) current source state xs(tk), (ii) current receiver state

Xr(tk), and (iii) current prior target state estimate R ,J)[kIk - 1] from the algorithm" - as well as the cur-

rent average underwater sound speed c(tk), and a host of other dependencies. These other dependencies

are examined in detailed here. The intent here is to adjust the measurement covariance adaptively, based

on the knowledge of the underlying bistatic geometry, to achieve predicted optimized bistatic sonar track-

ing performance in the automated perception.

8 The posterior computation of the measurement covariance matrix R0 [kIk], for the initialization in the target tracking algo-
ritlun, using the posterior target state estimate 2([k~k] is not discussed in this section, but can be similarly calculated.
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For the reactive behavior-based autonomy algorithm in Section 6.1, the measurement covariance

matrices {R )[k + Kk, a]fl= 1, where a E {a1 ,...,aN} represents a set of N possible discrete AUV-

motion decisions (in both speed and heading at fixed depth) at ping (k + 1) to (k + K), are similarly cal-

culated to determine the predicted performance metric designated by the Cramer-Rao lower bound

(CRLB) matrix PCLB[k + Klai] (which is expressed in (6.8) of Section 6.1.3.3). No depth decision is

considered here since the bistatic geometry in Figure 1.15 is two-dimensional. The predicted CRLB ma-

trix then represents the inverse of the predictive information reward at which the algorithm seeks to min-

imize for adaptive mobility. The computations of {R0 )[k + KIk, a1]}= 1 are then carried out based on the

belief about the uncertainties in the predicted bistatic measurement vectors {20) [k + Kxk, a,]}K=1. The

belief then requires the knowledge of the predicted bistatic geometries - which are easily established from

the (i) predicted source states {, [k + K]}K=1 = {Rs(tk + K Tp)}= 1 , (ii) predicted receiver states

{Rr[k + KIat]}K=1 = {2r(tk + -TpIat)}f=1, and (iii) predicted target state estimates { [+ Kk]}= 1

from the target tracking algorithm - as well as the predicted average underwater sound speeds {[k +

]K=1 = (tk + Kc T-)} 1 , and a host of other predicted dependencies at the next ping to K pings

ahead. These other predicted dependencies are also examined in detailed here. The functional dependen-

cies for this algorithm might seem too complex right now, they become lucid after the discussion in Sec-

tion 6.1. The non-myopic control implemented in the thesis requires the prediction to cover from the next

ping to K pings ahead. The intent here is then to incorporate this belief, based on the knowledge of the

predicted bistatic geometries, to adjust the survey path of the AUV adaptively to achieve predicted opti-

mized bistatic sonar tracking performance in the automatedperception.

In both the target tracking and reactive behavior-based autonomy algorithms, the autonomous

adaptations utilize the same information-theoretic model. For the purpose of generalizing the discussion

herein, the variant of the measurement covariance matrix is represented as R0 ) [k] (which actually means

RO) [kIk - 1] and RU)[k + KIk, ai] in the target tracking and reactive behavior-based autonomy algo-

rithms respectively), at particular j E { 1, ..., 6}. The question now is that what sensible value can one

choose for RU) [k]? Depending on the variant of the contact report, the matrix R0 ) [k] is obtained from

either one of the expressions in (4.35) to (4.40) to characterize the uncertainties in the bistatic measure-

ments zW)[k] (which also actually means 20)[klk - 1] and 2U)[k + KIk, a1 ] in the target tracking and

reactive behavior-based autonomy algorithms respectively), at the output of the sonar signal processing

algorithm. By referring to the data flow diagram (DFD) in Figure 1.18, it is obvious that any variant of

the bistatic measurement uncertainty is propagated from the derived measurement uncertainties, and

eventually from the acoustical, navigational, and environmental measurement uncertainties, together with

the dependency on the underlying bistatic geometry and their corresponding measurements. The derived
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measurement uncertainties are examined in Section 5.1.2.1, and the acoustical measurement uncertainties

are explored in Section 5.1.2.2.

5.1.2.1 Derived Measurement Uncertainties

Depending on the variant of the contact report, the measurement covariance matrix RU)[k], at particular

j e { ... , 6}, is obtained from either one of the expressions in (4.35) to (4.40) to characterize the uncer-

tainty in the bistatic measurement vector z(j)[k] 9. In this thesis, the bistatic measurement is assumed to

be normally (or Gaussian) distributed. It then follows, from (4.10) to (4.15), and (4.35) to (4.40), that

z( [k] xt k]
z[k] = [YIck]

z [] = [k]

z(3)[k] = 1 k

z(4)[k] = r3 k]
Z() E k]

z (5) [k] r, L[~Ik]
61[k]]

Z(6) [k] z()- k

N (z(,e [k], R(1) [k])

N(z(,e [k], R (2)[k])

N (z,e [k], R [k])

~N zr ,[k],R(4)[k])

N (Z(,e [k], R(!; [k])

N (ztre [k], RC' [k])

= (1 za [k] R[k] attk= rue [k], xy[k] u [k] ]j

= N ze i[k], R012 [k]

= N ztrue [k], k]

k R2/ (5) r a[k] £rrq, [k]f
=NIjtrue [k], I ue,.[k] C9,[k] 1

Z~true [ki, T 12o[]J/

where subscript true designates the true quantity, and N(-) denotes the normal probability density func-

tion (PDF). From the above expressions, the covariances o.A2 [k], of.[k], Orr, [k], u2 [k], at[k], -yit[k],

orxyt [k], and o2 [k] in R0 ) [k] are then used to characterize the uncertainties in the derived measurements

AT[k], rr[k], O[k], xt[k], yt[k], and F1[k]. In (5.5), (5.7), and (5.9), the covariances of the uncertainty

between F [k] and other derived measurements are assumed zero. This is not true in reality since the

TOA correction, as expressed in (4.9) or depicted in Figure 4.4, in the dual-waveform fusion implies that

9 Keeping in mind that RCO[k] actually means R0W[kjk - 1] and RW[k + KIk, at], while z02[k] actually means 2U)[klk - 1]
and 2 W)[k + KIk, ai] in the target tracking and reactive behavior-based autonomy algorithms respectively.
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the uncertainty in Fj[k] leads to the increased uncertainty in Tr[k], and consequently the increased uncer-

tainty in other derived measurements. However, this increase is negligible and ignored in this thesis to

reduce the complexity. By following the DFD in Figure 1.18, it is obvious that the derived measurement

uncertainties are propagated from the acoustical, navigational, and environmental measurement uncertain-

ties, together with the dependency on the underlying bistatic geometry and their corresponding measure-

ments, which are then assumed to be known at the receiver. The following assumptions are then made

regarding these uncertainties:

* The acoustical measurement uncertainties of the indirect blast, characterized by variances a, [k],

aq [k], and uFi[k], are computed, and the details are given in Section 5.1.2.2.

* The navigational measurement uncertainties of the source, characterized by covariances a',(tk),

oy5 (t), and x,,y,(tk), are known either a priori, or in-situ via UWACOMMS broadcast from the

source (since the sources considered in Section 1.2.1.1 are cooperative assets). These covariances

can be obtained from the state covariance matrix that accompanies the estimate of the source state

XS(tk) = [ xS4) ystk) ±st4) fS4) ]T in the navigational algorithm. The navigational al-

gorithm is assumed to be implemented and is outside the scope of this thesis.

* The navigational measurement uncertainties of the receiver, characterized by covariances

ogr(t), ay~rtk), axryr(tk), and aW(tk), are easily obtained from the state covariance matrix

that accompanies the estimate of the receiver state Xr(t) = [xrt) yrY ) r t) r Y ) ]T

in the navigational algorithm. The navigational algorithm is also assumed to be implemented and

is outside the scope of this thesis.

* The environmental measurement uncertainty, characterized by variance u (t), is extracted di-

rectly from the MREA 2003 experimental model shown in Figure 1.14 together with the meas-

urement c(tk). It can also be complimented by any recent CTD casts of the operating environ-

ment, and the onboard CTD sensors.

From the results in Section 5.3.1 later, it is observed that in order for z()[k] in (5.4) to (5.9) to be normal-

ly distributed, the acoustical, navigational, and environmental measurements must also be normally dis-

tributed with small uncertainties. It is evident that when the uncertainties become large, Gaussianity fails

for z )[k] (both here in (5.4) to (5.9), and previously in (4.34)), thereby rendering the sub-optimal usage

of the probabilistic data association filter (PDAF) in the target tracking algorithm. Therefore, the as-

sumption stated in (1.18) earlier continues to be enforced here.
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For the derived TDOA measurement Ar[k] in (1.2), the corresponding uncertainty is then charac-

terized by

oY2[k] = Ef(dAT[k] - E{dAT[k]}) 2}

f (u2, [k], o ),xs(tk),ys(tk), xr(tk), yr(tk), c(tk);
0%[k, o(tkay2s~,xsys ),x ax2,0tk)ay2r~kt axryr~k) a UA ) , (.0

where f(x, y) represents the functional relationship with parameters x and y, and d is the differential op-

erator. The uncertainties in the derived range measurement rr[k] between the contact and receiver in

(1.7), and the DOA measurement of the indirect blast 6t[k] are quantified by [33]

r[k] = Ef(drr[k] - E{drr[k]})2}

= ~ ~ ~ [k],Ti [k], 6[k], xs(tk),yS(tk), Xr(tk),Yr(tk),(Pr(tk), c(tk);

a- [k],0)2[k], Ux2,(tk),Uy2s(tk), ax,y(tk), U (kUy2(tk),UxrYr (tk),o(tk), )' (5.11)

arrei[k] = E{(drr[k] - Efdrr[k]})(dL[k] - E{dO[k]})}
= f(ir [k], Oj[k], xs(tk),yS(tk), xr(tk),yr(tk), (Pr(tk), c(tk); a2,[k]) . (5.12)

The uncertainties in the derived Cartesian position measurements xt [k] and yt [k] of the contact in (1.8)

and (1.9), respectively, are characterized as [33]

aqx[k] = E{(dxt[k] - E{dxt[k]})2}

= f T[k],Oi[k], xs(tk),yS(tk), xr(tk),yr(tk),Pr(tk), c(tk);
oT [k],o09[k], Uxf,(tk),y2s~,GUax,,,u ax2,0tk)ay2r~tk),xrYr~tk) dor~tk), Cct)),(.3

ay2t[k] = E{(dyt[k] - Etdyt[k]}) 21

= f ( ] ] [k], 6[k], xs(tk),yS(tk), Xr(tk),Yr(tk),Pr(tk), c(tk);
oT%[k], q92j[k], Ux2,(tk) Uy2s~k,7st) 2r tk),ayr tk) exrYr tk)Ur tk), Uc ),(.4

uxtyt[k] = E{(dxt[k] - Etdxt [k]})(dyt [k] - Etdyt[k]})}

= f ] k [k],6,[k], xs(tk),ys(tk), xr(tk),Yr(tk), Pr(tk), c(tk); (tk)) (5
oT%[k],q02[k], al,(tk),ay2s~,Ulx,,,Gtk ex2r~tk) yr~k),xryr~tk,"$r~tk), Uc ).(15

The detailed expressions for the covariances of the derived measurement uncertainties in (5.10) to (5.15)

are provided in Appendix B for the case with small acoustical, navigational, and environmental measure-

ment uncertainties. The covariances in (5.10) to (5.15) are generally found to be dependent on the under-

lying bistatic geometry - which is easily established from the (i) source state xs(tk), (ii) receiver state

xr(tk), and (iii) target state xt[k] - as well as the acoustical, navigational, and environmental measure-

ments with associated uncertainties. An important note here is that the target state xt[k] does not appear
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directly in (5.10) to (5.15), but rather through the acoustical measurements of the indirect blast 4i[k],

O6[k], and Fi[k], with associated covariances u.2[k], o2[k], and a. [k]. By using the bistatic geometry in

Figure 1.15, these acoustical measurements are then given by

)k] = (rs[k] + rr[k]), (5.16)

Oi[k] = tan- (Yt[k- r( (5.17)
kxt[kl - Xtk))Ir(57

FL[k] = 1 - (ts[k] +tr [k])) Fccw. (5.18)

The ranges r[k] and rr[k], and the range rates is[k] and tr[k] are calculated from (4.51) and (4.53) re-

spectively. The covariances o.,[k], ou.[k], and ou2[k] of the acoustical measurement uncertainties are

discussed in Section 5.1.2.2. As mentioned earlier, for the target tracking algorithm, (i) the source state

here is the current xs(tk), (ii) the receiver state here is the current xr(tk), and (iii) the target state here is

the prior estimate i [k Ik - 1] from the algorithm. This means that the acoustical measurements ri [k],

O[k], and Fi[k] are actually f,^'[kk - 1], 6 [klk- 1], and RlU)[klk -1] respectively, while the

acoustical measurement uncertainties characterized by uo [k], a02 [k], and o2 [k] are actually (U) [k1k -

1])2, (-W [kIk - 1])2, and (-) [kIk - 1])2 respectively (which leads to RW [k] being RW [kIk - 1] in

actual). Similarly, for the reactive behavior-based autonomy algorithm, (i) the source state here is the

predicted R [k + K] = Xs(tk + K - Tp) at K pings ahead, (ii) the receiver state here is the predicted

2r[k + K Ia] = Rr(tk + K - T, la) at K pings ahead, and (iii) the target state here is the predicted i- [k +

K Ik] at K pings ahead from the target tracking algorithm. Likewise, this implies the acoustical measure-

ments Ti [k], Oi [k], and FL [k] are actually U) [k + Kjk, a ] k + Kjk, at], and L k + Kjk,a] re-

spectively, while the acoustical measurement uncertainties quantified by o2 [k], o-2 [k], and a2 [k] are

actually (8 [k + Klk, at])2 , (8 [k + Klk, at])2 , and (68 )[k + Kjk,at]) 2 respectively (which leads to

R 0 )[k] being R0W[k + Kxk, at] in actual). The target state is never known tactically, since this is the pa-

rameter that the thesis is interested in finding.

By taking a closer look at (5.10) to (5.15) again, it is clear that all variants of the covariance ma-

trices RO)[k] are function of u2[k], o[k], oL(tk), Uy2(tk), uxsy,(tk), x2,(tk), ay2r(tk), UxrYr(tk),

o (t) and of (tk) except for R(3 )[k] and R(I)[k]. For these two matrices, there is apparently a lack of

dependency on 42 (t). By examining (5.17), it is obvious that an uncertainty in #r (tk) inevitably leads

to an uncertainty in Ot [k]. With that, the covariance a0[k] in (4.37), (4.38), (5.6), and (5.7) is replaced
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by a92[k] + qo [jk] [40]. The measurement covariance matrices R0 )[k] are provided below again, that

include the replacement of the said covariance, as

R( 1)[k] = [k] oxtyt[k] (5.19)
Loxtyt[k] axgt[k]

R( 2)[k] = R(1)[k] 02x1 (5.20)
01X2 UF2[k] '

R(3 )[k] = qA~r[ k] 0 (5.21)
10 qe%[k] + qo[k]'

[R(3)[k] 02x1 (5.22)

01Rx2 02 [k]+0[k]'

r[k] arrojk]
R(S)[k] = r (5.23)

k arr6k] o01 [k] '

R(6)[k] R() [k] 02x (5.24)
101X2 qo2,[k]

5.1.2.2 Acoustical Measurement Uncertainties

Traditionally, the uncertainties in the acoustical measurements of the indirect blast ri[k], ej[k], and F [k]

can be computed for two types of targets, depending on the corresponding SNRs of the FM and CW re-

turn signals at the matched-filtered data of the sonar signal processing algorithm in Figure 4.1. For a

high SNR target, the well-known Woodward relations are obtained and expressed as

[15,24,30,75,76,78,145]

SrFM
a, o[k] = 2 FM-SN RFM [g] (5.25)

S6FMk

ak] = - t(5.26)
OGF 2KFM-SN RFM[k],

uF, k = 6FW(5.27)
[k] 2 iCW'5NRCW[k]~

where KFM and K w are the proportionality constants. Here, (i) 8-rFM oc 1/FbF, is related to the TOA

estimation resolution of the FM matched filtering in the sonar signal processing algorithm for given FM

sonar pulse signal [98,138]; (ii) 8FM [k] is related to the beamwidth of the FM beamforming in the sonar
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signal processing algorithm for given DOA 6[[k] estimated from (5.17), spatial weighting (such as Han-

ning, Hamming and many others [61]), and array specifications [72,139]; and (iii) SFCw oc 1/Tcw =

1/T. is related to the frequency estimation resolution of the CW matched filtering in the sonar signal

processing algorithm for given CW sonar pulse signal [98,138]. The SNRs of the FM and CW return sig-

nals, denoted SNRFM/Cw[k], at the matched-filtered data can be calculated using the environmental-

acoustic model in Section 5.2. For the target tracking algorithm, SNRFM/CW [k] is actually the prior SNR

estimates at the FM and CW matched-filtered data SNR),FM/Cw[kIk - 1], which means that the acousti-

cal measurement uncertainties characterized by o[k], aU,[k], and aF,[k] are actually 6) - 1],

SU{ [kik - 1], and F [kik- 1] respectively. Similarly, for the reactive behavior-based autonomy algo-

rithm, SNRFM/cw[k] is actually the predicted SNR estimates at the FM and CW matched-filtered data

SfR(),FM/CW[k + K Ik, at) at K pings ahead, which implies that the acoustical measurement uncertainties

quantified by ujk], u6q[k], and uF,[k] are actually 6OU[k + KIk, at], 6(Ik + Kik, ai], and SF

Klk, a1 ] respectively. For a low SNR target, the alternate relations are obtained and expressed as

[15,75,76]

o6[k =gFM]KFM.SNRFM[k] +1 (.8[k .rFMKFM .5NRF M
(k]

a0 [k] = 5g M k])KFM .gRF M [k] +1 (5.29)
V,2KF M .SNRFM [k]

F.[k] = 6FCW KCw-SNRcw[k] +1 (5.30)
-x cw-SN Rcw [k ]*

Clearly, the alternate relations in (5.28) to (5.30) become the Woodward relations in (5.25) and (5.27) in

the limit of high SNR. This is illustrated by the plots in Figure 5.1. The expressions presented in (5.25)

to (5.27) for high SNR target, and (5.28) to (5.30) for low SNR target are commonly obtained by assum-

ing that the TOA measurement r1 [k], DOA measurement 61 [k], and frequency measurement F1 [k] to be

disjoint or decoupled completely, or at least to be disjoint between the spatial measurement of 0[k], and

the temporal measurements of r [k] and F [k].

Two main concerns then arise that pertain to the suitability of the expressions in (5.25) to (5.27),

and (5.28) to (5.30) in this thesis. The first concern is that whether the assumed disjoint relations hold for

the sonar signal processing algorithm given in Figure 4.1. The second concern is that how the expres-

sions obtained for high and low SNR targets relate to the constant non-fluctuating target (NFT) and slow-

ly fluctuating target (FT) in the Swerling model presented in Section 5.1.1. To deal with these concerns,
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Figure 5.1: Plots of Woodward factor (1 /(2 -SNR)) and alternate factor (1(SNR+ 1) / ((42) SNR)) versus
SNR, depicting alternate factor approaches Woodward factor in limit of high SNR.

the works by (i) Dogandid and Nehorai [44] for joint acoustical measurement uncertainties with NFT, (ii)

Van Trees [138] for joint TOA and frequency measurement uncertainties with FT, and (iii) Van Trees

[139] for DOA measurement uncertainty with FT are adapted and applied here.

To start, the NFT case is first considered. By using [44], the uncertainties in the acoustical meas-

urements Ti[k], O6I[k], and Fi[k] can be considered jointly and derived using the Cramer-Rao lower bound

(CRLB). From the detailed formulation provided in Appendix C. 1, it can be shown that the uncertainty in

the spatial measurement of 6O[k] is disjoint from the uncertainties in the temporal measurements of T1 [k]

and Fi [k]. This implies that the covariances a,, [k] and U61 Fi [k] are zero. For the dual-waveform fu-

sion, as outlined in Algorithm 4.2, in the sonar signal processing algorithm, the TOA measurement rg [k]

and frequency measurement Fi [k] are obtained separately from the FM and CW return signals of the indi-

rect blast respectively. Intuitively, the coupling between these two measurements can be assumed negli-

gible. Although the frequency measurement Fi[k] is used to perform the TOA correction for the TOA

measurement ri [k] as shown in (4.9) - which means that an uncertainty in F [k] inevitably leads to an

uncertainty in Ti [k] - the coupling between these two measurements can be safely ignored since the chirp

or sweep rate of the FM signal y = FF,,/TMF = Fbw'/T, is practically very much larger than the bistatic

Doppler frequency shift IFdoppleri [k] I = IFt [k] - Fccw| . This means that the covariance riFi [k] be-

comes zero. These disjoint relations then lead to the zero covariances observed in the different variants of
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the measurement covariance matrices RN') [k], where j E {1, ... , 6}, expressed in (5.19) to (5.24). With

the formulation furnished in Appendix C. 1, the uncertainties in the acoustical measurements ri [k], 6i [k],

and Fi [k] for NFT are observed to be in the same form as the Woodward relations expressed in (5.25) to

(5.27). This means that the Woodward relations in (5.25) to (5.27) for a[k], a 1,[k], and -F, [k] are ap-

plicable for both the high SNR target and NFT.

By adapting the works by Van Trees [138,139] in the same manner as the approach taken by

Dogandii6 and Nehorai [44] for the FT case, the uncertainties in the acoustical measurements ri[k],

Bi [k], and F; [k] can also be considered jointly and derived utilizing the CRLB. From the detailed formu-

lation given in Appendix C.2, it can be shown that the uncertainty in the spatial measurement of 61 [k] is

disjoint from the uncertainties in the temporal measurements of ri [k] and Fi [k]. With the dual-waveform

fusion in the sonar signal processing algorithm, the coupling between the TOA measurement ri [k] and

frequency measurement Fi [k] can be assumed negligible and safely ignored. These disjoint relations also

lead to the zero covariances observed in the different variants of the measurement covariance matrices

RGi)[k], where j E {1, ..., 6}, expressed in (5.19) to (5.24). With the formulation shown in Appendix C.2,

the uncertainties in the acoustical measurements Tg[k], 6;[k], and Fi[k] for FT are observed to be in the

same form as the alternate relations expressed in (5.28) to (5.30). This means that the alternate relations

in (5.28) to (5.30) for or, [k], c-,r[k], and uF, [k] are applicable for both the low SNR target and FT. In the

same manner, the alternate relations become the Woodward relations in the limit of high SNR.

Clearly, the mathematical formulations in Appendix C have validated the disjoint relations for use

in this thesis, and developed a consistent target model that can be employed in both the detection statistics

and acoustical measurement uncertainties. The consistent target model has successfully related the NFT

(or Swerling 0/V model) in the detection statistics with the high SNR target that uses the Woodward rela-

tions in the acoustical measurement uncertainties, and related the FT (or Swerling I/II model) in the detec-

tion statistics with the low SNR target that utilizes the alternate relations in the acoustical measurement

uncertainties. The calculations in (5.25) to (5.27) for NFT, and (5.28) to (5.30) for FT then represent the

information-theoretic model used to compute the pertinent information characteristic of the acoustical

measurements ri[k], 61[k], and Fi[k]. Since the expressions are also dependent on SNRFM/CW [k] pro-

vided by the environmental-acoustic model presented in Section 5.2, the pertinent environmental charac-

teristic is also embodied in the information characteristic. The expressions in (5.25) to (5.27), and (5.28)

to (5.30) have expanded the explicit relationships postulated earlier in (1.19) to (1.21). These expressions

are used to amalgamate both the information-theoretic and environmental-acoustic models for the meas-

urement covariance matrix into the unified model. This means that the implementation of the information

adaptation in the target tracking algorithm, via the measurement covariance matrix, is simultaneously
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applying the environmental adaptation. Similarly, the computation of the predictive information reward

in the reactive behavior-based autonomy algorithm, via the measurement covariance matrix, is concur-

rently including the predictive environmental reward.

5.2 Environmental-Acoustic Model

For the probability of detection discussed in Section 5.1.1, the explicit relationship postulated in (4.91)

has been derived by the expressions in (5.2) for a slowly fluctuating target (FT) using the Swerling I/II

model, and in (5.3) for a constant non-fluctuating target (NFT) using the Swerling 0/V model. Similarly,

for the acoustical measurement uncertainties examined in Section 5.1.2.2, the explicit relationships postu-

lated in (1.19) to (1.21) have been obtained by the expressions in (5.25) to (5.27) for a NFT using the

Woodward relations, and in (5.28) to (5.30) for a FT using the alternate relations. All these explicit rela-

tionships are dependent on the SNRs of the FM and CW return signals of the indirect blast contact, denot-

ed SNRFM/CW[k], at the matched-filtered data for the FM and CW processing of the sonar signal pro-

cessing algorithm in Figure 4.1. These ratios are computed on the fly using the environmental-acoustic

model described in this section. To implement an exceptionally accurate model is non-trivial, given the

complexity of the underwater acoustic environment. Even if high fidelity model is attempted, it is usually

the case that the model input parameters are not known to the degree necessary to arrive at such high fi-

delity solution. As such, the approach undertaken in this thesis is one that captures the gross features of

the FM and CW processing using simplified physics-based method, which is a function of the underlying

bistatic geometry. Nonetheless, the presented model is validated using the experimental data to ensure its

quality. This is illustrated later in Section 5.3 by comparing the predicted SNRs with that measured in the

real experimental runs. The environmental-acoustic model is then amalgamated with the information-

theoretic model, as described in Section 5.1, to yield the unified model - for use in the target tracking al-

gorithm in Section 4.2 and the reactive behavior-based autonomy algorithm in Section 6.1. Clearly, the

environmental-acoustic model implemented in this thesis provides not only the pertinent environmental

characteristic of the FM return signal, but also that of the CW return signal for the information-theoretic

model.
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Using the illustration in Figure 1.22, the bistatic sonar equation is used to compute the SNRs in

decibels (dB) (denoted by superscript (dB)). The noise-limited bistatic sonar equation is expressed, for

ip E {FM, CW}, as [38,45]

SNRP,(dB) [k] = (ELd(aB) [k] - NL*,(dB)) + AGp,(dB) [k] + PG ip, B)
noise

= ELIP, (dB) [k] - (NLIP (dB) - AGp,(a,) [k] - P p(B

EL* [k] echo level for the 1/ processing;

NL* noise level within the processing bandwidth F*ocessb, at the baseband data for

the ip processing;

AGP[k] array gain against noise in the beamformer for the p processing that varies ac-

cording to DOA O6[k] predicted from (5.17), spatial weighting, and array specifi-

cations [72,139]; and

PG'ojse processing gain against noise in the matched filter for the 0 processing, and re-

lated to the time-bandwidth product of the matched filter [98,138].

The array gain becomes the commonly-known directivity index DI[k] under isotropic noise assumption

[72,139]. The combination of AGO [k] and PG oes increases the echo, or equivalently reduces the noise.

The reverberation-limited bistatic sonar equation is expressed, for 4 E {FM, CW}, as [38,45,55,57,70]

SNRP,(dB) [k] = (EL*d) [k] - Pl(dB)[k]) + PG dB[k]

= ELV-(dB) [k] - (RLP,(dB) - PGP', [k]) ,

in-beam reverberation level for bottom-surface scattering at the beamformed data

for the 4 processing; and

processing gain against reverberation in the matched filter for the 4 processing,

and the inverse of the Q-function QP[k] of the matched filter (that is

PGreverb[k] = 1/Q*[k]).
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(5.31)

where

RLP[k]

PGreverb[k]

(5.32)



Specifically, the SNR in (5.32) is actually the signal-to-reverberation power ratio (SRR). It follows from

Westerfield et al. [143] that PGreverb [k] reduces the reverberation, or equivalently increases the SRRs

from the input to the output of the matched filter. In fact, it is this term that explains the reason for the

sensitive bistatic reverberation effects observed in the CW return signal of the experimental data. Com-

bining (5.31) and (5.32) results in the noise- and reverberation-limited bistatic sonar equation

(NL*.(dB) - AG*,(dB) [k] - PG -dB)
SNR*,(dB) [k] = ELO,(dB) [k] (RLA (dB) [k] -PG '(d ) s - A*,(dB)

(RL4d)[] Pe erb [k]) I
(5.33)

where ( denotes the power summation, and A* is the additional sonar signal processing loss included in

the 4 processing.

5.2.1 Echo Level

The echo level is then given as [38]

ELA(dB) [k] = SL(dB) [k] - TL (dB) [k] - TL rdB) [k] + TS4,(dB) [k] (5.34)

where

SL[k] source level;

TLs [k] transmission loss from the source to the contact;

TLr [k] transmission loss from the receiver to the contact; and

TSIP [k] bistatic target strength for the 0 return signal, which is a function of the aspect

angle 0a [k] and bistatic angle 0 b [k] shown in the bistatic geometry of Figure

1.15.

Example of the bistatic target strength includes the TAP model [117] that models the underwater target

consisting of four scattering mechanisms: (i) the backscattering from a finite cylinder, (ii) forward scatter-

ing from a finite cylinder, (iii) scattering from hemispherical end-caps, and (iv) scattering of elastic waves

in the cylinder. For a point target like the ER considered in the experimental data for this thesis, the bi-

static target strength becomes constant at all aspect and bistatic angles. The echo level can be used to plot

the well-known Cassini ovals shown in [62,63,103].
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5.2.2 Reverberation Level

The problem of calculating the reverberation can be complicated since it involves summing the contribu-

tions of a large number of scatterers ensonified by a variety of propagation paths due to the source and

receiver beam patterns. For the purpose of rapid computation of the SNRs, the principal contribution of

reverberation is considered within the main lobe of the receiver, and scattered from the bottom-surface

scattering patch at the contact position. With this, the in-beam reverberation level is obtained as [38]

RL$'dB)[k] = SL(d) [k] - TLdB) [k] - TL [k] + BT,(dB) [k] (5.35)

where

TLs [k] transmission loss from the source to the bottom-surface scattering patch;

TLrp [k] transmission loss from the receiver to the bottom-surface scattering patch; and

BTS*[k] bistatic bottom-surface target strength for the 0 return signal.

The bistatic bottom-surface target strength BTS*[k] is expressed mathematically as

BTS4)(dB)[k] = SS(dB)[k] + 10 lg(SA*[k]) . (5.36)

where

SS[k] bottom-surface scattering strength, and

6A* [k] area of the bottom-surface scattering patch for the 4 return signal.

The area 6AP V[k] is obtained from [62,63] as

AP[k] = cstk) rr[k] 60[k] (5.37)
2 COS(Ob[k]/2) LU

where 60'[k] is the beamwidth of the beamformer for given DOA 6;[k] predicted from (5.17), spatial

weighting and array specifications [72,139]. The bistatic angle Ob[k] can be predicted using (1.4), while

the range rr[k] from the receiver to the contact can be predicted using (1.7). Clearly, from the results in

Figures 4.9(c) and 4.10(c) for the sonar signal processing algorithm in Section 4.1.4.1, and Figure 4.23(c)

for the target tracking algorithm in Section 4.2.7.1, poorer performance has been observed for the CW

return signal of the indirect blast due to the ER, when the ER was near the forward endfire of the BENS

array - occurring when the OEX AUV was making a turn between pings k = 132 and 151. The SNR has
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reduced because of the higher reverberation experienced with a wider beamwidth near the endfire, result-

ing in occasional missing frequency measurements. This can be explained by using the expressions pre-

sented above. With a wider beamwidth, a larger 6Ofw[k] increases the area 8A cw[k] in (5.37), and con-

sequently the bottom-surface target strength BTSCW[k] in (5.36). A higher BTSCW[k] then leads to a

larger in-beam reverberation level RLcw[k] in (5.35), and eventually a reduced ratio SNRCW[k] in (5.33).

When SNRCW[k] falls below the detection threshold DTcw[k] for CW processing, missing frequency

measurement occurs. This effect is less dramatic in the FM processing since 6[fM[k] < 60fw[k] to

begin with (see Figure 1.17). This observation is evaluated again in Section 5.3.1 later.

5.2.3 Processing Gain against Reverberation

The processing gain against reverberation PGreverb[k] is a measure used to quantify the ability of the

matched filter in suppressing the reverberation from the bottom-surface scattering patch. This reverbera-

tion is then represented by a reverberation scattering function, denoted SZ (r, Fdoppte), distributed in the

TOA-frequency plane, alongside with the ambiguity function, denoted e&P(, Fdoppje), of the sonar pulse

signal depicted in Figure 1.20 [98,138]. The detailed expression of the processing gain is derived in Ap-

pendix D by adapting the quantitative analysis carried out by Westerfield et al. [143], Angelari [4], and

Van Trees [138], and applying them in the context of the sonar signal processing algorithm of Figure 4.1.

The inverse of the processing gain is the Q-function Q* [k] of the matched filter. It is shown that this

processing gain and Q-function are very much dependent on the amount of overlapping area between

S*(r, Fdopjer) and 9*(t, Fdoppler) - very similar to the qualitative observations noted by Stewart and

Westerfield [122], Glisson et al. [54], and Collins and Atkins [31]. By modeling S,(r Fdopper) as a

simplified bistatic reverberation ridge, the simplified processing gain and Q-fimction are obtained in

(D.32) and (D.33) respectively - which have been examined in similar form by Brill et al. [28], Collins

and Atkins [31], and Pecknold [108]. In essence, the simplified Q-function in (D.33) is the normalized

TOA integration of the ambiguity function e(r, Fdoppler) of the sonar pulse signal. Both the simplified

processing gain and Q-function, in the context of multi/bistatic sonar, have been described in

[55,57,70,79].
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To start, the bistatic Doppler frequency shifts associated with the contact and reverberation are

defined as

Fdoppier[k] = Fi[k] - Fcw,

Fdopplero[k] = FO[k] - Fccw

(5.38)

(5.39)

respectively. Here, Fi [k] is predicted from (5.18) and (4.53), while FO [k] is the frequency of the rever-

beration from the bottom-surface scattering patch predicted from (5.18) and (4.53), with it[k] = ft [k]=

0 m/s, as

FO[k] = FcCW 1

(xt[k]-xs(tk)) *,(tk) + (yt[k]-ys(tk)) ys(tk) +
+ 1 rs[k]

C(tk) (xt[k]-Xr(tk)) r(tk) + (yt[k]-yr(tk)) Yrt(tk)

rr[k]

and is observed to be dependent on the underlying bistatic geometry. Both F [k] and FO [k] are obtained

using the CW signal.

As shown in the sonar signal processing algorithm of Figure 4.1, only one (1) FM matched filter

is used that operates at a bistatic Doppler frequency shift of 0 Hz, or equivalently a frequency of FIM.

This means that the TOA and frequency of the contact in the FM matched filter are uncorrected because

of the skewed ambiguity function of the FM signal (see Figures 1.20(a) and 1.20(b)). The definitions re-

lating to the FM matched filter are given as

rFM [k] 'uncorrected

rFM [k] 'corrected

FfM [k] uncorrected

FfM [k] corrected

FOFM [k]

uncorrected TOA of the contact in the FM matched filter;

corrected TOA of the contact in the FM matched filter, which is also the

TOA measurement rT[k] of the contact predicted from (5.16);

uncorrected frequency of the contact in the FM matched filter, which is also

the same as the operating frequency of FcFM in the FM matched filter;

corrected frequency of the contact in the FM matched filter, which is trans-

formed from F [k] obtained using the CW signal at carrier frequency Fccw to

F1[k] -FFM/Fccw obtained using the FM signal at carrier frequency FM.

and

frequency of the reverberation in the FM matched filter, which is trans-

formed from FO [k] obtained using the CW signal at carrier frequency Fccw

to FO [k] - FcFM/Fccw obtained using the FM signal at carrier frequency FcFM
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By using F = FFM [k] Icorrected, FO = FoFM [k], and Fc = FFM in (D.46), the (simplified) Q-function for

the FM processing is obtained as

QFM,(dB) [k]

10 Tg f e FM + FFM [k]Icorrected -FcF, FFM [k] - FcFM

= 10 gf_ + Fik]-Fcc ,(F[k] - Fecw) FFM/Fcw) d)

= 10 lg (fT eFM + FdoppIer.[k]FM/FcC, Fao piero[k] -FcFM /FcCW dTr

~10 Ig (f_" &FM (, Fdoppiero [k] -FcFM/FcW) d) . (5.41)

As shown in the sonar signal processing algorithm of Figure 4.1, a bank of 2P + 1 CW matched

filters is employed that operates at different bistatic Doppler frequency shifts at -P 8Fdoppler,-

-8Fdoppler, 0, +CSFdoppler, ... , +P - Fdoppier, or equivalently different frequencies at (FcCW - P .

SFdoppier), ---, (Fccw - SFdoppier ), Fccw, (Fccw + SFdoppier), -. , (Fccw + P - 8Fop pier). Here, SFaoppier

is the selected bistatic Doppler spacing, and +P - 8Fdoppier is the maximum positive/negative bistatic

Doppler frequency shift considered in the CW matched filters. With the CW signal, there is no undesira-

ble coupling effect of the estimation errors in both TOA and frequency [98,138]. The definitions relating

to the CW matched filter are given as

rCw[k] TOA of the contact in the CW matched filter, which is also the TOA measure-

ment rT[k] of the contact;

F"w[k] frequency of the contact in the CW matched filter, which is also the frequency

measurement F [k] of the contact; and

Focw [k] frequency of the reverberation in the CW matched filter, which is also the fre-

quency measurement FO[k] of the reverberation.

By using F, = Ffw[k] and FO = Focw[k] in (D.36), the (simplified) Q-function for the CW processing is

obtained as

QCW,(aB)[k]

= 10 1 g (f w ecw(r, Focw[k] - Fcw[k]) dr)

= 101g(f"W ecw(r, FO[k] - F1[k])dr)

= 10lg(fw ecw(., Fdopplero[k] - Fdoppleri [k]) dT). (5.42)
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By combining (5.41) and (5.42), the Q-function is summarized as

Sloig (fT eFM(r, Faoppiero [k] -FFM/Fccw) dr), / = FM
Qipd) [k] =w (5.43)

10 ig (jTw ecw(T, Fdopplero [k] - Fdoppleri [k]) dr) , V) = CW

From the results of Figure D. 1 (or (D.48) for the FM signal and (D.40) for the CW signal), the Q-function

in (5.43) is approximated as

QP,(dB)[k] I10 lg(1/Fjk) , p = FM
10 Ig (1 - sinc(2-(Fdopplero [k]-FdopplerkTw) , p = CW (5.44)

7rz-(FdopplerO[k]-Fdopplerj~k])2-Tw

An example of the Q-function and processing gain against reverberation is depicted in Figure 5.2 with

visible bistatic reverberation ridge and clutter notch respectively. It is clear that the performance of the

CW return signal degrades when the bistatic Doppler frequency shifts of the contact and reverberation are

near, and improves when they are far apart. Conversely, the performance of the FM return signal is con-

stant and resilient, albeit poorer performance than the CW return signal when the difference between the

bistatic Doppler frequency shifts increases. The usage of the Q-function is particularly important to rep-

resent the effects of high bistatic reverberation in the CW signal, and to quantify the effectiveness of this

signal in suppressing reverberation. Clearly, from the results in Figures 4.13(c) and 4.14(c) for the sonar

signal processing algorithm in Section 4.1.4.2, and Figure 4.26(c) for the target tracking algorithm in

Section 4.2.7.2, very poor performance has been observed for the CW return signal of the indirect blast

due to the ER, when the ER was moving alongside with the BENS array - occurring when the Harpo

OEX AUV was making a gradual turn on curved path. The SNR has reduced significantly because of the

high reverberation experienced when the underlying bistatic Doppler frequency shift approaches that ob-

served at bistatic reverberation ridge, resulting in prolonged missing frequency measurements. This can

be explained by using the expressions presented above. When the underlying bistatic Doppler frequency

shift Fdoppteri [k] approaches the bistatic Doppler frequency shift Fadoppiero [k] at the bistatic reverberation

ridge, the Q-function Qcw[k] in (5.44) approaches its maximum (or ridge) at 2 - Tw/3 (by using

L'H6pital's rule), or the processing gain against reverberation PGeerb[k] = 1/Qcw[k] approaches its

minimum (or notch) at 3/(2 -T). The very small PGCeeb [k] leads to a significantly reduced ratio

SNRcw[k] in (5.33). When SNRcw[k] falls way below the detection threshold DTcW[k] for CW pro-

cessing, missing frequency measurement occurs. This observation is evaluated again in Section 5.3.2 lat-

er.
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Figure 5.2: An example of Q-function and processing gain against reverberation with bistatic reverbera-
tion ridge and clutter notch, respectively, at Fdoppler[k] = 0 Hz. At Fdoppler,[k] = 5 Hz (low-Doppler target),
the Q-function of CW return signal is greater than that of FM return signal, which implies that processing
gain against reverberation in CW signal is smaller than that in FM signal. This means that FM signal per-

forms better against reverberation with this bistatic geometry. Similarly at Fdopple,[k] = 10 Hz (high-
Doppler target), the opposite is observed where CW return signal performs better against reverberation

with this bistatic geometry.
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5.2.4 Transmission Losses

In order to implement an environmental-acoustic model that can rapidly and easily compute the SNRs to

be used in the unified model, the TLs in (5.34) are obtained using the closed-form expression derived by

Harrison [62,63]. The closed-form expression allows for fast computation and ease of implementation.

This is as opposed to standard numerical methods, which are computationally demanding for real-time

realization for this thesis. The derivation of the expression was based on taking the incoherent eigenray

sum (or equivalently incoherent mode sum) expressed as the vertical grazing angle integral of the bounda-

ry reflection coefficient with spreading losses from 0* to the critical angle 6c of the seabed. The result is

equivalent to the well-known mode-stripping formula, where higher-order modes with steeper grazing

angle are attenuated more. The formulation was then extended to handle variable bathymetry (range-

dependent) scenario. The TLs are computed as [62,63]

TL [k] = -10 lg(PTs/r[k]), (5.45)

PTsir [k] = ar||r3 ]27e!!sir .erf As/rs1rrr[k , (5.46)PT/[k ar:r[k] rf( rsir]k])

where a is the reflection loss gradient, and the ranges rs/r[k] from the source/receiver to the contact can

be predicted using (1.6)/(1.7). Here, Herrs/r [k] is the effective water depth and AsIr [k] is the exponent

coefficient. For a tilted-plane seabed assumed in this thesis [62,63],

Heffs,,[k] = (Hs/r(tk)+ Ht[k])/2 , (5.47)

a e (Hs/r(tk)+Ht[k])

As/r~i =4 maxf Hs/r(tk),Ht[k (5.48)

with Hs(tk), Ht[k], and Hr(tk) denoting the water depths where the source, contact, and receivers are

residing. In the papers by Harrison [62,63], the reverberation was derived by incorporating the bottom-

surface scattering strength SS[k] into the vertical grazing angle integral, and assumed it to be separable in

incident and reflected vertical grazing angles, and the bistatic angle 6 b [k]. By assuming diffused rever-

beration and using the separable form of Lambert's law for the bottom-surface scattering, the combined

second to fourth terms on the right-hand-side of (5.35) become [62,63]

- TLsaB[k] - TLr [k] + BTSOP(dB) [k] = 10 lg(PRs[k] -P,[k] - (P f(6b[k])) -SA*[k]) , (5.49)

PRs/r [k] = a Hslr[k] [ 1 - e-Asr[k] rslr[k] , (5.50)a Heffsr[k] rs/r(k)
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where ji is related to the bottom-surface albedo, and f(Ob[k]) is the bistatic scattering law. Few forms of

f(6 b[k]) have been suggested in [63]. Both the expressions in (5.46) and (5.50) are depth-averaged - for

the two-dimensional bistatic geometry depicted in Figure 1.15 - by considering the propagations span-

ning across the water column.

For the target tracking algorithm in Section 4.2, SNRFMICW[k] is actually the prior SNR esti-

mates at the FM and CW matched-filtered data SR0Ro),FM/CW [kIk - 1]. The computations of the various

acoustical components described above require the knowledge of the underlying bistatic geometry -

which is easily established from the (i) current source state xS(tk), (ii) current receiver state xr(tk), and

(iii) current prior target state estimate i( [kIk - 1] from the algorithm - as well as the current average

underwater sound speed c(tk). Similarly, for the reactive behavior-based autonomy algorithm in Section

6.1, SNRFM/cw[k] is actually the predicted SNR estimates at the FM and CW matched-filtered data

SNRO),FM/cw[k + KIk, ai] at K pings ahead, where a E {a,, ..., aN} represents a set of N possible dis-

crete AUV-motion decisions (in both speed and heading at fixed depth). No depth decision is considered

here since the bistatic geometry in Figure 1.15 is two-dimensional. Likewise, the calculations of the vari-

ous acoustical components discussed above require the knowledge of the predicted bistatic geometry -

which is easily established from the (i) predicted source state s [k + K] = is(tk + K - Tp), (ii) predicted

receiver state Xr[k + Kjai]= 'r(tk + K - Ty Iai), and (iii) predicted target state estimate _i [k + Kk]

from the target tracking algorithm - as well as the predicted average underwater sound speed 2 [k + K] =

C (tk + K - Tp) at K pings ahead.

5.3 Results

In this section, the unified model is evaluated and validated using the experimental data from the GLINT

2009 Run and GLINT 2010 Run. The results obtained here are useful in ascertaining the performances

observed in the sonar signal processing and target tracking algorithms (presented earlier in Sections 4.1.4

and 4.2.7 respectively), and particularly important to verify the validity of the model before using it in the

reactive behavior-based autonomy algorithm (discussed later in Section 6.1). The evaluation and valida-

tion based on GLINT 2009 Run are provided in Section 5.3.1, while that based on GLINT 2010 Run are

furnished in Section 5.3.2.
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5.3.1 GLINT 2009 Run

The bistatic assets utilized for the GLINT 2009 Run are described in Section 4.1.4.1, with the ground

truths of this experimental run depicted in Figure 4.5. The target was cruising westward at 2 m/s for the

entire run from ping k = 1 to 213. The AUV was moving at 1 m/s on a fixed survey path, headed south

first before making a turn and headed north. When the AUV was making a turn between pings k = 132

and 151, the target appeared near the forward endfire at 0' of the receiver array.

By using the environmental-acoustic model, the ratio SRRFM,(dB) [k, pi] of the target at different

pings k is predicted as shown in Figure 5.3, where pt E {pi, .. , PN} denotes a particular Cartesian posi-

tion that the target could possibly reside. The intensity at each Cartesian position pi then represents the

predicted SNRFM,(dB) [k, pg] of the target, which is calculated based on the underlying bistatic geometry -

established from the (i) current source state xS(tk) of the DEMUS source, (ii) current receiver state

xr(tk) of the OEX AUV, and (iii) corresponding target state xt[k, pi] at Cartesian position pi but with

Cartesian velocity following that of the CRV Leonardo - as well as the current average underwater sound

speed c(tk). Each intensity plot in Figure 5.3 for a particular ping k then depicts the instantaneous pre-

dicted SRRFM,(dB)[k, p] of the target for every probable Cartesian positions pj of the target. Taking Fig-

ure 5.3(a) at ping k = 10 as an example, it is evident that high SNRs are observed near the broadsides of

the BENS array, while low SNRs are noted at the endfires of the BENS array. The excessive reverbera-

tion from forward scattering at the region between the DEMUS source and BENS array results in ex-

tremely low SNR. With the time progression from Figure 5.3(a) at ping k = 10 to Figure 5.3(i) at ping k

= 213, it is the obvious that the intensity plot changes in response to the dynamical variations in the un-

derlying bistatic geometry. At ping k = 150 in Figure 5.3(f), the OEX AUV was in the midst of making a

turn from a southbound to northbound run, resulting in the ER appearing near the forward endfire at 00.

During this time, the predicted SNR RM,'C)[k] of the ER is expected to be low.

Likewise, by extending the above evaluation of the environmental-acoustic model for FM return

signal of the indirect blast to that for CW return signal, the ratio SR Rcw,(dB) [k, p] of the target at differ-

ent pings k is predicted as shown in Figure 5.4. The intensity at each Cartesian position pt then repre-

sents the predicted S Rcw,(dB) [k, pi] of the target, which is also calculated based on the underlying bi-

static geometry, as well as the current average underwater sound speed c(tk). Each intensity plot in Fig-

ure 5.4 for a particular ping k then depicts the instantaneous predicted SR RcW,(dB) [k, p1 ] of the target for

every probable Cartesian positions pi of the target, but cruising at Cartesian velocity of the CRV Leonar-

do. Although not shown here, it can be inferred from Figure 5.5 later that the predicted SR RCW,(dB)[k, p]

of the target varies when the target, even at the same Cartesian positions pi, is cruising at different Carte-
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sian velocities. By examining Figure 5.4(a) at ping k = 10, it is evident that high SNRs are observed near

the broadsides of the BENS array, while low SNRs are noted at the endfires of the BENS array. Similarly,

extremely low SNR is seen at the forward scattering region between the DEMUS source and BENS array.

For the CW return signal, two notable regions with very low SNRs are observed at the south of the DE-

MUS source and the north of the BENS. The occurrence of these regions is because the underlying bi-

static Doppler frequency shifts at these Cartesian positions (but with Cartesian velocity following that of

the CRV Leonardo) approach that observed at the bistatic reverberation ridge. The time progression from

Figure 5.4(a) at ping k = 10 to Figure 5.4(i) at ping k = 213 also reveals the changes in the intensity plot

with the dynamical variations in the underlying bistatic geometry. At ping k = 150 in Figure 5.4(f), the

ER was appearing near the forward endfire at 00, which implies that the predicted SRRCW,(dB) [k] of the

ER is expected to be low. This is consistent with the results in Figures 4.9(c) and 4.10(c) for the sonar

signal processing algorithm in Section 4.1.4.1, and Figure 4.23(c) for the target tracking algorithm in

Section 4.2.7.1, where the reduced SNR of the indirect blast due to the ER has resulted in occasional

missing frequency measurements. Further validation in discussed in Figure 5.11 later.

From the results in Figure 5.4, the bistatic reverberation-ridge regions remain largely unchanged

with time. To examine this bistatic reverberation-ridge region in detailed, the Q-function expressed in

(5.44) or shown in Figure 5.2 are used. It is clear that the bistatic reverberation ridge occurs whenever the

Doppler difference, denoted (Fdopplero - Faoppieri), approaches zero. For a stationary source state

xS = [ x Ys 0 0 ]T (just like the DEMUS source considered here) and moving receiver xr =

[ Xr Yr ir Ir ]T (just like the OEX AUV towing the BENS array considered here), it follows from

(5.38) to (5.40), together with (5.18) and (4.53), that

(Fdopplero - Faoppierj) = F0 - F,

_ Fcw ((Xt[Pi]-Xs) xt + (Yt[Pi-Ys)$t + (Xt[Pi-Xr) t + (yt[Pi -Yr) $t

c rs[pi+ rr4ip]

= (Fdoppiero[ PiIt>$t] - Fdopplerij[P,kt,9t]) . (5.51)

with target state given by xt[Pit>#t] = [Xt [Pil t[Pi] It #t ]T. Here, p E {pi, PNI denotes a par-

ticular Cartesian position that the target could possibly reside; and different Cartesian velocities of the

target are considered to study the effects on the Doppler difference, and consequently the Q-function and

predicted SRRCW,(dB) [k, pi' *tt] of the target. Both the ranges rs[p1 ] and rr[pi] are obtained from

(4.51), and are dependent on xs, ys, xt[Pi], yt[Pi], xr, and yr. It is clear that the Doppler difference in

(5.51) is independent of the Cartesian velocity (or equivalently the speed and heading) of the receiver.
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Figure 5.3: Predicted ratio S RFM,(dB)[k,pj] of target using environmental-acoustic model at different pings

k from GLINT 2009 Run. Here, pi E {pi, ... , PN} denotes a particular Cartesian position that target could

possibly reside. Ground truths of DEMUS source, OEX AUV towing BENS array, and CRV Leonardo

towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted

SNRFM,(dB)[k,pj] of target, which is calculated based on underlying bistatic geometry - established from (i)

current source state xs(tk) of DEMUS source, (ii) current receiver state x,.(tk) of OEX AUV, and (iii)

corresponding target state xt [k, pi] at Cartesian position pi but with Cartesian velocity following that of

CRV Leonardo - as well as current average underwater sound speed c(tk). Clearly, predicted

SNRFM,(dB)[k,pi] of target varies when target is residing at different Cartesian positions pi.
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Figure 5.3: Predicted ratio SRRFM,(dB)[k,pj] of target using environmental-acoustic model at different pings
k from GLINT 2009 Run. Here, pi E {pi, ..., PN} denotes a particular Cartesian position that target could
possibly reside. Ground truths of DEMUS source, OEX AUV towing BENS array, and CRV Leonardo
towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted
SR RFM,(dB)[k,p; of target, which is calculated based on underlying bistatic geometry - established from (i)
current source state x,(tk) of DEMUS source, (ii) current receiver state X,.(tk) of OEX AUV, and (iii)
corresponding target state xt [k, pi] at Cartesian position pi but with Cartesian velocity following that of
CRV Leonardo - as well as current average underwater sound speed c(tk). Clearly, predicted
SNRFM,(dB)[k,pij of target varies when target is residing at different Cartesian positions pi.
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Figure 5.3: Predicted ratio SRNRFM,(dB)[k,pj] of target using environmental-acoustic model at different pings

k from GLINT 2009 Run. Here, pi E {pi, ., PN) denotes a particular Cartesian position that target could

possibly reside. Ground truths of DEMUS source, OEX AUV towing BENS array, and CRV Leonardo

towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted

SRFM,(dB)[k,pj] of target, which is calculated based on underlying bistatic geometry - established from (i)

current source state xS(tk) of DEMUS source, (ii) current receiver state Xr(tk) of OEX AUV, and (iii)

corresponding target state xt [k, pi] at Cartesian position pi but with Cartesian velocity following that of

CRV Leonardo - as well as current average underwater sound speed C(tk). Clearly, predicted

SRFM,(dB)[k,pj] of target varies when target is residing at different Cartesian positions pi.
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Figure 5.4: Predicted ratio S RctdB)[k,p,] of target using environmental-acoustic model at different pings
k from GLINT 2009 Run. Here, pi E {pi; ... P pN) denotes a particular Cartesian position that target could
possibly reside. Ground truths of DEMUS source, OEX AUV towing BENS array, and CRV Leonardo
towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted
SNRcw(dB)[k,pj] of target, which is calculated based on underlying bistatic geometry - established from (i)
current source state x5 (tk) of DEMUS source, (ii) current receiver state Xr(tk) of OEX AUV, and (iii)
corresponding target state xt [k, pi] at Cartesian position pi but with Cartesian velocity following that of
CRV Leonardo - as well as current average underwater sound speed C(tk). Clearly, predicted
SNRw'(dB)[k,p,] of target varies when target is residing at different Cartesian positions pi, but cruising at
Cartesian velocity of CRV Leonardo.
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Figure 5.4: Predicted ratio SNRCw(dB)[k,p,] of target using environmental-acoustic model at different pings

k from GLINT 2009 Run. Here, pi E {pi, ... P PN} denotes a particular Cartesian position that target could

possibly reside. Ground truths of DEMUS source, OEX AUV towing BENS array, and CRV Leonardo

towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted

SNRcw,(dBy[k,p,] of target, which is calculated based on underlying bistatic geometry - established from (i)

current source state xs(tk) of DEMUS source, (ii) current receiver state Xr(tk) of OEX AUV, and (iii)

corresponding target state xt[k, pi] at Cartesian position pi but with Cartesian velocity following that of

CRV Leonardo - as well as current average underwater sound speed c(tk). Clearly, predicted

SNRcw,(dB)[k,p,] of target varies when target is residing at different Cartesian positions pi, but cruising at

Cartesian velocity of CRV Leonardo.
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Figure 5.4: Predicted ratio SRRCw,(dB)[k,p,] of target using environmental-acoustic model at different pings
k from GLINT 2009 Run. Here, pg E {Pi, -... PpN denotes a particular Cartesian position that target could
possibly reside. Ground truths of DEMUS source, OEX AUV towing BENS array, and CRV Leonardo
towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted
SRRcw,(dB)[k,pj] of target, which is calculated based on underlying bistatic geometry - established from (i)
current source state x,(tk) of DEMUS source, (ii) current receiver state Xr(tk) of OEX AUV, and (iii)
corresponding target state xt [k, pg] at Cartesian position pg but with Cartesian velocity following that of
CRV Leonardo - as well as current average underwater sound speed c(tk). Clearly, predicted
SNRCW,(dB)[k,pi] of target varies when target is residing at different Cartesian positions pi, but cruising at
Cartesian velocity of CRV Leonardo.
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This implies that the Doppler difference is not going to change immediately no matter how fast or what-

ever direction the receiver adopts. Nonetheless, the Doppler difference can be slowly varied if the Carte-

sian position of the receiver is planned judiciously ahead of time. This is the approach undertaken by the

perception-driven control discussed later in Chapter 6. The Doppler difference (Fdopplero [Pi, t,It] -

Fdoppleri [pi -t, t]) in (5.51) is plotted at different Cartesian velocities tt and ft of the target as shown

in Figures 5.5 and 5.6. In this case, the Cartesian positions of the source and receiver are arbitrarily as-

signed for the purpose of discussion here. Each intensity plot then represents the Doppler differences for

every probable Cartesian positions pi of the target, but cruising at Cartesian velocities tt and p't. At the

regions with zero Doppler difference, the intensity is shaded green, and these regions correspond to the

bistatic reverberation-ridge regions mentioned earlier. From the results in Figure 5.5, it is evident that the

bistatic reverberation-ridge region is perpendicular to the heading of the target (as depicted by the direc-

tion of the white arrow). This observation is also applicable on the results in Figure 5.4, where the bistat-

ic reverberation-ridge regions at the south of the DEMUS source and the north of the OEX AUV are in-

deed perpendicular to the constantly westbound CRV Leonardo. If CRV Leonardo was to change the

course (that is heading) during the run, the bistatic reverberation-ridge regions are going to change ac-

cordingly. From the results in Figure 5.6, it is evident that the bistatic reverberation-ridge region is nar-

rower at higher speed of target (as depicted by the length of the white arrow). This means that the target

can transit through this region quickly, and the frequency measurements will only disappear for a short

time period. This will consequently lead to better bistatic sonar tracking performance. Although the use

of the CW return signal can improve the tracking performance, it is important to understand the limitation

of this signal and accept the fact that frequency information provided by this signal can be missing as

shown by the evaluation carried out here.

With the predicted ratios SRRFM,(dB) [k, p] and SRRcw,(dB) [k, p1] of the target computed using

the environmental-acoustic model as shown in Figures 5.3 and 5.4 respectively, the information-theoretic

model is used to predict the acoustical measurement uncertainties ^' [k, p;], e, [k, pi], and 6F, [k, pi] of

the target. These predicted uncertainties are plotted in Figure 5.7 at different pings k. It is clear that the

intensity plots of the predicted | 6?[k, pi]IdB and |68,[k, pt]|dB are similar in form as that observed for

SR FM,(dB) [k, pi] in Figure 5.3. Nonetheless, the predicted 16e, [k, P I|dB exhibits slight differences from

the predicted |I^2[k, Pi] dB because of its dependency on the beamwidth Y69FM[k, pi] (see the Woodward

and alternate relations in (5.26) and (5.29) respectively). This beamwidth is dependent on the current re-

ceiver state xr (tk) of the OEX AUV, and the corresponding target state xt [k, pi] at Cartesian position pt.
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Figure 5.5: Plot of Doppler difference (Fdoppler 0 [Pi, it,. t] - Fdoppler,[Pi, t,.P,) using (5.51) at different target
heading. Here, pi E {pi, ... , PN} denotes a particular Cartesian position that target could possibly reside.
Both source, designated "src", and receiver, designated "rec", are plotted in black. Direction taken by
target is plotted as white arrow. Intensity at each Cartesian position pi represent Doppler difference if
target was at that position, but with Cartesian velocities it and ft of target.
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Figure 5.6: Plot of Doppler difference (Fdoppler [p', it,,9,] - Fdoppler,[pi, .,, 9,]) using (5.51) at different target

speed. Here, pi E {pi, .. , PN} denotes a particular Cartesian position that target could possibly reside.
Both source, designated "src", and receiver, designated "rec", are plotted in black. Direction taken by
target is plotted as white arrow. Speed taken by target is indicated by length of white arrow. Intensity at

each Cartesian position pi represent Doppler difference if target was at that position, but with Cartesian

velocities it and ft of target.
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It is also evident that the intensity plots of the predicted |8?.[k, p] IdB are similar in form as that observed

for SRRcw,(dB)[k, pi] in Figure 5.4. Each intensity plot in Figure 5.7 for a particular ping k then depicts

the instantaneous predicted I -8 [k, p]| dB, |60, [k, pi] dB, and |6F, [k, pi] dB of the target for every proba-

ble Cartesian positions pi of the target, but cruising at Cartesian velocity of the CRV Leonardo.

By continuing with the information-theoretic model, the measurement covariance matrix R(') [k]

of the ER at different pings k is estimated as shown in Figure 5.8. The estimated acoustical measurement

uncertainties -' [k] and 60, [k], and the derived Cartesian position measurement uncertainties ^ [k],

dy [k], and ax-,y, [k] of the ER are illustrated by the black solid ellipses. Essentially, the computation of

R(') [k] requires the knowledge of the underlying bistatic geometry - established from the (i) current

source state xs(tk) of the DEMUS source, (ii) current receiver state Xr(tk) of the OEX AUV, and (iii)

current target state xt (tk) of the CRV Leonardo - as well as the acoustical, navigational, and environmen-

tal measurements with associated uncertainties. Random samples are applied to the acoustical measure-

ments -ri[k] and 6t[k], and then propagated to the derived Cartesian position measurements xt[k] and

yt [k]. These random samples are depicted by the red dots, and it is clear that the eventual random sam-

ples in xt[k] and yt[k] are falling within the ellipses characterized by 8x.t[k], -2 [k], and - tyt[k]. The

only exception is shown in Figure 5.8(b) at ping k = 150 where the increased 602,[k] - occurring when

the OEX AUV was in the midst of making a turn from a southbound to northbound run, resulting in the

ER appearing near the forward endfire at 0' - results in the spread of the random samples in xt[k] and

yt [k] bending slightly along the equi-TOA ambiguity ellipse. This implies that the bistatic measurement

vector z(') [k] is no longer normally (or Gaussian) distributed with large DOA measurement uncertainty.

Although this can be a potential problem when using the probabilistic data association filter (PDAF) in

the target tracking algorithm, it is not crucial in this thesis since the perception-driven control, described

in Chapter 6, strives to avert the occurrence of exceedingly high acoustic measurement uncertainties. As

a result, the Gaussianity assumption for z ()[k] in (5.4) to (5.9) continues to hold in this thesis.
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Figure 5.7: Predicted acoustical measurement uncertainties I8 2[k, pI dB, I60j2[k, pII dB, and 16F [k, pill dB

of target using information-theoretic model at different pings k. Here, pg E {pi, ..., PN} denotes a particu-
lar Cartesian position that target could possibly reside. Ground truths of DEMUS source, OEX AUV tow-
ing BENS array, and CRV Leonardo towing ER from GLINT 2009 Run are plotted in black. Intensity at
each Cartesian position pt represents predicted acoustical measurement uncertainty, which is calculated

based on (i) predicted ratio SNRFM,(dB) [k, pg] of target from Figure 5.3, (ii) predicted ratio

SRRCW,(dB) [k, pi] of target from Figure 5.4, (iii) current receiver state X, (tk) of OEX AUV, and (iv) cor-
responding target state xt [k, pt] at Cartesian position p1 but with Cartesian velocity following that of CRV
Leonardo. Clearly, acoustical measurement uncertainties of target varies when target is residing at differ-
ent Cartesian positions pi, but cruising at Cartesian velocity of CRV Leonardo.
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Figure 5.7: Predicted acoustical measurement uncertainties I8,,'[k, p,]J dB, I6j 09 k, pi]I dB, and IFj [k, p]I dB

of target using information-theoretic model at different pings k. Here, pi E {pi, ... , pN) denotes a particu-
lar Cartesian position that target could possibly reside. Ground truths of DEMUS source, OEX AUV tow-
ing BENS array, and CRV Leonardo towing ER from GLINT 2009 Run are plotted in black. Intensity at
each Cartesian position pi represents predicted acoustical measurement uncertainty, which is calculated
based on (i) predicted ratio SRRFM,(dB)[k, p1 ] of target from Figure 5.3, (ii) predicted ratio
SNRCW,(dB) [k, pi] of target from Figure 5.4, (iii) current receiver state Xr (tk) of OEX AUV, and (iv) cor-
responding target state xt [k, pg] at Cartesian position pi but with Cartesian velocity following that of CRV
Leonardo. Clearly, acoustical measurement uncertainties of target varies when target is residing at differ-
ent Cartesian positions pi, but cruising at Cartesian velocity of CRV Leonardo.
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Figure 5.7: Predicted acoustical measurement uncertainties |85, 2[k, pil dB, I692 [k, pI dB, and I8 2 [k, p,]| dB

of target using information-theoretic model at different pings k. Here, pi E {pi, ... PN denotes a particu-

lar Cartesian position that target could possibly reside. Ground truths of DEMUS source, OEX AUV tow-

ing BENS array, and CRV Leonardo towing ER from GLINT 2009 Run are plotted in black. Intensity at

each Cartesian position pi represents predicted acoustical measurement uncertainty, which is calculated

based on (i) predicted ratio SNRFM,(dB) [k, pi of target from Figure 5.3, (ii) predicted ratio

SNRCW,(dB) [k, pi] of target from Figure 5.4, (iii) current receiver state Xr.(tk) of OEX AUV, and (iv) cor-

responding target state xt [k, pi] at Cartesian position pi but with Cartesian velocity following that of CRV

Leonardo. Clearly, acoustical measurement uncertainties of target varies when target is residing at differ-

ent Cartesian positions pi, but cruising at Cartesian velocity of CRV Leonardo.
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Figure 5.8: Estimated measurement covariance matrix R(')[k] of ER using information-theoretic model at
different pings k. Ground truths of DEMUS source is plotted in green, OEX AUV towing BENS array is
plotted in red, and CRV Leonardo towing ER is plotted in gray. The black solid ellipses represent the es-
timated acoustical measurement uncertainties B [k] and 62, [k], and derived Cartesian position measure-

ment uncertainties 8 [k], 6%[k], and 6 xtyt[k] of ER. The computation of R)[k] requires the
knowledge of underlying bistatic geometry - established from (i) current source state x,(tk) of DEMUS
source, (ii) current receiver state x,.(tk) of OEX AUV, and (iii) current target state Xt(tk) of CRV Leo-
nardo - as well as acoustical, navigational, and environmental measurements with associated uncertain-
ties. The red dots illustrate the propagation of random samples in acoustical measurements Tr [k] and
6t[k] into derived Cartesian position measurements xt[k] and yt[k]. Clearly, the random samples in
xt[k] and yt[k] fall within the ellipses, except in Figure 5.8(b) where increased 58 [k] results in the
spread of random samples in xt [k] and yt [k] bending slightly along equi-TOA ambiguity ellipse.
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Figure 5.8: Estimated measurement covariance matrix R(')[k] of ER using information-theoretic model at

different pings k. Ground truths of DEMUS source is plotted in green, OEX AUV towing BENS array is

plotted in red, and CRV Leonardo towing ER is plotted in gray. The black solid ellipses represent the es-

timated acoustical measurement uncertainties ^' [k] and 0, [k], and derived Cartesian position measure-

ment uncertainties 8 2[k], 8 [k], and a'xty,[k] of ER. The computation of RN11[k] requires the

knowledge of underlying bistatic geometry - established from (i) current source state x,(tk) of DEMUS

source, (ii) current receiver state x,(tk) of OEX AUV, and (iii) current target state xt(tk) of CRV Leo-

nardo - as well as acoustical, navigational, and environmental measurements with associated uncertain-

ties. The red dots illustrate the propagation of random samples in acoustical measurements ij [k] and

6i[k] into derived Cartesian position measurements xt[k] and yt[k]. Clearly, the random samples in

xt[k] and yt[k] fall within the ellipses, except in Figure 5.8(b) where increased 80 [k] results in the

spread of random samples in xt[k] and ytj[k] bending slightly along equi-TOA ambiguity ellipse.
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Figure 5.8: Estimated measurement covariance matrix R(')[k] of ER using information-theoretic model at
different pings k. Ground truths of DEMUS source is plotted in green, OEX AUV towing BENS array is
plotted in red, and CRV Leonardo towing ER is plotted in gray. The black solid ellipses represent the es-
timated acoustical measurement uncertainties ^2 [k] and 62,[k], and derived Cartesian position measure-
ment uncertainties '2 [k], 6y [k], and 6Bxtyt[k] of ER. The computation of R(1 [k] requires the
knowledge of underlying bistatic geometry - established from (i) current source state xs(tk) of DEMUS
source, (ii) current receiver state xr(tk) of OEX AUV, and (iii) current target state xt(tk) of CRV Leo-
nardo - as well as acoustical, navigational, and environmental measurements with associated uncertain-
ties. The red dots illustrate the propagation of random samples in acoustical measurements ri[k] and
Bi[k] into derived Cartesian position measurements xt[k] and yt[k]. Clearly, the random samples in
xt[k] and yt[k] fall within the ellipses, except in Figure 5.8(b) where increased d [k] results in the
spread of random samples in xt [k] and yt [k] bending slightly along equi-TOA ambiguity ellipse.
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5.3.2 GLINT 2010 Run

The bistatic assets utilized for the GLINT 2010 Run are described in Section 4.1.4.2, with the ground

truths of this experimental run depicted in Figure 4.12. The AUV was moving at 1.2 m/s on a fixed sur-

vey path for the entire run from ping k = 1 to 235, headed west first before making a gradual turn on

curved path and headed east. The target was cruising northward at variable speed, trying to keep the tar-

get away from the forward and aft endfires of the receiver array. At the middle of the run, the AUV was

making a gradual turn on curved path and moving alongside with the target.

By using the environmental-acoustic model, the ratio SR RFM,(dB) [k, pt] of the target at different

pings k is predicted as shown in Figure 5.9, where pi E {pi, ., PN} denotes a particular Cartesian posi-

tion that the target could possibly reside. The intensity at each Cartesian position pi then represents the

predicted SNR FM,(dB) [k, pi] of the target, which is calculated based on the underlying bistatic geometry -

established from the (i) current source state x, (tk) of the DEMUS source, (ii) current receiver state

Xr(tk) of the Harpo OEX AUV, and (iii) corresponding target state xt[k, pt] at Cartesian position pi but

with Cartesian velocity following that of the CRV Leonardo - as well as the current average underwater

sound speed c(tk). Each intensity plot in Figure 5.9 for a particular ping k then depicts the instantaneous

predicted S&R FM,(dB) [k, Pt] of the target for every probable Cartesian positions pi of the target. Taking

Figure 5.9(a) at ping k = 9 as an example, it is evident that high SNRs are observed near the broadsides of

the BENS array, while low SNRs are noted at the endfires of the BENS array. Similarly, extremely low

SNR is seen at the forward scattering region between the DEMUS source and BENS array. With the time

progression from Figure 5.9(a) at ping k = 9 to Figure 5.9(i) at ping k = 234, it is the obvious that the in-

tensity plot changes in response to the dynamical variations in the underlying bistatic geometry. It is also

evident that the ER has always been away from the endfires of the BENS array.

Likewise, by extending the above evaluation of the environmental-acoustic model for FM return

signal of the indirect blast to that for CW return signal, the ratio SRRcw,(dB) [k, pt] of the target at differ-

ent pings k is predicted as shown in Figure 5.10. The intensity at each Cartesian position pi then repre-

sents the predicted SRRCW,(dB) [k, pt] of the target, which is also calculated based on the underlying bi-

static geometry, as well as the current average underwater sound speed c(tk). Each intensity plot in Fig-

ure 5.10 for a particular ping k then depicts the instantaneous predicted SF Rcw,(dB) [k, pi] of the target for

every probable Cartesian positions pi of the target, but cruising at Cartesian velocity of the CRV Leonar-

do. By examining Figure 5.10(a) at ping k = 9, it is evident that high SNRs are observed near the broad-

sides of the BENS array, while low SNRs are noted at the endfires of the BENS array. Similarly,
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Figure 5.9: Predicted ratio SNRFM,(dB)[k,pj] of target using environmental-acoustic model at different pings
k from GLINT 2010 Run. Here, pg E {pi, ..., PN) denotes a particular Cartesian position that target could
possibly reside. Ground truths of DEMUS source, Harpo OEX AUV towing BENS array, and CRV Leo-
nardo towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted
SNRFM,(dB)[,p;] of target, which is calculated based on underlying bistatic geometry - established from (i)
current source state x, (tk) of DEMUS source, (ii) current receiver state xr (tk) of Harpo OEX AUV, and
(iii) corresponding target state xt[kIpg] at Cartesian position pi but with Cartesian velocity following that
of CRV Leonardo - as well as current average underwater sound speed C(tk). Clearly, predicted
SRRFM,(dB)[k,pj] of target varies when target is residing at different Cartesian positions pt.
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Figure 5.9: Predicted ratio S"RFM,(dB)[k,pj] of target using environmental-acoustic model at different pings
k from GLINT 2010 Run. Here, pi E {pi, ... , PN} denotes a particular Cartesian position that target could

possibly reside. Ground truths of DEMUS source, Harpo OEX AUV towing BENS array, and CRV Leo-

nardo towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted

SN RFM,(dB)[k,pj] of target, which is calculated based on underlying bistatic geometry - established from (i)

current source state x, (tk) of DEMUS source, (ii) current receiver state xr (tk) of Harpo OEX AUV, and
(iii) corresponding target state xt[klpi] at Cartesian position pi but with Cartesian velocity following that

of CRV Leonardo - as well as current average underwater sound speed c(tk). Clearly, predicted

S&RFM,(dB)[k,p] of target varies when target is residing at different Cartesian positions pi.
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Figure 5.9: Predicted ratio SNRFM(dB)[k,pi of target using environmental-acoustic model at different pings
k from GLINT 2010 Run. Here, pi E {pi, ..., PN} denotes a particular Cartesian position that target could
possibly reside. Ground truths of DEMUS source, Harpo OEX AUV towing BENS array, and CRV Leo-
nardo towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted
SNRFM,(dB)[,pj] of target, which is calculated based on underlying bistatic geometry - established from (i)
current source state x (tk) of DEMUS source, (ii) current receiver state x, (tk) of Harpo OEX AUV, and
(iii) corresponding target state xt [k I p] at Cartesian position pt but with Cartesian velocity following that
of CRV Leonardo - as well as current average underwater sound speed c(tk). Clearly, predicted
SRRFM,(dB)[k,pj] of target varies when target is residing at different Cartesian positions pi.
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Figure 5.10: Predicted ratio SR RCW,(dB)[k, p] of target using environmental-acoustic model at different
pings k from GLINT 2010 Run. Here, pi E {pi, *, PN} denotes a particular Cartesian position that target
could possibly reside. Ground truths of DEMUS source, Harpo OEX AUV towing BENS array, and CRV
Leonardo towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted
SRRcw,(dB)[k,pj] of target, which is calculated based on underlying bistatic geometry - established from (i)
current source state xs(tk) of DEMUS source, (ii) current receiver state Xr (tk) of Harpo OEX AUV, and
(iii) corresponding target state xt[kipi] at Cartesian position pi but with Cartesian velocity following that
of CRV Leonardo - as well as current average underwater sound speed c(tk). Clearly, predicted
SNRcw,(dB)[k, p] of target varies when target is residing at different Cartesian positions pi, but cruising at
Cartesian velocity of CRV Leonardo.
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Figure 5.10: Predicted ratio SNRRw(dB)[k, pj] of target using environmental-acoustic model at different
pings k from GLINT 2010 Run. Here, pi E {Pi, ... , PNJ denotes a particular Cartesian position that target
could possibly reside. Ground truths of DEMUS source, Harpo OEX AUV towing BENS array, and CRV
Leonardo towing ER are plotted in black. Intensity at each Cartesian position pi represents predicted
SIRcW,(dB)[k,p,] of target, which is calculated based on underlying bistatic geometry - established from (i)
current source state x, (tk) of DEMUS source, (ii) current receiver state xr (tk) of Harpo OEX AUV, and
(iii) corresponding target state xt [k Jpg] at Cartesian position pi but with Cartesian velocity following that
of CRV Leonardo - as well as current average underwater sound speed C(tk). Clearly, predicted
SRRcW,(dB)[k,pi] of target varies when target is residing at different Cartesian positions pi, but cruising at
Cartesian velocity of CRV Leonardo.
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Figure 5.10: Predicted ratio SNRC,(dB)[k, pj] of target using environmental-acoustic model at different
pings k from GLINT 2010 Run. Here, pi E {Pi, ... , pN} denotes a particular Cartesian position that target
could possibly reside. Ground truths of DEMUS source, Harpo OEX AUV towing BENS array, and CRV
Leonardo towing ER are plotted in black. Intensity at each Cartesian position pt represents predicted

SNRcw,(B)[k,p,] of target, which is calculated based on underlying bistatic geometry - established from (i)
current source state xs(tk) of DEMUS source, (ii) current receiver state Xr(tk) of Harpo OEX AUV, and
(iii) corresponding target state xt [kIpi] at Cartesian position pi but with Cartesian velocity following that
of CRV Leonardo - as well as current average underwater sound speed c(tk). Clearly, predicted
SNRCW,(dB)[,p,] of target varies when target is residing at different Cartesian positions pi, but cruising at
Cartesian velocity of CRV Leonardo.
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extremely low SNR is seen at the forward scattering region between the DEMUS source and BENS array.

Two bistatic reverberation-ridge zones exist at the west of the DEMUS source and the east of the BENS

array. These two zones are clearly perpendicular to the constantly northbound CRV Leonardo. The time

progression from Figure 5.10(a) at ping k = 9 to Figure 5.10(i) at ping k = 234 also reveals the changes in

the intensity plot with the dynamical variations in the underlying bistatic geometry. At ping k = 156 in

Figure 5.10(f), the ER was moving alongside with the BENS array and residing in one of the bistatic re-

verberation-ridge zones, which implies that the predicted SR CW,(dB)[k] of the ER is expected to be very

low. This is consistent with the results in Figures 4.13(c) and 4.14(c) for the sonar signal processing al-

gorithm in Section 4.1.4.2, and Figure 4.26(c) for the target tracking algorithm in Section 4.2.7.2, where

the significantly reduced SNR of the indirect blast due to the ER has resulted in prolonged missing fre-

quency measurements. Further validation in discussed in Figure 5.11 next.

Finally, the environmental-acoustic model is validated with the experimental data.to ensure its

quality. In this validation, the experimental runs from the GLINT 2009 Run, GLINT 2009 Run with re-

duced target strength (TS), and GLINT 2010 Run are used. For the reduced TS run, it is another experi-

mental run that resembles that of the GLINT 2009 Run, but with the TS reduced from 15 to 5 dB re 1 m.

As shown in Figure 5.11, the predicted SNRs of the indirect blast due to the ER (SRRFM/CW,(dB)[k]) us-

ing the model are compared with the measured SNRs of the indirect blast due to the ER

(SNRFM/cw,(dB) [k] 10) from the data. From a gross perspective, the SNRs measured from the data are

indeed following the SNRs predicted using the model.

By examining the SNRs relating to the CW return signal in Figures 5.11(b) and 5.11(d), it is clear

that the SNRs of the indirect blast due to the ER have reduced between pings k = 132 and 151, and be-

tween pings k = 642 and 662 respectively. This is because the OEX AUV was making a turn from a

southbound to northbound run during these time periods, resulting in the ER appearing near the forward

endfire at 00. Clearly, occasional missing CW information are seen in Figure 5.11(b), while completely

missing CW information are noted in Figure 5.11(d). This observation clearly explains the results in Fig-

ures 4.9(c) and 4.10(c) for the sonar signal processing algorithm, and Figure 4.23(c) for the target track-

ing algorithm for the GLINT 2009 Run. In general, the CW return signal works fine except when the tar-

get is at the endfire of the receiver array. This effect is less pronounced for the FM return signal in Fig-

0 Recall these are by-products for evaluation purpose as mentioned in Section 4.1.
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ures 5.11(a) and 5.11(c). This could probably be due to a narrower endfire beamwidth at higher carrier

frequency for the FM signal as shown in Figure 1.17 compared with that for the CW signal (see Table 1.1

also).

By examining the SNRs relating to the CW return signal in Figure 5.11(f), it is obvious that the

SNRs of the indirect blast due to the ER have reduced significantly in the vicinity of pings k = 140 to

171. This is because the Harpo OEX AUV was making a gradual turn on curved path from a westbound

to eastbound run, resulting in the ER moving alongside with the BENS array and entering the bistatic re-

verberation-ridge zone during this time period. Clearly, prolonged missing CW information are noted in

Figure 5.11(f). This observation clearly explains the results in Figures 4.13(c) and 4.14(c) for the sonar

signal processing algorithm, and Figure 4.26(c) for the target tracking algorithm for the GLINT 2010

Run. Evidently, the CW return signal works poorly here even when the target is at the broadside of the

receiver array. This is an important consideration when devising the control strategy of the perception-

driven control discussed next in Chapter 6.
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Figure 5.11: Validation of environmental-acoustic model with experimental data from (a)-(b) GLINT
2009 Run, (c)-(d) GLINT 2009 Run with reduced TS, and (e)-(f) GLINT 2010 Run. Predicted SNRs of
indirect blast due to ER (SN RFM/CW,(dB) [k]) using model plotted in green, and measured SNRs of indirect
blast due to ER (SNRFMICW,(dB) [k]) from data plotted in blue. Detector threshold DTFM/CW,(dB) [k] for
FM/CW processing plotted in gray.
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Chapter 6

Perception-Driven Control

With the architecture of the integrated system designed in Figure 3.1, the solution involves the develop-

ment of novel methods for the AUVs to optimize the bistatic sonar tracking performance. The fourth and

final objective of this thesis is to devise a control strategy that moves the AUV to a desired receiver state

that optimizes the tracking performance. This is accomplished by using the perception-driven control to

allow the AUV to make unsupervised decisions in adjusting the survey path adaptively by controlling the

vehicular motion, based on the track report provided by the automatedperception as described in Chapter

4. The adaptive control is implemented using the reactive behavior-based autonomy algorithm with pre-

dictive information and environmental rewards described here in Section 6.1.

6.1 Reactive Behavior-Based Autonomy with Predictive
Information and Environmental Rewards

The reactive behavior-based autonomy algorithm operates by transiting through different behavioral

modes in the fully autonomous surveillance mission, with multiple behaviors competing for the speed,

heading, and depth decisions in each mode to control the A UV motion depicted in Figure 3.1. It is capable

of commanding the AUV from fixed survey path in search mode to adaptive survey path in prosecute

mode upon tracking the target. The sequencing of the behavioral modes and the coordination of multiple

behaviors are discussed in Sections 6.1.1 and 6.1.2 respectively. The implementation methodology of the

reactive behavior-based autonomy algorithm is adapted from Benjamin et al. [20-22]. A specific bistatic

autonomous behavior in prosecute mode is then developed in Section 6.1.3 that executes, in real-time, a

new non-myopic and adaptive control for the vehicle. The synthetic data are used to exemplify the algo-

rithm in Section 6.1.4, and subsequently demonstrate the workings of the entire integrated system.
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6.1.1 Behavioral Modes

The sequencing of the behavioral modes is best described by the finite state acceptor (FSA) diagram [5]

depicted in Figure 6.1. As shown in the FSA diagram, the AUV, at any one point in time, is operating in a

particular behavioral mode, namely deploy, search, interrogate, prosecute, return, or recover. The reac-

tive behavior-based autonomy algorithm then operates by transiting through these behavioral modes in

the fully autonomous surveillance mission. Each of these modes then represents the high-level goal,

which comprises a set of multiple autonomous behaviors. These behaviors can be active concurrently and

competing for influence on the speed, heading, and depth decisions to control the vehicular motion. The

FSA diagram clearly specifies the relationships between these behavioral modes, and the complex behav-

ioral control sequence where the entire set of behaviors is swapped in and out of execution upon the ac-

complishment of each mode. The deploy mode is the start mode that operates as a precursor to the mis-

sion by commanding the AUV to move from the launch point to the fixed survey path. The recover mode

is the terminal mode that operates as a follower to the mission by instructing the vehicle to move back to

the recovery point.

By referring to the illustration provided in Figure 1.16(b) of Section 1.2.4, the AUV commences

the mission in search mode by using the search behavior to move the vehicle in fixed survey path to

sense for the entry of the rogue target - in the presence of interferers and clutter. The track report from

the automated perception is continuously furnished, at the end of each ping, to the reactive behavior-

based autonomy algorithm for deliberation. Upon receiving top two highest-ranked confirmed tracks in

the active track priority from the track report - of which one of them should be the threat and the other

should be the ghost - the vehicle transits to interrogate mode, and then uses the interrogate behavior to

resolve the left-right ambiguity in the receiver array. From the target tracking results in Figures 4.21 and

4.25, it was observed that a simple maneuver in the AUV is enough to terminate the track formed for the

ghost of the ER. The interrogate behavior then implements a simple AUV wiggle maneuver to reduce the

two confirmed tracks to one interrogated track before entering prosecute mode. If no track has been

formed for the ghost and only one confirmed track has been logged in the track report during search mode

in the first place, the vehicle simply transits to prosecute mode directly. Once in prosecute mode, the

prosecute behavior is used to adjust the survey path of the AUV adaptively in real-time to track and trail

the target, using the track report from the automated perception. A specific bistatic autonomous behavior

in prosecute mode is developed in Section 6.1.3 that executes a new non-myopic and adaptive control for

the vehicle. When the threat exits the surveillance region, the prosecuted track is terminated and the in-

formation is then handed off to other platforms. Thereafter, the AUV transits to return mode, and
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Figure 6.1: Finite state acceptor diagram depicting sequence of behavioral modes for each AUV. In each
mode, a set of behaviors are competing for influence on speed, heading, and depth decisions to control

vehicular motion.

executes the return behavior to bring the vehicle back to fixed survey path. If confirmed tracks are

picked up in return mode, the vehicle reverts to either interrogate or prosecute mode. Upon achieving

returning status, the AUV is back in search mode. The behavioral control sequence then repeats itself to

provide a fully autonomous and persistent bistatic ASW surveillance solution for the AUV.

Besides the key behaviors mentioned above, other peripheral behaviors are active concurrently

and competing for influence on the speed, heading, and depth decisions to control the vehicular motion.

The source stand-off behavior is used to keep the AUV at safe distance away from the source, so that the

towed receiver array will not run into risk of being caught with the moored source; and the received ener-

gy of the direct blast will not be overwhelming, and thereby clipping the hydrophone data. The target

stand-off behavior is similarly used to keep the AUV at safe distance away from the target. Both the di-

rect-blast and next-pulse masking region stand-off behaviors are unique to the active bistatic sonar prob-

lem considered here. It follows from Figure 6.2 that if the target is allowed to be in these masking re-

gions, it becomes difficult for the automated perception to track the target effectively [38]. Therefore,

these two behaviors are implemented by maneuvering the AUV to keep the target away from these two

regions (or to keep the target in the feasible region). Other operational-related behaviors such as those

listed in [22] can be simultaneously implemented.
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Figure 6.2: Illustration of direct-blast and next-pulse masking regions involving active source (S) and pas-
sive receiver (R). [Spectrogram plot obtained from single hydrophone data collected in GLINT 2008 Run]

6.1.2 Behavioral Coordination

From the FSA diagram in Figure 6.1, it is clear that multiple behaviors can be active concurrently in each

behavioral mode, and competing for the speed, heading, and depth decisions to control the A UV motion

shown in Figure 3.1. In this thesis, the reactive behavior-based architecture [5,6,20-22,29] is adopted,

where the complicated autonomy in each mode is implemented with multiple simple, independent behav-

iors running in parallel. Each behavior is then reacting to the information gleaned from their respective

input. Several cited advantages of such architecture include [5,21]: (i) the ease of developing each simple

behavior independently, and incrementally toward a complicated autonomy; (ii) the ability to build up

complicated autonomy with each behavior using simple representation of the localized model, instead of a

single but complex representation of the world model; and (iii) the potential for designing behaviors with

each reacting to different respective information input. With such architecture adopted in this thesis, the

problem is then simplified to developing the bistatic autonomous behavior in prosecute mode, without the

need to worry about other tasks performed by other concurrent behaviors (especially those not relating to

perceptive operation). The details of the bistatic autonomous behavior are provided in Section 6.1.3.

Since each behavior is going to compute the speed, heading, and depth decisions to control the

vehicular motion, the problem then arises about how to coordinate or reconcile the decision outputs from

multiple behaviors, especially when they conflict. The subsumption architecture by Brooks [29] attempt-

ed the coordination scheme by priority-based arbitration, where the decision output of the behavior with

highest priority is picked. However, such scheme lacks the ability to make compromise between decision

outputs from different behaviors. The motor schemas by Arkin [5,6] attempted the coordination scheme
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by vector summation, where the decision outputs from multiple behaviors are added. However, in some

situations, the averaged decisions, although deemed as a reasonable compromise, might not be appropri-

ate given the tactical situation. It is then argued from [20-22] that the multi-objective optimization is a

more suitable coordination scheme. As a result, the implementation of the reactive behavior-based archi-

tecture involves in the optimization of multiple objective functions from these behaviors defined over a

decision space of the design speed Vr, heading er, and depth zr at a specified control time interval. In

order to alleviate the high computational demands associated with such optimization, the interval pro-

gramming (IvP) method, developed by Benjamin [20], is used. With this method, the objective function

for each behavior is piecewise linearly defined at discretized design speed vr,, heading rq, and depth

zrt, where p E {1, ... , P}, q E {1, ..., Q}, and t E {1, ..., T} specify the particular design variables. Alt-

hough the objective function is broken into pieces and is represented less precisely, the A UV motion simp-

ly does not need such fine vehicular control precision. In fact, this was the motivation for the work pur-

sued by Benjamin [20]. Nonetheless, a sufficiently accurate representation of the objective function can

still be achieved if enough pieces - that is large P, Q, and T - are used. The optimization problem then

exploits the construct of these objective functions to find a rapid solution in terms of the speed, heading,

and depth decisions for the vehicular motion. For this thesis, the multi-objective optimization via the IvP

method is thus adapted in this thesis for the behavioral coordination of multiple behaviors in each mode.

The implementation is illustrated in Figure 6.3. Mathematically, the optimization problem, with N behav-

iors in each behavioral mode, is given by

[Pr r]T = arg opt[, (p, zr ]T Y=1wi - norm( fi ([ vr Or Zr]T)),

s.t. [ Vr 'r Zr ]T E [ Vr, Orq zrt ]T, where p E {1, ..., P}, q E f1, ..., Q}, and t E {., T},

[ VrP erq Zrt ]T abiding to vehicular dynamical restrictions and operational constraints. (6.1)

Here, (i) Dr, 'r, and Zr are the optimized speed, heading, and depth (or the selected speed, heading, and

depth decisions); (ii) fg() is the piecewise-linear objective function from the ith behavior; (iii) wi is the

weight assigned to the corresponding objective function or behavior to reflect its relative importance, and

is defined in interval (0,1); (iv) "arg opt" stands for the argument of the optimized (which can be either

the argument of the maximum denoted by "arg max", or argument of the minimum denoted by "arg min",

depending on the type of the objective function); (v) norm( - ) is the normalization function performed on

the objective function to ensure that their respective weight wi can be defined in interval (0,1); and (vi)

the discretized decision space of vrp , #rq, and zrt is subjected to the vehicular dynamical restrictions and
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Figure 6.3: Behavioral coordination of multiple behaviors in each behavioral mode using multi-objective
optimization via IvP method.

operational constraints. The weighted sum in (6.1) highlights the relative preference structure for these

behaviors and objective functions. It follows from [107] that for any set of positive weights, the solution

of (6.1) is always a Pareto-optimal solution. The weighted-sum approach in (6.1) can then be interpreted

geometrically as a line - defined by the selected weights - that intersects the Pareto-frontier. Depending

on the design of the behavior, different information input can be used.

6.1.3 Bistatic Autonomous Behavior

With the reactive behavior-based architecture adopted in this thesis, the problem is greatly simplified to

just the development of the bistatic autonomous behavior in prosecute mode. The formulation of this be-

havior is carried out independently of other behaviors, and the eventual usage is able to contribute toward

building up a complicated reactive behavior-based autonomy algorithm. The behavior utilizes the unified

model, described in Chapter 5, for local perceptive usage. It produces a piecewise-linear objective func-

tion fbistatic([Vrp #rq]T) at discretized design speed VrP and heading erq, where p E {1,...,P} and

q E {1, ... , Q}, which is used together with the objective functions from other behaviors for optimization

at a specified control time interval. No depth decision is considered for this behavior since the bistatic

geometry in Figure 1.15 is two-dimensional. From the discussion in Section 1.2.2, better ASW surveil-

lance performance is expected when the AUV, towing the receiver array, is placed at larger depth. Anoth-
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er concurrent behavior is then assumed active and responsible for commanding the AUV to operate at this

depth. Specifically, the calculation of the piecewise-linear objective function for the bistatic autonomous

behavior is described here. The selection process of the objective function is first presented in Section

6.1.3.1, followed by the discussion and simplifying approximation of the non-myopic control given in

Section 6.1.3.2. A recursive means of computing the objective function is then formulated in Section

6.1.3.3, together with an example showing the objective function and its usage in the optimization prob-

lem of (6.1). In this thesis, the objective function is formulated to exploit the predictive information and

environmental rewards, which employ the unified model. Section 6.1.3.4 is furnished to illustrate this

exploitation.

6.1.3.1 Selection of Objective Function

From Section 4.2.5, the Cramdr-Rao lower bound (CRLB) matrix is used as the performance metric to

evaluate the bistatic sonar tracking performance of each active track in the target tracking algorithm. The

matrix represents the lower limit of the posterior state covariance matrix obtained for the corresponding

active track, and it can be used to evaluate the lower limit of the spread in the posterior probability distri-

bution of the underlying target state estimate. A CRLB matrix with large elemental values implies a high

estimation uncertainty with a large spread in the posterior distribution, and consequently indicates poor

tracking performance. A CRLB matrix with small elemental values implies otherwise. It is clear that the

bistatic measurements feeding into the target tracking algorithm at different receiver states produce dif-

ferent amounts of estimation uncertainty. Some receiver states yield better tracking performance, while

some produce poorer results. The goal of the bistatic autonomous behavior is to control the AUV by ef-

fecting the selected speed and heading decisions to tow the receiver to a receiver state that results in the

highest tracking performance about the target. In order to maximize the tracking performance, the adap-

tive control problem - in terms of the definition given in (6.1) - can then be posed as one that minimizes

the CRLB matrix defined over a decision space of the design speed vr and heading #Pr, where p E

{1, ... ,P} and q E {1, ... , Q}. An important feature of the CRLB matrix in this thesis, as expressed in

(4.84), is that the matrix can be computed at a particular ping even before any bistatic measurements are

available. This feature is very useful for the non-myopic control discussed in Section 6.1.3.2 shortly.

Since minimizing a matrix is difficult, a scalar performance metric, called the CRLB root-mean-square

estimation error (RMSE), is used instead by simply taking the square-root trace of the CRLB matrix as

shown in (4.87). Given that the trace operator is used, the optimization problem becomes one that in-

vokes the A-optimality criterion [135], which is geometrically interpreted as measuring the axes of the
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posterior distribution spread. Other criteria such as the D- and E-optimality criteria leads to the use of the

determinant and maximum eigenvalue of the Fisher information matrix (FIM), which then give rise to

different definitions for the scalar performance metric. For example, the use of the determinant in the D-

optimality criterion is geometrically interpreted as measuring the volume of the compactness in the poste-

rior distribution. To be consistent with the scalar performance metric described in Section 4.2.5, the

CRLB RMSE is employed as the objective function. Although it can be argued that the posterior RMSE

given in (4.73) provides the actual measure of the estimation uncertainty and appears to be a better choice

for the objective function, the general problem with this RMSE is that the corresponding posterior state

covariance matrix, as expressed in (4.62), requires the bistatic measurements to be available before it can

be computed. This greatly limits the ability to implement the non-myopic control, discussed next in Sec-

tion 6.1.3.2. From the target tracking results in Figures 4.24 and 4.27, it is evident that the CRLB RMSE

is indeed achieving the lower bound for and following the same trend as the posterior RMSE. Therefore,

it is safe to assume that the formulation of the bistatic autonomous behavior using the CRLB RMSE as

the objective function is equivalent to one using the posterior RMSE. The formulation here is similar to

the information-theoretic control discussed extensively in [58,59,95,107,110,114,115] for autonomous

vehicles. However, the key difference here is that the adaptive control has been previously discussed in

the context of passive and active monostatic applications. The thesis here extends the information-

theoretic control to a very new application of active bistatic sonar.

6.1.3.2 Non-Myopic Control

It is evident from the data flow diagram (DFD) in Figure 4.19, the discussion in Section 5.1.2, and the

derivations in Appendix A that the computation of the CRLB matrix requires the knowledge of the under-

lying bistatic geometry, as well as the environmental measurement, and a host of other dependencies dis-

cussed previously in Section 5.1.2. Clearly, the speed and heading decisions, computed by the reactive

behavior-based autonomy algorithm at the end of ping k, are going to affect the vehicular motion only

earliest by the next ping. If the decisions are indeed used at next ping, then the objective function com-

puted for the bistatic autonomous behavior, via the CRLB RMSE, at ping k should utilize the predicted

bistatic geometry, as well as the predicted environmental measurement, and a host of other predicted de-

pendencies at ping (k + 1) instead. Such control strategy is myopic or greedy in nature, where the in-

formation input to the bistatic autonomous behavior is based on the single-step prediction of the different

future bistatic geometries, environmental measurement, and aforementioned dependencies, conditioned

on the varying design speeds vr, and headings #rq. Here, p E f{, ...,P} and q E {1, ... , Q}. On the other
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hand, non-myopic or predictive control computes the optimal time-sequence of speed and heading deci-

sions, where the information input to the behavior is based on the multi-step prediction of the different

future bistatic geometries, environmental measurement, and aforementioned dependencies. As cited by

Page [107], the use of the non-myopic control has demonstrated increased tracking performance because

it has the potential to allow the long-term ramification effects in myopic control to be accounted. Since

the objective function is implemented by the CRLB RMSE, it is then clear that the predicted CRLB ma-

trices, and consequently the predicted CRLB RMSEs, at ping (k + 1) and thereafter can be easily com-

puted using (4.84) before the future bistatic measurements are known. An example illustrating a non-

myopic decision tree, with two prediction steps at ping (k + 1) to (k + 2), and four possible discrete

AUV-motion decisions a,,, a1 ,2 , a 2,1 and a 2 ,2 , is provided in Figure 6.4. Here, the possible decision

ap,q corresponds to the design speed vrP and heading #rq. Each node in the tree implies the need for the

recursive computation of the predicted CRLB RMSE. Figure 6.4(a) depicts the complete decision tree

k k+1 k+2 k k+1 k+2

aL, -- W -_ a1
81-

a,,a,

au

82 a,

8,,a 2 I a2 8

a,., a2.2

(a) Complete decision tree (b) Simplified decision tree

Figure 6.4: Example illustrating non-myopic decision tree with two prediction steps at ping (k + 1) to
(k + 1), and four possible discrete AUV-motion decisions ai,1, ai,2, a2 ,1, and a2,2. Here, the possible deci-

sion a a,q corresponds to design speed vr and heading r, where p E {1, ... , P} and q E {1, ... , Q}.
Each node in the tree involves recursive computation of predicted CRLB RMSE. The complete decision
tree in (a) explores every conceivable time-sequences of AU V-motion decisions, and is computationally

expensive. The simplified decision tree in (b) is able to retain non-myopic control property at significant-
ly reduced computation cost, and preserving straightness of receiver array.
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that explores every conceivable time-sequences of AUV-motion decisions. For a decision tree with

K 1 prediction steps, the number of possible time-sequences or end nodes is K x P x Q. As described

in Section 6.1.3.4 later, each recursive computation of the predicted CRLB RMSE requires the calculation

of the predicted information and environment rewards, which can be non-trivial for a complete tree with

large K, P, and Q (that is large-step prediction with numerous possible discrete AUV-motion decisions).

Most often, such tree requires the use of dynamic programming (DP) to find the optimized time-sequence

of AUV-motion decisions with the smallest terminal CRLB RMSE at the end node. However, the com-

plete tree is really an overkill and excessive for the problem here. This is because one of the cardinal re-

quirements of the AUV, when towing the receiver array, is to keep the array as straight as possible. With

the complete tree given in Figure 6.4(a), it is possible that the AUV can be subjected to excessive maneu-

vers, resulted from varying speed and heading decisions. This can potentially perturb the straightness of

the array. As a result, a simplified decision tree, such as that in Figure 6.4(b), is adopted in this thesis as a

simplifying approximation. The use of the simplified tree is attractive here since it is able to retain the

non-myopic control property at significantly reduced computation cost, and preserving the straightness of

the receiver array. With the simplified tree, a larger K can be explorered without resulting in intractable

computation.

6.1.3.3 Recursive Computation of Objective Function

By adopting the simplified decision tree shown in Figure 6.4(b), the objective function

fbistatic([vrp Prq]T) for the bistatic autonomous behavior is formally obtained via the predicted CRLB

RMSEs as follows. The parameter K > 1 also denotes the forward-time horizon at which the non-myopic

control looks ahead, and represents the control time interval for the behavior. The future bistatic geome-

tries, environmental measurements, and aforementioned dependencies are predicted at K discrete plan-

ning steps from ping (k + 1) to (k + K). These aforementioned dependencies have been discussed pre-

viously in Section 5.1.2. Since the sources considered in Section 1.2.1.1 are cooperative assets, the pre-

dicted source state is[k + K] = is(tk + K - Tp), where K E {1, ... , K), is readily available. With a known

receiver state xr[k] = xr(tk), the predicted receiver states ir[k + K VrP, Prq] = Nr(t + K TpI Vrp, )rq,

where K E {1, ..., K), at different design speeds vr and headings #re, where p E {1, ... , P) and q E

{ 1, ..., Q}, are obtained as
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xr[k + KIVr,#r,]1

r rr [k + xKIVr,#r]
rr [ k+ KIVr,#rq]

Yr [k + K IvrP,#rg] .
xr[k] + Tpvr[k]cos4r[k] + (K-1)-Tpvr cosor'

yr[k] + Tyvr[k] sin4r[k] + (K -1) -Tpvrp sinr .q (6.2)
Vrp COS #rq

vr sin q,.

Here, vr[k] and #r[k] are the current speed and heading (at ping k). The same design speed vr and

heading #r q are applied to the receiver at ping (k + 1) to (k + K), which is consistent with the simplified

decision tree depicted in Figure 6.4(b). Evidently, from (6.2), the changes in vr and ePr affect the Carte-

sian velocity of the receiver at the next ping and thereafter (1 K K). However, the effect on the Car-

tesian position of the receiver is noted only at two pings ahead and thereafter (2 5 K K). From the re-

sults in Figure 5.5, it is clear that the bistatic reverberation-ridge region experienced by the CW return

signal of the indirect blast is independent of the Cartesian velocity (or equivalently the speed and heading)

of the receiver. The reverberation-ridge region is not going to change immediately by merely varying the

Cartesian velocity of the receiver. To effect the change, the Cartesian position of the receiver needs to be

planned judiciously ahead of time. Therefore, a bistatic autonomous behavior with small discrete plan-

ning step K lacks the ability to effect this change. A sufficiently large K is needed for this purpose to

keep the target away from this reverberation-ridge region. At the end of ping k, both the sonar signal

processing and target tracking algorithms (described in Sections 4.1 and 4.2 respectively) have been ap-

plied. The posterior state estimate i' [klk], given in (4.61) at a particular choice ofj E {1, ... , 6}, of the

target can then be obtained from the corresponding confirmed track solution in the track report, together

with the associated posterior state covariance matrix PU)[klk], given in (4.62), and CRLB matrix

PCRLB[k], given in (4.84). The predicted target state estimate if [k + Kk], where K e {1, ... ,K}, can

then be easily computed, by following the prediction step in (4.56) of the target tracking algorithm, as

(j [k+ Kk] = F -if [klk] . (6.3)

With the predicted source state 2,[k + K] = 2 s(tk + K -Tp), predicted receiver state ir[k + Klvr, #,] =

fr(tk + K - TIvPr, and predicted target state estimate f [k+ Kjk], the future bistatic geometry at

ping (k + K) can be easily determined. The predicted environmental measurement is the predicted aver-
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age underwater sound speed e[k + K] = C(tk + K -T.), and is assumed available. From (4.87), the pre-

dicted CRLB RMSE is then obtained as

RMSELB k+ KIk, v, = trace PCL r ,(6.4)

where K E {1, ... ,K}. From (4.88) and (4.89), the predicted CLRB RMSEs of speed and position are giv-

en by

RMSEC o k + Kk,= trace P L) k + K k,vr .v, (6.5)CRLB,position [k + K Ik O -rqj Ptae[CRLB,(1:2,12)[+ 'Tp qj

RMSE s kr+ Kk, vr, ace k + Kk,v .P (6.6)CRLB,speed [kKk 'rj=jtaeLCRLB,(3.4,3:4) L+ r'Tj

Using (4.90), RL [k Kk, r ,kn

Ug49)RMSECLB[k +KIk, vrP,# rq] is related to RMSECRLB,position p, rg] and

RMSE CRLBspeed[k+ KI, r,

(RMSELB k + KIk, 'Prq])

= (RMSECLBpostion k + KIk, vrp, #r) + (RMSECLBspeed [k+ Krk, (Pr . (6.7)

The predicted CRLB matrix is expressed from (4.84) as

( PC0LB k+ K~k, 7 ,Orgr]> = (F - PCRLB [k + K - 11k,VryPr-FT + Q)

+ (Ho) rk + Kik, yr, #r ]) - (RU) k + Kkrp, #rq]) HU) [k + Kik, v,,,r, (6.8)

where K E {1, ... , K}. The predicted PCLB[k + K 1k, vrp, #rq] at ping (k + K) is dependent on the predict-

ed linearized measurement matrix H U)[k + KIk,Vr,#Or] = H()(2s[k + K],Rr[k + KIVrp, ],kt[k +

KIk],CA[k + K]) obtained from Appendix A, and the predicted measurement covariance matrix R0)[k +

Kjk, vr,, (rg] = RU)( 25 [k + K],$7[k + K Iv-P, Orq ],$ j)[k+ KI k], .A[k + K]) computed from the infor-

mation-theoretic model given in Section 5.1.2. It follows from Section 5.1.2 (or specifically from Section

5.1.2.2) that the predicted measurement covariance matrix is also dependent on the predicted SNR esti-

mates at the FM and CW matched-filtered data SRRU),FMcW[k+ KIk, %rp, #r] computed by the envi-

ronmental-acoustic model given in Section 5.2. Both RG[k + KIk, vr,,#r] and SRR),FM/cw[k +
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Kk, vr, (#r ] are the predictive information and environmental rewards, respectively, and are discussed

later in Section 6.1.3.4. To start the computation of the predicted CRLB matrix, the matrix is initialized

as Pr rom the track report. The expression in (6.8) is then used recursively
PCRLB [k Ik, vP (Pr Pr U)[klIk] fo h rc h n i hnue

to compute the terminal PCRLB[k + K 1k, vr,#rg]. Mathematically, the value obtained for the terminal

RMSECRLB[k + KI k, r, ePrgq] could be used to represent the objective function fbistatic([Vrp #rq]T) for

the bistatic autonomous behavior in (6.1).

As shown in (6.4), the use of terminal RMSE CB [k + Kik, or, #] involves the trace of the ter-

minal PC/tB [k + K Ik, vr, #r]. In fact, the trace of similar predicted performance-metric matrix has also

been used by Ponda [110] and Tharmarasa et al. [128,129] in the objective function. In a related manner,

the determinant of similar predicted performance-metric matrix has been utilized by Grocholsky et al.

[58,59]. However, by applying dimensional analysis on all these performance-metric matrices, there is a

fundamental physical flaw since the elements in these matrices are usually not having the same units.

Depending on the choice of units, some of the elements might have more significant effect on the objec-

tive function than the other elements. In this thesis, the units of the elements in the terminal PCLB +

Klk, vrp, #rg] are M 2 , m 2 /s, and m 2 /s 2. From (6.7), the use of the terminal RMSE CB0 +

KIk, vrp, #Prq] as the objective function implies that the terminal RMSELCS ition[k + Kk, r,#rg] (in

m) has a greater influence than the terminal RMSE CLB,speed [k + KIk, t r,, #rg] (in m/s). In fact, this is

substantiated by the experimental results from Figure 4.24 for GLINT 2009 Run and Figure 4.27 for

GLINT 2010 Run where the RMSEs are approximately the same as the RMSEs of position since the

RMSEs of speed are too small to make any significant impact. To correctly include the terminal

RMSECLBspeed [k + K Ik, vrp, #r] in the objective function, the plan is to do a single-step prediction of

the terminal [k + KIk, vr,,,Qr] without Q and the second term on the right-hand side of (6.8) to

yield the noiseless prior CRLB matrix denoted by Pniseless prior CRLB [k + K + 1|k, or,, rg], and then

take the square-root trace of Pnoiseless prior CRLB,(1:2,1:2) [k + K + 1k, vrp, (Prq] to get the corresponding

R oiseless prior CRLB,position [k + K + 1|k, vrp, Prq]. The objective function fbistatic([Vrp #rq]T) is

then expressed as
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fbistatic([Vrp #rq]T) = RMSE less prior CRLB,position [k + K + 1|k,vrp, #r]

=jtrace [ ~Pnoiseless prior CRLB,(1:2,1:2) [k + K + 1|k, Vrp,#r

= Jtrace [(F - POL, [k +KIk, vp, 'Prq] -FT)(: 2 ,1:2 )]

(PfL l (k + KIk,vr',#r] + PCRLB,) [k + Kik, vr, (Prq]) +

S (PC LB,(,) r + PCRB,(k , # T

I(RM S ECLB,positbon [k + Kik, Vr,#r]) + ( R M S EC LBspeed k C, Prq]) (Tp) 2 +
2 (PB, ( k3) + Kjk,Vrp,#r] + PCJLB,(2,4) (k + KCk,vrBp,#rr]-T

~ ( RM E LB,position (k+K lk,vr,#r + RS CRLB,speed k + K k v #, Vr( T2

(6.9)

where (Tp) 2 term has been used to transform (RMSECLBeed[k +K , to a unit of m 2

(matching the unit of m2 in (RMSECLBpostio n[k + K~k, r,,#(rq])2). Here, the additional cross terms

due to P+B[k+Kk,'rp,#rq] and k, P(0)[k + Kk k, r,, #r] have been ignored for simplifica-

tion. The computation of the objective function ft ( #]T) at a design speed r, and heading

wrq for this behavior is illustrated in Figure 6.5, where the superscript (j) on the quantities is implied.

The execution of the recursive computation of the objective function at each control time interval K is

then outlined in Algorithm 6.1.

Algorithm 6.1: Recursive computation of objective function ft orbistatic autonomous behavior
at each control time interval K

1: Access confined track solution of target in track report at ping k to obtain corresponding J')[kIk]
and PcLB[k], at a particular choice of j E (1, ..., 6}. This requires the automatedperception to be con-
tinuously running and publishing track report.

2: Initialize P[cB [kIkvrP,(Pr P -[kk]).

3: p = 1.

4: while p:5 P do

5: q = 1.

6: while q:5 Q do

7: K =1.
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Algorithm 6.1: Recursive computation of objective function for bistatic autonomous behavior
at each control time interval K

8: whileK 5 K do (recursive computation)

9: if p = 1 and q = 1

10: Predict (i) *[k + K], (ii) :R [k + KIk] using (6.3), and (iii) e[k + K].

11: end if.

12: Predict r[k + KIVrp, rq] using (6.2).

13: Invoke environmental-acoustic model to predict S& R(j),FM/CW [k + K k, vrp, Orq ] (predic-

tive environmental reward) using (i) is[k + K], (ii) *rk + KI Vrp, krq], (iii) [k +

KIk], and (iv) e k + K].

14: Invoke information-theoretic model to predict R0 [k + KIk, Vr,# q] (predictive infor-

mation reward) using (i) SRR(j),FM/CW [k+ KIk, %r, 'rq] (ii) *s[k+ K], (iii) *r[k +

IVrp,, rq], (iv) *^(j[k + Kjk], (v) [k + K], and (vi) predicted navigational and environ-

mental measurement uncertainties (see Section 5.1.2).

15: Compute predicted H()[k + Ik, Vrp, rq] using (i) is[k + K], (ii) Rr[k + KVr Np rq],

(iii) ^ ([jk + KIk , and (iv) e k + K].

16: Predict PCRLB[k+ Ik, vrp, Orq] using (6.8).

17: K = K+ 1.

18: end while.

19: Compute fbistatic([vrp #rq]') from terminal PCRLB[k + KIk, vrp, 'rq] using (6.9).

20: q = q +1.

21: end while.

22: p = p +.

23: end while.

If only the bistatic autonomous behavior is active in prosecute mode (which never happens in

practice since other behaviors are active concurrently), the optimization problem in (6.1) is simplified to

[- r cr]T = arg min[ V r ]Tfbistatic([ Vr r ]T)

= arg min[ r ]trace (F CRLB [k + Kk, vr, Or]-F

s.t. [ Vr #r ] E [ Vrp Orq ] T, where p E{1, ... , P} and q E{1, ... ,Q},

[ Vrp erq ]T abiding to vehicular dynamical restrictions and operational constraints. (6.10)

The optimized speed 1r and heading Pr are the speed and heading decisions selected at ping (k + 1) to

(k + K). The time-sequence of speed and heading decisions for the AUV will tow the receiver through a

time-sequence of receiver states that eventually optimizes the future bistatic sonar tracking performance
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Figure 6.5: Computation of objective function fbistatic([ vr, #r% ]T) at design speed v,, and heading #rq for
bistatic autonomous behavior in reactive behavior-based autonomy algorithm. Superscript (j) on quanti-

ties is implied.

at ping (k + K). The time-sequence of receiver states at ping (k + 1) to (k + K) corresponds with the

planned survey path taken by the AUV. From (6.2), the predicted Cartesian positions Xr [k + KIVr, ,rq]

and r [k + K I VrP, rq] of the receiver are direct function of the design speed vr and heading #r,. As

such, besides considering the vehicular dynamical restrictions (or the physical motion limitations) of vrp

and q, in the constraints of (6.10), the vehicular operational constraints of ^r k + K I VrP ,,rq] and

fr[k + KI Vrp,# rq], where K E {1,...,K}, can be accounted. An example is shown in Figure 6.6 illustrat-

ing the objective function fbistatic([vr, erq]T) computed from the terminal P L B[k + KIk, v,p , 'Prq] us-

ing (6.9) in terms of the design speed vr, and heading #rq, as well as in terms of the terminal predicted
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Cartesian positions ^r[k + KIvp,# 'rq] and fr[k + Klvrp,Prq] of the receiver, where p E {1,...,P} and

q E f1, ..., Q}. The intensity at each point on the plot represents the value of the objective function. The

optimized speed O and heading r (or the selected speed and heading decisions) are indicated by the

black circle on the objective function.

The selection of the parameter K depends on several criteria. It is obvious that a small K is pre-

ferred for a quick control response to the tactical situation. This is essential when the true target states

start diverging from the predicted target states. A small K can quickly rectify the problem with a fresh

restart at each shorter control time interval. On the other hand, a large K means that the objective func-

tion is computed at a lower recurring frequency. With the simplified decision tree shown in Figure 6.4(b),

a large K does not necessarily result in an insurmountable computation like that experienced by the com-

plete decision tree depicted in Figure 6.4(a). As a result, a large K is preferred for lowering the computa-

tional cost. A large K, with the simplified decision tree, is also favored in the light of minimizing possible

perturbation in the straightness of the towed receiver array. Finally, a large K is preferred to increase the

forward-time horizon for determining the likelihood of a target entering the bistatic-reverberation-ridge
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Figure 6.6: Example illustrating objective function fbistatic([ Vr #rg ]T) computed from terminal

Pcrlb'"[k + K [ k, vr, Prg] using (6.9) in terms of design speed vr, and heading #r, as well as in terms of
terminal predicted Cartesian positions 2r[k + K I vr,, #Pr] and r[k + K I vr, #r] of receiver. Here,

p E {1, ..., P} and q E {1, ..., Q}. Intensity at each point represents the value of objective function. Opti-
mized speed ^r and heading qr (or selected speed and heading decisions) are indicated by black circle on

objective function.
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region. Therefore, a decision has to be made in choosing the parameter K. The work by Page [107] pro-

vided an interesting analysis on the sensitivity of K in the control problem, and suggested an adaptive

forward-time horizon scheme where K was adjusted on the fly. In this thesis, the parameter K is assumed

fixed throughout the mission and is arbitrarily tuned.

From the formulation presented above, the certainty equivalence principle [137] is invoked where

a single expected value - ([kIk] is used in lieu of the stochastically varying true target state in the adap-

tive control - for the prediction of the target states at ping (k + 1) to (k + K), and consequently the com-

putation of the objective function fbistatic([vrp erq]T). This provides a convenient and theoretically ele-

gant integration with the probabilistic target state estimation process in the target tracking algorithm.

Another approach is to use the posterior target state probability distribution, characterized by PU) [k Ik],

instead of a single expected value 2 [k1k] to represent the true target state. Prediction is then carried

out on the probability distribution to yield the predicted probability distributions at ping (k + 1) to

(k + K) before applying them in the recursive computation expressed in (6.8). For each recursion, an

expected value of the second term in (6.8) is subsequently taken over the entire predicted probability dis-

tribution, which becomes similar to the expression given in (4.80). Although using the distribution pro-

vides a better representation of the true target state, it comes with an expense of higher computational

cost. This approach has been examined in [114,115].

6.1.3.4 Predictive Information and Environmental Rewards

As shown in Figure 6.5 and Algorithm 6.1, the predictive information and environmental rewards are

provided by the adaptive setting of the predicted measurement covariance matrix RO) [k + i I k, vr, #Pr]

at K pings ahead. This setting is adaptively varied in real-time by the unified model (described and vali-

dated previously in Chapter 5) to provide the pertinent information and environmental characteristics of

the predicted bistatic measurement vector 2U [k + KIk, vrp,# 4rq] (having the same form as the bistatic

measurement vector from the sonar signal processing algorithm), and is used to recursively compute the

predictd PQ)) T)predicted PCRLB[k + Klk, r , frq]. The expression trace[(F -PCRLB[k + Kk, Vr, Pr]- F :2,2)],

which represents the perceptive objective, is subsequently used to define the explicit vehicular-motion

objective function fbistatic([Vrp Prq]T) in the bistatic autonomous behavior. The optimal survey path of

the AUV is then computed by minimizing the objective function fbistatic([vrp Prq]T) (or equivalently the

predicted lower bound of the estimation uncertainty) as exemplified in (6.10) to improve the future bistat-

ic sonar tracking performance at K pings ahead. The predictive rewards are computed based on the
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knowledge of the predicted bistatic geometry - which is easily established from the (i) predicted source

state is[k + K], (ii) predicted receiver state ir[k + KIVr,,r], and (iii) predicted target state estimate

i4 ) [k + K Ik] (predicted from the confirmed track solution of the target in the track report) - as well as

the predicted environmental measurement c [k + K], and a host of other predicted dependencies at K pings

ahead. These other predicted dependencies have been discussed previously in Section 5.1.2. The predic-

tive property is particularly important for the implementation of the non-myopic control. The approach

taken in this thesis is such that the formulation is generalized and can operate on any variant of RU) [k +

KIk, rp, #Pr ], where E {1, ... , 6}. The intent here is to adjust the survey path of the AUV adaptively to

achieve predicted optimized bistatic sonar tracking performance in the automated perception (presented

in Chapter 4).

The flow of data in calculating the predictive information and environmental rewards for design

speed v, and heading #rg at K pings ahead is illustrated by the DFD in Figure 4.20, where superscript (j)

on the quantities is implied. The DFD clearly reveals how the adaptive setting of RM [k + KIk, vr P, #Prq]

is computed, and its dependency on the predicted bistatic geometry and environmental measurement.

This setting is calculated using the information-theoretic model (described in Section 5.1.2). The explicit

relationships postulated in (1.19) to (1.21) are used to encapsulate the effects of the SNRs in the computa-

tion of the predicted measurement covariance matrix RU') [k + K Ik, rP ,'q#rq], via the predicted acoustical

measurement uncertainties characterized by ,[k + KIk, Vrp, '#rq ], 5e [k + KIk, Vr , #br ], and 8 F, [k +

Kk, Vrp,Pr]. The predicted estimates of SRRO),FM/CW[k + Klk, vrp , Prq] in the DFD, provided by the

environmental-acoustic model (discussed in Section 5.2), are the driving forces behind the adaptive set-

ting. The superscripts FM and CW represent the quantities relating to the FM and CW processing, re-

spectively, in the sonar signal processing algorithm. These ratios are the SNR estimates at the matched-

filtered data. The coupling effect between the FM and CW SNR estimates, as a result of the TOA correc-

tion in (4.9) or Figure 4.4, is negligible and ignored in this thesis to reduce the complexity. The explicit

relationships postulated in (1.19) to (1.21) is used to amalgamate both the information-theoretic and envi-

ronmental-acoustic models to the unified model. In Section 5.1.2.2, these explicit relationships have been

expanded by the Woodward relations in (5.25) to (5.27), and the alternate relations in (5.28) to (5.30).

Therefore, with these explicit relationships, the pertinent environmental characteristics are embodied in

the information characteristics whenever the adaptive setting from the information-theoretic model is

used. By using the predictive information reward of RU) [k + K Ik, vrp, r q] in the recursive computation
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Figure 6.7: Data flow diagram illustrating flow of data in calculating predictive information and environ-
mental rewards for design speed vrp and heading #,.q at K pings ahead. Superscript (j) on quantities is

implied. Diagram depicts the flow to compute adaptive setting of predicted measurement covariance ma-
trix RU) [k + K k, vr, #r ]. The dependencies of predicted measurement covariance matrix on naviga-

tional and environmental measurement uncertainties are not included here to simplify illustration. More
information is available in Section 5.1.2.

of the objective function, the predictive environmental reward of SNR(j),FM/CW[k + KIk, vp, Prq] is in-

cluded concurrently. This means that the optimal survey path of the AUV computed by minimizing the

predicted lower bound of the estimation uncertainty in the bistatic autonomous behavior becomes one that

maximizes the predictive information and environmental rewards (with the highest utility on the predic-

tive information and environmental reward surfaces) at the same time. This is defining characteristic of

the class of control formulated in this thesis. The formulation eventually leads to a new information-

theoretic and environmental-based control, which is greatly contrasted from the traditional approach of

either information-theoretic control or environmental-based control (but not both at the same time). A

consistent model is also adopted throughout this thesis. The very same unified model utilized in the per-

ception-driven control here is also used in the automated perception to provide the information and envi-

ronmental adaptations.
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When the variant of contact report Z M [k] from the sonar signal processing algorithm is consid-

ered, the minimization problem in (6.10) is approximately equivalent to minimizing trace [R(1 ) [k +

Kik, Vrp, #rq]] or maximizing (trace[R(1)[k + Kik, p#r]])-
1 . This is then similar to the objective

function employed by Kemna et al. [73]. However, there are two key distinctions between the work in

[73] and the thesis work here. The objective function in [73] appeared to be computed using the current

bistatic geometry, as opposed to the predicted bistatic geometries utilized here for the non-myopic control.

The measurement covariance matrix in [73] did not incorporate the pertinent environmental characteris-

tics, as opposed to the environmentally adaptive covariance of RM [k + K Ik, vr,, #r] employed here,

which is driven by the predicted SR R(l),FM[k + Kik, vrp, #r]. Similarly, when the variant of contact re-

port Z) [k] is used with negligible navigational and environmental measurement uncertainties ", the min-

imization problem in (6.10) is also approximately equivalent to maximizing SR R(),FM[k + Kik, vr,, (Prq].

This is then similar to the objective functions utilized by LePage et al. [83,84], which consider only the

FM SNR. If the variant of contact report Z) [k] includes only the FM information, where j E {1,3,5},

the minimization in (6.10) is then carried out based on the FM SNR. If the variant of contact report

ZU [k] includes both the FM and CW information, where j E {2,4,6}, the minimization in (6.10) is per-

formed based on the FM and CW SNRs. Therefore, the thesis work here has clearly presented a general-

ized objective function that is a superset of that used in [73,83,84]. It has extended the previous similar

works of control strategy to one that is truly information-theoretic, and allows concurrent environmental-

based control to be implemented. The thesis work here has incorporated the non-myopic control property

to improve the future bistatic sonar tracking performance. The control here has also considered both the

FM and CW information, giving an edge over traditional reliance on just FM information.

" The dependencies on navigational and environmental measurement uncertainties have been discussed previously in Section
5.1.2.

259



6.1.4 Results

In this section, the reactive behavior-based autonomy algorithm is evaluated using the synthetic data,

generated as different variants of contact report Z0 )[k], forj e {I 1, ..., 6}, at the output of the sonar signal

processing algorithm (discussed in Section 4.1). The synthetic data generator is implemented using the

unified model (where the model was presented in Chapter 5, and built upon by information theory and

environmental acoustics). Specifically, the evaluation is carried out in the integrated system of Figure 3.1

- involving (i) the automated perception (described in Chapter 4) to process the simulated contact report

ZU)[k]; (ii) the unpied model to provide the information and environmental adaptations for the target

tracking algorithm (discussed in 4.2), and compute the predictive information and environmental rewards

for the reactive behavior-based autonomy algorithm; and (iii) the perception-driven control implemented

by the reactive behavior-based autonomy algorithm here. In Section 6.1.4.1, tactical scenario A has been

simulated to allow different prosecute behaviors in the reactive behavior-based autonomy algorithm to be

compared. In Section 6.1.4.2, tactical scenario B has been simulated to illustrate the concurrent activity

of multiple behaviors in prosecute mode. Finally, in Section 6.1.4.3, tactical scenario C has been simu-

lated to demonstrate the fully autonomous and persistent bistatic ASW surveillance solution considered in

this thesis.

6.1.4.1 Tactical Scenario A: Comparison of Prosecute Behaviors

The bistatic assets utilized for tactical scenario A is same as those used in the GLINT 2009 Run (see Sec-

tion 4.1.4.1). This simulated scenario is identical to the example scenario presented previously in Figure

1.16 of Section 1.2.4. The setup of the simulation is depicted in Figure 6.8. For this simulated scenario,

the stationary DEMUS source is simulated to transmit both the FM and CW sonar pulse signals concur-

rently. Specifically, the LFM sonar pulse signal is used. The ER, towed by the CRV Leonardo, is used to

simulate a target cruising eastward at 2 m/s from ping k = 1 to 650. The OEX AUV, towing the BENS

array, commences the mission in search mode by moving the vehicle in fixed survey path. This tactical

scenario is simulated to allow different prosecute behaviors in the reactive behavior-based autonomy al-

gorithm to be compared. The amount of forward-time horizon K has been set to 5 for all these prosecute

behaviors. The synthetic data generated for different variants of contact report Z )[k], for j E {1, ..., 6},

at the output of the sonar signal processing algorithm contain no clutter. This is to minimize the random

effect of false alarms on the target tracking and consequently the reactive behavior-based autonomy algo-

rithms. This ensures that the same deterministic (and non-random) conditions are used when comparing
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the results obtained for different prosecute behaviors. The clutter is reinstated later in tactical scenarios

B and C of Sections 6.1.4.2 and 6.1.4.3 respectively.

Figure 6.8: Tactical scenario A with stationary DEMUS source plotted in green, fixed survey path taken
by OEX AUV in search mode plotted in light green, and CRV Leonardo towing ER plotted in gray.
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6.1.4.1.1 Comparison of Bistatic Autonomous Behavior using Different Variants of Contact Report

By using the different variants of synthetically generated contact report Z U) [k] as the input to the target

tracking algorithm, the confirmed tracks due to the ER are obtained from the track reports at the output.

These confirmed tracks are then used to drive the bistatic autonomous behavior in the reactive behavior-

based autonomy algorithm in prosecute mode. Subsequently, the behavior computes the objective func-

tions, which are used in the multi-objective optimization to arrive at the speed and heading decisions.

These decisions then move the vehicle on adaptive survey paths that optimize the future bistatic sonar

tracking performances of the confirmed tracks due to the ER. Figure 6.9 illustrates the simulated results

of tactical scenario A obtained using different variants of contact report Z [k], for j E {1, ..., 6}. The

adaptive survey paths taken by the OEX AUV with the bistatic autonomous behavior driven by the con-

firmed tracks from Z(1) [k], Z(3) [k], and Z(5) [k] (with only FM information) are similar, as shown in Fig-

ures 6.9(a), 6.9(c), and 6.9(e) respectively. Likewise, the adaptive survey paths taken by the OEX AUV

with the bistatic autonomous behavior driven by the confirmed tracks from Z (')[k], Z(4 ) [k], and Z(6) [k]

(with both FM and CW information) are comparable, as depicted in Figures 6.9(b), 6.9(d), and 6.9(f) re-

spectively. Generally, like the target tracking results obtained in Section 4.2.7, there is no significant dif-

ference in using either Z (1 [k], Z(3) [k], or Z( 5 [k] in the reactive behavior-based algorithm here. Similar

observation is also noted in using either Z(2) [k], Z(4) [k], or Z(6) [k]. Although some subtle differences

can be noted by zooming into the plots, the thesis is not concerned with the specific differences between

the different variants of the contact report, that is comparing between ZM[k], Z( 3) [k], and Z(s>[k], and

between Z(2) [k], Z(4) [k], and Z(6) [k]. It is clear that the adaptive survey paths with behavior using only

FM information (that is j E {1, 3, 5}) differ from that with behavior using both FM and CW information

(that is j E {2, 4, 6}) toward the end of their runs. This will be examined in detailed shortly.

The CRLB RMSEs for the tracks due to the ER, as depicted in the simulated results of Figure 6.9,

are plotted in Figure 6.10 for ping k = 1 to 650. For each plot, bistatic autonomous behavior is applied

on the OEX AUV, and is driven by the confirmed track due to the ER abstracted from a variant of contact

report ZW [k], at particular E {1, ... , 6}. The CRLB RMSE obtained for the track due to the ER is then

denoted as RMSEW'
CRLB,position/speed [k], and plotted as shown. At the start of their runs, it is evident that

RMSE0W
CRLB,position/speed [k] with behavior using only FM information (that is j E {1, 3, 5}) are worse than

(higher than) RMSE0W
CRLB,position/speed [k] with behavior using both FM and CW information (that is

j E {2, 4, 6}). The latter RMSELB speed [k] (that is j E {2, 4, 6}) then approach the former
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Figure 6.9: Simulated results of tactical scenario A in Figure 6.8 with bistatic autonomous behavior ap-
plied on OEX AUV, and driven by confirmed tracks due to ER abstracted from different variants of con-
tact report Z'[k], where j E { ,...,6}. Stationary DEMUS source is plotted in green. OEX AUV towing
BENS array is plotted in red. OEX AUV is initially on fixed survey path in search mode, and switches to
adaptive survey path in prosecute mode upon tracking entry of ER. Moving ER, towed by CRV Leonar-
do, is plotted in gray (not visible) and is heading east. Bistatic ambiguity ellipse for current contacts is
plotted as light gray elliptical ring, and recent contacts are plotted as dark gray dots. Confirmed tracks
due to ER and ghost are plotted in magenta, and terminated tracks due to ghost are plotted in black.
Adaptive survey paths of OEX AUV with behavior driven by confirmed tracks from Z( [k], ZI"[k], and
Z(5)[k] (with only FM information) are similar, and that from Zo2)[k], Z(4)[k], and ZC6)[k] (with both FM and
CW information) are comparable. These two sets of adaptive survey paths differ only toward the end of
their runs.

(a) Results driven by confirmed track due to ER
abstracted from Z (1)[k]

(with only FM information)

(c) Results driven by confirmed track due to ER
abstracted from Z(3) [k]

(with only FM information)

(b) Results driven by confirmed track due to ER
abstracted from Z (')[k]

(with both FM and CW information)

(d) Results driven by confirmed track due to ER
abstracted from Z (')[k]

(with both FM and CW information)
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Figure 6.9: Simulated results of tactical scenario A in Figure 6.8 with bistatic autonomous behavior ap-

plied on OEX AUV, and driven by confirmed tracks due to ER abstracted from different variants of con-

tact report Z'j[k], where j E {l,...,6}. Stationary DEMUS source is plotted in green. OEX AUV towing
BENS array is plotted in red. OEX AUV is initially on fixed survey path in search mode, and switches to
adaptive survey path in prosecute mode upon tracking entry of ER. Moving ER, towed by CRV Leonar-
do, is plotted in gray (not visible) and is heading east. Bistatic ambiguity ellipse for current contacts is
plotted as light gray elliptical ring, and recent contacts are plotted as dark gray dots. Confirmed tracks
due to ER and ghost are plotted in magenta, and terminated tracks due to ghost are plotted in black.
Adaptive survey paths of OEX AUV with behavior driven by confirmed tracks from Z [k], Z'[k], and
Z(5)[k] (with only FM information) are similar, and that from Z(2)[k], Z(4)[k], and Z(6"[k] (with both FM and
CW information) are comparable. These two sets of adaptive survey paths differ only toward the end of
their runs.

(e) Results driven by confirmed track due to ER (f) Results driven by confirmed track due to ER
abstracted from Z(5 [k] abstracted from Z(6) [k]

(with only FM information) (with both FM and CW information)
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Figure 6.10: Plots of CRLB RMSEs for tracks due to ER depicted in Figure 6.9. For each plot, bistatic
autonomous behavior is applied on OEX AUV, and driven by confirmed track due to ER abstracted from
a variant of contact report ZU) [k], at particular j [ {1, ... , 6}. The CRLB RMSE obtained for track due to

ER is then denoted as RMSECRLB,position/speed[k], and plotted as shown. RMSECRLB,position/speed
for j E {1, 3, 5}, represent the CRLB RMSEs with behavior using only FM information, and are plotted in
yellow, cyan, and green respectively. These CRLB RMSEs are similar and overlapping, thus only that of

RMSE LBposition/speed [k] (green) is visible. RMSECRLB,position/speed [k], for j E {2, 4, 6}, represent the
CRLB RMSEs with behavior using both FM and CW information, and are plotted in red, blue, and gray
respectively. These CRLB RMSEs are comparable and overlapping, thus only that of
RMSE RLBposition/speed [k] (red) and RMSECRLBposition/speed [k] (blue) are visible. At the start of their
runs, CRLB RMSEs with behavior using only FM information (that is j E {1, 3, 5}) are worse than CRLB
RMSEs with behavior using both FM and CW information (that is j E {2,4,6}). The latter CRLB
RMSEs of speed then approach the former CRLB RMSEs of speed when BENS array is moving along-
side with ER. After that and toward end of their runs, the adaptive survey paths of OEX AUV with be-
havior using both FM and CW information (that is j E {2, 4,61) effected special maneuvers to keep ER
away from bistatic reverberation-ridge region. These maneuvers result in the improvement of CRLB
RMSEs of speed, but at expense of poorer CRLB RMSEs of position (as observed from ping k = 480
onward), when compared with the adaptive survey paths of OEX AUV with behavior using only FM in-
formation (that is j E f 1, 3, 5}).
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RMSECRLB,speed[k] (that is j E {1, 3, 5}) when the BENS array is moving alongside with the ER. This is

because of the missing frequency measurements occurring in Z )[k], for j E {2, 4, 6}, near the bistatic

reverberation ridge, similar to that observed in Figure 4.27(c). Following that and toward the end of their

runs, the adaptive survey paths taken by the OEX AUV with behavior using both FM and CW infor-

mation (that is j E {2, 4, 6)) then effected special maneuvers, as shown in Figures 6.9(b), 6.9(d), and

6.9(f), to keep the ER away from the bistatic reverberation-ridge region. These maneuvers result in the

impoveent(lwerng)ofRMSE 0W
improvement (lowering) of ECRLBspeed [k], but at the expense of degrading (increasing)

RMSECLB,position[k] slightly (as observed from ping k = 480 onward), when compared with the adap-

tive survey paths taken by the OEX AUV with behavior using only FM information (that is j E {1, 3, 51).

In short, for the adaptive survey paths taken by the OEX AUV with behavior using both FM and CW in-

formation (that is j E {2, 4, 6)), better bistatic sonar tracking performance is noted than that with behavior

using only FM information (that is j E {1, 3, 5}) until ping k = 480. Thereafter, better tracking perfor-

mances in speed are achieved at the expense of the tracking performances in position. From this simula-

tion, it is evident that the adaptive survey path with the bistatic autonomous behavior attempts to drive

the CRLB RMSEs down, as opposed to that observed for the fixed survey path in Figure 4.24 where the

CRLB RMSEs can increase without any control.

From (6.9), (6.8), and Figure 6.7, it is obvious that the driving forces behind the computation of

the objective functions are the predicted SNR estimates at the FM and CW matched-filtered data, which

can then be provided by the environmental-acoustic model (discussed in Section 5.2). This is valid as

long as the navigational and environmental measurement uncertainties are negligible, since these uncer-

tainties also contribute to the computation of the predicted measurement covariance matrices shown in

Section 5.1.2.1, and consequently the predicted CRLB matrices. In order to explain the reason for the

difference in the adaptive survey paths taken by the OEX AUV with the bistatic autonomous behavior

driven by the confirmed tracks from Z(') [k], Z(3 ) [k], and Z(s) [k] (with only FM information), as shown

in Figures 6.9(a), 6.9(c), and 6.9(e) respectively, and that from Z () [k], Z 4 ) [k], or Z(6) [k] (with both FM

and CW information), as shown in Figures 6.9(b), 6.9(d), and 6.9(f) respectively, the environmental-

acoustic model is thus used.

The ratios SNRFM,(dB) [k, pi] and SRRCW,(dB) [k, pi] of the target, for the given bistatic geometry

in Figure 6.9(a) obtained with behavior driven by the confirmed track from Z(') [k] (with only FM infor-

mation), are predicted by the environmental-acoustic model at different pings k in Figure 6.11. Here,

Pi E {pi, PN} denotes a particular Cartesian position that the target could possibly reside. The intensity

at each Cartesian position pi then represents the predicted S&R FM,(dB) [k, pi] and SR Rcw,(dB)[k, pi] of the
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target. The predicted S4 RFXdB) [k, Pt] is used to explain how the adaptive survey path of the OEX AUV

is computed. The predicted SRRcw(dB) [k, pi] is included strictly for comparison with Figure 6.12. The

objective function fbistatic([Vr, #Pr]T) for the bistatic autonomous behavior in terms of the design speed

vr and heading #r5 at corresponding ping k is included, and the selected speed and heading decisions are

indicated by the black circle on the objective function. It is clear that the adaptive survey path with be-

havior driven by the confirmed track from Z(')[k] (with only FM information) attempts to keep the ER at

the high FM SNR region near the port broadside of the BENS array as shown in the SRRFM,(dB) [k, pi]

(left) plots of Figures 6.11(c) to 6.11(j). The behavior does not place the ER at exactly broadside (that is

90*) of the BENS array since this does not correspond to the best FM SNR. By examining the

SR RCW,(dB) [k, pi] (right) plots of Figures 6.11(g) to 6.11(j), no attempt is made to keep the ER at the re-

gion that achieves best CW SNR. This results in the widening of the bistatic reverberation-ridge region as

shown. This is expected since no CW information has been included in the contact report Z () [k]. Evi-

dently, the SRRcw,(dB) [k, p1 ] (right) plots of Figure 6.11 show that the reverberation-ridge regions are

perpendicular to the eastbound CRV Leonardo as explained in Figure 5.5.

The ratios SR RFM,(dB)[k, pi] and SNR cwdB)[k, pi] of the target, for the given bistatic geometry

in Figure 6.9(b) obtained with behavior driven by the confirmed track from Z(2) [k] (with both FM and

CW information), are predicted by the environmental-acoustic model at different pings k in Figure 6.12.

The corresponding objective function fbistatic([VrP #rq]T) for the bistatic autonomous behavior in terms

of the design speed v, and heading #rg at corresponding ping k is also included, and the selected speed

and heading decisions are similarly indicated by the black circle on the objective function. It is clear that

the adaptive survey path with behavior driven by the confirmed track from Z (2) [k] (with both FM and

CW information) attempts to keep the ER at the high FM SNR region near the port broadside of the

BENS array as shown in the SRRFM,(dB) [k,p 1] (left) plots of Figures 6.12(c) to 6.12(f), just like that

achieved in the SR RFM,(dB) [k, pg] (left) plots of Figures 6.11(c) to 6.11(f). However, after the ER has en-

tered the bistatic reverberation-ridge region as shown in the Sf RCw,(dB) [k, pi] (right) plot of Figure

6.12(e), the CRLB RMSE of speed RMSERLB,speed[k for the track due to the ER in Figure 6.10(b) has

worsened (increased) substantially due to the missing frequency measurements. Therefore, after the ER

has exited the reverberation-ridge region, the behavior makes every attempt to prevent this region from

widening and engulfing the receding ER as shown in the SRRCW,(dB) [k, pi] (right) plots of Figures

6.12(g) to 6.12(j). This is the special maneuver observed previously in Figures 6.9(b), 6.9(d), and 6.9(f)

toward the end of their runs. This is a defining behavior formulated in this thesis where the FM infor-

mation takes precedence initially, and the CW information assumes higher priority after the ER has en-
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tered and exited the bistatic reverberation-ridge region. Likewise, the SNR CW,(dB) [k, pi] (right) plots of

Figure 6.12 show that the reverberation-ridge regions are perpendicular to the eastbound CRV Leonardo

as explained in Figure 5.5, and are independent of the immediate change in the speed and heading of the

AUV as expressed in (5.51). However, with the non-myopic control incorporated into the predictive in-

formation and environmental rewards for the bistatic autonomous behavior, the vehicle is able to plan

judiciously ahead of time and prevent the bistatic reverberation-ridge region from widening and engulfing

the receding ER.

If the speed of the CRV Leonardo is increased, two notable effects will be observed in the adap-

tive survey path of the OEX AUV. Firstly, the vehicle will not be moving fast enough to catch up with the

faster moving target. The adaptive surveys paths observed in Figure 6.9 will take place further away from

the ER. Secondly, the results in Figure 5.6 imply that a narrower bistatic reverberation-ridge region will

be obtained in the SR Rcw,(dB)[k, pi] (right) plots of Figure 6.12 with faster moving target. Therefore, the

special maneuvers observed in Figures 6.9(b), 6.9(d), and 6.9(f) toward the end of their runs will not be

turning as much. This is because lesser maneuvering effort will be required for the behavior to prevent

the narrower bistatic reverberation-ridge region from widening and engulfing the receding ER. Although

better tracking performance will be expected with faster moving target (as discussed in Section 5.3.1), the

OEX AUV will now be tracking the ER further away. Nonetheless, the bistatic autonomous behavior will

make every effort in moving the vehicle to optimize the bistatic sonar tracking performance given the cur-

rent tactical situation.

268



Figure 6.11: Predicted ratios SRRFM,(dB)[k, pj] (plotted on left) and SRRcw,(dB)[k, p] (plotted on right) of
target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(a).
Here, pi E {pi, ... , PN} denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-

stracted from contact report ZM[k] (with only FM information). Intensity at each Cartesian position pi
represents predicted SRRFM,(dB)[k,p] and SNRRCW,(dB)[kpj] of target. The predicted SNRFM,(dB)[kp,] is used
to explain how the adaptive survey path of OEX AUV is computed. The predicted SNRcw,(dB)[kp] is in-
cluded strictly for comparison with Figure 6.12. The objective function fbistatic([Vr, er]T) for bistatic
autonomous behavior in terms of design speed vr, and heading #r, at corresponding ping k is plotted in

middle, and selected speed and heading decisions are indicated by black circle on objective function.
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Figure 6.11: Predicted ratios SNRFM,(dB)[k, pi] (plotted on left) and SNRcw,(dB)[k, pj] (plotted on right) of
target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(a).
Here, pi E (Pi, ... , PN} denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-

stracted from contact report Z( 1) [k] (with only FM information). Intensity at each Cartesian position pt
represents predicted SNRFM,(dB)[k,p;] and SNRRcw,(dB)[k,p] of target. The predicted SN RFM,(dB)[kp] is used
to explain how the adaptive survey path of OEX AUV is computed. The predicted SRRCW(dB)[kp] is in-

cluded strictly for comparison with Figure 6.12. The objective function fbistatic([Vrp #rq]T) for bistatic

autonomous behavior in terms of design speed v, and heading #rg at corresponding ping k is plotted in

middle, and selected speed and heading decisions are indicated by black circle on objective function.
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Figure 6.11: Predicted ratios Sf RFM,(dB)[k, pj] (plotted on left) and SRRCw,(dB)[k, p] (plotted on right) of
target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(a).
Here, pg E {pi, ... I PNJ denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-
stracted from contact report Z (1)[k] (with only FM information). Intensity at each Cartesian position pi
represents predicted SNRFM,(dB)[k,p] and SRNRCW,(dB)[k,pi] of target. The predicted SRRFM,(dB)[kp] is used
to explain how the adaptive survey path of OEX AUV is computed. The predicted SRRcW,(dB)[kp] is in-
cluded strictly for comparison with Figure 6.12. The objective function fbistatic([Vr, #rq]T) for bistatic
autonomous behavior in terms of design speed v, and heading #, at corresponding ping k is plotted in

middle, and selected speed and heading decisions are indicated by black circle on objective function.
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Figure 6.11: Predicted ratios SRRFM,(dB)[k, pj] (plotted on left) and SNRcw,(dB)[k, pj] (plotted on right) of
target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(a).
Here, pi E {Pi, PN} denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-
stracted from contact report Z(1) [k] (with only FM information). Intensity at each Cartesian position pi
represents predicted SRRFM,(dB)[k,pJ] and SNRCW(dB)[kpi of target. The predicted SNRFM,(dB)[kp] is used
to explain how the adaptive survey path of OEX AUV is computed. The predicted SNRcw,(dB)[kp] is in-

cluded strictly for comparison with Figure 6.12. The objective function fbisttic([Vrp #rq]T) for bistatic
autonomous behavior in terms of design speed vr, and heading #rq at corresponding ping k is plotted in

middle, and selected speed and heading decisions are indicated by black circle on objective function.
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Figure 6.11: Predicted ratios SRFM,(dB)[k, pJ] (plotted on left) and SNRcW,(dB)[k, pi] (plotted on right) of
target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(a).
Here, pi E {pil..., PN} denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-
stracted from contact report Z(1) [k] (with only FM information). Intensity at each Cartesian position pi
represents predicted SRRFM,(dB)[k,p] and SNRRcw(dB)[k,pj] of target. The predicted SNRFM,(dB)[kP] is used
to explain how the adaptive survey path of OEX AUV is computed. The predicted SNRRcw,(dB)[kp] is in-
cluded strictly for comparison with Figure 6.12. The objective function fbistatic([Vrp #rq ]T) for bistatic
autonomous behavior in terms of design speed vrP and heading #rg at corresponding ping k is plotted in

middle, and selected speed and heading decisions are indicated by black circle on objective function.
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Figure 6.12: Predicted ratios SRRFM(dB)[k, p,] (plotted on left) and SRRc''(dB)[k, p,] (plotted on right) of
target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(b).
Here, p; E {pi, ..., PN} denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-
stracted from contact report Z ( [k] (with both FM and CW information). Intensity at each Cartesian po-
sition pi represents predicted SNRFM,(dB)[k, p,] and SNRCW,(dB)[k, p,] of target. Both predicted
SNRFM,(dB)[k, p,] and SNRRcW,(dB)[k, p,] are used to explain how the adaptive survey path of OEX AUV is
computed. The objective function fbistatic([Vr, #Prq]T) for bistatic autonomous behavior in terms of de-
sign speed vr, and heading #rq at corresponding ping k is plotted in middle, and selected speed and head-
ing decisions are indicated by black circle on objective function.
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Figure 6.12: Predicted ratios SRRFM,(dB)[k, pi) (plotted on left) and SRRCW,(dB)[k, pi] (plotted on right) of
target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(b).
Here, pi E {pi, ... PN} denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-

stracted from contact report Z(2 ) [k] (with both FM and CW information). Intensity at each Cartesian po-
sition pi represents predicted SRFM,(dB)[k, p] and SRRCw,(dB)[k, pg] of target. Both predicted
SRRM(dB)[k, pg] and SRRcw'(dB)[k, p] are used to explain how the adaptive survey path of OEX AUV is
computed. The objective function fbistatic([VP (Prq ]T) for bistatic autonomous behavior in terms of de-
sign speed v, P and heading #rg at corresponding ping k is plotted in middle, and selected speed and head-

ing decisions are indicated by black circle on objective function.
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Figure 6.12: Predicted ratios SNRFM,(dB)[k, pi] (plotted on left) and SNRCW(dB)[k, p] (plotted on right) of

target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(b).
Here, pg E {pi,..., PN} denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-

stracted from contact report Z M [k] (with both FM and CW information). Intensity at each Cartesian po-
sition pi represents predicted S RFM,(dB)[k, pi] and SRRCW,(dB)[k, pi] of target. Both predicted

SRRFM,(dB)[k, p;] and SRRcw,(dB)[k, pj] are used to explain how the adaptive survey path of OEX AUV is

computed. The objective function fbistatic(['rp rq]T) for bistatic autonomous behavior in terms of de-

sign speed v, and heading rq at corresponding ping k is plotted in middle, and selected speed and head-

ing decisions are indicated by black circle on objective function.
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Figure 6.12: Predicted ratios SRRFM,(dB)[k,pJ] (plotted on left) and SRRcW,(dB)[k, pj] (plotted on right) of
target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(b).
Here, pg E {pi, ... p N} denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-
stracted from contact report Z(2 ) [k] (with both FM and CW information). Intensity at each Cartesian po-
sition pi represents predicted SRRFM,(dB)[k, p,] and SRRcW(dB)[k, pi] of target. Both predicted
SRRFM,(dB)[k, p] and SRRcw,(dB)[k, pi] are used to explain how the adaptive survey path of OEX AUV is
computed. The objective function fbistatic([VrP #rq]T) for bistatic autonomous behavior in terms of de-
sign speed v, and heading q5rq at corresponding ping k is plotted in middle, and selected speed and head-

ing decisions are indicated by black circle on objective function.
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Figure 6.12: Predicted ratios SRNRFM,(dB)[k, pj] (plotted on left) and SNRcw,(dB)[k, pj] (plotted on right) of

target using environmental-acoustic model at different pings k from simulated results in Figure 6.9(b).
Here, pi E {pi ... , PN) denotes a particular Cartesian position that target could possibly reside. Stationary
DEMUS source, OEX AUV towing BENS array, and CRV Leonardo towing ER are plotted in black. Bi-
static autonomous behavior is applied on OEX AUV, and is driven by confirmed track due to ER ab-

stracted from contact report Z( 2 )[k] (with both FM and CW information). Intensity at each Cartesian po-

sition pi represents predicted SNRFM,(dB)[k, pi] and SRNRCW,(dB)[k, pj] of target. Both predicted

SRRFM,(dB)[k, p] and SRRCw'(dB)[k, p,] are used to explain how the adaptive survey path of OEX AUV is

computed. The objective function fbistatic([Vrp erq]T) for bistatic autonomous behavior in terms of de-

sign speed v, and heading 4, at corresponding ping k is plotted in middle, and selected speed and head-

ing decisions are indicated by black circle on objective function.
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6.1.4.1.2 Comparison ofDifferent Prosecute Behaviors

The most straightforward formulation of the objective function for the prosecute behavior in the reactive

behavior-based autonomy algorithm is based on heuristics. Examples of these heuristic rules include

commanding the AUV to keep the target at the broadside of the receiver array, and to keep the target at

the broadside and closed-in range of the receiver array. Specifically, two prosecute behaviors based on

these heuristic rules are implemented here, and they are called the broadside behavior [47,48,60] and the

broadside with closed-in behavior [47,48]. Figure 6.13 illustrates the simulated results of tactical scenar-

io A (given in Figure 6.8) obtained with these two heuristic-based behaviors and two variants of bistatic

autonomous behavior, driven by the confirmed tracks due to the ER abstracted from the contact reports

Z(W[k] (with only FM information) and Z(2)[k] (with both FM and CW information). As shown in the

simulated results, the adaptive survey path taken by the OEX AUV with the broadside behavior using

Z(2) [k] keeps the ER at the broadside (that is 900) of the BENS array. This is clearly verified by the DOA

of the driving confirmed track due to the ER as shown in Figure 6.14(a). The adaptive survey path taken

by the OEX AUV with the broadside with closed-in behavior using Z(2 ) [k] also keeps the ER at the

broadside (that is 900) of the BENS array, but simultaneously attempts to slowly close in on the ER This

is again verified by the DOA of the driving confirmed track due to the ER as depicted in Figure 6.14(b).

Finally, it is evident that the adaptive survey paths taken by the OEX AUV with the bistatic autonomous

behaviors using Z(') [k] and Z(2 ) [k] bring the BENS array much closer to the ER. This is due to the in-

creased SNRs, as observed in Figures 6.11 and 6.12, obtained for closer target. It is important to note

from Figures 6.14(c) and 6.14(d) that the DOAs of the driving confirmed tracks due to the ER are not

necessarily desired to be at the broadside (that is 900) of the BENS array. This is consistent with the re-

sults observed in Figures 6.11 and 6.12 where the best FM and CW SNRs can be off the broadside of the

BENS array.

The CRLB RMSEs for the tracks due to the ER, as related to the simulated results in Figure 6.13,

are plotted in Figure 6.15 for ping k = 1 to 650. For each plot, a particular prosecute behavior is applied

on the OEX AUV, and is driven by the confirmed track due to the ER abstracted from the contact report

Z (1)[k] (with only FM information) or Z(2) [k] (with both FM and CW information). The CRLB RMSE

obtained for the track due to the ER is then denoted as RMSE (1)
CRLB,ositionspeed [k] or

RMSEgCRLB,position/speed [k] respectively, and plotted as shown. In terms of RMSE RLposition [k], it is

evident that the adaptive survey path taken by the OEX AUV with the broadside behavior using Z (2) [k]

produces the worst (highest) CRLB RMSE. This is followed by that with the broadside with closed-in

behavior using Z( 2 )[k], and then that with the bistatic autonomous behaviors using Z(1)[k] and Z( 2 )[k]
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that produce the best (lowest) CRLB RMSEs. In terms of RMSE(2  s [k]
CRLB,speedk] it is clear that the adaptive

survey paths taken by the OEX AUV with the broadside behavior using Z (2) [k] and the broadside with

closed-in behavior using Z(2 )[k] are comparable in their CRLB RMSEs, depending on the time of their

runs. It is obvious that the bistafic autonomous behavior using Z(2)[k] offers the best (lowest) CRLB

RMSE. Therefore, from the results obtained in Figure 6.15, the two heuristic-based behaviors - albeit

intuitively logical and commonly used - are observed to be suboptimal in terms of the bistatic sonar

tracking performance (as quantified by their CRLB RMSEs). The bistatic autonomous behavior devel-

oped in this thesis is thus truly one that optimizes the tracking performance.
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Figure 6.13: Simulated results of tactical scenario A in Figure 6.8 with different prosecute behaviors ap-
plied on OEX AUV, and driven by confirmed tracks due to ER abstracted from contact reports Z"'[k]
(with only FM information) and Z(2)[k] (with both FM and CW information). Stationary DEMUS source
is plotted in green. OEX AUV towing BENS array is plotted in red. OEX AUV is initially on fixed sur-
vey path in search mode, and switches to adaptive survey path in prosecute mode upon tracking entry of
ER. Moving ER, towed by CRV Leonardo, is plotted in gray and is heading east. Confirmed tracks are
not shown here since they varied for different behaviors. Broadside behavior using Z(2)[k] commands the
OEX AUV to keep ER at broadside of BENS array. Broadside with closed-in behavior using Z(2) [k] adds
on another closing-in feature on ER. Bistatic autonomous behaviors using Z(1 )[k] and Z(2)[k] bring the
OEX AUV much closer to ER, but exhibit visible difference in adaptive survey paths between each other
toward end of their runs.
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Figure 6.14: Plots of behavioral mode, speed decision, and heading decision in reactive behavior-based
autonomy algorithm for simulated results in Figure 6.13 with different prosecute behaviors driven by con-
firmed tracks due to ER abstracted from contact reports Ztl)[k] (with only FM information) and Z(2 [k]
(with both FM and CW information), as well as plot of DOA of driving confirmed track due to ER.
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Figure 6.14: Plots of behavioral mode, speed decision, and heading decision in reactive behavior-based
autonomy algorithm for simulated results in Figure 6.13 with different prosecute behaviors driven by con-
firmed tracks due to ER abstracted from contact reports Zl1)[k] (with only FM information) and Z(2)[k]
(with both FM and CW information), as well as plot of DOA of driving confirmed track due to ER.

(c) Bistatic autonomous behavior driven by confirmed track due to ER from Z(1) [k]
(with only FM information)
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(d) Bistatic autonomous behavior driven by confirmed track due to ER from Z(2) [k]
(with both FM and CW information)

650 ,I

1 - search mode

600 2 - interrogate mode
3 - prosecute mode

550

500

450

400 F

200

150

100-

0
1 2

Behavioral mode

500 -

450 -

400 -

30F_ W

250-

200

150

1001-

50

0 '- d
0.5 0.75 1 1.25 1

Speed decision (m/s)
5

F

Heading decision (*)
100 90 80 70 60 50 40

DOA I)

283

F

DOA (*)

e, esa. . .E I - I0 I I , , M , 650 ,650 !

450

400

300 
-[



350CRLS 35 CRLB

MMMM BS+C RMSE( 3 BS+C1 RMSE2 BENS array moving
(Bi RME""' Bi RMSE

1  
L alongside with ER

------ Bi RM8E - 30 - D - RM3E0

250 - RMSE
2 

, [k] - 250- RMSE
21  

1k]
with broadside behavior with broadside behavior

200- RMSE(
21  

[k] ^ 200- RMSE(2) [k]
with broadside with closed-in behavior with broadside with closed-in behavior

150- 150->
(1/2) RMSEk (Rp2)RMSECRWJI [k] RMSEL p [kc]

with bistatic autonomous behaviors with bistatic autonomous behavior

50 - 50

0 5 10 15 20 25 30 35 40 45 50 0.05 01 0.15 0.2 0.25
CR5.8 RMSE of positon (m) CRLB RMSE of speed (m/S)

Figure 6.15: Plots of CRLB RMSEs for tracks due to ER related to Figure 6.13. For each plot, a particu-
lar prosecute behavior is applied on OEX AUV, and driven by confirmed track due to ER abstracted from
contact report Z'[k] or Z(2 )[k]. The CRLB RMSE obtained for track due to ER is then denoted as

CRBMostonspe [k] or RMSE (2 )
RMSE LB,positionspeed CRLB,position/speed[k] respectively, and plotted as shown. "BS

RMSE RLB,position/speed [k]" represent the CRLB RMSEs with broadside behavior driven using Z2 [k],

and are plotted in yellow. "BS+CI RMSEggLBposition/speed[k]" represent the CRLB RMSEs with broad-

side with closed-in behavior using Z(2) [k], and are plotted in cyan. "Bi RMSELBpostio/speed

"Bi RMSE( 2) 5
CRLB,position/speed[k]" represent the CRLB RMSEs with bistatic autonomous behavior using

ZM'[k] and Z( 2 )[k], and are plotted in green and red respectively. In terms of RMSEk], BS
behavior produces worst (highest) CRLB RMSE, followed by BS+CI behavior, and then Bi behaviors

producing best (lowest) CRLB RMSEs. In terms of RMSERLB speed[k], BS and BS+CI behaviors are

comparable in their CRLB RMSEs, depending on the time of their runs, while Bi behavior offers best
(lowest) CRLB RMSE.
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6.1.4.1.3 Comparison of Bistatic Autonomous Behavior using Different Objective Functions

The objective function fbistatic([rp #r]T) of the bistatic autonomous behavior in (6.9) has been formu-

lated with the intent to rectify the problem associated with the differing units arising from taking the trace

of the terminal PCRLB[k + KIk, vr,, r]. The expression in (6.9) is clearly the square-root of the

weighted sum-of-squares of the terminal RMSECRLBposition[k +Kjk, r, anld RMSECRLBspeedk

Klk,vr, ,rq]. Here, the term (T,) 2 is the weight applied on the square of the terminal

RMSECLB,speed [k + KIk, vrp, #r ]. By examining the recursive computation of the terminal PQ)LB

K Ik, r , Orq] in (6.8), it is clear that the terminal RMSE CRLB,position [k+ Kik, Vr,, #rg] has implicitly ac-

coute fr he ffctoftheprviusRMSE 0W
counted for the effect of the previous CRLB,speed [k + K - 1k, vr,, #r]. Therefore, in addition to

the objective function fbistatic([Vr, #r]T) in (6.9), a different objective function using only the terminal

RMSEC LB,position[k + Kk, ,, is investigated here. This gives rise to the two objective functions

for the bistatic autonomous behavior. They are expressed as

fbistaticA([VrP Prq]T) = fbistatic([r, (Prq]T) in (6.9)

= J(RMSE LBpostion [k + Kik, vrP, #rq + (RMSECLB speed [k + KIk, p, rq]) (Tp) 2 (6.11)

and

fbistaticB([Ir, #Prq]T) = RMSECLBposition [k + KIk, vrp, #r . (6.12)

Figure 6.16 illustrates the simulated results of tactical scenario A (given in Figure 6.8) obtained

with the bistatic autonomous behavior using the objective functions fbistaticA([Vr, #r]T) in (6.11) and

fbistaticB ([VrP 'Pr ]T) in (6.12), and driven by the confirmed tracks due to the ER abstracted from the con-

tact report Z( 2) [k] (with both FM and CW information). Although the behavior using

fbistaticB ([VrP Pr9]T) brings the OEX AUV slightly closer to the ER, the adaptive survey paths of the ve-

hicle with behavior using both objective functions are generally considered similar here. This is not sur-

prising, considering that the teinal RMSECLB,position [k + KIk, vrp, #r] has implicitly accounted for

the effect of the previous RMSE CRLB,speed[k + K - 1|jk, Vr,

The CRLB RMSEs for the tracks due to the ER, as related to the simulated results in Figure 6.16,

are plotted in Figure 6.17 for ping k = 1 to 650. For each plot, the bistatic autonomous behavior using
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either objective function fbistaticA([orp #rq]T) or fbistatic ([VPr, r]T) is applied on the OEX AUV, and

is driven by the confirmed track due to the ER abstracted from the contact report 2) [k]. The CRLB

RMSE obtained for the track due to the ER is then denoted as RMSE (2) [k], and plotted asCRLB,position/Ispeed ,adpotda

shown. It is evident that the behavior using fbistaticB ([Vrp (Pr]T) achieves slightly better (lower) CRLB

RMSEs, particularly toward the end of the run (as observed from ping k = 480 onward). Nonetheless,

the behavior using both objective functions are generally considered similar here. Therefore, the bistatic

autonomous behavior using fbistaticA([Vrp #rq]T) = fbistatic([rp (Prq]T) is utilized next in the simula-

tions of tactical scenarios B and C of Sections 6.1.4.2 and 6.1.4.3 respectively.
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Figure 6.16: Simulated results of tactical scenario A in Figure 6.8 with bistatic autonomous behavior us-

ing different objective functions applied on OEX AUV, and driven by confirmed tracks due to ER ab-
stracted from contact report Z(2)[k] (with both FM and CW information). Stationary DEMUS source is

plotted in green. OEX AUV towing BENS array is plotted in red for behavior using fbistatiCA, and in blue

for behavior using fbistatiCB. OEX AUV is initially on fixed survey path in search mode, and switches to

adaptive survey path in prosecute mode upon tracking entry of ER. Moving ER, towed by CRV Leonar-

do, is plotted in gray and is heading east. Confirmed tracks are not shown here since they varied for be-

havior with different objective functions. Although the behavior using fbistatiCB brings the OEX AUV

slightly closer to ER, the adaptive survey paths of vehicle with behavior using fbistatiCA and fbistatiCB are
generally considered similar here.
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Figure 6.17: Plots of CRLB RMSEs for tracks due to ER related to Figure 6.16. For each plot, bistatic
autonomous behavior using either objective function fbistaticA or fbistaticB is applied on OEX AUV, and

driven by confirmed track due to ER abstracted from contact report Z(2) [k]. The CRLB RMSE obtained

for track due to ER is then denoted as RMSEgCLBposition/speed[k], and plotted as shown. The CRLB

RMSEs with bistatic autonomous behavior using fbistaticA are plotted in red. The CRLB RMSEs with
bistatic autonomous behavior using fbistaticB are plotted in blue. Although the behavior using fbistaticB
achieves slightly better (lower) CRLB RMSEs, particularly toward end of the run (as observed from ping
k = 480 onward), the CRLB RMSEs with behavior using fbistaticA and fbistaticB are generally considered
similar here.
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6.1.4.2 Tactical Scenario B: Concurrent Activity of Multiple Behaviors in Prosecute Mode

The bistatic assets utilized for tactical scenario B is same as those used in the GLINT 2009 Run (see Sec-

tion 4.1.4.1). This simulated scenario follows closely to tactical scenario A in Figure 6.8 of Section

6.1.4.1, but with the bistatic assets deployed closer to one another. The setup of the simulation is depicted

in Figure 6.18. For this simulated scenario, the stationary DEMUS source is similarly simulated to

transmit both the FM and CW sonar pulse signals concurrently. Specifically, the LFM sonar pulse signal

is used. The ER, towed by the CRV Leonardo, is used to simulate a target cruising slightly south-east at 2

m/s from ping k = 1 to 650. The OEX AUV, towing the BENS array, commences the mission in search

mode by moving the vehicle in fixed survey path. This tactical scenario is simulated to illustrate the con-

current activity of the bistatic autonomous behavior, source stand-off behavior, and direct-blast masking

region stand-off behavior in the reactive behavior-based autonomy algorithm in prosecute mode. The

Figure 6.18: Tactical scenario B with stationary DEMUS source plotted in green, fixed survey path taken
by OEX AUV in search mode plotted in light green, and CRV Leonardo towing ER plotted in gray.
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amount of forward-time horizon K has been set to 5 here. The synthetic data is generated for contact re-

port Z(2) [k] (with both FM and CW information) at the output of the sonar signal processing algorithm

with Poisson clutter model [13,24].

By using the confirmed track due to the ER abstracted from the synthetically generated contact

report Z(2 ) [k] (with both FM and CW information), the simulated results of tactical scenario B at differ-

ent pings k are illustrated in Figure 6.19. The OEX AUV is initially on fixed survey path in search mode

as shown in Figure 6.19(a), and switches to adaptive survey path in prosecute mode upon tracking the

entry of the ER as depicted in Figure 6.19(b). The bistatic autonomous behavior is activated to maneuver

the vehicle adaptively to optimize the bistatic sonar tracking performance. The AUV then skirts along the

source stand-off circle in Figure 6.19(c) with the concurrent source stand-off behavior to avoid closing in

on the DEMUS source. The bistatic autonomous behavior then brings the OEX AUV closer to the ER as

shown in Figure 6.19(d) with the desire to increase the SNR of the target, while at the same time keeping

the ER near (but not exactly at) the broadside of the BENS array (for optimal SNR). Subsequently, in

Figures 6.19(e) and 6.19(f), the vehicle deflected south from the optimized path in Figure 6.19(d) with the

concurrent direct-blast masking region stand-off behavior to prevent the ER from entering deeper into this

masking region. The bistatic autonomous behavior eventually effected a special maneuver for the AUV

in Figures 6.19(g) to 6.19(i), just like that observed in the SRRCW,(dB) [k, pi] (right) plots of Figures

6.12(g) to 6.12(j), to prevent the bistatic reverberation-ridge region from widening and engulfing the re-

ceding ER. Figure 6.20 depicts the plots of behavioral mode, speed decision, and heading decision in the

reactive behavior-based autonomy algorithm for the simulated results in Figure 6.19, as well as the plot

of DOA of the driving confirmed track due to the ER. The effect of the concurrent source stand-off be-

havior and direct-blast masking region stand-off behavior on the speed and heading decisions are evident.
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Figure 6.19: Simulated results of tactical scenario B in Figure 6.18 at different pings k with bistatic au-
tonomous behavior, source stand-off behavior, and direct-blast masking region stand-off behavior applied
on OEX AUV, and driven by confirmed track due to ER abstracted from contact report Z(21[k] (with both
FM and CW information). Stationary DEMUS source is plotted in green. OEX AUV towing BENS array
is plotted in red. OEX AUV is initially on fixed survey path in search mode, and switches to adaptive
survey path in prosecute mode upon tracking entry of ER. Moving ER, towed by CRV Leonardo, is plot-
ted in gray (not visible) and is heading slightly south-east. Source stand-off circle, direct-blast masking
region stand-off ellipse, and next-pulse masking region stand-off ellipse are plotted in green. Bistatic am-
biguity ellipse for current contacts is plotted as light gray elliptical ring, and recent contacts are plotted as
dark gray dots. Confirmed tracks are plotted in magenta.
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Figure 6.19: Simulated results of tactical scenario B in Figure 6.18 at different pings k with bistatic au-
tonomous behavior, source stand-off behavior, and direct-blast masking region stand-off behavior applied
on OEX AUV, and driven by confirmed track due to ER abstracted from contact report Z(2)[k] (with both
FM and CW information). Stationary DEMUS source is plotted in green. OEX AUV towing BENS array
is plotted in red. OEX AUV is initially on fixed survey path in search mode, and switches to adaptive
survey path in prosecute mode upon tracking entry of ER. Moving ER, towed by CRV Leonardo, is plot-
ted in gray (not visible) and is heading slightly south-east. Source stand-off circle, direct-blast masking
region stand-off ellipse, and next-pulse masking region stand-off ellipse are plotted in green. Bistatic am-
biguity ellipse for current contacts is plotted as light gray elliptical ring, and recent contacts are plotted as
dark gray dots. Confirmed tracks are plotted in magenta.

(e) k = 381 (f) k = 401
AUV in prosecute mode with AUV in prosecute mode with

bistatic autonomous and bistatic autonomous and
direct-blast masking region stand-off behaviors direct-blast masking region stand-off behaviors
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Figure 6.19: Simulated results of tactical scenario B in Figure 6.18 at different pings k with bistatic au-
tonomous behavior, source stand-off behavior, and direct-blast masking region stand-off behavior applied
on OEX AUV, and driven by confirmed track due to ER abstracted from contact report Z(2 ) [k] (with both
FM and CW information). Stationary DEMUS source is plotted in green. OEX AUV towing BENS array
is plotted in red. OEX AUV is initially on fixed survey path in search mode, and switches to adaptive
survey path in prosecute mode upon tracking entry of ER. Moving ER, towed by CRV Leonardo, is plot-
ted in gray (not visible) and is heading slightly south-east. Source stand-off circle, direct-blast masking
region stand-off ellipse, and next-pulse masking region stand-off ellipse are plotted in green. Bistatic am-
biguity ellipse for current contacts is plotted as light gray elliptical ring, and recent contacts are plotted as
dark gray dots. Confirmed tracks are plotted in magenta.
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Figure 6.20: Plots of behavioral mode, speed decision, and heading decision in reactive behavior-based
autonomy algorithm for simulated results in Figure 6.19 with bistatic autonomous behavior, source stand-
off behavior, and direct-blast masking region stand-off behavior driven by confirmed track due to ER ab-
stracted from contact report Z(2 ) [k] (with both FM and CW information), as well as plot of DOA of driv-
ing confirmed track due to ER.
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6.1.4.3 Tactical Scenario C: Fully Autonomous and Persistent Bistatic ASW Surveillance
Solution

In tactical scenario C, the simulation is extended to include multiple targets to demonstrate the fully au-

tonomous and persistent bistatic ASW surveillance solution considered in this thesis. The setup of the

simulation is depicted in Figure 6.21. For this tactical scenario, the stationary DEMUS source is likewise

simulated to transmit both the FM and CW sonar pulse signals concurrently. Specifically, the LFM sonar

pulse signal is used. The OEX AUV, towing the BENS array, commences the mission in search mode by

moving the vehicle in fixed survey path. Three targets are considered in this scenario. The first target,

called Unknown2, is simulated to cruise eastward at 2 m/s from ping k = 50 to 200. The second target,

called Unknown], is simulated to cruise northward at 2 m/s from ping k = 180 to 350. It is evident that

both Unknown2 and Unknown] are present in the tactical scene from ping k = 180 to 200, but are

Figure 6.21: Tactical scenario C with stationary DEMUS source plotted in green, fixed survey path taken
by OEX AUV in search mode plotted in light green, and targets plotted in gray. Three targets exist in this

scenario, and they are, in order of appearance: (i) Unknown2, (ii) Unknown], and (iii) LEO/ER.
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simulated to exhibit distant acoustical measurements. The purpose of doing so is to demonstrate that the

target tracking and reactive behavior-based autonomy algorithms are able to function in the presence of

multiple targets. The third target, called LEO/ER, is essentially the ER, towed by the CRV Leonardo, and

is simulated to cruise eastward at 2 m/s from ping k = 400 to 800. The amount of forward-time horizon

K has been set to 5 here. The synthetic data is similarly generated for contact report Z M [k] (with both

FM and CW information) at the output of the sonar signal processing algorithm with Poisson clutter

model [13,24].

By using the confirmed tracks due to the targets abstracted from the synthetically generated con-

tact report Z(2) [k] (with both FM and CW information), the simulated results of tactical scenario C at

different pings k are illustrated in Figure 6.22. The results clearly show the transition of behavioral

modes in the OEX AUV in response to the existence of the confirmed tracks due to the targets. The vehi-

cle is initially on fixed survey path in search mode as shown in Figures 6.22(a) to 6.22(c). It then transits

to interrogate mode in Figure 6.22(d) in response to the confirmed tracks due to Unknown2 and its ghost,

before it switches to prosecute mode in Figures 6.22(e) to 6.22(g) and uses the bistatic autonomous be-

havior. In Figure 6.22(g), both Unknown2 and Unknown] are tracked. However, since the former con-

firmed track has higher ranking in the active track priority, the prosecute behavior is driven by this track.

When Unknown2 disappears in Figure 6.22(h), the AUV transits to interrogate mode to interrogate the

confirmed tracks due to Unknown] and its ghost. Subsequently, it switches to prosecute mode in Figures

6.22(i) to 6.22(k) and uses the bistatic autonomous behavior. When Unknown] disappears, the OEX

AUV is commanded to return to the fixed survey path in Figures 6.22(1) and 6.22(m). Finally, the vehicle

transits to interrogate mode in Figure 6.22(n) in response to the confirmed tracks due to LEO/ER and its

ghost, before it switches to prosecute mode in Figures 6.22(o) to 6.22(q) and uses the bistatic autonomous

behavior. When LEO/ER disappears, the AUV is once again commanded to return to the fixed survey

path in Figures 6.22(r) and 6.22(s). Figure 6.23 depicts the plots of behavioral mode, speed decision, and

heading decision in the reactive behavior-based autonomy algorithm for the simulated results in Figure

6.22, as well as the plot of DOA of the driving confirmed tracks due to the targets. The transition of be-

havioral modes is clearly shown in the behavioral mode plot. Both the behavioral mode and DOA plots

clearly reveal the activity at which the three targets are tracked and prosecuted. This simulated scenario

has clearly demonstrated the fully autonomous and persistent bistatic ASW surveillance solution, where it

is capable of handling multiple targets appearing and disappearing in the tactical scene.
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Figure 6.22: Simulated results of tactical scenario C in Figure 6.21 at different pings k with bistatic au-
tonomous behavior applied on OEX AUV, and driven by confirmed tracks due to targets abstracted from
contact report Z(2)[k] (with both FM and CW information). Stationary DEMUS source is plotted in green.
OEX AUV towing BENS array is plotted in red. OEX AUV transits between behavioral modes in re-
sponse to existence of confirmed tracks due to targets. Three existing targets are plotted in gray, and they
are, in order of appearance: (i) Unknown2, (ii) Unknown1, and (iii) LEO/ER. Source stand-off circle, di-
rect-blast masking region stand-off ellipse, and next-pulse masking region stand-off ellipse are plotted in
green. Bistatic ambiguity ellipses for current contacts are plotted as light gray elliptical ring, and recent
contacts are plotted as dark gray dots. Confirmed tracks are plotted in magenta.

(a) k = 3 (b) k = 51
Unknown2 appears

AUV in search mode AUV still in search mode

(c) k = 65
Tracking Unknown2

AUV still in search mode

(d) k = 67
Tracking Unknown2

AUV interrogating Unknown2 and its ghost
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Figure 6.22: Simulated results of tactical scenario C in Figure 6.21 at different pings k with bistatic au-
tonomous behavior applied on OEX AUV, and driven by confirmed tracks due to targets abstracted from
contact report Z(2)[k] (with both FM and CW information). Stationary DEMUS source is plotted in green.
OEX AUV towing BENS array is plotted in red. OEX AUV transits between behavioral modes in re-
sponse to existence of confirmed tracks due to targets. Three existing targets are plotted in gray, and they
are, in order of appearance: (i) Unknown2, (ii) Unknown1, and (iii) LEO/ER. Source stand-off circle, di-
rect-blast masking region stand-off ellipse, and next-pulse masking region stand-off ellipse are plotted in
green. Bistatic ambiguity ellipses for current contacts are plotted as light gray elliptical ring, and recent
contacts are plotted as dark gray dots. Confirmed tracks are plotted in magenta.

(e) k = 77 (f) k = 181
Tracking Unknown2 Tracking Unknown2

AUV prosecuting Unknown2 AUV prosecuting Unknown2

(g) k = 201 (h) k = 213
Tracking Unknown2

AUV prosecuting Unknown2 Unknown2 disappears
Unknown1 appears Tracking Unknownl

Tracking Unknownl AUV interrogating Unknown] and its ghost
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Figure 6.22: Simulated results of tactical scenario C in Figure 6.21 at different pings k with bistatic au-
tonomous behavior applied on OEX AUV, and driven by confirmed tracks due to targets abstracted from
contact report Z(2)[k] (with both FM and CW information). Stationary DEMUS source is plotted in green.
OEX AUV towing BENS array is plotted in red. OEX AUV transits between behavioral modes in re-
sponse to existence of confirmed tracks due to targets. Three existing targets are plotted in gray, and they
are, in order of appearance: (i) Unknown2, (ii) Unknown], and (iii) LEO/ER. Source stand-off circle, di-
rect-blast masking region stand-off ellipse, and next-pulse masking region stand-off ellipse are plotted in
green. Bistatic ambiguity ellipses for current contacts are plotted as light gray elliptical ring, and recent
contacts are plotted as dark gray dots. Confirmed tracks are plotted in magenta.

(i) k = 221 (j)k = 349
Tracking Unknown] Tracking Unknown!

AUV prosecuting Unknown] AUV prosecuting Unknown]

(k) k = 359
Tracking Unknown!

AUV prosecuting Unknown!

(1) k = 361
Unknown! disappears
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Figure 6.22: Simulated results of tactical scenario C in Figure 6.21 at different pings k with bistatic au-
tonomous behavior applied on OEX AUV, and driven by confirmed tracks due to targets abstracted from
contact report Z(2)[k] (with both FM and CW information). Stationary DEMUS source is plotted in green.
OEX AUV towing BENS array is plotted in red. OEX AUV transits between behavioral modes in re-
sponse to existence of confirmed tracks due to targets. Three existing targets are plotted in gray, and they
are, in order of appearance: (i) Unknown2, (ii) Unknown1, and (iii) LEO/ER. Source stand-off circle, di-
rect-blast masking region stand-off ellipse, and next-pulse masking region stand-off ellipse are plotted in
green. Bistatic ambiguity ellipses for current contacts are plotted as light gray elliptical ring, and recent
contacts are plotted as dark gray dots. Confirmed tracks are plotted in magenta.
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LEO/ER appears Tracking LEO/ER
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Figure 6.22: Simulated results of tactical scenario C in Figure 6.21 at different pings k with bistatic au-
tonomous behavior applied on OEX AUV, and driven by confirmed tracks due to targets abstracted from
contact report Z(2 )[k] (with both FM and CW information). Stationary DEMUS source is plotted in green.
OEX AUV towing BENS array is plotted in red. OEX AUV transits between behavioral modes in re-
sponse to existence of confirmed tracks due to targets. Three existing targets are plotted in gray, and they
are, in order of appearance: (i) Unknown2, (ii) Unknown1, and (iii) LEO/ER. Source stand-off circle, di-
rect-blast masking region stand-off ellipse, and next-pulse masking region stand-off ellipse are plotted in
green. Bistatic ambiguity ellipses for current contacts are plotted as light gray elliptical ring, and recent
contacts are plotted as dark gray dots. Confirmed tracks are plotted in magenta.
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Figure 6.22: Simulated results of tactical scenario C in Figure 6.21 at different pings k with bistatic au-

tonomous behavior applied on OEX AUV, and driven by confirmed tracks due to targets abstracted from

contact report Z(2)[k] (with both FM and CW information). Stationary DEMUS source is plotted in green.

OEX AUV towing BENS array is plotted in red. OEX AUV transits between behavioral modes in re-

sponse to existence of confirmed tracks due to targets. Three existing targets are plotted in gray, and they

are, in order of appearance: (i) Unknown2, (ii) Unknown1, and (iii) LEO/ER. Source stand-off circle, di-

rect-blast masking region stand-off ellipse, and next-pulse masking region stand-off ellipse are plotted in

green. Bistatic ambiguity ellipses for current contacts are plotted as light gray elliptical ring, and recent

contacts are plotted as dark gray dots. Confirmed tracks are plotted in magenta.
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Figure 6.23: Plots of behavioral mode, speed decision, and heading decision in reactive behavior-based
autonomy algorithm for simulated results in Figure 6.22 with bistatic autonomous behavior driven by
confirmed tracks due to targets abstracted from contact report Z12

1jjk] (with both FM and CW infor-
mation), as well as plot of DOA of driving confirmed tracks due to targets.
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Chapter 7

Conclusion

The purpose of this thesis is to develop a fully autonomous and persistent bistatic ASW surveillance solu-

tion against hostile underwater target in littoral waters using AUVs. To realize this solution, four broad

thesis objectives were listed in Section 1.3. These objectives led to the discussions in Chapter 3 to Chap-

ter 6, which collectively demonstrated the new Integrated Perception, Modeling, and Control Paradigm

for achieving the solution in this thesis. By taking reference to the work described in these chapters, the

primary contributions of this thesis are summarized in Section 7.1. The theoretical and practical signifi-

cance of the work are discussed, and the results obtained in this thesis are used to exemplify the contribu-

tions. This thesis has provided a new paradigm to achieve the required solution, which offers many rich

avenues for further research. Selected extensions to this thesis are proposed and considered in Section

7.2.

7.1 Summary of Work and Thesis Contributions

The primary contributions arising from the development of the solution in this thesis are summarized in

the following sections.

7.1.1 Integrated Perception, Modeling, and Control Paradigm

In Chapter 3, the system architecture of the integrated system for each AUV was presented. The system

was formulated as a closed-loop control system that allowed all the enabling technologies to work in tan-

dem. The intimate relationships between these technologies were examined in this thesis. The formula-

tion offered a new Integrated Perception, Modeling, and Control Paradigm - that exploited infor-

mation theory and environmental acoustics in the FM and CW signals - to enhance and achieve a

fully autonomous and persistent bistatic ASW surveillance solution using AUVs. This new para-

digm provided an appealing surveillance solution against submarines and mini-submarines in litto-
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ral waters. This new paradigm was then validated using the simulated data, and the GLINT 2009 and

2010 experimental data collected jointly with NURC.

7.1.2 Automated Perception

In Chapter 4, the automated perception was developed to provide the perceptive feedback to close the

loop in the integrated system and to automate the surveillance procedure. The procedure was responsible

for abstracting the vast hydrophone data from the receiver to the track report, which readily represented

the situation awareness and provided the perceptive feedback. Specifically, the surveillance procedure

was put into action by the sonar signal processing algorithm with dual-waveform fusion, and target track-

ing algorithm with information and environmental adaptations. The thesis also discussed the design con-

siderations and established the rules of thumb in defining the settings for the automatedperception.

The sonar signal processing algorithm was developed to process the hydrophone data from the

FM and CW signals to any variant of the contact report using essential signal processing techniques. Dif-

ferent variants of the contact report were considered to generalize the solution in this thesis. A new and

simple dual-waveform fusion of the FM and CW signals was developed to ensure that the stream of

contacts was reliably maintained even at unfavorable bistatic geometry, particularly one that re-

sults in high bistatic reverberation in the CW signal. This fusion strategy played important role in de-

termining the design for the target tracking algorithm, perception-driven control, and unipied model. As

observed in the sonar signal processing results of Figures 4.9 and 4.10 for the GLINT 2009 Run and Fig-

ures 4.13 and 4.14 for the GLINT 2010 Run, the reduced SNRs of the indirect CW blasts due to the target

resulted in the disappearance of the corresponding frequency measurements. The environmental-

acoustical analysis in Figure 5.4(f) for the GLINT 2009 Run and Figure 5.10(f) for the GLINT 2010 Run

suggested that the reduced SNRs were caused by the high reverberation occurring at endfire and bistatic

reverberation ridge respectively. Albeit missing frequency measurements in both runs, the corresponding

TOA and DOA measurements were still reliably produced with the new dual-waveform fusion. The tar-

get tracking results in Figure 4.23 for the GLINT 2009 Run and Figure 4.26 for the GLINT 2010 Run

clearly showed that the tracks due to the target were continued despite missing frequency measurements.

This eventually helped in improving the bistatic sonar tracking performance.

The target tracking algorithm was developed to automatically process any variant of the contact

report to the track report. This was performed using essential information processing techniques that

managed the contacts efficiently, and automatically tracked the appearance and disappearance of target -

in the presence of interferers and clutter - within the tactical scene. The algorithm was modified from the
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standard implementation to support the dual-waveform fusion in the sonar signal processing algorithm.

Information and environmental adaptations were applied to the algorithm that allowed the valida-

tion gate to be adjusted adaptively, in real-time, to achieve optimized tracking performance. These

adaptations were computed using the unified model, based on the belief about the pertinent information

and environmental characteristics of the contacts from the FM and CW signals. These adaptations al-

lowed the settings for target tracking to be autonomously adjusted. These relieved the need for manned

human operator to redefine the tracker settings, particularly when the underlying contacts experienced

significant information and environmental changes with unfavorable bistatic geometries, such as at end-

fire and bistatic reverberation ridge. The target tracking results in Figure 4.21 for the GLINT 2009 Run

and Figure 4.25 for the GLINT 2010 Run clearly showed that the target was successfully tracked with

these adaptations. Both the tracking performances in Figure 4.24 for the GLINT 2009 Run and Figure

4.27 for the GLINT 2010 Run revealed that target tracking with both FM and CW information (or with

Doppler information) outperformed that with only FM information (or without Doppler information).

7.1.3 Unified Model

In Chapter 5, the unified model was formulated that amalgamated both the information-theoretic and

environmental-acoustic models using the Woodward or alternate relations. These relations were vali-

dated in this thesis using information theory. The perceptive feedback, in a form of track report, was then

used by the unfied model to form the belief about the pertinent information and environmental character-

istics of the contacts from the FM and CW signals. This belief was subsequently used to compute the

information and environmental adaptations for the automated perception, and the predictive information

and environmental rewards for the perception-driven control. The information-theoretic model devel-

oped in this thesis established a good understanding on the complex propagation of the FM and CW

acoustical, the navigational, and the environmental measurement uncertainties to any variant of the

bistatic measurement uncertainty in the contact. The environmental-acoustic model developed here

provided a succinct representation of the corresponding SNRs of the FM and CW signals in the

contact. The predicted SNRs of the FM and CW signals - from Figures 5.3 and 5.4 using the bistatic

geometry in the GLINT 2009 Run and Figures 5.9 and 5.10 using the bistatic geometry in the GLINT 2010

Run - clearly revealed the variations of the SNRs with different geometries. These results provided a

deeper understanding on the effect of the AUV motion on the SNRs, particularly that of the CW signal

where the bistatic reverberation-ridge region was noted to be independent of the Cartesian velocity (or

equivalently the speed and heading) of the AUV/receiver. The environmental-acoustic model was then
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validated with the experimental data in Figure 5.11, and the results showed that the SNRs measured from

the data were indeed following closely to the SNRs predicted using this model.

7.1.4 Perception-Driven Control

In Chapter 6, the perception-driven control was developed to allow the perceptive feedback, in a form of

track report, to be deliberated against the mission-level objectives, and compute the AUV-motion decision

adaptively for driving the vehicle to the desired receiver state that optimized the bistatic sonar tracking

performance. The adaptive control was implemented using the reactive behavior-based autonomy algo-

rithm that allowed the unsupervised decision-making process to react to the perceptive feedback. As ob-

served in the results of Figure 6.19 for tactical scenario B and Figure 6.22 for tactical scenario C, the al-

gorithm demonstrated the capability of a fully autonomous surveillance mission. In these results, the

AUV commenced the mission in fixed survey path in search mode. When the target was tracked, the ve-

hicle then adapted the survey path by prosecuting the target in prosecute mode. The combined operation

of this algorithm with the target tracking algorithm clearly displayed the ability of the AUV to handle ap-

pearing and disappearing targets by appropriating automatic track initiation and termination, and to utilize

the active track priority to determine the track used for prosecution. A specific bistatic autonomous be-

havior in prosecute mode was developed in this thesis to execute, in real-time, a new non-myopic and

adaptive control for the vehicle. The predictive information and environmental rewards from the unied

model were exploited for the computation of the AUV-motion decision, and the decision was made with

the intent to improve the future bistatic sonar tracking performance. The formulation of this new be-

havior presented a new information-theoretic and environmental-based control, with the use of the

FM and CW signals, which is greatly contrasted from the traditional approach of either infor-

mation-theoretic control or environmental-based control (but not both at the same time). The re-

sults in Figures 6.13 and 6.15 for tactical scenario A clearly revealed that the adaptive survey paths taken

by the AUV planned by the new behavior were sensible and were indeed optimizing the tracking perfor-

mance. The target tracking results in Figure 6.15 further showed that better tracking performance was

obtained when the AUV was moving along the adaptive survey path planned by the new behavior with

both FM and CW information (or with Doppler information) than that with only FM information (or

without Doppler information).
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7.2 Future Work

There are also several possible extensions to this thesis, and two of these ideas - with significant impact

to the Integrated Perception, Modeling, and Control Paradigm - are described in the following sections.

7.2.1 Multistatic Sonar Tracking and Collaborative Control

With the modular design implemented for the new paradigm in this thesis, the concept of bistatic sonar

tracking in the automated perception and non-collaborative control in the perception-driven control can

be easily extended. The first and easiest extension of the bistatic sonar tracking to multistatic sonar track-

ing simply involves the use of multiple sources. For such tracking, data fusion is easily carried out in the

automated perception on each AUV/receiver by combining the local information from multiple sources

without requiring the need for UWACOMMS. The perception-driven control is still relying on the local

information to make the necessary AUV-motion decision to adapt the survey path for optimizing the bi-

static sonar tracking performance. However, with the use of multiple sources, there is a need to divide the

transmission bandwidth and/or time over these assets.

The next and more complex extension of the bistatic sonar tracking to multistatic sonar tracking

involves the use of multiple, and possibly heterogeneous, AUVs/receivers. An example of a multistatic

geometry involving an active source (denoted S), target (denoted T), passive receiver 1 (denoted RI), and

passive receiver 2 (denoted R2) at a particular time tk is depicted in Figure 7.1. As reported in [89], the

additional receiver allows: (i) the Cartesian position of the target to be accurately estimated by cross-

fixing; (ii) the Cartesian velocity of the target to be instantaneously estimated without the need for range-

rate computation; and (iii) the ghost for each receiver to be immediately resolved (also called deghosting)

without the need for any maneuvers in the corresponding AUV. In fact, by following the analysis in Fig-

ure 5.7 for each receiver in the bistatic geometry, and propagating the predicted TOA and DOA measure-

ment uncertainties of the target, the predicted bistatic measurement uncertainties P() [k, pg] of the target

at receiver 1 and R [k, pi] of the target at receiver 2 at a particular ping k are depicted in Figures 7.2(a)

and 7.2(b) respectively. The intensity at each Cartesian position pi represents the predicted bistatic meas-

urement uncertainty if the target was to reside at that position. High uncertainties - due to extremely low

SNRs - are noted at the forward scattering regions between the source and receivers. By extending
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Figure 7.1: Two-dimensional multistatic geometry involving active source (S), target (T),
passive receiver 1 (RI), and passive receiver 2 (R2). Dependency of quantities on tk is implied.

the automated perception to allow data fusion of both the local and communicated information (that is

local and communicated bistatic measurements), the corresponding uncertainty after this fusion is reduced

as shown in Figure 7.2(c). It is also evident that data fusion from multiple receivers eliminates the high

uncertainties occurring at the forward scattering regions.

To cater for multiple collaborative AUVs/receivers, the perception-driven becomes much more

complicated. The works by Grocholsky et al. [58,59] and Ryan et al. [114,115] provide excellent starting

points to consider the collaborative control of multiple AUVs required in this future work. A simple ex-

ample in Algorithm 6.1 illustrates the execution of the collaborative control for a team of M AUVs at each

control time interval K [114]. In the optimization problem for this control, it is also important to include

the coupling cost of the AUV-motion decisions across different vehicles.
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Figure 7.2: Predicted bistatic measurement uncertainties (a) |trace[fij' [k, p]] dB of target at receiver 1, (b)

|trace[R/2 (1 [k, pj]]|dB of target at receiver 2, and (c) Itrace[Rfusej' [k, p]]I dB of target after fusion from re-
ceivers 1 and 2 using information-theoretic model at a particular ping k. Here, pi E {pi, ..., PNJ denotes a

particular Cartesian position that target could possibly reside. The stationary source (S), moving target
(T), and moving AUV/receivers (RI and R2) are clearly indicated. Intensity at each Cartesian position pi

represents predicted bistatic measurement uncertainties.
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Algorithm 7.1: Example of collaborative control for a team of M A UVs at each
control time interval K [1141

1: m = 1.

2: while m ! M do

3: Determine a set of possible AUV-motion decisions {am} (in both speed and heading at fixed
depth) and compute the corresponding values in the objective function {fbstatic(am).

4: Communicate {am, fbstatic (am)) to all collaborative AUVs.

5: m = m +1.

6: end while.

7: m = 1.

8: while m:5 M do

9: Solve optimized AUV-motion decisions a
using {a', fiistatic(a')}, ... aM, fbistatic(aM)
conditioned on previously optimized AUV-motion decisions {d,.am-1)*

10: Communicate optimized AUV-motion decisions am to all collaborative AUVs.

11: m = m + 1.

12: end while.

For both the multistatic sonar tracking and collaborative control, it is clear that at least two levels

of communication are required. The first level of communication is the exchange of information neces-

sary for data fusion in the automated perception. The second level of communication is that required for

the collaborative control in the perception-driven control. It is then clear that the effectiveness of the

tracking and control relies heavily on the limited C3 capacity associated with UWACOMMS. Most often,

the communications is intermittent and exhibits significant latency. Therefore, the practical approach to

the multistatic sonar tracking and collaborative control for each AUV requires the modeling of such

communication phenomena over and above the Integrated Perception, Modeling, and Control Paradigm

presented in this thesis. In the absence of communications, each AUV/receiver will revert to the bistatic

configuration assumed in this thesis.

7.2.2 Non-Gaussian Tracking and Control

As discussed in Section 4.2.4, the Extended Kalman filter (EKF) was adopted as the filter kernel for the

bistatic sonar tracking in the automated perception. This implementation was used since the process and

measurement noise were assumed to be drawn from normal (or Gaussian) distributions, with Gaussianity

further presumed for the prior and posterior state estimates. However, the results in Figure 5.8(b) showed

that an increase in the measurement uncertainty of DOA measurement O6 [k] led to the need to represent
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the uncertainty of bistatic measurement z(')[k] = [xt[k] yt[k]]T as a "curved" covariance ellipse bend-

ing slightly along the equi-TOA ambiguity ellipse. This bending implied that the measurement noise no

longer obeyed the Gaussianity assumption required in the EKF. To allow such deviation to be accounted,

a more general recursive non-linear Bayesian filter (BF) can be used instead. This filter then invokes the

Bayes rule

posterior PDF at ping k

p (X t[k]|{ z (1)[1], ... zW[k]) oc
p(z(' [k] I Xt[k]) f p(Xt [k] I Xt [k - 1]) p(Xt[k - 1] [z(1)], ..., z()[k - 1]) dXt[k - 1] , (7.1)

likelihood function state prediction posterior PDF at ping k-1
(equivalent to (4.56)

inEKF)

measurement update (equivalent to (4.61) in EKF)

where p(-) denotes the probability density function (PDF). The likelihood function p(z()[k] I Xt[k])

then assumes the "curved" PDF depicted in Figure 5.8(b). Specifically, either the approximate grid-based

method [124], Monte-Carlo method (or particle filter (PF)) [7,112], or Gaussian-mixture method (or

Gaussian-sum filter (GSF)) [23,121] can be used to implement the non-Gaussian BF in the automated

perception. In this thesis, the perception-driven control was elegantly integrated with the probabilistic

target state estimation process in the automatedperception. If the filter kernel is changed to either one of

these non-Gaussian BF, modifications are then required in the control formulation. The work by Ryan

[114] provides good starting point to consider the development of a control strategy with non-Gaussian

probabilistic target state estimation process. Specifically, the PF was used in [114] and the objective func-

tion was computed using the entropy of the predicted posterior PDF at ping k + K. However, the main

disadvantage of using the PF in both the automated perception and perception-driven control is the high

computational cost. If the perception-driven control is running in tandem, the survey path of the AUV

will be adaptively adjusted to optimize the bistatic sonar tracking performance. This means that the

AUV/receiver will never put the target in any unfavorable bistatic geometry, such as at the endfire of the

receiver array as shown in Figure 5.8(b), which warrants the need for such non-Gaussian BE. Therefore,

the use of EKF in both the automated perception and perception-driven control suffices in most practical

situations.
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Appendix A

Derivation of Linearized Measurement Matrices

The linearized measurement matrices H U)(i )[kIk - 1]) e RNx 4 in (4.60), where j E {1,..., 6}, are de-

rived by taking the first-order gradient of the non-linear transformation vectors hUj)(xt) E RNX1 with

respect to xt E R 4 X1 , and evaluating them at xt = - 1]. These matrices are the Jacobian matri-

ces, and they are obtained as

1(2) () t[k k - 1])

H (Rt [kk - 1])

H (4) (Rt [klk - 1])

H(s) (U)[klk - 1])

H (6) ')[klk - 1])

= H (1) 

= 1
S i XhFi(X t=) ] ~ [kjk-1]

[VT~hA,(xt)1
=T

= 1
- t i V xh ) Xt=] 0 [kIk-1]

[V~thrr (X t)1
=

- t I i VX ) ]t=2 R([kjk-1]

= (s) (X0
thy

v h(xt) ah(xt) ah(xt) ah(xt) ah(xt) 1
xt axt 8yt 8xi apSt ]*
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(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

where

(A.7)



The detailed expressions of the partial derivatives above are derived using (4.47) to (4.50) as

ahar(xt) _ 1 x-xst) + xt-xr(tk)A
9xe c(tk) (rsik ] r k ] '

- - (yt-ys(t) + Yt-Yr(t (A.9)ayt C(tk) Tsk rrk] ' rA

ahl=r(xt) 0 (A.10)
ait

ahA=(xt) 0, (A.11)

ahrr(Xt) _ xt-xr(tk) (A.12)
a~xt rr[k]

Ohrr(Xt) Yt-Yr(tk) (A.13)art rr[k]

ahL-r(Xt) = 0, (A.14)axtc

ahrr(Xt) = 0, (A.15)
ayt

aho,(xt) __Yt-Yr(tk) (A. 16)axt r.[k]

ahoiXt) _ xt-xr(tk) (A.17)
8Yt rr[k]

ait = 0, (A.18)

ayt = 0, (A.19)

ahFi(Xt) - Fcw (afs[k] aftrk]) (A.20)
axt c(tk)V axt axt

ahFi(Xt) af- F sw (t[k] atr[(Ak]
ayt c(tk) kayt + yt )

a~lF1(XC - T _____ _______F_ (Xt)t[k] + (A.22)

ahFi(Xt) FcW (af.s~k] afr~k] (.3
a9t ctk) 9 t
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atsir[k] _ ±t-slr(tk)

8xt rs/r[k]
xt-xsrt)r 

[
rs/r[k]Irlrk

8tsr[k] p Yt-Ys/r(tk) _ yt-ys/r(tk) isir[k]
Oyt rs/r[k] rs/r[k]

afsfr[k] xt-xs/r(tk)

ait rslr[k]

ats/r[k] yt-ys/r(tk)

09yt rslr [k]
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(A.24)

(A.25)

(A.26)

(A.27)
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Appendix B

Uncertainty Analysis of Derived Measurements

The covariances of the derived measurement uncertainties in (5.10) to (5.15) are formulated here. The

expressions are obtained based on small acoustical, navigational, and environmental measurement uncer-

tainties that allow the use of the first-order linearization. By using (1.2), the covariance for ouT[k] in

(5.10) is given by

uA[k] = E{(dAr[k] - E{dAr[k]}) 2 1

= Ef(dAr[k]) 2} - E2 {dAr[k]}

=E {(d [ri[k] - ] - E2td r [k] - [k]

(E{(dT[k]) 2} - E2 dr[k]}) + E Rd r[k])2 - E2 td rr:In
[k -rbk d~t)) 1 I) IC(tk) l

= ao.[k] + E (c(tk) drb [k] -r [k] ac(t2 -E 2 c(t) drb [k] - rb[k] dc(tk))

lk cz(tk) L cz(tk)

= C .[k] +cz(t) )(]Efarb[k])z) _ E
2 drb [k]) - r 1 [k] (Ef(dc(tk))

2
1 -E2 fdc(tk)))

= u.~.k] + C 2 (tk) ab [k] - rb2[k] Cl(tk) (B. 1)
C4(tk)

Similarly, the covariances in (5.11) to (5.15) are obtained as [33]

a([k] = E{(drr[k] - Efdrr[k]})21
= b2 [k] qa[k] + a 2 [k] ab [k] - 2 a[k] b[k] Uab[k] (B. 2)

b [k]

Jrr~e[k] = E{(drr[k] - Etdrr[k]})(dL[k] - Efd0j[k]})}
2 a[k] Tb[k] q2[k] sin 0[k] (B.3)

b2[k] (.3

qx [k] = Efdxt [k] - Efdxt[k]))2}

- o,(tk) + of[k] cos 2 [k] + rr2[k] (q,[k]+ o,(tk)) sin2 r[k] +

2 urx,[k] cos 1[k] - 2 rr[k](arroi [k] + arr4r [k]) cos r[k] sin 7[k], (B. 4)
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a2[k] = E{(dyt[k] - IE{dyt[k]})21

= Oy2r(tk) + u,2, [k] sin2 7[k] + r?[k] (q,[k]+ ,(t,))COS27[k] +

2 oryr [k] sint7[k] + 2 rr [k](orre1 [k] + arpr [k]) cosr 1[k] sin i[k], (B. 5)

axtyt[k] = IE{(dxt [k] - IE{dxt[k])(dyt[k] - Etdyt[k]})}

= Uxryr(tk) + arrxr[k]sinr7l[k] + ary[k]cos17[k] + q,k]cosr][k]sinr4k] +

rr[k](aro,[k]+ rrpr[k]) COS 2 r7[k] - rr[k](arroi[k] +Ur[k]) sin 2 ri[k] -

r~?[k] (ag [k] + aO(tk)) cos r7[k] sin 7 [k]. (B.6)

Here, a[k] and b[k] are the numerator and denominator, respectively, of rr [k] given in (1.7),

qa[k] = E{(da[k] - lEtda[k]})21
= 4,[k] c 2 (tk) ac(tk) + 4 c 4 (tk) T[k] o, 2[k] + 4 rb[k] Urb[k], (B.7)

ab2[k] = lEf(db[k] - lEfdb[k]})2)
= 4 T[k] ac2(tk) + c2 (tk) o,[k] + ab[k] cos2 0[k] + 1
= sr[k] a [k] sin2 O[k] - 2 ubo,[k] cos 0,[k] sin S[k] j '

oab[k] = Ef(da[k] - lEfda[k]})(db[k] - IE{db[k]})}

= 4[r T [k] C(tk) 4c(tk) + c3 (tk)-Ti[k]uor [k] + (B.9)
r[k] uYb [k] cos O, [k] - rb o [k] arbqs [k] sin Osk]

17[k] = Oi[k] + Pr(tk), (B. 10)

arrxr[k] = lE{(drr[k] - IEtdrr[k]})(dxr[k] - Efdxr[k])}
S2 (-b[k] rb[k] + a[k] coso[k]) [k] - a[k] rb[k] sin 05 [k]axres[k], (B.11)

b2 [I] Crbxr~k b 2 [k] (Trsk]

arryr[k] = IE{(drr[k] - IEtdrr[k]})(dyr[k] - lEtdyr[k]))}
= 2 (-b [k] rb[k] +a [k] cos Os [k]) [k] 2 a[k] rb[k] sin k] ayre,[k] (B. 12)

b
2 [kc] UrbYT~ b

2 [k] yo[]

Urrr[k] = IE{(drr[k] - lEdrr[k]1)(d pr[k] - lEfdpr[k])}
S2 a[k]rb[k] cr (t) sin 6[k] .(B. 13)

b
2 [k] 4r I SJ(.1~
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The additional covariances are derived as

2b[k] = ]E{(dr[k] - Edr[k]})2

1 (xs(tk) - Xr(tk))2 (x2s(tk) + 4, (tk) + (ys(tk) - yr (tk)) 2 (ay2s(tk) + ay2,(tk)) +
rb2 [k] 2 (xs(tk) - xr(tk))(ys(tk) - yr (tk)) (xy,(tk) + UxrYr (tk))

(B. 14)

as[k] = E{(d6,[k] - Ed6,[k])2

(Xs(tk) - xr(tk))2 (Y2,(t) + Uy2,(t)) +

(ys(tk)-yr(tk))2 (C2,(tk)+Ux,(t)) - + 092.[k] + r(tk),

2 (Xs(tk) - xr (tk)) ys(tk) - Yr (tk)) (ax,,(tk) + UxY,,(tk)

(B. 15)

Urbes[k] = E{(drb[k] - IEdrb[k]l)(d~s[k] - EdO5[k]})}

((xs(tk) - xr(tk))2 - (yS(tk) - yr(tk))2 ) (Oxy,(tk) + axY,(tk)) +

n[k] [(xs(tk) - xr (tk))(ys(tk) - Yr(tk)) (-Ux2,(tk) - ex2,(tk) + oy2,(tk) + ay,(tk) (B. 16)

arbx,[k] = ]E{(drb[k] - Edrb[k]})(dxr[k] - E{dxr[kl})}

= 1- ] [ (Xs(tk) - xr(tk)) x2r(tk) + (ys(tk) - Yr(tk)) Ux,,(tk)], (B. 17)

Urbyr[k] = ]E{(drb[k] - E{drb[k]})(dyr[k] - IEfdyr[k]1)}

Sr[k] (xs(tk) - Xr(tk)) exY,(tk) + (ys(tk) - Yr(tk)) Uy2,(tk) ] , (B. 18)

xer,[k] = IE{(dxr[k] - Efdxr[k]1)(dO6[k] - Efd6s[k]})}

= [k]2] ((xs(tk) - Xr(tk)) Uxryr(tk) + (ys(tk) - yr(tk)) Ux2r(tk), (B. 19)

ayre,[k] = E{(dyr[k] - Etdyr[k])(dOs[k] - EfdOs[k]})}

= [ [ -(xs(tk) - xr (tk)) ay2r (tk) + (ys(tk) -yr (tk)) Uxy(tk) ] , (B. 20)
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Appendix C

Uncertainty Analysis of Acoustical Measurements

C.1 Constant Non-Fluctuating Target (NFT)

The uncertainties in the acoustical measurements rtI[k], 8t[k], and F [k] are derived in this section for the

constant non-fluctuating target (NFT). The following derivations are carried out by adapting and apply-

ing the work by Dogandid and Nehorai [44] - that examined the joint acoustical measurement uncertain-

ties for NFT - using the Cramer-Rao lower bound (CRLB) for an unbiased estimator. It is assumed that

each of the indirect blasts in the received signal is spatially and temporally separated, which allows the

CRLB to examine the local accuracy for the indirect blast one at a time [138]. This is also the same rea-

soning stated to justify the use of the probabilistic data association (PDA) in Section 4.2.2, which assumes

that multiple targets, if they exist, are not closely spaced in their acoustical measurements. By denoting

the transmitted baseband sonar pulse signal at the source as siae[n] - where p E {FM, CW} is used to

distinguish between the FM and CW signals, and n is the time-sample index - the baseband data (or the

complex envelope of the hydrophone data) in the 0 processing of the sonar signal processing algorithm

shown in Figure 4.1, with only one indirect blast impinging the receiver array, is given by [44]

xase[n] = v(6) -A* sase [n - 70] ejn + e ae[n], n= 0,...,NP - 1 , (C.1)

where

6'I DOA of the 4' indirect blast (which means that FM is estimated as 6i[k]);

A'P unknown constant complex amplitude resulted from the attenuation for NFT;

r;1P TOA of the 0 indirect blast (which means that 7 FM . 6 tFM is estimated as ri[k],

8to = T! = 1/Fr is the sampling interval in the ip processing after demodula-

tion, and F* is the sampling frequency in the 4' processing after demodulation);

tof bistatic Doppler angular frequency shift experienced by 4 indirect blast (which

means that (Fcw + -Fscw) is estimated as Fi [k]);
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NO = TF -P* number of time samples corresponding to the pulse width TO; and

eae[n] additive zero-mean complex Gaussian noise.

E CMx1

Here, v(O0) is the array manifold vector for the receiver array with M hydrophones, and is expressed as

[72,139]

v(00) = [v1 (9'P) --- Vm(69) - M (60) TE CMx1 (C.2)

For the uniform linear array (ULA) considered in this thesis, the array manifold vector becomes

1j2 F s 1 j (-PI0 d cos 0 0

v(64 ') = j2xFc" P9mcosV) pxm cj - cO 3)

j2Fc PXM cos 0 j pxy cos C j (-M d cos 00C
-(1 e c . .e c Ac

where F4 is the carrier frequency of the $ sonar pulse signal, Ac = F*/c is the wavelength of the ip so-

M+1nar pulse signal, c is the underwater sound speed, d is the hydrophone spacing, and pxm = (-m + 2)d

is the hydrophone position along the x-axis. Clearly, the expression in (C.3) has assumed that the array

has identical isotropic hydrophones with same spatial weights. With the expression (C. 1), the narrowband

signal assumption, as mentioned in Section 4.1.1.3, has been invoked so that the time compression and

expansion of sbase[ - are ignored. Similarly, the narrowband array assumption, as mentioned in Section

4.. 1.2, has been invoked that results in [n- 7* - m(O6)] becoming spatio-temporal separable as

m (6P) - sbPasen -~ r7]. Here, the time-sample advance/delay nm(6O) at the m* hydrophone is repre-

sented by the equivalent phase advance/delay vm(6). The expression in (C. 1) has included the time

delay, Doppler frequency shift, attenuation, and directivity effects for the received signal of the indirect

blast. By stacking all the NO time samples of the baseband data into a single vector, (C. 1) becomes

X = + bae'(C4

Xbase v(0*) @ A' <p(r'*, w*) + ebase (C.)

where symbol 0 denotes the Kronecker product,

xbase = xbase[0] base base (C.5)
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<p (r7't, o) = [sfase[0 - r7"] ei"*' --- sase[n - ..] - ase[NO - 1 - ri7] ejo*(NIP-1)

e CNVx1 (C.6)

ebase ' 1  ] MNx1 (C.7)

Here, else~CX(0, R) is the additive zero-mean complex Gaussian noise with spatio-temporal covari-

ance W = E{(ebase)(ee)H1 9 E CMNxMN , where I and CO are the spatial and tem-

poral covariance matrices respectively. By assuming that the additive noise is spatially and temporally

white, the spatial-temporal covariance becomes R = V ( C* = (VP)21MNxMN*, where the noise

variance in the ip processing is (e)2 E R'x.

With the use of the dual-waveform fusion, as outlined in Algorithm 4.2, in the sonar signal pro-

cessing algorithm, the FM processing is used to estimate the DOA OFM and TOA r7FM (using 0i[k] and

-r [k] respectively), while the CW processing is used to estimate the Doppler angular frequency shift w cW

(using F [k]) separately. With the TOA correction, as expressed in (4.9) or depicted in Figure 4.4, in the

dual-waveform fusion, there is some coupling between the Doppler angular frequency shift cocw (using

F1[k]) and TOA 7 FM (using 4r[k]). Nonetheless, this coupling is negligible and ignored in this thesis to

reduce the complexity. Therefore, it is reasonable to assume that the unknown parameters estimated by

the FM and CW processing chains are decoupled. This then gives rise to the two sets of unknown param-

eters for the given xae in (C.4), and they are expressed as

0 FM [FM FM 0 FM 0 FM gFM]T = FM) ImAFM gFM FM ( )FM)2T ( g)

cw w [c w ~W g w ]Tw r = [ Re{Acw} Im{Acw} ,cw cw)2], (C.9)

where AV and (e P)2 are the nuisance or unwanted parameters. For the purpose of generalization, the

baseband data xae in (C.4) for these two processing chains are given by

Xbase = v(0) 0 A <p(v) + ebase , (C.10)

where superscript ip is implied. Here, v = r7FM in FM processing and v = cocw in CW processing. The

two sets of unknown parameters in (C.8) and (C.9) are similarly generalized by dropping the superscript

4'as

0 = [0 02 03 04 95 ]T = [Re{A} Im{A} 0 V U2 ]T, (C.11)
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where 0 = 0 CW in CW processing is known (from 0 FM in FM processing). With the generalization, the

derivations of the CRLB can then be done once instead of twice. For the baseband data given in (C.10),

the log-likelihood function during the pulse duration is then expressed as

L(O) = In C.N(xbase; m(0), K(O) 10)

= -ln(7MN det{K(0)}) - (Xbase - m(O))H K- 1 (0)(Xbase - M(O)),

where m(0) e CMNx1 is the mean of Xbase, and K(0) E CMNxMN is the covariance matrix of Xbase, and

they are obtained as

m(0) = v(0) 9 A p(v) = v(6) 9 (Re{Al+ jIm{A}) <(v) = v(0 3 ) 0 (01 + j02) <(04), (C.13)

K(0) = U 2lMNxMN = 151MNxMN - (C. 14)

The Fisher information matrix (FIM), denoted j(0) E Rsxs, is then obtained as [139]

J(0) = E{VL() -VTrL(e)} = -E VeT(vrL(0)). (C.15)

With the log-likelihood function given in (C. 12) and the FIM defined above, the Slepian-Bangs formula

expresses [139]

J(O,o) = trace K-1(0) 8K-1(0)

Plugging (C.13) and (C.14) to (C.16) results in

aK(O)~ + 2 Re Kam ( )) K-1(0) . (C. 16)

(C.12)

~J(A,A)

j(0) = J(0, A)
J(vA)

. 0 1x2

J(A,0) J(A,v)

J(0, 0) J(0, v)
J(v,0) J(v,v)
0 0

where

J(A, A) = ||v(0)||2 . 2 12 X2,

J(0, A) = 2 Re f[1,j] A* av(q) v(0)1. ||<p(v)112 ,

J(v, A) = Iv(0)112 - Re f[1,j] 0 A* acp"(v)P (V)l ,
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1ix2
0
0

J(2, o2) .I
J(A,A)

j (0, A)
j(v,A)
0 1x2

jT(0, A)
J(0, 0)
J(v,0)
0

JT (v, A)
J(v, 0)
J(v,v)
0

I'O1x2
0
0

J(a, 2)

(C. 17)

(C.18)

(C.19)

(C.20)



j(A, 0) = Re [[1, -j]T 9 A vH (0) )} IIV) 2 = j T (0A), (C.21)

J(a, e) = |A2 2 p(v)|2 , (C.22)

J(v, 0) = |A|2 Re VH(0)e) al)(V)}, (C.23)

J(A, v) = | Iv(0)2 .Re [l, -j] T  Aq<pH A aq(V)1  JT (vA) (C.24)

J(0, v) = A 12 Re =v(6) - <pH(V) J(v, 0), (C.25)

J(v, v) = 2A 12 IgV(0)112. (V) 112 (C.26)

Gee
J(o o-cr) = .(C.27)

As shown in (C.17), the noise is disjoint from the received signal. The last row and column in J(0) can

be ignored without loss of generality, yielding

[J(A,A) JT(0,A) JT(v,A)
J(0) = J(0, A) J(0, 0) J(v, 0) . (C.28)

J(v,A) J(v,0) J(v,v) J

The CRLB matrix for an unbiased estimator is then given by [139]

C(A,A) C(A,0) C(A,v)
C(O) = C(,A) C(0,0) C(,v)= J-1(0). (C.29)

C(v,A) C(v,0) C(v,v)

The block C(6, v) can then be obtained, using the block-partitioned matrix inversion lemma, as

C(0, v) = [C(0,0) C(0,v) 1 _ [J(0,0 ) (V, 0) J(0, A) J- 1(AA) [JT (0, A) jT (v A)]
[C(v,0) C(v,v) j [J(v,0) J(v,v) - J(v, A)

S[J(0,0) - J(0,A) J-1 (A,A) JT(0, A) 0 1 (C.30)
0 J(v,v) -J(v,A) J'(A,A) JT(v,A)]

The spatial parameter of DOA 0 is clearly observed to be disjoint from the temporal parameter of TOA or

Doppler angular frequency shift v, which obviously verify the common assumption of disjoint relations.

Rewriting (C.30) results in
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C(Ov) = C(6, 6)

C(6,6) 2 2Al2 flp"v)11 2  2 a 1 H 0vH(e) 112 IV(6) I-2]2[AI 1pV)e1 12 Io II-2

= lV(q)I11 [1vV6)12 _ jav(9)v(O) Iv()12],

C(V, v) 2 2A2 (2 I1I2 - IaIH0 ZV) 112 11

2 SNRbeam [ 2 H 2 2

which exhibit the spatio-temporal duality. Here, SNR beam is the signal-to-noise power ratio at the beam-

formed data in the sonar signal processing algorithm expressed as

SNRbeam = |A12 IIV(O)112 11(p(V)112 Ue2 . (C.34)

To evaluate C(v, v) in (C.33), it follows from (C.6) that

||<p(7, o)|| 2  nsbase[n -77]2,

aI(,6 112 = l
1 OSbase[n-1] 12

avI0 mW) 112
- N- 2 |sbase[n - ]12 ,

I a(7,CO) 112 = j aNs1 iOSbase[n-] sbase[n - 17] 12

a4(770) (m&)II2 = I 1n Ibase[n - 7]|2 12

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)

By further defining

= ~ Isbase n-- ]| 2In 2 , (C.40)
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(C.31)

(C.32)

(C.33)

C(V, V),



S n=0 2 2 
- E n=f nsbase~n-n]|I (C.41)

(772 1E 2=CA1

(&)2 n s O-q Ebas I n- o asns ^-basen-n] (C.42)
(

and using them together with (C.35) to (C.39) in (C.33) results in

()2 1 1 1(C.43)
2 SN Rbeam 2 SNRbeam (o

C~o, ) = E [(r72. E-1 - 1 i.(.4
2 SN Rbeam [7 2 SN Rbeam (?1)2  (C.44)

To extend the above analysis from the discrete-time (DT) domain to continuous-time (CT) domain, the

equivalent time and unknown parameters are defined as t = n -St = n - Ts and [r, 2 ]T =

[r7 -St, o/8t]T = [7 -Ts, o -FsP]T respectively. The CT results are often easier to interpret, but at the cost

of neglecting finite sampling effects. The equivalent CT version of (C.40) to (C.42), in the limit of dense

sampling where St -> 0, becomes

E = f I|base(t T)2dt = StXN-Isbase[n ?r]\ 2 = StE, (C.45)

() 2  f TW t2 Isbase(t-T )1
2 dt - f t ISbase(t-T)1

2 dtl

(S6t),.N L = n |baen-17]12 - (6t)2 I:N=~1 n | Sbase [n-77]|1

6t-e
= () 2. (St) 2  (C.46)

2 0 asbaset-r) t - Sbase(t-T) dt 1

1 ~ ~ d 1 8f o~

1 z.N-iasbase[n-n] 2 N- aseSn-base 1

= (&)2 /(St) 2 . (C.47)

Similarly,

DTsignal power IA12 |Iv(9)II2 I )p(cOj)j2 
_Al

2 IIv(9)112 s
SNRbeam - SNRbeam,DT DT noise power2

A 2  _ |Al2 IV(9)I2 E _ CT signal power = A (C.48)
2 6t-O-bemCe t- CT noise power

Using the definitions of (C.45) to (C.48) in (C.43) and (C.44) results in

329



C(r, 7) = - 2 SN 1R(Cea9
2 SNRbeam . (C.50)

C(y2,1f2) = -&j 2j 1 (6t) (C.50)
2SNRbeam ('r)z

With the use of the dual-waveform fusion in the sonar signal processing algorithm, the FM pro-

cessing is used to estimate the TOA -r (using ri [k]), while the CW processing is used to estimate the Dop-

pler angular frequency shift D (using F [k]) separately. For a (L)FM sonar pulse signal transmitted at the

source, the complex envelope (or baseband signal) is given by [138]

FM 1~~ j-7yt 2 0 < t < Tw
sbase(t) = = ' " = eJyt2 [u(t) - u(t - T,)], (C.51)

b0 ,elsewhere

where i = FF,,/TFM = FbF,/T, is the chirp or sweep rate, and u(t) is the Heaviside (unit) step func-

tion. Using the expression of (C.5 1) in (C.45) and (C.47) results in

-(27r!LT) (27rFw)2

(D) 2  
-

(C.52)
12 12

Plugging (C.52) into (C.49) yields

C(r, T) 1 12 1 3 1 2] (C.53)
2 SNRbeam (27rFM)2 - 2 SNRbeam T $

From [54], the two-sided half-power or 3-dB TOA estimation resolution is given by Sr3dB = 0.886/Fb,,.

It follows that

C(, ) ,2 = '3dB (C.54)
C (-C, T) =oTCRLB 2.S83 (2 SNRbeam)

or

- T3dB 
(.5

UTTCRLB 1.60 7 2 SN Rbeam, (C.55)

which is the equation utilized by Barton [15] for high SNR target. To generalize the TOA estimation reso-

lution to cater for different measures (such as half-power, peak-to-null, and null-to-null TOA estimation

resolution [138]), Sr3dB/.60 7 in (C.55) is replaced by 6-r. With the dual-waveform fusion in the sonar

signal processing algorithm, the TOA of the indirect blast is estimated as the TOA measurement -j[k]
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from the FM processing. With all these in mind, the TOA measurement uncertainty can then be expressed

as

a-r, [k] 6T FM (.6
k= 2FM-SNRFM[k]

1 , (C.56)

which is the Woodward relation given in (5.25). Here, the functional dependency of ping k has been add-

ed; the superscript FM has been included to highlight that the TOA measurement 4r[k] is estimated by the

FM processing; and the proportionality constant KFM is the inverse of processing gain in the matched fil-

ter for relating the SNR at the matched-filtered data SNRFM [k] with the SNR at the beamformed data

SNRbeam.

As for CW sonar pulse signal transmitted at the source, the complex envelope (or baseband sig-

nal) is given by [138]

(if ,O<t<Tw
sae(t) = ~ ' " = [ - u(t - TW) , (C.57)

(0 ,elsewhere [

where TCW = Tw. Using the expression of (C.57) in (C.45) and (C.46) results in

(r)2 T (C.58)

Plugging (C.58) into (C.50) yields

C fl 1) 1 12
C(,D) = T (C.59)

2 SN Rbeam TW

or

C(.(F, F) 1 12 _ 1 [3 ,_\21C.0
C(F, F) = = 2 SNRbeam (27rTw)

2  2 SNRbeam w60)

Note the similarity of (C.60) with (C.53). From [54], the two-sided half-power or 3-dB frequency (or

equivalently Doppler frequency shift) estimation resolution is given by 3 F3dB = W.886/T,. It follows

that

C(F, F) = F,FCRLB = 2.583 (2F NRbeam)
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or

:--'F 3dB (.2
UF,FCRLB 1.607 2SRbeam 62)

which is the equation utilized by Barton [15] for high SNR target, and similar to that obtained in (C.55).

To generalize the frequency estimation resolution to cater for different measures (such as half-power,

peak-to-null, and null-to-null frequency estimation resolution [138]), 8F3dB/1. 6 0 7 in (C.62) is replaced

by 6F. With the dual-waveform fusion in the sonar signal processing algorithm, the Doppler frequency

shift of the indirect blast is estimated as the frequency measurement F [k] from the CW processing. With

all these in mind, the frequency measurement uncertainty can then be expressed as

|FL[k] 2 8Fcw (C.63)
F2 Kcw-SN RCW[k] 3

which is the Woodward relation given in (5.27). Here, the functional dependency of ping k has been add-

ed; the superscript CW has been included to highlight that the frequency measurement F [k] is estimated

by the CW processing; and the proportionality constant KCW is the inverse of processing gain in the

matched filter for relating the SNR at the matched-filtered data SNRCW[k] with the SNR at the beam-

formed data SNRbeam.

To evaluate C(6, 6) in (C.32), it follows from (C.3) that

IIv(6)112 = M, (C.64)

IIsin 0 =lp2 = sin 112 ((22__1_2 ,(C.65)

VH() 11 (27rfl6)( M= 2~ = 0. (C.66)VH()V(6) sin 06 EM=1 pxm 2

Substituting (C.64) to (C.66) in (C.32) yields

C 6 1 12 1 3 (Ac/sino 2C
C( 2 SNRbeam ( sin() 2  

27rS LI ' (C.67)2 S~bem GC snO(M 2
-1)d 2 2 SNRbeamI

332



where L = (M - 1)d denotes the array length (as such (M 2 - 1)d 2 t L2). Note the similarity of (C.67)

with (C.53) and (C.60). Since the CRLB concerns with finding the lower bound, C(6, 0) is smallest

when the array is steered to broadside with 6 = 90*. Using this understanding in (C.67) results in

C(O'0) = 1 3rC.8C(6,6) = 2SNRbeam 2 8

From [139], the two-sided half-power beamwidth (HPBW) or 3-dB beamwidth at broadside is given by

86 3dB = 0.886Ac/L (for M > 30). It follows that

= 2 = eSOdB (.9C(0, 6) =aOOCRLB 2.583 (2 SNRbeam)

or

~~~CLB 6
03dB ,(C.70)

=CRLB 1.607 2SNRbeam

which is the equation utilized by Barton [15] for high SNR target, and similar to that obtained in (C.55)

and (C.62). The HPBW of 6 6 3dB = 0.886Ac/L only applies for spatial weights with uniform taper. To

generalize the beamwidth to cater for different spatial weightings (such as Hanning, Hamming and many

others [61]), and different beamwidth measures (such as half-power, peak-to-null, and null-to-null beam-

width [139]), 6 63dB/1- 6 0 7 in (C.70) is replaced by 8O. With the dual-waveform fusion in the sonar sig-

nal processing algorithm, the DOA of the indirect blast is estimated as the DOA measurement 6[k] from

the FM processing. From Figure 1.19, it is clear that the beamwidth is not fixed, but varies according to

the different DOA measurement Oi [k] - being narrowest at 6
L [k] = 90* (broadside), and widening when

6[k] approaches 0' or ±1800 (forward or aft endfire respectively). With all these in mind, the DOA

measurement uncertainty can then be expressed as

.6eFM 
[k]

Yoo[k] = 42 KFM SNRFM [k]

which is the Woodward relation given in (5.26). Here, the functional dependency of ping k has been add-

ed; the superscript FM and subscript i have been included to highlight that the DOA measurement 6 [k] is

estimated by the FM processing; and the proportionality constant KFM is the inverse of processing gain in

the matched filter for relating the SNR at the matched-filtered data SNRFM [k] with the SNR at the beam-

formed data SNRbeam.
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C.2 Slowly Fluctuating Target (FT)

The uncertainties in the acoustical measurements ri[k], 6[[k], and Fi[k] are derived in this section for the

slowly fluctuating target (FT). The following derivations are carried out by adapting and modifying the

work by Van Trees [138,139] - that examined the joint TOA and frequency measurement uncertainties for

FT, and examined the DOA measurement uncertainty with FT - but in the approach adopted in Section

C. 1 for NFT. This is done by using the Cramdr-Rao lower bound (CRLB) for an unbiased estimator.

Similarly, it is assumed that each of the indirect blasts in the received signal is spatially and temporally

separated, which allows the CRLB to examine the local accuracy for the indirect blast one at a time [138].

By denoting the transmitted baseband sonar pulse signal at the source as sae[n] - where ' E {FM, CW}

is used to distinguish between the FM and CW signals, and n is the time-sample index - the baseband

data (or the complex envelope of the hydrophone data) in the V) processing of the sonar signal processing

algorithm shown in Figure 4.1, with only one indirect blast impinging the receiver array, is given by [44]

X e[n] = v(O) -AP sPase[n - 70] e " + ebase[n], n = 0, ... ,N* - 1, (C.72)

where

OW DOA of the ' indirect blast (which means that 0 FM is estimated as Og [k]);

A' complex zero-mean' 2 Gaussian random variable with unknown covariance

(oP)2 e Ri' (which means that the complex received amplitude resulted from

the attenuation is random for FT);

r7 7P TOA of the ' indirect blast (which means that 77FM . FM is estimated as Ti [k],

t = T = 1/F* is the sampling interval in the 'P processing after demodula-

tion, and F* is the sampling frequency in the ' processing after demodulation);

CO 7bistatic Doppler angular frequency shift experienced by 'P indirect blast (which

means that (Fcw + - Fcw) is estimated as Fi [k]);

NW = T F number of time samples corresponding to the pulse width Tx;

12 In actual complex received amplitude, it is never zero mean. A typical received amplitude could possibly have a known mean
of pA E Clxi (which implies that the signal waveform is known) but with unknown covariance (oA)2 E Rlxl (which implies
that the fluctuation is unknown). Zero mean has been adopted here for easier derivations.
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v(0'P) E CMX1 array manifold vector for receiver array with M hydrophones, and is given in

(C.2) and (C.3); and

ease [n] additive zero-mean complex Gaussian noise.

E CMX1

By stacking all the N* time samples of the baseband data into a single vector, (C.72) becomes

xbase = v(0) ® A <p(r7P, toP) + ease, (C73)

where symbol 9 denotes the Kronecker product, xse E CMNlx1 is given in (C.5), (p(rq*, &)') E CN
4 x1

Likeise edaeR~i h d
is expressed in (C.6), and eas E CMNIx1 is provided in (C.7). Likewise, e*aeCN(O, RP) is the ad-

ditive zero-mean complex Gaussian noise with spatio-temporal covariance R' = E{(ese)( ae)H}

0I 0 CP E CMN*xMNI, where I and C are the spatial and temporal covariance matrices respectively.

By assuming that the additive noise is spatially and temporally white, the spatial-temporal covariance be-

comes RP = VI & C = ()2M where ( 4I')2 e R 1' 1 is the noise variance in the ip pro-

cessing.

With the use of the dual-waveform fusion, as outlined in Algorithm 4.2, in the sonar signal pro-

cessing algorithm, the FM processing is used to estimate the DOA 6 FM and TOA r7FM (using 01 [k] and

xj [k] respectively), while the CW processing is used to estimate the Doppler angular frequency shift o CW

(using F [k]) separately. With the TOA correction, as expressed in (4.9) or depicted in Figure 4.4, in the

dual-waveform fusion, there is some coupling between the Doppler angular frequency shift w (using

F [k]) and TOA r FM (using ri[k]). Nonetheless, this coupling is negligible and similarly ignored in this

thesis to reduce the complexity. Therefore, it is reasonable to assume that the unknown parameters esti-

mated by the FM and CW processing chains are decoupled. This then gives rise to the two sets of un-

known parameters for the given xbae in (C.73), and they are expressed as

0 FM [FM gFM gFM FM]T = [ gFM 7 FM (rFM)2 (FM)2 ]T 4

OCW [ 6 (W gCW eC ]T = [,ocw (cW) 2 (a4cw)2|T, (C.75)

where (o ' )2 and (a0)2 are the nuisance or unwanted parameters. Similarly, for the purpose of generali-

zation, the baseband data xae in (C.73) for these two processing chains are given by

Xbase = v(6) 0 A p(v) + ebase , (C.76)
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where superscript ip is implied. Here, v = r/FM in FM processing and v = wCW in CW processing. The

two sets of unknown parameters in (C.74) and (C.75) are likewise generalized by dropping the superscript

4'as

0 = [ 06 62 63 64 T = [V6 ] , (C.77)

where 6 = cw in CW processing is known (from 6 FM in FM processing). With the generalization, the

derivations of the CRLB can then be done once instead of twice. It follows from (C.76) that the mean of

Xbase, denoted m(0) E CMNx1, and covariance matrix of Xbase, denoted K(O) E CMNXMN, are obtained

as13

m(0) = OMNx1, (C.78)

K(0) = of v(6)vH(6) H p(v)(V) + MNxMN

= 63 V(6 1)VH(6) 099(02 (pH(02) + 41MNxMN (C.79)

Plugging (C.78) and (C.79), together with the use of the matrix inversion lemma, to the Slepian-Bangs

formula given in (C.16) results in the Fisher information matrix (FIM), denoted J(0) E R 4 X4, expressed

as

J(0, 6) J(0, v) J(6, a) J(6,crj) 1 J(0,6) J(6, v) J(0, UA) J(6, C)1

J(0) - J(v, 6) J(v, v) J(v,u) J((,Va) _ J(6, v) J(v, v) J(v, aU) J(v,a)
J((, 26) J(, v) J( ,2yj) J(o, 2l) 2J(6,aj) J(v,) J(o ) J(j, )I'

.J2,6) J2a, V) J2, o2) 2a, o2) .J(, o2) J 2,o) J2, 2) J2o, o2)

(C.80)

where

j (avH(O) V(o)) (aVH(o) V(19Y 1

J(,)=2SNReam Re v( ( a( ) SNRbeam+l
-(0 2) bNeam 11 Re+IIcv,)1 2(.81

SNRbeam+l ||v(0)I|4 v[H(e) v(2) SNRbeam J IIV(a)v2 2
m 1) 2  SNRbeam+1 a

J,) S )2 2 1 vH( ) R (C.82)

2(,a) = (SNRea+m) (gW7 Re fav (0) v(6), (C.83)J (0 (TA (SNRbeam+ 1) 2 CA. I~V( )II t R e1  1

13 If footnote 12 in page 328 has been asserted with A-CN(pA, a,A), then m(0) = pA v(6) & <p(v), which makes the deriva-
tions even more tedious.
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2) 2 SNRbeam 1 (8aVH () .J(0,e2) = (SNRbeam +1)2 cT2IV(9)iI2 Re faev(6)J,

Re Ia"(v) 9 a (v)1
R2 SNRe av 'Jj SNRbeam+l

SNRbeam+l1||(()||4 ap(PHV) 12 SNReam + 1 1" Ol 2 11p 12]
_Nba~ Ik'I I a P()S~eml a

, a ) SNR 2 21 a < ,J(v,a,2) = bSNReam 1 Re aef)p ,J (V, UA (SNRbeam+ 1)2 UA2II(p(V)II2 La

2~~a) = 2 SNRbeam 1 Re ta(pH(V) (()}J (V, Ue (SNRbeam+1)2 ge2IIWpV-)I1I2  7a

(2, 2) SNReam 1
(C A (SNRbeam+1 aTA

J( 2, 
2) SNRbeam 1J A ) = (SNRbeam+) Sa +)2

2 )= -74 [(MN - 1) + (S~em1)21

(C.84)

(C.85)

(C.86)

(C.87)

(C.88)

(C.89)

(C.90)

Here, SNRbeam is the signal-to-noise power ratio at the beamformed data in the sonar signal processing

algorithm expressed as' 4

SNRbeam = Ag JIV(6)II2 Ikp(V)I 2 /o0e. (C.91)

The CRLB matrix for an unbiased estimator is then given by [139]

[C(0, 0)

C(0) = C(V, 6)

.C(of, 6)

C (0, Ue)

C(v, o)

C(o%, o )

C(o2, o2)
. 'O)

(C.92)

The block C(6, v) can then be obtained, using the block-partitioned matrix inversion lemma, as

C(0,v) = [ (6, 0)
'L C(V, 0)

1(6, U)

J(V, of)

J(0, ) 1
J(V, o ) J

C(0, v)
C(V,V)

-2oT, o2)
J(j, o2)

0 -1
J22'

2~,o)
JAV oU)

C9-1

(C.93)

4 If footnote 12 in page 328 has been asserted with A-CNpA, ox), then SNRbeam = (|/'A 2 + A }|v(6)|| 2 2 /2
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C (0, V) CQ6, UA

C(V, V) C (V, Aj)
C2a, V) C 2a, o2)

C2o,V) C2o, o2)

2~, 02) -)
J(oA e,0(0 2[J(0, 6) J (0, V)

J (0, V) j (V, V).I



where

J' = J(6, 9) - 2(9,A)j(ee) + j
2
(9,.Z)j(A 2

',) -2J(6,qA)J(9,qe)J(qAqe) (C.94)

2 = J(O, v) - 2 )( +2(va)J(eOe) - 2J(,eT)J(eT)J(rc7)

J(G202)~az ~)J(.2G2) - jZ(V'JV~e2Jc2,e) (C.95)

The spatial parameter of DOA 6 is also observed to be disjoint from the temporal parameter of TOA or

Doppler angular frequency shift v, which obviously verify the common assumption of disjoint relations.

Rewriting (C.93) results in

C(6, v) = [C(0) C(v,v)I, (C.96)

where

C(0, 6) = SNRbeam+ IIv(0)112 II av H(O() v(6) 1 ()|-2 , (C.97)NR 2 +1 8vO) _ 8v9beamL"a ie

C VV) SNRbeam+1 Ik(v)112 [IIa(()1 8cpH () qP(V) 11 Ik(V)11V 2] (C.98)
C(v,v) = +2p |-29eam

which exhibit the spatio-temporal duality. By comparing (C.97) with (C.32), and (C.98) with (C.33), the

only difference is that the factor of 1/(2 SNRbeam) is used for the NFT in Section C.1, while the factor of

(SNRbeam + 1)/(2 SNRbeam) is used for the FT in this section. Therefore, the remaining discussion for

the FT in this section is the same as that for the NFT in Section C.1, except that the factor

(SNRbeam + 1)/(2 SNRbeam) is used instead of 1/(2 SNRbeam).

By using the definitions of (17) 2 and (W)2 in (C.41) and (C.42), the results in (C.43) and (C.44)

for the NFT are applied here as

CN2be)+ - (C.99)C SN Rbeam W)
SNRbeam+l 1

C(tOJ' 0) - 2SN~a (C. 100)
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Similarly, the analysis can be extended from the DT domain to CT domain. By defining the equivalent

time and unknown parameters as t = n - St = n - T. and [r, 12]T = [7 - 8t, &/1t]' = [. - Ts, w - F]' re-

spectively, the equivalent CT version of (C.99) and (C. 100) is obtained from (C.49) and (C.50) as

C(r, r) SNRbeam+l 1 (C.101)
2 SN Rbeam (l 2

C(D, fD) =SNRbeam+l 1
2(Q,2 = SNR~beam (r) (C. 102)

which are identical to the results obtained in [138].

By following through the discussion for the NFT in Section C.1, and using the results in (C.54)

for the (L)FM sonar pulse signal, the expression for (C. 101) is obtained as

C(r, r) = -r, at SNRbeam+l 8T3dB
TCRLB 2 SNRbeam 2.583

or

SN~jam+1 ST3dB 4)
cTTCRLB = 1ISNRbeam 1.607 '

where ST3dB = 0.886/FFm is the two-sided half-power or 3-dB TOA estimation resolution [54]. It fol-

lows that the expression in (C.104) is the equation utilized by Barton [15] for low SNR target. Similarly,

to generalize the TOA estimation resolution to cater for different measures (such as half-power, peak-to-

null, and null-to-null TOA estimation resolution [138]), 83B/1.607 in (C.104) is replaced by Sr. With

the dual-waveform fusion in the sonar signal processing algorithm, the TOA of the indirect blast is esti-

mated as the TOA measurement ri[k] from the FM processing. With all these in mind, the TOA meas-

urement uncertainty can then be expressed as

u. 1[k] = 6rFM fFM-SNRFM[k]+1 (C.105)Ti gv FM-SNRFM~g

which is the alternate relation given in (5.28). Here, the functional dependency of ping k has been added;

the superscript FM has been included to highlight that the TOA measurement xr[k] is estimated by the

FM processing; and the proportionality constant j FM is the inverse of processing gain in the matched fil-

ter for relating the SNR at the matched-filtered data SNRFM [k] with the SNR at the beamformed data

SNRbeam. In the limit of high SNR, (C.105) becomes the Woodward relation in (C.56).
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In the same manner, by following through the discussion for the NFT in Section C.1, and using

the results in (C.61) for the CW sonar pulse signal, the expression for (C.102) is obtained as

C(F, F) = a 2  SNRbeam+(C. 106)
FFCRLB 2 SNRbeam 2.583

or

,SNRbeam+1 SF3dB
CF,FCRLB vfSNRbeam 1.607 '

where SF3dB= 0.886/Tw is the two-sided half-power or 3-dB frequency (or equivalently Doppler fre-

quency shift) estimation resolution [54]. It follows that the expression in (C.107) is the equation utilized

by Barton [15] for low SNR, and similar to that obtained in (C.104). Likewise, to generalize the frequen-

cy estimation resolution to cater for different measures (such as half-power, peak-to-null, and null-to-null

frequency estimation resolution [138]), 8F3dB/1.60 7 in (C.107) is replaced by 6F. With the dual-

waveform fusion in the sonar signal processing algorithm, the Doppler frequency shift of the indirect

blast is estimated as the frequency measurement Fi[k] from the CW processing. With all these in mind,

the frequency measurement uncertainty can then be expressed as

| [k] = 6FCw K 'NRCW[k]+ 1 (C. 108)
1~ -,2_cw.SN Rcw[k]

which is the alternate relation given in (5.30). Here, the functional dependency of ping k has been added;

the superscript CW has been included to highlight that the frequency measurement F [k] is estimated by

the CW processing; and the proportionality constant Kcw is the inverse of processing gain in the matched

filter for relating the SNR at the matched-filtered data SNRCW[k] with the SNR at the beamformed data

SNRbeam. In the limit of high SNR, (C. 108) becomes the Woodward relation in (C.63).

The results in (C.68) for the NFT is applied here as

C(6,e ) = SNRbeam+l 2
2 NRbeaM [7r

2
\ L)](.19
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From [139], the two-sided half-power beamwidth (HPBW) or 3-dB beamwidth at broadside is given by

6 3dB= 0.886 Ac/L (for M > 30). It follows that

C(6, 6) = 02 SNRbeam+l 6 0
3d1

) CRLB 2 SNRbeam 2.583

or

SNRbeam+1 68
3dB

OOCRLB = SNRbeam 1.607 '

which is the equation utilized by Barton [15] for low SNR target, and similar to that obtained in (C. 104)

and (C.107). The HPBW of 6 6 3dB = 0.886Ac/L only applies for spatial weights with uniform taper.

Similarly, to generalize the beamwidth to cater for different spatial weightings (such as Hanning, Ham-

ming and many others [61]), and different beamwidth measures (such as half-power, peak-to-null, and

null-to-null beamwidth [139]), 80 3dB/1-6 0 7 in (C.111) is replaced by 86. With the dual-waveform fu-

sion in the sonar signal processing algorithm, the DOA of the indirect blast is estimated as the DOA

measurement 0L[k] from the FM processing. From Figure 1.19, it is clear that the beamwidth is not fixed,

but varies according to the different DOA 6 [k]. With all these in mind, the DOA measurement uncer-

tainty can then be expressed as

o.[k] = 6M[] ]KFM-SNRFM[k] +1
Sr2KF M

.SNRF M~k] I

which is the alternate relation given in (5.29). Here, the functional dependency of ping k has been added;

the superscript FM and subscript i have been included to highlight that the DOA measurement O6[k] is

estimated by the FM processing; and the proportionality constant KFM is the inverse of processing gain in

the matched filter for relating the SNR at the matched-filtered data SNRFM [k] with the SNR at the beam-

formed data SNR beam. In the limit of high SNR, (C.112) becomes the Woodward relation in (C.71).
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Appendix D

Derivation of Processing Gain against Reverberation

The detailed expression of the processing gain against reverberation is derived here by adapting the quan-

titative analysis carried out by Westerfield et al. [143], Angelari [4], and Van Trees [138], and applying

them in the context of the sonar signal processing algorithm of Figure 4.1. Similar to the assumption

made in Section 5.2.2, only the in-beam reverberation is considered in the following derivation. For sim-

plification, the derivation is carried out in continuous-time (CT) with some notations differing from the

thesis.

D.1 Signal Power

The complex envelope of the received signal due to signal after beanforming is given by [138]

si(t) = VE - b - s(t - i) - e i21-Fdoppler-t (D.)

where (i) Et is the transmitted energy at the source, (ii) b,-C(0, 2a2) is the random complex target

scattering amplitude with zero mean and variance 2ao, (iii) s(t) is the complex envelope of the sonar

pulse signal, (iv) ri is the TOA due to target, and (v) Fdoppleri is the Doppler frequency shift due to target.

This complex envelope due to signal is then equivalent to the beamformed data in Figure 4.1 at a particu-

lar bearing. By convention, the complex envelope s(t) is normalized so that it has unit energy [138],

which implies that

fls(t)|2 dt = 1 . (D.2)

The instantaneous signal power of sL(t) before the matched filter, denoted S(t), is obtained as

S[(t) = E(ls1(t) - E[s(t)}|2 } = Et -2ab - Is(t -r,)12 . (D.3)
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By using (D.2), the average power of si(t) over the pulse width of the sonar pulse signal, denoted Tw, is

[138]

Si= f Sit) dt = Et - 22 . (D.4)

The time-frequency autocorrelation function of s(t) is then defined as [138]

P(A-r, AFdoppler) = f s ( -- ) s* ( + e j2 AFdoppler- d

= e jn-AFdoppler-Ar . f s(x) s*(x + &x) ei 2 nAFdoppler-r dr (D.5)

and the ambiguity function of s(t) is expressed as [138]

e(Ax, AFdOppler) = |P(Ax, AFdoppler)| = jfs (- - s* (x + ej2 AFdoppler-d

= If s(r) -s*(r + Ar) -ej2n-AFdoppler-TdxI. (D.6)

Here, the superscript * denotes the complex conjugate operation, and both Ar and AFdopple, denote the

displacements of the ambiguity function in TOA and Doppler frequency shift respectively. For the CW

sonar pulse signal given in (C.57), the ambiguity function of CW signal is then obtained as [138]

f0[_ '2 [sin(r-AFdoppler-(Tw-AIrD) 2

ecw(Ax, AFdOppler) = -I TFI ['MAFdoppler-(Tw-IAI .x (D.7)

k0 , elsewhere

For the (L)FM sonar pulse signal given in (C.5 1), the ambiguity function of (L)FM signal is obtained as

[138]

iAr112  sin( _-(AFdopper-- Ar) (Tw- |Ar ) 2

OFM(Ar, AFaoppler) w L -(AFdoppler-A-AT)-(Tw-ATI) x , (D.8)

0 ,elsewhere

where p is the chirp rate.

By assuming that a bank of matched filters is used, and that the r7a matched filter with Doppler

frequency shift Faoppter, offers the best filter response, this response due to signal is then expressed as

[138]
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sO (t, Faoppier,) = si(t) @ s*(-t) -e j 2
1fFdoppler 7l't

= f si(t - a-) -s*(-a) -e j2n-FdopplernO-dc

= f[ - b -s(t - a - ej2x-Fdoppleri-(t-a) s(- j2x-FdoppLan*- da

= - b -e j2 n-Fdopplerct -f S(- + t - T- e2-(Fdopplerq-Fdoppieri) -a) d

= IE - b - e j27-Fdopplerg-t .f S*() - s(o + [t - Tij) e-j27-(Fdopplerq-Fdoppleri)a do . (D.9)

Here, the symbol G denotes the convolution operator. The instantaneous signal power of so(t, Fdoppier.)

of this matched filter response, denoted So(t, Faoppier), is obtained as

SO (t, Faopper = E Iso (t, Fdoppler ) - E {so t, Fdoppier ,)

= Et - 2b 2 -e (t - 1, Fdoppier- Fdoppier). (D.10)

Therefore, the signal power of this response at TOA 'rl is

So (r, Faoppier) = Et -202 - 9 (T - Ti, Fdoppier, - Faoppieri). (D.11)

D.2 Reverberation Power

The complex envelope of the received signal due to reverberation after beamforming is given by [138]

r7(t) = 5 -fg(T, t) - s(t - ri - r) dr, (D.12)

where g(r, t) is the random complex reverberation scattering amplitude due to a particular bottom-

surface scattering patch occurring at TOAs (ri + r) and (ri + r + dr). The limits of the integration in r

are implicitly bounded by the duration of the reverberation, denoted Treverb. Similarly, this complex en-

velope due to reverberation is then equivalent to the beamformed data in Figure 4.1 at a particular bear-

ing. To simplify the derivation here, two statistical assumptions from Van Trees [138] are used. Firstly,

g(r, t) is assumed a zero-mean wide-sense stationary (WSS) random process, that is

Efg(r, t) - g*(r', t')} = Kg (r - r', t - t') , (D.13)

Etg (r, t)) = 0 , (D. 14)
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which implies that the statistics are invariant over TOA and time. Here, Kg (T, t) is the reverberation co-

variance function. Secondly, g(T, t) is assumed spatially white, that is

E{g(r, t) - g*(r', t')} = K (r - T',t - t') - - x'), (D.15)

which implies that the reverberation returns from different TOAs are statistically independent. The rever-

beration scattering function is then obtained from [138] as

S9(T, Foppler) = Z{K,(r, t)1 = f Kg(T, t) e-j 2 n-Fdoppler-t dt. (D.16)

Conversely, the reverberation covariance function is expressed as [138]

Kg (T, t) = 3f{Sg(T, FdOppler)) = £ Sg(r, Foppe)- e j2 n-Fdopplert dFdoppler. (D.17)

Here, 3{-} denotes the Fourier-transform operator, 3 4 {-} denotes the inverse Fourier-transform operator,

and Fdoppler is the Doppler frequency shift. The instantaneous reverberation power of r1 (t) before the

matched filter, denoted Ri (t), is obtained as

Ri(t) = E{Irg(t) - IE{r 1(t)1121
= Et - Ef g(T, t) -s(t - Ti - r) dr x f g*(r', t) - s*(t - ri - x') dr'}

=Et -ff ]Efg(T, t) - g*(T', t)} -s(t - Ti - -C) -s*(t - T; - T') dT dT'

= Et - f K(r, 0) - |s(t - T - T)|2 dT

Et - f [f Sg (T,Fdoppler) dFdoppler] -IS(t - i - T)1 2 dT

Et - ff Sg (T, Fdoppler) - IS(t - i - T)1 2 dT dFdoppler. (D.18)

By using (D.2), the average power of rg(t) over the pulse width T, is

Rj = 1- Ri (t) dt = -" Et ff Sg (T, Fdoppler) dT dFdoppler. (D. 19)

Similarly, by assuming that the r7* matched filter with Doppler frequency shift Fdoppler, offers

the best filter response (amongst the bank of matched filter), this response due to reverberation is then

expressed as
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ri (t, Fdoppler) = ri(t) ( s*(-t) - e j27-Fdoppler-t

= f ri(t - c) -s*(-a) -e j2n-Fdopp1erq -a dc

= f[t5 f g(, t - U-) -s(t - U - Ti - r) dx] -s*(-a) -e j2n-Fdopplerq-a do-

= 1  - ff g(T, t - a-) -s(-i + [t - x; - T]) -s*(-a) -ei-j2n-Fdoppler-(-a) dd

= - - ff g(r, t + C) - s*(r) - s(c + [t - Ti - T]) -e-j2n-Fdopper-* d du . (D.20)

The instantaneous reverberation power of ro (t, Fdoppler,) of this matched filter response, denoted

Ro(t, Fdoppler,) , is obtained as

Ro (t, Fdoppler.) = E iro(t, Fdoppler) - E [r(t, Fdoppler)}

Et ff g(T, t + -) - s*(c-) -s(c + [t - -ri -r]) - e -j2n-Fdoppler.- d- dc x

ff g*(x', t + ') - s(c-') - s*(c' + [t - ri - r']) - e j2dcFdopple' -riIE{g(r, t + a) -g*(r', t + ')}

Et. f ff3 d-rdo-dr' da'

e-j -Fdoppler- . j2n-Fdopplery-I

K.(xci -ci') - (- - -')

= Et -ff if s*(c) -s(c+ [t -x -x]) -s(c') -s*(c' + [t -r -x'])- dxrdad' di'

-j27rFd0pplern--0)

K,(T, a - a-') -

=Et -fff s*(u) -s(u-+ [t - ri - ]) -s(a') -s*(u' +[t -ri - ]) - d-r do- do-'

e -j2Fdopper(-O-I)

f Sc (T, Fdopier) , e j2r-Fd Ier-eI' d~doppler-

Et-fff s*(-)-s(ci+ [t-r - T]) - s(c') -s*(i' + [t - Ti - T])- dx d d'

e -j27Fdoper-(a-aI

If s(c) -s*(c + [t - x1 - r]) - e j2n{Fdoppler-Fdopplex) dci-

EtJff gq (TP 'dopp lerJ s(a') - s*(ci' + [t - x, - r]) - e j2nr-(Fdoppler-Fdopp1er)'I d-dFjoppler

= Et - ff Sg (T, Fdoppler) - e (t - x1 - x, Fdopper., - Fdoppler) dr dFdoppler. (D.21)

Therefore, the reverberation power of this response at TOA T,7 is

R 0(xn, Fdoppier = Et - ff Sg(x, Fppe) - 6 (x, - x1 - x, Fdoppler, - Fdoppler) dx dFopper-

(D.22)
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D.3 Generalized Processing Gain against Reverberation

The processing gain against reverberation has been defined by Westerfield et al. [143] as the gain in the

signal-to-reverberation power ratio (SRR) between the output and input of the matched filter. By denot-

ing this gain as PGreverb, it is defined by [143] as

PGreverb = SRR./SRRi , (D.23)

where SRR0 and SRR; are the SRRs at the output and input of the matched filter respectively. By using

(D.4) and (D.19), the SRR at the input of the matched filter is

5- Et -2 ab
SRRi = -w = -E"' c

R L j?-Et-f Sg(T,Fdoppler) dx dFdoppler

202

if Sg(T,Fdoppler) dT dFdoppler

Similarly, by using (D. 11) and (D.22), the SRR at the output of the matched filter is

SRR = So (TFdopp1erq) = Et-2 b-e(T-Ti,Fdoppler-Fdoppleri)
Ro(TfFdoppler) Et-ff Sg(TFdoppler)-6(Tf-Ti-TFdoppler- -Fdoppler) dT dFdoppler

2ai- e(T7-Ti,Fdoppler-Fdoppleri)

if S 9 (T,Fdoppler)- T(q-Ti-TFdoppler -Fdoppler) dT dFdoppler

(D.24)

(D.25)

Plugging (D.24)

expressed as

and (D.25) into (D.23) results in the generalized processing gain against reverberation

ff Sg(TFdoppler) dT dFdoppler

2b

(D.26)

Therefore, the generalized Q-function is given by

= 1 _ ff S9 (TFdopple?}O(xq-Tj-TFdopplerg -Fdoppler) dT dFdoppler

PGreverb ff Sg (TFdoppler) dx dFdoppler* e(Tq-TiFdoppler-q-Fdopp1eri)
(D.27)

It is then clear from both (D.26) and (D.27) that the effect of the reverberation on the signal is very much

dependent on the amount of overlapping area between the reverberation scattering function

S (r, Fdoppler) and the ambiguity function 0(r, - ri - T, Fdoppler - Fdoppler) - very similar to the

qualitative observations noted by Stewart and Westerfield [122], Glisson et al. [54], and Collins and At-
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PGreverb = 2a -(T-Ti,Fdoppler -Fdoppleri)
ff Sg(T,Fdoppler)-e(T -T i - TFdoppler- -Fdoppler) dd

ff Sg(T,Fdoppler) dT dFdoppler -e(Tq-Ti,Fdopplerg-Fdopplerj)

ff Sg (TFdoppler)-6(T -Ti-TFdoppler? -Fdoppler) dx dFdoppler



kins [31]. The numerator in (D.27) is essentially the two-dimensional convolution integral represented by

[S. G ® ](r, - ri,Fdopper,)-

D.4 Simplified Processing Gain against Reverberation

For the data obtained from the GLINT 2009 and 2010 experiments (see Figure 4.8(c)), the reverberation

energy is observed to be (i) extended in TOA way beyond the pulse width of the respective sonar pulse

signal, and (ii) tapered off from its peak with respect to the frequency (or equivalently Doppler frequency

shift). Therefore, the reverberation scattering function Sg(r, Fdoppler) can be modeled as two separable

functions: (i) a constant reverberation scattering function, denoted S,(r) = Se, invariant in TOA within

the pulse width; and (ii) a variable reverberation scattering function, denoted SF(Fdoppler), with respect

to the Doppler frequency shift (or equivalently frequency). The function SF(Fdoppler) is represented by a

bistatic reverberation ridge centered at the Doppler frequency shift (or equivalently frequency) of the re-

verberation from the bottom-surface scattering patch. This Doppler frequency shift (or equivalently fre-

quency) is denoted by Fdopplero (or equivalently F0 = Fe + Fdoppiero, where F is the carrier frequency of

the sonar pulse signal). With these observations, the reverberation scattering function becomes

S (TFdoppler) Sr(T SF(Fdoppier) = Sr ' SF(Faoppier). (D.28)

The separable and TOA-invariance assumptions are similarly adopted in Westerfield et al. [143], Angelari

[4], and Van Trees [138]. For mathematical convenience, the scattering function SF(Fdoppler) is further

assumed to be an extremely narrow bistatic reverberation ridge concentrated at the Doppler frequency

shift Fdopplero (or equivalently frequency FO). This then implies that

SF(Fdoppler) - SF - (Fdoppler - Fdoppiero). (D.29)

Therefore, by substituting (D.28) and (D.29) into (D.26), the simplified processing gain against reverbera-

tion is expressed as

PGreverb = f Sdr-SF . e(r,-TFdopp1erq -Fdoppleri)

s-sF'f e( C-Ti-,Fdopplerg-Fdopplero) dr

f dr - (7 -Ti,Fdopplerg -Fdopplerl) (D.30)
f e(-ttTiTFdoppler -Fdopplero) dT
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Likewise, from (D.27), the simplified Q-function becomes

Q = " = f6e(Til-T-,Fdopplerg,-Fdopplero)d-r(D31Q PGreverb f dr -(Tl-tTFdopplerI-Fdoppler) *

The term f dr in (D.30) and (D.31) is a constant, where the limits of the integration in T are implicitly

bounded by Treverb. For further simplification, this term is dropped out in (D.30) and (D.3 1), resulting in

PGreverb= 6(TfTiFdoppler -FdopplerJ) (D32)f O(T -ri-TFdoppler -- Fdopplero) d(

and

Q f e(Tn-ri-TFdopplerg-Fdopplero) dT

PiGreverb e(rq-Ti,Fdopplern -Fdoppleri)

The simplified processing gain against reverberation in (D.32) and the simplified Q-function in (D.33) are

similar to the expressions in Brill et al. [28], Collins and Atkins [31], and Pecknold [108]. In the context

of multi/bistatic sonar, they were described in [55,57,70,79].

D.4.1 CW Sonar Pulse Signal

For the CW sonar pulse signal, a bank of CW matched filters is typically employed that operates at differ-

ent bistatic Doppler frequency shifts with selected bistatic Doppler spacing - just like that shown in the

sonar signal processing algorithm of Figure 4.1. If this spacing is sufficiently small, it is reasonable to

assume that the Doppler frequency shift Fdo ppler, of the best filter response is approximately equal to the

Doppler frequency shift Fdoppleri due to target (that is Fdoppler ~O Foppieri). Since there is no undesira-

ble coupling effect of the estimation errors in both TOA and frequency for the CW signal [98,138], it is

valid to assume that x7, = Ti. This results in the denominator of (D.33) becoming

ecw (T4 - Ti, Fdoppler - Fdoppieri) = ecw(o,o) = 1, (D.34)

and consequently (D.33) becoming

Qcw = f ecw ( - Tj -TFaopperg - Fdopplero) do f oCW(, Fdopplero - Faopplerj) dr (D.35)
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or

QCw cw(Ty - Ti - T, F, - Fo) dr = f ecw(-,Fo - F) dr .

Here, the frequencies F,, Fi, and FO are related to their corresponding Doppler frequency shifts Fdoppl,

Fdopplert, and FdoppterO expressed as

F = F + Fdopper, ,

Fi = F + Fdoppleri,

Fo = F + Fdopplero.

Plugging (D.7) into (D.35) results in

Cw +Tw r1  12 jsin n-(Fdopplero -Fdopplerg)(Tw-|T))

-Tw Tw ,n-(FdopplerO-Foppler.)(Tw-|I)
dr

1T1
[pW

2 - - -. cos (27 - (Fdopp1ero - Fdopp1er) (Tw - |n) dx
ni-(Fdopplero-Fdoppler ])Tw2 f Idplr 

dplr T

1 T 1 +Tw Cos (21 - (Faoppiero - Fdopper ) (Tw -T)) dx]

-.TW]2 T 2 - d I[7r.(Fdopplero -Fdoppleri).TW] 2 T COS (27ii- (Fdopple.. - Fdoppleri) "(Ty, + T)) d

1

[7r-(Fdopplero -Fdoppleri)TW]

4r-(Fdopplero-Fdoppler +2n-(Fdoppler-Fdopperg)-Tw cos d

+ (. +21r-(Fdopplero -Fdopplerg)-TW cos x d
47-(Fdopplero -Fdoppleri) 0

1 1 1+2n- (Fdopplero-Fdoppleri)-Tw

[7r-(Fdopplero -Fdoppler )-T w - 27r-(Fdopplero-Fdoppler) 

27r-(Fdopplero -Fdoppler)-Tw - sin(2 r-(Fdopplero -Fdoppler)-Tw)

27r3.(Fdopplero -Fdoppler TW

1 - sinc(2-(Fdopplero -Fdopplerg)-Tw)

nz.(Fdopplero-Fdopplerg) Tw

QCW 1 - sinc(2-(Fo-Fg)-Tw)
= r2

-(FO-Fg)
2

Tw

(D.40)

(D.41)
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which are same as the expression given in La Cour [79]. The simplified Q-function of CW signal is plot-

ted in Figure D.1 as (i) blue dotted curve using the numerical computation of (D.35), and (ii) cyan solid

curve using the closed-form expression in (D.40). Both the numerical and closed-form results are identi-

cal. For the purpose of plotting, Fdoppierb is selected at 0 Hz. This Q-function of CW shows striking re-

semblance with that noted in Collins and Atkins [31], Pecknold [108], and Grimmett [55].

D.4.2 FM Sonar Pulse Signal

For the FM sonar pulse signal, only one (1) FM matched filter is typically used that operates usually at a

particular bistatic Doppler frequency shift of 0 Hz, or equivalently frequency of Fc - just like that shown

in the sonar signal processing algorithm of Figure 4.1. The Doppler frequency shift Fdoppter, of the only

filter response is then equal to 0 Hz (that is Fdoppiern = 0 Hz). Since there is undesirable coupling effect

of the estimation errors in both TOA and frequency for the FM signal because of its skewed ambiguity

function (see Figures 1.20(a) and 1.20(b)) [98,138], it follows from (4.9) that r, = Ti - Fdoppleri-Fdopplerq

=i Fdoppleri Together with (D.8), this results in the denominator of (D.33) becoming

gFM (T,7- T, Fdoppler, - Foppter FM Fdoler, Fdoppler)

Fdoppleri/Il] 2 sin(r-(Fdopplergi--Fdoppler/I(Tw- Fdoppleri/l)) 2

Tw 7r-(Fdopplerg-M-Fdoppler IM -Tw-lFdopplerg/MOl

= Tw -FdopplergI/I] 2| (D.42)
Tw'

and consequently (D.33) becoming

QFM Tw plerilI] 2 f gFM (r - i- T, Faoppiern - Fdoppler) dT

Tw___-__F __oppdlere,. F

T 2T f FM (T + Fdopplei Fopplero) d (D.43)
orplerg/M

or
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QFM [Tw -(F Fc)/|. g FM ( - T - r, F - F) d.fFMT -~ -rFF)1ut -F7d

T- -(F-Fc)/M| 2 . f FM (T + ,LLFc FO - Fc) d. (D.44)

From the specifications of the sonar pulse signal used in GLINT 2010 experiment (see Table 1.1), the

(L)FM sonar pulse signal was transmitted at a carrier frequency Fc = 2800 Hz, bandwidth Fbw = 400 Hz,

and pulse width Tw = 1 s. This results in a chirp rate of pt = Fbw/Tw = 400 s-2. By assuming a maxi-

mum bistatic range rate tmax = 8 m/s (see Section 4.1.1.3) and an underwater sound speed c = 1510 m/s

(see Figure 1.14), the maximum Doppler frequency shift is obtained as Fdopplerimax = (tmax/c) x Fc =

(8/1510) x 2800 = 14.83 Hz. Therefore, FdoPplerimax = 0.0371 or Tw/[T, - IFdopplerimaxII 1.

This implies that

QFM f eFM + Foppliero dT (D.45)

or

QFM feFM (T + ,FO - Fc)dT . (D.46)

Plugging (D.8) into (D.45) results in

Fdoppler 2 si .(Fdopplero w(T+Fdopp1er) TwjT +Fdopp1erj)1

QFM +w - 2 A dT. (D.47)
-Tw Tw Fdopplero (Fdoppler) ' Tw- T+Fdopplerjj]

The derivation of the closed-form expression of the QFM in (D.47) is non-trivial. Therefore, the thesis

adopts the approximated closed-form expression provided by La Cour [79], and this is given by

QFM ~Z1/F:bW. (D.48)

The simplified Q-function of (L)FM signal is plotted in Figure D. 1 as (i) red dotted curve using the nu-

merical computation of (D.45) or (D.47), and (ii) yellow solid curve using the approximated closed-form

expression in (D.48). Both the numerical and approximated closed-form results are roughly the same.

For the purpose of plotting, Fdopplero is selected at 0 Hz. This Q-function of FM also shows striking re-

semblance with that noted in Collins and Atkins [31], Pecknold [108], and Grimmett [55].

353



(a) Zoomed-out plot
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Figure D. 1: Simplified Q-function of CW signal in dB, with (i) blue dotted curve plotted using numerical
computation of (D.35), and (ii) cyan solid curve plotted using closed-form expression in (D.40);

Simplified Q-function of (L)FM signal in dB, with (i) red dotted curve plotted using numerical computa-
tion of (D.45) or (D.47), and (ii) yellow dotted curve plotted using approximated closed-form expression

in (D.48). For purpose of plotting, Fdopplero is selected at 0 Hz.
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D.5 Reverberation-Limited Bistatic Sonar Equation

The reverberation-limited bistatic sonar equation is re-written from (D.23) as

SRR0 = SRRi - PGreverab. (D.49)

Using (D.24) in (D.49) gives

SRR = -PGreverb. (D.50)

From (D.4) and (D.19), both Si and R1 are the signal power and reverberation power, respectively, at the

input of the matched filtering, or at the output of the beamforming. By examining the sonar equations

described by Cox [38] and Grimmett [55], the signal power Si and reverberation power Rj can be repre-

sented by the echo level (EL) and reverberation level (RL) respectively. This implies that

SRRO = EL- PGreverb (D.51)

or, in decibels (dB),

SRRdB = ELdB-RLdB + PGlieb = ELdB - (RjWB - PGdIB), (D.52)

SRRdB = ELdB - RVB - QdB = ELdB - (RLB + QdB), (D.53)

which are the reverberation-limited bistatic sonar equations given in (5.32). By using different sonar

pulse signals, the processing gain against reverberation PGreeb and Q-function Q vary accordingly.

Therefore, the differing effects of the bistatic reverberation on the matched filter imply that different

amounts of SRR (or more generally SNR) are obtained.
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