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Abstract

GelSight, namely, elastomeric sensor, is a novel tactile sensor to get the 3D informa-
tion of contacting surfaces. Using GelSight, some tactile properties, such as softness
and roughness, could be gained through image processing techniques. In this thesis,
I implemented GelSight principle to reconstruct surface geometry of tested surfaces,
based on which, the roughness comparison and lump detection experiment are con-
ducted. Roughness of five different types of sandpapers are successfully compared
using GelSight Ra value. In the lump detection experiment, a visual display for
tactile information is presented. To get binary feedback of lump presence or not, a
simple threshold method is introduced in this thesis. To evaluate the performance of
GelSight sensor, human psychological experiments are conducted. In similar tasks,
GelSight sensor outperforms humans in lump detection.
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Chapter 1

Introduction

GelSight, namely, elastomeric sensor, is a novel tactile sensor to get the 3D infor-

mation of contacting surfaces. Using GelSight, some material properties, such as

softness and roughness, could be detected through image processing techniques. In

this thesis, I will introduce the basic idea of GelSight sensor and different types of

GelSight devices. Experiments for roughness detection and lump detection using Gel-

Sight sensor are explained. The possibilities of softness detection and force feedback

of GelSight sensor are discussed. Chapter one describes human tactile sensing system

and existing robotic tactile sensors. Chapter two introduces the basic principles of

GelSight sensor and key components of GelSight sensor. Previous GelSight devices

are introduced. 3D reconstruction algorithm is explained and some results are shown

in this chapter. Chapter three describes previous work in softness and roughness

detection, and experiment of roughness comparision using GelSight sensor. Result of

experiment for softness comparison of objects with same shape is shown. Chapter

four shows application of tactile sensors in lumps detection using GelSight sensor.

Human psychological experiment is conducted for doing similar task to compare the

performance. Chapter five concludes the result of this research project and the work

could be done in the future.

21



1.1 Definiation and Classification

Human rely on multiple sensory modalities to estimate environmental properties.

Both, the eyes and the hands can provide information of objects and materials, but

in contrast to vision, the hands are especially adapted to perceive material properties

such as texture, temperature, and weight. Manual tactile perception is the ability

to gather information about objects by using the hands [160]. The tactile properties

of objects are processed by the somatosensory system, which uses information from

receptors that respond to touch and vibration, body movement, temperature, and

pain [91].

Baby's earliest explorations of himself and his environment are through his sense of

touch ([159], [124]), his hands and mouth being the principle exploratory tools. [159]

presented evidence for genuine tactile perception of material properties by infants

as young as three months old, although they did not explore the objects with hand

movements specific to the properties.

Most researchers have distinguished among three sensory systems, cutaneous,

kinesthetic and haptic. According to Loomis and Lederman [115] and Klatzky and

Lederman [98], a cutaneous system involves physical contact with the stimuli and

provides awareness of the stimulation of the outer surface of boty by means of recep-

tors in the skin and associated somatosensory area of central nervous system (CNS).

The kinesthetic system provides information about the static and dynamic body pos-

tures (relative positioning of the head, torso, limbs, and end effectors) on the basis

of afferent information from skin in kinesthetic sensing also indicates its dependence

on cutaneous sensing. The haptic system uses significant information about objects

and events both from cutaneous and kinesthetic system [115], [98].

The "sense of touch" in humans comprises two main submodalities, i.e., "cuta-

neous" and "kinesthetic", characterized on the basis of the site of sensory inputs. The

cutaneous sense receives sensory inputs from the receptors embedded in the skin, and

the kinesthetic sense receives sensory inputs from the receptors within muscles, ten-

dons, and joints [115], [64]. It should be noted that sensory inputs are mechanical
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stimulations but also heat, cooling, and various stimuli that produce pain. On the

basis of sensory systems, the perception of a stimulus can be categorized as cuta-

neous, kinesthetic, and haptic perception. According to Loomis and Lederman [115],

"tactile" perception refers to the perception mediated solely by variations in cuta-

neous stimulation. Linesthetic perception is mediated exclusively by the variations

in kinesthetic stimulation. All perceptions mediated by cutaneous and/or kinesthetic

sensibility are referred to as tactile perception. The properties of peripheral nervous

system are investigated either with a moving object touching an observer or by the

purposive exploration of objects by the observer. Accordingly, the "sense of touch"

is classified as passive and active. Loomis and Lederman [115] made a distinction

between passive and active touch by adding the motor control inputs to the afferent

information. In an everyday context, the touch is active as the sensory apparatus is

present on the body structures that produce movements [39].

Using various terms associated with the human "sense of touch", a parallel can

be drawn for robotic tactile sensing. Generally, robotic tactile sensing is related to

the measurements of forces in a predeterminded area. Jayawant [78] defined it as the

continuous detection of forces in an array. Crowder [37] defined it as the detection

and measurement of perpendicular forces in a predetermined area and subsequent

interpretation of the spatial information. However, this definition is narrow for not

including contact parameters other than perpendicular forces and broad for including

the "interpretation" of spatial information, which is basically perception and, hence,

includes the role of both cutaneous sensing and the corresponding area of analysis

in somatosensory cortex of CNS. In this context, the definition of a tactile sensor, a

device or system that can measure a given property of an object through contact in the

world - by Lee and Nicholls [113] is more appropriate. Studies on cutaneous sensing

show that receptors are not just transducers. Both individually and collectively they

locally process the stimulus [81], [85], [20]. Thus, tactile sensing can be defined as

detection and measurement of contact parameters in a predetermined contact area

and subsequent preporcessing of the signals at the tactile level, i.e., before sending

tactile data to higher levels for perceptual interpretation. On similar lines, touch
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sensing can be termed as tactile sensing at single contact point [39].

Figure 1-1: Componets of tactile perception [115]

Robotic tactile sensing is broadly classified in Figure 1-1. Based on the tasks to

be accomplished, robotic tactile sensing is categorized in two ways, "perception for

action" (as in grasp control, dexterous manipulation, etc.) and "action for percep-

tion" (as in object recognition, modeling, exploration, etc.). In addition to these,

"haptics" could be the third category. Haptics involves both action and reaction, i.e.,

two-way transfer of touch information. Based on the body site, where tactile sensors

are located, robotic tactile sensing can be categorized as intrinsic and extrinsic tactile

sensing. Intrinsic sensors, which are placed within the mechanical structure of the

robot, derive the contact information like magnitude of force using force sensors. Ex-

trinsic sensors or arrays that are mounted at or near the contact interface deal with

tactile data from localized regions. Extrinsic and intrinsic tactile sensing are anal-

ogous to cutaneous and kinesthetic sensing, respectively. Like a cutaneous system,

extrinsic tactile sensing and the computational unit of robots can be termed as an ex-

trinsic tactile sensing system. Similarly, an intrinsic tactile sensing system and haptic

system can also be defined [39]. The extrinsic tactile sensing is further categorized

in two ways, for highly sensitive parts (e.g., fingertips), and for less sensitive parts

(e.g.,palm). Whereas former requires tactile sensing arrays with high density and spa-

tiotemporal response - 1mm spatial resolution and response time of the order of few
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milliseconds), such constraints can be relaxed for the latter. The working principle of

tactile sensors can be resistive, capacitive, inductive, optical, magnetic, piezoelectric,

ultrasonic, magnetoelectric, etc [39]. Similarly, the physical nature of the sensors can

be flexible, compliant, stiff and rigid, etc. This thesis is primarily focused on extrinsic

tactile sensing, and thereafter, it is simply termed as tactile sensing.

1.2 Human Tactile Sensing System

Primary Sensory Cortex Perception of the stimuli
(b) (c) Inonnation in thefi ofneural

codies.
Trhalamnus

n aaa mu N eural signal transm ission

Papillary Ridge Information in theform ofaction

Medial Lemniscus potentials.

Spinothalamic Midbrain Distortion of a population of
tract (pain & Mechanoreceptors
crude touch) - Medulla h01ratu1 in theform of .simo -

lempoisaltressstrin in skin.
Dorsal Colurn
(precise touch Skin deformation at contact point

Information in thefonn of spatio-
tempomiforce distrunsm.

Stimulus (Skin - Object contact)

Classlication Basis Paclnlan Corpuscle Ruffi Corpuscle Merkel Cells Melssners Corpuscle
Type FAll SAH SA FA I
Adaptation Rate Fast Slow Slow Fast
Spatial Acuity (mi) 10+ 7+ 0.5 3-4
Vibration/rapid Best_(pm)_ 0.01 40 8 2
indent. threshold Mean(pm) 0.08 300
Stimuli Frequency (Hz) 40-500+ 100-500+
Conduction Velocity (m/s) 35-70 35-70
Effective Stimuli Temporal changes in the Sustained downward Pressure,

skin deformation Lateral skin stretch; Skin slip.
Sensory Function High frequency vibration Finger position; Stable grasp;

detection; Tool use. Tangential Force;
Motion direction

30
0.4-3
40-65
Spatial deformation; Sustained
pressure; Curvature, edge, corners.
Pattern/form detection, texture
perception; Tactile flow
perc--ption _ _ _ __

3-40
35-70
Temporal changes in skin
deformation
Low frequency vibration &
motion detection; Grip control;
Tactile flwercption.

Figure 1-2: Section of glabrous skin showing physical location and classification of
various mechanoreceptors [169], [92], [135], [83], [165], [137]. (b) Tactile signal trans-
mission, from fingertips to somatosensory area of brain (modified from [25]). (c)
Functional events during tactile signal transmission from contact point to the brain.
For simplicity, the signal flow is unidirectional. In general, the information transfer
is bidirectional as the same path is used by motor signals. [39]

Human sense of touch deals with the spatiotemporal perception of external stimuli

through a large number of receptors (e.g., mechanoreceptors for pressure/vibration,

thermoreceptors for temperature, and nocioceptors for pain/ damage [84]) that are
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distributed all over the body with variable density. the response to mechanical stim-

ulus is mediated by mechanoreceptors that are embedded in the skin at different

depths. The number, pre square centimeter area, is estimated to be 241 in the fin-

gertips and 58 in the palm of adult humans [82]. The classification, functions, and

location of these receptors are shown in Figure 1-2. They have different receptive

fields, the extent of body area to which a receptor responds, and different rates of

adaptation. A fast-adapting (FA) receptor responds with bursts of action potentials

when its preferred stimulus is first applied and when it is removed. In contrast, a

slow-adapting (SA) receptor remains active throughout the period during which the

stimulus is in contact with its receptive field. SA-I mechanoreceptors exhibit fully

tunable "stochastic resonance" [54], a process whereby a nonlinear system is able

to detect an otherwise underectable signal (e.g., subthreshold stimulus) by adding a

random stimulus or noise to the input.

The response to thermal stimulus is believe to be mediated by separated "warm"

and "cold" thermoreceptor population in the skin. Nociceptor units in the skin are

primarily responsible for sensation of pain; however, they also respond to extremes

in temperature and sometimes to mechanical stimulation [98]. The nature of elec-

trical discharge from various receptors in response to the external stimuli, studied

in vitro and in vivo on human skin samples, is found to be pyroelectric and piezo-

electric [9]. Comparative experiments on epidermis samples of skin show a marked

phenomenological analogy with of piezoelectric materials [144].

1.2.1 Human Tactile Information Encoding

A variety of complex mechanical, perceptual, and cognitive phenomena take place

the moment skin is stimulated until the perception. Figure 1-2 shows a sequence of

events during tactile signal transfer. The skin conforms to its surface on contact with

an object, maintains the same local contour, and thus projects the deformation to

a large number of mechanoreceptors. Each mechanoreceptor represents a small por-

tion of object and encodes the spatiotemporal tactile information as spikes of action

potentials, voltage pulse generated when the stimulus is greater than the threshold.

26



The amplitude of the stimulus is then transformed to a train of action potentials [92],

a step similar to digitizing and coding analog signals by an analog-to-digital (A/D)

convertor [39].

The contact event related information is transmitted to CNS for higher level pro-

cessing and interpretation via multiple nerves up to the spinal cord and via two major

pathways: spinothalmaic and dorsal-column-medical-lemniscal (DCML), thereafter,

as shown in Figure 1-2. The spinothalamic pathway is slower and carries temper-

ature and pain related information. DCML, on other hand, quickly conveys pres-

sure/vibration related information to the brain and helps in spatial and temporal

comparisons of the stimuli. The tactile information is processed at various data

transfer stages before it reaches the CNS. For example, during natural manipula-

tions, humans can perceive independently the curvature and the direction of force

from first spikes of the ensembles of primary sensory neurons in the terminal pha-

lanx [81], [85]. This reduces the computational burden of CNS and let it perform

some higher level processing like disentangling the interactions between information

obtained from ensemble of first spikes and other parameters like rate of change of con-

tact force, temperature, change in viscoelastic properties of the fingertip, etc. [79].

The tactile information transfer to brain is also subjected to an intense process of

selection [17].

1.2.2 Human Tactile Sensitivities

Spatiotemporal limits and sensitivity to mechanical stimulus directly affect the object

recognition capability [115] and directional sensitivity [166], etc. The pattern sensing

capability of the cutaneous sense is limited by both its spatial and temporal sensitiv-

ities, as they quantify the information loss or blurring of stimulus by spatiotemporal

filtering at early stage of cutaneous processing [115].

Spatial acuity is an important parameter that gives an idea of spatial resolution,

the smallest separation at which one can tell if he/she has been touched at two points.

Two points threshold [80] and grating orientation method [32] show that the spatial

acuity varies across the body, from highest at fingertips, face, toes, etc., to lowest
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at thigh, belly, etc. The spatial resolution at the palm is about seven times smaller

than that at the fingertips [35]. One can resolve two points as close as 1mm on the

fingertips [34] and up to 30 mm on the belly [169]. Besides body site, the ability to

perceive a fine spatial structure also depends on the temporal properties of stimulus

(namely, its vibration frequency). The spatial acuity decreases if vibratory frequency

is increased [15]. The spatial acuity in the torso, measured with vibrotactile stimuli,

has been reported to be 20 - 30mm [53]. Skin microstructures like intermediate

ridges, the undulating epidermal tissues that descend into the epidermal, dermal

junction (shown in figure 1-2), also enhance the tactile spatial acuity by transmitting

magnified signals from surface of skin to the mechanoreceptors [108], [39].

When it comes to temporal resolution, humans are capable of detecting vibrations

up to 700 Hz, i.e., they can detect a single temporal interval of about 1.4 ms [98].

Temporal separation of two contact events, at different locations, is also needed as it

helps in detecting the presence of multiple events. The critical temporal separation

for two events at different locations on fingertips is found to be on the order of

30 - 50ms [33]. The pressure threshold and skin deformation are other common

intensive measures of absolute tactile sensitivity.

The higher the pressure threshold, the lower the sensitivity of the body part.

Controlled pressure sensitive studies show that pressure thresholds vary with body

site. Whereas normal mean threshold values average about 0.158 g on the palm and

about 0.055 g on the fingertips of men, the corresponding values for women are 0.032

g and 0.019 g, respectively, [89].

The temperature sensitivity also varies with the body parts. For example, from

a baseline temperature of 33'C, changes as small as 0.16 and 0.12'C for warmth and

cold, respectively, can be detected at the fingertips [158]. Corresponding values at

volar base of thumb are 0.11 and 0.07'C.

1.2.3 Human Tactile Perception

Humans are excellent at recognizing common objects by touch alone [99], and cues

like material properties, shape, etc., are critical to this endeavor. Both cutaneous and

28



kinesthetic sensing contribute to the perception of such cues.

Tactile sensing in humans is better adapted to feel material properties of objects

than to feel their shapes. Shape detection of objects small enough to be within

the contact area ( 7 ~ 12mm ) of the fingertips is an important function of the

mechanoreceptors. Experiments involving vertical indentation and stroking of skin,

with the force equal to that exerted by humans during natural manipulation (1590 g

wt.), indicate that the object shape and orientation are signaled by the spatiotemporal

responses of the afferent fiber populations, particularly those of the SAs [107] [60]

[93]. The curvature and force direction can also be perceived from these signals [79].

These experiments reveal that the firing rate of an SA is a function of the vertical

displacement, vertical velocity, and the amount and the rate of change of curvature

of the skin. However, SAs become silent in the event of negative rate of change of

curvature. In the case of FA, the firing rate is a function of the vertical velocity and

the rate of change of curvature at the most sensitive part of the receptive field. These

studies give a direct relation between the stimuli and neural signals that code them.

Thus, assuming skin to be a "blackbox, the relation between the stimuli (e.g., the

shape) and the output (e.g., the firing rate) of afferent fibers can be written as below:

d R 1  dZ
fsA = a1R-1 + a2 + a 3 AZ +a 4  (1.1)

dt dt

dR-1 dZ
fFA b2 dt +b 4 dZ (1.2)dt dt

where fsA and fFA are the firing rates of SA and FA receptors, respectively, R 1

is the skin curvature at contact point, AZ is the vertical displacement, and ai, a2 ,

a 3 , a 4, b2 and b4 are the constants. The equations above is from Srinivasan's paper in

[141]. The edge sensitivity is a special case of sensitivity to changes in skin curvatures.

As can be noticed from (1.1) and (1.2), FA and SA receptors respond simultaneously

at edges and boundaries, and at other points, FA receptors are silent. The response

of SA receptors is higher at edges than at a uniform surface because of high compres-

sive strain at such points. The edge detection sensitivity of SA I receptors has also

been attributed to the presence of Merkel cells on the tips of the epidermal part of
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intermediate ridges. Intermediate ridges are believed to magnify the tactile signals

from the surface of the skin to the mechanoreceptors by way of microlever action [23],

[110]. The role of intermediate ridges studied through continuum mechanics or finite

element modeling also show that the concentration of stress on the ridge tips improves

the capability to differentiate finer details [58]. Surprisingly, the mechanoreceptors

are located close to the points where stress is concentrated. Sensitivity of receptors

to the rate of change of curvature, in addition to the curvature, also enhances the

contrast at the edges of objects, where curvature changes abruptly.

Roughness-smoothness is another important perceptual dimension. Neurophysio-

logical studies suggest that the tactile roughness perception is accurately predicted by

spatial variations of discharge of SA afferents, and hence, it is a function of multiple

tactile elements. Contrary to the general belief that the temporal parameters have

little effect on roughness perception [122], recent studies show that they indeed con-

tribute [22]. Fingerprints or papillary ridges, shown in Figure 1-2, also enhance the

tactile sensitivity of Pacinian corpuscles and, hence, help in feeling fine textures [147].

Discrimination of surface roughness is also enhanced when tangential movement ex-

ists between the surface and skin [125], and this is independent of the mode (active or

passive) of touch [109]. Roughness of objects is significantly correlated with friction as

well. The correlation is much stronger when the variations and rate of change of the

tangential forces are considered. This is evident from the experiments where subjects

maintained a steady normal force, rather than reducing it, to allow the tangential

force to initiate and maintain sliding while scanning a surface with higher friction

[152], [153]. These facts point towards the importance of tangential force and that its

knowledge, in addition to the normal forces, can be useful for robotic applications.

Detection of slip can be viewed as the coding of motion by the receptors in the

skin. Slip or relative movement between a surface and the skin is important for

perception of roughness [122], [152], [86], hardness [157], and shape [19], [177]. Slip

plays an important role in grip force control by acting as an error signal. All these,

except static contact associated with thermal sensing, involve finger movements and

thus highlight the importance of dynamic tactile sensing [72].
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Tactile feedback from the contact surface of an object influences the perception

of force used to support it. Experiments studying the effect of tactile sensing on

the perception of force demonstrate underestimation of forces produced by muscles

when tactile sensory feedback from hand is constrained [90]. Interestingly, complete

elimination of tactile feedback by anesthetizing skin results in an opposite perception

of force, i.e., increase in the perceived force or heaviness [95] and decrease in the

maximum force that the fingers can produce [10]. Further, the effect of eliminating

the tactile sensing from various fingers is also different. Elimination of cutaneous

sensing from thumb and index finger results in an increase of perceived heaviness by

40% and 13%, respectively [95]. In addition to magnitude, the direction of force is

also critical for handling objects with irregular shapes while maintaining the desired

orientation. Tactile afferents from the terminal phalanx of finger contribute to the

encoding of direction of fingertip forces. The directionality is also thought to be

due to different strains produced at the receptor site by forces applied in different

directions [19].

However, human system is a complete, multilevel, integrated system, and the

"sense of touch is not isolated. Multiple sensory information from several sensory

modalities like touch, vision, hearing, etc., is needed to perceive a stimulus [92].

Sometimes, the sensory modalities compete (e.g., in presence of attention), and at

other times, the whole is an integrated combination of the different sensory inputs.

Even if a single modality is involved, the perception of an object can be due to a com-

bined contribution of its sub modalities. The combination and integration of sensory

information from multiple sources is key to robust perception, as it maximizes the

information derived from the different sensory modalities and improves the reliability

of the sensory estimate. Both vision and proprioception provide information about

the position of the hand in space [13]. Haptically and visually acquired size-related

information may influence the feed-forward or anticipatory control of forces during

loading and transitional phases of precision grip [62], [61].

31



1.2.4 Skin Mechanics and Tactile Sensing

Skin acts as a medium through which contact indentations are converted into stresses/

strains. Human skin is multilayered, nonlinear, nonhomogeneous, and viscoelastic.

It is a complex structure supported on a deformable system of muscles and fat [110].

Various skin layers have different stiffness. The base epidermis layer, having Youngs

modulus 1010,000 times that of dermis, is considerably stiffer than the dermis [58].

With such properties, the skin mechanics is bound to play an important role in the

tactile perception. The presence of physical interlocking between the epidermis and

dermis layers of skin helps in resisting any tendency of their relative sliding over each

other and creates a filtering mechanism that distributes forces and stresses from their

point of application [139]. Such a filtering mechanism also has considerable impact

on the spatial resolution. The presence of intermediate ridges and their role in mag-

nifying the tactile signals by way of microlever action has already been discussed.

Intermediate ridges, which are shown in Figure 1-2, should not be confused with pap-

illary ridges or fingerprints that are basically the external parallel whorls. However,

the center of each papillary ridge protuberance lies directly above the center of each

intermediate ridge [58]. Papillary ridges are known to improve gripping [118] and

tactile acuity by microlever mechanism [23], [110]. However, finite element studies

indicate very little involvement of papillary ridges in such a mechanism [59]. Finger-

prints might improve the tactile sensitivity of pacinian corpuscles and, hence, help us

feel fine texture [147]. A number of attempts have been made to model and study

the mechanical behaviors of the skin [135], [58], [42], [59].

1.3 Current Robotic Tactile Sensors

Tactile information is useful in robotics in a number of ways. In manipulative tasks,

tactile information is used as a control parameter [114], [71], [16], and the required

information typically includes contact point estimation, surface normal and curvature

measurement, and slip detection [55] through measurement of normal static forces.

A measure of the contact forces allows grasp force control, which is essential for
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maintaining stable grasps [18]. The grasp force along with manipulator displacement

is also needed in compliant manipulators [38]. In addition to magnitude, the direction

of force is also critical, in dexterous manipulation, to regulate the balance between

normal and tangential forces, and hence to ensure grasp stability the so-called friction

cone [126]. For full grasp force and torque determination, shear information is also

required [50], [143]. The need for shear stress information is also supported by finite

element analysis (FEA) [142], [52]. Shear information is useful to determine the

coefficient of friction and in getting a unique surface stress profile when the sensor

is covered with elastomeric layer [129]. Importance of shear force in humans has

already been discussed. While interacting with objects, a significant information

such as shape [56], [146], [24], surface texture [120], [36], slip [36], [70], [11], [164],

etc., comes through normal and shear forces.

However, a real-world interaction, involving both manipulation and exploration,

also requires measuring material properties such as hardness [150], temperature [174],

etc. Taxels based on design hints can possibly help in achieving some of the above

objectives. Some of these design guidelines have been explored and tactile sensors ex-

ist with variable stiffness elastic layers [68], finger print like structures [172], and the

mechanical properties and distributed touch receptors like human skin [168]. How-

ever, their number and the type of contact parameters obtained from them are still

insufficient. For example, the interaction of robots with environment through tac-

tile sensing has largely been limited to the measurement of static interaction forces,

whereas real world interaction involves both static and dynamic. Similarly, most of

the sensors are designed to measure static pressure or forces, from which, it is difficult

to obtain information like stickiness, texture, hardness, elasticity, etc. Recently, the

importance of dynamic events has been recognized, and sensors are being developed

for detecting stress changes [148], [72], incipient slip [172], strain changes [94], and

other temporal contact events. A range of sensors that can detect object shape, size,

position, forces, and temperature have been reported in [69], [113], [45], [145]. Few

exam- ples of sensors that could detect surface texture [120], [36], hardness or con-

sistency [132], [150], and friction [117] are also described in the literature. Very few
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examples of sensors that can detect force as well its direction have been reported [28],

[163].

Advanced robotic systems require multimodal sensory information to interact

safely, to make decisions, and to successfully carry out actions, all in an autonomous

way. Sensor based robotic interaction has generally been investigated using vision

and auditory sensors. However, the information obtained with visual and auditory

sensors can sometimes be misleading due to the lack of contact information. The rich

interaction behaviors exhibited by real world objects also depend on how heavy and

stiff the contacted objects are, how their surfaces feel when touched, how they deform

on contact, and how they move when pushed, etc. Therefore, using the tactile data

along with that coming from existing sensory apparatus will greatly enhance the real

world model generation capability of robots [39].

Over the past two decades or so, the pursuit to improve tactile sense capability of

robots has resulted in many touch sensors, exploring nearly all modes of transductions.

The tactile sensors used on robotics fall into several categories.

1.3.1 Resistive Sensors

Tactile sensors based on resistive mode of transduction have resistance values depend-

ing on the contact location and the applied force or, in other words, piezoresistance.

Resistive touch sensors are generally sensitive and economic but consume lot of power.

Their other limitation is that they measure only one contact location. An improved

design using parallel analog resistive sensing strips, which is reported in [175], allows

measuring many contact points. However, the lack of contact force measurement still

remains a critical problem.

Piezoresistive touch sensors are made of materials whose resistance changes with

force/pressure. The touch sensing system using this mode has been used in anthro-

pomorphic hands [167]. Piezoresistive tactile sensing is particularly popular among

microelectromechanical systems (MEMS) and silicon (Si)-based tactile sensors [12],

[170]. The force-sensing resistor (FSR), which is widely used in pointing and position

sensing devices such as joysticks, are also based on piezoresistive sensing technology.
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Commercially available from Interlink [51], they have been used in many experimental

tactile systems and advanced robotic hands [49]. FSRs are appealing, because of low

cost, good sensitivity, low noise, and simple electronics. However, the requirement

of serial or manual assembly, relatively stiff backing, nonlinear response, and large

hysteresis are some of the drawbacks of FSRs.

1.3.2 Tunnel Effect Tactile Sensors

Tactile sensors based on quantum tunnel composites (QTC) have come up recently.

Commercially available from Peratech [134], QTC has the unique capability of trans-

forming from a virtually perfect insulator to a metal like conductor when deformed

by compressing, twisting, or stretching. In QTC, the metal particles never come

into contact; instead, they get so close that quantum tunneling (of electrons) takes

place between the metal particles. Robotic hands with QTC-based taxels have been

reported in [31] and [30]. A highly sensitive sensor based on electron tunneling princi-

ple is also reported in [120]. The device directly converts stress into electroluminescent

light and modulates local current density, both being linearly proportional to local

stress. With thin film, having metal and semiconducting nanoparticles, the sensor is

2.5cm2 in size and attains a spatial resolution of 40m far better than that of human

fingertips. However, using charge- coupled device (CCD) camera, in current form,

adds to the sensor size and makes its integration difficult on the robot.

1.3.3 Capacitive Sensors

Capacitive taxels have been widely used in robotics [63], [148], [123]. They can be

made very small, which allows the construction of dense sensor arrays. An array of

capacitive sensors which couples to the object by means of little brushes of fibers is

reported in [148]. The sensor elements on the array are reportedly very sensitive (with

a threshold of about 5 mN) and robust enough to withstand forces during grasping.

An 8 x 8 capacitive tactile sensing array with 1mm 2 area and spatial resolution at

least ten times better than humans is reported in [63]. Capacitive sensing is also
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popular among the tactile sensors based on MEMS and Si micromachining [29], [63],

[46], [148]. Commercially available touch sensors such as RoboTouch and DigiTacts

from pressure profile systems [75] and iPod-touch [8] are all based on capacitive tech-

nology. Availability of commercial capacitance to digital convertor chip like AD7147:

CapTouch from Analog Devices [48] has made it easier to design thin and reliable

contemporary touch controls for sensors that use capacitive technology. The utility

of such a chip in getting the digitized data corresponding to change in capacitance at

the contact point has been demonstrated in [119]. Touch sensors based on capacitive

mode of transduction are very sensitive, but stray capacity and severe hysteresis are

major drawbacks.

1.3.4 Optical Sensors

Tactile sensors with optical mode of transduction use the change in light intensity,

at media of different refractive indices, to measure the pressure. Optical fiberbased

taxel capable of measuring normal forces is reported in [67]. The sensor can measure

forces as low as 1 mN with the spatial resolution of 5 mm. An optical three axial taxel

capable of measuring normal and shear forces is reported in [130]. Some cases of large

area skin based on LEDs have been reported in [131] and [26] as well. Commercial

taxels using optical mode of transduction are also available, e.g., "KINOTEX [140].

Optical-based taxels are immune to electromagnetic interference, are flexible, sensi-

tive, and fast but at times they are bulky. For example, even after miniaturization,

the optical taxel reported in [116] has diameter 32 mm, length 60 mm, and a weight

of 100 g. Loss of light by microbending and chirping, which cause distortion in the

signal, are some other issues associated with optical sensors.

1.3.5 Ultrasonics-Based Sensors

Acoustic ultrasonics is another technology used for developing tactile sensors. The

microphones, based on ultrasonics, have been used to detect surface noise occurring

at the onset of motion and during slip. A 2 x 2 tactile array of polyvinylidene
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fluoride (PVDF), which is described in [7], senses contact events from their ultrasonic

emission at the contact point. Here, PVDF polymer is used as receiver to localize

the contact point on a silicone rubber-sensing dome. The sensor is reportedly very

effective in detecting slip and surface roughness during movement. Another simple

and elastic tactile sensor, utilizing acoustic resonance frequency, to detect contact

parameters like principal stress, friction, and slip is described in [151] and [127]. The

resonant frequency of piezoelectric materials changes when they come in contact with

the objects having different acoustic impedances [41], [40]. This property has been

utilized to detect hardness and/or softness [132] and force/pressure [103]. Ultrasonic-

based taxels have fast dynamic response and good force resolution. However, many

such sensors use materials like lead zirconate titanate (PZT), which are difficult to

process in miniaturized circuits. Using piezoelectric polymers can greatly simply such

difficulties.

1.3.6 Magnetism-Based Sensors

Such tactile sensors measure the change in flux density as a result of the applied

force. The flux measurement can be made either by Hall effect device [163], [77] or a

magnetoresistive device [128]. The taxels based on magnetic principle have a number

of advantages that include high sensitivity, good dynamic range, no measurable me-

chanical hysteresis, a linear response, and physical robustness. However, their usage

is limited to nonmagnetic mediums.

1.3.7 Piezoelectric Sensors

The piezoelectric materials generate charge in proportion to the applied force/pressure.

Piezoelectric materials like PZT, PVDF, etc., are suitable for dynamic tactile sens-

ing. Though quartz and ceramics (e.g., PZT) have better piezoelectric properties; the

polymers such as PVDF are preferred in touch sensors due to their excellent features

like flexibility, workability, and chemical stability [57]. The use of PVDF for tactile

sensing was reported for first time in [45], and thereafter, a number of works based
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on PVDF or its copolymers have been reported in [102], [174], and [101], [172], [43],

[27]. Temperature sensitivity of piezoelectric materials is a major cause of concern.

Production of tactile sensors with innovative designs still continues, but they

largely remain unsatisfactory for robotics either because they are too big to be used

without sacrificing dexterity or because they are slow, fragile, lack elasticity, lack

mechanical flexibility, and lack robustness, and in some cases, because of their digital

nature, i.e., all or none. Some other reasons for neglecting tactile sensing in a general

mechatronic systems are discussed in [112].

38



Chapter 2

Principles and Devices of

Elastomeric Sensor - GelSight

GelSight sensor is a novel tactile sensor that can be used to capture the surface

geometry. GelSight sensor consists of a piece of clear elastomer coated with a reflective

membrane. When the object pressed on the membrane, the membrane distorts to take

on the shape of the object's surface. When viewed from behind (through the elastomer

piece), the membrane appears as a relief replica of the surface. A camera records an

image of this relief, using illumination from LEDs located in different directions.

Using photometric stereo algorithm, the surface geometry could be reconstructed.

GelSight sensor could also deal with transparent or specular materials because the

membrane supplies its own BRDF [87]. The sensor uses inexpensive materials, and

has the ability to obtain 2 microns resolution, and also can be made into a portable

device that can be used "in the field" to record surface shape and texture [87]. We

refer the sensor as "GelSight" sensor because it means to give you a sight through

the gel.

2.1 Basic Principles of Elastomeric Sensor

Figure 2-1 shows the basic principle of GelSight. LEDs illuminate the surface of

the gel, and the camera in the back of the supporting plate to takes the picture of
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LEDs holding plate

0 z'0
gel with coating

Figure 2-1: Basic principle of Gelsight sensor

the contacting surfaces. With images under illumination from different directions,

photometric stereo algorithm is applied to get the depth information, and thus to

reconstruct the surface geometry of tested surface. Figure 2-2a and 2-2b shows an

Oreo cookie being pressed against the GelSight sensor. The reflective membrane,

which is made from opaque elastomer paint, takes on the shape of the Oreos surface.

Oblique illumination converts the deformation to a shaded image. The reflective

membrane, which is made from opaque elastomer paint, takes on the shape of the

Oreos surface [87].

(a) (b) (c)

Figure 2-2: (a) A cookie is pressed against the membrane of GelSight sensor. (b) The
membrane is distorted, as shown in this view from beneath. (c) The cookies shape
can be measured using photometric stereo and rendered at a different viewpoint. [87]

2.2 Components of GelSight Sensor

Even though GelSight idea is simple in concept, the performance of the GelSight

sensor depends heavily on the construction of the sensor membrane, the elastomer
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used for the sensor itself, the illumination design and the reconstruction algorithm.

There are four main components for GelSight sensor: elastomer with the opaque

reflective membrane on top of it, supporting plate which provides the support of

the soft elastomer while pushing against the object, optics and LEDs which provide

illumination for the sensor, and the camera in the back to capture the deformation

images under the illumination from different directions. Sometimes, the optics could

functions as a supporting plate as well.

2.2.1 Gel and Coating

The choice of elastomer comes first. In [87], Johnson mentioned the polymers used

in their experiment, including silicones, polyurethanes, and thermoplastic elastomers

(TPEs) such as styrene block copolymers. TPEs is the most commonly used material

in Johnson's experiment, because they combine elasticity and strength. TPEs can be

formed into arbitrary shapes and are fairly robust, returning to their original shape

under normal usage.

Both of the pigment and the method of application determine the BRDF of the

membrane. As mentioned in [87], diffuse BRDFs are useful for measuring relatively

deep objects (depths on the order of 1 cm) and specular BRDF is good for captur-

ing small variations in the surface normal. An ordinary pigment (such as titanium

dioxide) yields a diffuse BRDF, while fine metal flakes (usually aluminum or bronze)

produce specular BRDF. The choice between diffuse or specular BRDFs is a tradeoff

between depth and detail.

The thickness of the elastomer determines the maximum depth variation that can

be measured. Johnson did experiment of sensors with thicknesses ranging from less

than 1 mm to 4 cm in [87]. The hardness of the elastomer used for GelSight sensor

are Shore A 5 ~ 20. (Elastomer is commonly measured on the Shore A scale, where

5 is very soft and 95 is very hard.)

The size and shape of the pigment used for the membrane impose a huge effect on

the resolution of the system. In Figure 2-3, both images show Washingtons nose on

a US quarter. The pigment used in 2-3 (a) is metal-flake, which visible in the image.
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(b) Silver-powder pigment

Figure 2-3: GelSight sensor with different membrane for measuring the same surface
[88]

These effects will cause noise in the estimated surface. The pigment used in 2-3 (b) is

silver powder, the average size of which is below 1 micron. The near-spherical shape

reduces noise due to random particle orientation [88]. The resolution of the sensor

also depends on the rigidity of the elastomer. [87] uses 3M VHB mounting tape and

achieved high-resolution results for hard surfaces in the bench setting.

2.2.2 Illumination

In addition to the elastomer, the illumination matters a lot for further reconstruction

algorithms to obtain fine surface geometry. LEDs are the light source to use in all

the settings, since it's cheap, small, power-saver. Also, some LEDs are directional,

and under some circumstances, this will help with the illumination conditions.

camera

* LEDs LEDs 0

holding plate

gel with coating

Figure 2-4: Basic principle of GelSight sensor
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The condition to reconstruct the surface geometry is to have the illumination

uniform across the sensor contacting surfaces, which will get rid of the location factor.

As shown in Figure 2-4, the lights are upper high to roughly 30' and 8 inches away

from the supporting plate. The distance from the lights to the illuminated surface

should be ten times the length of the illuminated area, in which case the lights are

regarded as distant lighting. The box setting, which will be introduced in the following

section, takes this type of illumination. The advantage of this illumination type is

that the lights are far away from the sensor, which could be regarded as the distant

light source with parallel light rays. For the images captured from the camera, all the

positions on the sensor could receive equal illumination, which could provide a great

image quality for further reconstruction approaches. However, the disadvantage is

that the device will be huge to hold the lights inside of it.

Camera

Glass plate
with 6 LEDs

Object

Exploded view diagram

Figure 2-5: New lighting configuration to create grazing illumination across the sen-

sor. [88]

For a diffuse surface, contrast is maximized under grazing illumination. As shown

in [88], Johnson set up a new lighting configuration is introduced to create grazing

illumination across the sensor. As in figure 2-5, six surface-mount LEDs are spaced

equally around the edge of a glass disc. The glass disc is used as a mounting plate for

the elastomeric sensor and the light from the LEDs propagates within the disc by total

internal reflection. Each LED provides a different lighting condition for photometric

stereo. This illumination design dramatically increases contrast, as shown in Figure

??. In the portable setting and the bench setting to measure the fine details of
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the surfaces, Johnson use this type of illumination condition. The advantage of this

illumination method is that even though there are shadow areas in each image, there

are six images in total to compensate the loss. And the device could be more compact

comparing to the illumination in Figure 2-4.

2.2.3 Camera

Camera is another key component for building up the GelSight sensor. The quality

of the camera will directly influence the resolution of the images. Canon digital SLR

(EOS-iD Mark III) equipped with a 100 mm macro lens, is the first one used for the

GelSight device in [87]. In [88], 0.8-megapixel Point Grey Flea2 firewire camera (1032

776 pixels) is used in the portable device to capture the surface geometry in the wild.

18-megapixel Canon EOS Rebel T2i camera with a Canon MP-E 65 mm macro lens,

is used for the bench setting in [88] to capture the microgeometry.

2.3 GelSight Sensor Devices

(a) Box (b) Finger (c) Portable device (d) Bench

Figure 2-6: (a) shows the box setting the first time GelSight is invented [87]. (b)
shows the finger shape setup with GelSight idea. (c) shows the portable device to
measure surfaces in the field [88]. (d) shows the bench setting in 2011 for the precise
surface geometry measurement [88].

The principle of GelSight sensor is simple, however, to have a usable device is not

that easy. As discussed earlier, all small components matter a lot for the final result.

Figure 2-6 shows all the GelSight devices in the past.
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2.3.1 Box Setting

Figure 2-7a is the first device for GelSight sensor. As shown in Figure 2-7, the device

is within a 20 by 20 by 20 inches cubic box. Inside of the box, a camera is mounted

aiming straight at the sensor from a distance of 16 inches. The camera used for

Johnson and Adelson's result in [87] is by a Canon digital SLR (EOS-1D Mark III)

equipped with a 100 mm macro lens. In the box, there are red, green, and blue

floodlights that utilize LED arrays, positioned 10 inches away from the center of the

sensor at an elevation angle of 30 degrees.

(a) Box top view (b) Box inside view

(c) Lights (d) Camera

Figure 2-7: (a) shows the outlook of box setting. (b) shows inside view of the box
setting. (c) shows the lights configuration in the box setting. (d) shows camera
position related to the sensor in the box setting

Figure 2-8 shows a decorative pin (a) and the RGB image (b) that is captured

when the object is pressed against the sensor from behind and (c) shows rendering of

estimated surface. For traditional techniques (including photometric stereo), the pin

is a challenging object, because it has a transparent glass-like material in the center

surrounded by gold-plated metal.
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(b) (c)

Figure 2-8: (a) This decorative pin consists of a glass portrait mounted in a shiny
gold setting. (b) The RGB image provided by the retrographic sensor. The pin is
pressed into the elastomer skin, and colored lights illuminate it from three directions.
(c) Rendering of the decorative pin [87]

2.3.2 Portable Setting

The Portable device (as shown in Figure 2-7c and Figure 2-9) is constructed from

an acrylic tube with 3 inch outside diameter. The tube is approximately 8 inches

long. The sensor is mounted on the exterior of a 0.25 inch thick, 2.25 inch diameter

glass plate at one end of the tube. Our grazing illumination configuration leaves the

interior of the tube free for a 0.8-megapixel Point Grey Flea2 firewire camera (1032 x

776 pixels). When an exterior button is pressed, the system rapidly captures the six

lighting conditions. Figure 2-10 shows the result using portable deviece to measure

the board and brick in the field.

(a) (b)

Figure 2-9: Portable setting for measuring surface geometry in the field [88]
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(a) (b)

Figure 2-10: Result of the measurement for Figure 2-9 [88]

2.3.3 Bench Setting

The bench setting (as shown in Figure 2-7d) consists of a 18-megapixel Canon EOS

Rebel T2i camera with a Canon MP-E 65 mm macro lens mounted vertically over

an optical bench. The elastomeric sensor is mounted on a 0.5-inch thick, 5.5-inch

diameter glass plate with six LEDs evenly spaced around the perimeter. The glass

plate and sensor are secured to the subject material with toggle clamps.

The bench setting is designed to measure microgeometry. Figure 2-11 shows the

measurement of the letter T of the word Treasure on $ 20 bill. You can see both the

rays painting and the fibers of the bill. Currently, we could resolve features as small

as 2 microns spatially with sub-micron depth resolution.

Surface

Figure 2-11: $ 20 bill is pressed into GelSight sensor. The details of bill fiber could
be measured clearly. [88]
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2.4 3D Reconstruction Method

In order to extract the shape from a set of images, Johnson and Adelson [87] apply

a photometric stereo algorithm tailored to the sensor. They could reconstruct the

surface, rendered in Figure 2-2c. Here some basic idea of 3D reconstruction using

photometric stereo algorithm is explained. For more detailed information, please

refer to [87] and [881.

2.4.1 Reconstruction Algorithm

The surface of elatomeric sensor is modeled with a height function z = f(x, y). The

height function represents the displacement of the sensor from its resting state; when

nothing is touching the sensor, the height is zero. Assuming that image projection

is orthographic, the position (x, y) in the image corresponds to the location (x, y) on

the sensor. Under this assumption, the gradient (p, q) at position (x, y) is given by

p= f ,q= (2.1)

and the surface normal is N(x, y) = (p, q, I)T. It is assumed that the shading at

a point on the surface depends only on its surface normal, that is, there are no cast

shadows or interreflections. Under this assumption, the intensity at a point (x, y) can

be modeled as I(x, y) = R(p, q) where (p, q) is the gradient at (X, y).

From a calibration target with known surface geometry, the reflectance function

R(p, q) maps values from a two-dimensional space into a one dimensional space of

intensities. In general, there are many sets of p and q that map to the same in-

tensity value, and thus the reflectance function is not trivially invertible. To reduce

ambiguities, a photometric stereo approach is used: multiple images under different

illumination conditions. With three images, the problem is theoretically overcon-

strained, three measurements per pixel are used to estimate two gradient values:

I(x, y) = R ((p(x, y), q(x, y)) (2.2)
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The reflectance functions are, in general, nonlinear functions of the gradients p and

q and the inverse function is what needed, a function that maps observed intensity

triples to gradients. For this, a lookup table is built.

2.4.2 Lookup Table

A lookup table is used to learn the correspondence between intensity triples and

gradients. The algorithm is closest to that presented by Woodham [171], but the

data is extrapolated in the table using a low-order approximation of the reflectance

function, refine the gradient estimates within each bin, and handle collisions, i.e.,

multiple gradient pairs that produce the same intensity triple. The lookup table is

three-dimensional and each bin contains a gradient and a first-order approximation

of the reflectance functions in the neighborhood near the gradient.

When measuring the surface geometry of some other objects, the light intensity

of different channels is known from the images. Referring to the lookup Table, the

surface norm for each pixel could be gained. By solving the Poisson equation, the

depth information of the each point could be obtained.
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Chapter 3

Tactile Sensing using GelSight

Sensors

Material perception is a big issue for robotic tactile sensors. Currently, a lot of the

tactile sensors are constrained by the force feedback. There are multiple technolo-

gies for measuring the force and get the force distributions as discussed in Chapter 1.

However, when interacting with the environment, material properties will matter a lot

in various occasions. For example, when the robot is doing the manipulating task, it

could behave more safely if it could tell the difference between soft/squishy object and

hard/rigid object. For humans, it almost takes no effort to tell the differences between

materials of their mechanical properties, such as softness and roughness. In this chap-

ter, industrial methods for hardness/softness detection and roughness/smoothness

detection are introduced. The possibility of using GelSight sensor to detect hardness

is discussed. Also, the experiment of roughness detection using GelSight sensor is

explained. Some results are shown in this chapter.
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3.1 Hardness/Softness Detection

3.1.1 Industrial Methods for Hardness/Softness Detection

In industry, detecting the softness/hardness of materials is a broad area. There are

a lot of commercial hardness testing machines out there to do the industrial testing,

such as [74]. Also there are varieties of hardness testing scale for testing different

type of materials.

1. Brinell hardness test. The Brinell scale characterizes the indentation hardness

of materials through the scale of penetration of an indenter, loaded on a material

testpiece. [4]

2. Vickers hardness test. The Vickers test can be used for all metals and has one of

the widest scales among hardness tests. The unit of hardness given by the test

is known as the Vickers Pyramid Number (HV) or Diamond Pyramid Hardness

(DPH). [154]

3. Rockwell hardness test. The Rockwell test determines the hardness by measur-

ing the depth of penetration of an indenter under a large load compared to the

penetration made by a preload. [161]

4. Leeb rebound hardness test. This is a portable method, mainly used for testing

sufficiently large workpieces (mainly above 1 kg). [5]

5. Knoop hardness test. The Knoop hardness test is a microhardness test - a

test for mechanical hardness used particularly for very brittle materials or thin

sheets, where only a small indentation may be made for testing purposes. [100]

6. Shore durometer. The durometer scale was defined by Albert F. Shore, who

developed a measurement device called a durometer in the 1920s. The term

durometer is often used to refer to the measurement, as well as the instru-

ment itself. Durometer is typically used as a measure of hardness in polymers,

elastomers, and rubbers. [138]
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Currently two hardness tests that predominate in the rubber industry: Shore

durometer and International Rubber Hardness Degrees (IRHD). The International

Rubber Hardness Degrees (IRHD) test method provides a very repeatable result on

rubber parts of various shapes and sizes. It is especially important in determining

the hardness of rubber rings. The IRHD method employs a preliminary test load

that is applied to the specimen via an indenter. The test is zeroed at this indentation

position, then the total test force is applied. The distance between the two applied

forces is measured and converted to an IRHD hardness value. Preliminary test forces

are 8.46 gf for micro scales and 295.7 gf for regular scales. Total test forces are 15.7

gf for micro and 597 gf for regular scales [1]. The durometer hardness method is

widely used in the plastic and rubber industries. The durometer method applies a

predetermined test force to a spherical or conical indenter. The indenter is applied to

the specimen at the test force for a predefined time period. The resulting indentation

is converted into a hardness value by means of a dial gauge. Test loads range from

822 gf (A scale) to 4550 gf (D scale). Non-standard micro scales are also available.

These micro scales permit testing on thin or very narrow specimens [?].

Durometer is one of several measures of the hardness of a material. The Shore

hardness is measured with an apparatus known as a Durometer and consequently

is also known as 'Durometer hardness'. The hardness value is determined by the

penetration of the Durometer indenter foot into the sample [21]. Because of the

resilience of rubbers and plastics, the hardness reading might change over time, so

the indentation time is sometimes reported along with the hardness number. The

ASTM test number is ASTM D2240 [?] while the analogous ISO test method is ISO

868 [3]. Durometer is typically used as a measure of hardness in polymers, elastomers,

and rubbers [138].

The Durometer is the International Standard Instrument used to measure the

hardness of rubber or rubber-like materials. Shore Instruments offers a wide range

of durometer scales conforming to the ASTM D 2240 standard [2]. There are several

scales of durometer, used for materials with different properties, among which type A

and type D scales are the two most common scales. The A scale is for softer plastics,
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while the D scale is for harder ones. For different scales, the testing method will be

slightly different [106]. Table 3.1 shows the setting of the indenting food and applied

force for Durometer Type A and Type D.

Table 3.1: Test setup for type A and D [106]

Indenting foot

Hardened steel rod 1.1 mm - 1.4 mm diameter,
with a truncated 35 cone, 0.79 mm diameter

Hardened steel rod 1.1 mm - 1.4 mm diameter,
with a 30 conical point, 0.1 mm radius tip

Applied mass

0.822kg

4.550kg

Resulting force

8.064N

44.64N

In total, there are 12 scales for ASTM D 2240 [?] testing standard: A, B, C, D,

DO, E, M, 0, 00, 000, 000-S, and R. Each scale results in a value between 0 and

100, with higher values indicating a harder material [21]. For each durometer scale,

specific spring forces and indentor configurations are predefined in ASTM D 2240 [?].
Table 3.2 shows the details of setup for each of these types, with the exception of

Type R. [6]

Durometer Type

A
C
D
B
M
E
0

00
DO

000
000-S

Table 3.2: Durometer Scales and Testing M

Configuration Diameter

35 truncated cone 1.40 mm
35 truncated cone 1.40 mm

30 cone 1.40 mm
30 cone 1.40 mm
30 cone 0.79 mm

2.5 mm spherical radius 4.50 mm
1.20 mm spherical radius 2.40 mm
1.20 mm spherical radius 2.40 mm
1.20 mm spherical radius 2.40 mm

0.635 mm spherical radius 10.7 mm - 11.6 mm
10.7 mm radius disk 12.0 mm

ethods [6]

Extension

2.54 mm
2.54 mm
2.54 mm
2.54 mm
1.25 mm
2.54 mm
2.54 mm
2.54 mm
2.54 mm
2.54 mm
5.0 mm

3.1.2 Robotic Sensors for Hardness/Softness Detection

Hasegawa introduced a micromachined tactile sensor that detects both the contact

force and hardness of an object. It consists of a diaphragm with a mesa structure, a

piezoresistive strain sensor on the diaphragm, and a chamber for pneumatic actuation

in [66]. The sensor element measures 6.0 mm 6.0 mm 0.4 mm. The fabricated tactile

54

Durometer

Type A

Type D

Spring force

822 gf
4,536 gf
4,536 gf
822 gf
78 gf

822 gf
822 gf
113 gf

4,536 gf
113 gf
197 gf



sensor detected differences in hardness in the range of 103 to 105 N/m. Figure 3-1

shows the structure of our tactile sensor. It consists of a diaphragm with a mesa at

the center, a piezoresistive displacement sensor at the periphery, and a chamber for

pneumatic actuation. Figure 3-2 shows an array of three sensor elements.

Piezo-resistance Mesa

Gas

Figure 3-1: Structure of the tactile sensor [66]

Obect' - 'd"~ b %

Contact No-contact Contact

Arrayed active tactile sensors

(a)
Deformation No-deformation Deformation

(b)

Figure 3-2: (a) Detecting contact force distribution and
image. (b) Detecting hardness distribution. [66]

When the tactile sensor array makes contact with an object having a bumpy

surface (Figure 3-2a), the surface profile of the object causes some of the mesa struc-

tures on the diaphragms to contact the object, so their diaphragms deform down-

wards. From the displacement and location of the deformed diaphragms, the system

can detect the contact-force distribution and 2D surface texture image of the object.

Hardness distribution detection In the second mode, the contacted mesa elements

are pneumatically driven against the object (Figure 3-2b). The contacted regions of
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the object are deformed according to the driving force of the mesa element and the

hardness of the object (Figure 3-3). Therefore, we can detect the hardness distri-

bution of the object by measuring the relationship between the displacements of the

diaphragms and the actuation force of the mesa elements.

Soft object

Hard object

Driving force to diaphragm

Figure 3-3: Displacement of a diaphragm as a function of the hardness of the object
[66]

3.2 Roughness/Smoothness Detection

Surface roughness, often shortened to roughness, is a measure of the texture of a

surface. It is quantified by the vertical deviations of a real surface from its ideal form.

If these deviations are large, the surface is rough; if they are small the surface is

smooth. Roughness is typically considered to be the high frequency, short wavelength

component of a measured surface.

Roughness plays an important role in determining how a real object will interact

with its environment. Rough surfaces usually wear more quickly and have higher

friction coefficients than smooth surfaces. Roughness is often a good predictor of the

performance of a mechanical component, since irregularities in the surface may form

nucleation sites for cracks or corrosion.

Although roughness is usually undesirable, it is difficult and expensive to con-

trol in manufacturing. Decreasing the roughness of a surface will usually increase

exponentially its manufacturing costs. This often results in a trade-off between the

manufacturing cost of a component and its performance in application.
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A roughness value can either be calculated on a profile or on a surface. The profile

roughness parameter (Ra, Rq) are more common. The area roughness parameters (Sa,

Sq) give more significant values. Each of the roughness parameters is calculated using

a formula for describing the surface. There are many different roughness parameters

in use, but it is by far the most common. Some parameters are used only in certain

industries or within certain countries. For example, the family of parameters is used

mainly for cylinder bore linings, and the Motif parameters are used primarily within

France. Since these parameters reduce all of the information in a profile to a single

number, great care must be taken in applying and interpreting them. Small changes

in how the raw profile data is filtered, how the mean line is calculated, and the physics

of the measurement can greatly affect the calculated parameter.

By convention every 2D roughness parameter is a capital R followed by additional

characters in the subscript. The subscript identifies the formula that was used, and

the R means that the formula was applied to a 2D roughness profile. Different capital

letters imply that the formula was applied to a different profile. For example, Ra is

the arithmetic average of the roughness profile, Pa is the arithmetic average of the

unfiltered raw profile, and S, is the arithmetic average of the 3D roughness. Each

of the formulas assumes that the roughness profile has been filtered from the raw

profile data and the mean line has been calculated. The roughness profile contains n

ordered, equally spaced points along the trace, and yj is the vertical distance from the

mean line to the ith data point. Height is assumed to be positive in the up direction,

away from the bulk material. [47]

The definition of common used roughness parameter is shown below: [14]

Arithmetical mean roughness (Ra): A section of standard length is sampled from

the mean line on the roughness chart. The mean line is laid on a Cartesian coordinate

system wherein the mean line runs in the direction of the x-axis and magnification

is the y-axis. The value obtained with the formula below is expressed in micrometer

(uM).
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Ra = y (3.1)
i=1

Maximum peak (Ry): A section of standard length is sampled from the mean line

on the roughness chart. The distance between the peaks and valleys of the sampled

line is measured in the y direction. The value is expressed in micrometer.

Rq y (3.2)
i=1

Ten-point mean roughness (Rz): A section of standard length is sampled from the

mean line on the roughness chart. The distance between the peaks and valleys of the

sampled line is measured in y direction. Then, the average peak is obtained among

5 tallest peaks(Y), as the average valley between 5 lowest valleys (Y). The sum of

these two values is expiressed in micrometer.

R _ 1 Y2+ Y-3 +l4+ Y± + oi + Yv2+ Yv3+ Yv4 + Yv5 (33)
5

3.2.1 Industrial Methods for Roughness/Smoothness Detec-

tion

Human perception is highly relative. In other words, without something to compare

to, you will not be certain about what you are feeling. To give the human tester

a reference for what they are touching, commercial sets of standards are available.

Comparison should be made against matched identical processes. One method of

note is the finger nail assessment of roughness and touch method used for draw dies

in the auto industry.

In industry, roughness of a certain material is measured using a mechanical stylus.

One example of this is the Brown and Sharpe Surfcom unit. Basically this technique

uses a stylus that tracks small changes in surface height, and a skid that follows large

changes in surface height. The use of the two together reduces the effects of non-flat
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surfaces on the surface roughness measurement. The relative motion between the

skid and the stylus is measured with a magnetic circuit and induction coils.

direction of travel over surface

Figure 3-4: Industrial Roughness measurement principle [162]

The actual apparatus uses the apparatus hooked to other instrumentation. The

induction coils drive amplifiers, and other signal conditioning hardware. The then

amplified signal is used to drive a recorder that shows stylus position, and a digital

readout that displays the CLA/Ra value.

The datum that the stylus position should be compared to can be one of three

" Skid - can be used for regular frequency roughness

" Shoe - can be used for irregular frequency roughness

" Independent - can use an optical flat

the height of the skid varies
slightly, but effectively gives
a datum

skid moves this way

Figure 3-5: Skid - used for regular frequencies, and very common. [162]
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Figure 3-6: Flat Shoe - used for surfaces with irregular frequencies. [162]

Figure 3-7: Independent Datum
section of the surface.[162]

- used for surface texture varies within a very small

3.2.2 Robotic Sensors for Roughness/Smoothness Detection

Traditionally, an accelerometer and a mechanical probe are used to detect roughness

of a surface [173]. While the mechanical probe goes along the detected surface, the

accelerometer connected to the probe is used to measure the frequency of vibration the

probe generated while sliding across the surface. From the frequency and vibration

magnitude, the roughness of the surface could be inferred. [96]

3.3 Tactile Perception using Elastomeric Sensor

3.3.1 My work in Hardness/Softness Detection

3.3.1.1 Samples used in Hardness/Softness Detection

Samples used for the hardness detection experiment are rubbers with different ShoreA

scale softness and ShoreOO scale softness. ShoreA scale is used for relative hard

materials and ShoreO0 scale is used for relative soft materials.
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For ShoreA 30, ShoreA 40 and ShoreA 50 (the larger number, the harder the

material) samples, I cast them into the same shape using the materials bought from

Smooth-On Inc [156]. The shape is shown in the figuer 3-8a. Also, two relative soft

samples, made of the material bought from Smooth-On Inc [155] are with softness

Shore00-10 and Shore00-30 (the larger number, the harder the material) respectively.

The shape of ShoreO0 samples is cylinders with 35 mm in diameter and 20 mm in

depth as shown in 3-8b.

(a) (b)

Figure 3-8: Samples for hardness detection experiment. (a) shows the samples of
ShoreA scale, from left to right, ShoreA 30, ShoreA 40, ShoreA 50. (b) shows the
samples of Shore00 scale, from left to right, Shore00 10, Shore00 30

3.3.1.2 Result for Hardness/Softness Detection

For materials with different softness, the simplest way to measure the softness is to

find the relationship of force and displacement while doing the indentation task. Here

I prepare three rubber objects of same shape but different softness. Using Durameter

scale, the softness of the samples is ShoreA 30, ShoreA 40 and ShoreA 50, respectively.

Using the 2000N load Instron indentation machine, 10,000 data points are recorded

within 10mm indentation. Here I plot the relationship of force applied to each object

and the displacement occurred to the object. From the figure, we could tell, by

combining the force feedback and displacement feedback, it's possible to detect the

softness of a material.

As shown in Figure 3-10, two cylinder samples with same shape but different

softness are measured using the same technique. The softness of the two samples are
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Force vs. Displacenwt frobescb of same shape bu dferet sotness

Displacement (mm

Figure 3-9: Force
softness

vs. Displacement of the objects with same shape but different

F"rc vs. D~pcefnt Owobjet dt same stape Wt dIfsreutso&tn

0 1 2
Displacement (mm

Figure 3-10: Force vs.
softness

Displacement of the objects with same shape but different

Shore00-10, Shore00-30, respectively.

By measuring the stress and strain relationship of our GelSight sensor, we could

know the mechanical property of the sensor itself. Since from our technique, we could

reconstruct the depth information occurred in the sensor, so the displacement could

be obtained. With the displacement and sensor's mechanical properties, using Finite

Element Analysis, the force applied on the sensor could be calculated. However, the

mechanical property of the sensor will change over time and usage. In the Figure
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Figure 3-11: Strain vs. Stress of GelSight sensors

3-11, the blue and green line shows the stress over strain for the fresh sensors, but

for the sensor that has a lot of history, the red curve shows that the mechanical

property differs a lot. In principle, it is possible for GelSight sensor to extract the

force distribution information of the contacting surfaces, but the history of the sensor

should be taken into consideration while extracting force distribution from the depth

information. Due to time limitation, there is no further analysis done for this thesis.

3.3.2 My work in Roughness/Smoothness Detection

GelSight sensor could obtain the surface geometry, which makes the roughness de-

tection task feasible. As described in Session 3.2, Equation 3.3 is the deviation the

sampled depths data in one direction.

3.3.2.1 Samples used in Roughness/Smoothness Detection

In the Roughness/Smoothness Detection experiment, sandpapers of different grit are

used. 50 grit, P80 grit, 150 grit, 320 grit and P500 grit are the five samples used in

this task, as shown in the Figure 3-12. From [97], we could know that for roughness

value, 50 grit > P80 grit > 150 grit > 320 grit > P500 grit. All the sandpaper samples

here are purchased from McMaster-Carr [121].
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Figure 3-12: Samples for roughness detection experiment. Here shows the samples of
sandpaper used in the experiment, from left to right, 50 grit, P80 grit, 150 grit, 320
grit and P500 grit

3.3.2.2 Roughness/Smoothness Detection Experiment

Sensor used for roughness detection is GelSight Portable device, as shown in Figure

2-7c. There are five types of sandpapers, six patches for each type. In total, there

are 30 samples. For each sample, the surface geometry is obtained using the portable

device. For each surface geometry, Ra for each row and each column is calculated

using the Equation 3.3. Then all the Ra value is averaged to get the representative

Ra for each patch.

Table 3.3: Roughness Estimation Result for Sandpaper Samples Ra

Sample(grit) Patch1 Patch2 Patch3 Patch4 Patch5 Patch6

50 1.1293 1.1771 1.1293 1.1530 1.1132 1.1247
P80 0.8124 0.8209 0.7767 0.8203 0.7875 0.7688
150 0.5390 0.5446 0.5606 0.5747 0.5575 0.5513
320 0.4345 0.4375 0.3878 0.4508 0.4321 0.4168

P500 0.3648 0.3699 0.3786 0.3650 0.3796 0.3664

As shown in Table 3.3, each row is the Ra value for the same type of sandpaper, but

different patches. From the data, we could see that for the same type of sandpaper,

the Ra value tend to cluster together. To make it more visible, I fit a plot the bar

chart for five data points gained from each type of the sandpaper samples, and error

bar is also shown in Figure 3-13

64



Figure 3-13: Ra distribution of the sandpaper samples tested in the experiment, from
left to right, 50 grit, P80 grit, 150 grit, 320 grit and P500 grit

3.3.2.3 Conclusion for Roughness/Smoothness Detection Experiment

GelSight sensor is able to compare the roughness of the selected sandpaper success-

fully. From the Ra distribution of different sandpaper samples, there is almost no

overlap for each distribution curve, which means they could be distinguished with a

very high accurate probability. There are still several issues that need to be figured

out. First is how to match Ra value gained from GelSight sensor with physical Ra in

the industrial world. Second is whether the roughness comparison method will work

with other materials. More sandpaper could be tested using the same method. Also

it will be very interesting to compare the roughness of soft materials, such as rubber,

foam and etc.
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Chapter 4

Tactile Sensor Application -

Detection of Lumps in Soft Tissue

Using the distributed tactile receptors embedded in the skin, humans can localize

lumps in soft tissue. By the processing between fingers and brain, human can give

feedback of the presence or absence of the lump. However, this type of task be-

comes challenging when human body has no direct contact with the tissue, such as

in laparoscopic or robot-assisted procedures. [65]

Tactile sensors have been proposed to characterize and detect lumps in robot-

assisted palpation. However, there is no tactile sensor that could provide enough

tactile information to the user. Using GelSight sensor as described in the previous

chapter, a lump detection experiment is conducted. In this experiment, a visual dis-

play of tactile information is presented. Also, a simple threshold method is introduced

for binary feedback of lump detection. Similar task is performed by human subjects.

The performance of GelSight sensor and human subjects in lump detection is com-

pared. Furthermore, the effects of various tissue parameters (lump size, lump depth,

and surrounding tissue stiffness) is discussed on the performance of both the human

finger and the tactile sensor. Last, the performance of Gelsight sensor is compared

with DigiTacts sensor [65].
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4.1 Introduction

Tactile sensation is very important for medical examination. Surgeons depend on tac-

tile sensation to guide manipulation and exploration in open surgery [111]. Lumps,

for example, is typically the case, as hard tissue (lump) in the soft tissues of the

breast, prostate, lungs, and other tissues [44]. [73], [104], [136] have shown that

lumps are significantly stiffer than surrounding tissue. This contrast of stiffness helps

a lot in the localization and assessment of lumps during open surgery, when the sur-

geons fingertips are in direct contact with the tissue and tactile information is readily

available [65]. As minimally invasive surgery (MIS) or robot-assisted minimally inva-

sive surgery (RMIS) being used more often, the direct tactile sensation to guide the

surgeon is deprived. Even though these techniques have increased dexterity, precision

and control, they eliminate the surgeons natural tactile feedback, which makes pal-

pation for lumps more difficult, especially because these structures are often beneath

the tissue surface and cannot be detected visually [65].

Detection of lumps using tactile sensors is still a challenging problem. Peine and

Howe [133] evaluated the abilities of humans to detect hard lumps in soft tissue, with

varying lump sizes and indentation velocities. They found that subjects sensed the

deformation of the finger pad induced by the lump itself, and not the changes in finger

pad pressure distribution. In [65], a study of robotic sensor lump detection comparing

to human lump detection is conducted. They found that their sensor outperform

human when human behaves as a passive explorer. In this chapter, I will talk about

my experiment in lump detection using GelSight sensor and human psychological

experiment while doing similar task. The performance of GelSight sensor and human

is evaluated when human behaves as an active explorer.
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4.2 Lump Detection Using GelSight Sensor

4.2.1 Experiment Phantoms

Phantoms were created to simulate hard lumps in soft tissue. Models were molded

from Ecoflex 00-10 (softer) and 00- 30 (harder) silicone rubber (Smooth-on Inc, Easton

PA), where the suffix number represents the rubber hardness on the Shore 00 scale

[21]. Models were shaped as cylinder blocks measuring approximately 35 mm in

diameter and 20 mm in height. Lumps were made of Delrin as spheres with diameters

of 2mm, 3mm, 5mm, 8mm and 9.5 mm, and were embedded below the surface of the

tissue at depths of 1, 2, 3, 4, 5 and 6 mm. All the dimensions are shown in Figure

4-1. The combination of two rubber hardness (Shore 00-10, 00-30), six lump depths,

and five lump sizes produce 60 distinct phantom models. A table of both model

sets is shown in Figure 4-2. 60 additional models without a lump is made, served as

baseline models, 30 for each hardness. Delrin is harder than most cancerous tissue,

but provides a good contrast against the soft rubber for the purposes of this study.

While tissue is difficult to model accurately due to its heterogeneity and variance

according to location, we chose materials to represent tissue (ecoflex silicone rubber)

and lumps (Delrin) which reasonably approximate an average equivalent contrast in

stiffness to that found for lumps in breast [105] and prostate [76], [176] tissues. The

materials used for phantoms in this experiment are the same as the materials used in

[65].

Depth below surface (mm) Phantom hardness

D H

B Ball(Lump) Size (mm)

Figure 4-1: Physical description of phantom samples.
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00-10 (H10)

81IB2IB3 IB4185
(mm) 2 3 X5 8t 9.

D1 1 1 1 1 1 1 '1. 1 1 1

D2 2 2 2- 2 2- 2, 2 2 2 2

D3 3 3 3 3 3 3 3 3 3 3

D4 4 4 4 4 4 4 4 4 4 4

D5 5 5 5 5 5 5 5 5 15 5

D6 6 6 6 6 6 6 6 6 6 6

Figure 4-2: Samples differ in lump size (ball, B), embedded lump depth (depth, D),
and hardness of surrounding materials (hardness, H). All 60 models are represented
in the table with dimensions in mm. The notation shown here is used throughout
this chapter

4.2.2 Experiment Setup

GelSight portable device, as shown in Figure 2-7c, is used for lump detection exper-

iment. As talked about in Chapter1, the sensor is using a 0.8 megapixel Point Grey

Flea2 firewire camera (1032 x 776 pixels). The configuration of the camera used in

this experiment is 640 x 480 pixels, 15 frames per second, 6.00 shutter speed.

The setup of the experiment is shown in the Figure 4-3. The phantom is placed

in the middle of the scale, which is fixed by the blue part in the photo. Above the

sample, GelSight portable device is fixed with the center of the sensor lined up with

the center of the sample. During the experiment, the sensor will be pressed against

the sample with different amount of force. A series of images will be taken under

the directional illumination of portable device. From the series of images, using the

lookup table built from a calibration target with know surface geometry, the depth

information occurred on the sensor will be reconstructed (For details, please refer to

Chapter2).
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(a) (b)

Figure 4-3: Here shows the Setup for the robotic experiment.

4.2.3 Robotic Experiment Methodology

In the experiment, I'm experimenting with phantom samples with different softness,

different sizes of the lump, different depth the lump embedded in the tissue and

different forces applied on the sample. For each trial, the depth information is recon-

structed from GelSight sensor (For reconstruction algorithm, please refer to Chapter

2).

Since we have many samples, to make the illustration clear, I numerate the sam-

ple with the information of softness, depth, lump size. For example, H30-D4-B9.5

indicates the sample consists of Shore00 30 tissue and a lump sized 9.5 mm embed-

ded at 4mm away from the surface. Sometimes, force information will be added to

the sample, such as H30-D4-B9.5-F2500 means H30-D4-B9.5 sample is pressed using

force of 2500g. The unit used for length is mm, and unit used for force units is gram.

4.2.3.1 Blank Samples

As mentioned in previous session, there are 30 blank samples for each softness. From

the H30 blank samples, five of them are picked as the control group. For each blank

sample, five different forces are applied. The forces are 500g, 1500g, 2500g, 3500g

and 4500g, respectively. In 4-4, shows the depths information for all the trials tested

on the blank samples. We could see that there are some depth variation even for the
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blank samples. These information might influence the lump detection result. To have

the control line for each force, I average depth maps of different samples with the

same force, then get the averaged depth map for forces, which is shown in Figure4-5.

I will take the average depth map as a baseline for future comparison.

Figure 4-4: Depth map for different blank samples while pressed by different forces.
Each row is the same sample with different force, while each column is the same
force applied on different blank samples. From left to right, the forces applied on the
sample are 500g, 1500g, 2500g, 3500g and 4500g, respectively.

Figure 4-5: Average depth map over different blank samples at the same force. From
left to right, the forces are 500g, 1500g, 2500g, 3500g and 4500g, respectively.
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4.2.3.2 Samples with different applied forces

From Figure 4-5, we could tell that forces applied on the sample will influence the

result of depth map. Here I pick phantom samples with medium lump size (5mm)

embedded at a medium depth (3mm) (H30-D3-B5) as illustration.

Figure 4-6: Depth map of H30-D3-B5 while pressed with different forces. From left
to right, the forces are 500g, 1500g, 2500g, 3500g and 4500g, respectively.

As shown in 4-5, even for blank samples, there are some depth variation. To clean

up the depth map, I subtract the sample depth map with the average blank sample

depth map of the same force, as shown in Figure 4-7. Simply by looking at the depth

map, we could see that there is a clear red circular region in the derivation depth

map for H30-D3-B5-F2500, while in the original depth map, it's hard to tell. Also for

H30-D3-B5-F1500, the signal of the lump is mixed together with the background in

the original depth map, while there is a small yellow region in the derivation depth

image.

Figure 4-7: Depth map derivation of H30-D3-B5 pressed with different forces from
the blank sample. From left to right, the forces are 500g, 1500g, 2500g, 3500g and
4500g, respectively.

Here shows more comparison of original depth images with the deviative depth

images from the average blank sample depth image.

From all the figures shown here, the deviative depth map is easier to tell the

presence of the lump. Also, the larger the force, the stronger the contract is in the

depth map.
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(a)

(b)

Figure 4-8: H30-D1-B5 with different force applied. (a) Original depth map (b)
Derivative depth map. From left to right, the forces are 500g, 1500g, 2500g, 3500g
and 4500g, respectively.

(a)

(b)

Figure 4-9: H30-D2-B5 with different force applied. (a) Original depth map (b)
Derivative depth map. From left to right, the forces are 500g, 1500g, 2500g, 3500g
and 4500g, respectively.

74



(a)

(b)

Figure 4-10: H30-D4-B5 with different force applied. (a) Original depth map (b)
Derivative depth map. From left to right, the forces are 500g, 1500g, 2500g, 3500g
and 4500g, respectively.

(a)

(b)

Figure 4-11: H30-D5-B5 with different force applied. (a) Original depth map (b)
Derivative depth map. From left to right, the forces are 500g, 1500g, 2500g, 3500g
and 4500g, respectively.
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(a)

(b)

Figure 4-12: H30-D6-B5 with different force applied. (a) Original depth map (b)
Derivative depth map. From left to right, the forces are 500g, 1500g, 2500g, 3500g
and 4500g, respectively.

4.2.3.3 Samples with different sized lumps

To see how lumps with different sizes could influence the depth map, here I pick

phantom samples with lump size embedded at a medium depth (3mm) while pressed

with the same force (H30-D3-F4500) as illustration.

Figure 4-13: Depth map of H30-D3-F4500 with lump of different sizes. From left to
right, the sizes of the lumps are 2mm, 3mm, 5mm,8mm and 9mm respectively.

Figure 4-14: Depth map derivation of H30-D3-F4500 pressed with different sized
lumps. From left to right, the sizes of the lumps are 2mm, 3mm, 5mm, 8mm and
9mm respectively.

To clean up the depth map, I subtract the depth map with the average blank
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sample depth map of the same force, shown in Figure 4-15b. Simply by looking at

the depth map, lumps in B5 is easy to tell in the derivative depth map while in the

orginal image, it's hard to tell it apart from the background. Same case is for the B3

sample. Also, sample with larger lumps, the contrast of the lump location from the

tissue is stronger.

Here shows more comparison examples for samples with lump of different sizes.

(a)

(b)

Figure 4-15: H30-D3-F4500 samples with lump of different sizes. (a) Original depth
map (b) Derivative depth map. From left to right, the sizes are B2, B3, B5, B8 and
B9.5, respectively.

From all the figures shown here, the deviative depth map is easier to tell the

presence of the lump. Also, the bigger the lump is, the stronger the contrast is.

4.2.3.4 Samples with lumps embedded at different depths

To see how the depths of lumps could influence the depth map, here I pick phantom

samples with medium sized lump (B5). All the samples are pressed with the same

force (F4500).

To clean up the depth map, I subtract the depth map with the average blank

sample depth map of the same force, shown in Figure 4-22. Simply by looking at

the depth map, all the lumps is easy to tell in the derivative depth map while in the

orginal image, it's hard to tell it apart when the depth is getting deepter. For sample
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(a)

(b)

Figure 4-16: H30-D1-F4500 samples with lump of different sizes. (a) Original depth
map (b) Derivative depth map. From left to right, the sizes are B2, B3, B5, B8 and
B9.5, respectively.

(a)

(b)

Figure 4-17: H30-D2-F4500 samples with lump of different sizes. (a) Original depth
map (b) Derivative depth map. From left to right, the sizes are B2, B3, B5, B8 and
B9.5, respectively.
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(a)

(b)

Figure 4-18: H30-D4-F4500 samples with
map (b) Derivative depth map. From left
B9.5, respectively.

lump of different sizes. (a) Original depth
to right, the sizes are B2, B3, B5, B8 and

(a)

(b)

Figure 4-19: H30-D5-F4500 samples with lump of different sizes. (a) Original depth
map (b) Derivative depth map. From left to right, the sizes are B2, B3, B5, B8 and
B9.5, respectively.
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(a)

(b)

Figure 4-20: H30-D6-F4500 samples with lump of different sizes. (a) Original depth
map (b) Derivative depth map. From left to right, the sizes are B2, B3, B5, B8 and
B9.5, respectively.

Figure 4-21: Depth map of H30-B5-F4500 with different lump embedded at different
depths. From left to right, the depths are D1, D2, D3, D4, D5 and D6 respectively.
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with same sized lumps, the contrast of the lump from surroundings is getting less as

depth increases.

Figure 4-22: Derivative depth map of H30-B5-F4500 with different lump embedded
at different depths. From left to right, the depths are D1, D2, D3, D4, D5 and D6
respectively..

Here shows more comparison examples for samples with lumps embedded at dif-

ferent depths.

(a)

(b)

Figure 4-23: H30-B9-F4500 samples with the lump embedded at different depths. (a)
Original depth map (b) Derivative depth map. From left to right, the depths are D1,
D2, D3, D4, D5 and D6, respectively.

From all the figures shown above, the deviative depth map is easier to tell the

presence of the lump. Also, the deeper the lump is embedded, the weaker the contrast

of the lump is.
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(a)

(b)

Figure 4-24: H30-B8-F4500 samples with the lump embedded at different depths. (a)
Original depth map (b) Derivative depth map. From left to right, the depths are D1,
D2, D3, D4, D5 and D6, respectively.

(a)

(b)

Figure 4-25: H30-B3-F4500 samples with the lump embedded at different depths. (a)
Original depth map (b) Derivative depth map. From left to right, the depths are D1,
D2, D3, D4, D5 and D6, respectively.
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(a)

(b)

Figure 4-26: H30-B2-F4500 samples with the lump embedded at different depths. (a)
Original depth map (b) Derivative depth map. From left to right, the depths are D1,
D2, D3, D4, D5 and D6, respectively.

4.2.3.5 All Samples

From previous discussion, we know that the derivative depth map is more informative

comparing to the original depth image. Also force is a major factor for lump detection

preformance. Here I show the derivative depth map for all the H30-F4500 samples in

Figure 4-27

Simply by looking at the depth images, human could have the judgement of the

presence of lump. From Figure 4-27, the judgement of lump becomes challenging

while the lump is getting smaller and the depth getting deeper. For B9, B8 and B5,

the presence of the lump could be detected easily. However, for B3, when depth is

larger than D4, it's very hard to judge whether there is a lump or not. Also, for B2,

only when the depth is D1, the contrast is clear enough for human to judge. For D4,

the smallest lump could be detected for sure is B5.
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Figure 4-27: Derivative depth map of all H30-F4500 samples. Each row represent the
samples with lump at different depth. Rom up to down, the depths are D1, D2, D3,
D4, D5, D6, respectively. Each column represent the samples with lump of different
sizes. From left to right, the sizes are B2, B3, B5, B8 and B9.5, respectively.
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4.2.4 Computational Methodology for Lump Detection Us-

ing GelSight Sensor

As discussed in the previous session, just by looking at the depth map of different

samples, the presence of the lump could be judged. However, if we feed computer

with all the depth maps, how could the computer tell whether there is a lump in the

sample. In this session, I will introduce a simple threshold method for lump detection.

1. From the original depth image, find the mean of the image.

2. Set a threshold for the "large" value. For example, LargerValueThreshold =

1.5 x mean.

3. Find the number of pixels with value larger than the LargerValueThreshold,

denoted as num.

4. Compute the ratio of num over the whole image, denoted as ratio

5. Set a threshold for the RatioThreshold. For example, RatioThreshold = 0.14

6. Compare ratio with RatioThreshold and give a binary feedback. If ratio >

RatioThreshold, then there is a lump in the sample.

Using this method, some samples are selected for the experiment. As a compari-

son, the blank samples are used as the baseline to judge how well the method is for

lump detection. For each sample, there are five trials, which means there are five

data points for each sample.

4.2.4.1 Samples of different softness

Two samples with different softness are selected. They're H30-D3-B5 and H10-D3-B5.

From Figure 4-28, the contrast for softer sample (b) is more obvious than the harder

sample (a). From the data points for each sample, a normal distribution function

is fitted. It's clear that the overlap of soft sample with soft blank sample is much

smaller than the hard sample with hard blank sample.
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Figure 4-28: Depth map of samples with different softness. The left image shows the
depth map of harder sample (H30-D3-B5), while the right image shows the depth
map of softer sample (H1O-D3-B5).

Large Value Distribuion for harder samples (-3
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(a)

Large Value Distributon for softer samples (H1

H F-08 0
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(b)

Figure 4-29: Number of "large" value distribution for samples with different hardness.
The red curve shows the distribution of blank sample with the same softness as the
selected phantom sample. (a) is the distribution of harder sample (H30), (b) is the
distribution of softer sample (H1O).
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To better visualize the overlap of the distribution functions, a ROC curve for

both cases is plotted in Figure 4-30. From the ROC curve, it's clear that the d' for

softer samples is larger than d' for harder samples, which means it's easier to tell

the difference of lump presence in softer tissue rather than harder tissue It's intuitive

that for soft phantoms samples, the contrast of the lump and the surrounding tissue

larger, which is easier to tell the lump absence or presence.

ROC curve of samples with different softness

-- Hard(H30) 
:0.9 - - -............. - Sot(H10)

0.9
0.8 ...... ........ . .. ... .... .. ... .

0.7 .... - ............. ....... ..... ......

i: 0 .6 - - - - -.-. -
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0.4 . - - - .-
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0.2 ....... ..... ............ ..... ..
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0
0 0.2 0.4 0.6 0.8 1

False Alarm Rate

Figure 4-30: ROC curve for samples with soft tissue and hard tissue.

4.2.4.2 Samples with lump of different sizes

Figure 4-31: Depth map of samples with different lump sizes. The left image shows
the depth map of sample with smaller lump (H30-D3-B3), while the right image shows
the depth map of sample bigger lump (H30-D3-B5).

Two samples are selected, H30-D3-B3 and H30-D3-B5 shown in Figure 4-31. A

normal distribution function of num is fitted for selected samples, shown in 4-32. To

make it more clear, a ROC curve for both cases is plotted in Figure 4-33. From the
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ROC curve, it's clear that the d' for sample with bigger lump is much larger than d'

for sample with smaller lump, which means it's easier to tell the difference of lump

presence or absence if the lump is bigger.

1otarge Value Distribution for samples with different ballsiz|--- H30-DO-BO
- H30-D3-B5

5- H30-D3-3

3 -

a.' 2 -
0

1. * * ** . *** *

2 2.5 3 3.5 4 4.5
Number of points with value larger than 1.5*mei x 10'

Figure 4-32: Number of "large" value distribution for samples with different sized
lumps. The red curve shows the distribution of blank sample with the same softness
as the selected phantom samples. The blue curve is the distribution of sample with
bigger lump (H30-D3-B5), The green curve is the distribution of sample with smaller
lump (H30-D3-B3).

ROC curve of samples with different softness
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Figure 4-33: ROC curve for samples with different ballsize.
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Figure 4-34: Depth map of samples with lump embedded at different depth. The
left image shows the depth map of sample with lump embedded at a shallower
position(H30-D3-B3), while the right image shows the depth map of sample with
lump embedded at a deeper position (H30-D4-B3).

4.2.4.3 Samples with lump embedded at different depths

Two samples are selected, H30-D3-B3 and H30-D4-B3. The depth map for both

samples are shown in Figure 4-34. The contrast are all not very clear, but there is

still a small yellow circular region in ??. A normal distribution function of num is

fitted for selected samples, shown in 4-35.

Me

0
2

Eo

1 1
4Large Value Distrbution for samples with different dep

H30-DO-BO
0.9 - H30-D3-83

----- H30-D4-B3
0.8-

0.7

0.6

0.5

0.4 -

0.3 -

0.2 -

0.1 - j41e * * 41 1*

2 2.5 3 3.5 4 4.

Number of points with value larger than 1.5*met x 10'

Figure 4-35: Number of "large" value distribution for samples with lump embedded
at different depth. The red curve shows the distribution of blank sample with the
same softness as the selected phantom samples. The blue curve is the distribution of
sample with lump embedded at a shallower position (H30-D3-B3), The green curve
is the distribution of sample with lump embedded at a deeper position (H30-D4-B3).

To make it more clear, a ROC curve for both cases is plotted in Figure 4-36. From

the ROC curve, it's clear that the d' for sample with lump embedded at a shallower

position is much larger than d' for sample with lump embedded at a deeper position,
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which means it's easier to tell whether there is lump embedded in the tissue if the

lump is close to the surface.

ROC curve of samples with different depth
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Figure 4-36: ROC curve for samples with ball embedded at different depths

4.2.4.4 Samples with different force applied

Figure 4-37: Depth map of the same sample (H1O-D6-B5) applied by different forces.
The left image shows the depth map of the sample pressed with larger force, while
the right image shows the depth map of the sample pressed by smaller force

I'm testing the same sample with different forces. H10-D6-B5 is selected. The

depth map for both cases are shown in Figure 4-37. The contrast are all not so

obvious, but it's clear that there is a small red circular region in ??. A normal

distribution function of num is fitted for selected samples, shown in 4-38. There is

overlap of phantom sample distribution and the blank sample distribution in while

a small force is applied. While when the force increased, the overlap between the

phantom sample distribution and the blank sample distribution disappears. In ROC
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curve shown in Figure 4-39, d' for sample with larger force applied is much larger than

d' for sample with smaller force applied, which means it's easier to tell the difference

of lump presence or absence when more force is applied.

Large Value Distribution for larger force samp

-H10-D-6-B544500 I

.~4

a
4'

0

2 2.5 3 3.5 4 4.5
Number of points with value larger than 1.6*mes x 10'

(a)

10, Large Value Distnbution for smaller force samp
--- H10DO-BE-F1500
-I H0-D6-8-F1 500

Number of points with value larger than 1.5*me. x i'

(b)

Figure 4-38: Number of "large" value distribution for the same sample while different
forces are applied. The red curve shows the distribution of blank sample with the
same force applied as the phantom sample. (a) is the distribution of the sample with
larger force, (b) is the distribution of the sample with smaller force.
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Figure 4-39: ROC curve for sample while applied different amount of force.
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4.2.4.5 Result of Lump Detection Using Threshold method

From all the depth map of different samples, the binary result could be gained by a

simple threshold method. The RatioThreshold could be adjusted according to the

tolerance of false alarm. Any sample that could satisfy ratio > RatioThreshold will

be labeled as "lump presence".

When RatioThreshold = 0.14, all the 60 phantom samples with lumps and 10

blank samples (five for each softness) are tested. This threshold could prevent the

false alarms. The detection result for all the phantom samples are shown in 4-40,

which could match up with the depth image shown in 4-27. For all the H30 samples,

the deepest depth for B3 samples that could be detected by this method is D3, and

the smallest lump that could be detected of D6 samples is B5.

00-10 (H10) 00-30 (H30)

BI B2 B3 B4 B5 Bi B2 B3 B4 B5
(mm) -

2 3 5 8 9.5 2 3 5 8 9.5

D1 1 1 1 1 1 1 1 1 1 1

D2 2 2 2 2 2 2 2 2 2 2

D3 3 3 3 3 3 3 3 3 3 3

D4 4 4 4 4 1 4 4 4 4 4 4

D5 5 5 5 5 5 5 5 5 5 5

D6 6 6 6 6 6 6 6 6 6 6

Figure 4-40: Lump Detection Result of all samples with 2 softness, 6 depths, 5
ballsizes. The yellow part indicate that the sample could be detected with high
confidence.

There are still some issues with this method. The ratio threshold is set to prevent

false alarms, while in real medical examinations, doctors tend to not miss any possible

target and not avoid false alarm.

From all the experiment of lump detection using GelSight sensor, we know that

softness of the tissue, size of the lump, the depth of the lump embedded in the tissue

and the force applied on the sample, all factors that could influence the detection

result.
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4.3 Human Psychological Experiment in Lump De-

tection

4.3.1 Human Experiment Setup

The purpose of this task is to see how human performs in the lump detection tasks.

Human subjects could have bias while doing this experiments. For example, by

choosing one of two samples, there will be 50% correction rate simply by guessing.

To make human subject experiment result more reliable, we adapt two-alternative

forced choice (2AFC) method. 2AFC task is a psychophysical method for eliciting

responses from a person about his or her experiences of a stimulus. Specifically, the

2AFC experimental design is commonly used to test speed and accuracy of choices

between two alternatives given a timed interval [149].

(a) (b) (c)

Figure 4-41: Setup for the human subject experiment.

In this experiment, the phantom used in lump detection of GelSight sensor is also

used as stimuli for human psychological experiment. As shown in Figure 4-41 a, a

long arm balance is used to control the maximum force the subject could apply to the

phantom samples. At one end of the balance (shown in Figure 4-41 b), metal blocks

with known weight are placed to control the maximum force. At the other end (shown

in Figure 4-41 c), two samples, one with lump and one without, are presented to the

subject. During the experiment, the subject could freely observe the phantom using

one finger. For each trial, the subject is given 12 seconds to explore just by tactile
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sensation. At the end of each trial, the subject is asked to point out the phantom

sample with lump embedded. For each pair, 40 trails are conducted, which means

there are 40 data points for each sample.

4.3.2 Human Experiment Methodology and Result

For five phantom samples of H30-D3, the probability of correct response is shown in

Figure 4-42. From the figure, to get 75% correct response, the lump size is 4 mm.

For six phantom samples of H30-B5, the probability of correct response is shown in

Figure 4-43 . From the figure, to get 75% correct response, the depth is 5.1 mm. To

map the human performance result to all the H3 samples, we could know that human

could detect lumps bigger than B5 for D3 samples, and D5 for B3 samples.

Human Subect Experiment Result for H30-D3 sample

0

o 0e

Ballsize (mm'

Figure 4-42: Probability of correct response

4.4 Conclusion

For 1130 samples, the deepest depth for GelSight sensor to B3 samples is D3, and

the smallest lump for GelSight sensor to detect for D6 samples is B5. For human

performance, human could detect lumps bigger than B5 for D3 samples, and D5 for

B3 samples. Mapping performance of human subjects and GelSight performance to

al the 1130 samples, the result is shown in figure 4-44. GelSight Sensor outperforms
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Human Subject Experiment Result for H30-B5 sample

C
~0

.0... .. ..

1 2 3 4 5 6

Depth (mm'

Figure 4-43: Probability of correct response

human in lump detection task.

Human Performance (H30) Sensor Performance (H30)

B1 IB2 B3 I4 B5 81 B2 I B3 B4 B5

2 3 5 8 9.5 2 3 5 8 9.5

D1 1 1 1 1 1 1 1 1 1 1

D2 2 2 2 2 2 2 2 2 2 2

D3 3 3 3 3 3 3 3 3 3 3

D4 4 4 4 4 4 4 4 4 4 4

DS 5 5 5 5 5 5 5 5 5 5

D6 6 6 6 6 6 6 6 6 6 6

Figure 4-44: Comparison of human
lump detection experiment

performance and GelSight sensor performance in

There are still some remaining issues for this experiment. First is that the me-

chanical properties of phantom samples are changing as more history added to the

sample, which makes the data noisy. Second, the setup of GelSight sensor experiment

is not ideal, which will bring in some noise to the data. Third, there are only five

data points for each sample in GelSight sensor experiment. Fourth is how to display

the tactile information to the user. It might be more useful for the user to have a

possibility of lump presence rather than just having binary detection result.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

GelSight sensor is a novel tactile sensor for measuring surface geometry, from which a

lot of information could be inferred. In this thesis, I implemented GelSight principle

to reconstruct surface geometry, based on which, the roughness comparison and lump

detection experiment are conducted. For lump detection experiment, a Also, by

using Instron Indentation machine, softness of different samples is detected. The

indentation experiment of GelSight sensor also shows the history of the sensor will

influence sensor's mechanical property. Below is the list of my work for this thesis.

1 Implement photometric stereo algorithm to reconstruct surface geometry.

2 Roughness comparison of sandpaper samples.

3 Softness detection of different rubber samples.

4 Mechanical properties of the sensor will change over time of usage.

5 Lump Detection using GelSight sensor is promising

6 Human subject experiment for lump detection as a comparison of sensor per-

formance.
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5.2 Future Work

Even though GelSight sensor principle seems simple, it still needs a lot of work for

any specific application. I did some improvement of illumination and sensor shape in

the past, but there is no good result yet. I will keep working on the device design in

the future. Also, lump detection is a great application. It will make a difference for

medical industry of GelSight sensor finally is applied in lump detection. Here is the

list of things I will do in the future.

1 Build the dome shape sensor and figure out the illumination for it.

2 Scale down current GelSight sensor devices to implement sensor in robotic fin-

ger.

3 Measure mechanical property of GelSight sensor.

4 Infer force information from depth map using finite element method.

5 Connect GelSight data with physical unit.

6 Conduct more experiment in lump detection including sensor experiment and

human psychological experiment.
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