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Abstract

Actuator performance represents a key constraint on the capability of many engineered
devices. Performance of these devices is often exceeded by their muscle-powered
natural counterparts, inspiring the development of new, “active material” actuators.
This thesis reconsiders a traditional actuator, the linear permanent magnet motor, as
a form of active material actuator, and presents new, unified scaling and magnetic field
models for its performance. This active material motor model predicts that motors
composed of large numbers of very small, actively-cooled repeat units, similar to the
architecture of biological muscles, can provide greatly enhanced force density over
extant designs.

Our model is constructed by considering the motor winding as an active material,
with its performance limited by the diffusion of waste heat. This allows a quantitative
scaling model for the motor constant and force-to-mass ratio to be built for the case
of a winding immersed in a homogeneous magnetic field. This model is then modified
with a small set of dimensionless parameters to describe the performance penalties
imposed by the use of practical sources of magnetic field, specifically periodic arrays
of permanent magnets. We explain how to calculate these parameters for a variety
of different types of magnet arrays using analytical magnetic field and heat transfer
models, and present a new field model for tubular linear motors having improved
numerical stability and accuracy. We illustrate the use of our modeling approach with
two design case studies, a motor for flapping-wing flying and an actuator for high-
performance controllable needle-free jet injection. We then validate our predictions by
building and testing a novel water-cooled motor using a tubular double-sided Halbach
array of magnets, with a mass of 185 g, a stroke of 16 mm, and a magnetic repeat
length of 14.5 mm. This motor generates a continuous force density of 140 N/kg, and
has a motor constant of nearly 6 N/

√
W, both higher than any previously reported

motor in this size class.

Thesis Supervisor: Ian W. Hunter
Title: Hatsopoulos Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

Actuator technology is a key enabler of our modern society. Actuator development,
from manual labor and draft animals, through waterwheels and windmills, to steam
engines and electric motors, has supported our transition from subsistence farming to
the post-industrial service economy. Today, the United States consumes an average of
150 W of electricity per person just to actuate industrial machinery [1], seven times
what would be produced if every person in the country were employed to run the
machines using muscle power (under humane working conditions) [2]. Transportation
consumes over twenty times as much power; discounting for the inefficiency of fuel-
burning engines, this means that every American has the equivalent of nearly thirty-five
people, or a stable of three horses [3], working to move them and their belongings.

The actuators that so effectively multiply human capability consist primarily of
rotary electric motors, reciprocating internal combustion engines, and gas turbines.
These actuator technologies are well-suited to high-power steady-state operation,
vastly outperforming biological actuators in sheer power level, power density, and
endurance. However, there are many tasks that are still beyond the capability of
machines and remain powered by biological muscle, or are performed by technological
means but at a lower performance level than biological systems. In particular, standard
actuation technology is poorly-suited to tasks requiring intermittent motion [4], such
as moving through variable terrain [5, 6] or dexterously manipulating objects in a
human environment [7]. In general, such tasks fall under the umbrella of robotics, as
the need for intermittent, non-repetitive motion is often closely coupled to the need
for planning and control strategies for that motion.

At present, most robotic systems rely on two actuator classes: fluidic actuators
and rotary electric motors [4, 8]. These actuators must produce linear forces and
motions for most environmental interactions, and in uncertain environments the
linear motion is best produced within the robot itself (i.e. not by wheels on flat
ground). Unfortunately, these actuators have serious limitations: fluidic actuators
are very inefficient and require considerable support equipment, while rotary electric
motors require complex and limited-power reduction drives or “clockwork” mechanisms.
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Neither fluidic [9] nor rotary electric [10] actuators are yet capable of matching the
performance of human muscle.

Biological muscle has several properties that make it particularly difficult to mimic
with conventional actuators1 [12]. Muscle has a variable stiffness, allowing it to
passively stabilize a joint, and is generally associated with compliant tendons capable
of efficient mechanical energy storage. It has very low inertia, yet it can generate a
very high force, sustained across a displacement of up to 40% of the muscle’s length.
Muscle does this while remaining relatively efficient and powerful, with efficiency
during cyclic motion estimated between 10% and 40% [13] and power density near
100 W/kg.

A common approach to the problem of making robotic actuators behave more like
biological muscle has been the development of artificial muscle materials, capable of
undergoing shape change in response to electrical, thermal, or chemical stimulus [14,
15]. Examples include piezoelectric ceramics, shape-memory alloys, and conducting
polymers. Despite the widely varying physical principles on which these materials
operate, all can be characterized by the production of a microscopic mechanical
strain by the applied stimulus, which works against the constraints on the material
to generate a force2. Like muscle, these materials can produce very high forces, and
some can also provide a variable stiffness, either intrinsically [16] or by actuating a
variable proportion of the material [17].

Unfortunately, while artificial muscle materials do offer intriguing properties, they
are generally not able to reach the performance of biological muscle, and rarely
exceed the performance of even conventional actuators. The main success stories
(e.g. [18]) have been in meso- and micro-scale actuation, where conventional actuators
are extremely difficult to build and the actuator requirements are better-matched
to the capabilities of artificial muscles. Even in the highest-performing materials,
the coupling between energy input and actuation is weak enough to make their use
challenging at best [4]. More troubling, improvement in the performance of artificial
muscle materials will require fundamental advances in materials science and chemistry,
rather than new application and design strategies.

While artificial muscle materials are not yet a practical reality, a closer look at
conventional actuators and biological muscles may suggest ways to bridge their gap in
performance. A key feature of muscle is that it has structure at many different size
scales; in fact, at the nanoscale, biological muscles have more in common with stepping
motors than with strain-based artificial muscles. A biological muscle is a massively
series and parallel combination of molecular linear stepping motors, with myosin heads
moving along actin chains [12]. This free motion along structurally independent units
allows muscle to undergo such large strains. At the microscale, these actin-myosin
motors are closely coupled to transport systems that deliver chemical energy and
remove waste, both chemical and thermal. At the mesoscale, the muscle is divided into
many individually-controlled motor units, which in turn are connected in series and

1Portions of this discussion are reproduced from our previously published work [11].
2While dielectric elastomer actuators are commonly classified as artificial muscle materials, the

physical mechanism they exploit is more analogous to an electric motor with a transmission than to
that of a muscle.
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parallel at the macroscale to the joint being actuated. The nature of the attachment
depends a great deal on the type of motion in the joint; muscles that must work
against large inertias include series elastic elements (i.e. tendons) to store mechanical
energy, while muscles that primarily deliver mechanical power lack tendons [19].

Some of these aspects of biological muscles have been imitated with great success,
particularly the use of compliant elements as in series elastic actuators [20]. The
mesoscale structure has also been mimicked with cellular actuation approaches in
artificial muscle actuators [17,21], although the problems it solves (particularly lack of
actuator controllability) are not typically problems with conventional actuators. The
microscale transport network and nanoscale actuation mechanism, however, have seen
less application.

In this thesis we seek to discover whether, perhaps inspired by the structure of
biological muscle, it would be possible to make major improvements to the performance
of conventional actuators for robotic applications such that they could out-perform
muscles. We examine permanent magnet (PM) linear electric motors as the class
of actuators to improve, by first developing a theoretical model for their maximum
possible performance and by then seeking design strategies to more closely approach
this theoretical potential, with an emphasis on designs with improved heat transport.

1.2 Permanent Magnet Linear Motors

Linear electric motors, in general, have a history extending back to the earliest
days of electromagnetic experimentation [22, 23], with an early example built by
Wheatstone in 1841. Wheatstone’s motor was what we now call a reluctance motor,
with force generated by the attraction of iron to an electromagnet. From this point,
development of linear motors split in two different directions. Linear motors employing
a single coil were developed in the 1870s, and employed as voice coil loudspeakers
in telephones [24]. Voice coils made use of permanent magnets from their earliest
inception, despite the extremely weak fields available at the time; eventually, voice
coils with wound fields were also commonly produced [25]. Meanwhile, multi-coil
linear motors like Wheatstone’s original motor remained little more than curiosities
until the 1940s, when a linear induction motor developed by Laithwaite was proposed
for use as an aircraft catapult. Interest further picked up during the 1960s and 1970s,
when maglev transportation became a popular concept and numerous linear motor
designs involving superconductors and/or the newly-available rare earth permanent
magnets [26] were developed. Independent of this development, the reluctance principle
used by Wheatstone was refined in rotary form to create the stepping motor [27], then
returned to linear form as a multi-axis planar actuator [28] in the 1960s and 1970s.

Based on this historical development, linear electric motors can be grouped into
four main categories: reluctance motors, voice coils, induction motors, and synchronous
motors. Reluctance motors generate a magnetic field using coils in one element of
the motor, and produce force from the interaction of this field and iron on the other
element of the motor. Induction motors use an alternating current in a set of coils
on one element of the motor to induce a current in conductors in the other element,
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and produce force based on the interaction of the magnetic field produced by these
coils and the induced current. Voice coils and synchronous motors instead operate
by generating a magnetic field on one element of the motor, using coils or permanent
magnets, and then producing force in coils on the other element of the motor, thereby
separating the field generation from the provision of current to interact with that
field. Voice coils have a limited stroke, typically with only a single force-producing
coil, and can be driven by a direct current. Synchronous motors have many coils,
and can have an arbitrarily long stroke (as would be needed in a maglev train, for
instance), but those coils must be driven by an alternating current synchronized to
the motion of the motor. Both of these motor types can use permanent magnets,
which generate the necessary magnetic field without requiring any power. Our interest
will be in voice coils and synchronous linear motors, due to their ability to employ
permanent magnets and their resulting very favorable scaling properties [29]. Despite
their historical differences, voice coils can simply be considered as a subset of linear
synchronous motors, consisting of those that have been built with a single coil.

An example of a linear synchronous motor is given in Figure 1-1, illustrating the
major components of these motors. A periodic array of coils can move relative to
a periodic array of magnets, which may use iron to guide its magnetic fields. In a
planar motor, as is pictured, end-turns must be provided to allow the coils to form
loops in which current can flow. A voice coil can be imagined as a single period of
this structure, with only a single coil.

1.2.1 Permanent Magnet Material Properties

Despite their increasing prevalence in every-day life, permanent magnets see relatively
little discussion in introductory courses on electricity and magnetism. Thus, we felt it
prudent to give a brief review of their properties and mathematical description here.
In short, permanent magnets can contain a positive magnetic flux density B even
when the magnetizing field3 H has a negative value, as shown in Figure 1-2. This can
be described by the relationship

B = µ0 (H +M ) , (1.1)

where µ0 is the permeability of free space, 4π × 10−7 (T ·m)/A, and M is the mag-
netization, shown in Figure 1-2 using solid lines. (Bold symbols refer to vector
quantities.)

The magnetization curve defines two key parameters that can describe the strength
of the magnet. The first, the remanence4 Brem, is the value of the magnetization (and
B-field) when there is no applied H-field. The second, the intrinsic coercivity Hci, is
the value of the H-field at which the magnetization drops to zero. At this point, we

3There is considerable pedagogical debate about the precise nomenclature and relative primacy
of the two field quantities used to describe magnetism; rather than fully engage in this debate, we
will henceforth simply refer to them as the B-field and H-field.

4To avoid confusion with the B-field in the radial direction, we have adopted this slightly
non-standard symbol for the remanence throughout this work.
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Figure 1-1: This cut-away rendering of a typical linear synchronous motor
illustrates its major features: a periodic array of coils lies between two periodic
arrays of magnets. In this case, the magnets would all be oriented through their
thickness, alternating in direction along the array. The magnets are mechanically
supported by a channel of back-iron, which also helps to guide the magnetic field.
The coils have end-turns outside the magnet array, allowing them to form complete
loops; the end-turns outside the channel are embedded in a support, used to make
mechanical and electrical connections. Typically, a motor like this has the coil as
the moving element.

can consider the magnet as having been completely demagnetized; if the H-field were
brought to this level then removed, the magnetization would not recover to its original
value. These parameters are functions of temperature; in rare earth magnets, both
Brem and Hci decrease with temperature, as illustrated in the figure. The (reversible)
slope of the B-H curve is given by the recoil permeability; in rare earth magnets, the
recoil permeability is very close to the permeability of free space, and is typically
ignored [30].

In early permanent magnets, such as hard steel and Alnico, the magnetization was
strongly dependent on the applied H-field, and the magnets could be demagnetized
easily. This made magnets difficult to use in motors, and special efforts were required
to maintain their strength [31]. Such magnets were also very difficult to model, and
tedious iterative methods were often required to calculate the fields they generated.
Modern permanent magnets such as rare earth magnets and ferrites, on the other
hand, behave as shown in Figure 1-2, with almost constant magnetization over a wide
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Figure 1-2: The B-H curve (dotted lines) is plotted from manufacturer’s test data
for a neodymium iron boron magnet (VACODYM 633 HR) at 20 ◦C (black) and
at 150 ◦C (red). The magnetization (times the permeability of free space) is also
given (solid lines); the magnetization is almost constant until the H-field reaches a
critical value, at which it drops sharply and the magnet is demagnetized.

range of H-fields. Thus, they are relatively easy to model [32,33], and can be described
by linear equations. These materials are also very difficult to demagnetize, making
them useful in the development of compact, high-power and high-efficiency motors.

1.3 Thesis Overview

In order to explore the potential for improvement in linear permanent magnet motors,
it is helpful to have some idea of their theoretical maximum potential. To date,
no quantitative models for the maximum force output from such motors have been
available, and so in Chapter 2 we develop a quantitative scaling model for permanent
magnet linear motor performance. We find that the physics underlying motor operation
allow for extremely high force densities to be produced, limited primarily by heat
removal. We then apply principles from dimensional analysis to account for some of the
practical (and inescapable) details of motor construction, including magnet structures,
coil windings, and temperature-dependent material properties. Even accounting for
these effects, we find that it should be possible to construct motors with force densities,
powers, and efficiencies exceeding those seen in muscles. We also briefly investigate a
similar scaling model for gear drives, to complete the picture for motor scaling and
performance. A major lesson from this model is that, in order to achieve muscle-
like performance, an active cooling system must be closely coupled to the magnetic
structure, and that the motor may need to be built as a hierarchical collection of
sub-units much like muscle itself.
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To support our performance model, we found it necessary to develop magnetic field
models for linear permanent magnet motors, in Cartesian and in cylindrical coordinates.
These models, presented in Chapter 3, offer improvements in computational speed and
accuracy over the models found in the literature, while describing motor performance
in a form compatible with our scaling model. Our models, based on Fourier series
solutions to Maxwell’s equations, can be used to describe any linear motor structure
with continuous layers of magnet, air, coil, or iron, and can handle saturation effects in
iron at high fields. We use the field models to compare the performance of cylindrical
and tubular linear motors with a wide variety of shapes, and determine the limits of
design flexibility beyond which motor performance drops sharply.

Equipped with performance scaling and magnetic field models, we were able to
find motor designs with performance close to the theoretical limits. In particular, as
we discuss in Chapter 4, we can use the field model to optimize the relative shape of
the motor subject to the design requirements, and then use the performance model to
determine the overall scale of the motor. Often, this must be an iterative process, as
some design constraints fix absolute motor dimensions. To assist with this process,
we present a library of optimized motor designs for several common design goals.
The design process is illustrated by two design case studies: a motor to operate the
wing of a pigeon-sized flying machine, with performance specifications based on the
specifications of real pigeon muscles and which must produce a high force density in
continuous operation, and a motor to operate a needle-free injection system for drug
delivery, which must provide an extremely high force under pulsed conditions.

Based loosely on the flying machine case study, we built a prototype motor to
validate our models for magnetic field and motor performance. This motor, described
in Chapter 5, uses water cooling and a novel double-layer tubular Halbach array
magnetic design to provide more force for its mass than any commercially-available
motor. We determine in this process the extent to which practical considerations
in motor construction, such as structural components and cooling system design,
influence motor performance relative to our predictions. Ultimately, our motor
exhibits performance very close to that predicted by our models, with the mass of the
motor structure and accessories amounting to just 30% of the total motor mass.

The lessons learned from this prototype, as well as throughout the development of
our models and design strategies, are summarized in Chapter 6. Here, we also discuss
promising avenues for further investigation, both in improved modeling and in the
construction of high-performance motors.
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Chapter 2

Scaling Models

This chapter presents a framework1 for understanding the fundamental capabilities
of linear permanent-magnet (PM) motors, and for examining and exploiting their
scaling behavior. At each phase of the analysis, one analytically convenient motor
configuration will be discussed; details of the computation of magnetic fields and
performance parameters are presented in Chapter 3.

2.1 Background

The literature on electric machinery contains relatively few treatments of the general
capabilities of linear motors; in most textbooks on the subject (e.g. [34]), motor theory
is derived starting with the concept of slotted stators and discrete coils, with any
general expressions given in terms of terminal inductance and flux linkage rather
than geometric or material properties. Laithwaite [23,35] described linear machines
in terms of a “goodness factor”, but used a magnetic circuit-based approach poorly
suited to describing permanent magnets. More recently, Cugat et al. [29] presented
a scaling analysis of motors based on fundamental physical laws, but only in terms
of broad scaling relations rather than quantitatively. Cavarec et al. [36] provided a
more detailed scaling analysis in order to compare a novel linear motor design to
conventional leadscrew-based linear motion systems, though it could only be used
for comparison rather than prediction. Outside the electric machinery community,
others [8, 37, 38] have investigated scaling relations for direct-drive motors, though
also without admitting quantitative links to specific motor designs.

One contributing factor, perhaps, to the paucity of generalized, yet quantitative
motor models is the importance of “nuisance” effects in determining the energy losses
in motors during typical steady-state operation. These effects, such as magnetic
hysteresis, eddy currents, and air resistance, are strongly dependent on the fine
geometric and micro-structural details of the motor design, and scale with the velocity
of the motor’s motion. The magnitude of their influence is difficult to even estimate
without first specifying the overall design of the motor, frustrating efforts to produce
general models for motor performance. Furthermore, high-speed motors are coupled

1Much of the content of this chapter has been published by the author in [11].
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to the world through reduction drives, which as will be discussed briefly in Section 2.7
have scaling properties dominated by mechanical wear and cyclic fatigue rather than
simple physics. In direct-drive motors, however, the nuisance losses are completely
dominated by the basic Joule losses in the windings, which are far easier to calculate,
and there is no reduction drive.

Our approach will be to define a set of quasi-static performance parameters for the
linear PM motor at the most basic possible level, derived directly from fundamental
physical laws and scaled by the motor mass and the magnet pole pitch, embodying
the overall scale and the degree of fabrication complexity, respectively. We will also
explain the consequences of various physical constraints that might be applied to the
operation of a linear motor. We will then show that the effects of the practical details
of motor construction can be embodied largely by a set of dimensionless parameters
penalizing performance as compared to the basic model. Finally, we will discuss
the scaling and performance implications of the performance parameters and of any
practical details that cannot be effectively non-dimensionalized.

2.2 0-D Active Material Model

In essence, we can consider a PM motor as an active material actuator in which a
body force is produced on a conductor (the “active material”) proportional to the
surrounding magnetic flux density, B, and to the applied current density, J . For this
basic model, we will assume that the magnetic field is produced “for free”, consider
it as a material property, and neglect the mass and size of the magnets necessary to
produce it in a real motor. We will likewise ignore any practical restrictions on the
provision of current, and assume that the conductor can be excited by a spatially
uniform current density. Thus, the 0-D motor model consists of a bare conductor
carrying a uniform current density immersed in a uniform magnetic field that is exactly
perpendicular to the current. While this model can describe rotary and linear motors
equally well, we will restrict our analysis to that of linear motors.

The force production and power consumption of a PM actuator, its basic input-
output relations, are given by the Lorentz force law and by Ohm’s law,

F = BJV and (2.1)

P =
J2V

σ
, (2.2)

where F is the force produced by the motor, V is the volume of active material, P
is the electrical power converted by the motor into heat, and σ is the conductivity
of the active material. (Here, we do not consider superconducting motors, which
have zero Ohmic losses but instead have numerous other drawbacks, particularly at
small scales.) Both of these quantities are directly proportional to the amount of
active material—depending on the application, it may be preferable to describe this
amount in terms of volume or in terms of mass. For this analysis, we will consider
mass-sensitive applications; an alternative formulation in terms of volume can be

34



derived straightforwardly.
We would like to describe motor performance in terms of parameters that do not

couple the motor size and the drive current. One such parameter is the ratio of the
force generated to the square root of the power consumed ε, commonly known as the
motor constant and listed on motor datasheets as Km. The force generated per unit
mass F ′, which we will call the force density, is another such parameter:

F ′ =
BJ

ρc
, (2.3)

ε ≡ F√
P

= B

√
σM

ρc
. (2.4)

Here, ρc is the mass density of the active material and M is the total mass of the
motor. (In this case, the total mass is simply the mass of the conductor.) As we will
see later in Section 2.2.2, both performance parameters have an impact on the overall
efficiency of a motor driving a load.

Note that each performance parameter is independently related to a single motor
design parameter: the force density achievable depends on the maximum allowable
current density, while the motor constant depends on the size of the motor. The
maximum current density, in turn, is restricted either by the maximum amount of
heat that can be removed from and tolerated by the motor or by non-thermal damage
mechanisms (demagnetization and electromigration).

2.2.1 Performance Constraints

By specifying F ′ and ε, along with the constraint on current density, one can calculate
the size and potentially the aspect ratio of the required motor. The utility of this
process depends on the nature of the constraint.

If the volumetric power density is constrained, we must fix the value of J , and in
terms of the performance parameters

P/V =
F ′2

σB2
. (2.5)

Thus, a constraint on volumetric power density directly constrains F ′, and it may not
be possible to achieve the desired force density. A volumetric power density constraint
is appropriate for conductors of thick cross-section with internal cooling channels
providing for heat removal, as in a large-scale utility generator. A similar expression
governs motor performance if electromigration directly limits the current density, or if
adiabatic heating during low-duty-cycle pulsed operation constrains performance.

If the surface heat flux is instead constrained, and we assume a rod-shaped motor,

P/A =
roF

′2ρ2
c

2σB2
, (2.6)

with A denoting the motor’s surface area and ro indicating its outer radius. In this
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case, the heat flux constraint combined with the performance specifications gives the
motor’s aspect ratio as well as its size. A surface heat flux constraint is appropriate
when the heat flow out of the motor is limited by the heat transfer coefficient h̄ on
its surface. As will be seen later in Sections 2.3 and 2.4.1, similar expressions govern
motor behavior when we consider demagnetization, or when heat flow is limited by
thermal conduction within the motor. Note that, under this constraint, the force
density is a free parameter—any force density is achievable, so long as the aspect ratio
is chosen appropriately.

Finally, a constraint on the total heat dissipation, which might be appropriate if
heat removal from the motor is limited by the capability of an external cooling system,
can be shown to couple the maximum available motor constant ε to the force density:

P =
(
F ′ε
)2 ρ2

c

σ2B4
. (2.7)

Under these conditions, there is necessarily a trade-off between the motor constant
and the force density, and it is impossible to construct a motor that is simultaneously
capable of both high force density and high motor constant.

2.2.2 Efficiency

In order to find the energy efficiency of a linear PM actuator, we need to define the
work loop on which it operates. Consider perhaps the simplest situation, in which an
actuator of total stroke `s sinusoidally drives an ideal dashpot at a frequency ω, with
a resulting peak force amplitude of F0. In this case, the instantaneous mechanical
power Pm and electrical power Pe are given by

Pm =
ω`sF0

2
cos2 ωt, (2.8a)

Pe = Pm +
F 2

0

ε2
cos2 ωt. (2.8b)

We can then integrate over one period in time to find the work per cycle Wm and We,
calculate the efficiency η = Wm/We, and define an efficiency parameter η̂:

η =
1

1 + η̂
, (2.9a)

η̂ ≡ 2F0

ω`sε2
=

ρc
σB2︸︷︷︸

materials

× 2

ω`s︸︷︷︸
velocity

× F ′0︸︷︷︸
force

density

. (2.9b)

Here, we have broken out the components of ε to explain the scaling of η̂, and F ′0
denotes the peak force amplitude F0 divided by the actuator mass M . Note the inverse
relationship between η̂ and the efficiency—lower values of the dimensionless efficiency
are better. Three factors are seen to contribute to the efficiency parameter: the first
is related to the material properties of the actuator, the second is equal to the inverse
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of the peak actuator velocity, and the third is equal to the peak force density required
by the work loop.

2.2.3 Numerical Values

We can calculate some rough values for the performance parameters and the efficiency
to provide a sense of scale for the behavior of copper as an actuator material. For
copper, the most commonly-used conductor, the conductivity σ = 5.8× 107 S/m at
room temperature and the density ρc = 8940 kg/m3. The most powerful magnets
currently commercially available [39] have a remanence2 of approximately 1.5 T, which
we will assume is equal to the field available in the conductor. Based on these material
properties, a 1 kg “motor” would have a motor constant of ε = 120 N/

√
W. Typical

motor design guidelines [23, 34] call for a maximum current density J ≈ 107 A/m2;
under these conditions, the force density F ′ = 1700 N/kg.

At first glance, the expression for η̂ in Equation 2.9b is disappointing, as it links
an increase in force density directly to a decrease in efficiency. However, using
the properties of copper and the best available magnets, and aggressive work loop
parameters similar to those in bird flight muscles [40] (2/ω`s = 1 m/s, F ′0 = 1000
N/kg) gives η̂ = 7.1× 10−2, and thus an efficiency of 94%. It is therefore reasonable to
expect usable efficiency from a linear motor operating at force densities characteristic
of muscle, though the actual achievable efficiency will depend on just how far from
this 0-D motor model the real motor happens to be.

2.3 1-D Slab Model

In a real motor, both the magnetic field and the current must form closed loops;
thus, an analysis capable of incorporating these effects must take place in at least
two-dimensional space. However, the thermal behavior of a planar 2-D motor can
be studied with a simple one-dimensional slab model, which will prove useful in
discussing the influence of conductive thermal resistance on motor scaling in analogy
to Section 2.2.1.

A slab model of a planar motor is depicted in Figure 2-1. Here, we define tc to be
the coil thickness, g to be the air gap thickness and tm as the magnet thickness. The
three materials in the motor (conductor, air, and magnet) have thermal conductivities
κc, κa, and κm, respectively, and heat is transferred to the outside world with a
heat transfer coefficient h̄. Furthermore, we define T0 to be the temperature at the
mid-plane of the conductor, and T∞ to be the temperature of the ambient environment.
The operating temperature difference, then, is given by ∆T ≡ T0−T∞. The conductor
is assumed to carry a uniform current density J , which can vary in time. (Note that
iron may be included in the magnetic structure of this model with trivial additions of
terms.)

2See Section 1.2.1 for definitions of permanent magnet properties.
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Figure 2-1: A schematic of a one-dimensional motor, with the active conductor
in orange and magnets in gray. The motor is assumed to be symmetric, and the
mid-plane is located at y = 0. The conductor extends to y = yc = tc/2, where
tc is the conductor thickness, and the magnets range from y = ymi = yc + g to
y = ymo = yc + g + tm, where g is defined to be the air gap thickness and tm is the
magnet thickness. h̄ is the heat transfer coefficient.

From elementary heat transfer theory [41], we can calculate a thermal resistance,
Rth from the mid-plane to the ambient according to

Rth =
1

2

(
tc

4κc
+

g

κa
+
tm
κm

+ h̄−1

)
. (2.10)

We could also consider a frequency-dependent thermal impedance, though in order
to account for the varying temperature gradients within the motor materials such an
expression would need to be quite complex. Instead, if we assume that any temporal
variations in the current density are fast compared to the thermal response of the motor,
we can proceed to calculate the motor temperature as a function of the time-average
(RMS) current density J̄ ,

∆T =
RthtcJ̄

2

σ
, (2.11a)

and solve for the maximum RMS current density for a given acceptable temperature
rise,

J̄ =

√
σ∆T

Rthtc
. (2.11b)

We find that the thermally-limited scaling behavior of the current density J̄ depends
on whether heat conduction or convection is the limiting process; if convection limits,
J̄ ∝ `−

1
2 , where ` is the length scale for the motor, while if conduction limits, J̄ ∝ `−1.

We will refrain from non-dimensionalizing the thermal resistance until a suitable length
scale arises in the analysis of Section 2.4.
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2.3.1 Numerical Values

Some typical values for thermal conductivities and heat transfer coefficiencts may
help provide context for this calculation. The conductor’s thermal conductivity
κc can range from that of copper (398 W/(m ·K)) to almost as low as that of air
(κa = 0.026 W/(m ·K)), depending on coil construction, and is very sensitive to the
copper packing fraction. For instance, if the packing fraction is 50% and the material
between the wires has the thermal conductivity of air, possible values for κc range
from 0.052 W/(m ·K) to 199 W/(m ·K) depending on the wire shape and packing
structure. (See Section 2.6.1 for a detailed discussion.) For this example, we will
assume κc = 5 W/(m ·K). Neodymium iron boron (NdFeB) magnets, in turn, have
a thermal conductivity of κm = 9 W/(m ·K) [42]. If the surface of the motor is to
be cooled by natural convection, we might expect h̄ = 10 W/(m2 ·K) [41], while a
plausible active cooling strategy involving laminar water flow through 0.5 mm tubes
covering half of the outer magnet surface gives h̄ = 2200 W/(m2 ·K).

Consider a motor with tc = tm = 1 mm, and g = 10µm; with natural convection,
Rth = 0.1 (m2 ·K)/W, while with the water cooling Rth = 10−3 (m2 ·K)/W. If the
motor is made of copper and the maximum temperature difference ∆T = 100 ◦C, the
acceptable current densities would be J̄ = 7.6 × 106 A/m2 and J̄ = 7.6 × 107 A/m2

for natural and forced convection, respectively. These current densities result in force
densities F ′ of 1,250 and 12,500 N/kg for natural and forced convection, respectively,
based on the mass of the conductor alone. Note that forced convection allows for
much higher force densities than does the 107 A/m2 rule of thumb.

2.4 Planar 2-D Model

A real motor must contain magnetic fields and current density fields that form closed
loops. This can be achieved in one of two ways: either the structure of the motor
can be finite, with flux return paths in free space (or ferrous materials) outside the
motor boundaries, or the motor structure can be periodic. The simplest sort of
motor that meets these restrictions is a flat, periodic motor of infinite extent, with a
sheet of conductors sandwiched between ferromagnetic materials. The magnetic fields
within and resulting performance of such a motor have been analyzed in numerous
ways [43–45]; a complete study using the magnetic vector potential and Fourier analysis
can be found in Chapter 3. The results for a simple motor will be presented here to
illustrate the implications of the field solutions on motor scaling.

Perhaps the simplest flat motor configuration is an infinite periodic motor with
an iron-free conductor layer between two ideal Halbach3 arrays [46]. This motor is
shown schematically in Figure 2-2, with conductor thickness tc, magnet thickness tm,
and clearance gap g. The magnet layer has a remanence Brem, recoil permeability
equal to the permeability of free space µ0, intrinsic coercivity Hci, and density ρm,

3Named for Klaus Halbach, who discussed the design process for permanent magnet arrays
generating highly uniform fields suitable for particle physics applications [30]. More significantly, he
pioneered the practice of approximating the magnetization of rare earth magnets as field-independent,
allowing the fields produced to be described by linear partial differential equations [33].
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Figure 2-2: A schematic of a flat Halbach motor, with the active conductor in
orange and magnets in gray. The motor is assumed to be symmetric, and the
mid-plane is located at y = 0. The conductor has total thickness tc, the magnets
on each side have thickness tm, and an air gap g separates the conductor from the
magnets. The magnetization varies sinusoidally in space with period p, and the
current density varies in step with the y-direction magnetization.

and magnetization varying with period p. More precisely, the magnetization vector
M is given by

M =
Brem

µ0

[
cos (kz) ŷ + sin (kz) ẑ

]
. (2.12)

Here, for convenience we have defined the wavenumber k ≡ 2π/p. The conductor has
conductivity σ and density ρc; the current density in the conductor is arranged to lie
in phase with the y-direction magnetization:

J = J cos (kz) x̂. (2.13)

The full solution for the field in this motor configuration is derived in Section 3.3.1;
the force produced can be described as an average shear stress

〈
σyz
〉

on the surface of
the conductor, 〈

σyz
〉

=
BremJ

2k
e−kg

(
1− e−ktc

)(
1− e−ktm

)
. (2.14)

The form of the shear stress suggests a natural non-dimensionalization of the geometry,
with k−1 as the length scale. We can then instead write〈

σyz
〉

=
BremJ

2k
f̂ , (2.15a)

f̂ ≡ e−kg
(

1− e−ktc
)(

1− e−ktm
)

, (2.15b)

where f̂ is a dimensionless force.
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2.4.1 Performance Parameters and Constraints

Assuming the motor has finite length L and width W , and neglecting any effect these
finite dimensions might have on the magnetic fields, we can use the magnetic shear
stress from Equation 2.15a to write an expression for the total force F ,

F =
BremJLW

k
f̂ . (2.16a)

We can more conveniently express the force in terms of the total actuator mass M ,

F =
BremJM

ρc

f̂

m̂
, (2.16b)

using a dimensionless mass factor m̂:

M = WL (ρctc + 2ρmtm) =
ρcWL

k
m̂, (2.17a)

m̂ ≡ ktc + 2
ρm
ρc
ktm. (2.17b)

We can also find and nondimensionalize the total power dissipation P in the motor,

P =
J2WLtc

2σ
=
J2M

ρcσ

P̂

m̂
, (2.18a)

P̂ ≡ ktc
2

. (2.18b)

Note the factor of 1/2 that arises in P when spatially averaging the power dissipation,
and is carried into P̂ . For a non-sinusoidal current density, this factor may be different.
Finally, we can use the expressions for force and power to calculate the performance
parameters F ′ and ε,

F ′ =
BremJ

ρc

f̂

m̂
, (2.19)

ε = Bremε̂

√
σM

ρc
, ε̂ ≡ f̂√

P̂ m̂
. (2.20)

Note that the expressions for the force density and motor constant are almost identical
to those presented in Section 2.2, Equations 2.3 and 2.4, with the addition of dimen-
sionless correction factors f̂/m̂ and ε̂ representing the effects of the spatially varying
magnetic fields and currents, as well as the mass of the magnets. The functional
form of Equations 2.19 and 2.20 does not depend on the details of the magnet and
conductor configuration; the motor configuration and geometry affect only the values
of the dimensionless correction factors.

We can also examine the impact of the dimensionless correction factors on the
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motor efficiency,

η̂ =
ρc

σB2
rem︸ ︷︷ ︸

materials

× 2

ω`s︸︷︷︸
velocity

× F ′0︸︷︷︸
force

density

× ε̂−2︸︷︷︸
motor

geometry

. (2.21)

Here, we can see that ε̂ is a dimensionless efficiency parameter that can be used to
compare the efficiencies of different motor configurations and geometric ratios at any
size scale.

We can also nondimensionalize the expressions for the thermal constraint derived
in Section 2.3 using the characteristic length k−1. (The full field solution can be used
to estimate the demagnetization constraint in terms of a dimensionless current density
Ĵ , as explained in Section 3.3.4.) The thermal resistance Rth and its constraint on
RMS current density, Equation 2.11b, nondimensionalize as follows:

P̄ =
J2M

ρcσ

P̂

m̂
≤ WL∆T

Rth

=
kM∆T

ρcRthm̂
; (2.22a)

J̄ ≤ k
√
σκc∆T

√
1

P̂ R̂th

, (2.22b)

R̂th ≡ kκcRth =
1

2

(
ktc
4

+ kg
κc
κa

+ ktm
κc
κm

+ 2πBi−1

)
, (2.22c)

Bi ≡ ph̄

κc
, (2.22d)

where P̄ is the time-average power dissipation, R̂th is the dimensionless thermal
resistance, and Bi is a Biot number for the motor, expressed in terms of the pole pitch
p. The scaling relationships remarked upon earlier still hold—for large Bi, internal
conduction resistance dominates, R̂th is unchanged by length scaling, and J̄ ∝ p−1.
For small Bi, when convection resistance dominates, J̄ ∝ p−1

√
Bi ∝ p−1/2.

We can now combine these non-dimensionalized constraints with the force density
expression (Equation 2.19) to yeld expressions for the scale of the motor. First,
consider a demagnetization constraint, which sets a maximum value Ĵmax for the
dimensionless current density. This implies that the pole pitch

p ≤ 2πB2
rem

µ0ρcF ′
× f̂

m̂
Ĵmax. (2.23)

While a similarly straightforward expression cannot be written for the general thermal
constraint, because the Biot number depends on the scale of the motor, simple
expressions are possible in the limits Bi→∞ and Bi→ 0 in terms of the RMS force
density F̄ ′:

Bi→∞ : p ≤ 2πBrem

ρcF̄ ′

√
σκc∆T ×

ε̂√
m̂R̂th

, (2.24a)
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Bi→ 0 : p ≤ 4πσh̄B2
rem∆T

ρ2
cF̄
′2 × ε̂2

m̂
. (2.24b)

Ultimately, both the thermal and the demagnetization constraints behave in the
same way, constraining the pole pitch to be inversely proportional to the required
force density. If the pole pitch could be reduced arbitrarily, then, an arbitrarily high
force density could be available! The reality of this prospect is tempered by two
major constraints, however. First, the overall efficiency of the motor, as illustrated by
Equation 2.21, is inversely proportional to the force density. Our hypothetical infinite-
force-density motor would require an infinite amount of input energy to produce
any useful work. Second, while the mass of motor needed to reach a given force
decreases linearly with the pole pitch, the mass of each repeat unit of magnets and
coils decreases with the cube of the pole pitch, assuming the width scales similarly;
in other words, for a given output force, the number of individual magnet segments
and coil phases in the motor scales as the inverse square of the pole pitch. Our
hypothetical infinite-force-density motor would also contain an infinite number of
parts, and presumably also have an infinite cost. Practically, a balance must be found
between the desired motor size, the desired efficiency, and the cost and complexity of
the motor.

2.4.2 Numerical Values

The expression for ε̂ suggests that it may have a maximum value as a function of
the dimensionless geometry ktc, kg, and ktm. If the conductor is solid copper and
the magnet is NdFeB with a density of ρm = 7600 kg/m3, we can find numerically
that this occurs for ktc ≈ 0.89, kg = 0,4 and ktm ≈ 1.7. Thus, the best possible ε̂ for
a motor of the ideal Halbach topology shown in Figure 2-2 is ε̂ ≈ 0.37. In the best
Halbach motor, the efficiency parameter η̂ is a factor of 7.2 worse (lower is better)
than in the ideal model of Section 2.2.3; for the scenario presented there, the efficiency
would be reduced to η ≈ 67%. This is a much lower efficiency, but still very reasonable
for many applications.

We are also now in a position to illustrate the thermal scaling process for a motor.
Consider the heat transfer situations presented in Section 2.3.1, with h̄ = 10 W/(m2 ·K)
under natural convection or h̄ = 2200 W/(m2 ·K) under forced convection conditions,
along with the work loop used in Section 2.2.2 with a target peak force density
F ′0 = 1000 N/kg. (The RMS force density, then, is F̄ ′ = 707 N/kg.)

We will use the ideal Halbach configuration in a geometry optimized for efficiency.
First, assume that in each case Bi � 1. The dimensionless geometry tells us the
maximum pole pitch in each situation,

Natural Convection: p ≤ 1.5 mm, Bi ≈ 1.5× 10−3 (2.25a)

Forced Convection: p ≤ 330 mm, Bi ≈ 73. (2.25b)

4In a practical motor, a nonzero gap is required to permit motion.
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Clearly the forced convection case does not have Bi� 1, so we need to account for
internal conduction resistance; by iterating a few times to find the correct value for
the Biot number we find

Forced Convection: p ≤ 58 mm, R̂th ≈ 1.4, Bi ≈ 13. (2.26)

This example makes clear the vital importance of good heat transfer in supporting a
high force density in a reasonably-scaled motor.

We can also examine the demagnetization constraint, as presented in Section 3.3.4.
The highest-remanence grade of NdFeB magnet currently available [39] has an intrinsic
coercivity Hci = 875 kA/m at room temperature. (This grade is actually anisotropic,
an ideal Halbach magnetization pattern cannot be produced in an anisotropic material,
and coercivity at elevated temperature is more relevant to constraining performance,
but this number will suffice for purposes of example.) By numerically solving Equa-
tions 3.39a and 3.38, we find Ĵmax ≈ 1.3, and p ≤ 210 mm. Clearly heat transfer is a
much more significant constraint than demagnetization in this kind of motor.

Finally, we can check the actual value of required current density for electromi-
gration concerns. From the expression for force density, Equation 2.19, we find that
J ≈ 4.7× 107 A/m2, well below typical electromigration current densities [47].

2.5 Axisymmetric 2-D Model

A real flat motor does not have infinite dimensions, and the effects of its edges can be
substantial. In the x̂-direction, some provision must be made to ensure continuity in
the current density at the edge of the motor, and there will thus be end-turns that
make minimal contribution to force production but can have significant mass and
power dissipation. There are also fringing effects in the magnetic field that reduce its
magnitude around all of the edges but spread its extent beyond that of the magnets
themselves. (These phenomena are discussed in detail in Section 3.3.6 and Section 3.6.)

One common approach [48] to remedying these problems is to build a tubular
motor, eliminating end turns and greatly reducing fringing effects. Conceptually, this
is equivalent to rolling the motor around the ẑ-axis, placing the inner edge of the
conductor sheet at a radius rc,i. Analysis of a tubular motor is complicated by the
loss of the symmetry enjoyed in the planar configuration, as well as by the properties
of the solutions to Maxwell’s equations in cylindrical coordinates.

A schematic of one possible tubular motor configuration is shown in Figure 2-3.
This configuration uses quasi-Halbach [49] magnet arrays, with uniformly magnetized
blocks rather than the continuous sinusoidal magnetization pattern of Figure 2-2. As
discussed in [46], the quasi-Halbach configuration provides approximately 90% of the
field of the ideal Halbach magnet array, but is considerably easier to construct. Unlike
the planar motor, the tubular motor lacks symmetry, and the best geometry may
require that the inner and outer magnet layers have different thicknesses from each
other. The two magnet arrays may also be differently-proportioned between radial
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Figure 2-3: A schematic of a double-sided tubular quasi-Halbach motor, with the
active conductor in orange and magnets in gray. The magnet arrays on the inside
and outside may, in general, have different thicknesses and different relative block
widths. The radial dimensions of the magnet and conductor layers are defined as
shown in the figure. The magnet arrays have period p, and the current density
varies sinusoidally in phase with the fundamental component of the r̂-direction
magnetization.

and axial magnets; let δri and δro be the ratio of the width of the radial magnets to
the pole pitch for the inner and outer magnet arrays, respectively.

It is worth noting that motors of the specific configuration shown in Figure 2-3
have only appeared in the literature recently, with field analyses only appearing in
2011 [50]. Nonetheless, there have been a number of general approaches to magnetic
field analysis for tubular motors reported in the literature [51–53]. (The double-layered
tubular Halbach array has a longer history in the magnetic bearing literature [54, 55];
high-performance voice coils have been reported [56–59] using a single period of this
double-sided quasi-Halbach geometry, and magnetic springs [60] have been developed
with multiple periods of this magnet configuration.) A complete analysis of this motor
configuration is presented in Chapter 3, and the design, construction, and testing of
an prototype motor with this configuration are discussed in Chapters 4 and 5.

Without performing the detailed field analysis to calculate the dimensionless
parameters, we can still find the overall form of the motor model. By wrapping the
geometry into a tube, we eliminate the independence of the motor “width” from the
parameters that effect the field. Thus, the force can now be nondimensionalized as

F ≡ BremJL

k2
f̂ . (2.27)

We can find the mass of the tubular motor, using the dimensions as defined in
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Figure 2-3,

M = πρcL

((
r2
c,o − r2

c,i

)
+
ρm
ρc

(
r2
mo,o − r2

mo,i + r2
mi,o − r2

mi,i

))
≡ ρcL

k2
m̂, (2.28a)

m̂ = π
((
krc,o

)2 −
(
krc,i

)2
)

+ π
ρm
ρc

((
krmo,o

)2 −
(
krmo,i

)2
+
(
krmi,o

)2 −
(
krmi,i

)2
)

,

(2.28b)

and we can also find the power dissipation

P =
πJ2L

2σ

(
r2
c,o − r2

c,i

)
≡ J2L

σk2
P̂ , (2.29a)

P̂ = π

(
krc,o

)2 −
(
krc,i

)2

2
. (2.29b)

The mass and power dissipation have similar functional forms to those of the planar
motor, though the more complex geometry requires slightly more complicated forms
for the dimensionless parameters.

These expressions imply that we will see the same expressions for the performance
parameters as were derived in Section 2.4.1:

F ′ =
BremJ

ρc

f̂

m̂
; ε = Brem

√
σL

k2
× f̂√

P̂
= Bremε̂

√
σM

ρc
. (2.30)

Thus, the performance parameters of tubular motors scale the same way as they do
for planar motors, as does the efficiency.

2.5.1 Performance Constraints

In order to find the limits to tubular motor performance, we need to find the thermal
resistance in a tubular geometry. (The dimensionless current relevant to demagnetiza-
tion is unchanged by the move to cylindrical coordinates.) To do this, we will also
need to determine the cooling configuration of the motor; cooling may be applied on
either or both the exterior or the interior of the motor, and the choice will change the
thermal resistance.

First, we must find the form of the temperature equation (Equation 2.11a) for a
tubular motor. In this case,

∆T =
π
(
r2
c,o − r2

c,i

)
RthJ

2

2σ
=

J2

σκck2
P̂ R̂th, R̂th = κcRth. (2.31)

The thermal resistance can be found by solving the heat diffusion equation [41]. If only
the outside or the inside of the motor is cooled, the dimensionless thermal resistance
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is as follows:
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(2.32a)
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(2.32b)

The Biot number here is the same as that defined in Equation 2.22d. If both the inside
and the outside of the motor are cooled, the expression for the thermal resistance is
more complicated, as given below:
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(2.33a)
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Bi−1
i ≡

κc
κa

ln
krc,i
krmi,o

+
κc
κm

ln
krmi,o
krmi,i

+
κc

rmi,ih̄i
, (2.33c)

Bi−1
o ≡

κc
κa

ln
krmo,i
krc,o

+
κc
κm

ln
krmo,o
krmo,i

+
κc

rmo,oh̄o
. (2.33d)

In these expressions, h̄i and h̄o are the inner and outer convection coefficients, respec-
tively, Bii and Bio are effective Biot numbers for the inside and outside of the motor
that include conduction and convection resistances, and r0 is the radius at which the
maximum temperature occurs.

From this point, the expressions for the heat transfer constraints (Equations 2.24a
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and 2.24b) are largely unchanged:

Bi→∞ : p ≤ 2πBrem

ρcF ′

√
σκc (T0 − T∞)× ε̂√

m̂R̂th

(2.34a)

Bi→ 0 : p ≤ 8π3σh̄xB
2
rem (T0 − T∞)

ρ2
cF
′2 × ε̂2

m̂
krx, (2.34b)

where rx refers to either the outside or the inside radius of the motor, whichever has a
heat transfer coefficient h̄x. (Equation 2.34b applies only if a single motor surface is
cooled, rather than both.)

2.5.2 Numerical Values

We are now in a position to discuss the quantitative performance of tubular linear PM
motors, using the particular example of the ironless configuration shown in Figure 2-3.
As will be shown in Chapter 3, this motor configuration performs best as a flat plate;
rolling it to form a tubular motor degrades the efficiency. The efficiency penalty can
be quite small, however.

Consider a planar motor of the optimal proportions discussed in Section 2.4.2;
using quasi-Halbach magnets, it would have ε̂ ≈ 0.334 (see Section 3.3.2). If this
motor were wrapped into a tube with the mid-plane located at a radius equal to the
pitch length, the efficiency parameter ε̂ would decrease only slightly, with ε̂ ≈ 0.329,
and its efficiency driving the load of Section 2.2.3 goes from 62% to 61%. Even if the
planar motor is wrapped so tightly that the inner magnets become solid rather than
ring-shaped (i.e. rmi,i = 0), the efficiency parameter only decreases to ε̂ ≈ 0.280, with
a corresponding efficiency of 53%.

We can also determine the optimum motor proportions for any given “wrapping”
radius. For example, the optimum motor with a solid core (rmi,i = 0) has dimensionless
radii krmi,o = krc,i = 3.30, krmo,i = krc,o = 4.18, and krmo,o = 5.59, with δi = 0.409
and δo = 0.531. This motor has ε̂ ≈ 0.324, almost as good as that of the planar motor.

2.6 Further Deviations from Ideality

The analysis of Sections 2.4 and 2.5 considered the effect of motor geometry on
performance, but a periodic arrangement of magnets and coils is not the sole deviation
from the active material model needed to construct a practical motor. Here, we
will consider four major effects: the replacement of the ideal “conductor” layer with
insulated wires, the non-sinusoidal and potentially mis-aligned current distribution
created by building the real “conductor” from discrete coils, the finite length of the
motor in the direction of periodicity, and variation in the properties of motor materials
with temperature.
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2.6.1 Copper Packing Density

We have assumed a perfectly anisotropic ideal “conductor” in the analyses up to
this point. However, the best conductors available to us with current technology are
isotropic metals, such as copper and aluminum. In order to contain the spatially-
varying current density demanded by the motor, then, the “conductor” must actually
be made up of discrete, insulated wires. The insulation takes up space, reducing the
effective current density and the effective conductivity.

While the exact effect of making the motor with insulated wires is difficult to
calculate due to possible changes in current distribution, we can make a first-order
lumped-parameter estimate of the effect on performance. To be specific, let the fill
factor X denote the fraction of the “conductor” volume that is occupied by metal, and
let ρi be the density of the insulator. We can then write the performance parameters
by replacing the current density and conductivity by their reduced values as follows:

F ′ =
BremXJ

ρc

f̂

m̂
, (2.35)

ε = Bremε̂

√
XσM

ρc
, (2.36)

η̂ =
ρc
σB2

× 2

ω`s
× F ′0 ×

1

Xε̂2
. (2.37)

To account for the different densities of metal and insulation, we also need to change
the expression for m̂. For the simple planar ironless motor, it becomes

m̂ =

(
(1−X)

ρi
ρc

+X

)
ktc + 2

ρm
ρc
ktm. (2.38)

From these expressions, we can see that the fill factor has a rather direct impact
on the efficiency; the η̂ parameter is inversely proportional to the fill factor, which
for large values of η̂ is equivalent to the efficiency being directly proportional to the
fill factor. It has a secondary effect on the dimensionless mass parameter, especially
since insulation is typically far less dense than metal. (e.g. polyimide insulation has
a density of approximately 1430 kg/m3 [41] compared to the 8940 kg/m3 density of
copper.)

Numerically, the optimized motor configuration from Section 2.4.2 ordinarily has
a mass parameter of m̂ ≈ 3.78. Let us assume we will use 28 AWG magnet wire
with heavy-build insulation [61]; in a square-packed array, similar to that encountered
in a coil, the fill factor is X = 0.6. If the wire has polyimide insulation, the mass
parameter drops to m̂ ≈ 3.48. The net effect on the efficiency under the conditions of
Section 2.4.2 is a decrease from 67% to 56% efficiency.

The effect of the fill factor on the thermal conductivity of the coil is more complex.
Consider two limiting cases: in the upper bound on thermal conductivity, the metal is
arranged in cylinders parallel to the heat flow direction, while in the lower bound it is
arranged in sheets perpendicular to the heat flow. We can easily find that the bounds
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Figure 2-4: Two example three-phase windings, illustrated on a planar linear
motor: a concentrated winding (left) and a layered distributed winding (right). In
each case, the three phases are labeled A, B, and C, and the primed windings have
current flowing in the opposite direction from the unprimed windings.

on the effective thermal conductivity of the conductor κeff are

κcκi
Xκi + (1−X)κc

≤ κeff ≤
(
Xκc + (1−X)κi

)
, (2.39)

where κi is the thermal conductivity of the insulation. For copper metal, polyimide
insulation (κi = 0.35 W/(m ·K) [41]), and X = 0.6, the effective thermal conductivity
is 0.87 ≤ κeff ≤ 240 W/(m ·K). While these bounds are very broad, unfortunately
the real configuration is close to that of the lower bound on conductivity—heat must
flow perpendicular to the wires to exit the motor. A much closer estimate can be
derived from the known analytical solution for the conductivity of a square array of
conductors in a matrix [62,63], which gives a value of κeff ≈ 1.5 W/(m ·K). In special
winding configurations, such as edge-wound ribbons, the effective thermal conductivity
of the coil can be greatly enhanced to closely approach that of the metal itself.

2.6.2 Winding Factors

Even with the use of insulation to produce an effectively anisotropic conductor, it is
still not practical to produce an arbitrary current distribution in the conductor region.
When building a real motor, we can only produce regions of uniform current density
(i.e. apply current to wires), each of which requires a separate power amplifier. There
is a trade-off, then, between the provision of an ideal current distribution aligned with
the magnetic field and the complexity of the associated power electronics. The usual
compromise is to arrange the winding as three phases, which require the minimum
set of power amplifiers for a current distribution that can produce force in any motor
position. However, the conventional analytical approach [34] to determining motor
performance with a realistic winding begins from an assumed ideal concentrated
winding, rather than the ideal distributed winding of the present analysis.

Thus, to fit our modeling approach we need to derive the phase currents and
motor performance directly from analytical motor models. The full derivation is
given in Section 3.3.2; there, we examine two winding configurations: a single-layer
concentrated winding and a multi-layer distributed winding, as shown in Figure 2-4.

We can account for the winding structure using an average winding factor Kw, to be
multiplied with the motor constant found with an ideal sinusoidal current distribution,
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ε̂tot = Kw ε̂. The results of the Section 3.3.2 analysis are given below:

Concentrated Winding: Kw =
Nφ

πα1/2
sin

(
πα

Nφ

)
, (2.40a)

Layered Winding: Kw =
2

πα1/2
sin

(
πα

2

)
, (2.40b)

where Nφ is the number of phases (or twice the number of phases if there are an odd
number of phases) and α is the fraction of the width of each winding group occupied.
The winding factors are averaged over the stroke; if there is a substantial amount of
coil left unoccupied, the mass parameter will also have to be adjusted to yield accurate
results.

For example, a planar motor produced with a quasi-Halbach magnet array has a
value of the dimensionless motor constant ε̂ = 0.33 when the current distribution is
assumed to be ideal and sinusoidal, implying an efficiency of 61% under the conditions
of Section 2.4.2. If instead a concentrated three-phase winding like that shown in
Figure 2-4 is employed, we find that the average motor constant drops 4.5%, to
ε̂ = 0.32, and the overall efficiency decreases only slightly, to 58%.

If the layered distributed winding is instead employed, first note that the three
phases do not necessarily see the same magnetic flux density, and thus need to be of
different thicknesses in order to operate at optimum efficiency. Also, rather than being
completely composed of conductor with areas of oppositely-directed current directly
adjacent, as shown in Figure 2-4, each such boundary (A-A’, B-B’, etc.) instead
should have a buffer of non-conducting material such that α = 0.85.. Even with these
adjustments, we find that the layered distributed winding can only achieve a motor
constant ε̂ ≈ 0.23 , implying an overall efficiency of only 44%. While the distributed
winding is far simpler to manufacture, it is not capable of approaching the performance
of concentrated windings.

2.6.3 Finite Length

The finite length of a real motor has two major impacts on its performance. The
most obvious effect is the reduction of magnetic flux density near the ends of the
motor, where it can spread out into the adjoining air. It is possible to calculate the
magnitude of this effect analytically for the planar ironless motor [64,65]; for motors
arranged symmetrically (i.e. half-length magnets at the ends), ε̂ is reduced to 95% of
its infinite-motor value when only two pole-pitches of magnets are used, as shown in
Section 3.6. Even a motor employing just a single period of magnets, like a voice coil,
has a value for ε̂ that is over 90% of the infinite-motor ideal. Thus, we can conclude
that the effect of finite length on the magnetic field is actually very small for practical
motors.

The other way in which the finite length of a motor can impact its performance is
somewhat more subtle, but ultimately has much more influence on motor performance.
If the magnet array and the “conductor” have equal lengths, the force that the motor
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can produce using a given current will drop as it moves away from a neutral, centered
position. This happens as portions of the conductor leave the magnetic field and
cease to produce force. The power the motor consumes, on the other hand, does not
change with its position. In order to provide consistent performance over a finite
stroke length, then, there are three possible approaches: de-rate the performance so
that the motor only operates at its thermal limits at the ends of the stroke, make
the magnets longer than the conductor by the stroke length, or make the conductor
longer than the magnets by its stroke length. To the best of the author’s knowledge,
these effects are rarely considered in published optimizations, particularly in the case
of de-rated performance.

First, consider the case where the magnets are longer than the conductor, a
condition often described as “underhung”. We can introduce a parameter Y < 1
equal to the ratio of the coil length to the magnet length, and study its effect on
the performance parameters. Our analysis takes place in the context of a spatially-
averaged motor, so in this case the Y parameter has precisely the same effect on the
performance parameters as the fill factor Y . We can thus write

F ′ =
BremXY J

ρc

f̂

m̂
, (2.41)

ε = Bremε̂

√
XY σM

ρc
, (2.42)

η̂ =
ρc
σB2

× 2

ωL0

× F ′0 ×
1

XY ε̂2
. (2.43)

The effect of the underhung geometry on the dimensionless mass is also similar to
that of the fill factor, except that the missing conductor is not replaced by insulator:

m̂ = Y

(
(1−X)

ρi
ρc

+X

)
ktc + 2

ρm
ρc
ktm. (2.44)

For the analysis of this section, assume the motor has the planar Halbach geometry,
a fill factor of X = 0.6, and that we require a stroke-to-length ratio of 40%, or Y = 0.60.
The mass parameter drops to m̂ ≈ 3.29, and the efficiency drops to 45%.

Next, consider the situation arising when the conductor is longer than the magnets,
or the motor is “overhung”. We now introduce a parameter Y ′ < 1, defined as the ratio
of the magnet length to the coil length. In this case, the force density is unchanged,
but the power dissipation is increased by a factor of 1/Y ′. This implies that

F ′ =
BremXJ

ρc

f̂

m̂
, (2.45)

ε = Bremε̂

√
XY ′σM

ρc
, (2.46)

η̂ =
ρc
σB2

× 2

ωL0

× F ′0 ×
1

XY ′ε̂2
. (2.47)
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The expression for the dimensionless mass is similar to that from the underhung case:

m̂ =
1

Y ′

(
(1−X)

ρi
ρc

+X

)
ktc + 2

ρm
ρc
ktm. (2.48)

To achive the same stroke as for the underhung geometry, we require Y ′ = 0.71. This
increases the mass parameter to m̂ ≈ 3.82, and also reduces the efficiency to 46%. If
we instead require the same ratio of stroke to length, we need Y ′ = 0.60, and we find
that m̂ ≈ 4.00 and the efficiency drops further to 40%.

Finally, consider de-rating the motor for operation with the coil partially exposed.
In this case, the force is reduced but the power dissipation is not. Defining Y ′′ < 1 as
the stroke-to-length ratio, we can compute the performance parameters at the end of
the stroke as follows:

F ′ =
BremXJ

(
1− Y ′′

)
ρc

f̂

m̂
, (2.49)

ε = Bremε̂
(
1− Y ′′

)√XσM

ρc
. (2.50)

The dimensionless mass, of course, is unchanged by this operating arrangement. We
cannot use the derivation of efficiency from Section 2.2.2, however, as in this case the
motor constant ε varies with the motor position. Instead, let the motor constant with
the coil centered in the motor be ε0, and the position of the coil relative to the center
be z0. We thus have

ε(z0) = ε0

(
1− 2 |z0|

L

)
. (2.51)

As in Section 2.2.2, the motor moves sinusoidally, with z0 = `s
2

sin (ωt). Integrating
and averaging over time, we find that

Wm =
`sF0

4
, (2.52)

We = Wm +
F 2

0

ωε20

π
(

1−
√

1− Y ′′2
)

+ 2Y ′′
√

1− Y ′′2 + 2 tan−1 Y ′′
√

1−Y ′′2

πY ′′2
√

1− Y ′′2
. (2.53)

These expressions for the work per cycle of motion can now be used to find the
dimensionless efficiency η̂:

η̂ =
ρc
σB2

× 2

ω`s
× F ′0 ×

Y ′′eff

Xε̂2
, (2.54)

Y ′′eff ≡ 2
π
(

1−
√

1− Y ′′2
)
− 2Y ′′

√
1− Y ′′2 + 2 tan−1 Y ′′

√
1−Y ′′2

πY ′′2
√

1− Y ′′2
. (2.55)

Here, the effects of varying motor constant are embodied by Y ′′eff . For a stroke-to-length
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ratio Y ′′ = 0.40, Y ′′eff ≈ 1.53, and the overall efficiency is 44%.
It is evident, then, that each of the three ways to address the problem of providing

a finite stroke from a finite motor reduces the efficiency by about the same amount
from the infinite-motor situation. The difference, then, lies in the thermal properties
and moving mass of each configuration. The underhung motor has the lowest possible
moving mass and the smallest physical size, but also operates at the highest thermal
power density. The de-rated motor has an intermediate mass and size, but must be
controlled to compensate for its varying motor constant and may have highly variable
thermal behavior as portions of the coil enter and exit the magnet structure. The
overhung motor is larger and heavier, and operates at the lowest average thermal
power density, but also must be designed to handle heat transfer conditions that vary
over the surface of the coil.5

2.6.4 Material Property Variation

The maximum operating temperature of a motor is not set arbitrarily—in general,
it is determined by a combination of the softening temperature of the adhesives
and insulation in the coil, the demagnetization point of the magnets, and thermal
expansion of the motor components. Furthermore, at high temperatures the electrical
conductivity of the coil and the remanent magnetization of the magnets both drop,
reducing the motor’s relative performance. Thus, even with the use of exotic, high-
temperature materials, there may be a point of diminishing returns in attempting to
increase force and power density by increasing the maximum operating temperature.

To initially examine these thermal effects, we can neglect the demagnetizing field
created by the coil and look at pure thermal demagnetization. (Choice of coil insulation
has little bearing on performance, excepting the associated temperature limits, and it
is possible to accommodate thermal expansion with very modest air gaps within the
motor, so the associated thermal effects can be neglected.) In the equations for the
efficiency parameter (Equation 2.21) and the thermally-limited maximum pole pitch
(Equation 2.24a), we can identify two groups of temperature dependent variables as
figures of merit:

FOMη = σB2
rem, FOMF = Brem

√
σ (T − T∞), (2.56)

where FOMη is the efficiency figure of merit, FOMF is the force density figure of
merit, and T is the operating temperature at which Brem and σ are measured. There
is once again a trade-off between efficiency and force density, as FOMη is a decreasing
function of temperature and FOMF may be an increasing function of temperature.
For example, FOMF for one magnet material, VACODYM 669 [66] is plotted in
Figure 2-5.

The maximum allowable temperature is given by the thermal demagnetization
limit, which in turn depends on the properties of the magnet material (temperature

5If it is possible to electrically de-energize exposed portions of the coil, the overhung motor can
provide nearly ideal efficiency and much more consistent thermal performance, at the expense of
adding complex power electronics to the coil.
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Figure 2-5: A plot of the force density figure of merit for VACODYM 669 magnet
material, normalized to the maximum value in this temperature range. Note that
demagnetization becomes an increasing hazard at higher temperatures.

dependence of Hci) and on the strength of the demagnetizing field, commonly given
as the permeance coefficient Pc of the magnet geometry. The permeance coefficient is
equal to the ratio of the B-field to the demagnetizing field within the magnets, taken
at the point of greatest demagnetization, and may vary dramatically for different
geometries. For example, an ideal Halbach array like that analyzed in Section 3.3.1
has a permeance coefficient of about −0.072, indicating powerful demagnetization,
while an ideal iron-backed planar magnet array has a permeance coefficient of −2, a
much milder condition. For a typical magnet material used in motors, VACODYM
669 [66], the resulting temperature limits are 130◦ C and 195◦ C, respectively.

The actual temperature limit of the motor, however, may be lower than the thermal
demagnetization limit depending on the quality of heat transfer. The temperature
is elevated, after all, by the application of current to the windings, which produces
a demagnetizing field of its own in addition to that of the magnets themselves. In
order to make a full evaluation of the temperature limit, then, the heat transfer and
demagnetization constraints must be solved as a coupled system. While such an
analysis is beyond the scope of the discussion here, its necessity illustrates the close
design coupling required in detailed modeling of motors.

2.7 Scaling of Gears and Reduction Drives6

6The analysis of this section was inspired by an email discussion with Gill Pratt.
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One of the greatest challenges in the development of small and/or complex robots is
the miniaturization of actuators. Most often, the actuators in question are permanent
magnet rotary motors (brushed or brushless) coupled to multi-stage gearboxes, or
gearmotors. As discussed in [37, 67], the motors in these actuators have favorable
power density scaling, but unfavorable torque density scaling:

Pm ∝ `2.5, τm ∝ `3.5, (2.57)

where ` is the characteristic length scale and τm is the motor torque output.

Most loads in robotics, however, take the form of torque loads (such as gravity or
grip force) rather than constant-power loads (typically fans and pumps). For purposes
of this analysis, we will consider the load to be a given torque, τtot, at a given speed,
ωout, for a total output power Pm. In order to exploit the power scaling for this load,
the motors need to operate at an increasing speed as they grow smaller, and the
gearboxes in turn require increasing reduction ratios:

ωm ∝ `−1, N ∝ `−1, (2.58)

where ωm is the motor angular velocity and N is the overall gear ratio. The utility
of miniaturized gearmotors, then, depends entirely on the scaling performance of
gearboxes, which must improve with decreasing size to offset the need for more
reduction, and thus more gears.

Gears, in general, are primarily limited by the torque they can transmit without
breaking and while maintaining an acceptable lifetime. To calculate the maximum
torque, we can use the American Gear Manufacturers Association (AGMA) standard
stress calculation equations for gears [68], although they are empirical in nature and
have only been verified for a limited set of standard gear sizes. Nonetheless, we can
consider their basic scaling:

σb ∝ τg`
−3KvKs, (2.59a)

σc ∝
√
τg`−3KvKs, (2.59b)

where σb is the bending stress, σc is the contact stress, τg is the gear torque, Kv is the
AGMA dynamic factor, Ks is the size factor [68], and the other AGMA factors have
been omitted as they are scale-invariant. The lack of speed dependence implies that
the output gear will limit the overall performance, an implication borne out by the
ratings of real gearboxes. The size factor Ks scales as `0.107, but the behavior of the
dynamic factor is more subtle, depending on the precision of the gear with scaling
between unity and `0.541 for the best and worst precision classes, respectively. The
maximum permissible surface speed also depends on the gear precision, though this
results in a scaling of ωm ∝ `−1, analogous to that of the motor.

It is worth briefly discussing the problem of gear precision here. According to the
most recent AGMA standard [69], the allowable tolerance on the tooth profile of a gear
is proportional to the square root of the feature size, plus a constant factor. While this
implies a minimum tolerance of about 3 micrometers, in practice the standard was only
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written for gears as small as 0.5 mm module, which are thus given relative tolerances of
about 0.2%. This approach cannot extend to significantly smaller gears; sub-millimeter
gears would require sub-micrometer precision and the associated expensive production
techniques. Scaling the gear down further thus would, by necessity, reduce its precision
and thereby reduce the maximum speed and torque more than the above scaling
analysis suggests.

Assembling the AGMA relationships, we find that for a constant maximum stress,
the maximum allowable gear torque τg scales as

τg ∝ `2.352 to `2.893. (2.60)

This implies both that gears increase in strength relative to motors at small scales, and
that the torque-to-mass ratio of gears should improve as the gears shrink. However,
if we examine real gearheads (such as Faulhaber’s offerings [70]), we instead find a
decrease in torque-to-mass ratio for small gears. What could explain this discrepancy?

One possible foil to the gear scaling argument is the nature of wear. In general,
wear between metal surfaces that slide on each other can be described by the Archard
equation [68],

V̇w =
KFcv

Hs

, (2.61)

where V̇w is the volumetric wear rate, K is the dimensionless wear coefficient, Fc is
the contact force, v is the sliding velocity, and Hs is the surface hardness. Ignoring
scale-free parameters and assuming a constant lifetime, we can determine the scaling
of the wear equation as

w ∝
(
τ`−3

)
(ω`) = P`−2, (2.62)

where w is the linear amount of material wear. The acceptable wear presumably
scales with the characteristic length, implying that P ∝ `3. Thus, the wear-limited
power density of gears is scale-invariant, if the wear can be assumed to obey the
Archard equation. In practice, the speed dependence may vary depending on the
lubrication conditions, and wear rates may be reduced at higher speeds with elasto-
hydrodynamic lubrication [71]. If this is the case, the situation becomes dire for
miniaturized gearboxes, whose output stages run at a lower linear speed for a given
rotational speed as their scale shrinks. This result helps to explain the drop in torque
density seen for small gearmotors.

Using these relationships, we can now examine the scaling of the entire motor. For
a given output power, the gearmotor mass Mtot can be given by

Mtot =
P

pm
+
P

pg
· N
Ns

, (2.63)

where pm is the motor power density (∝ `−0.5), pg is the gearbox power density
(∝ 1), and Ns is the gear ratio of a single stage (which does not change with scale).
Substitution of the scaling of the power densities and gear ratio yields an overall mass
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scaling for a given power,

M

P
∝ `0.5 + `−1, or ptot ∝

`

1 + `1.5
, (2.64)

with ptot denoting the overall power-to-mass ratio. It follows that there is actually an
optimum scale for any given gearmotor power output, with a sharp (∝ `) penalty for
being too small and a more gradual penalty (∝ `−0.5) for being too large. Thus, we
have found the reason for the poor scaling of gearmotors: the increased number of
reduction stages required for smaller motors at a given torque and speed output.

While we have not established the scaling for a pure torque requirement, only a
combined torque and speed (power) requirement, it is clear that a small gearmotor
will likely have a poor power density, limiting the actuator’s ability to move against
the torque load. Furthermore, it is important to note that the only reason there is
a favorable power density scaling is the enhancement of heat transfer at small size
scales. Exploitation of this property requires operation at lower efficiency, as we saw
in Section 2.2.3, and so the “penalty” for large size is accompanied by an efficiency
improvement.

2.8 Limits to Scaling

The favorable implications of reducing the magnetic pole pitch suggest that the
highest-performance motors should push this dimension to the limits of manufacturing
technology. While the structures needed in a motor can be produced very small
indeed via MEMS technology (e.g. [72]), there are a few limits that go beyond those
of geometric precision.

At the highest level, the overall motor structure must still be capable of withstand-
ing the applied loads—an extremely long, slender motor may be prone to buckling
under compressive load, and at high force densities could also fail under tension simply
due to the limited strength of the materials. For instance, Joseph and Cronje [73]
describe the design of a utility-scale linear generator whose performance is limited by
the tensile strength of iron, and thus could not produce a higher force density through
pole-pitch reduction. Avoiding this problem requires replacing a single coarse-pitch
motor with an array of smaller, short-pitch motors.

Another problem that arises when scaling to very small pole pitches relates to the
microstructure and materials science of rare earth permanent magnets. Neodymium
magnets smaller than a few millimeters in smallest dimension begin to show degradation
in their magnetic properties due to machining processes [74], which require further
treatment to recover their original properties [75]. At smaller scales still, magnet
production via conventional pressing, sintering, and machining processes is no longer
practical, particularly as a single motor with sub-millimeter magnet pitch might
require hundreds or even thousands of individual magnets. Parallel processing of
rare-earth magnets for micromanufacturing remains an active field of research, and
while recent results are promising (e.g. [76]) microscale magnets are very challenging
to produce and offer inferior properties to their macroscale brethren.
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Finally, in order to scale to very small pole pitches the running clearance between
moving elements must also be scaled to a very small level. At the millimeter scale,
the air gap must be kept to below 100µm to avoid significant loss of performance, as
will be shown in Chapter 4. Just below this size scale, the gap becomes small enough
that precautions must be taken to avoid jamming or wearing out the motor with
particle contamination. As the goal is to apply relatively large forces and motions to
the outside world, it may become difficult to maintain a clean enough environment
without incurring friction and stiffness from the necessary seals. Scaling limitations of
this sort will be discussed further in Section 3.7.2, where reference can be made to the
results of electromagnetic modeling.

2.9 Summary and Discussion

This chapter has presented a broad modeling architecture for linear permanent-magnet
motors, establishing the highest theoretical performance available and describing the
effects of the major deviations from theoretical perfection required to build a working
motor. We are thus now in a position to describe the best practical performance
of such an actuator, and to discuss the implications of the efficiency and thermal
constraint equations for actuator capabilities.

2.9.1 Efficiency

From the basic model of a conductor in a magnetic field, were able to derive an
expression for the energy efficiency of a linear motor sinusoidally driving a pure viscous
damper, Equation 2.9b, without reference to the specific geometry or design of the
motor. With additional factors to describe the influence of geometry and design, we
can represent the efficiency η as follows,

η =
1

1 + η̂
, (2.65a)

η̂ =
ρc

σB2
rem︸ ︷︷ ︸

materials

× 2

ω`0︸︷︷︸
velocity

× F ′0︸︷︷︸
force

density

× 1

XY ε̂2︸ ︷︷ ︸
motor

geometry

. (2.65b)

Here, X ≤ 1 is the conductor packing density (Section 2.6.1), Y ≤ 1 describes the
compromise required to provide a finite stroke from a finite motor (Section 2.6.3),
and ε̂ represents the effect of the specific magnet and coil configuration used. Smaller
values for η̂ lead to improved efficiencies, though with diminishing returns for η̂ < 1.

Note that none of the factors influencing the motor efficiency directly depend
on the size of the motor under these conditions—the efficiency of the motor instead
depends on the required performance, represented as the force density, and the required
velocity. The benefits of using a reduction drive instead of direct-drive are also readily
apparent, as any increase in velocity allowed by such a mechanism simultaneously
reduces the force. Indeed, if we represent the reduction ratio from motor motion to
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load motion by N , neglect the mass of the reduction drive, and assume the drive is
perfectly efficient we find that

η̂ =
ρc

σB2
rem︸ ︷︷ ︸

materials

× 2

ωL0︸︷︷︸
velocity

× F ′0︸︷︷︸
force

density

× 1

XY ε̂2︸ ︷︷ ︸
motor

geometry

× N−2︸︷︷︸
reduction

ratio

. (2.66)

This is, of course, the reason for the ubiquity of rotary motors with reduction
gearing in modern engineering—until the motor velocity becomes so fast that frictional
losses or breakdowns in the quasi-static analysis assumption occur and dominate
the energetics of the motor, increasing the velocity increases the efficiency and the
mechanical power available. Direct-drive motors are only advantageous in situations
where reduction drive is impractical, either due to a desire for low motor inertia (as in
a haptic interface or positioning stage) or due to a small overall size (which makes
friction and wear dominate the force and energy balance of a reduction drive).

Similar relationships apply under other loading conditions, though energy efficiency
may cease to be the appropriate metric. For example, under static loading conditions,
the motor constant itself becomes the most important metric for energy usage, leading
to an expression for the power consumed P :

P =
ρc

σB2
rem︸ ︷︷ ︸

materials

× F︸︷︷︸
force

× F ′︸︷︷︸
force

density

× 1

XY ε̂2︸ ︷︷ ︸
motor

geometry

. (2.67)

In this case, the relationship between force density (i.e. motor compactness) and power
consumption is even more clear.

2.9.2 Thermal Constraints

While our modeling approach has clearly demonstrated the link between increased
force density and reduced efficiency, some applications (e.g. high-speed positioning and
locomotion) may demand high direct-drive force density without regard to efficiency.
These applications are instead likely to be constrained by the thermal power the motor
can handle. Even in high-efficiency motors, thermal management issues limit the
maximum mechanical power output.

By considering an abstract active material model (Section 2.2.1), we found that
heat removal from the surface of a motor (the most commonly used pathway) constrains
the motor’s overall aspect ratio. In our subsequent, more detailed analysis, we found
that in practical motors the aspect ratio constraint is equivalent to a constraint on
the feature scale of the magnets and coils. Specifically, found that the features within
the magnets and coils all scaled with the pole pitch p.

If the coil is entirely within the magnet array, we can write an expression for its
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maximum pole pitch:

p ≤ 2π
Brem

√
σκeff

ρc︸ ︷︷ ︸
materials

×
√

∆T

︸ ︷︷ ︸
thermal limits

× 1

F̄ ′︸︷︷︸
force

density

× ε̂Y

√
X

m̂R̂th︸ ︷︷ ︸
motor

geometry

. (2.68)

Here, R̂th is a dimensionless thermal resistance, and we assume the coil does not move.
If the coil is not entirely contained within the magnets, then the motor does not
experience uniform heat transfer conditions, and a more careful modeling approach
should be used.

Unfortunately, we cannot assess the thermal capabilities of a motor without at least
making some assertions about its shape, in order to calculate the thermal resistance.
In general, achievement of force densities in excess of 1000 N/kg while keeping the
pole pitch above the millimeter scale requires low thermal resistances commensurate
with liquid cooling, as discussed in Section 2.4.2.

2.9.3 Discussion

Our model for motor performance can be distinguished from previously reported
motor scaling models by three key features: the explicit coupling between thermal
performance and pole pitch, simple break-out of the influence of motor design, and
consideration of the influence of stroke length on motor performance. Some scaling
models [37,77,78] include thermal performance, but with only one overall scale for the
motor. Cugat et al. [29] acknowledge that the thermal length scale may differ from
the electromagnetic length scale, but do not explore the relationship between the two.
None of these scaling models admit quantitative motor descriptions, including the
effects of electromagnetic motor design or stroke length, and so they cannot be used
to predict the performance of a real motor at a particular scale.

Given approximate values for the dimensionless parameters, we are for the first
time in a position to predict the realistic performance of a motor at arbitrary overall
sizes and pole pitches. In Chapter 3, we will lay the groundwork for a library of
optimized designs, satisfying a variety of optimization criteria and with corresponding
values for the dimensionless parameters, which could be used to allow custom motor
design without requiring detailed electromagnetic modeling. It is up to the user of our
models to determine what the acceptable trade-offs are between cost and complexity,
which increase as pole pitch shrinks, and raw performance, which improves at smaller
pole pitches.
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Chapter 3

Analytical Field Solutions

This chapter presents a series of analytical models for the magnetic fields in linear
permanent magnet motors, and explains how the models can be used to compute
the dimensionless performance parameters defined in Chapter 2. Planar motors are
first considered, to explain the modeling approach and allow easy comparison to
established solutions. The approach is then extended to tubular motors, using a
numerically stable analytical solution to Maxwell’s equations. The effects of field-
related performance details, particularly demagnetization and finite length effects, are
considered throughout. Where appropriate, the analytical models are verified with
finite element analysis.

3.1 Introduction and Literature Review

Fundamentally, electric motors are devices that produce force via the interaction of
electrical currents with magnetic fields. As such, in order to assess the performance of
a motor geometry, its three-dimensional magnetic fields must be calculated from the
appropriate form of Maxwell’s equations and from the constitutive relations for the
materials used. (In this work, we will use the term “geometry” to refer to the shape
and relative size of the components of a particular motor, and “configuration” to refer
to the set of all geometries that can be described by the same parameterization and
contain the same number, kind, and orientation of components. For example, each
motor configuration may have an optimum geometry.)

There is a rich history of this kind of calculation, extending back over 125 years
to the earliest mathematical modeling approaches [79]. Over this time, a number of
different approaches to magnetic field calculation have been developed, which can be
broadly broken down into three categories: techniques using spatial discretization,
techniques operating in the spatial frequency domain, and techniques employing
explicit, exact field solutions. Spatial discretization was the earliest type of technique
developed, in the form of magnetic circuit modeling. In this approach, iron components
are assumed to have infinite (or near-infinite) permeabilities, and the user estimates
the loops of magnetic flux that will be present accordingly. These loops are in turn
broken down into lumped reluctance elements and modeled using an electric circuit
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analogy. For simple geometries, this is a straightforward and accurate approach,
taught routinely in undergraduate electromagnetics classes. In some situations, this
method can even account for nonlinear behaviors in the iron, such as saturation.

In motors with wide air gaps, or structures containing no iron at all, no simple
magnetic circuit model can be constructed. In these situations, the usual approach is
to abandon analytical modeling and use finite element analysis (FEA), which can be
considered as a sort of grid-based magnetic circuit model. FEA can solve the fields
and forces to good accuracy in arbitrary motor configurations, but at the expense of
very high computational effort. All but the simplest FEA models require too much
computational effort for use in optimization or design synthesis.

Frequency-domain (i.e. Fourier) solution methods are considerably more accurate
than magnetic circuit models, while also being far less computationally expensive than
FEA. In this family of models, the motor structure is broken down into regions with
uniform properties, and Maxwell’s equations are solved in each region using separation
of variables. While the mathematics behind this approach also have roots in the 19th

century, Fourier techniques (and any form of rigorous analysis, for that matter) were
slow to catch on in the electrical engineering community, with the first comprehensive
publications on the subject appearing in the 1920s [80]. Until the advent of rare-earth
magnets [30], Maxwell’s equations could not be approached analytically in machines
employing permanent magnets due to the magnets’ intrinsically nonlinear material
properties. Once it was recognized that modern materials are essentially linear within
their safe operating conditions, Fourier solutions were obtained for a number of
permanent magnet linear motors. Deng et al. [43] wrote what appears to be the first
such paper in 1986, describing a single-sided planar motor with a slotted stator and
a simple magnet structure. Trumper et al. [46] first discussed the use of Halbach’s
magnet arrays in motors, and solved the fields in an ironless planar motor. More
recently, Gysen et al. wrote a comprehensive review of the use of Fourier techniques
for electric machines [81], covering the approach for moderately complex structures in
Cartesian, polar, and cylindrical coordinates.

While Fourier series field solutions work well for many motor configurations and
coordinate systems, they are more challenging in cylindrical coordinates, as would be
appropriate for a tubular motor. The solutions to Maxwell’s equations in cylindrical
coordinates cannot be expressed in terms of elementary functions, and in regions
containing currents or radial permanent magnets are not even described by any of
the common special functions. The earliest solutions to this problem in motors were
approximations to the magnetization and current density distributions in the motor
that could allow the fields to be expressed in terms of elementary functions and Bessel
functions, as developed by Kim et al. [82] and Bianchi [52]. These approximations
are least accurate in the situations where curvature is most pronounced, however,
rendering the use of a cylindrical solution moot. For instance, if a radial magnet has
an outside diameter equal to twice its inside diameter, the approximation used by
Bianchi is 5% off of the true magnetization.

The most popular solution, initially given by Halbach without commentary [83] but
re-introduced in the linear motor context by Wang et al. in 1999 [51], is to express the
fields in terms of Bessel functions and their integrals, using a Green’s function approach
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to the solution of Maxwell’s equations in the current-carrying and/or magnetized
regions. While mathematically exact, this approach requires the numerical evaluation
of definite integrals of rapidly-varying functions, which are difficult and expensive to
evaluate accurately. Only recently, after the work described in this thesis commenced,
was it recognized in the motor literature that magnetic fields in cylindrical coordinates
can be solved in terms of named special functions with efficient numerical behavior,
the modified Struve functions [53]. (The integrals encountered when using Green’s
functions can also be expressed analytically in terms of the modified Struve function.)
Even with the benefit of a named function, however, the reports to date [50,84,85] do
not offer numerically stable solutions, instead giving field equations that suffer from
severe cancellation errors and are thus only usable for low harmonic orders.

Fourier series methods can require extensive calculations if high spatial resolution is
desired, reducing their advantage over FEA. In Cartesian coordinates, the exact fields
caused by individual magnet segments can be calculated, via solution of superposition
integrals, and can then be added together to find global solutions for the fields in
a motor. This approach has a long history as well, and was presented as a simple
solution method in Hague’s 1929 textbook [80]. In the linear motor literature, Xiong
and Nasar presented an early superposition integral analysis in 1989 [44], though not
in explicit analytical form. Konkola [86] presented an in-depth superposition analysis
for linear motors, in terms of the explicit analytical expressions for multipole fields.
Superposition integral-based techniques were limited to Cartesian (planar) motors
until much later, with Kim and Murphy giving an implicit, integral-based solution to
the problem in cylindrical coordinates in 2004 [87], and no explicit solutions given
until the work of Ravaud et al. in 2009 [88]. These solutions are appealing in machines
with relatively few magnets, but are difficult to calculate when many magnet segments
are present. Furthermore, the explicit solutions in cylindrical coordinates involve
calculating a large number of elliptic integrals, which are computationally expensive.

In special cases, other approaches have been applied; for instance, in motor
structures with iron, conformal mappings can be used to calculate the field. Carter’s
classic analysis of slotted stators [89,90] was an early example of this approach, but it
was used relatively little afterwards due to the analytical intractability of complex
conformal maps. More recently, Spooner and Haydock [91] used Schwartz-Christoffel
mapping to analyze variable reluctance motors, and Gysen et al. [92] used the same
technique to study complex slotted stators in tubular linear motors, though their
geometry was complex enough to demand numerical evaluation of the map.

We chose to focus on the Fourier analysis approach to the magnetic field problem,
and to address the flaws in the existing analyses through careful analytical calculations
and by maintaining numerical stability wherever possible. We focused on the problems
with tubular motor analyses, as tubular motors have promising properties but did
not yet have easily-computed solutions. We also examined the standard planar motor
configurations, to develop the modeling approach and investigate numerical methods
and tricks.
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3.2 Analytical Framework

To begin, it will be helpful to carefully define the context of the magnetic field analysis.
The model used in Chapter 2 is designed to predict the static and low-speed behavior
of motors. Throughout this work, then, we will strive to solve the magnetoquasistatic
(MQS) form of Maxwell’s equations,

∇ ·B = 0, (3.1a)

∇×H = J , (3.1b)

where B is the magnetic field, H is the magnetizing field, and J is the electrical
current density. An alternative way to interpret Equation 3.1a is to define the B field
as the curl of a magnetic vector potential A,

∇×A ≡ B. (3.2)

To solve Maxwell’s equations, we also need to know the relationship between B
and H within the materials of the motor. We will consider motors made up of four
fundamental kinds of material: air, conductor, magnet, and iron. We can consider air
to have the constitutive relations of a vacuum, and conductor to be non-magnetic and
to otherwise behave according to Ohm’s law. We will restrict the magnet materials
under consideration to “modern” materials, i.e. rare-earth and ferrite magnets. The
constitutive behavior of these materials can be closely approximated by a constant
intrinsic magnetization and permeability equal to that of vacuum [33]. (In practice,
values of the effective relative permeability in these permanent magnet materials
range between 1.05 and 1.1.) Finally, we will consider iron to be an isotropic material
with saturation, but no hysteresis, which can therefore be described by a nonlinear,
single-valued scalar magnetic permeability function. These constitutive relations are
summarized below:

Air: B = µ0H , J = 0 (3.3a)

Conductor: B = µ0H , J specified (3.3b)

Magnet: B = µ0 (H +M) , J = 0 (3.3c)

Iron: B = µ0µ
(
|H|2

)
H , J = 0. (3.3d)

Here, M is the magnetization vector, and µ is the relative magnetic permeability,
given as a function of the magnitude of the H-field. Values for the remanence of
permanent magnets are readily available from suppliers (e.g. [66]), and permeability
curves for iron can be derived from manufacturers’ data, such as that in [93].

With the constitutive relations, we are equipped to write a single partial differential
equation for the magnetic vector potential in each material. Using basic vector calculus
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identities, and defining the divergence of the vector potential to be zero (i.e. setting
the Coulomb gauge), we find the following governing relations:

Air: ∇2A = 0 (3.4a)

Conductor: ∇2A = −µ0J (3.4b)

Magnet: ∇2A = −∇×M (3.4c)

Iron: ∇2A = − 1

µ

(
∂µ

∂ |H|2

)
∇ (H ·H)× (∇×A) . (3.4d)

In the absence of iron, Equations 3.4 are linear Poisson’s equations, and superposition
principles can be used to solve the overall problem. Superposition allows the magnet
and coil structures to be analyzed separately, and grants considerable flexibility in the
calculation of fields for each component. The behavior of iron is, in general, formidably
nonlinear, but if µ is constant the right-hand side of Equation 3.4d becomes zero and
the solution is the same as that seen in air. Thus, if we are willing to approximate
each iron region as having constant permeability, superposition can still be used if the
iron’s B-H curve is linearized and the equations are solved iteratively.

In practice, linear motors have a periodic structure in their direction of actuation;
we will base our analysis on the period of the magnet structure, the pole pitch p.
Linear motors also are finite in length, with a magnet structure containing Np periods.
Note that Np need not be integral—a voice coil can be considered as having Np = 1/2,
for instance.

The finite-but-periodic structure of a motor results in a choice of analysis ap-
proaches: the known solutions for the fields produced by isolated magnets and coils
may be added together for each element in the motor [94,95], or the field solutions
for infinitely long periodic motor structures may be found via Fourier analysis, and
then modified via convolution to account for the actual finite length [64, 96]. It is
our view that the Fourier series approach to magnetic field calculation is considerably
more flexible than the isolated-element approach, and provides a better intuitive
understanding of the motor’s behavior. It also allows the mathematically simpler
behavior of an infinite motor to be determined separately from the mathematically
complex end effects encountered in a finite motor. Note that the general calculation
approach employed in this work is not new—the overall dimensionless parameter
framework of Chapter 2 is novel, and novel features of the field analyses will be noted
as they appear.

3.3 Planar Motors

Planar motors are the earliest linear motors developed [23], and their magnetic
fields can be described in terms of elementary functions (trigonometric functions
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and exponentials). We will thus begin by applying our framework to motors of this
topology, developing the concepts from the simplest possible configuration to more
complex designs. Our discussion will closely follow the results in [46] for the ironless
motors, but new analytical approaches will be required to deal with motors containing
iron, and to accurately assess demagnetization.

3.3.1 Simple Halbach

Here, we will consider perhaps the simplest flat motor configuration, an infinite periodic
motor with an iron-free conductor layer between two ideal Halbach-magnetized magnet
layers, as shown in Figure 3-1. This configuration has been described in detail by
Trumper et al. in [45] and [46]1, but its analysis will be described here for illustration.
The magnet layer (region 3) has intrinsic coercivity Hci, density ρm, and both axial
(z-direction) and transverse (y-direction) magnetization varying sinusoidally with
period p. More precisely, the magnetization vector is given by

µ0M = Brem

(
cos (kz) ŷ + sin (kz) ẑ

)
, (3.5)

where Brem is the remanence of the magnet material, and for convenience we have
defined the wavenumber k ≡ 2π/p. As was described by Halbach [83], this magnetic
structure concentrates all of its flux on one side, increasing the achievable magnetic
field over other arrangements. The current density in the conductor (Region 1) is
arranged to lie in phase with the y-direction magnetization:

J = J cos (kz) x̂. (3.6)

The relevant Poisson equations are now readily solved in Cartesian coordinates for
the vector potentials, which take the form:

A =
[
Am(y) sin (kz) + Ac(y) cos (kz)

]
x̂, (3.7)

where Am and Ac are scalar functions of the y-coordinate only. These functions can
be determined for the materials in the Halbach motor:

Am, magnet =
Brem

k

(
a eky +b e−ky +1

)
, (3.8a)

Ac, coil =
µ0J

k2

(
a

k
eky +

b

k
e−ky +1

)
, (3.8b)

Am,other =
Brem

k

(
a eky +b e−ky

)
, (3.8c)

Ac,other =
µ0J

k2

(
a eky +b e−ky

)
. (3.8d)

1Strictly speaking, Trumper et al. only describe the case of a single magnet layer and a single
coil layer, but their analysis can cover the present case with a simple change of boundary condition.

68



yc

ymi

ymo

ŷ
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Figure 3-1: A schematic of a flat Halbach motor, with the active conductor in
orange and magnets in gray. The motor is assumed to be symmetric, and the
mid-plane is located at y = 0. The conductor extends to y = yc = tc/2, where
tc is the conductor thickness, and the magnets range from y = ymi = tc/2 + g
to y = ymo = tc/2 + g + tm, where g is defined to be the air gap thickness and
tm is the magnet thickness. The magnetization varies sinusoidally in space with
period p, and the current density varies sinusoidally in step with the y-direction
magnetization. Note that positive x points out of the page.

Here, a and b are arbitrary constants that must be found in each region by matching
boundary conditions. As the constants a and b are arbitrary, we have taken the liberty
of factoring the magnet and coil particular solutions out and rendering the constants
dimensionless. We will use numerical subscripts to denote the motor region, as shown
in Figure 3-1.

There are a number of approaches available to find the arbitrary constants; one
popular option is to use the transfer relations concept advocated by Melcher [46,97].
We will simply use the brute-force approach, making use of the definition of the
magnetic vector potential (Equation 3.2) and the constitutive relations to find the
magnetic field B and the magnetizing field H . We can then find the general expression
for the B-field,

B =

[
kAm cos (kz)− kAc sin (kz)

]
ŷ −

[
∂Am
∂y

sin (kz) +
∂Ac
∂y

cos (kz)

]
ẑ. (3.9)

Substituting the appropriate derivatives of the vector potential yields the following
specific equations for the B-fields in each region:

B1 =

[
Brem

(
am,1 eky +bm,1 e−ky

)
cos (kz)− µ0J

k

(
ac,1 eky +bc,1 e−ky +1

)
sin (kz)

]
ŷ −[

Brem

(
am,1 eky−bm,1 e−ky

)
sin (kz) +

µ0J

k

(
ac,1 eky−bc,1 e−ky

)
cos (kz)

]
ẑ,

(3.10a)
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B2 =

[
Brem

(
am,2 eky +bm,2 e−ky

)
cos (kz)− µ0J

k

(
ac,2 eky +bc,2 e−ky

)
sin (kz)

]
ŷ −[

Brem

(
am,2 eky−bm,2 e−ky

)
sin (kz) +

µ0J

k

(
ac,2 eky−bc,2 e−ky

)
cos (kz)

]
ẑ,

(3.10b)

B3 =

[
Brem

(
am,3 eky +bm,3 e−ky +1

)
cos (kz)− µ0J

k

(
ac,3 eky +bc,3 e−ky

)
sin (kz)

]
ŷ −[

Brem

(
am,3 eky−bm,3 e−ky

)
sin (kz) +

µ0J

k

(
ac,3 eky−bc,3 e−ky

)
cos (kz)

]
ẑ,

(3.10c)

B4 =

[
Brem

(
am,4 eky +bm,4 e−ky

)
cos (kz)− µ0J

k

(
ac,4 eky +bc,4 e−ky

)
sin (kz)

]
ŷ −[

Brem

(
am,4 eky−bm,4 e−ky

)
sin (kz) +

µ0J

k

(
ac,4 eky−bc,4 e−ky

)
cos (kz)

]
ẑ.

(3.10d)

The H-fields can then be found simply via the constitutive relations.

The boundary condition at infinity can be used to immediately find two of the
arbitrary constants:

am,4 = 0, ac,4 = 0. (3.11)

At each boundary between regions, the y-component of theB field and the z-component
of the H field must be continuous. On the symmetry plane at y = 0, the z-components
of both the B and the H fields must be zero. This leads to a system of linear equations
for the 16 unknown coefficients, with the following solutions:

am,1 = e
−
(
ktc
2

+kg
) (

1− e−ktm
)

bm,1 = am,1

ac,1 = −1

2
e−

ktc
2 bc,1 = ac,1

am,2 = am,1 bm,2 = am,1

ac,2 = 0 bc,2 = bc,4

am,3 = − e
−
(
ktc
2

+kg
)

e−ktm bm,3 = am,1

ac,3 = 0 bc,3 = bc,4

am,4 = 0 bm,4 = am,1

ac,4 = 0 bc,4 = − sinh

(
ktc
2

)
. (3.12)

70



With the magnetic fields known, we are almost ready to determine the force
produced by the motor. To calculate the force per unit area of motor, we need to find
the yz component of the Maxwell Stress Tensor, σyz, on the surface of the conductor,
and average it over space. We can find the Maxwell Stress Tensor as follows:

σyz =
1

µ0

ByBz

∣∣∣∣
y=tc/2

=
2BremJ

k
am,1bc,4 e−

ktc
2

[
cosh

(
ktc
2

)
cos2 (kz) + sinh

(
ktc
2

)
sin2 (kz)

]
−[

B2
rem

µ0

a2
m,1 sinh (ktc) +

µ0J
2

2k2
b2
c,4 e−ktc

]
sin (2kz) .

(3.13)

We can then find the spatial average magnetic shear stress and nondimensionalize:〈
σyz
〉

=
BremJ

k
am,1bc,4 =

BremJ

2k
f̂ , (3.14a)

f̂ ≡ e−kg
(

1− e−ktc
)(

1− e−ktm
)

. (3.14b)

The remaining dimensionless parameters do not depend directly on the field, and are
given by Equations 2.17b and 2.18b.

3.3.2 Block Halbach with Windings

In practice, ideal Halbach arrays are difficult to construct, and can only be made from
bonded or isotropic sintered magnet materials, which offer relatively low remanence
(0.7 T [98] and 1.0 T [99], respectively, in the NdFeB system) compared to available
anisotropic sintered magnets. Instead, the array is assembled from a series of blocks
of uniform magnetization, as illustrated in Figure 3-2. These arrays can be handled
by representing the magnetization as an infinite Fourier series instead of the pure
sinusoids of the ideal Halbach magnet [83]:

M =
Brem

µ0

∞∑
n=1

[
M̂yn cos (nkz) ŷ + M̂zn sin (nkz) ẑ

]
, (3.15a)

M̂yn =
2

nπ
sin

(
nπδy

2

)(
(−1)n+1 + 1

)
, (3.15b)

M̂zn =
2

nπ
sin

(
nπδz

2

)(
(−1)n+1 + 1

)
, (3.15c)

where M̂yn and M̂zn represent nondimensionalized Fourier coefficients for the vertical
and axial magnets, respectively, at harmonic order n, δy and δz represent the fraction
of the array made up of each magnet type, there are four of blocks per period, and
the symmetry of the array eliminates even harmonics. The fractional widths δy
and δz should sum to one for an array with no gaps between magnets; a lower sum
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Figure 3-2: A schematic of a flat block Halbach motor, with the active conductor
in orange and magnets in gray. The motor is assumed to be symmetric, and the
mid-plane is located at y = 0. The conductor extends to y = yc = tc/2, where
tc is the conductor thickness, and the magnets range from y = ymi = tc/2 + g to
y = ymo = tc/2 + g + tm, where g is defined to be the air gap thickness and tm
is the magnet thickness. The magnet array has four blocks per period p, and the
winding has three phases.

allows for gaps, while a higher sum is physically unrealistic. Only odd harmonics
are present, due to the inherent symmetry of the magnet array. For a four-block
array with δy = δz = 1/2, as shown in Figure 3-2, the fundamental component of the
magnetization is about 90% of that in an ideal Halbach array of the same remanence.
Arrays with more blocks can approach the ideal Halbach array more closely, but are
correspondingly more difficult to manufacture; the formula for their magnetization is
given in [83].

Similarly, it is difficult to arrange for an exactly sinusoidal current density dis-
tribution, and instead winding regions of uniform current density must be provided.
The simplest way to do this is to divide the whole coil thickness into three or more
equal winding groups per period. These winding groups are powered by three or more
distinct currents, or phases; if there are an even number of coil groups, half that
number of phases can be used, with the two groups per phase arranged symmetrically
and wound in opposite directions. Figure 3-2 shows a six-group, three-phase winding.
Let Nφ be the number of coil groups, and α be the fraction of the coil occupied by
winding groups; the current density can be represented by the following Fourier series:

J =

Nφ−1∑
i=0

∞∑
n=1

Jni cos

(
nk (z − z0)− 2πni

Nφ

)
x̂, (3.16)

Jni =
2Ji
nπ

sin

(
nπα

Nφ

)
, (3.17)

where Ji is the current density in group i , Jni is the Fourier coefficient of order n for
coil group i, and z0 is the displacement of the coil from the position in which phase 0
and the y-direction magnetization are aligned.

The overall behavior of the motor is determined by the set of phase current
densities, which are in turn determined by the commutation pattern employed. The
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most efficient pattern is sinusoidal commutation, which places the fundamental of the
overall current density waveform in phase with that of the magnetization:

Ji = Jcmd cos

(
kz0 +

2πi

Nφ

)
, (3.18)

where Jcmd is an overall commanded current density. With this commutation pattern
in place, and after some trigonometric manipulation, the first harmonic of the overall
current density J1 is given as follows:

J1 = Jcmd
Nφ

π
sin

(
πα

Nφ

)
cos (nkz) x̂. (3.19)

(Expressions for the remaining harmonics are too complex to warrant writing out
explicitly.) Thus, a typical six-group winding like the one shown in Figure 3-2 produces
a sinusoidal current density 95% as strong as the “ideal”. The power required is given
by

P =
αJ2

cmdWLtc
σNφ

Nφ−1∑
i=0

cos2

(
kz0 +

2πi

Nφ

)
=
αJ2

cmdLWtc
2σ

, (3.20)

where the final equality is true only if Nφ > 2. Comparing with Equation 2.18b, we
see that this winding scheme with sinusoidal commutation has the same dimensionless
power as the ideal winding, except for the coil group width factor α:

P̂ =
αktc

2
. (3.21)

With the magnetization and current density now expressed as Fourier series, the
field solutions derived for the ideal Halbach array can be used with a few small
modifications:

A =
∞∑
n=1

Amn sin (nkz) +

Nφ−1∑
i=0

Acni cos

(
nk (z − z0)− 2πni

Nφ

) x̂, (3.22)

with Amn giving the nth harmonic coefficient of the magnetization’s vector potential
and Acni giving the nth harmonic of the vector potential from coil group i. Rather
than finding a single set of coefficients, we now must find one for every order n. The
vector potential functions are given as follows in the motor regions:

Amn, 3 =
Brem

nk

(
a enky +b e−nky +M̂yn

)
, (3.23a)

Acni, 1 =
µ0Jni
n2k2

(
a enky +b e−nky +1

)
, (3.23b)

Amn, other =
Brem

nk

(
a enky +b e−nky

)
, (3.23c)
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Amn, other =
µ0Jni
n2k2

(
a enky +b e−nky

)
. (3.23d)

Analogous modifications can be made to the field expressions (Equations 3.9 and 3.10)
to account for the Fourier series and different current spatial phase. The constants a
and b now have the following values:

amn,1 =
1

2

(
M̂yn + M̂zn

)(
1− e−nktm

)
e−

nktc
2 e−nkg bmn,1 = amn,1

acni,1 = −1

2
e−

nktc
2 bcni,1 = acni,1

amn,2 = am,1 bmn,2 = amn,1

acni,2 = 0 bcni,2 = bcni,4

amn,3 = −1

2

(
M̂yn + M̂zn

)
e−

nktc
2 e−nkg e−nktm

bmn,3 = −1

2

(
M̂yn e−nktm −M̂zn

(
1− e−nktm

))
e−

nktc
2 e−nkg

acni,3 = 0 bcni,3 = bcni,4

amn,4 = 0 bmn,4 =
1

2

(
M̂yn sinh (nktm) + M̂zn

(
1− cosh (nktm)

))
e−

nktc
2 e−nkg

acni,4 = 0 bcni,4 = − sinh

(
nktc

2

)
. (3.24)

To calculate the force produced by the motor, one could compute the Maxwell stress
tensor for the total field, using many harmonics. However, only those field harmonics
produced by the magnets and coils that line up in phase actually contribute to the
spatially-averaged shear stress, and the strengths of the higher harmonics of field decay
rapidly away from their sources. Furthermore, only the fundamental of the current
density is commanded to be in phase with the magnetization; the higher harmonics
can move in and out of phase as the coil moves. Thus, it is conventional to calculate
the force using only the first harmonics of the field; in this case, Equation 3.14a is
unchanged except for the substitution of Jcmd for J , and the total dimensionless force
f̂tot is given by

f̂tot =
Nφ

2π

(
M̂z1 + M̂y1

)
e−kg

(
1− e−ktc

)(
1− e−ktm

)
sin

(
πα

Nφ

)
. (3.25)

We are now able to calculate all of the performance parameters for a realistic motor
design. Combined with Equation 3.21 for the dimensionless power, we can define a
winding factor and a magnet-specific force parameter:

f̂ =
1

2

(
M̂z1 + M̂y1

)
e−kg

(
1− e−ktc

)(
1− e−ktm

)
, (3.26)
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Figure 3-3: The dimensionless force f̂ is plotted against the dimensionless dis-
placement kz0 for a block Halbach motor with the geometric parameters described
in the text. The force parameter varies by approximately ±1.5% over the stroke.

Kw =
Nφ

πα1/2
sin

(
πα

Nφ

)
. (3.27)

Using this approach, the details of the winding strategy can be almost completely
separated from the design of the magnet array, with the only design coupling appearing
in the expression for the mass parameter. If α < 1, the mass parameter must be
adjusted accordingly, depending on what is to be done with the empty space.

We will optimize the geometry of this motor in Section 3.7.1, but for the moment
consider a motor with α = 1, δy = δz = 1/2, Nφ = 6, ktc = 0.89, kg = 0.01, and
ktm = 1.7. The differences between the ideal Halbach motor and the block Halbach
motor with windings are reflected in the f̂ parameter and in the winding factor; the
ideal Halbach motor with this geometry has f̂ = 0.477, while the block Halbach
motor has f̂Kw = 0.410. Figure 3-3 compares the dimensionless force estimated using
Equation 3.26 for this particular motor to that obtained using 99 harmonics of the fields,
over one-sixth of the stroke. As can be seen, the first-harmonic estimate represents
the average force, and the higher harmonics appear as ripple. This configuration has
a a small amount of ripple, but it can be almost eliminated by adjusting δy and δz at
the expense of a reduction in average dimensionless force; specifically, the ripple drops
to under 0.1% for δy = 0.347 and δz = 0.653.
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Figure 3-4: This layered winding arrangment allows each phase to be wound
continuously within the coil, without external connecting leads. There are three
phases labeled A, B, and C, and the primed windings have current flowing in the
opposite direction from the unprimed windings. (Phase C lies on the opposite side
of the center line, and is not shown here.) Layers A and C have thickness tA, while
layer B has a thickness of tB.

Layered Coil Windings

The winding structure depicted in Figure 3-2 is only one possible structure; alterna-
tively, the different phases could be arranged to each occupy a layer of the coil in
the y-direction, as shown in Figure 3-4. This arrangement is much easier to manu-
facture [23], but will require a slightly different analysis to model. Significantly, note
that the y-direction magnetic field varies as cosh (nky), so the different layers will not
see equal magnetic fields, unlike the situation seen with concentrated windings. This
means that, even using just the first harmonic of the field to calculate force, there
must be ripple in either the force (if the layers have equal thicknesses) or the power (if
the layer thicknesses are chosen to eliminate force ripple). For analytical convenience,
we will choose the layer thicknesses for equal force production.

Let us consider a three-phase motor, with layer thicknesses tA and tB, and layer C
equal in thickness to layer A. To enforce equal force production, the field integrated
over each layer must be one-third of the field integrated over the total coil thickness.
Thus, we can determine the thickness of the central layer, then find the outer layer
thickness from the remainder of the total coil thickness. We have

1

3

∫ tc/2

−tc/2
B · ŷ dy =

∫ tB/2

−tB/2
B · ŷ dy

= 4Bremamn,1 cos (kz)

∫ tB/2

0

cosh (ky)

=
4Bremamn,1

k
cos (kz) sinh

(
ktB
2

)
, (3.28a)
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and comparing the integrals leads to the result

1

3
sinh

(
ktc
2

)
= sinh

(
ktB
2

)
;

ktB = 2 sinh−1

(
1

3
sinh

(
ktc
2

))
. (3.28b)

For our model geomtetry, with ktc = 0.89, the resulting center layer thickness is
ktB = 0.30, and thus ktA = 0.29. The difference is small here, but can be more
substantial if the coil is thicker.

With the layer thicknesses thus chosen, we can calculate the force as though the
current were uniform through the thickness, then divide by the number of phases.
The current density harmonics are given by

Jni =
2Ji
nπ

sin

(
nπα

2

)
, (3.29)

with the notation as before, and the commutation pattern is identical. The dimen-
sionless power is thus given by

P̂ = α

(
ktA cos2 (kz0) + ktB cos2

(
kz0 +

2π

3

)
+ ktA cos2

(
kz0 +

4π

3

))
, (3.30)

which has the expression given by Equation 3.21 as its average value over z0. Finally,
this implies an average winding factor

Kw =
2

πα1/2
sin

(
πα

2

)
. (3.31)

3.3.3 Block Halbach with Back-Iron

Halbach motors are relatively uncommon, due to challenges that can arise in their
assembly and to their relatively high usage of historically expensive permanent magnets.
(In smaller motors and under the economic conditions of the past decade, the cost
of magnets has been far less significant.) More often, simple magnets directed in the
ŷ-direction are used, mounted on an iron sheet (referred to as back-iron) to complete
the flux path. To maintain generality, we will consider a motor of the structure shown
in Figure 3-5, with an iron layer supporting a Halbach array.

As was discussed in Section 3.2, iron is a highly nonlinear material, and approxi-
mations are required to model magnetic fields when it is present. The most common
approximation is to assume that the iron simply has infinite permeability [43], and
recognize that the H-field must be entirely perpendicular to the boundary of infinite-
permeability regions. However, we are left with the question of how thick the iron
must be made to avoid deleterious saturation effects, especially in weight-sensitive
and space-sensitive applications. Alternatively, we can include the iron as a layer of
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Figure 3-5: A schematic of a flat iron-backed block Halbach motor, with the coil
in orange, iron in dark gray, and magnets in light gray. The motor is assumed to
be symmetric, and the mid-plane is located at y = 0. The conductor extends to
y = yc = tc/2, where tc is the conductor thickness, and the magnets range from
y = ymi = tc/2 + g to y = ymo = tc/2 + g + tm, where g is defined to be the air
gap thickness and tm is the magnet thickness. The iron extends from y = ymo to
y = yfo = tc/2 + g + tm + tf , where tf is the iron thickness. The magnet array has
four blocks per period p, and the winding has three phases.

finite permeability in the motor, and approximate its permeability as constant. In
this case, we will have to solve iteratively, finding the field in the iron, determining
the appropriate permeability, and re-solving until convergence is achieved. In a more
discretized sense, this is also the approach followed by finite element and boundary
element methods. We will consider both approaches here; the latter approach appears
not to have been reported in conjunction with Fourier analysis in the modern linear
motor literature, despite lying at the heart of finite element approaches to magnetic
field modeling [32].

Infinite Permeability

If we assume the iron to be infinitely permeable, we can solve for the field in just
regions 1 to 3. The boundary conditions at y = ymo become

bcni,3 = acni,3 e2nkymo , (3.32a)

bmn,3 = amn,3 e2nkymo +BremM̂zn enkymo , (3.32b)

and the constants can be solved for in the usual manner. The results are as follows:

amn,1 =
1

2

[
M̂yn

sinh (nktm)

sinh (nkymo)
+ M̂zn

cosh (nktm)− 1

sinh (nkymo)

]
bmn,1 = amn,1

acni,1 = − 1

2

sinh (nkg + nktm)

sinh (nkymo)
bcni,1 = acni,1

amn,2 = amn,1 bmn,2 = amn,1
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acni,2 = acni,3 bcni,2 = bcni,3

amn,3 = −1

2

[
M̂yn e−nkymo

sinh (nkymi)

sinh (nkymo)
+ M̂zn

1− e−nkymo cosh (nkymi)

sinh (nkymo)

]

bmn,3 = −1

2

[
M̂yn enkymo

sinh (nkymi)

sinh (nkymo)
+ M̂zn

1− enkymo cosh (nkymi)

sinh (nkymo)

]

acni,3 =
1

2
e−nkymo

sinh
(
nktc

2

)
sinh (nkymo)

bcni,3 =
1

2
enkymo

sinh
(
nktc

2

)
sinh (nkymo)

. (3.33)

The first-harmonic dimensionless force (with winding effects excluded) for this config-
uration is thus

f̂ = sinh

(
ktc
2

)[
M̂y1

sinh (ktm)

sinh (kymo)
+ M̂z1

cosh (ktm)− 1

sinh (kymo)

]
. (3.34)

This expression is a bit more complicated than that encountered in the ironless motors.
The ẑ-directed magnets are relatively ineffective when the magnets are thin, since it
is actually easier for the flux produced to simply pass through the back-iron than to
cross the air gap and interact with the coil.

Using the same geometric parameters as in Section 3.3.2, we find the dimensionless
force to be f̂ = 0.416. If the axial magnets are omitted to make a “conventional”
magnet array, we can calculate the force parameter by simply setting δz = 0. If the
Halbach array is replaced by just ŷ-directed magnets, with δy = 1, we find f̂ = 0.348.

Our work is not done, however—we need to determine the mass of the iron in the
motor to calculate m̂. This is a step not often taken in the linear motor literature; the
closest thing appears to be the tactic employed by Wang et al. [100] of calculating the
flux density in the iron adding a fictitious airgap based on the iron’s B-H curve. We
will instead employ a more direct method, based on an assumed value of saturation
flux density Bsat in the iron; the iron thickness tf will be set to limit the maximum
flux density in the iron to Bsat. In doing so, we also assume that the B-field in the
iron is uniform across the thickness. While less accurate than using the B-H curve,
we can employ that data more directly in the finite-permeability analysis.

To determine the iron thickness, then, we must determine the total flux through
the iron and divide by the saturation flux density. For simplicity, we will neglect the
field produced by the current in the motor. From the periodicity of the motor, we can
identify that the flux through the iron at kz = 0 must be zero. The maximum flux,
then, would occur at kz = π/2. By continuity, the flux Φ is given by the following
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integral:

Φ (z) =

∫ z

0

B
(
z′
)
· ŷdz′

= Brem

∞∑
n=1

[
M̂yn

sinh (nkymo)− sinh (nkymi)

nk sinh (nkymo)
+

M̂zn
cosh (nkymo)− cosh (nkymi)

nk sinh (nkymo)

]
sin (nkz) . (3.35)

Note the additional factor of 1/n in the sum—the flux integral converges rapidly, and
it will be possible to use relatively few terms to calculate it. If we assume the iron
layer is to have a uniform thickness, based on just reaching Bsat at the maximum flux
point, then we can determine the dimensionless thickness ktf as follows:

ktf =
kΦ
(
π/2k

)
Bsat

=
Brem

Bsat

∞∑
n=1

[
M̂yn

sinh (nkymo)− sinh (nkymi)

n sinh (nkymo)
+

M̂zn
cosh (nkymo)− cosh (nkymi)

n sinh (nkymo)

]
(−1)(n−1)/2 . (3.36)

Finally, the dimensionless mass m̂ is given by

m̂ = ktc + 2
ρm
ρc

(
δy + δz

)
ktm + 2

ρf
ρc
ktf , (3.37)

where ρf is the density of the iron.

We can now calculate the dimensionless motor constant for an iron-backed motor;
assuming a value of Bsat = 2 T, we find that ε̂ = 0.262, a much lower value than for
the pure Halbach motor, which has ε̂ = 0.316. If the iron were massless, we would
have ε̂ = 0.320, so the mass of the iron has a strong effect on the overall performance.
Using only the first harmonic of the field in the iron thickness calculation very slightly
overestimates the required mass, giving ε̂ = 0.261; for rapid calculation purposes, the
first harmonic alone should suffice.

Of course, the introduction of iron changes the optimal motor geometry, so the
reduction in performance seen here is not necessarily representative of the best motors.
In Section 3.7.1 we will calculate optimized geometries to allow for a fair comparison.
This calculation method also relies heavily on the choice of the effective saturation
flux density; next, we will explore a finite-permeability calculation that does away
with the need to specify saturation flux, at the expense of computer time.
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Finite Permeability

The field equations are readily solved if the iron is assumed to have a finite, linearized
relative permeability µ, though we now must account for all five regions. In this case,
the field coefficients do not have simple expressions, and are given in Appendix A.1.
Unfortunately, these expressions suffer from loss of precision due to cancellation error,
and are difficult to re-write to avoid the error. Nonetheless, they are easily calculated
numerically for low harmonic orders.

We are left with the problem of determining the appropriate value of permeability
to use with the model. We can find the maximum field in the iron Bmax, which will
often appear in the same location as in the infinite-permeability case. When a Halbach
array lies directly against an iron surface, the peak field will instead appear at the
corners of the magnets, but be far more localized. We account for this by checking
the field at the outer surface of the iron, but the corner of the magnet, and at the
inner surface of the iron, at kz = π/2, then using the higher of the two values of field.

The field magnitude is used to find a new linearized permeability from the B-H
curve of the iron, and the process is then repeated until convergence is achieved.
(Note that the correct permeability is not given by the derivative of the B-H curve,
but rather by dividing B by µ0H.) We re-used the MATLAB implementation of
Brent’s method [101] to perform the permeability iterations, with slight modifications.
Convergence is rapid, typically taking fewer than ten iterations.

We will refrain from comparing this requation to the infinite permeability solution
or to FEA here, and instead discuss the merits of the two methods when applied to
the more analytically challenging tubular configurations.

3.3.4 Demagnetization

We can now also derive the constraint imposed by avoidance of magnet demagnetization.
Permanent magnets may be damaged if they are exposed to H fields of magnitude
greater than Hci, the intrinsic coercivity of the magnet. Anisotropic magnets, like
sintered NdFeB, are only harmed by the component of H fields directly opposed to
their magnetization, while isotropic magnets can be damaged by any H field not
directly aligned with their magnetization.

For simplicity, we consider the demagnetization constraint for the ideal Halbach
motor, with isotropic magnets:

|H| < Hci. (3.38)
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Using Equations 3.10 and 3.12, we can find the magnitude of the H-field:

|µ0H|2 =

[
Brem

(
am,3 eky +bm,3 e−ky

)
cos (kz)− µ0J

k
bc,4 e−ky sin (kz)

]2

+[
Brem

(
am,3 eky−bm,3 e−ky−1

)
sin (kz) +

µ0J

k
bc,4 e−ky cos (kz)

]2

= B2
rem

[(
am,3 eky +bm,3 e−ky

)
cos (kz)− Ĵbc,4 e−ky sin (kz)

]2

+

B2
rem

[(
am,3 eky−bm,3 e−ky−1

)
sin (kz) + Ĵbc,4 e−ky cos (kz)

]2

,

(3.39a)

Ĵ ≡ µ0J

kBrem

, (3.39b)

where a dimensionless current density Ĵ has been defined. It would be possible
to analytically find the maximum value of the demagnetizing field, but the result
is a transcendental equation and it is expedient to just numerically evaluate the
demagnetization constraint throughout the magnet region instead. For a given set of
dimensionless geometry ktc, kg, and ktm, and material properties, the constraint in
Equation 3.38 will dictate a maximum value for Ĵ , Ĵmax, with J = kBremĴmax/µ0 ∝
p−1. This scaling is identical to that demanded by thermal conduction resistance.

For anisotropic magnets, the demagnetization constraint instead takes the following
form:

− H ·M
|M |

< Hci. (3.40)

This expression is more difficult to work with analytically, but is also easy to evaluate
numerically; the scaling behavior is similar to that seen in the isotropic case. In
block Halbach arrays, the strongest demagnetizing fields appear near the corners of
the magnets, and the field needs to be calculated to high harmonic order to obtain
accurate results. In small motors, the dependence on k and the orthogonality of the
magnet-induced field and the current-induced field lead to Ĵ only having a weak effect
on the demagnetizing field; instead, the demagnetizing field can be used to estimate
the motor’s temperature limit, as Hci has a strong negative temperature dependence
in rare-earth magnets.

Figure 3-6 illustrates the demagnetizing field in a block Halbach array with back-
iron. The field obtained via direct summation of the Fourier series is shown on
the left, and exhibits a major limitation of Fourier series approaches: the Gibbs
phenomenon [102]. This causes the fields to be over-estimated at the edge of the
magnets, precisely where we need to evaluate them for demagnetization! While
this problem is not addressed in the motor literature (Gysen et al. [81] show some
particularly egregious examples), there are a number of techniques available for
smoothing Fourier series convergence.

Here, we have employed Lanczos’ sigma-factors [102] to smooth convergence. Each
term of the Fourier series is multiplied by a factor σn that depends on the total number
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Figure 3-6: The demagnetizing field in a Halbach motor with back-iron but no
current flow (δy = δz = 1/2, ktc = 0.89, kg = 0.01, and ktm = 1.7) field harmonics
is shown in both images. The left and right of each plot contain vertical magnets,
while the center contains a z-directed magnet. On the left, the field has been
computed from direct summation of the Fourier series with 49 harmonics, and
significant ringing is visible in the z magnet. On the right, the field has been
computed using Lanczos’ sigma factors and 99 harmonics, and the oscillations have
been nearly eliminated.

of harmonics to be used Nh:

σn =
Nh + 1

n
sin

(
n

Nh + 1

)
. (3.41)

The effect is to reduce the Gibbs phenomenon by an order of magnitude, but to
also reduce the spatial resolution by about a factor of two. The reduction in peak
demagnetizing field seen in Figure 3-6 when using the sigma factors stems from the
loss of spatial resolution; doubling the number of harmonics restores the resolution
and yields the same peak. The strongest demagnetizing field in this array is present
in the corners of the vertical magnets, and is not significantly affected by the Gibbs
phenomenon. However, the demagnetizing field in the axial magnets is afflicted with
the Gibbs phenomenon, and at equivalent spatial resolution the use of Lanczos’ sigma
factors reduces the apparent demagnetizing field by 10%.

3.3.5 Flux-Concentrating Magnets and Slotted Stators

The Fourier series approach used for the preceding analyses has an important limitation:
we cannot examine motors in which the iron permeability varies in the axial direction.
This prevents us from directly studying coils in slotted iron structures or magnet
arrays that use iron to concentrate their magnetic flux. While we did not develop
any new techniques in this area, Gysen et al. [81] wrote an excellent discussion of one
approach, that of using local Fourier series with different wavenumbers k to describe
the areas in these periodic iron arrays, then patching the Fourier series together on the
boundaries. This paper also reviews most of the techniques employed up to this point
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in our discussion; in Cartesian two-dimensional motor analysis, our main contribution
is the use of the sigma-approximation to evaluate the Fourier series, and the different
saturation strategies in iron.

For some situations, conformal mapping can yield simple analytical results; for
instance, F. W. Carter’s seminal analysis of the slotted stator [89, 90] continues in use
today. Most often, however, these structures are modeled using lumped-parameter
magnetic circuits. In Section 4.3, we will use such a basic magnetic circuit analysis to
examine a voice coil with a flux-concentrating magnet array.

3.3.6 End-Turns and Attraction Force

One major effect not accounted for in this analysis is that of the finite length and width
of the motor. It has been demonstrated [23,64] (and will be verified in Section 3.6)
that the finite size effects on the actual fields within linear permanent magnet motors
are very minor. More significant, however, can be the power lost in the portions of
the windings needed to complete the coils, the “end-turns”. Here we will consider a
simple model for the end-turns in a motor with concentrated windings, to motivate
the move to tubular motor configurations.

Neglecting the effects of turning the current flow around a corner, or of making
space for the end-turns of other phases, the minimum volume required for the end
turns on a single phase can be considered as a trapezoidal region connecting one region
to the next. Assuming there are an even number of coil groups, the end-turns for each
phase have an effective volume

Vet =
p2tc
2Nφ

. (3.42)

The total conductor volume, then, becomes

V =
L

p
·NφVet +WLtc (3.43)

= Ltc

(
W +

p

2

)
, (3.44)

where p is the pole pitch, and we can define an end-turn factor Ket,

Ket =

(
1 +

p

2W

)−1/2

, (3.45)

applied to the motor constant in the same manner as the winding factor Kw. To get
95% of the expected motor constant, we would require W ≥ 4.6p. In practice, a wide
variety of winding strategies are employed to further reduce the end-turn burden, and
most linear motors are wide and flat to minimize the end-turn factor.

A final effect, with important implications for the mechanical construction of the
motor, is the attractive force between the magnets on both sides of the coil. This can
be calculated using the normal stress term σyy of the Maxwell stress tensor at y = 0
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in the absence of applied current:

σyy =
∞∑

n odd

[
1

µ0

(B · ŷ)2 − 1

2µ0

B ·B
]

=
1

µ0

∞∑
n odd

a2
mn,1 cos2 (nkz) , (3.46)

〈
σyy
〉

=
1

2µ0

∞∑
n odd

a2
mn,1. (3.47)

For the model ironless block Halbach motor geometry that has been studied throughout
this section, the resulting attractive force amounts to 160 kPa. If the magnet array
were 25 mm wide, and 100 mm long, supported along one edge, the total force would
be 400 N, applying a bending moment of 5 N ·m to the support. If the support were
made of aluminum, and the mechanical air gap g, and thus the allowable deflection,
were 20µm, the support would have to be at least 4 mm thick; if the motor had a
pitch length of 12 mm, the motor itself would only be about 8 mm thick! The support
material needed to maintain the air gaps against magnetic attraction in a planar motor
can thus amount to a large fraction of the mass of the electromagnetic components.

3.4 Tubular Ironless Motors

Planar linear motors lose performance due to end-turns, and must be built robustly to
resist the attractive force between the magnets (in a double-sided motor) or between
the magnets and slotted stator (in a single-sided motor). An appealing strategy to
mitigate these effects is to wrap the magnetic structure into a cylindrical shape, with
ring magnets and circular coils.

3.4.1 General Field Solution

The tubular topology comes at an analytical cost, however, as the field equations
(Equations 3.4) must now be solved in cylindrical coordinates. The Poisson equation
can still be solved by separation of variables for the magnetic vector potential:

A =
∞∑
n=1

[
Amn(r) sin (nkz) + Acn(r) cos (nkz + φn)

]
θ̂, (3.48)

B = −

[
nkAmn cos (nkz)− nkAcn sin (nkz + φn)

]
r̂ +[(

Amn
r

+
∂Amn
∂r

)
sin (nkz) +

(
Acn
r

+
∂Acn
∂r

)
cos (nkz + φn)

]
ẑ.

(3.49)
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where φn is the phase offset of the nth current harmonic from the relevant radial
magnetization harmonic. The radial vector potential functions Amn and Acn are more
difficult to calculate and work with, however. The homogeneous solutions (i.e. in air)
are given by the well-known modified Bessel functions [97,103]:

Aother =
a

nk
I1(nkr) +

b

nk
K1(nkr) , (3.50)

where I0 and I1 refer to modified Bessel functions of the first kind and K0 and K1 refer
to modified Bessel functions of the second kind. The particular solutions to Poisson’s
equation in cylindrical coordinates, however, are not given by any named functions in
common use. Specifically, let us assume the following forms for the current density
and magnetization, for arbitrary current and block magnets:

J =
∞∑
n=1

[
Jn cos (nkz + φn)

]
θ̂, (3.51a)

M =
Brem

µ0

∞∑
n=1

[
M̂rn cos (nkz) r̂ + M̂zn sin (nkz) ẑ

]
, (3.51b)

M̂rn =
2

nπ
sin

(
nπδ

2

)(
(−1)n+1 + 1

)
, (3.51c)

M̂zn =
2

nπ
sin

(
nπδz

2

)(
(−1)n+1 + 1

)
, (3.51d)

where Jn is the amplitude of the nth current harmonic, M̂rn is the dimensionless radial
magnetization, and δ is the fractional width of the radial magnets, defined in the same
manner as in the planar motor. (Note that the magnetization only has odd harmonics.)
To determine the vector potential, we will need the curl of the magnetization:

∇×M = −Brem

µ0

∞∑
n=1

nkM̂rn sin (nkz) θ̂. (3.52)

Separation of variables applied to Poisson’s equation then yields inhomogeneous
differential equations of the following form:

∂2Ap
∂r

+
1

r

∂Ap
∂r
−
(
c2 +

1

r2

)
A (r) = d, (3.53)

where Ap is a function of the radial coordinate only and c and d are constants.

Specifically, c = nk, and d is the θ̂-component of the right-hand side of Poisson’s
equation.

Equation 3.53 is not a “standard” differential equation, despite being simply the
inhomogeneous form of the Bessel differential equation, and most literature discussions
of its solution either give a solution in terms of convolution integrals [51, 83, 97]
or use an approximation to the radial magnetization that yields a more tractable
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equation [52, 82]. We instead seek a solution that would be both exact and easy to
calculate numerically.

We initially used the Frobenius method [104] to solve for Ap, yielding as a particular
solution

Ap(r) = 2dr2

∞∑
m=0

(2cr)2mm! (m+ 1)!

(2m+ 1)! (2m+ 3)!
+ c1r

∞∑
m=0

(2cr)2m

22mm! (m+ 1)!
, (3.54)

where c1 is an arbitrary constant, and which converges for all positive, real values of
r. A bit of inspection identified the second series as simply the Taylor series for the
modified Bessel function of the first kind I1(cr), but the first series was considerably
more obscure. The Bessel function is also part of the homogeneous solution, and could
therefore be discarded from the particular solution, but we ultimately found it to be
very useful in achieving a numerically stable computation.

While we initially used this particular solution to derive field solutions, the Taylor
series expansion is difficult to use for large values of nkr. After further research, via
the identification of Equation 3.53 as a form of the Lommel differential equation [105]
and investigation of related functions, we identified the first series as belonging to the
modified Struve function [103,106]. The Struve functions have surprisingly little history
in electromagnetics, but have seen more uses in optics [107,108] and acoustics [109].
The modified Struve function was originally developed to describe integrals of modified
Bessel functions [110], and has seen little use in the solution of partial differential
equations. (After this work commenced, a handful of papers were published using the
modified Struve function in low-frequency electromagnetics, namely work by Wijono
et al. [53,84] and Yan et al. [50].) More importantly, there exist efficient numerical
techniques for the calculation of the modified Struve function, as described by Zhang
and Jin [111,112] and by MacLeod [113,114].

In terms of the modified Struve function of order ν, Lν(x), the particular solution
is given by

Ap(r) =
πd

2c2
L1(cr) + c1 I1(cr) . (3.55)

While it is common to set c1 = 0, examination of the magnetic field equations will
suggest an improved approach. Consider, for instance, the radial component of the
field in the coil, neglecting any contribution from magnets. This is given by

B · r̂ =
∞∑
n=1

µ0Jn
nk

(
−acn I1(nkr)− bcn K1(nkr) +

+
π

2
L1(nkr)− n2k2

µoJn
c1 I1(nkr)

)
sin (nkz + φn) . (3.56)

Here, we have not yet modified the arbitrary field constant c1 to make it dimensionless.
The modified Struve function and the modified Bessel function of the first kind
both grow asymptotically at the same rate [103], and we might anticipate a problem
subtracting them for large values of nkr. In fact, their difference approaches the
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constant value of 2/π, even as the individual functions grow exponentially! This
suggests that, if we choose the correct value for c1, the problem can be eliminated:

c1 ≡ −
πd

2c2
, (3.57)

Ap(r) = − πd
2c2

(
I1(cr)− L1(cr)

)
. (3.58)

For large values of r, Ap(r) will now approach d/c2, the same as the particular solution
encountered in the planar case (Equation 3.23), and no loss of precision during
calculations will be incurred. To give a specific example, explicitly calculating the
difference between functions begins to give a different result from the asymptotic
expansion of the difference [112] near nkr ≈ 20; by nkr ≈ 30, it differs by 0.0072%,
and by nkr ≈ 40, the explicit difference is zero using double-precision arithmetic.

Thus, we will formulate the field solutions in terms of auxillary functions

Λν(x) ≡ π

2

(
Iν(x)− Lν(x)

)
, (3.59)

which possess efficient series representations for all real values of the argument x.
The fields can thus be found as follows:

Bmagnet =
∞∑
n=1

[
Brem

(
amn I1(nkr) + bmn K1(nkr) + M̂rn Λ1(nkr)

)
r̂ cos (nkz) +

µ0Jn
nk

(
−acn I1(nkr)− bcn K1(nkr)

)
r̂ sin (nkz + φn) +

Brem

(
−amn I0(nkr) + bmn K0(nkr)− M̂rn Λ0(nkr)

)
ẑ sin (nkz) +

µ0Jn
nk

(
−acn I0(nkr) + bcn K0(nkr)

)
ẑ cos (nkz + φn)

]
,

(3.60a)

Bcoil =
∞∑
n=1

[
Brem

(
amn I1(nkr) + bmn K1(nkr)

)
r̂ cos (nkz) +

µ0Jn
nk

(
−acn I1(nkr)− bcn K1(nkr)− Λ1(nkr)

)
r̂ sin (nkz + φn) +

Brem

(
−amn I0(nkr) + bmn K0(nkr)

)
ẑ sin (nkz) +

µ0Jn
nk

(
−acn I0(nkr) + bcn K0(nkr)− Λ0(nkr)

)
ẑ cos (nkz + φn)

]
,

(3.60b)
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Bair, iron =
∞∑
n=1

[
Brem

(
amn I1(nkr) + bmn K1(nkr)

)
r̂ cos (nkz) +

µ0Jn
nk

(
−acn I1(nkr)− bcn K1(nkr)

)
r̂ sin (nkz + φn) +

Brem

(
−amn I0(nkr) + bmn K0(nkr)

)
ẑ sin (nkz) +

µ0Jn
nk

(
−acn I0(nkr) + bcn K0(nkr)

)
ẑ cos (nkz + φn)

]
.

(3.60c)

Here, acn, amn, bcn, and bmn are the dimensionless field constants, and depend on the
harmonic order. (The form of the field is the same in air and iron regions, so long as
the permeability has been linearized.) These solutions must then patched together
using appropriate boundary conditions for the magnetic field and the magnetizing
field to find values for the constants in each region, just as in the planar motor. The
solution process is greatly aided by an identity for the modified Bessel functions2:

I0(x) K1(x) + I1(x) K0(x) = x−1, (3.61)

where x is the arbitrary argument of the functions. This identity allows the boundary
conditions for the radial and axial fields to be used together.

To calculate the force produced by the motor, we can once again compute the
Maxwell stress tensor at the inner and outer surfaces of the coil region, and find
their spatial averages. However, we no longer have a symmetry plane in the center
of the coil, so we must multiply the shear stress at the inner and outer coil surfaces
by the appropriate circumferences and add the results to find the force per unit
length generated by the motor. As before, we can approximate the force production
as being done by only the first spatial harmonics of the current and magnetic field
distributions [46], greatly simplifying the calculation process.

3.4.2 Field Solution for Ironless Motors

The general configuration of an ironless tubular motor is shown in Figure 3-7. The
symmetry of the planar case has been removed by the change to tubular geometry, so
there are more regions of analysis and more geometric parameters to contend with.
To keep the field finite everywhere in space, we will require bmn,1 = bcn,1 = 0 and
amn,7 = acn,7 = 0. Thanks to the linearity of the materials, we can recognize that
there will only be three distinct sets of coil field parameters and five distinct sets of
magnet field parameters. The magnet arrays are described by four sets of harmonic
parameters, M̂rni and M̂zni for the inner magnet array and M̂rno and M̂zno for the
outer magnet array. Simpler configurations, with some of the magnets removed, can
be readily modeled by simply zeroing out the relevant magnetization parameters.

2This identity is not applied by one of the major research groups publishing on tubular linear
motors, e.g. [49].
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Figure 3-7: A schematic of a tubular, double-sided block Halbach motor. The
inner magnet array extends from rmi,i to rmi,o, the coil extends from rc,i to rc,o,
and the outer magnet array extends from rmi,i to rmi,o. The magnet array has four
blocks per period p, with relative radial magnet widths δri and δro and relative
axial magnet widths δzi and δzo in the inner and outer arrays, respectively.

After a great deal of algebraic manipulation, we can solve for all of the field
parameters. To simplify the solutions, we introduce the following additional auxillary
functions:

LI(x) ≡ x
(
Λ1(x) I0(x)− Λ0(x) I1(x)

)
, (3.62)

LK(x) ≡ x
(
Λ1(x) K0(x) + Λ0(x) K1(x)

)
, (3.63)

which appear repeatedly and are closely related to the integrals of the modified Bessel
functions [103]. These functions are numerically stable, and no additional tricks are
required to calculate them beyond those needed for the modified Struve functions.
The dimensionless coil parameters are given as follows:

acn,1 = acn,3 bcn,1 = 0

acn,2 = acn,3 bcn,2 = 0

acn,3 = LK

(
nkrc,i

)
− LK

(
nkrc,o

)
bcn,3 = 0

acn,4 = − LK

(
nkrc,o

)
bcn,4 = − LI

(
nkrc,i

)
acn,5 = 0 bcn,5 = LI

(
nkrc,o

)
− LI

(
nkrc,i

)
acn,6 = 0 bcn,6 = bcn,5

acn,7 = 0 bcn,7 = bcn,5. (3.64)

The dimensionless magnet parameters are slightly more complex, due to the four
unique magnetization harmonic parameters:

amn,1 = amn,5 + M̂rni

(
LK

(
nkrmi,i

)
− LK

(
nkrmi,o

))
+

M̂zni

(
nkrmi,i K1

(
nkrmi,i

)
− nkrmi,o K1

(
nkrmi,o

))
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bmn,1 = 0

amn,2 = amn,5 − M̂rni LK

(
nkrmi,o

)
− M̂zninkrmi,o K1

(
nkrmi,o

)
bmn,2 = M̂rni LI(nkrmii) + M̂zninkrmi,i I1

(
nkrmi,i

)
amn,3 = amn,5

bmn,3 = M̂rni

(
LI

(
nkrmi,i

)
− LI

(
nkrmi,o

))
+

M̂zni

(
nkrmi,i I1

(
nkrmi,i

)
− nkrmi,o I1

(
nkrmi,o

))
amn,4 = amn,5

bmn,4 = bmn,3

amn,5 = M̂rno

(
LK

(
nkrmo,i

)
− LK

(
nkrmo,o

))
+

M̂zno

(
nkrmo,i K1

(
nkrmo,i

)
− nkrmo,o K1

(
nkrmo,o

))
bmn,5 = bmn,3

amn,6 = − M̂rno LK

(
nkrmo,o

)
− M̂znonkrmo,o K1

(
nkrmo,o

)
bmn,6 = bmn,3 + M̂rno LI

(
nkrmo,i

)
+ M̂znonkrmo,i I1

(
nkrmo,i

)
amn,7 = 0

bmn,7 = bmn,3 + M̂rno

(
LI

(
nkrmo,i

)
− LI

(
nkrmo,o

))
+

M̂zno

(
nkrmo,i I1

(
nkrmo,i

)
− nkrmo,o I1

(
nkrmo,o

))
.

(3.65)

Note that the inner and outer magnets are effectively independent, as expected.

With the field fully determined, we can compute the Maxwell stress tensor and
determine the force. After performing the algebra, we find

F =
BremJ1L

k2
f̂ , (3.66a)

f̂ ≡ π
(
ac1,3bm1,5 + am1,3bc1,5

)
, (3.66b)

where L is the overall length of the motor, J1 is the first harmonic of the current density,
and we have used only the first harmonic of the field. The remaining dimensionless
parameters are given by Equations 2.28b and 2.29b, and the winding factor Kw is
unchanged by the move to a tubular configuration. Thus, we now have everything
necessary to calculate the dimensionless motor constant ε̂ for tubular ironless motors.

3.4.3 Finite Element Validation

In order to check the accuracy of our analytical solution for the motor magnetic
fields, we performed finite element analysis (FEA) using ANSYS, with a magnet
remanence of 1.47 T and magnet relative permeability of µ = 1.05. We considered two
different geometries: a motor with only inner magnets, with krmi,i = 0.86, krmi,o = 3.0,
krc,i = 3.03, krc,o = 3.87, δri = 0.41, and δzi = 0.59; and a full double-sided motor,
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Figure 3-8: A comparison of the radial magnetic flux density in the center of
the coil of the single-sided tubular motor depicted in Figure 3-9 between the
149-harmonic analytical model (solid line) and the FEA model (open circles) The
maximum deviation occurs near the peak of the flux waveform, where the analytical
solution is approximately 8% greater in magnitude than the FEA result.

with krmi,i = 0, krmi,o = 2.5, krc,i = 2.52, krc,o = 2.77, krmo,i = 2.8, krmo,o = 3.79,
δri = 0.365, δzi = 0.635, δro = 0.545, and δzo = 0.455. Both motors were analyzed
with no current applied, and were specified with a pitch length of p = 10 mm.

Contour plots of the radial magnetic flux density in the single-sided motor are
shown in Figure 3-9, for both the analytical model of Equations 3.60 using Lanczos’
sigma-factors and the FEA model. These plots show good qualitative agreement,
primarily differing due to the lower spatial resolution of the analytical model. More
quantitatively, Figure 3-8 shows a comparison of the radial flux density in the middle
of the air gap between the analytical and FEA models, with approximately 8%
discrepancy. This difference can be explained primarily by the non-unity relative
permeability of the magnets in the FEA model.

The double-sided motor is similarly characterized in Figures 3-10 and 3-11. In
this case, the analytical model actually matches the finite element result more closely
than for the single-sided motor; we suspect this is due to the more enclosed flux path,
and corresponding reduction of the influence of magnet permeability. The air-gap
flux density agrees to within 2%, with the discrepancy appearing at the peaks of the
waveform. We also computed the force for this motor geometry using a square wave
of current (akin to having Nφ = 2); the analytical model and FEA agreed within 3%.
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Figure 3-9: A plot of the radial magnetic flux density for a single-sided ironless
tubular motor (krmi,i = 0.86, krmi,o = 3.0, krc,i = 3.03, krc,o = 3.87, δri = 0.41,
and δzi = 0.59) as computed using ANSYS finite element software (right) and
using the analytical model of Equations 3.60 with 149 harmonics (left). Qualitative
agreement between the analytical and numerical flux plots is excellent, primarily
differing in the sharpness of the boundaries between radial and axial magnets.
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Figure 3-10: A comparison of the radial magnetic flux density in the center of
the air gap of the double-sided ironless tubular motor depicted in Figures 3-7 and
3-11 between the 149-harmonic analytical model (solid line) and the FEA model
(open circles) The maximum deviation occurs near the corners of the flux waveform,
where the analytical solution is approximately 2% greater in magnitude than the
FEA result.
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Figure 3-11: A plot of the radial magnetic flux density for a double-sided ironless
tubular motor (krmi,i = 0, krmi,o = 2.5, krc,i = 2.52, krc,o = 2.77, krmo,i = 2.8,
krmo,o = 3.79, δri = 0.365, δzi = 0.635, δro = 0.545, and δzo = 0.455) as computed
using ANSYS finite element software (right) and using the analytical model of
Equations 3.60 with 149 harmonics (left). Regions of flux density greater than 2 T
have been removed from the plots, and are shown in gray. Qualitative agreement
between the analytical and numerical flux plots is excellent, primarily differing in
the sharpness of the boundaries between radial and axial magnets.
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Figure 3-12: The motor constant is plotted for a motor with ktc = 0.87, kg = 0.01,
ktm = 1.7, and δy = δz = 0.5 that has been formed into a tube, as a function of
the dimensionless mean coil radius krm. For mean coil radii that would require a
negative radius for the inside of the inner magnets, that radius is instead set to
zero. A double-sided motor is indicated by the solid line, a motor with only inner
magnets is indicated by the dotted line, and a motor with only outer magnets is
shown with a dashed line. The performance of the double-sided motor remains
within 1% of the planar performance for dimensionless radii above approximately
8; a motor with only inner magnets sees maximum performance at a dimensionless
radius of 12.7, though this is only 0.3% better than the planar performance.

3.4.4 Performance and Radial Scaling

While we will derive optimized geometries for ironless tubular motors in Section 3.7.1,
we can still examine their performance, and the influence of the radial scale, based on
the geometry of the model planar motor. Figure 3-12 shows the dimensionless motor
constants of tubular motors over several orders of magnitude of radial scaling.3 The
plot was generated by taking the geometry of our model planar motor (ktc = 0.87,
kg = 0.01, ktm = 1.7, and δy = δz = 0.5) and forming it into a tubular shape, with
mean coil radius rm = 0.5rc,i + 0.5rc,o.

The performance of the double-sided motor remains very close to the planar
performance, only dropping by 1% at krm = 7.8, and 5% at krm = 3.6. Compared to
the end-turn loss in a planar motor, this corresponds to a width of W = 3.6p, so we
are able to use a “narrower” motor to achieve the same performance. As the loss of
field to edge-effects was not considered in that calculation, the benefits are even more

3Note that this plot is impossible to construct using the models extant in the literature!

96



pronounced than this suggests. Furthermore, this geometry may not be the optimal
geometry at each value of the effective radius, and as we will see optimization can
move these performance thresholds to even tighter radii.

3.4.5 Radial Magnets

In practice, it is very difficult to fabricate high-performance radially-oriented rare
earth magnets. If the magnets are radially thick, fabrication becomes completely
impossible. Instead, radially-oriented magnet rings are produced by assembling a
number of ring segments, with each segment uniformly magnetized. These arrays are
no longer axisymmetric, and any circumferential magnetization does not contribute to
force production.

While the prospect of three-dimensional solution of the Poisson equation may seem
intimidating, the circumferential solutions are simple sinusoids [97]. Curiously, there
do not appear to be any analytical treatments of segmented, uniformly-magnetized
ring magnets prior to that by Meessen et al. in 2011 [115], contemporaneous with our
own work. The effect of segmentation is quite simple—the segmented ring can be
treated as a uniform, radially-magnetized ring with magnetization equal to the average
magnetization of the segmented array in the radial direction; the higher harmonics
in the circumferential direction cannot contribute to force production in the motor.
Mathematically speaking, we have

M̂ ′
rn = M̂rn

Nseg

π
sin

π

Nseg

, (3.67)

where Nseg is the number of (equal) segments in the ring and the primed version of the
magnetization includes the segmentation effect. A four-segment ring achieves about
90% of the strength of an ideal radially-magnetized ring, and six segments bring the
performance to 95%. In Halbach arrays, the loss of performance is less severe, as
segmentation does not have any noticeable effect on axially-oriented ring magnets.

This approach can also be used to account for segmented rings with gaps between
segments, although for any reasonable number of segments the effect is extremely
similar to a simple reduction in magnetization by a factor of the missing area fraction.
In ironless structures, the circumferential field has no influence on motor performance,
and Equation 3.67 is all that is necessary to exactly account for segmentation. In
motors with back-iron, the circumferential field may contribute slightly to satuation
of the iron, but any effect should be small as the circumferential field has no effect
when averaged over the entire motor.

3.5 Tubular Motors with Back-Iron

As in the planar case, we can solve for the properties of an iron-bearing tubular
motor by assuming an infinite permeability, and setting the iron thickness to achieve a
target peak flux density, or by assuming a constant, finite linearized permeability and
iterating on the nonlinear B-H curve of the iron. The first approach is computationally
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Figure 3-13: A schematic of a tubular, double-sided block Halbach motor with
back-iron layers. The inner magnet array extends from rmi,i to rmi,o, the coil
extends from rc,i to rc,o, and the outer magnet array extends from rmi,i to rmi,o.
The iron layers (if present) extend from rfi,i to rmi,i and from rmo,o to rfo,o. The
magnet array has four blocks per period p, with relative radial magnet widths δri
and δro and relative axial magnet widths δzi and δzo in the inner and outer arrays,
respectively.

easier, but relies on the setting of an arbitrary flux density target, while the second is
much more expensive to calculate but potentially more accurate. We will present the
results obtained with both approaches here, and compare to finite element results.

Due to the loss of symmetry in cylindrical coordinates, there are now three distinct
iron-bearing motor configurations to consider. There can be iron outside the coil, iron
inside the coil, or iron on both sides. (We considered only iron on both sides for the
planar case, though a single-sided motor with iron behind the magnets and a coreless
winding would have required a different field solution.) The general configuration is
shown in Figure 3-13; if one of the iron layers is missing, that region number will be
omitted from the list of field parameters, but the layer beyond will be included.

3.5.1 Infinite Permeability

If the iron permeability is assumed to be infinite, it is straightforward to solve the
field parameters subject to the new set of boundary conditions. In the case with iron
outside, omitting region 2, we find the following field parameters for the coil field:

acn,1 = acn,4 bcn,1 = 0

acn,3 = acn,4 bcn,3 = 0

acn,4 = acn,6 + LK

(
nkrc,i

)
− LK

(
nkrc,o

)
bcn,4 = 0

acn,5 = acn,6 − LK

(
nkrc,o

)
bcn,5 = − LI

(
nkrc,i

)
acn,6 = bcn,6

K0

(
nkrmo,o

)
I0

(
nkrmo,o

) bcn,6 = LI

(
nkrc,o

)
− LI

(
nkrc,i

)
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acn,7 = acn,6 bcn,7 = bcn,6. (3.68)

The dimensionless magnet parameters are then as follows:

amn,1 = amn,6 + M̂rni

(
LK

(
nkrmi,i

)
− LK

(
nkrmi,o

))
+

M̂zni

(
nkrmi,i K1

(
nkrmi,i

)
− nkrmi,o K1

(
nkrmi,o

))
bmn,1 = 0

amn,3 = amn,6 − M̂rni LK

(
nkrmi,o

)
− M̂zninkrmi,o K1

(
nkrmi,o

)
bmn,3 = − M̂rni LI

(
nkrmi,i

)
+ M̂zninkrmi,i I1

(
nkrmi,i

)
amn,4 = amn,6

bmn,4 = M̂rni

(
LI

(
nkrmi,o

)
− LI

(
nkrmi,i

))
−

M̂zni

(
nkrmi,o I1

(
nkrmi,o

)
− nkrmi,i I1

(
nkrmi,i

))
amn,5 = amn,6

bmn,5 = bmn,4

amn,6 = amn,7 + M̂rno LK

(
nkrmo,i

)
+ M̂znonkrmo,i K1

(
nkrmo,i

)
bmn,6 = bmn,4

amn,7 =
bmn,7 K0

(
nkrmo,o

)
− M̂rno Λ0

(
nkrmo,o

)
− M̂zno

I0

(
nkrmo,o

)
bmn,7 = bmn,4 − M̂rno LI

(
nkrmo,i

)
+ M̂znonkrmo,i I1

(
nkrmo,i

)
. (3.69)

While the parameters have not been written out explicitly, these expressions do not
suffer from cancellation and are numerically stable. The resulting dimensionless force
is given by

f̂ ≡ π
((
ac1,4 − ac1,6

)
bm1,6 + am1,4bc1,6

)
. (3.70)

This reduces to the same form as in Equation 3.66b, and physically speaking the coil
coefficients actually represent the result of integrating the magnet field over the coil,
rather than the field the coil produces. The dimensionless force and winding factor
are unchanged from the ironless motor.
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As we did in the planar case, we can use the total flux in the iron and the saturation
flux density to determine the iron thickness required. The flux integral is given as
follows:

Φ(z) = 2πrmo,o

∫ z

0

B
(
rmo,o, z

′) · r̂ dz′
= 2πrmo,oBrem

∞∑
n=1

[
bmn,7 + M̂rno LI

(
nkrmo,o

)
− M̂nzonkrmo,o I1

(
nkrmo,o

)
n2k2rmo,o I0

(
nkrmo,o

)
csc (nkz)

+

+ Ĵn
LI

(
nkrc,o

)
− LI

(
nkrc,i

)
n2k2rmo,o I0

(
nkrmo,o

) cos (nkz + φ)

]
, (3.71)

where for completeness we have included the effect of current and re-introduced the
dimensionless current,

Ĵn ≡
µ0Jn
nkBrem

. (3.72)

The iron thickness can then be determined as follows:

k2r2
fo,o = k2r2

mo,o +
k2Φ

(
π/2k

)
πBsat

= k2r2
mo,o+

2Brem

Bsat

∞∑
n=1

[
bmn,7 + M̂rno LI

(
nkrmo,o

)
− M̂nzonkrmo,o I1

(
nkrmo,o

)
(−1)(n−1)/2 n2 I0

(
nkrmo,o

) +

+ Ĵn
LI

(
nkrc,o

)
− LI

(
nkrc,i

)
n2 I0

(
nkrmo,o

) cos

(
nπ

2
+ φ

)]
, (3.73)

where terms that would be imaginary (even harmonics for magnet part) should be
discarded. At high current loadings, the maximum flux will appear at a different
location, but to be conservative one could set φ = −π/2 so that the field produced by
the current reinforces that of the magnets. For brevity, we will define the dimensionless
flux in the outer iron

Φ̂o ≡
∞∑
n=1

[
bmn,7 + M̂rno LI

(
nkrmo,o

)
− M̂nzonkrmo,o I1

(
nkrmo,o

)
(−1)(n−1)/2 n2 I0

(
nkrmo,o

) +

+ Ĵn
LI

(
nkrc,o

)
− LI

(
nkrc,i

)
n2 I0

(
nkrmo,o

) cos

(
nπ

2
+ φ

)]
. (3.74)

Equipped with these relations, and accounting for all of the relevant effects, the
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dimensionless mass is given by

m̂ = π

(
xα +

ρi
ρc

(1− x) (1− α)

)((
krc,o

)2 −
(
krc,i

)2
)

+

+ π
ρm
ρc

((
krmo,o

)2 −
(
krmo,i

)2
+
(
krmi,o

)2 −
(
krmi,i

)2
)

+ 2
ρf
ρc

Brem

Bsat

Φ̂o, (3.75)

where ρf is the density of the iron, and the fill factor and coil width have been
accounted for. (Further accounting for the stroke-to-length ratio is trivial, but must
be done differently for each of the scenarios of Section 2.6.3.)

A motor with interior iron can be analyzed in the same manner, with regions 1, 2,
and 8 excluded from the analysis. The magnets produce a field with the following
coefficients:

amn,3 = amn,6 − M̂rni LK

(
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(
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(
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(
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(3.76)

The coil, in turn, generates a field described by these coefficients:

acn,3 = acn,4 bcn,3 = acn,4
I0

(
nkrmi,i

)
K0

(
nkrmi,i

)
acn,4 = LK

(
nkrc,i

)
− LK

(
nkrc,o

)
bcn,4 = bcn,3

acn,5 = −LK

(
nkrc,o

)
bcn,5 = bcn,3 − LI

(
nkrc,i

)
acn,6 = 0 bcn,6 = bcn,3 + LI

(
nkrc,o

)
− LI

(
nkrc,i

)
acn,7 = 0 bcn,7 = bcn,6
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acn,9 = 0 bcn,9 = bcn,6, (3.77)

and the dimensionless force is given by

f̂ ≡ π
(
ac1,4bm1,6 + am1,4

(
bc1,6 − bc1,4

))
. (3.78)

Once again, the coil coefficients and form of the dimensionless force relation from
the ironless case (Equation 3.66b) could be used here as well. We must derive a new
dimensionless flux to cover this case, as the form of the equation is slightly different
for interior iron:

Φ̂i ≡
∞∑
n=1

[
amn,3 + M̂rni LK

(
nkrmi,i

)
− M̂nzinkrmi,i K1

(
nkrmi,i

)
(−1)(n−1)/2 n2 K0

(
nkrmi,i

) +

+ Ĵn
LK

(
nkrc,i

)
− LK

(
nkrc,o

)
n2 K0

(
nkrmi,i

) cos

(
nπ

2
+ φ

)]
. (3.79)

Given this relation, the dimensionless mass can be easily calculated by simply sub-
stituting Φ̂i for Φ̂o in Equation 3.75. Note that, in this case, the current in the coil
contributes more strongly to the iron flux than in the motor with exterior iron. For
example, consider the first harmonic flux in a motor with krc,i = 2.52, krc,o = 2.77,
and either krmi,i = 2.5 or krmo,o = 2.8 (i.e. a 1% gap between coil and iron), and
ignore the contribution of magnets to the dimensionless flux. The structure with
inner iron would have Φ̂i = 0.66Ĵ1, while the structure with outer iron would have
Φ̂o = 0.46Ĵ1. The contributions become more equal as the iron interfaces are moved
away from the coil.

The field solutions are considerably more complex if both the inner and outer iron
layers are present; the coefficients are given in Appendix A.4. Rather than being able
to use the boundary conditions in sequence, starting from a point where the a or b
coefficient is zero, they must be solved simultaneously. The dimensionless force is now
given by

f̂ ≡ π
((
ac1,4 − ac1,6

)
bm1,6 + am1,4

(
bc1,6 − bc1,4

))
. (3.80)

The fluxes in the inner and outer iron are still given by Equations 3.79 and 3.74,
respectively, and the dimensionless mass can be trivially calculated with the inclusion
of both layers.

3.5.2 Finite Permeability

The finite-permeability solutions for the fields are given in the appendix, with interior
iron in Appendix A.2 and exterior iron in Appendix A.3. The introduction of bound-
aries between different layers of finite permeability greatly complicates the expressions
for the field coefficients, as the simplifying identity in Equation 3.61 becomes unavail-
able. Unlike the solution for the planar double-sided motor, these finite-permeability
solutions do not suffer from cancellation error and can be used to very high harmonic
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order, limited only by double precision overflow when calculating the Bessel functions.
While they may be complex, the solutions can easily be implemented in MATLAB or
other computing systems.

We do not provide a solution for a motor structure with both inner and outer
iron, both due to its high complexity and due to the difficulty in accounting for
saturation. Iterating on the nonlinear B-H curve in two different layers can be an
unstable process, as lowering the permeability in one layer can raise the flux passing
through the other layer. Careful algorithm development would be required to warrant
further investigation of such configurations, which were not within the scope of our
present work.

3.5.3 Finite Element Validation

To test our models for iron-bearing tubular motors, we chose to investigate motors
with iron outside, as this is the most common single-sided configuration made or
discussed in the literature. (Double-sided configurations were not used for comparison
testing due to the lack of a finite-permeability model.) We began with the geometry
investigated for the ironless model, with krmi,i = 0.86, krmi,o = 3.0, krc,i = 3.03,
krc,o = 3.87, δri = 0.41, and δzi = 0.59. We then added iron starting at krmo,o = 3.91.
For the infinite-permeability model, we used Bsat = 2 T, Bsat = 3 T and Bsat = 4 T,
ranging from a conservative choice to a choice that would guarantee saturation. The
model thus required krfo,o = 4.19, krfo,o = 4.10, and krfo,o = 4.05, respectively. All
three geometries were tested with the finite-permeability model to 100th harmonic
order and with ANSYS FEA, using the same nonlinear B-H curve [116] for 1018 steel,
given in Figure 3-14. For the finite element analyses, the coil was divided to form a
“single-phase” winding, with a current density of 106 A/m2 applied as a square wave in
phase with the field from the magnets.

Figure 3-15 shows the field in the middle of the coil region for the cases investigated.
The finite-permeability model closely matches the magnitude of the flux density given
by FEA closely, with permeabilities of µ = 83.2, µ = 23.2, and µ = 15.6 for the
three design fluxes, respectively. The analytical model predicts a slightly broader flux
distribution than the finite element model. We can also see that the 2 T case posesses
a flux waveform very close to that expected for a motor with infinite permeability.

We can also compare the force production estimates. There are two ways we can
interpret the finite element results: we can calculate an effective dimensionless force
(as per Equation 2.27) based on the first harmonic of the current distribution, with a
factor of 4/π to account for the square wave, or we can consider it as produced by
all harmonics. The first interpretation allows for comparison to analytical models for
the first-harmonic force generation, which is easiest to compute and represents the
average force over the stroke, while the second requires a more involved analytical
computation but represents the FEA situation more precisely. Both approaches are
presented in Table 3.1. Note that calculation of the force parameter due to higher
harmonics requires each term to be scaled by a factor of n−2.

On a first-harmonic basis, the results with our model are promising, with the
finite-permeability model consistently over-predicting the performance by about 4%.
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Figure 3-14: The permeability of iron used in our FEA and analytical analyses
is given by the solid black curve, as a function of flux density. This is a curve for
low-carbon 1018 steel, based on data from [116]. For comparison, the dotted curve
gives the permeability of vanadium permendur, the magnetic alloy with the highest
saturation flux density available.

More importantly, both our model and the FEA suggest that performance is best
when the iron is not quite saturated, as opposed to the infinite-permeability model
which blindly allows the flux density in the iron to be set at any level. The infinite-
permeability model is very close, however, when the iron is minimally saturated, as in
the 2 T design case. A motor with the same geometry, but no iron, is also included to
show that even heavily saturated iron is preferable to none at all. The discrepancy
between the FEA first-harmonic result and the model is most likely due to assuming
the FEA force to be entirely from the first harmonic.

The full-harmonic force results show even closer agreement between the model
and FEA. Calculating the force constant with the analytical model only requires
a handful of harmonics; only the first and third are required to calculate the force
constant to within 1% of the value found with 99 harmonics. Our model agrees with
FEA to within 1%, which is perhaps surprising given that we do not account for the
non-unity permeability of the magnets. (It would be possible to do so, but as seen here
accounting for magnet permeability offers little gain for a great deal of mathematical
pain.) This is likely because the two main residual errors act in opposite directions:
the magnet permeability acts to decrease the force in the FEA, while the spatially
nonuniform permeability acts to increase the force.
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Figure 3-15: The radial B-field is plotted for motors with krmi,i = 0.86, krmi,o =
3.0, krc,i = 3.03, krc,o = 3.87, krmo,i = krmo,o = 3.91, δri = 0.41, and δzi = 0.59,
with A) krfo,o = 4.19, B) krfo,o = 4.10, and C) krfo,o = 4.05. The dashed lines
represent the field in the absence of iron, the dotted lines show the field with
infinitely-permeable iron, the solid lines indicate the field according to the finite-
permeability model, and the circles show the field according to an ANSYS finite
element model. In all cases, the finite-permeability analytical solution shows close
agreement with the finite element analysis. In case A, the field is very close to that
with assumed infinite permeability.

3.6 Finite Length Effects

The Fourier series approach to magnetic field solution allows for a straightforward
accounting of finite length effects in motors. The result has been reported elsewhere,
such as by Golda et al. [64], but we can present it with somewhat more specificity.

A finite length (of Np pole pitches) can be accommodated for the motor by,
conceptually, multiplying the magnetization function by a rectangle function:

M ′′ = M rect

(
kz

2πNp

)
, (3.81)

where M ′′ is the finite-length magnetization and the rect function is equal to one for
values of its argument between -1/2 and 1/2 and is zero elsewhere. (This formulation
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Table 3.1: The performance predicted for our three iron-bearing motor geometries
is compared between the infinite-permeability analytical model (ε̂∞ and f̂∞), the
finite-permeability model (ε̂finite and f̂finite), and finite element analysis (ε̂FEA and
f̂FEA). The dimensionless motor constants ε̂ are determined based on the first
harmonic of current (FEA force is multiplied by π/4). The dimensionless forces are
based on all of the harmonics of the current square wave and the magnetic field.

Design Flux Density ε̂∞ ε̂finite ε̂FEA f̂∞ f̂finite f̂FEA

2 T 0.274 0.270 0.260 6.384 6.278 6.215
3 T 0.282 0.262 0.254 6.384 5.928 5.919
4 T 0.286 0.255 0.246 6.384 5.677 5.652
No Iron N/A 0.230 N/A N/A 4.880 N/A

assumes the motor is centered on a radial magnet; it can be centered on an axial
magnet simply by adding a factor of 1/4 to the argument of the rect function.)

This can be brought into the Fourier domain via the standard correspondence
between multiplication in the time domain and convolution in the frequency domain.
The result is that the magnetization is now given as follows:

M ′′ =
Brem

µ0

∞∑
n=1

[∫ ∞
−∞

[
M̂rn cos

(
|n+ j| kz

)
r̂ + M̂zn sin

(
|n+ j| kz

)
ẑ
] sin

(
jNpπ

)
jπ

dj

]
,

(3.82)
where j is effectively a continuous spatial frequency. This expression, despite now
containing an integral, can still be used as the input to solving the field equations.
Ultimately, the solutions for the field coefficients and fields are largely unchanged,
but n must be replaced by |n+ j| (except in the expressions for M̂rn and M̂zn). For
example, in air in the tubular motor, the B-field from magnets will now be given by

Bair =

Brem

∞∑
n=1

[∫ ∞
−∞

[(
amn I1

(
|n+ j| kr

)
+ bmn K1

(
|n+ j| kr

))
r̂ cos

(
|n+ j| kz

)
+

+
(
−amn I0

(
|n+ j| kr

)
+ bmn K0

(
|n+ j| kr

))
ẑ sin

(
|n+ j| kz

) ]sin
(
jNpπ

)
jπ

dj

]
.

(3.83)

This expression certainly appears to be complex, but the integrals are effectively
Fourier integrals, with good convergence properties for numerical integration.4 A small
amount of algebraic manipulation may be required to keep removable singularities
out of the region of integration. Alternatively, the integral can be approximated by
a finite sum, and the result calculated in the same manner as in the infinite motor.

4We were able to obtain an analytical expression for the field in a finite planar motor in terms of
the exponential integral function, but its numerical properties are vastly inferior to those of simple
numerical integration by quadrature.
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Figure 3-16: The dimensionless motor constant is plotted for a planar double-
sided Halbach motor with ktc = 0.89, kg = 0.01, ktm = 1.7, and δy = δz = 0.5, for
a wide range of motor lengths (in pole pitches). The coil is assumed to have the
same spatial extent as the magnet array. The dashed line indicates the performance
of an infinitely-long motor.

The force can be calculated from the field in the coil region, either using the Maxwell
stress tensor or by direct integration of the Lorentz force density. It is more expedient
to compute the force produced by integrating the Lorentz force over the volume of
the coil in this case, as we no longer have the orthogonality of discrete harmonics of
current and magnet fields to simplify the calculation.

We have done this calculation for the planar double-sided Halbach motor, and the
results for the dimensionless motor constant are given in Figure 3-16. If there are more
than two pole pitches present, the motor performance is within 95% of that of the
infinite motor; eight pole pitches gives 99% of the infinite-motor performance. Note,
however, that maximum performance in the finite motors is given for non-integral
numbers of pole pitches, with approximately 1/4 extra pitch; this corresponds to
having full-width transverse magnets on the ends, rather than half-width.

Now, in practice and as discussed in Section 2.6.3, the question of whether the
motor is overhung or underhung becomes more important than the variation in field
near the ends of the motor. If the motor is underhung, there will be a drop in
performance near the ends of travel, while if the motor is overhung there may be
extra performance due to fringing fields outside the ends of the magnet array. If the
magnet array and/or coil is longer than about two pole pitches, the end-effects should
be small compared to the effect of having inactive magnet or coil length.
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3.7 Summary and Discussion

We have established analytical magnetic field models for a wide variety of motor
configurations, which allow us to calculate most aspects of motor performance from first
principles. Our focus has been on the development of formulas for the dimensionless
motor parameters of Chapter 2, but the field models have broad applicability. In
cylindrical coordinates, our solutions are the first explicit analytical expressions for
the fields in linear motors that can be applied at large radii and high harmonic orders.
We also use a distinctive approach to modeling the fields in saturable iron structures,
with high accuracy and intuitive computation. The only type of motor structure our
approach cannot model is that incorporating periodic iron features, as found in slotted
stators. While such structures could be addressed by patching regions of different
periodicity, as described by Gysen et al. [81], or by interfacing with a magnetic circuit
model, we chose not to pursue them in our work.

3.7.1 Comparison of Topologies

We have derived and verified equations for the dimensionless motor constant in
three broad classes of tubular motor: ironless (Equation 3.66b), interior back-iron
(Equation 3.78), and exterior back-iron (Equation 3.70). With these relations, we
can begin to ask the question of what motor topology will offer the best performance
in a given application, and what the best choice of geometric parameters will be in
each case. The most obvious basis of comparison is based on the dimensionless motor
constant itself—how can we get the most force for a given input power and motor
mass? (Other criteria are considered in Chapter 4.)

Thanks to the relatively easy computation of ε̂, we can use it to perform geometric
optimization for each motor topology. Upon doing so, we immediately discover that
most motor topologies are most effective in the planar configuration; forming the
structure into a tubular motor degrades its performance even when optimized, as
we saw in Figure 3-12. As we would still like to use tubular motors, we performed
the optimization over a range of fixed mean coil radii rm. We also chose to fix the
physical air gaps adjacent to the coil, with kg = 0.01. The choice of parameterization
is important to successful optimization; we used the parameters of the planar motor
(ktc, ktm, ktf , and δ), but with distinct parameters describing inner and outer magnet
arrays.

We optimized the performance for twelve different possible topologies, based
on either desirable mechanical properties or the presence of local optima in the
solutions. For ironless motors, we examined motors with Halbach arrays inside the
coil, Halbach arrays outside the coil, Halbach arrays on both sides of the coil, and
motors with Halbach arrays outside but only axial magnets present inside, with
the radial magnets replaced by empty spaces. For motors with interior iron, we
examined motors with interior iron and exterior Halbach arrays, motors with interior
iron-backed radial magnets and exterior Halbach arrays, and motors with interior
iron-backed Halbach arrays and exterior Halbach arrays. For motors with exterior
iron, we analogously examined motors with interior Halbach arrays and exterior iron,
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Figure 3-17: The dimensionless motor constant ε̂ is plotted against the dimen-
sionless mean coil radius for eight different motor configurations: inner and outer
Halbach arrays (solid line), inner Halbach only (dashed line), outer Halbach only
(dot-dash line), inner axial magnets and outer Halbach (dotted line), inner Halbach
and outer iron (dots), inner Halbach with outer radial magnets and iron (diamonds),
inner iron and outer Halbach (stars), and inner iron and radial magnets with an
outer Halbach array (squares). In all cases, we have fixed kg = 0.01.

motors with interior Halbach arrays and exterior iron-backed radial magnets, and
motors with interior Halbach arrays and exterior iron-backed Halbach arrays. The
results of the optimizations, performed using the finite-permeability formulations
where applicable, are shown in Figure 3-17.

Of the topologies examined, the best performance by about a 10% margin is
offered by the ironless double-sided Halbach motor; the iron-backed Halbach arrays
are optimized into geometries that lack the iron layers. At small coil radii (krm < 2),
improved performance is offered by motors with interior iron; any interior magnet
array between the iron and coil is removed by the optimization process. Ironless
motors with single-sided magnet arrays offer much lower performance, and substituting
a pure axial array for the inner Halbach array still results in major performance loss
up to the point at which interior iron becomes preferable. The iron-bearing motors
show slightly erratic behavior at the largest radii, as the full set of harmonics in the
field calculation used to determine saturation cannot be calculated. Relatively little
deviation from the performance of the planar version of each motor is seen up to
krm ≈ 10, and the performance of the double-sided Halbach motor remains within 5%
of its planar value until krm ≈ 3.
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Figure 3-18: The relative permeability of the iron in the optimized motors of
Figure 3-17 is shown over the range of mean coil radii. The symbols are as given in
Figure 3-17. Motors with iron inside the coil transition from relatively unsaturated
operation to saturated operation at small radii.

To see whether the use of the finite-permeability model was necessary, with its
relatively expensive computation, we also examined the iron permeability in each iron-
bearing motor geometry, as shown in Figure 3-18. At all but the smallest radii, the iron
is operating relatively unsaturated, with the permeability corresponding to a field very
close to 2 T. At small radii, the iron starts to become more saturated, reaching about
2.2 T. (At krm = 1, the optimization completely removes the iron from the topology
with outer iron-backed radial magnets, yielding the very low effective permeability
shown in the figure.) Thus, it would be reasonable to use the infinite-permeability
model for optimization with a target flux density of 2 T.

If the performance at even relatively tight radii is so close to that of the planar
motor, do we even need the model in cylindrical coordinates? Figure 3-19 compares
the optimized double-sided Halbach motor to the planar motor wrapped around the
z-axis. The performance of the planar motor drops noticeably below krm = 10, but
does not suffer more than a 5% loss until krm ≈ 2.5. At smaller radii, as would
typically be seen in a voice coil design, the performance difference rapidly becomes
more significant.

The benefit of using the model in cylindrical coordinates becomes clearer when
we examine the actual optimum geometries, as shown in Figure 3-20. The optimal
magnet thickness deviates wildly from the planar values, especially close to the point
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Figure 3-19: The dimensionless motor constant ε̂ of the optimum double-sided
Halbach motor (solid line) is compared to that of a double sided Halbach motor using
the same magnet and coil thicknesses as a planar motor (dotted line). Optimization
of the geometry with respect to the mean coil radius becomes advantageous for
kr < 10; the red line gives the ratio of optimized performance to the performance
of the planar geometry.

at which the mean coil diameter equals the pole pitch (krm = π). At this radius, the
optimal inner magnets become solid cylinders rather than rings, and in the surrounding
transition region the optimal inner magnets are much thicker than the outer magnets.
As the performance does not deviate nearly as much as the geometry does at these
radii, the implication is that the optimum is extremely shallow—a wide variety of
geometries yield similar performance in this transition zone. Rather than slavishly
following the optimum geometry for the motor constant, then, we are free to enhance
other performance parameters or to follow other design constraints, and simply check
the resulting performance to ensure we are near the optimum.

3.7.2 Limits to Scaling

The modeling approach we have developed in Chapter 2 and in this chapter implicitly
assumes that all of the motor dimensions can be scaled with the pole pitch, and
otherwise be chosen arbitrarily. However, in reality manufacturing technology limits
scaling on the small end, and other constraints limit the arbitrary choice of dimensions.
For instance, the physical air gap must be chosen to prevent interference between
the coil and magnets, to allow for a coil former if desired, and to accommodate

111



10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

Dimensionless Coil Radius

D
im

e
n

s
io

n
le

s
s
 G

e
o

m
e

tr
y

t
c

t
m

δ

δ
i

δ
o

t
mo

t
mi

Figure 3-20: The dimensionless geometric parameters of the optimized double-
sided Halbach motor are given as a function of the dimensionless mean coil radius.
The optimum geometry changes dramatically at krm ≈ π, where the mean coil
diameter equals the pole pitch; below this point, the inner magnets become solid
disks rather than rings. The geometry of the planar motor is given by the dotted
lines; the inner magnet thickness in this case must drop at small radii when the
innermost radius becomes zero.

thermal expansion of the motor components. With a copper coil and typical operating
temperatures 100 ◦C above ambient, the linear thermal expansion of the coil could
approach 1%. NdFeB magnets, on the other hand, undergo very little thermal
expansion [66], and so the thermal expansion must be accommodated in the air gap.

In a tubular motor, the coil is wound into a complete circle, thus, the thermal
expansion does not act proportionally on the coil thickness, but instead on the radii
of the coil’s inner and outer surfaces. Thus, the physical air-gap g must scale with
the coil radius, not the pole pitch. Figure 3-21 gives the performance of the ironless
motor designs under this constraint, with the inner and outer air-gaps equal to 1% of
the radius. In this case, performance drops rapidly with dimensionless radius, and the
best performance is available from krm = 3 to krm = 7 in the double-sided Halbach
array motor.

The most significant limit to scaling, of course, is in miniaturization. If the magnets
require a 10µm coating to protect them from corrosion, for instance, 80µm of axial
length in each pole pitch of the magnet array will be inactive. At a pole pitch of
10 mm, this results in just a 0.6% drop in performance. At a pole pitch of 1 mm,
however, the performance penalty is now 6.5%. If one wished to shrink the dimensions
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Figure 3-21: The dimensionless motor constant ε̂ is plotted against dimensionless
mean coil radius for ironless motors when the physical air gap is required to be 1%
of the radius at which it appears. The motor topologies shown are inner and outer
Halbach arrays (solid line), inner Halbach only (dashed line), outer Halbach only
(dot-dash line), and inner axial magnets and outer Halbach (dotted line). In this
case, the best performance is seen at moderate radii.

even further, the performance loss is inversely proportional to pole pitch, and almost
all of the force produced by the motor is gone at a pole pitch of 100µm.

Similarly, if the physical air-gap g = 50µm, the performance loss with a 10 mm
pole pitch (kg = 0.03) is 3.1%. However, as illustrated in Figure 3-22, at a pole pitch
of 1 mm (kg = 0.31) the dimensionless motor constant is now just 73% of its value
in the absence of a gap. (Optimization is not able to get around the exponential
dependence on gap seen in Equation 3.14b.) Mitigating this effect requires very close
tolerances and formless coils for small pole pitches.
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Figure 3-22: The dimensionless motor constant ε̂ is plotted relative to its zero-gap
value for a range of dimensionless air-gaps kg, at a dimensionless mean coil radius
krm = 10. For reference, a 50µm air gap at a 10 mm pole pitch corresponds to
kg = 0.03.
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Chapter 4

Design Case Studies

With a modeling framework and an extensive set of analytical field solutions established,
we are prepared to explore the applications of the models. This chapter describes our
application approach, and explores in detail two applications for improved direct-drive
linear motors: operation of bioinspired flapping-wing flying machines, and needle-free
jet injection of vaccines and pharmaceuticals. Each application requires different
optimization approaches, and explores different strengths and weaknesses of our
modeling approach.

4.1 Application Approach

Our modeling framework, as described in Chapter 2, suggests a two-pronged approach
to the design process, as illustrated in Figure 4-1. The first stage in the design process
is to identify one or more sets of performance parameters to optimize. These might
include the motor constant, the maximum force under a performance constraint, the
maximum acceleration, the electrical or mechanical time constant, or any other desired
property. One should also identify the major specifications—is there a particular value
of mass, force, stroke, or power required? For instance, if we are designing a motor
to apply static forces for relatively long time periods, we might wish to optimize the
motor constant ε to minimize power consumption, or perhaps instead optimize the
thermally-limited maximum continuous force output, subject to a desired mass and a
desired force.

Next, we need to chose the topologies that will be considered for the motor; that is,
we have to choose the identities of the layers in the motor, be they Halbach, modified
Halbach, conventional transverse magnet arrays, or axial magnet arrays, with or
without iron. While any number of such topologies can be optimized and compared,
each is governed by a different set of equations, and some topologies can be excluded
based on the application needs. (For instance, those placing iron inside the coils will
have their peak force capabilities limited by saturation of that iron at high currents.)
Once this has been done, the design process can be handled in two largely independent
phases: optimizing the geometric ratios of magnet and coil features to improve the
dimensionless performance parameters, and choosing the overall feature size (pole
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Figure 4-1: The design process using our modeling approach is illustrated in
this flowchart. After choosing a set of performance properties to optimize for
the desired application, the designer can then choose whether to use a tabulated
magnet and coil geometry or to optimize the electromagnetics specifically for the
application. Then, the scaling laws can be used to determine the overall feature
size and dimensions of the motor. For some constraint and objective choices,
iteration may be required to reconcile dimensionless optimization with dimensional
constraints.

pitch), motor size, and cooling method. While the choice of overall properties does
depend on the values of the dimensionless parameters, the magnet and coil geometry
can be selected from a pre-computed library of designs with corresponding fixed
parameters, without requiring specialist knowledge of electromagnetics by the design
engineer. Some optimization criteria may lead to unique solutions for the geometry of
the magnets and coils, obviating the need for further optimization.

4.1.1 Brief Example

As a brief example, consider the problem of designing a motor for static force production.
If we seek a motor with optimized motor constant, we can choose a motor radius
and use the results from Figure 3-17. If we instead wish to optimize for the thermal
constraint, we first must choose the nature of the constraint. For example, if the
motor is to operate under convection-dominated thermal conditions (Bi→ 0), we can
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Figure 4-2: The geometry of a motor optimized for thermal performance (left)
can be quite different from that optimized for efficiency (right). Both motors are
planar and use the same topology, and have been sized to produce 707 N/kg with a
convection heat transfer coefficient of 100 W/m2K.

define a dimensionless pole pitch parameter p̂0:

p̂0 ≡

(
f̂

m̂

)2

P̂−1 =
ε̂2

m̂
, (4.1a)

p ≤ 4πσh̄B2
r∆T

ρ2
cF̄
′2 × p̂0. (4.1b)

This parameter can then be optimized, and happens to also lead to a unique solution
for the geometry at every motor radius. Designs for this criterion, as well as several
other optimization criteria relevant to applications, will be tabulated in Section 4.4.

For instance, consider designing a planar double-sided block Halbach motor to
deliver a sinusoidal force, with a peak force density F ′ = 1000 N/kg (average force
density F̄ ′ = 707 N/kg), as in the scenario of Section 2.4.2. We will assume the
(copper) coil has a thermal conductivity of κc = 5 W/(m ·K), that the magnets are
NdFeB with a remanence of Brem = 1.334 T, and that the convective heat transfer
coefficient is h̄ = 100 W/(m2 ·K). We will also assume a 100% fill factor and no
air-gap, and neglect finite-length and finite-width effects. Under these conditions, p̂0 is
optimized for ktc ≈ 0.453 and ktm ≈ 0.651, as illustrated in Figure 4-2. This requires
p ≤ 14.5 mm, about 50% larger than the efficiency-optimized motor, which would
need p ≤ 9.6 mm. The dimensionless motor constant, in turn, drops to ε̂ ≈ 0.264, as
compared to ε̂ ≈ 0.334 for the efficiency-optimized design.

Now, in this case our neglect of a physical air-gap could be a major problem, as
the air-gap offers considerable thermal resistance itself. We cannot calculate the effect
of this added constraint in one pass, as specifying an air-gap requires breaking up
the dimensionless geometry, but we can apply the iteration indicated in Figure 4-1
to study its effects. If we require a 50µm air-gap, the required pole pitches drop to
12.5 mm for the thermally-optimized motor and 8.0 mm for the efficiency-optimized
motor, and the dimensionless motor constants also drop somewhat. With this gap, if
the heat transfer coefficient were instead 10 W/(m2 ·K), iteration would indicate that
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it is not possible to meet the specifications.

4.2 Motor Design for Continuous Motion

One major problem in robotics that has drawn considerable attention recently is that of
flapping-wing, biomimetic flight [117]. While there has been considerable advancement
in this field, from the rubber-band powered models of the 19th century to modern
piezoelectric-driven micro-air vehicles [118], to date flapping-wing robots have used a
single prime mover to power all of each machine’s wings. In most bird-scale machines,
this prime mover is a rotary electric motor coupled to the wings via a clockwork
reduction drive mechanism, which can achieve high power density but provides limited
control of the wing motion. Maneuverability is supplied by auxiliary control surfaces,
or even lateral thrusters. In real birds [119,120], by contrast, differential wing motions
are an important source of maneuverability. To produce these motions in a robot,
independent wing actuators are needed, but duplication of the currently-used clockwork
mechanisms carries too high a mass penalty to be practical, and these mechanisms
reflect a very high inertia to the actuator, limiting control bandwidth. Direct-drive
motors could eliminate these problems, but the required motor specifications are far
in excess of those commercially available.

4.2.1 Required Specifications

For the purposes of this design study, consider a flying machine built to the scale of a
common pigeon. The flight actuators, then, need to meet or exceed the performance of
the pigeon’s flight muscles [19, 121,122]. Roughly speaking, the pigeon pectoralis has
a mass of 50 grams, produces a rectified sinusoidally-varying force of 50 N amplitude
and 8.7 Hz frequency during level flight (with no force during the up-stroke), moves
through a displacement of 20 mm while doing so, and moves at a peak velocity of
about 0.5 m/s. Its antagonist muscle, the supracoracoideus, has a mass of 10 grams
and produces a similarly varying force of 35 N amplitude, though during the up-stroke
instead. The energy efficiency of the bird muscle is estimated at between 10% and
20%, operating at a mechanical power density of about 100 W/kg.

In terms of the performance parameters defined for the linear motors in this
work, then, we seek a peak force density F ′0 ≥ 830 N/kg at a 60-gram mass scale.
The actual work loop in each bird muscle is roughly triangle-shaped, but for the
present purposes we can approximate the overall work loop as being made of two
semi-circles, the positive one corresponding to the pectoralis and the negative one to
the suparcoracoideus (shown in Figure 4-3), and use a modified form of the analysis
from Sections 2.2.2 and 2.3. Equations 2.65 and 2.68 can be used as derived; however
note that the RMS force density is the average of the values from the up-stroke and
down-stroke, with F̄ ′ ≥ 500 N/kg. To complete the specifications, let us assume a
maximum coil temperature of 150 ◦C and an ambient temperature of 40 ◦C. These
specifications are summarized in Table 4.1.
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Figure 4-3: The work loop for flapping-wing flight in a pigeon is approximated
as shown here; the clear region corresponds to the contribution of the pectoralis,
while the shaded region corresponds to that of the supracoracoideus.

Table 4.1: The design specifications for a motor intended to operate a flapping
wing propulsion system are given here.

Parameter Value or Constraint

Mass M = 50 g
Force Density F̄ ′ = 500 N/kg
Stroke Length `s = 20 mm

Temperature Rise ∆T = 110 ◦C

4.2.2 Optimization Criteria

Our specifications have fixed the mass, force, and stroke, leaving the pole pitch and the
stroke factor Y as the only free scaling parameters. There are two distinct approaches
we can take to choosing the pole pitch and corresponding electromagnetic geometry—
we can optimize for efficiency, and choose the largest pole pitch allowed by the heat
removal method, or we can optimize around the heat removal method to give the
largest possible pole pitch. We will carry through both optimizations, to see the effect
of each choice. Note that the stroke factor and pole pitch will be coupled to each
other to satisfy the mass and stroke constraints, and some iteration will be required.

Mathematically speaking, the efficiency optimization criterion is to first simply
maximize ε̂, then apply a thermal constraint to determine the maximum allowable
pole pitch. Because the coil is moving rapidly, Equation 2.68 cannot be used directly;
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instead, we must account for the stroke length parameter Y < 1 in the thermal
resistance and use a modified form of the pole pitch equation:

p ≤ 2π
Br
√
σκeff

ρc︸ ︷︷ ︸
materials

×
√

∆T

︸ ︷︷ ︸
thermal limits

× 1

F̄ ′︸︷︷︸
force

density

× ε̂

√
XY

m̂R̂th︸ ︷︷ ︸
motor

geometry

. (4.2)

To optimize around heat removal, we must choose the manner of heat transfer. The
simplest way to provide efficient heat transfer is by forced convection on the outside
of the motor. It is reasonable, with liquid cooling in small channels, to achieve a heat
transfer coefficient of h̄ = 1000 W/m2K. In this case, the dimensionless parameter to
be optimized is that present in Equation 4.2:

p̂ ≡ ε̂√
m̂R̂th

, (4.3)

where the fill factor X has been removed, as it is a manufacturing constraint, and the
stroke factor Y will be treated as a fixed parameter used to constrain the optimization.
Once the p̂ parameter has been optimized, the pole pitch can be found, and the
efficiency compared to that of the efficiency-optimal geometry.

4.2.3 Topology Selection

To optimize the chosen dimensionless parameters, we now must choose the motor
topologies to examine so that we can establish the parameters’ functional forms. First,
let us restrict our attention to tubular motors, rather than planar motor arrangements.
Next, we can anticipate that any topologies containing back-iron inside the coil will
suffer from saturation at high force densities, and exclude them from consideration.
This leaves three reasonable topologies, from those studied in Chapter 3: double-sided
Halbach (HCH), Halbach inside and iron outside (HCI), and Halbach inside with
iron-backed radial magnets outside (HCRI). As the expected performance gain from
including radial magnets with iron is small, and excluding them greatly simplifies
motor construction, we will exclude the HCRI topology from consideration. To
avoid potential problems with iron losses, we will keep the coil in the HCI topology
detached from the iron, which will instead move with the magnets. The dimensionless
parameters ε̂ and m̂ for these topologies can be found in Sections 3.4 and 3.5.

We will also need values of the dimensionless thermal resistance R̂th for these
topologies. Given that the motor should be moving rapidly in this application, we can
treat each surface in the motor as isothermal, even if the surface is not always directly
adjacent to its heat transfer partner. The thermal resistance can thus be calculated
by averaging appropriately. For the HCH topology, the thermal resistance is given by
a slight modification to Equation 2.32:
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De-rated:

R̂th =
1

2πY ′′th


1

2
−

ln krc,o
krc,i(

krc,o
krc,i

)2

− 1

+
κc
κa

ln
krmo,i
krc,o

+
κc
κm

ln
krmo,o
krmo,i

+
1

krmo,oBi

 ,

(4.4b)
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where in the derated case the value Y ′′th is found by averaging the thermal resistance
over the stroke,

Y ′′th ≡
1− 2

π
arctan 2Y ′′

√
1−4Y ′′2√

1− 4Y ′′2
. (4.4d)

Finally, we will need to stipulate the nature of the air-gap between the magnets
and windings. To keep the fabrication difficulties within reason, we will stipulate that
the minimum air-gap shall be g ≥ 50µm. To allow thermal expansion, the air-gap will
be set to the greater of the minimum and 1% of the radius of the gap. We will assume
that the magnets do not require coatings, and neglect the glue thickness holding them
together; we will further assume that a coil fill factor X of 60% can be achieved.

4.2.4 Optimization Results

These constraints and performance equations combine to require iteration in several
variables. One can look at this process as first requiring iteration on pole pitch, to
meet the thermal constraint, then on mean coil radius, to meet the mass specification,
and finally on stroke-to-length ratio (Y ) to meet the stroke length requirement. For
the HCH topology optimized for motor constant, this iteration is straightforward,
if tedious, and leads to a shallow optimum near a mean coil radius krm = 3.03,
Y = 0.426 (L = 34.8 mm), and p = 11.8 mm, with ε = 4.04 N/

√
W. At this point, the
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magnet array is very close to 3 pole pitches long, but the coil would need to be 1.26
pole pitches long. Finding a near-optimal configuration that uses a round number of
magnet and coil pitches (multiples of 1/2 pole pitch are reasonable) requires a far
more computationally-intensive series of iterations. Also, this approach places the
design exactly on the thermal pole-pitch constraint, but it may be more advantageous
to use a smaller pole pitch, greatly expanding the design search space.

To reduce the computational effort, we can compute a library of optimized ge-
ometries over a range of mean coil radii, gap thicknesses, and stroke-to-length ratios.
With this library, iteration merely requires interpolation in the library, rather than
re-optimization. Several cross-sections of the design libraries are presented in Sec-
tion 4.4.1, though note that the libraries cover a three-dimensional parameter space
that is challenging to visualize.

Using the library, we can instead look at the design process by choosing a range of
possible values of Y and p, determining the mean coil radius for each design point
that leads to a motor of the correct mass, and then selecting the “best” design from
the resulting map, shown in Figure 4-4 for the HCH topology optimizing the geometry
for ε̂. These maps were computed on a 20 by 20 grid of points in motor length and
pole pitch. To choose motor designs with integral numbers of magnets and coils, we
plotted the results against the total motor length L = `s/ (1− Y ) rather than Y itself,
and against the pole pitch p rather than the resulting dimensionless gap thickness.
Note that, for both the coil and the magnet array to comprise integral numbers of
half-pole-pitches, the stroke length itself must do so as well, with p = 2`s/N

′, where
N ′ is an integer. The possible total lengths at each pole pitch are simply multiples of
half the pole pitch, leading to the acceptable configurations indicated on the figures.

There are two further issues to consider; first, we can optimize for thermal perfor-
mance instead, as shown in Figure 4-5. As might be expected, this allows larger pole
pitches to be used, at the expense of a reduced motor constant. The other issue is the
possibility of using several independent motor structures in parallel to accomplish the
task. These smaller motors also have enhanced thermal performance, thanks to the
fundamental scaling behavior of linear permanent magnet motors, potentially allowing
larger pole pitches or shorter motors to be used. The results of the optimization,
considering these issues, are given in Table 4.2.

We can also consider the optimum geometries for a given motor length rather than
for a given pole pitch; the results cast this way are shown in Table 4.3. Here, we
recognize that the best results in every case are given using a single motor structure,
and optimizing for the motor constant. In some cases, the optimum may be skewed by
the discretized nature of the acceptable pole pitches. At the shortest motor lengths,
interpolation on the performance map does not give the true results due to the
coarseness of the original grid, and instead the likely configurations must be directly
re-calculated.

Other topologies also behave according to the trends in optimal dimensionless
motor constant. The optimization map for the HCI topology is given in Figure 4-6; the
very different mass parameter for this topology changes the shape of the map somewhat,
but the behavior is broadly similar to that seen in the HCH case. Interestingly, this
topology is limited more by the thermal constraint than the HCH topology.
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Figure 4-4: This plot gives a map of the motor constant achievable in a 50-gram
tubular double-layer Halbach motor, with a stroke length of 20 mm, if it has been
optimized for the dimensionless motor constant ε̂. Regions outside the contour
map indicate either motors with extreme aspect ratios or motors that violate the
thermal constraint. Black dots indicate combinations of pole pitch and motor
length that allow the magnets and coils to include whole half-pitches of structure,
up to a length of 30 pole pitches.
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Figure 4-5: This plot gives a map of the motor constant achievable in a 50-gram
tubular double-layer Halbach motor, with a stroke length of 20 mm, if it has been
optimized for the dimensionless pole pitch p̂ (Equation 4.3). Regions outside the
contour map indicate either motors with extreme aspect ratios or motors that
violate the thermal constraint. Black dots indicate combinations of pole pitch and
motor length that allow the magnets and coils to include whole half-pitches of
structure, up to a length of 30 pole pitches.
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Table 4.2: The range of optimum double-layer Halbach motor geometries for
several possible pole pitches and are given here, from the library-based optimization
process.

Pole pitch (mm) Optimal Length (mm) Motor Constant (N/
√

W)

Optimized for Motor Constant with One Motor Structure

13.33 53.33 4.29
10.00 65.00 4.77
8.00 84.00 5.03
6.67 106.67 5.19
5.71 125.71 5.27
5.00 145.00 5.32

Optimized for Motor Constant with Two Motor Structures

13.33 40.00 3.55
10.00 50.00 4.14
8.00 60.00 4.52
6.67 70.00 4.77
5.71 85.71 4.93
5.00 95.00 5.04

Optimized for Pole Pitch with One Motor Structure

20.00 80.00 3.39
13.33 113.33 3.83
10.00 160.00 4.06

Optimized for Pole Pitch with Four Motor Structures

13.33 60.00 3.12
10.00 65.00 3.44
8.00 84.00 3.70
6.67 103.33 3.87
5.71 122.86 3.97
5.00 142.50 4.04
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Figure 4-6: This plot gives a map of the motor constant achievable in a 50-gram
inner-Halbach outer-iron motor, with a stroke length of 20 mm, if it has been
optimized for the dimensionless motor constant ε̂. Regions outside the contour
map indicate either motors with extreme aspect ratios or motors that violate the
thermal constraint. Black dots indicate combinations of pole pitch and motor
length that allow the magnets and coils to include whole half-pitches of structure,
up to a length of 30 pole pitches.
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Table 4.3: The range of optimum motor geometries for several possible motor
lengths are given here, from the library-based optimization process for the HCH
topology. The motor constant has been re-calculated at each of these configurations,
rather than interpolated.

Maximum Length (mm) Optimal Pole Pitch (mm) Motor Constant (N/
√

W)

30 6.67 3.69
35 10.00 4.12
40 8.00 4.41
45 8.00 4.57
50 6.67 4.75
55 5.71 4.84
60 6.67 4.94
70 6.67 5.06
80 5.71 5.15

100 5.00 5.26

4.2.5 Design Assessment and Discussion

The optimization data computed from the design library show that, for these design
criteria, the achievable motor constant is limited more by the stroke-to-length ratio
and the aspect ratio than by the thermal constraint, and the double-sided ironless
Halbach topology is superior to the single-sided topology with back-iron. Only if an
extremely short motor (under 35 mm) is required does the thermal constraint limit
the available performance. The best configurations all occur far from the edges of
the allowed design space, with shorter pitches (and thus larger mean coil radii for the
same mass) providing higher performance. Thus, a range of different performances are
available—the coarsest pitch for the ε̂-optimized design leads to a motor with a length
comparable to that of the actual pectoralis muscle in a pigeon, which typically ranges
from 50 to 60 mm [121]. This motor would drive the design load at the typical 8.7 Hz
wingbeat frequency with an efficiency of 22%, slightly higher than that seen in natural
muscle. If a shorter pitch is acceptable, a 60 mm motor can achieve a 27% efficiency,
and if longer lengths are also allowed the drive efficiency can reach as high as 30%
(for ε = 5.32 N/

√
W). An interesting property of this design space is that the best

choice of pole pitch becomes shorter as the motor gets longer; the initial iteration on
the thermal constraint simply gave the intersection point between the locus of optimal
pole pitches for given motor lengths and the thermal constraint.

As might have been expected, the thermal optimization was able to extend the
range of usable pole pitches, with a 20 mm pitch becoming possible. This motor can
only reach a 15% efficiency, however, and the motor constants and resulting efficiencies
for all of the geometries investigated are much lower than for efficiency-optimized
motor designs. Thermal optimization also leads to much longer motors than efficiency
optimization, at the same pole pitch, due in large part to the much-reduced mass
parameter under thermal optimization.

Under these design conditions, adding more motor structures mechanically in
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parallel is of very limited benefit. The optimum motor length at a given pole pitch
is reduced, but so is the optimum performance at that pole pitch. The effect of the
stroke length parameter y dominates, and even at the same motor length the use of
more motor structures requires a smaller value for the mean coil radius, and thus a
smaller value of the dimensionless motor constant (as indicated by Figure 3-17). If
the performance were constrained more by the thermal requirements, the benefits of
using more structures might be more apparent.

4.3 Motor Design for Pulsed Force

A very different motor application is in high-performance needle-free drug delivery [123–
126]. While needles have been used for over 200 years [127] to deliver drugs and
vaccines, their use has major drawbacks, including hundreds of thousands of annual
needle-stick injuries [128] and a massive logistical footprint for needle acquisition and
disposal. A number of techniques have been developed since the middle of the 20th

century to deliver drugs without needles, but to date none have achieved widespread
clinical use. Existing devices typically use compressed gases [129] or springs [130] to
pressurize an ampoule of liquid drug solution, ejecting it as a high-speed jet through a
small (100µm to 300µm) nozzle. These devices are relatively inflexible in their usage,
however, and can be adapted to different injection sites or tissue depths only through
mechanical recalibration. The MIT BioInstrumentation Laboratory has developed a
more flexible needle-free jet injector (the “MIT jet injector”) [124] that employs an
electronically-controllable voice coil motor to pressurize the drug, and can be adapted
to different injection conditions by means of simple software adjustment.

While the MIT jet injector is far more controllable than other devices, it does
have some limitations stemming from its use of an actuator rather than a mechanical
energy storage mechanism. In particular, the maximum pressure it can develop using
its 500 gram voice coil is limited, and to date a much larger device [125] with a 1.5 kg
voice coil has been required for high-pressure, and thus high-velocity, injections to
great depths and/or into tough tissues. This larger device requires two-handed use,
limiting its suitability in clinical settings. Considerable current interest in drug and
vaccine delivery focuses on the shallow tissue depths accessible to the hand-held MIT
jet injector [131], but there is also building interest in the delivery of concentrated
materials [132] and controlled-release formulations [133]. These materials can have
high viscosities and will require very high injector pressures to reach even shallow
depths. In order to successfully deliver these materials using the hand-held MIT jet
injector, a linear motor in the 500-gram size class must be developed with peak force
capability comparable to that of the 1.5 kg voice coil.

4.3.1 Required Specifications

The large-scale jet injector built by Hemond et al. [125] utilizes a BEI-Kimco model
LA25-42-000A [134] voice coil actuator to reach fluid pressures of over 60 MPa. In
follow-on (unpublished) tests, this system was able to achieve pressures of nearly
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Table 4.4: The design specifications for a motor intended to operate a needle-free
jet injection system for high-viscosity materials are given here.

Parameter Value or Constraint

Mass M = 500 g
Peak Force Density F ′ = 2000 N/kg

Stroke Length `s = 36 mm (30 mm used)
Number of Phases Nφ = 2
Temperature Rise ∆T = 110 ◦C

Force Duration ∆t = 10 ms

100 MPa. The MIT jet injector uses a smaller voice coil, with a peak force of 200 N
deveolped for about 10 ms, and a maximum stroke of 25 mm [124]. This force is applied
to an ampoule with a cross-sectional area of 10−5 m2, for a maximum pressure of
20 MPa. To match the capability of the large device in the hand-held system, then, we
need to be able to apply 100 MPa over a piston with a cross-sectional area of 10−5 m2,
for a total peak force of 1000 N.

Due to the extremely short duration of the injection force, we can neglect heat
transfer from the motor to ambient; thus, the thermal constraint consists of the
temperature rise in the heat capacity of the coil alone. We will once again assume a
maximum temperature of 150 ◦C, and an ambient temperature of 40 ◦C. In a hand-held
device that must nonetheless deliver kilowatts of pulsed power, it is important to
minimize the complexity of power electronics; we will thus require that the motor be a
single-phase voice coil, not a polyphase synchronous motor. (In terms of the analysis
in Section 3.3.2, this means Nφ = 2, as one phase can drive two coil groups wound in
opposite directions.) These specifications are summarized in Table 4.4.

While they are not specifications per se, we also can set values for our manufacturing
constraints at this point. We will fix the inner radius of the inner magnets rmi,i =
1.5 mm, to provide a channel down the center of the motor that can be used for
alignment and to fasten the components of the motor together. We will require that a
space of 3 mm be allowed at each end of the stroke, to allow for coil termination and
mechanical parts. (This also has the side-effect of excluding the lowest-force parts of
the stroke.) We will allow 500µm of physical air-gap inside the coil, to accommodate
a bobbin, and 100µm of air-gap outside the coil as running clearance. Finally, as
before, we will assume a fill factor X = 60% in the coil.

4.3.2 Optimization Criteria

These specifications and design constraints effectively leave only the stroke-to-length
parameter Y as a free scaling parameter; the single-phase nature of the motor couples
the pole pitch p to the stroke length `s. In a single-phase motor, there are nodes
of zero motor constant located a distance p/4 from the position of maximum motor
constant, thus limiting the stroke length to `s < p/2 regardless of the total motor
length. We do have the ability to choose the number of coils used, corresponding to

129



one coil per half pole pitch.
The thermal constraint for pulsed operation is equivalent to a constraint on the

maximum current density; we can equate the thermal energy and electrical energy
dissipated to find the exact constraint, assuming constant power dissipation:

ρccpVc∆T =
J2Vc∆t

σ
,

J ≤
√
σρccp∆T

∆t
, (4.5)

where cp is the specific heat capacity of the conductor (cp = 385 J/(kg ·K) for copper).
We can combine this with the expression for the force density (Equation 2.30) to
connect the thermal constraint to the dimensionless parameters,

f̂

m̂
≥ F ′

XY Brem

√
ρc∆t

σcp∆T
. (4.6)

(This expression assumes the motor is underhung.) At this point, we should check to
see if we can expect to meet this constraint; if we use copper windings and magnets with
Brem = 1.334 T, and assume Y = 1, the constraint is f̂/m̂ ≥ 9.0×10−3. For the planar
double-sided Halbach motor, optimized for motor constant, the value f̂/m̂ = 0.115.
Thus, we should have considerable latitude in meeting the force specification. We will
likely also have to check our designs for demagnetization at this current density, as
the maximum allowed current density J is 1.5× 109 A/m2, an extremely high value.

Given this thermal constraint, the most sensible choice of optimization criterion for
the electromagnetic design is simply the dimensionless motor constant ε̂, as we would
like to achieve the target force using as little power as possible. While this criterion
leads to straightforward optimum designs, the interaction between pole pitch and
stroke length will require iteration. We can anticipate that the best designs will have
small values of dimensionless mean coil radius as a result of this coupling. An open
question, however, is the location in the stroke at which ε̂ should be calculated, as
calculating it at the midpoint of the stroke where it reaches a maximum may leave the
force at the ends of travel too low to meet the specifications. Thus, we will perform
optimizations both at the midpoint of the stroke and at the endpoint, and compare
the results.

4.3.3 Topology Selection

As in the case of the wing-flapping motor, we will consider only tubular motors,
and once again exclude those topologies incorporating central iron due to saturation
concerns1. Thus, we once again have the HCH, HCI, and HCRI topologies to investigate.
For simplicity of construction, in this case we will exclude the HCH topology from
consideration. Most high-performance commercial voice coils (including the BEI

1We did investigate a topology with inner iron-backed radial magnets and outer iron, but found
in FEA that it would saturate before reaching a force of even 40 N!
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coil used in the large jet injector built by Hemond et al. [125]) instead use a flux-
concentrating topology, with iron in place of the radial magnet in the central Halbach
array of the HCI topology. We will call this an ACI topology, and derive a magnetic
circuit model for its performance.

In all of the topologies under consideration, we can anticipate that the motor
becomes longer and narrower as more coils are used, which pushes the performance
progressively lower. Thus, we will use just one coil in our motor, equivalent to using
half a pole pitch. However, as we saw in Figure 3-16, there is a performance penalty in
such a short motor. We can alleviate this by using iron end-caps of thickness te, which
in the ideal case present periodic boundary conditions for the magnetic structure and
allow us to avoid time-consuming calculations of finite length effects. Doing so restricts
us to the underhung configuration (coil shorter than magnets), which conveniently
also allows for a strong structure that can resist the tendency of the central magnets
to be pulled off-center. This gives us the following explicit relationship between pole
pitch, stroke length, and stroke-to-length ratio:

Y = 1− 2`s
p

= 1− k`s
π

. (4.7)

We can also determine that Y = α, where α is the fraction of the possible winding
length that is occupied.

4.3.4 Magnetic Circuit Model

A basic magnetic circuit diagram for the ACI motor is shown in Figure 4-7. There are
two reluctances, one in the magnet (RM ) and one in the air gap (Rg), and the magnet
acts as a source of magnetomotive force (MMF) FM in series with its own reluctance.
Neglecting fringing fields, we can easily identify values for the reluctance and MMF:

RM =
LM

πµ0r2
mi,o

, (4.8a)

Rg =
1

2πµ0Lconc
ln
rmo,o
rmi,o

, (4.8b)

FM =
LMBrem

µ0

, (4.8c)

where LM is the length of the magnet, Lconc is half of the length of the iron flux
concentrator, and we are using the dimensional conventions of Figure 3-13. However,
this simple model gives very inaccurate results, predicting zero flux in the magnetic
circuit if the flux concentrator is absent and optimal performance when the flux
concentrator occupies half the length of the motor.

Instead, we can create a differential magnetic circuit model by assuming that the
flux within the magnets is purely axial and the flux in the air gap is purely radial.
This requires that we also attempt to account for the fact that some of the radial gap
flux must come from inside the magnets; if we take an average gap reluctance across
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Figure 4-7: A flux-concentrating voice coil employs axial magnets (light gray)
and iron (dark gray). The dashed line indicates a symmetry plane, across which
no magnetic flux flows, and the dot-dashed line is the motor’s centerline. The
reluctance of the magnet is given by RM , and the reluctance of the air gap is
given by Rg; iron regions are assumed to have infinite permeability, and thus no
reluctance. The magnetomotive force produced by the magnet is denoted by Fm.

the magnet thickness, we find the differential gap reluctance to be

dRg =
1

2πµ0dz

(
ln
rmo,o
rmi,o

+
1

2

)
, (4.9)

A differential model with this reluctance leads to a differential equation for flux Φ(z),

d2Φ

dz2
− 2

r2
mi,o

(
ln rmo,o

rmi,o
+ 1

2

)Φ = − 2πBrem

ln rmo,o
rmi,o

+ 1
2

. (4.10)

This equation has the same form as that of the fin equation, as used in heat trans-
fer [41], and the solutions will look very similar. Solving the differential equation with
appropriate boundary conditions yields the result

Φ (z) = πr2
mi,oBrem

(
1−

cosh
(
k′ (LM + Lconc − z)

)
k′Lconcξ sinh (k′LM) + cosh (k′LM)

)
, (4.11a)

where the “fin parameter” k′ is given by

k′ ≡
√√√√ 2

r2
mi,o

(
ln rmo,o

rmi,o
+ 1

2

) , (4.11b)
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we have defined for convenience

ξ ≡
ln rmo,o

rmi,o
+ 1

2

ln rmo,o
rmi,o

, (4.12)

and z = 0 lies on the motor’s central symmetry plane. We can also find the radial
flux density in the air gap along the surface of the magnets and flux concentrator,

B · r̂ =


1

2
Bremk

′rmi,o
tanh

(
k′LM

)
k′Lconc tanh (k′LM) + ξ−1

, z < Lconc,

1

2
Bremk

′rmi,o
sinh

(
k′ (LM + Lconc − z)

)
k′Lconcξ sinh (k′LM) + cosh (k′LM)

, z < Lconc + LM .

(4.13)

Finally, we can integrate to find the total flux in the portion of the air gap occupied
by the coil, Φc, once again assuming that the flux is purely radial:

Φc = 2πrmi,o

∫ ztop

zbot

B · r̂dz,

= πBremr
2
mi,o

2−
cosh

(
k′
(
LM + Lconc − ztop

))
+ cosh

(
k′ (LM + Lconc + zbot)

)
k′Lconcξ sinh (k′LM) + cosh (k′LM)

,

(4.14)

where ztop and zbot are the positions of the top and bottom of the coil; we assume that
the coil always covers the flux concentrator. (Larger excursions can be accommodated
with a slight adjustment to this integral.) This gives a value for the force

F = JΦc

(
rc,o − rc,i

)
. (4.15)

These equations can be nondimensionalized in the usual manner, if desired.

4.3.5 Electromagnetic Geometry Optimization

Equipped with a model for the flux-concentrating topology, we are ready to perform
the design optimization. Our modeling assumptions require the iron in the end-caps
to behave ideally, and so we will use the infinite-permeability field models to describe
the HCI and HCRI motors, with a design flux density of 2.5 T in the iron. (The ACI
model, of course, intrinsically assumes infinite permeability.) Since we are interested
in motor constant variation over the stroke, we will find it advantageous to perform a
customized optimization, rather than using design libraries. For efficient optimization,
we use the outer radius of the inner magnets as a scaling parameter, to satisfy the
mass constraint. We can then optimize the remaining dimensions at a variety of values
for α, and map out the results.

For example, the optimal motor constants found for the ACI topology are given in
Figure 4-8, based on optimizations at the end-stroke, quarter-stroke, and mid-stroke
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Figure 4-8: The achievable motor constant for a flux-concentrating voice coil
according to our design requirements is given at three different positions in the
stroke (solid lines at mid-stroke, dashed lines at 7.5 mm from mid-stroke, and dotted
lines at 15 mm from mid-stroke). The performance is given for motors optimized
at these same three positions, with black lines for motors optimized at mid-stroke,
blue lines for motors optimized at 7.5 mm from mid-stroke, and red lines for motors
optimized at 15 mm from mid-stroke.
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Figure 4-9: The approximate H-field on the interior surface of the coil is given
for the three motors from Figure 4-8, when producing 1000 N at mid-stroke. The
dotted line indicates the field for the onset of demagnetization in VACODYM 633
HR material.
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positions, and measured at these same points. (Note that the model presented in
Section 4.3.4 does not allow for a nonzero inner radius of the inner magnets, so
rmi,i = 0.) Here, it becomes apparent that optimization away from mid-stroke is of
limited benefit, but the performance at the different positions can indeed be highly
variable. For this topology, the most well-rounded results are obtained for values of
α between 0.3 and 0.5. Due to the discontinuous nature of the radial B-field, the
optimization misbehaves when the edge of the coil lies very close to the edge of the
flux concentrator. It is also worth noting that, when the geometry is optimized at a
point where the coil does not overlap the flux concentrator, the flux concentrator is
optimized out of existence!

All of these motors remain far from the thermal current limits, but the current
densities required are high enough to warrant evaluation of demagnetization. While
doing this in detail requires FEA, rather than this magnetic circuit model, we can
make an approximate demagnetization check via the thin-coil approximation. We
assume the coil is long and infinitely thin, but carries a surface current equal to the
current density times the coil thickness. Under these conditions, the H-field inside
the coil is simply equal to the surface current density. The resulting field when the
motor applies the specified 1000 N force at mid-stroke is given in Figure 4-9, for all
three optimizations. All three can reach 1000 N without hitting the demagnetization
constraint, though they are very close and FEA study is warranted. None can produce
the specified force at the ends of the stroke, however.

The optimization results for the HCI topology follow a similar pattern to that
exhibited by the concentrator-free ACI topology, as shown in Figure 4-10. These
are also the results obtained if one attempts to include outer radial magnets; the
optimization process removes the outer magnets, just as was seen for the periodic
motors. This topology outperforms the flux-concentrating topology for α > 0.25,
especially near the ends of the stroke, and can provide the required force without
demagnetizing for 0.25 < α < 0.55.

4.3.6 Design Assessment and Discussion

According to our models, the Halbach topology is capable of slightly better performance
than the flux-concentrating voice coil, both with a higher motor constant and with
greater resistance to demagnetization, but there is little benefit to including outer
radial magnets. However, both the magnetic circuit model and the field model are
approximate in this case, particularly due to the presence of iron end-caps. To confirm
these results, finite element analysis is required.

We examined several optimal geometries around α = 0.4 for both the HCI and
ACI topologies in ANSYS FEA. To test the influence of saturation, we chose two
different optimization results for each topology, one with Bsat = 2 T and one with
Bsat = 3 T. As shown in Table 4.5, the performance is actually improved by forcing
the iron in the motor into saturation. The results for a larger range of saturation
fluxes are given in Figure 4-11; the nominal mid-stroke motor constant reaches a
maximum near Bsat = 6 T, and the motor constant when delivering 1000 N actually is
best when the iron is entirely removed (as modeled by setting Bsat = 1000 T). Also
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Figure 4-10: The achievable motor constant for a Halbach voice coil according
to our design requirements is given at three different positions in the stroke (solid
lines at mid-stroke, dashed lines at 7.5 mm from mid-stroke, and dotted lines at
15 mm from mid-stroke). The motor is optimized at the mid-stroke position.
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Figure 4-11: The motor constant for a Halbach voice coil (HCI topology) is
given for a range of saturation flux design guidelines. Dots indicate the nominal,
mid-stroke motor constant, stars the mid-stroke motor constant when delivering
1000 N, crosses the motor constant when delivering 200 N towards the near end
of the motor at the end of stroke, and diagonal crosses the motor constant when
delivering 200 N towards the far end of the motor at the end of stroke. The points
on the right with arrows correspond to Bsat = 1000 T. In all cases, the motor
constant was calculated using ANSYS FEA, and assuming a 100% fill-factor.
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Table 4.5: The effect of the choice of saturation flux density is shown here in
both the HCI and in the ACI topologies, in terms of the mid-stroke motor constant.
Calculation of the motor constant here excludes the effect of the fill factor X.

Parameter
ACI HCI

Bsat = 2 T Bsat = 3 T Bsat = 2 T Bsat = 3 T

rmi,i (mm) 1.5 1.5 1.5 1.5
rmi,o (mm) 12.0 13.0 12.9 14.5
rc,i (mm) 12.5 13.5 13.4 15.0
rc,o (mm) 19.3 20.0 22.8 23.2
rmo,o (mm) 19.4 20.1 22.9 23.3
rfo,o (mm) 21.2 21.4 25.5 25.2
te (mm) 2.9 2.1 4.5 3.1
δ 0.102 0.110 0.140 0.140
α 0.461 0.466 0.376 0.387

ε (N/
√

W) 7.93 8.21 10.2 10.9

shown here is the behavior at the ends of the stroke, when delivering 200 N of force.
At the end of the stroke, variable reluctance force from the coil’s proximity to the
end-caps becomes important, but is entirely canceled by saturation for Bsat = 5 T.

We also used these FEA studies to assess our designs for demagnetization. In
each case, a small number of magnet elements near the corners of the axial magnets
reached the demagnetization threshold. However, removing the magnetization from
these elements did not result in any appreciable degradation of performance, with a
2% loss of nominal motor constant in the flux-concentrating motor and less than a 1%
loss of motor constant in the Halbach motor.

While the models were able to describe the motor performance relatively well, the
impact of saturation was clearly very significant. Under these design requirements,
the added magnet mass (effectively pushing krm higher) allowed by using less iron
more than outweighs the loss of field from saturation. Saturation of the end-caps
actually has a stronger effect on performance than saturation of the shell, so we do
not expect the use of the finite-permeability motor model to significantly improve
the accuracy of the design process. Nonetheless, our models have paved the way to
significant improvements in pulsed force capability in voice coils, and suggest that the
inclusion of radial magnets is more beneficial than the use of iron flux concentrators.

4.3.7 Prototype Development

Based on these results, and with the information gleaned from FEA studies, we chose
to build a prototype voice coil employing the optimized HCI topology, with a 4 T design
flux density in the iron. The target dimensions of this motor are given in Table 4.6.
According to ANSYS FEA studies, we should expect this motor to operate with a
mid-stroke motor constant of about 9 N/

√
W at low forces, and 8.5 N/

√
W at 1000 N.
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Table 4.6: The major electromagnetic dimensions of our prototype motor for
needle-free jet injection are given below; Lr refers to the length of the radially-
oriented magnet, and Lc refers to the length of the coil.

Radial Dimensions Axial Dimensions

rmi,i = 1.5 mm te = 2.2 mm
rmi,o = 13.1 mm Lr = 7.7 mm
rc,i = 13.6 mm Lc = 24.8 mm
rc,o = 21.4 mm LM = 26.6 mm

rmo,o = 21.5 mm
rfo,o = 22.8 mm

This performance is plotted in Figure 4-12, and compared to the FEA-predicted
performance of the motor used in the existing MIT jet injector.

The detailed design, construction, and testing of this motor is described by Brown2

[135]. A rendering of her design is shown in Figure 4-13. While this motor has not
yet been tested at very high forces, at low forces the mid-stroke motor constant is
about 8.4 N/

√
W, only 7% below the theoretical prediction. Figure 4-14 shows the

force produced by the motor over its stroke, closely matching the shape of the curve
in Figure 4-12. Features used for structural support added to the mass of the motor,
yielding a total of 578 g.

4.4 Library of Optimized Designs

As we have seen, it is very useful to have a pre-computed library of optimized motor
designs, as it can save hours of computer time when the design requirements demand
complex iteration. This section illustrates important cross-sections of several design
libraries; the complete libraries are available upon request from the author. We also
present the large-radius (planar) overall optimum designs for each objective function,
neglecting physical air-gaps, fill factors, and stroke length effects. For brevity, only
the libraries for the underhung ironless double-sided Halbach motor are presented,
except in the case of motor constant optimization.

Each library contains the optimized geometries and properties of motors with
three free dimensionless parameters: mean coil radius krm, physical air-gap kg, and
stroke length parameter Y . The fill factor X is set to a reasonable value for a coil of
round wire, X = 0.6. The material properties are set as follows: ρm = 7600 kg/m3,
ρc = 8940 kg/m3, ρf = 7850 kg/m3, ρi = 1350 kg/m3, κa = 0.026 W/(m ·K), κm =
9 W/(m ·K), κeff = 1.5 W/(m ·K), and κf = 64 W/(m ·K). For iron-bearing motors,
the iron is assumed to be 1018 steel, with the B-H curve given in Figure 3-14, and
the magnet is assigned Bsat = 1.344 T. We assume that cooling is provided on the
outside of the motor only, and require that the coil be built with α = 1.

2This undergraduate senior thesis was supervised by the author.
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Figure 4-12: The motor constant of our proposed voice coil (black lines), as
determined by ANSYS FEA, is compared to that of the motor currently used in
the MIT jet injector (red lines) at several different force levels. The behavior at
low force (J = 106 A/m2) is indicated by a solid line, the behavior when delivering
200 N is indicated by a dashed line, and the motor constant at 1000 N is indicated
with a dotted line (for our new design only).

139



Figure 4-13: This rendering shows the major components of the high-force voice
coil constructed by Brown. Figure used with permission from [135].
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Figure 4-14: The force experimentally produced by the prototype voice coil is
shown at three different applied current densities, showing agreement with the
force profile illustrated in Figure 4-12. All measurements correspond to the force in
the pushing direction, with the dotted line measured at 1 A (2.3× 106 A/m2), the
dashed line measured at 3 A (6.9× 106 A/m2), and the solid line measured at 5 A
(1.1× 107 A/m2). Error bars indicate 95% confidence intervals. Data are from [135]
and used with permission.

141



4.4.1 Optimum Motor Constant

In this case, as we have previously discussed, the appropriate optimization parameter
is ε̂. The behavior of the double-sided Halbach motor optimized with this parameter
is given in Figure 4-15. We supply a library for the HCI configuration under these
conditions, as well; this library required approximately 200 hours of computer time to
calculate. The behavior of the HCI configuration is shown in Figure 4-16.

These libraries follow the trends explored in Section 3.7.1, with the double-sided
Halbach motor providing the higher motor constant. As might be expected, there is a
harsher penalty for air-gaps in the iron-cored motor; if one were to think in terms of
the method of images, the air-gap between the coil and iron would behave as though
it had twice its thickness.

4.4.2 Optimum Conductive Heat Transfer

Here, we will assume that the motor operates with a Biot number approaching infinity;
i.e. active cooling is provided, and performance is limited by conduction heat transfer
within the motor. We will also assume the motor to be stationary, with no axial heat
transfer. Thus, the appropriate optimization parameter will be p̂; the corresponding
behavior is summarized by Figure 4-17.

Under these conditions, the thermal penalty of thick magnets outweighs the
electromagnetic benefits, unless the impact of a thick, forced air-gap minimizes the
effectiveness of thinning the magnets in reducing thermal resistance. Thus, the
optimal performance does not occur for the planar, gap-free motor, but rather at an
intermediate radius (krm ≈ 2.5) with a small air-gap. However, the electromagnetic
performance of motors optimized in this manner is also very poor compared with
that found when efficiency is the optimization goal, and this design approach is only
advantageous if a large increase in pole pitch for a set of thermal constraints is required.

4.4.3 Optimum Convective Heat Transfer

Here, we will instead neglect conduction thermal resistance within the motor, and
consider only a convective thermal resistance on the motor exterior. We will once
again assume the motor to be stationary, with no axial heat transfer. In this case, the
appropriate optimization parameter is p̂0; the corresponding behavior is summarized
by Figure 4-18.

In this case, the optimization works to increase the surface area of the motor, by
penalizing the dimensionless mass. The performance trends are very similar to those
seen with the designs optimized for motor constant, though with significantly lower
motor constant values.

4.4.4 Optimum Force Constant

If the motor is to be operated under transient conditions, with little heat transfer
available at all, it might be advantageous to optimize for the force per unit current
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Figure 4-15: The behavior of double-sided Halbach motors optimized for motor
constant is summarized here, with the influence of stroke length and air-gap (top),
the influence of mean coil radius (bottom left), and the planar optimal geometry
(bottom right) given. The dimensionless motor constant is adjusted for the influence
of Y , as per Equation 2.42.
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Figure 4-16: The behavior of single-sided Halbach motors with iron cores opti-
mized for motor constant is summarized here, with the influence of stroke length
and air-gap (top), the influence of mean coil radius (bottom left), and the planar
optimal geometry (bottom right) given. The dimensionless motor constant is
adjusted for the influence of Y , as per Equation 2.42.
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Figure 4-17: The behavior of double-sided Halbach motors optimized for
conduction-limited heat transfer is summarized here, with the influence of stroke
length and air-gap (top), the influence of mean coil radius (bottom left), and the
planar optimal geometry (bottom right) given. The dimensionless motor constant
is adjusted for the influence of Y , as per Equation 2.42.
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Figure 4-18: The behavior of double-sided Halbach motors optimized for
convection-limited heat transfer is summarized here, with the influence of stroke
length and air-gap (top), the influence of mean coil radius (bottom left), and the
planar optimal geometry (bottom right) given. The dimensionless motor constant
is adjusted for the influence of Y , as per Equation 2.42.
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density (“force constant”) rather than the motor constant. We saw this arise in our
discussion of the design of the jet injector motor, though in that case the pulsed force
requirement was so high as to render demagnetization more important than heat.
Nonetheless, we can identify a set of dimensionless parameters to optimize for in this
case, f̂/m̂, for which the results are given in Figure 4-19.

This optimization criterion favors the inclusion of more coil in the motor, relative
to magnets. The reduction in motor constant from the designs optimized for it is
modest, despite the large change in geometry. The greater coil thickness, however,
will render motors optimized for force constant more prone to demagnetization at
high current densities.
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Figure 4-19: The behavior of double-sided Halbach motors optimized for maxi-
mum force per unit current density is summarized here, with the influence of stroke
length and air-gap (top), the influence of mean coil radius (bottom left), and the
planar optimal geometry (bottom right) given. The dimensionless motor constant
is adjusted for the influence of Y , as per Equation 2.42.
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Chapter 5

Experimental Realization

In order to validate our models and design approach, we set out to build a motor similar
to that designed in Section 4.2 and evaluate its performance. This chapter describes
the detailed design of this exemplar motor, and the changes and additional features
required to turn an optimized coil and magnet geometry into a whole, manufacturable
motor. Our primary means of performance evaluation will be static force testing over
the entire stroke, and the design of the test system as well as the bench-top cooling
system will be discussed. The performance of our motor will then be compared to
that of other motors of similar mass and stroke.

5.1 Electromagnetic Design and Predicted Perfor-

mance

As we showed in Section 4.2.5, optimizing the dimensionless motor constant ε̂ yields a
motor with both good electromagnetic performance and reasonable thermal perfor-
mance, so long as the pole pitch can be kept short. Based on the bird muscle example,
we chose to make an underhung double-sided Halbach motor designed by optimization
of ε̂, having an outside diameter of 25 mm, an overall length of 48 mm, and a stroke of
18 mm. To keep the individual magnet sizes reasonable, we chose a target pole pitch of
12 mm; while somewhat larger would be necessary to achieve bird-scale force densities,
we expected this pole pitch to still provide considerably greater force density than
commercially-available motors. We assumed high-performance square magnet wire
would be used [61], giving X = 0.75, wound as a concentrated three-phase winding. To
simplify manufacturing, we forced the radial and axial magnets to have equal widths;
the optimal widths were not very different for motors with krmi,i > 0, in any event.
Finally, we required that there be an air gap equal to 1% of the radius on both the
inside and outside of the coil, to provide running clearance. These design constraints
are summarized in Table 5.1 below.

From this point, numerical optimization for ε̂ was straightforward using Equa-
tion 3.66b, Equation 3.64, and Equation 3.65. Optimizing without accounting for
Y gives the following values for the motor geometry: krmi,i = 2.06, krmi,o = 4.11,
krc,i = 4.15, krc,o = 5.07, and krmo,i = 5.12. This geometry is shown to scale in
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Table 5.1: The design constraints for the motor prototype are given here in
dimensionless form, where applicable.

Parameter Value or Constraint

Pole Pitch
p = 12 mm
k = 524 m−1

Magnet Length L = 4p
Coil Length Y = 0.625

Outside Diameter krmo,o = 6.54

Air Gaps
krc,i = 1.01krmi,o
krc,o = 0.99krmo,i

Magnet Width δri = δro = 0.5

Figure 5-1. (Including the effect of the stroke-to-length ratio changes the geometry
only slightly.) Let us assume that the magnets are made from VACODYM 633 HR
material (Brem = 1.35 T at 20 ◦C) [66]; in this case, the expected motor constant is
ε = 9.12 N/

√
W (ε̂ = 0.322). Furthermore, let us assume that the effective heat trans-

fer coefficient on the exterior of the motor is very high, the coil thermal conductivity is
κc = 1.5 W/(m ·K), and the magnet thermal conductivity is κm = 9 W/(m ·K) [42];
in this case the thermal resistance Rth = 2.6 K/W (R̂th = 0.18).

To calculate the thermal resistance for this motor, we neglect axial heat conduction
and assume a stationary coil, which permits the dimensionless thermal resistance to
be calculated using Equation 2.32a, with an added multiplicative factor of Y −1. So
long as the coil is driven with the current distribution in phase with the field produced
by the magnets, the current itself has little tendency to demagnetize the magnets;
the maximum operating temperature of the inner magnets is about 80 ◦C, and of the
outer magnets 60 ◦C, before self-demagnetization becomes a problem. Fortunately, the
cooling configuration ensures that the outer magnets will always be much cooler than
the inner magnets, leaving the inner magnet limit as the effective coil temperature
limit.

5.1.1 Manufacturing Changes

As the mechanical design of the motor was developed, and the parts of the motor
went into manufacturing, it became apparent that certain changes to the magnet and
coil dimensions were needed. First, as will be discussed in Section 5.2, we chose to
have the inner magnets serve as the coil’s linear motion bearing. Thus, the clearance
inside the coil was reduced, such that rc,i = 7.88 mm. Using this dimension, we then
chose the actual winding pattern. Rather than the square magnet wire assumed for
the initial fill factor of X = 0.75, round magnet wire was used, with each phase group
in the coil comprising 5 layers of 5 turns each, 28 AWG heavy-insulation magnet
wire1 rated for 200 ◦C. This winding instead has a fill factor of X = 0.55. The coil
structure also requires the removal of portions of the inner magnets, which can be

1McMaster-Carr 7588K73
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A B̄ C Ā B C̄ A

2 mm

Figure 5-1: The optimum geometry for one period of the prototype motor is
shown here, optimized for ε̂ but neglecting the effect of the stroke-to-length ratio.
Letters denote the windings corresponding to each of the three phases, and windings
labeled with an overbar are wound in the opposite direction of those without. The
actual dimensions have the values rmi,i = 3.93 mm, rmi,o = 7.85 mm, rc,i = 7.92 mm,
rc,o = 9.68 mm, rmo,i = 9.78 mm, and rmo,o = 12.50 mm.

approximated as reducing their remanence by the fraction of area removed, 15.4%.
Also, for manufacturability the radial magnets must be constructed from discrete
segments of uniform magnetization, rather than being purely radial in nature. Four
segments were used, reducing the effective strength of the radial magnets by 10% as
discussed in Section 3.4.5.

To ensure that the magnets and coil would fit together, the coil was wound and
impregnated before cutting the magnets. It quickly became apparent that it was not
possible to wind this coil without providing spacers between phase groups. Adding
these spacers increased the pitch length of the winding to p = 14.5 mm, and reduced
the effective fill factor to X = 0.44. Once the coil was wound, its outside diameter
was also found to be slightly oversize, with rc,o as large as 9.80 mm in places. While
re-impregnation of the coil under pressure in a rigid mold reduced the radius to a
consistent 9.78 mm, it was still necessary to slightly enlarge rmo,i, to 9.84 mm. The
change in pole pitch also necessitated a change in the overall dimensions to stay close
to the original stroke and overall length; the magnet array would now only be 3.5
pitches long (50.8 mm), and the coil would be 2 pitches long (29 mm), resulting in
Y = 0.57 and a stroke of `s = 21.8 mm. These changes in geometry do not appreciably
change the self-demagnetization temperatures.

A summary of the changes in motor properties resulting from these geometry
changes can be found in Table 5.2. After accounting for the design and manufacturing
changes, the expected motor constant is about 33% lower, but the thermal resistance is
expected to be 30% lower. The reduction in motor constant is primarily caused by the
dramatic reduction in fill factor from that specified in the initial optimization; winding
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Table 5.2: The predicted performance of the motor is given here under three
sets of conditions: the theoretical performance, as given by the optimization; the
nominal performance, accounting for the details arising in design; and the expected
performance, also accounting for the changes in manufacturing. The maximum force
is that corresponding to an 80 ◦C coil temperature and 20 ◦C coolant temperature,
while all other properties are calculated with the motor at 20 ◦C.

Condition ε̂ ε
(
N/
√
W
)

Rth

(
K/W

)
M (g) Fmax (N)

Theoretical 0.322 9.12 2.6 141 39
Nominal 0.299 6.95 2.6 129 30
Expected 0.304 6.09 1.8 132 31

strategies that can improve the fill factor, such as square wire, edge-wound ribbon
wire, or thinner inter-winding spacers would be highly beneficial. The improvement
in thermal resistance is caused by the reduction in specified air gap, as the thermal
resistance is dominated by the air even at very narrow gap widths. Note that the
motor constants were calculated using only the first harmonics of magnetization and
current, and therefore represent an average motor constant over the stroke.

5.2 Mechanical Design and Manufacturing

A functioning motor requires more than a set of magnet and coil dimensions—the
magnets must be held in place, cooling must be provided, current must be delivered
to the coil appropriately, and the force must be transferred from the coil to the load.
For maximum performance, these provisions must be made using as little mass as
possible and without infringing upon the electromagnetic geometry. At the same
time, however, the motor components must be manufacturable, and the whole motor
must be possible to assemble. We chose to design the motor so that the structural
and cooling systems would be largely decoupled, with the cooling system only on the
outer surface of the motor and the structural interfaces located primarily on the inner
magnets.

5.2.1 Magnets and Coil

In order to keep the mass added by the structural components to a minimum, we
chose to rely on the magnets and coil themselves to carry most of the loads in the
system. This required adhesive assembly, with a careful choice of the adhesives used
in each part of the system. As shown in Figure 5-2, the inner and outer magnets were
each divided into four segments for manufacturing. Each segment was provided with
features to keep the segments aligned in a circle, and a 100 micrometer gap was left
between segments to allow space for the adhesive. A similar gap was left between
magnets in the axial direction, maintained via the use of small (2 mm square) spacers
made from office paper. To support the forces on the coil and transmit motion to the
load, four carbon fiber rods (1.7 mm diameter) were located inside the coil; 2 mm wide
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5 mm

Figure 5-2: A cross-section of the as-built motor in the rθ-plane (left) shows
several differences from the optimum geometry (of Figure 5-1). The magnets
(hatched parallel to magnetization) have been split into four segments to allow
manufacturing, with alignment features on the end faces; grooves have been added
to the outside of the magnets, to hold cooling tubes; and large channels have been
removed from the inner magnets, to fit support rods (black) for the coil (orange). In
addition to these changes, a magnesium sleeve (light gray) has been added outside
the outer magnets for mechanical support. A photo of the actual magnet segments
is shown on the right.

channels were removed from the inner magnets to fit these rods. The rods have milled
channels (0.8 mm wide and 0.5 mm deep) to fit the wires between each phase group in
the coil; as only three of the rods are needed to contain the phases, the fourth rod’s
groove instead contains a type T thermocouple, with its junction placed in the center
of the coil. The outer magnets were given grooves to fit cooling channels, as will be
discussed further in Section 5.2.2.

Rather than include an external bearing, we instead chose to use the magnet-coil
interface as a bearing. To do this, the coil inside diameter was adjusted to be just
larger (30µm) than the inner magnets, and a thin layer of wear-resistant polymer
(50µm PEEK2) was used as a coil liner. This configuration is thermally stable, as the
magnets have a thermal expansion coefficient an order of magnitude smaller than that
of the copper in the coil.

The coil was wound on a precision mandrel of diameter 15.76 mm, which was cut
by wire EDM to have grooves 1.9 mm wide for the support rods. The mandrel was
first wrapped by the PEEK sheet, then the rods were slipped into place over the sheet.
The coil was wound over the PEEK, with thermally-conductive urethane (Loctite
US1150) applied to each layer of the winding, and each phase group allowed to cure for
12 hours before winding the next. The phases were connected in a wye topology at the

2McMaster-Carr 4671T11, treated with acetone to remove the adhesive.
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Figure 5-3: The coil is seen here with its support rods, before the wires were
terminated. The copper ferrules on the ends of the carbon rods were used as
attachment points for the motor’s load.

bottom of the coil, and the coil wires were soldered to larger (18 AWG) leads at the
top of the coil. The electrical connections at the ends of the coil added approximately
3 mm to the coil length, reducing the stroke accordingly. The coil can be seen in
Figure 5-3, before the wires were terminated.

After winding the coil, it was found to have several loose wires, and the PEEK
liner proved unable to survive removal from the mandrel. To compact the coil, and
provide for a wear-resistant lining, the coil was placed on its mandrel in an aluminum
mold (19.5 mm I.D.), and impregnated with Loctite E-30CL epoxy under 600 kPa air
pressure. This process reduced the coil’s outside diameter to 19.55 mm, eliminating
the loose wires.

The magnets were wire EDM cut from a billet of VACODYM 633 HR.3 After
cutting, they were impulse magnetized at 3.2 T in a solenoid fixture, then prepared
for assembly by scouring with a brass brush and cleaning with solvent. Magnets
were first assembled into rings, using a fixture as shown in Figure 5-4; the rings were
stacked to form the arrays in close-fitting sleeves that had been treated with a mold
release. The outer magnets were assembled primarily with Loctite 331 acrylic adhesive,
while the inner magnets were assembled primarily using Loctite 1C-LV epoxy.4 It
was determined that adhesive alone was unable to support the outer magnets against
their own magnetic field, and a magnesium sleeve (alloy AZ80A) was fabricated by
wire EDM and used to restrain the magnets without blocking the cooling channels
(as shown in Figure 5-2). While the inner magnets were self-supporting, we chose to

3Vacuumschmelze GmbH & Co. KG
4Loctite 331 cures to a tougher bond more quickly than 1C-LV, but not as reliably under

prototyping conditions. Several magnets in the inner array suffered adhesive failure with Loctite 331,
and had to be replaced using 1C-LV.
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Figure 5-4: Magnets were assembled into rings using fixtures made by wire EDM;
shown here is a ring of outer magnets in its fixture.

reinforce them by inserting a hypodermic tube5 (5.16 mm O.D., 4.80 mm I.D.) in their
central cavity and filling the gap between with 1C-LV epoxy.

One major problem that was discovered during magnet assembly was that the
glue gaps left between the segments allowed for a substantial amount of diameter
variation. While the bearing surface on the inner magnets was sanded smooth, one
magnet protruded by too much to sand down and, as will be seen in Section 5.4.1,
causes a substantial amount of friction during motor operation. The outer magnets
were likewise diamond-filed to fit, but the axial magnets underwent significant radial
expansion, leaving a larger-than-desired air gap. We suspect that it would be necessary
to machine the magnet arrays after assembly to maintain the tolerances needed for
very low thermal resistance.

5.2.2 Cooling System

To remove heat from the motor, we chose to employ water cooling via small-diameter
tubing on the outside of the motor. A tube with an inside diameter of 500µm,
containing a laminar water flow and with a fixed wall temperature, would have a heat
transfer coefficient6 of about 4400 W/(m2 ·K) [41]; if such tubes were to cover half of
the outer surface of the motor, the resulting thermal resistance would be 0.12 K/W,
small compared to that predicted for conduction alone in Table 5.2.

To provide this level of thermal performance, the tubes must be small and numerous,
with as little thermal resistance presented between the fluid and the magnets as possible.

5McMaster-Carr 5560K414
6Assuming fully-developed flow and a temperature of 22 ◦C; relaxing these assumptions increases

the heat transfer coefficient.
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Figure 5-5: The outer magnet array is shown here with the cooling tubes installed
in their grooves. Also visible is the slight variation in the magnets’ inside diameters
caused by the repulsive forces within the array.

Simple hypodermic tubing contributes little thermal resistance, with trade size 23XTW
tubing7 (635µm O.D., 508µm I.D.) contributing less than 2% of the thermal resistance
due to convection. To provide for close thermal contact between the magnets and the
tubing, semicircular channels were cut into the magnets’ outer surface, with additional
magnet material provided between tubes to keep the average outer diameter of the
magnet at 25 mm. The channels were filled with Arctic Silver thermal compound
prior to magnet assembly, to avoid introducing significant interface resistance. A total
of 72 channels were placed around the periphery of the motor; eight of these were
used to secure the magnet retention sleeve, leaving 64 cooling tubes spaced around
the motor, as shown in Figure 5-5. The tubes were cut to length by wire EDM, to
avoid burrs, and inserted between the magnets and the retention sleeve after magnet
assembly. (During assembly, the channels were periodically cleared of excess adhesive
and thermal compound.)

With the heat transfer surface designed, it remained necessary to choose the flow
conditions and design the fluid manifold required. We chose to set the flow to allow
a maximum of 10 ◦C temperature rise from inlet to outlet under a thermal load of
70,W, slightly more severe than the expected maximum operating conditions. The
required flow under these conditions would be 1.67 mL/s, a modest flow rate easily
provided by compact pumps. This flow, however, could pass through the tubes in
any manner: a single pass through all the tubes in parallel, in series through all the
tubes, or some series-parallel combination of them. A summary of the possible flow
arrangements is given in Table 5.3; as the number of passes increases, the pressure
drop and power requirements increase rapidly. The drawback to a small number of
passes is the existence of larger thermal gradients in the motor, especially in the

7McMaster-Carr 5560K63, 304 stainless steel
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Table 5.3: The flow conditions are summarized for the possible numbers of passes
in the cooling jacket of the prototype motor. Pressure drop is given from inlet to
outlet, and calculated assuming fully-developed flow; fluid power is the pumping
power required by the flow. (Asterisks denote turbulent flow conditions, violating
the model assumptions.)

Number of Flow Reynolds Pressure Fluid
Passes Velocity (m/s) Number Drop (kPa) Power (mW)

1 0.13 68 0.82 1.4
2 0.26 140 3.3 5.5
4 0.51 270 13 22
8 1.0 540 52 87
16 2.0 1100 210 350
32 4.1 2200 840 1400
64 8.2 4400* 3400* 5600

single-pass case. Also, with low overall pressure gradients and many tubes in parallel,
there may be uneven flow distribution if some tubes are slightly different in inside
diameter. On the whole, a low but non-unity number of passes seemed best, and a
four-pass strategy was chosen for the prototype.

To provide for the four-pass flow configuration, manifolds with passages connecting
banks of 16 tubes on each end of the motor would be required. We sought to keep
the parts count to a minimum and avoid complex sealing arrangements, and so the
manifolds were designed as single-piece endcaps for the motor, as shown in Figure 5-6.
The header for each bank of 16 tubes was formed by two intersecting holes, 1.6 mm
in diameter, and banks were connected by extending one of the drilled holes. The
manifolds were machined from alloy 6017 aluminum in a single setup, with the
exception of the headers, which were drilled individually with a custom fixture. The
manifolds were sealed to the tubes and to the magnets using Loctite E-30CL epoxy.
The final assembly proved to have a higher fluid resistance than expected, needing
50 kPa to support 1.67 mL/s of flow rather than the expected 13 kPa. The discrepancy
likely arose from a combination of pressure drops in the manifolds and contamination
of the tube ends with adhesive during assembly; as pressure drop is proportional to
the inverse fourth power of tube diameter under constant volume flow conditions, even
very small constrictions can lead to large pressure drops.

5.2.3 Overall Structure and Assembly

With the magnets, coil, and cooling system designed, the parts of the motor simply
need to be connected to each other and to the outside world, as appropriate. The
expected actuation forces of 40-50 N pose no special structural challenge, but there are
potentially very large forces attracting the inner magnet array to the outer magnets.
Thus, the mechanical endcaps needed to resist large radial forces, or preferably to keep
the inner magnets centered at the unstable equilibrium point to avoid the generation of
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Figure 5-6: Cooling manifolds are shown installed on the ends of the outer magnet
array (left), along with a cross-sectional view of the manifold (right). At one end
of the motor, water is brought in and out via 4 mm push-to-connect tee fittings,
which also serve as sites for thermocouple probes. The cross-drilled fluid passages
are sealed with M2 set screws, several of which are visible on the front of the motor.
Two passages suffice to connect all 16 tubes in a bank, and the holes are extended
to connect banks of tubes.

radial forces in the first place. Furthermore, these forces also had to be avoided during
motor assembly, as a single endcap would be unable to keep the opposite end of the
magnets centered, and one endcap would have to be removed for coil installation. In
addition to the problem of magnet centering, the structure ultimately had to prevent
the coil “bearing” on the magnets from experiencing side or moment loads, to keep
friction to a minimum.

The solution to the centering problem was straightforward—we placed a boss on
each endcap that extends about 1 mm into the air gap. This reduced the stroke, but
kept the parts simple and the size of the structural loop minimized. The resulting parts
are shown in Figure 5-7. To keep the magnets centered during assembly, the endcaps
were designed to allow a tool (also shown in the figure) to be inserted along the entire
length of the air gap. As the coil was inserted, it could also provide the centering
function and displace the centering tool. The endcaps are secured to the magnet
arrays using an aluminum tie-rod, passing down the center of the inner magnets. Both
endcaps are machined from FR-4 glass-epoxy composite, for strength and light weight.

We chose to leave the problem of off-axis forces to the application design, for
now—the motor user must place suitable bearings and/or couplings on the motor
mounts to avoid off-axis forces. In our test system, described further in Section 5.3.1,
we used a spherical bearing on the motor output, moved the motor with a precision
stage, and bolted the motor itself to an optical table. This arrangement depended on
careful stage alignment to avoid off-axis forces, but the addition of a second spherical
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Figure 5-7: The front (bottom left) and rear (top left) endcaps bear spacing rings
to keep the inner magnets centered; the rear endcap also has cutouts to admit the
motor assembly tool (right). The square feature on the rear endcap aligns it to
the inner magnets, while the bowl-shaped indentation on the front endcap leaves
space for a nut and washer below it, which keep the rear endcap attached while
the front endcap is removed. The motor is mounted to the application by the two
M3 threaded holes in the rear endcap.
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bearing on the motor mount would eliminate them.
The motor output is connected to the ferrules on the coil by four M1.6 screws.

For testing purposes, we provided the output with a 3/8”-24 female screw thread for
connection to the load, as well as with a mating feature for the slider of a potentiometer
position sensor.8 Position sensing is a key feature in commutated motors like this
one; while we chose to use an external potentiometer to measure coil position for
expediency, we anticipate that linear hall effect sensors placed either outside the outer
magnets or on one of the coil support rods inside the magnetic airgap could do the
job without needing an external sensor mount. Slots were also provided to manage
the wires leaving the motor, as shown in Figure 5-8.

With all of the components of the motor prepared, the assembly process was
reasonably straightforward. A spacer sleeve was machined to fit between the inner
and outer magnets, and used to support them through assembly in an arbor press.
(Dual Halbach arrays act as very powerful magnetic springs [60], necessitating high
forces for assembly.) The rear endcap was then attached to the inner magnets, with
a nut and washer on the output end of the motor and the tie-rod passing through
the length of the magnets. The spacer sleeve was then replaced by the assembly tool,
which was pushed through the cutouts in the rear endcap. The assembly tool, in turn,
was displaced by the coil, inserted from the front. Once the coil was fully inserted, the
front endcap was fastened to the tie-rod using a nut, and finally the output coupler
was fastened to the coil with socket head cap screws. A rendering of the as-assembled
motor is given in Figure 5-8. The completed motor had a mass of 185 g, of which 27 g
were moving mass (i.e. the coil and output coupler).

5.3 Experiment Design

Once we had a complete motor, we had to determine how to best evaluate its
performance. The models developed in this thesis were intended to predict two major
aspects of motor performance: heat transfer and static force capability. We therefore
designed a simple testbed to measure these properties, without the complexity of a
full dynamometer.

5.3.1 Force Measurement

To fully evaluate the force production in the motor, we needed to be able to measure
force at every position along the stroke, while reliably measuring that position. To
measure force, a threaded load cell (Futek LCM200, 250 lb. rating) was fastened to the
motor output, to which a spherical joint rod end9 was connected. The rod end, in turn,
was connected to a precision lead-screw stage (Danaher Motion LM-200), which was
used to move the motor over its stroke. The stage, though equipped with a stepper
motor, was actuated by simply turning a knob by hand. The motor itself was fastened
to a carrier plate, which also held the position sensor (Panasonic EVAJGTJ20B14

8Panasonic EVAJGTJ20B14
9McMaster-Carr 2458K341
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Figure 5-8: A rendering of the complete, as built motor shows the front endcap,
motor output coupler, and overall layout of the motor.
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Figure 5-9: The motor was connected to a precision stage for force measurements.
Visible here are also the load cell (center) and rod end (top center, golden color).

linear potentiometer) in the correct position. The stage and carrier plate were both
fastened to an optical breadboard, completing the structural system. The resulting
apparatus is depicted in Figure 5-9.

The load cell and potentiometer were driven by a simple signal conditioning
circuit, and the resulting data were recorded using a data acquisition unit (DAQ)
(National Instruments USB-6215) and National Instruments LabView SignalExpress
software. The potentiometer was driven from a precision 5 V reference (Analog Devices
AD586M), and its output was read directly by the DAQ. A linear calibration of the
potentiometer was performed using a height gage (Mitutoyo HDS). The load cell
was driven by a laboratory power supply (Agilent E3631A) at 10 V, and its output
was amplified using a precision instrumentation amplifier (Analog Devices AD624)
configured for a gain of 1000. The configuration of the load cell did not admit in-situ
calibration; rather than calibrate it in a different system, we chose to use the datasheet
sensitivity, and report its output as “uncalibrated”. Our test protocol eliminated any
offset error from the load cell reading.

To produce force, of course, current had to be applied to the motor windings. A
laboratory power supply (Hewlett-Packard E3610A) was used as a controllable source,
and a bank of switches was used to assign the current to the phases of the motor.
Each phase of the motor could be powered, grounded, or left floating, and a switch
was also provided to reverse the current. The voltage at each phase was directly
recorded by the DAQ; current was measured on phase A and on the supply using
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0.1 Ω resistors, read directly by the DAQ. The current measurements were calibrated
using a benchtop multimeter (Agilent 34411A).

During all experiments, the DAQ was configured to record 6000 samples per second.
The data were filtered with a 100-point moving average, to eliminate 60 Hz noise, and
down-sampled to an effective sample rate of 10 samples per second. This process also
reduced broadband noise, as well as noise induced by the tendency of the stage to
move in discrete steps due to the stepper motor.

5.3.2 Coolant Loop

To evaluate the thermal performance of the motor, we needed to supply it with a
continuous 1.67 mL/s flow of water, and reject the heat deposited in the water to the
environment. At the same time, we sought to demonstrate that the major components
of such a cooling system need not be large or heavy compared to the motor. Thus, we
chose a very compact gear pump (Flight Works 2202-RM2B-SPBBXZ) to provide the
water flow. This pump is rated to supply up to 7.5 mL/s at a pressure of up to 270 kPa,
sufficient to supply cooling to 25 copies of the prototype motor simultaneously, yet
has a mass of just 44 grams.

We were less concerned with the mass and size of the other parts of the cooling
system, and so we used standard tubing and gauges. In brief, the loop includes a
water reservoir, a 50µm filter (Flight Works 6065-4), the pump, a rotameter for flow
measurement (Key Instruments MR3L19SNVT), a pressure relief valve set for 100 kPa,
and a pressure gage (15 psi / 100 kPa maximum) immediately upstream from the
motor. Downstream from the motor, heat is passively rejected to ambient via a 15 m
length of copper tubing (4.8 mm O.D., 3.2 mm I.D.) hung vertically in the room as a
loose coil, before the water is returned to the reservoir. The heat rejection coil adds
10 kPa to the measured pressure at the motor inlet when running at 1.67 mL/s.

Temperature is measured at three points using type T thermocouples: the motor’s
water inlet, the water outlet, and on the coil itself. The water temperature is measured
using 4 mm diameter probes, designed to place the thermocouple junction at the center
of the tee fittings. The junctions themselves were encapsulated in Loctite E-30CL
epoxy. The temperatures were read out and recorded using an Omega HH147U meter,
sampling once every second.

5.3.3 Test Protocol and Data Reduction

Two different kinds of experiments were performed to determine the motor performance:
thermal and force production. Before each test, the water pump was activated and
adjusted to give the proper water flow rate. For the thermal test, the motor was
configured with phase C powered and phases A and B grounded, and positioned
at the mid-point of its stroke. Terminal currents of 0.5 A, 1 A, 1.5 A, and 2 A were
applied for at least 5 minutes, until the temperature had reached close to steady
state. The motor was also tested with the pump switched off, at a current of 1.5 A,
until the temperature reached 45 ◦C, at which point the pump was reactivated. The
power applied at each current level was determined from measurement of the motor’s
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Figure 5-10: The cooling system can be seen clearly in this photo, taken before
assembly of the force measurement system. The pump, flow meter, and pressure
gage are visible here; the reservoir, filter, and pressure relief valve are located
behind the panel. The heat rejection coil is not shown.
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terminal voltage and current. The data were analyzed by isolating each period of
current application, and fitting an exponential curve to the difference between the
coil temperature and the water inlet temperature. Thermal resistance was determined
by dividing the steady-state temperature difference (from the exponential fit) by the
applied power for each current level.

To measure the motor’s force production, applied power was held constant as the
motor was moved between its stroke limits. Force was measured for each of the six
possible winding configurations: A-B, A-BC, A-C, C-AB, B-C, and B-AC, where the
phase before the dash is powered, the phases after the dash are grounded, and any
phases omitted are left floating. At the beginning of each test, the motor was located
approximately at the midpoint of its stroke. First, with the current off, the motor
was moved up to the top of its stroke, down to the bottom, up to the top again, down
to the bottom again, and back to the midpoint, providing two passes each in the
upwards and downwards directions. A terminal current of 1.5 A was then applied, and
the motion cycle repeated. Finally, the current was reversed, and the motion cycle
repeated once more.

To analyze the motor force data, each experiment was broken into segments based
on current level and motion direction. The data with no current were interpolated and
averaged, to give a “friction function” for the upwards and downwards directions. This
friction function was then subtracted from the data segments with current applied, to
determine the force produced within the motor. Once all six configurations (yielding
48 passes total) were measured, the data were broken out into position bins, 0.2 mm in
width. The forces and phase currents (calculated based on the phase A and terminal
current measurements) within each bin were used to determine the force constants for
each phase by constrained linear least squares minimization, according to

F = KAIA +KBIB +KCIC , with KA +KB +KC = 0, (5.1)

where Kx denotes the force constant (in N/A) of phase x, and Ix denotes the phase
current. The overall motor constant under optimum commutation in each bin could
then also be determined, according to

ε =
1√
Rph

∑
x

K2
x, (5.2)

where Rph is the resistance of one phase, measured via the phase voltage and current.
The lack of connection to the star point of the windings in the motor ensured that
the sum of the phase currents is always zero, but this made it impossible to measure
any component of the phase force constants that would result in a nonzero mean force
constant.

5.4 Motor Performance

Overall, the prototype motor performed well, exceeding the expected magnetic per-
formance but falling short thermally and mechanically. A summary of the measured
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Table 5.4: The measured performance parameters of the prototype motor are
compared to the design performance and the expected performance. (Friction is
excluded from the calculation of Fmax.) The maximum force is that corresponding
to an 80 ◦C coil temperature and 20 ◦C coolant temperature. The theoretical
and expected motor constants are reported at the motor’s experimental operating
temperature of 40 ◦C.

Condition ε
(

N/
√

W
)

Rth

(
K/W

)
M (g) Fmax (N)

Theoretical 8.75 2.6 141 39
Expected 5.84 1.8 132 30
Actual 5.89 2.6 185 26

motor performance is given in Table 5.4.

5.4.1 Force Production

In general, the motor produced force slightly more efficiently than predicted by the
model, as indicated in Table 5.4. This enhancement was likely due to the approximation
of the magnet cutouts and coil spacers as being homogeneous reducers of magnet and
copper density, when in reality the material was removed from portions of the magnets
and coils with reduced contributions to force production. A major challenge, however,
was posed by unexpectedly high friction within the motor. The friction measured
during one run of the experiment is shown in Figure 5-11. Over much of the stroke, the
friction force amounted to about 5 N, or 17% of the predicted maximum continuous
output. While this is highly detrimental to the motor efficiency, commercially-available
linear motors also can exhibit similarly high levels of friction. (See Section 5.5 for
more details regarding extant motors.) About 4 mm from the bottom of the stroke,
friction spikes to about 10 N. This location corresponds to that of the protruding
magnet segment mentioned in Section 5.2.1.

Despite the high friction within the motor, the force production was still relatively
repeatable. Data from one run of the experiment, with friction subtracted and
normalized by power dissipation, are shown in Figure 5-12. The variation in motor
constant for a fixed commutation pattern is nearly sinusoidal, as expected for a
Halbach motor. Over the top half of the stroke, the force data are quite repeatable;
repeatability is reduced in the bottom half of the stroke, where friction is increased.
When the commutation pattern is well-matched to the magnetic field in the motor,
the motor constant reaches approximately 6 N/

√
W.

To extend the results to describe the motor performance for an arbitrary current
distribution, we processed the data from five of the commutation patterns with
Equations 5.1 and 5.2. (The data for the A-BC commutation pattern did not allow
for a unique determination of the currents in phases B and C, due to the use of a
single phase current sensor.) The resulting estimated force constants, as well as the
overall motor constant, are shown in Figure 5-13. The relatively wide tolerance bands
on the phase force constants are induced by the low friction repeatability, but also
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Figure 5-11: The measured friction from one experiment (phase connection A-
B) is shown, for both inwards (dashed) and outwards (solid) motion of the coil.
Positive force denotes tension, while negative denotes compression; the brief tensile
excursion in the friction for inwards motion indicates the presence of a small offset
in the load cell output.

depend strongly on the binning of positions. No confidence interval is given for the
overall motor constant, as the errors in the phase force constants are correlated by the
constraint. The estimated motor constant varies between 5.4 N/

√
W and 6.6 N/

√
W,

with the highest values occurring at the ends of the stroke and the lowest values
mid-stroke. The value reported in the results table corresponds to the mean motor
constant over the entire stroke. The elevated motor constant at the ends of the stroke
is unexpected, and may be the result of a slight mismatch between the coil pitch and
the magnet pitch.

5.4.2 Heat Rejection

The prototype motor exhibited a thermal resistance significantly higher than that
predicted, an average of 2.6 K/W rather than the predicted 1.8 K/W. This discrepancy
was most likely due to the poor dimensional tolerance of the outer magnet array,
leaving a larger air gap than expected. This increase in thermal resistance corresponds
to only an extra 40µm of air gap between the coil and outer magnets. The use of this
cooling strategy is critically dependent on maintenance of a precise, very small air
gap. The high thermal resistance lowers the maximum force rating of the motor by
the square root of the thermal resistance ratio, or about 17%.

The rest of the cooling system performed well; the course of one thermal experiment
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Figure 5-12: The measured motor constant is plotted against coil position for
one phase connection scheme, A-B. The different lines correspond to the eight
passes over the motor stroke made in one experimental run, illustrating the degree
of friction repeatability.

is shown in Figure 5-14. The power steps generate clean first-order exponential
temperature responses, as illustrated in Figure 5-15. For the four power levels of
0.47, 1.86, 4.33, and 8.05 W, the curve fits give thermal resistances of 2.6, 2.7, 2.7,
and 2.6 K/W, respectively. The average time constant of approximately 100 seconds
indicates a heat capacity of 38 J/K, while the heat capacity of the coil alone should
be (based on copper mass) only about 5 J/K—the inner magnets are very closely
coupled to the coil, with a time constant too short for this experiment to measure.
The temperature difference between the water inlet and outlet is consistent with all
of the dissipated power being removed by the flow; the thermocouple resolution is
insufficient to give quantitative confirmation. The heat rejection coil also proved
sufficient, though the heat capacity of the water in the loop was high enough to avoid
significant heating over the length of the experiment.

5.5 Discussion and Comparison to Extant Motors

Our test results show that double Halbach tubular linear motors are, indeed, capable
of very high electromagnetic performance. Furthermore, the close agreement between
our model and the performance of the actual motor confirms the model’s veracity and
utility—checking the motor performance in the model takes less than one second, and
optimizing the geometry for a particular topology only takes a few minutes, while
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Figure 5-13: The estimated phase force constants (red, green, and blue) are
plotted against coil position, along with the estimated motor constant (black) if an
optimum set of phase currents are applied. The shaded bands around each force
constant correspond to the 95% confidence interval; all parameters were estimated
using 0.2 mm position bins.

finite element analysis of a motor takes several minutes just to check the performance
of one configuration, and building and testing a prototype takes months and thousands
of dollars. If manufacturing specifications, particularly achievable winding fill factor,
can be known in advance, then analytical modeling alone should suffice to predict
motor performance.

The main factor not accounted for in the model is the friction in the motor, which
is exquisitely sensitive to the build quality and manufacturing tolerances. We suspect
that post-magnetization grinding of the magnet arrays would be needed to get reliable,
low-friction performance from a motor with this particular bearing and cooling design.
While such grinding does not appear to be common industry practice, our experience
attempting to smooth the arrays’ surfaces suggests that it would not be unduly
difficult to remove even magnetized grinding swarf from the magnets. Alternatively, a
different bearing strategy could be used, such as an external conventional bearing, or
a hydrostatic bearing built into the inner magnets. The hydrostatic bearing approach
would have the additional benefit of providing cooling immediately on the coil surface,
rather than requiring heat transfer across an air gap.

5.5.1 Comparison to Commercially Available Motors

It is instructive to compare the performance of this prototype to a range of commer-
cially available linear motors with different geometries. Figures 5-16, 5-17, and 5-18
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Figure 5-14: The water inlet (blue), water outlet (green), and coil (red) tem-
peratures are plotted over the course of a thermal performance experiment. The
first four temperature steps correspond to power dissipations of 0.47 W, 1.86 W,
4.33 W, and 8.05 W, respectively. The motor is then allowed to cool to ambient
before the water flow is switched off, and 4.33 W are applied again. When the coil
temperature reaches about 45 ◦C, the water is turned back on, generating a spike
in water outlet temperature, and the motor is allowed to cool.

compare the performance of our motor to that of coreless double-sided flat linear
synchronous motors (LSMs) from Rockwell Automation (LEM series [136], LEU
series [137], and LZ-030 series [138]), coreless tubular motors from Dunkermotoren
(STA11 series [139], STA25 series [140], and XTA38 series [141]), tubular motors with
slotted stators from Moog [142], and ironless tubular motors from Faulhaber (LM
Series [143–145]), as well as moving-coil voice coil actuators from BEI Kimco [134],
H2W Technologies [146], Moticont [147], and Akribis [148], and moving-magnet voice
coils from H2W Technologies [146]. Where the stroke of the motor would be con-
figurable, the shortest option was chosen, so as to present its performance in the
most favorable light possible. Several models of these motors support water cooling;
specifications of motors with water cooling are shown separately from those for motors
that are passively cooled. Two performance specifications are compared: the motor
constant divided by the square root of the mass (“motor constant density”) and the
force density. The motor constant density evaluates both the materials choices and
the electromangetic performance of the design, and in the absence of structural mass
should be independent of mass; including structural mass, it might be expected to
improve somewhat in larger motors. The force density is compared to the pitch length
in synchronous motors, to check against the scaling relation of Equation 2.68; all
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Figure 5-15: The coil temperature rise (over the inlet water temperature) is
plotted during the transition from 4.33 W of power dissipation to 8.05 W. The
actual temperature (solid) tracks a first-order exponential curve fit (dashed) very
closely, with a final temperature rise of 21.2 ◦C and a time constant of 105 seconds.

else being equal, motors of shorter magnetic pitch length should support higher force
densities.

Examining the motor constant density of the motors, it is clear that our motor
performs very well compared with the commercial synchronous motors—only the Moog
motors, which have 100 times the mass of our motor, offer comparable performance.
One possible reason for this is form factor; most of the commercial tubular motors
use small-diameter magnet rods with long magnetic pitches, which lead to inefficient
magnetic structures. The Moog motors have a substantially larger rod compared
to their pitch length, allowing the magnetic circuit to be more compact and thus
more efficient. This fact is graphically illustrated in Figure 5-17, where it can be
seen that most of the synchronous motors cluster at very low dimensionless magnet
radii. (Compare to Figure 3-17, which expresses the theoretical performance of a
double-sided Halbach motor as a function of dimensionless radius.) The penalty for
larger magnets relative to pitch, however, is increased manufacturing cost.

Our motor’s electromagnetic performance also compares well to commercially-
available voice coils, with only the moving-magnet voice coils having a comparable
motor constant density and size. These motors, however, have very short strokes
relative to their sizes, limiting their range of applicability. As shown in Figure 5-17,
the periodic structure of our motor allows high electromagnetic performance at small
overall aspect ratios; short, large-diameter voice coils are needed to achieve comparable
motor constant density. It is also useful to note that these voice coils are all based on
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Figure 5-16: The motor constant density (motor constant divided by the square
root of motor mass) is plotted against motor mass for 132 different commercially
available linear permanent magnet motors. Coreless moving-magnet tubular LSMs
are indicated by squares (black for Dunkermotoren and cyan for Faulhaber), slotted
moving-magnet tubular LSMs with water cooling are indicated by triangles (Moog),
double-sided coreless moving-coil planar LSMs are indicated by circles (Rockwell),
moving-coil voice coils are indicated by crosses (black for BEI Kimco, blue for
H2W, green for Moticont, and cyan for Akribis), and moving-magnet voice coils
are indicated by diagonal crosses (H2W). The performance of our prototype motor
is indicated by a red star.

magnetic circuits containing iron, and have limited peak force capability.

The force density of the synchronous motors shows roughly the expected behavior,
with maximum force density inversely proportional to pitch length as shown in Figure 5-
18. There is too much variation in performance to determine whether the observed
scaling corresponds to convection-limited scaling (F ′max ∝ p−0.5) or conduction-limited
scaling (F ′max ∝ p−1). The voice coil motors exhibit even greater scatter in their
force density; different manufacturers appear to use wildly different standards for
their continuous operating conditions. For instance, one of BEI Kimco’s motors, the
LA15-16-024A, is specified with a continuous force density of 107 N/kg, the highest
among the 132 motors examined; this corresponds to an unusually high natural
convection heat transfer coefficient, over 50 W/(m2 ·K). Experimental study may be
required to determine the practical force ratings of different manufacturers’ motors
under consistent environmental conditions.

In spite of the higher-than-expected thermal resistance of our prototype motor, it
still achieves a higher force density than all of the commercial motors investigated,
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Figure 5-17: The motor constant density (motor constant divided by the square
root of motor mass) is plotted against inner magnet radius times wavenumber (for
synchronous motors) or 2π times outer magnet housing radius divided by magnet
housing length (for voice coils) for a wide range of commercially available linear
permanent magnet motors. Coreless moving-magnet LSMs are indicated by squares
(black for Dunkermotoren and cyan for Faulhaber), slotted moving-magnet LSMs
with water cooling are indicated by triangles (Moog), and moving-coil voice coils
are indicated by crosses (black for BEI Kimco, blue for H2W, green for Moticont,
and cyan for Akribis). The performance of our prototype motor is indicated by
a red star, for dimensionless inner magnet radius, and a red asterisk, for magnet
housing geometry. (Moving magnet voice coils and planar synchronous motors are
omitted due to different appropriate geometric ratios.)

in most cases over twice as high. The thermal resistance of our motor could be
directly reduced through the addition of ferrofluid to the air gap; improvement in
manufacturing tolerance would help even further. More exotic heat transfer strategies,
with heat removed directly from the coil rather than from the motor exterior, could
yield substantial improvement. Note, however, that the maximum force is proportional
to the inverse square root of the thermal resistance, so very large relative changes in
thermal resistance are required to make large improvements in force capability.

While we did not experimentally verify it, the model predicts a one second peak
force rating of 111 N for our motor, or 600 N/kg, based on heating the coil from 80 ◦C
to 90 ◦C. This is over 50% greater than the next highest value among the motors
tested, 390 N/kg, also for the BEI Kimco LA15-16-024A. More significantly, if this
peak force is used to accelerate the moving element, the resulting acceleration is
4100 m/s2, double that of the LA15-16-024A.
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Figure 5-18: The force density is plotted against the magnetic pitch length
for a variety of commercially available linear permanent magnet synchronous
motors. Coreless moving-magnet tubular LSMs are indicated by squares (black for
Dunkermotoren and cyan for Faulhaber), slotted moving-magnet tubular LSMs are
indicated by triangles (Moog), and double-sided coreless moving-coil planar LSMs
are indicated by circles (Rockwell). The data points correspond to passive cooling,
except for several Moog and Rockwell models indicated with blue symbols. The
performance of our prototype motor is indicated by a red star.

Beyond the specifications described by our theory, it is also helpful to look at the
friction and cogging force levels in commercial motors. Of the motors compared, only
the Moog specifications include friction; their model 50206 motors are specified with
a friction force ranging between 120 N and 245 N, and a maximum continuous force
output of 2002 N, allowing friction to consume up to 12% of the rated force. This motor
uses a slotted stator and plain bearings, with the friction force generated by magnetic
attraction between the magnets and stator. Festo’s ironless linear motors [149] have
an even higher level of friction as-specified; the DNCE-32-100 has 5.9 N of friction
and a maximum continuous force of just 33.7 N, with friction consuming 18% of the
rated force. Thus, if the protruding magnet in our motor causing the locally very high
friction were eliminated, as it would be in any future versions, the residual friction
would be well within the specifications of other common motors.

5.5.2 Comparison to Research-Grade Motors

Unlike motors offered for commercial sale, motors reported in the scientific literature
rarely include full datasheet specifications. The most widely-available specification
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is the volumetric force density, measured in N/m3, sometimes based on the actual
thermal resistance and maximum operating temperature and sometimes simply based
on an arbitrary current density. Based on the exterior dimensions of our magnet
array (including the cooling manifolds), our prototype motor exhibits a volumetric
force density of 0.70 MN/m3. Bianchi et al. in 2003 [150] predicted volumetric force
densities of up to 0.24 MN/m3 for linear synchronous motors with slotted stators under
natural convection, and lower volume force densities for slotless motors; this value is
exceeded by commercially available motors today.

More recently, Galea et al. [151] reviewed a variety of high-force-density linear
permanent magnet motors, including their own efforts. They estimate the “typical”
tubular linear permanent magnet motor as having a volume force density of 0.3 MN/m3,
presumably under natural convection conditions. Their own water-cooled slotted-
stator tubular motor is reported as achieving 0.69 MN/m3 and 106 N/kg, although
they appear to only include the mass of the magnets, coils, and back-iron, and only
the volume of the stator. They also discuss a design by Joseph and Cronje [73] for a
very large generator with a double-sided slotted stator, with a volumetric force density
of 0.46 MN/m3, limited by strength of materials rather than thermal considerations;
no version of this motor appears to have been built, however. Thus, our results are in
line with the very best results reported in large, slotted tubular motors.

More interestingly, Galea et al. also discuss a family of multiple-airgap, “flux-
switching” machines capable of very high force densities. These motors act as hybrids
between permanent magnet synchronous motors and variable reluctance motors, with
the position of an iron structure relative to a magnet array determining the magnitude
of the flux linkage in a large coil. While relatively little information is available about
the practical performance of these actuators, and measurements appear to have been
made under pulsed conditions, Cavarec et al. [36] reported a volume force density of
about 1 MN/m3 for a multi-rod tubular flux switching motor, and Ziegler et al. [152]
report the astonishing values of 5 MN/m3 and 1000 N/kg for their planar flux-switching
actuator. Elsewhere, Wang et al. [153] describe a single-airgap flux-switching motor
with a (modeled) volume force density of 1.4 MN/m3 under reasonable (40 W/(m2 ·K))
natural convection conditions, though they have not constructed their motor.

These flux-switching motors offer intriguingly high force densities, but do have
drawbacks. Besides having high friction [152] due to magnetic attraction between their
iron and magnet elements, they also suffer from very poor power factors [91] and require
high electrical drive frequencies. Thus, force density will rapidly decrease with velocity
due to the power dissipation of the inductive current, and oversize power electronics
may be required. Wound-field rotary versions of the flux-switching motor [154] have
been well-characterized and are in commercial use in low-cost applications, though
the design does not yet appear to be widely known. In all, this class of actuators
has promising characteristics, but are held back by the challenges of analyzing their
performance, the complexity of building them, and the challenges of electrically driving
them.

Outside the synchronous motor literature, there have been reports of voice coil
actuators with unusually high force densities and/or motor constant densities. Recast-
ing the motor constant of our prototype in volumetric terms, we achieve a volumetric
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motor constant density of 0.96 kN/
√

W ·m3. Mizuno et al. [155] report a value of
1.6 kN/

√
W ·m3 for their moving-magnet voice coil. Their design shares elements of

the flux-switching motor, in that it redirects the magnet flux along the axis of the coil,
and likely has a very high inductance relative to its permanent magnet flux linkage.
(The force density reported reaches 0.5 MN/m3 before saturation becomes important.)

The research motors described thus far achieve high force densities primarily
through electromagnetic design, with active cooling simply applied to the exterior of
the motor. Others have instead approached the problem by strongly enhancing the heat
transfer, if even at the expense of some electromagnetic performance. Liebman [156]
explored cooling techniques based on expanding the end-turns of a planar motor,
allowing the heat transfer in the motor to take place primarily along the wires in the
coil rather than across air gaps. While no performance results are available for the
motor as a whole, oil cooling of the end-turns was able to achieve a nearly six-fold
improvement in current rating over simple natural convection cooling. Galea et al. [157]
instead employed enhanced cooling in a tubular motor, by means of extending fins
into the winding spaces. This increased the current rating twofold, though the authors
did not explore the consequences of inserting an electrically-conductive plate into a
winding carrying high-frequency currents. A further wide variety of cooling strategies
have been explored in the patent literature, such as cooling by sprays [158] or jet
impingement [159], though data on their performance are sparse.

On a final note, the most common approach to achieving high force density is
of course to use a reduction drive. Mechanical gear reducers and leadscrews are
standard in industrial practice; high-performance systems for space vehicles [160]
achieve up to 4000 N/kg, albeit with very low accelerations. There have, however, been
some novel attempts to integrate the reduction drive with the actuator. Fujimoto et
al. [161] built a fascinating and extremely complex screw-shaped motor, with a design
approximately equivalent to a moving-magnet, double-sided planar synchronous motor
wrapped into a helical shape. This motor does not achieve a particularly high force
density (0.27 MN/m3 or 46 N/kg), but has the remarkably high motor constant density
of 44 N/

√
W · kg, due to the influence of the effective reduction ratio of about 16:1.

Fujimoto et al. also give properties for a wide variety of other linear motors, which
exhibit passively-cooled force densities of 0.2 to 0.3 MN/m3, and ballscrew actuators
with force densities up to 0.59 MN/m3. If muscle-like dynamic performance is not
required, actuators incorporating some form of motion transformation offer very good
force and efficiency properties.

176



Chapter 6

Conclusions and Future Outlook

6.1 Motor Modeling Approaches

We have developed a suite of scaling (Chapter 2) and magnetic field (Chapter 3) models
capable of describing linear permanent magnet motors with high accuracy. While
numerous other models have been developed over the long history of motor design,
ours is the first set built to marry a field model to the overall motor scaling properties.
Rather than employing rules of thumb for current density or for overall scaling [162],
we model all aspects of motor performance from fundamental physical principles. This
allowed us to determine the full range of capabilities that can be expected from such
motors, with force densities of over 1000 N/kg achievable (Section 4.1.1) even using
convection cooling on the motor exterior.

Further, our scaling model showed that the efficiency (Equation 2.9.1) of a motor
operating on a simple work-loop does not depend on the scale or size of the motor, but
only on the (dimensionless) geometry, the materials from which it is made, the force
density required, and the velocity at which the load is driven. In turn, the thermal
and electromagnetic performance constraints map to a relationship (Equation 2.68)
between the motor’s maximum allowable pole pitch and the required force density.
The pole pitch sets an internal length scale that can differ from the overall size scale
of the motor, allowing for multi-scale design that allows both electromagnetic and
thermal performance to be optimized.

Our magnetic field model is essentially complete for ironless motors; all aspects
of their behavior can be considered, and the results determined to within machine
precision. For common motor aspect ratios, the field can be calculated to well over
the 100th harmonic order. This model can also be computed quickly enough to allow
for the computation of extensive design databases, freeing the design process from
the need to perform electromagnetic calculations at all. We found that the best
performance among simple ironless motors is obtained from double-sided Halbach
arrays, and the penalty incurred by forming this topology into a cylindrical (tubular)
shape is small so long as the pole pitch is shorter than the coil diameter.

For iron-bearing motors, our model is by necessity approximate, though still very
accurate. By iteratively accounting for saturation directly in the iron, we can determine
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the fields without introducing any fictitious geometry. The price is computational cost,
as the field calculations must be performed up to one hundred times more than in the
ironless case. By making a further approximation of ideal iron behavior, and assuming
a value for the saturation flux density based on the outcome of the model that accounts
for saturation, this computational cost can be reduced with little loss in accuracy.
Our model in this case accounts for the added mass and volume needed for the iron
in the motor, allowing for a realistic comparison between iron-bearing and ironless
motor designs. We find that iron-bearing motors cannot match the performance of
their ironless brethren, except for when the pole pitch is much longer than the coil
diameter.

Ultimately, our models suggest that the highest levels of raw electromagnetic
performance (as measured by the mass-specific motor constant) are achievable in
double-sided ironless motors, both in planar and in tubular configurations down to
small aspect ratios. If we require that the repeating unit structure in the motor be very
long relative to its diameter, it becomes advantageous to instead use an iron-bearing
motor, with an iron rod inside the coil and a Halbach array outside the coil.

6.2 Motor Design

By applying our models to an iterative design process (Chapter 4), we have established
a technique for the development of motors with excellent performance at the low speeds
typical of direct-drive applications. Our design perspective for linear synchronous
motors is unique compared to the precedent in the literature, and provides a very
complete picture of the available design space. Significantly, we found that even at
high performance levels the thermal constraints on motor performance were of little
consequence, so long as active cooling strategies were employed.

Despite the implication of the scaling model (on its own) that the highest force
densities can be achieved through the combination of numerous small motors, we
found that for the design of a muscle-like motor it was preferable to use a single
large motor structure. This was not necessarily a contradiction, however, as the best
performance was found for long motors with short pole pitches—i.e. composed of many
small “motor” segments. Unlike the situation in biological muscles, which are limited
by their maximum developable stress regardless of the strain they generate, linear
motors produce higher forces for smaller effective strains (i.e. stroke-to-length ratios).
Thus, it is better to make a motor from many small segments lined up in series than
to array them in parallel. It remains essential, however, to have a close connection
between each segment and the mechanism for heat transfer out of the motor, just as a
biological muscle has a close coupling to its own transport systems.

We were able to validate this design process (as well as our field models) by
constructing a small ironless motor with a novel magnetic topology (Chapter 5).
While there were some difficulties encountered in building the motor to the required
geometric tolerances, we nonetheless achieved best-in-class force density and motor
constant. In a mobile robotic system, a modest active cooling system could support
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a network of these motors, with greatly enhanced dynamic performance [37] due to
reduced motor mass.

6.3 Future Work

We have developed a very complete model and design strategy for ironless linear
synchronous motors, but there remains work to be done both in modeling, for iron-
bearing motors, and in construction, to improve the tolerances and resulting thermal
performance of motors. As discussed in Section 5.5, we suspect it is possible to grind
magnet arrays to size after they have been magnetized and assembled, which would
lead to both improved geometric tolerances and to a simplified manufacturing process.
Given the interest in high-force-density motors, at least within the robotics community
as witnessed by the author, it would be useful to develop mass-production techniques
for motors like our prototype so that they can be commercialized and made available
to the community.

We also feel there is more work to be done in the modeling of iron-bearing motor
structures. Our models were not able to capture all of the performance trends
associated with voice coil motors, leading to designs with more iron than was actually
required. Modeling of saturation in the iron used to enforce the periodic boundary
condition at the end of a motor is not a problem that appears to have seen close scrutiny
in the literature, though some of the classic results on the method of images [80, 163]
may be applicable. In addition, the models developed in this work had a limited ability
to account for structures with multiple iron layers, with the infinite-permeability models
suffering from numerical instability and with no saturation algorithm developed for
the finite-permeability models. We expect that such an algorithm could be developed
without undue difficulty, and used to complete the suite of motor models.

Finally, our efforts have thus far been limited to quasi-static phenomena and
performance properties in motors. The field modeling approach we have used can,
however, be adapted to account for eddy current effects in the magnets and coils,
which would allow for the modeling of dynamic performance as well.

6.4 Concluding Remarks

This thesis originally sprang from an attempt to answer a simple question: what is
the maximum force density available from a linear permanent magnet motor? To
our surprise, it happened that this question had not previously been addressed, and
our model stands as a series of increasingly-nuanced answers regarding the maximum
achievable performance in such a motor. In coming up with a satisfactory set of answers,
the root of our contributions was in applying the modeling approach characteristic of
heat transfer and fluid mechanics, dimensionless scaling analysis, to the problem of
electromagnetic field modeling in motors. While both dimensionless scaling models
and detailed field models have long been known for linear permanent magnet motors,
the union of the two is a novel contribution that reveals new, previously unexploited
trends in motor performance.
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Our models are ultimately intended to reach outside the circle of electric machinery
experts, and to be applied by members of motor user communities. As we found
in our optimization studies, good designs of motors for different applications can
look very different indeed, yet the range of design tools accessible to non-experts is
typically limited to finite element analysis and simple magnetic circuit modeling. By
calculating a set of optimized design libraries, we add a new tool to that list that allows
for optimal design without tedious calculation or arcane mathematical derivations.
Ultimately, the solutions to a wide variety of actuation problems may simply lie in
the application of careful design optimization and scaling exploitation.
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Germany, 2011. [Online]. Available: http://www.faulhaber.com/uploadpk/
EN LM1247-01 MIN.pdf

[145] ——, “Linear DC-servomotors series LM 2070 ... 01,” Data Sheet, Schönaich,
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Appendix A: Additional Field
Solutions

This section contains several sets of expressions for field coefficients in iron-bearing
motor configurations. The expressions for the fields are too lengthy for incorporation
into the main text, but are necessary for the development of computer codes for
performance prediction or design optimization. Expressions for the field coefficients
of planar motors with saturable iron on both sides of the coil, tubular motors with
saturable iron inside the coil, tubular motors with saturable iron outside the coil, and
tubular motors with ideal iron on both sides of the coil are presented. Field coefficients
for other motor configurations are given in the main text of Chapter 3.
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A.1 Double-sided planar motor with back-iron

A.1.1 Magnet coefficents
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A.1.2 Coil coefficients
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A.2 Cylindrical array with inner iron

A.2.1 Magnet coefficients
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(A.2a)

A.2.2 Coil coefficients
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A.3 Cylindrical array with outer iron

A.3.1 Magnet coefficients
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A.3.2 Coil Coefficients

acn,1 = acn,7 + LK

(
nkrc,i

)
− LK

(
nkrc,o

)
bcn,1 = 0

acn,3 = acn,1 bcn,3 = 0

acn,4 = acn,1 bcn,4 = 0

acn,5 = acn,7 − LK

(
nkrc,o

)
bcn,5 = −LI

(
nkrc,i

)
acn,6 = acn,7 bcn,6 = LI

(
nkrc,o

)
− LI

(
nkrc,i

)

200



acn,7 =
nkrmo,o
µ

[
acn,8

(
µ I1

(
nkrmo,o

)
K0

(
nkrmo,o

)
+ I0

(
nkrmo,o

)
K1

(
nkrmo,o

))
+ bcn,8 (µ− 1) K1

(
nkrmo,o

)
K0

(
nkrmo,o

)]
bcn,7 = bcn,6

acn,8 = −bcn,8

[
(µ− 1) K1

(
nkrfo,o

)
K0

(
nkrfo,o

)
µ I1

(
nkrfo,o

)
K0

(
nkrfo,o

)
+ I0

(
nkrfo,o

)
K1

(
nkrfo,o

)]

bcn,8 =
µ

nkrmo,o

 bcn,7

I1

(
nkrmo,o

)
K0

(
nkrmo,o

)
+ µ I0

(
nkrmo,o

)
K1

(
nkrmo,o

)
− (µ−1)

2
I1(nkrmo,o) I0(nkrmo,o) K1(nkrfo,o) K0(nkrfo,o)

µ I1(nkrfo,o) K0(nkrfo,o)+I0(nkrfo,o) K1(nkrfo,o)


acn,9 = 0

bcn,9 =
nkrfo,o
µ

[
acn,8 (µ− 1) I0

(
nkrfo,o

)
I1

(
nkrfo,o

)
+ bcn,8

(
I1

(
nkrfo,o

)
K0

(
nkrfo,o

)
+ µ I0

(
nkrfo,o

)
K1

(
nkrfo,o

))]
(A.3b)

A.4 Cylindrical array with infinitely-permeable inner and outer iron

A.4.1 Magnet coefficients
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A.4.2 Coil coefficients
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