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Abstract
A fundamental challenge in solar-thermal-electrical energy conversion is the thermal

stability of materials and devices at high operational temperatures. This study focuses on the
thermal stability of tungsten selective emitters for thermophotovoltaic (TPV) systems which are
anticipated to enhance the conversion efficiency.

Selective emitters, 2-D photonic crystals, are periodic micro/nano-scale structures that are
designed to affect the motion of photons at certain wavelengths. The structured patterns,
however, lose their structural integrity at high temperatures, which disrupt the tight tolerances
required for spectral control of the thermal emitters.

Through analytical studies and experimental observations, the failure modes of tungsten
2-D photonic crystal are indentified. There were four major mechanisms of thermal degradation
by which micro/nano-scale structures change their geometry when heated: grain growth and
recrystallization, oxidation, surface diffusion, and evaporation.

A novel idea of flat surface tungsten photonic crystal (FSTPC) was proposed and was
validated by theoretical modeling and by experiments. Pre-annealing or using single crystalline
tungsten will prevent the grain growth. A thin layer of diffusion barrier will prevent oxidation
and/or evaporation and maintain the optical performance. By filling in the micro/nano-scale
cavities with a damascened IR transparent ceramic, the surface of the emitter will have negligible
second derivative of the curvature, and thus eliminates the surface diffusion even at high
temperatures.

Accelerated tests on silicon-based 2-D photonic crystal show that the micro/nano-scale
structures on the silicon surface survive for at least 100 hours at 400 0C, homologous temperature
of 0.4, which is equivalent temperature of 1200 0C for tungsten. Based on a scale-accelerated
failure model, the life time of the Flat Surface Tungsten Photonic Crystal (FSTPC) is estimated
to be at least 40 years at 800 'C.

Thesis Supervisor: Sang-Gook Kim
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Chapter 1

Introduction

1. Solar Thermophotovoltaic (STPV) Systems

1.1 Photovoltaics (PV)

Photovoltaics (PV) are energy conversion systems that can directly convert solar

radiation into electricity. The first demonstrated photovoltaic device was a Pt electrode coated

AgCl cell, which was immersed into an acidic solution, by Becquerel in 1839 [1]. The next

research reported was the photoconductive effect on selenium (Se) in 1883. This research led to

the first thin-film solar cell fabricated with Se in 1883 by Fritts [2]. Until the 1940's, Se, Cu20

and T12S were the absorbing layers with metal electrodes. The first semiconductor p-n junction

solar cell was introduced by Russell Ohl in 1941 [3]. From that time on, most photovoltaic solar

cells have been fabricated based on silicon p-n junctions.

1.1.1 p-n junction for PV

The principle of a p-n junction can be explained with Figure 1.1 [4]. In a pure semi-

conductor (intrinsic semiconductor), incoming photon with enough energy can promote the

electron from the valence band to become a free electron in the conduction band. The difference

in these two energy levels is called the band-gap. It is also the minimum energy required for

generating free electrons. This band-gap varies from material to material and with temperature.

However, in an intrinsic semiconductor, the promoted electrons re-combine with the holes

resulting in no electric current. By doping the foreign atoms in regular crystal lattice, we can

push up (p-type) or pull down (n-type) the overall energy levels. By joining these two layers, a

charge-free depletion zone can be obtained. This junction can create a slope in the energy bands

and allow excited electrons to "roll down" into a lower energy band rather than instantly re-

combine with a hole. This can allow the continuous generation of electric current.
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Inbinsic Doped p-n Juncan
semlnicdutor semiconductors

Zone

Figure 1.1 Energy levels of on intrinsic semiconductor, p-type and n-type semi-
conductors, and a p-n junction. Each material has unique value of band-gap [4].

1.1.2 Limits of the single p-n junction PV

However, this p-n junction solar cell has a theoretical limit, known as Shockley-Queisser

(SQ) limit. It was first calculated by William Shockley and Hans Queisser in 1961 [5]. A solar

cell's energy conversion efficiency is defined as the percentage of power converted from sunlight

to electricity under "standard test conditions (STC)." The STC conditions are noon in spring and

autumn equinoxes in the continent US with the surface of the solar cell facing directly normal to

the sun. Most of solar panel manufacturers use this STC. They put the solar panels in a flash

tester in their factory that has been calibrated to deliver the equivalent of 1000 watts per square

meter of sunlight intensity, hold a cell temperature of 25 0 C, and assume an air mass of 1.5 (AM

1.5). This value of 1000 W/m2 is the measured nominal full sunlight intensity on a bright clear

day, which is defined as '1 sun intensity' or shortly '1 sun.' The air mass coefficient (AM), or

atmosphere thickness, defines the direct optical path length through the Earth's atmosphere,

expressed as a ratio relative to the path length vertically upwards. "AM1.5" is almost universal

when characterizing terrestrial power-generating panels. That is because many of the world's

major population centers lie in not normal but temperate latitudes. 1.5 atmosphere thickness,

corresponds to a solar zenith angle of z = 48.20.

Figure 1.2 is the solar spectrum at 1 sun and AM1.5 condition, 930 W/m2 . A silicon-

based PV cells can only use photons with energies larger than the band-gap of 1.1eV, and hence

wastes a large fraction of useful energy with photons below the band-gap. Furthermore, only a
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Figure 1.2 Solar insolation at AM1.5. Red regions are energy usable
for Si-based PV cells. The Blue regions are energy wasted as heat [6].

fraction of the photon energy above the band-gap is useful. Therefore, p-n junction solar cell

loses the radiated energy by heat dissipating and photons passing through the solar cells. It is

reported that for non-concentration condition (1 sun), the modem SQ limit has a maximum

efficiency of 33% for any type of single-junction solar cell.

There are four efficiency losses in p-n junction solar energy conversion. First, the average

energy of the photons is much higher than the band-gap. The excess energy is lost as heat.

Second, photons with energy below the band-gap that are not useful for electron-hole generation

(Figure 1.2) and only the fraction of photons with energy above the gap is useful. Third, the

extracted voltage, reflecting the electrochemical potential energy difference between the two

electrodes, is less than the band-gap. Finally, the excited electrons re-combine with holes.

Although solar cell production efficiencies vary with the band-gap of the semiconductor

materials and operation temperature, the best efficiency of single junction silicon solar cell in

production to date is 24% at the cell level and 20% at the module level as reported by SunPower
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in March 2012. In a laboratory, the record high solar cell efficiency is held by the University of

New South Wales in Sydney, Australia at 25% [7].

1.1.3 Third generation photovoltaic cells

p-n junction semiconductor photovoltaic cells are the first generation PV cells. For

reducing the cost of the first generation cells, thin film technologies have been employed, which

are considered the second generation PV cells. The third generation PV cells are solar cells that

are potentially able to overcome the Shockley-Queisser limit of 31% (1 sun) - 41%

(concentrated) power conversion efficiency of single junction solar cells. The most common

third-generation systems include multi-layer ("tandem") cells made of amorphous silicon or

gallium arsenide, with more theoretical developments including frequency conversion, hot-

carrier effects and other multiple-carrier ejection.

1.1.4 Multi-junction photovoltaic cells

Among third generation Photovoltaic cells, multi-junction photovoltaic cells achieved

significant improvements for higher efficiency. The "band-gap engineering" uses monolithic

stacking of multiple cells on top of one another, so that each cell efficiently converts a relatively

narrow range of photon energies suited to its band gap, Figure 1.3 [8]. The maximum conversion

efficiency for multi-junction solar cells reported in July 2012 is about 30 % (commercially

available, Emcore) for 1 sun illumination, and it improves to around 40 % under concentrated

sunlight.

However, as of this year, the cost of multi-junction solar cells is still too high to use

except for specialized applications. The high cost mainly results from the manufacture of

complex structures and the high price of materials. The fabrication process for multi-junction

solar cell uses techniques similar to semiconductor device fabrication, usually metalorganic

vapor phase epitaxy (continuous chemical vapor deposition), which involves very high energy

consumption per product volume [9].

At present, many research directions are being pursued to improve either one or several

of the above factors simultaneously, almost exclusively from the PV cell side. Not only with

multi-junction solar cells [10], multiple-exciton generation [11] and hot electron cells [12]
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Figure 1.3 (a) Structure of a Multi-junction solar cell. There are six important types of

layers: p-n junctions, back surface field (BSF) layers, window layers, tunnel junctions, anti-

reflective coating and metallic contacts, (b) Graph of spectral irradiance (E) vs. wavelength
(k) over the AM 1.5 solar spectrum, together with the maximum electricity conversion

efficiency for every junction as a function of the wavelength [8].

mainly aimed at minimizing energy losses from radiated energy which exceed the band-gap

energy. Among these approaches, three-junction cells have achieved 40.8 % while the theoretical

maximum efficiency of an infinite number of junction PV cells is 86.8 %. The rest of the above-

mentioned PV cells, which are usually called the third generation PV cells, are still in the

conceptual stage. Figure 1.4 shows the history of best up-to-date solar conversion efficiencies

reported from 1976 to July 2012 [13].
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1.2. Solar Thermophotovoltaic Systems

1.2.1 Concept of S-TPV systems

Solar Thermo Photo Voltaic (S-TPV) cells are also one of the third generation solar cells

[14, 15]. However, S-TPVs pursue a very different strategy to increase the solar-to-electricity

energy conversion efficiency based on the same photovoltaic principle. Rather than focusing on

the PV cell, the emphasis is shifted to controlling the spectra of the photons entering the PV cell.

Figure 1.5 shows the strategy to achieve this effect [16, 17]. Broadband solar insolation is first

absorbed by the surface, which heats the absorber to 1000-2000 0C. On the other side of the

absorber is the emitter, which re-radiates photons that are optimized to match the photovoltaic

cell.

In detail, as it can be seen from Figure 1.5 (a), the solar insolation has large peak in near

IR and visible wave-length. However, the GaSb photovoltaic cell shows sharp drop on its

quantum efficiency at 1.7 tm (1.1 pm for Si PV cells), Figure 1.5 (d). The specially designed

selective absorber can absorb the most of the wave-length from the sun light, Figure 1.5 (b), and

then transfer the concentrated energy to the selective emitter in a form of thermal energy. This

heat energy then emits to PV cells only with tailored range of wave-length which is matching

with PV cells' maximum quantum efficiency. In this way, the system can use the most of the

energy from the sun and can achieve higher conversion efficiency.

The theoretical maximum efficiency of such solar TPV converters is 85.4 % for full

concentration and 54% with no-concentration [18, 19]. These numbers came from the simple

calculation of assuming black absorber, no heat losses, adiabatic and reversible. It, also, assumed

that every photon has exactly the amount of band-gap for PV cells and excessive energy recycled

100 %. By applying the Stepan-Boltzman's law and the Camot efficiency, absorber efficiency

(77abs), cell efficiency (77cel), and system efficiency (irv) can be written as:

77abs = TT (1.1)
ST4abs
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cell = 1-

iTP 
V \ TT s /

(1.2)

(1.3)TO
TA

where ( is solid angle, which is S = 6.8 x 10- for non-concentrated light and D= 71 for

maximum concentration. TA is absorber's temperature, Ts is the temperature of solar radiation

and T, is the PV cell's temperature. For a given condition, T, = 300 K and T = 6000 K, the

maximum TPV system efficiency can be obtained from Equation (1.3) at TA= 2544 K as 85.4 %.

(a)

I

I II I I
1 2 3

MMIMI

Figure 1.5: Illustration of a solar thermophotovoltaic (TPV) converting system. Broadband solar
insolation (inset a) heats up a selective absorber (inset b), which conducts heats to a selective
emitter (inset c), which emits in a narrow band (inset d) into a PV cell to generate electricity.
Theoretical limit-efficiency of a single junction solar TPV converter is 85.4% [18]. The figure
redrawn based on solar TPV system from [17].
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This is very close to that of multi-junction cells with an infinite number of stages (86.8%), but

can be achieved with a single junction cell. Similarly, the maximum system efficiency calculated

for non-concentration with selective emitter as 54 % at TA = 865 K with the PV cells having

bang-gap of 0.92 eV.

In a solar-TPV system, the efficiency increase can be attributed to the minimizing of

most of the conversion losses stated in 1.1.2. First, the selective absorber can be designed to

absorb a very large percentage of all photons from the sun. Second, the photons emitted directly

into the PV cells can have energy close to that of the cell band-gap. Finally, the photon flux from

a selective emitter can be much larger than that from the sun because the broad range frequency

of sun light is concentrated to a designed wave-length and previously non-useful photons, which

had lower energy than the band-gap, were recycled. This larger flux can lead to a larger open

circuit voltage.

1.2.2 Benefits of S-TPV Systems

Compared to multi-junction cells, which have a significant limit in terms of how many

cells can be stacked together practically, due to materials availability and device design

complexity, solar TPV cells shift the complexity to the absorbers and emitters. This shift, in

principle, is advantageous because absorbers and emitters are simpler technologically in

comparison to multi-junction PV cells. Also, S-TPV energy converters may have weight, size,

and cost advantages over other direct energy conversion techniques.

1.2.3 Recent researches on S-TPV systems

In the US, TPV has achieved 22 % efficiency with an emitter at 1200 K [20]. Andreev et

al. [21] reported a GaSb cell with an efficiency of 19% when illuminated by a tungsten emitter at

1900-2000 K. Several research directions have been pursued to improve the efficiency and

power density in TPV systems: selective emitters based on new materials [22, 23], novel surface

structures [24], interference filters [25, 26] based on multilayer thin films and photonic crystals,

and photon recycling using a multilayer back reflector [27] placed beneath the photovoltaic cells.

Materials for PV cells are based on semiconductors with small band-gaps such as GaSb [28, 29],

GaInAs, and GaInAsSb [21]. Radiation tunneling between emitters and PV cell in the near-field
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can have significantly higher photon flux than that of the far field [31, 32], and can potentially

improve the power density of prototype devices.

1.2.4 Challenges in S-TPV Systems

Solar TPV's efficiency gains come from the spectral control of photons. The spectral

control for solar TPV includes two parts. One part of the spectral control is absorption of solar

radiation. The other part is the delivery of photons emitted from the solar absorber to the

photovoltaic cell.

The later part has been studied more due to the broader application of TPV, other than

solar TPVs. Two strategies have been pursued for this photon emission control. One is the

control of emission directly by using selective emitters based on new materials [22, 23], novel

surface structures [24], interference filters [25, 26], and photonic crystals. The major difficulty

with this approach lies in the high temperature operation of the emitters, at which materials can

lose their stability. The other strategy is spectral control on the PV cell side, by reflecting back

unwanted photons, which are mostly below the band-gap. This approach has the advantage that

spectral reflectors on the cell side are operated near room temperature.

So far, many problems associated with selective absorber, selective emitter, and

interference filters have been solved. However, no one yet has reported intensive study on

thermal stability of selective emitters.

1.3 Thermal Stability of Selective Emitters

From previous research, for high efficiency of S-TPVs, or even for TPV systems,

achieving good spectral control at high temperatures is the most challenging part. A detailed

explanation of structural spectra control technology, photonic crystals, and the challenges of

structural spectra control technology will be given in Chapter 2. However, in brief, the feature

size of the spectral control device, in the case of 2-D photonic crystal, is of the order of 100 nm

to sub-microns. This nano/micro-scale device cannot maintain its geometrical features and

optical performance at very high temperatures, 800 - 1300 'C, the general operation temperatures

of S-TPV and TPV.
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Very little research has been reported on the thermal stability of selective emitters. In

2003, Schlemmer reported that recrystallization and surface diffusion to be the major

degradation modes of micro-scale selective emitters at 1000 - 1200 C. But no one has reported

physics behind this problem, quantified experimental results of thermal failures or remedies to

solve this problem. Therefore, to make the concept S-TPV or TPV commercially successful,

thermal stability of selective emitters has been addresses in this research.

1.4 Research Objectives

The objectives of this thesis, accordingly, are to investigate the physics of thermal

failures of micro/nano-scale structured selective TPV emitters and to provide a solution for the

long term operation of thermophotovoltaic (TPV) power conversion systems. The selective

emitter is a periodic micro/nano-scale structure, called photonic crystal, but this small structure

loses its structural integrity at high temperature very quickly. Because the TPV system operates

at 800 0C to 1300 0C, the feasibility of the entire TPV system is endangered by thermal stability

of these selective emitters. In these regards, my research goal is set to provide a solution that can

maintain photonic crystal structures at 800 to 1300 C for more than 10 years (and possibly up to

30 years which is required for practical PV systems in real applications).

1.5. Thesis overview

This section provides a brief overview of the contents, motivation, and key results of the

following chapters.

In Chapter 2, through the literature review is introduced the state of the art of the

thermophotovoltaics (TPV) systems. The brief history of TPV, its components, operation

conditions, along with recent researches for improving conversion efficiency is presented.

Current efforts on low-band-gap PV diode development and fabrication and challenges of

selective emitters are explained in detail. The challenge of selective emitters' thermal stability

and previous studies are summarized.

Chapter 3 identifies the various thermal degradation modes and their physics behind, and

the possible solutions. First, grain growth and primary recrystallization issues on polycrystalline
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tungsten samples are presented. Pre-annealing minimizes the effect of grain growth on small

structures. Second, it was observed that the oxidation of the surface destroyed the entire

geometry on top of the surface. A thin layer of diffusion barrier coating could prevent oxidation

effectively. In short, 5-7 nm thick sputtered TiN followed by oxygen stuffing could prevent the

oxidation to a minimum level. Third, surface diffusion was unavoidable if there were curved

structures on the surface at small scale. It has been found that surface diffusion was mostly

dependent on the second derivative of the curvature. After long firing tests, it has been found by

SEM images and analyzing data that significant evaporation also happens.

In Chapter 4, a novel design concept to prevent or minimize thermal degradation of TPV

emitters is presented. For minimizing grain growth and crystallization, pre-annealing the sample

prior to micro/nano-scale fabrication or using a single crystalline from the initial step is

suggested. For minimizing oxidation and evaporation, surface coatings with a dense film prevent

oxygen penetration through and the evaporation of substrate molecule is recommended. The

biggest concern was surface diffusion. A flat surface photonic crystal design is proposed to solve

this problem. For a 2-D photonic crystal, optically photonic crystal structure, but a physically flat

surface is proposed by plugging ceramic materials into each air holes of the photonic crystal

surface. By maintaining the flat surface, surface diffusion problem can be basically eliminated.

This design, called Flat Surface Photonic Crystal (FSPC), is tested with silicon sample at the

equivalent thermal condition to tungsten. Since single crystal tungsten based photonic crystal

device is expensive to fabricate and difficult to test (high temperature), I have been used a silicon

sample, which has well developed fabrication tools and inexpensive processes. Although there

are still several issues to solve for using silicon-based flat surface photonic crystals. Several

samples have been fabricated for firing and optical performance tests.

In Chapter 5, firing tests for proving the concept and observations after several hours of

firing tests are presented. With EDS and SEM images, it has been verified that the geometry was

maintained after 100 hours of firing. Silicon-based flat surface photonic crystal did not show any

visible inter-diffusion, evaporation, or surface diffusion issues. Furthermore, optical tests

followed by firing tests showed the effect of FSPC design on emissivity spectra was negligible.

Non-treated samples showed significant loss of emission near IR region, where as silicon-based

flat surface photonic crystal maintained its original emission properties.
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In Chapter 6, a summary of the research with conclusion and brief statements for the

contribution of the research is presented. For future research, several suggestions for improving

the design and fabrication of photonic crystal based on Tungsten (W) or Tantalum (Ta) are

offered.
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Chapter 2

Thermophotovoltaics: State of the Art

2.1 Thermophotovoltaic (TPV) systems

Thermophotovoltaic systems directly convert thermal radiation into electricity. A basic

TPV system consists of a thermal emitter and a photovoltaic diode as shown in Figure 2.1. When

heated, emitters radiate phonons at various energy levels and photovoltaic diodes capture these

phonons and convert some of them into electricity.

When it was first proposed in 1956, the thermophotovoltaic system was similar to solar

PV except that the energy source was a low temperature furnace instead of the sun. The system

Photons +

Electrical
Output

Waste Heat

(a)

-
-C

Photons

0.+

Electrical
Output

Waste *Heat

(b)

Figure 2.1 Block diagram of (a) an originally proposed thermophotovoltaic (TPV)
system and (b) a revised TPV system for improving energy conversion efficiency [14].
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could generate electricity at low temperature and consists of simple components with no moving

parts.

Previously, thermionic and thermoelectric systems have been limited by the melting

temperature of their solid material which also limits the systems' efficiency. However, as

opposed to a thermionic or thermoelectric system, TPV isolates photovoltaic cells from the heat

source and maintains the cells at room temperature. By creating distance between the emitter and

PV cells, TPV avoids conductive heat transfer and allows the collection of energy purely from

photons.

The TPV system has been believed to be invented by Dr. Pierre Aigrain who was a

visiting professor at MIT in 1960 [33]. It is also known that Aigrain may have gotten the idea

from Dr. Henry H. Kolm at MIT Lincoln Laboratory [34]. The oldest recorded document about

this idea was written by Kolm in 1956 [35].

Although TPV systems have been studied for several decades, there has been no success

yet to bring out a commercially viable product. The system has very low efficiency in the early

stages of TPV development during the 1960's, with the highest fuel-to-electricity efficiency at

approximately 1-2 % [36, 37]. The huge loss from thermal radiation to photovoltaic energy

conversion resulted from the emitters having a very broad wavelength which is largely

mismatched with the PV diode's band-gap. In order to achieve higher conversion efficiency,

matching the reemitted spectrum to the sensitive spectrum of the PV diode and lowering the

photonic band-gap of PV diodes were intensively investigated. However, the limited fabrication

technology in the 1960's did not lead to any breakthrough in both controlling the emitter's

spectrum and lowering the PV diodes' band-gap.

Along with innovative improvement in micro-fabrication technologies during the 1980's

and 1990's, further advances in spectral control designs for both emitters and PV diodes were

enabled. Many significant improvements have been reported in both PV diode designs and

spectral control designs [38-45].

2.2 Photovoltaic (PV) Diodes

Low band-gap PV diodes are a critical component to achieving high efficiency in TPV

systems. The PV diodes convert emitted thermal energy (photons) to electricity. Depending on

both the shape of the emitted thermal spectrum and electronic band-gap of semiconductor
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material, the efficiency of the TPV system is determined. Each PV diode has a unique band-gap,

which is determined by the material's atomic structure as shown in Table 2.1 [46]. An electron or

hole may traverse the energy band-gap if provided with energy at least equal to this band-gap

energy (Eg). This energy can, for example, be provided by a sufficiently energetic incident

photon. From Figure 2.2, the area enclosed by black-body radiation curve and the diode's band-

gap represents the useful energy for PV diode input. As the area increases while the band-gap

decreases, the TPV system's efficiency will increase. For example, compared with a silicon PV

diode, which has Eg of 1.1 eV (corresponding to a wavelength kg of 1.1 pm), a GaSb PV diode

provides more electricity since its Eg is 0.72 eV.

As seen in Figure 2.2, it is evident that for T < 1800 K, only a small percentage of the

radiated photons are absorbed by PV diode, which is the region of wavelengths shorter than 1.1

pm. Therefore, the pairing of a silicon diode and the shown emittance spectra will result in a

very inefficient TPV system because the silicon diode only uses a very small portion of the

emitted spectrum. Increasing the emitter temperature will shift the peak of radiating spectrum

towards shorter wavelengths and will increase the system's efficiency (explained in detail in

section 2.4).

However, an increase in emitter temperature will result in serious thermal management

problem of the TPV system. Alternatively, PV diode with a lower energy bandgap, which has a

longer wavelength Ag, has been be used. PV diodes can be made from a variety of materials, as

seen in Table 2.1. Some PV diodes have very small band-gap energies (such as with quaternary

materials like InGaAsSb) and are sensitive to a greater portion of the blackbody spectrum.

Table 2.1 Band-gaps of various TPV materials [46]
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Material Bandgap

Si 1.10 eV = 1.1 ptm

GaSb 0.72 eV = 1.7 tm

Ge 0.66 eV = 1.9 pm

InGaAs 0.60 eV = 2.1 pm

InGaAsSb 0.53 eV = 2.3 pm



Although alternative materials lead to higher TPV system efficiency, such diodes' costs are high.

Practically, Gallium Antimonide (GaSb, Eg = 0.72 eV, Ag = 1.77 pm) has been used for PV

diodes in TPV systems [48]. Although this material has a larger band-gap than InGaAsSb, it can

convert much larger number of incident photons than a Si diode can. Additionally, this material

is relatively easy to fabricate using commercial fabrication processes [40].

2.3 Spectral Control

2.3.1 Methods of spectral control

Selective emission may be defined as strong emission at a specific wavelength and weak

emission at others. Specifically, selective emitters are considered as a "class of materials whose

thermal-radiation emission at equilibrium occurs in a much narrower spectral region compared

E

E

'U
C:

I-

iii
(n

0 1 2 3 4 5
VMwlength (pm)

6

Figure 2.2 Blackbody thermal readiation spectra at 1200 K and 1800 K, band-
gaps of some materials are indicated. GaSb and InAs cells photo-response regions
are shown by hatched areas of 1800 and 1200 K spectra respectively [16].
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Figure 2.3 Some avenues of TPV spectral control [46].

with that of a black-body at the same temperature" [49]. This selectivity can be achieved by its

intrinsic material properties and/or physical structures. Figure 2.3 shows the common approaches

to the spectral control for TPV system. Spectral control components can be classified as cold-

side and hot-side components. The cold-side components are installed near or on the PV diode.

Such cold side components operate near room temperature. The components consist of filters,

selective mirrors, and/or anti-reflective coatings on the PV diode. The hot-side spectral control

components are attached on or integrated into the emitters. These components, in general,

operate at elevated high temperatures of the emitter. These components are termed as selective

emitters [46].

First, the rare-earth oxides (holmium or erbium oxide) and transition metals (hafnium or

tungsten) show selective emission since their refractive indices changes sharply at the resonant

frequency of the material's chemical bonds [50]. These materials with sharply varying refractive

indices result in selective emission, which is suitable for TPV. For example, emittance spectra of

erbium and ytterbium were found particularly useful since their emittance peaks occur at higher

energy levels than the band-gaps of most PV diode materials [43]. The transition metals, such as

tungsten and tantalum, also show the variation of refractive index, which can be used for TPV

applications with GaSb PV diodes. In short, the refractive index of tungsten provides for

increased emittance at wavelengths shorter than 2pm, and suppressed emittance at longer
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Figure 2.4 Spectral emissivity of tungsten at various temperatures [48].

wavelengths. Its temperature is a big factor, too [48]. Along with its refractive index variation,

excellent thermo-mechanical properties (melting temperature of 3422 "C) of tungsten make it the

most common choice of substrate material for TPV emitters.

2.3.2. Photonic crystals

Besides intrinsic material properties, an alternative method for achieving selective

emission is by modifying the physical structures of emitter material. These structures are referred

to as photonic crystals (PhC), which are periodic micro/nano-scale structures that are designed to

affect the motion of photons at certain wavelengths. In other words, PhCs are the structures with

spatially-periodic variations of the refractive index, where this variation period is on the order of

the wavelength of interest [52].

Working principle

Briefly, photonic crystals (PhC) comprise periodic dielectric or metallo-dielectric

nanostructures that affect the propagation of electromagnetic waves (EM) in the same way as the
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periodic potential in a semiconductor crystal affects the electron motion by defining allowed and

forbidden electronic energy bands. Essentially, photonic crystals contain regularly repeating

internal regions of high and low dielectric constant. Since a photon also behaves as a wave, it

may or may not propagate through this structure depending on its wavelength. Wavelengths of

light that are allowed to travel are known as modes, and groups of allowed modes form bands.

Disallowed bands of wavelengths are called 'photonic band gaps'. This gives rise to distinct

optical phenomena such as inhibition of spontaneous emission, high-reflecting omni-directional

mirrors and low-loss-waveguiding [53].

Histoty ofphotonic crystal as selective emitters

Although photonic crystals have been studied since 1887, the term "photonic crystal" was

first used from 1987. In 1987, Eli Yablonovitch and Sajeev John published two milestone papers

on photonic crystals [54, 55]. Before that time, only one-dimensional photonic crystals in the

form of periodic multi-layers dielectric stacks (such as the Bragg mirror) were studied

extensively. Actually, Lord Rayleigh started the' study on one-dimensional (1 -D) photonic

crystals in 1887 [56]. However, these ideas did not get much interest until 1987.

Yablonovitch's seminal idea was to engineer the photonic density of states, for

controlling the spontaneous emission of materials embedded within the photonic crystal emission

spectrum control); John's motivation was to use photonic crystals for affecting the localization

and control of light (light-guiding). After 1987, the number of research papers dealing with

photonic crystals began to increase exponentially. Yablonovitch had demonstrated the first three-

dimensional (3-D) photonic band-gap in the microwave regime [57]. The structure that

Yablonvitch was able to produce 3-D PhC was a multi-layer-drilled array of holes in a

transparent material, which has been called 'Yablonovite', named after him [58].

In 1996, Thomas Krauss first demonstrated a two-dimensional (2-D) photonic crystal at

optical wavelengths [59]. This achievement opened up the fabrication methods for 2-D photonic

crystals by borrowing the technique of semiconductor fabrication, such as lithography and

etching.
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Types ofphotonic crystal as selective emitters

The structuring methods for PhC can be listed as: periodic layers of alternating materials

(1-D), posts or holes etched into the surface of the substrate materials (2-D), or three-

dimensional volumes with crystalline structure (3-D).

The earliest observation of a ID PhC was reported by Lord Rayleigh in 1917 [55]. He

focused on the reflection of light from skeletal coatings of certain insects. These skeletal coatings

are laminar in structure, consisting of a few layers of materials with sharply varying refractive

indices. The reflection from such coatings resulted in the observation of different colors

depending on the light's incident angle. This publication provided a first insight into the

performance of dielectric mirrors. However, this finding was not paid much attention at that time

because there were no such techniques by which such a structure could be artificially re-

produced. As the evaporation and deposition of thin film developed form semiconductor industry,

the 1 -D PhCs have found applications, such as selective filters, and perfectly reflective surfaces.

There are two basic types of photonic crystals; those composed of periodic columns and

those composed of periodic veins. The behavior of a 2-D PhC depends on many parameters:

substrate material, the array kind (square, rectangular, triangular, etc.), and the feature shape

(square, oval, round, etc.). The exact characteristics, such as photonic band gap, can be

calculated by solving Maxwell's equations. Since the form of the equations can be modified as

Eigen value problem for quantum physics, it can be solved by finite-difference, time-domain

(FDTD) method.

There are many kinds of 3D PhCs. Diamond arrangements of spheres, face-centered

(a) (b) (c)

Figure 2.5 Examples of photonic crystals.lD, 2D and 3D [45, 53, 60]
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cubic structures, and log-cabin arrangements have been investigated in view of the fabrication

technique developments in recent years. Although significant developments have been made in

the fabrication of these structures, the fabrication processes are still quite complex.

Fabrication challenges ofphotonic crystals

With the rapid development of micro/nano-fabrication techniques, researchers have

focused on manufacture of highly-efficient selective emitters, Figure 2.4. However, the study of

three-dimensional photonic crystals has proceeded more slowly than their two-dimensional

counterparts. This is because of the increased difficulty in fabrication.

Although there was no inheritance of readily applicable techniques for fabricators of 3-D

photonic crystals, some attempts have been made: "woodpile" structures and "self-assembly of

nano-spheres." However, these techniques for 3D fabrication are significantly more complicated,

time-consuming and expensive [57-60].

Therefore, although the 3D PhCs offer the most efficient selective emission performance

among PhCs, recent researches are more focused on developing 2-D PhCs with transition metals

[55, 56].

2.4 System Efficiency of TPV

In Chapter 1, it was mentioned that the maximum theoretical system efficiency for

infinite-junctions photovoltaic is 86.8% and that of ideal S-TPV is 85.4%. In practice the

reported maximum efficiency for multi-junction photovoltaic system is 40% and that of S-TPV

is about 22%. However, researchers anticipate the maximum system efficiency of up to 60% can

be achieved in both cases.

A TPV system's efficiency can be determined as the product of three major conversion

efficiencies: emitter efficiency, spectral efficiency and PV diode efficiency. Emitter efficiency

(rlE) is defined as the ratio of the radiated energy to the chemical (or any) energy used to heat the

emitter. Spectral efficiency (rsc) is the amount of energy below the band-gap wavelength with

respect to the total energy radiated by the emitter across the entire wavelength spectrum. PV
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diode efficiency (qpy) is defined as the ratio of the electrical energy output to the photon energy

incident upon the diode, see Equations (2.1) - (2.4).

Tsys = 77E X 7SC X 7Py (2.1)

E Net radiation power from emitter
Chemical energy input f low

Radaition power absorbed by PV diode

SC Net radiation power from emitter

Electrical power output
Radaition power absorbed by PV diode

In most cases, the emitter efficiency and the PV diode efficiency are almost fixed by heat sources

and PV material selection. Therefore, to achieve high system efficiency, high spectral control

efficiency is required.

There are two key parameters that determine spectral control efficiency: emitter

temperature and selective emitter performance. If the emitter is assumed to be blackbody, the

spectral control efficiency can be redefined as the ratio of the area under the blackbody radiation

curve in the entire range of wavelength (entire radiation energy from emitter) to the area under

that blackbody radiation curve below PV diode band-gap (the hatched area in Figure 2.2, which

is convertible radiation with PV diode). As the emitter temperature increases, the peak

wavelength moves to the shorter wavelength; thus, this area (or percentage) of convertible

radiation increases, see Figure 2.2.

There are many researches reporting on TPV system efficiency. Based on their fabricated

3D PhCs with GaSb photovoltaic cell of operating temperature at 1800 K, Gee and his

colleagues reported the calculated maximum system efficiency as 26.9 % [61]. Previously,

Henry calculated the overall TPV system efficiency with ID tungsten PhCs with silicon PV

diode at operation temperature of 1200 K as 21.7 % (the view factor was 1.0) [62]. Most

recently, Bernal and his colleagues calculated their maximum micro-TPV system efficiency with

2D tungsten emitter with GaSb PV diode as 26.2 % (the view factor of 0.4) [63]. However, these
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are the calculated numbers based on assumption and modeling. Depending on the combination of

spectral control device and PV diode, and emitter temperature, the TPV's theoretical system

efficiency varies considerably. The prototypes of micro-TPV power generator achieve a fuel-to-

electricity conversion efficiency of about 3%. Although it is not high but it is three times greater

than that of a lithium ion battery of the same size and weight. It's been achieved with butane

fuel, tungsten selective emitter, and 1 -D filters [61].

2.5 Thermal Stability Issues

The general TPV's emitter temperature is 800 -1300 C. As it can be seen in Figure 2.2,

higher emission temperature promises higher system efficiency. However, the maximum

temperature of emitter is limited by its material properties. Silicon carbide (SiC) is known to be

stable up to 1700 C, but it has very high emission spectrum on long wavelength regime. The

most common material used for TPV emitter is tungsten. Tungsten itself has selective emission

properties, with micro/nano patterned PhCs structure promising good spectral control. However,

even though it has a high melting temperature at 3422 0C, tungsten starts to oxidize at 750 0C

[62].

There are a few studies reporting the thermal stability issue of tungsten PhCs. Schlemmer

and his colleagues conducted thermal tests on tungsten PhCs and pointed out the modes of

thermal degradation: recrystallization, surface diffusion, and oxidation [63]. However, more

research on degradation modes and practical solutions for them are required for real-world

application of TPV systems.
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Chapter 3

Thermal Stability and Failure Modes of Selective
Emitters

3. Identification of Thermal Failure modes of TPV emitters

Nano or microstructures on selective emitters will be degraded or disappear when they

experience high temperatures over certain duration of time. Considering that a TPV is expected

to be operatable over 10s of years, it is the biggest challenge whether the nano/micro patterned

emitters would survive the temperature during that time. Identification of failure modes was the

highest priority task to seek solutions for preventing thermal degradation of micro/nano

structures. We performed firing tests and observed the results with polycrystalline tungsten

sample at 1200 0C. The major degradation modes found were grain growth, oxidation, surface

diffusion and evaporation. Some of the degradation modes were also confirmed with silicon

samples at 400 0C (Th 0.4). Although each mode is possibly coupled with others, we tried to

seek independent solutions to prevent the thermal degradation problem fundamentally by

observing and studying the physics behind the thermal degradation.

3.1. Recrystallization and Grain Growth

3.1.1 Recovery, recrystallization and grain growth

When strain hardened materials are exposed to elevated temperatures, three things can

occur during the subsequent heat treatment: recovery, recrystallization, and grain growth.

First, when stain-hardened material is held at an elevated temperature an increase in

atomic diffusion occurs that relieves some of the internal strain energy. Because atoms are not

fixed in position but can move around when they have enough energy to break their bonds, the

excited energy allows atoms in severely strained regions to move to unstrained positions. This is
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known as recovery, in which only internal residual stresses are lowered due to the reduction in

the dislocation density and a movement of dislocations to lower-energy positions. This process

happens in areas called sub-grains. Since there is no grain migration or nucleation, there is no

appreciable reduction in the strength and hardness of the material. Sometimes it improves

corrosion resistance.

At a higher temperature, new, strain-free grains nucleate and grow inside the old distorted

grains and at the grain boundaries. These new grains grow to replace the deformed grains

produced by the strain hardening. This is called recrystallization. It depends on the temperature,

the amount of time at this temperature and also the amount of strain hardening that the material

had experienced. The more strain hardening, the lower the temperature will be at which

recrystallization occurs. A minimum amount of cold work is necessary for any amount of

recrystallization to occur. The size of the new grains is also partially dependent on the amount of

strain hardening. The greater the stain hardening, the more nuclei for the new grains, and the

resulting grain size will be smaller.

If a specimen is left at the high temperature beyond the time needed for complete

recrystallization, the grains begin to grow in size. Grain growth occurs when recovery and

recrystallisation are complete and further reduction in the internal energy can only be achieved

by reducing the total area of grain boundary.

For 2-D photonic crystals, the micro/nano-scale structure is much bigger than the size of

atoms but smaller or similar order with the grain size. If the fabricated arrays of 2-D photonic

crystal experience the recrystallization or grain growth, the physical geometry of the micro/nano

features could be altered by moving the boundaries of each micro/nano-hole resulting in

different/inferior optical performance as selective emitters.

3.1.2 Recrystallization of tungsten

In most cases, poly-crystalline tungsten sheet is produced by work hardening process, rolling

process. Although the sample is strain-free, recrystallization and grain growth still can occur.

The pure tungsten has a very high recrystallization temperature, of approximately 1350 'C.

However, its recovery starts at around 300 0C. Sometimes, even before recrystallization, grain

growth can start without recrystallization. That means, the photonic crystal structure of a poly-
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crystalline substrate can deform or migrate at the general operation temperature of

themophotovoltiacs, 800 "C - 1300 *C.

3.1.3 Suggested solution for poly-crystalline tungsten

Pre-annealing, which makes the sample experience recovery, recrystallization, and grain growth,

the tungsten before fabricating micro/nano-scale structure may result in minimizing the

deformation by grain growth or recrystallization [73]. Also, already grown grains by annealing

slows its speed of grain growth when it reaches a certain point, order of hundreds of micron,

there is little effect of grain growth for the annealed samples. Some micro/nano-scale structures

on the grain boundary may be deformed by the grain boundary migration, but if the grain size

reached a large enough size, the portion of the holes sitting on the grain boundary is small

enough to ignore. Alternative solution will be just using single crystalline tungsten since there

would be neither recrystallization nor grain growth issues.

3.1.4 Preliminary test with poly-crystalline tungsten

Preliminary firing experiments have been conducted to observe grain growth of a polycrystalline

tungsten sample. 10 mm x 10 mm polycrystalline tungsten samples were prepared by mechanical

polishing. Surface roughness was less than 0.5 pm and its thickness was 300 pm. First, 20 holes

(array of 4 by 5) of 5 pm-diameter were drilled using focused ion-beam milling process,

50ptm

Figure 3.1: Thermal stability test of micro holes on poly-crystalline tungsten surface: (a)
polished surface with focused ion-milled 5pm diameter and 2ptm deep trenches, (b) 50-
hour annealing at 1,200 C, and (c) 100-hour annealing at 1,200 "C (Grain growth has been
observed, SEM images are 30-degree titled view. Fabrication details are in Appendix B. 1)
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Appendix B. Spacing between the holes was 20 pm and the depth was 5pm as shown in Figure

3.1. The sample was fired in an oxygen free condition at 1200 0C for 100 hours.

The samples were observed in an on SEM at 50 and 100 hours of firing. The temperature

was gradually increased to 1200 C at a rate of 30C/min and stayed for 50 hours. To remove

possible oxygen molecules on the surface, the forming gas, hydrogen (5%) and nitrogen (95%)

was allowed to flow at 150 sccm. The hot sample was cooled down to room temperature at a rate

of 30C/min under same forming gas flow. A set of SEM images after 50 hours of firing were

obtained. The same procedure was repeated for additional 50 hours to obtain 100 hours of firing

results as shown in Figure 3.2. A closer look at the micro holes reveals the recrystallization

(and/or grain growth) along with the surface diffusion (see Figure 3.2).

3.1.5. Pre-annealing

Using single crystal material will free the samples from the grain growth issue. However,

by pre-annealing the samples prior to micro/nano fabrication on the surface, we could also

minimize the effect of grain growth. Since primary-recrystallization and grain growth occur

5 tm

Figure 3.2: Thermal stability test of micro holes on poly-crystalline tungsten
surface: (a) polished surface with focused ion-milled 5 pm diameter and 2pm
deep trenches; (b), (c) and (d) 100-hour annealing at 1,200 0C (Grain growth and
surface diffusion are observed. Fabrication details are in Appendix B. 1)
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10 ptm

Figure 3.3 (a) 100-hour annealed at 1200 C and (b) additional 40-hour annealing at 1200C.
Polished poly-crystalline tungsten, twenty holes were drilled using focused ion beam milling and
fired for 100 hours. Fast grain growth was observed in the beginning (Figure 3.1), but once fired
at 1200 C for 100 hours, additional firing for 40 hours did not show much increase in grain size.

when the material has stored energy due to deformation, preannealing would relax these stresses

and can recrystallize small grains to a certain level of stable size and minimize the effect of grain

growth.

The grain structure was observed after 100 hours pre-annealing at 1200'C and additional

40 hours annealing at 1,200C as shown in Figure 3.3. The grain boundaries did not move

significantly, i.e., the grain size did not change much during the additional 40 hours.

To see the effect of pre-annealing, two polycrystalline tungsten samples were tested. One

is polished, pre-annealed and then drilled with holes using focused ion beam milling (FIB). The

other is just drilled with holes using FIB without any other treatment except polishing the

surface. Pre-annealing condition was 1,200 "C for 100 hours with ramping up and ramping down

at 30C/min. The samples were put together into the furnace with hydrogen (5%) and nitrogen

(95%) flowing condition to prevent oxidation. After firing at 1200 "C for 100 hours, it can be

noted that pre-annealing effectively prevents the degradation by grain growth. As it can be seen

in Figure 3.4, (a) and (e) are pre-annealed samples and (b) and (f) is non-treated samples. These

four samples fired at 100 hours at 1200 "C and (c), (d), (g), and (h) are the corresponding SEM

images. It was clear that pre-annealed samples survived longer than non-treated samples from the

grain growth and/or surface diffusion.
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3.2. Thermal Oxidation

Tungsten samples were fired in various low-oxygen partial pressures and X-ray

diffraction was used to track the presence of Tungsten trioxide (WO 3). It was found that even at a

controlled condition with forming gas supply, the surface chemistry was changed (oxidized). So

the idea of coating the surface with a diffusion barrier material has been tested. -

3.2.2. Oxidation

Oxidation may impact the geometry of micro/nano-scale structures on the surfaces, and in the

case of selective emitters, any chemical change can significantly alter the emitted spectrum as

well. For example, in air, tungsten begins to oxidize at room temperature with significant

oxidation occurring around 400-500 "C. Tungsten trioxide (W0 3) is permeable to oxygen which

allows the oxide layer to grow quickly. If tungsten is heated, further sublimation will begin

around 750 C. It is, therefore, critical to understand the exact relationship between the oxidation

rate, the partial pressure of oxygen, and the temperature [74]. It is estimated that even at a very

low partial pressure of oxygen of 10 Torr and a temperature of 1,100 C, the surface will

U,'5
Figure 3.4 (a) Pre-annealed for 100 hours at 1200 0C before drilling the holes, (b) non-treated
polished tungsten with drilled holes, (c) and (d) 100-hour firing at 1200 0C in almost oxygen
free condition. (e) and (f) were treated by the same method as (a) and (d) but with nano-scale
holes, diameter of 300 nm, (g) and (f) are images after 100 hours firing at 1200 C. Details of
fabrication process are in Appendix B. 1.
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oxidize at a rate of approximately 8 nm/day (Equation (3. 1)):

dM (25,400

dt=256 Pz- ekRTI (3. 1)

where dM/dt is the mass lost to oxidation per unit time in g/cm 2/min, T is the absolute

temperature in Kelvin, and Po2 is the oxygen partial pressure in Torr. This highlights the

challenge presented for preventing oxidation, as well as the importance of a good diffusion

barrier coating. A single crystalline tungsten sample is prepared, which is free from grain growth

and/or recrystallization, was polished and drilled with various shapes and sizes of holes and

trenches. To deliver harsh condition on oxidation, rather than hydrogen and nitrogen flow, I

allowed only nitrogen flow for oxidation test. After firing for 30 hours at 1200 0C in nitrogen at 5

scem flowing condition, the oxidation on the tungsten surface could be observed. In Figure 3.5,

(a), (b), and (c) are the various size and shapes of trenches, after firing these at 1200 *C for 20

som

Figure 3.5 Oxidation on the tungsten surface after 20 hours of firing
Nitrogen flow was at 5 sccm. (a) is top view of SEM image of 5 pim and
(b) is 300 nm holes and (c) is the 50 pim-long 500 nm, 1 pim, 2 jim and
trenches; (d), (e) and (f) are 20 hours later for each sample from (a),
respectively.

at 1200 "C.
2 tm holes,

5 pm width

(b) and (c)
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hours, significant degradation of the surface by oxidation is found. The oxidation is verified

with XRD analysis. In Figure 3.6, the tungsten trioxide peaks appeared after 20 hours firing at

1200 "C, which was not detected previously at 10-hour firing.

3.2.3. Diffusion barrier coating

For high temperature diffusion barrier, titanium nitride (TiN), tantalum nitride (TaN), Aluminum

oxide (A1203), hafnium oxide (HfD2), and silicon carbide (SiC) are the common materials to be

coated on the metal surface [75, 76]. However, the oxides have relatively weak adhesion on

metal surface and SiC has relatively low melting temperature compared to TiN or TaN. TiN was

chosen since it has a smaller thermal expansion coefficient compared to W. (A more detailed

discussion about material choice is given in Chapter 4.) It is also reported that oxygen stuffing

on sputtered TiN can enhance the diffusion barrier quality since sputtered TiN has columnar

structure and oxygen can fill the gap between the grains by stuffing method [77].

W
1400r

W
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Fe1hours @u Btt
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400

10 hours @1200OC
203 0 is 40 45 so 55 4 65 70

26

Figure 3.6 XRD data were taken after firing at 1200 0C for 10 and 20 hours. But, the
peaks of Tungsten trioxide (W0 3 ) are very weak after 10 hours of firing at 1200 'C,
which could be observed after 20 hours of firing at same temperature.
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3.2.4 Test with TiN coating

TiN layer, coated by sputtering, can be a solution for preventing oxidation. To have dense

diffusion barrier, the samples were TiN coated by sputtering at 400 "C and then heated at 300 C

for 30 min in air for stuffing oxygen.

Through the firing tests, it was found that 5-7 nm-thick coating of TiN was effective. Three

different samples were prepared: (a) TiN coated, (b) TiN coated with oxygen stuffing, and (c)

exposed tungsten samples without any coating. These samples were fired at 1200 0C for 30

hours, and after every 10 hours, SEM images were obtained for each sample. As seen in Figure

3.7 and 3.8, TiN coated samples, (b) and (c), survived but the samples without the TiN barrier,

(a), were completely destroyed.

3.3. Surface Diffusion

Thermally driven diffusion of atoms constantly occurs in all materials. While it tends to

be negligible in solids at low temperatures, as the temperature increases the rate at which

diffusion occurs begins to dominate the evolution of the material geometry. In the case of

micro/nano-scale structures, surface diffusion tends to dominate bulk diffusion. Surface diffusion

may be thought of as random thermal motion of atoms on a surface. However, because the

amount of surface atoms varies based on the geometry of the structure, some areas of a surface

may experience more diffusion than others and a net material flow occurs.

3.3.1 Mullin's Equation

To investigate surface diffusion further, a theoretical modeling of thermal degradation of

the micro/nano-scale structures is proposed. Based on Mullin's analysis, Equation (3.2), the

second derivative of the curvature along the surface, the coefficient of surface diffusion, the

interfacial free energy are the key parameters that affect the spatial distribution of surface

diffusion [78].

Based on Mullin's equation, the degradation of the 2-D trench by surface diffusion is

simulated. For single crystal tungsten, a significant change on the radius of curvature started after

10 hours at 1200 0C and the flatness of the bottom of the hole clearly altered after 50 hours at

1200 0C.
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(a) (b) (c)

Figure 3.7 Oxidation of tungsten surface. (a) untreated sample, (b) TiN coated
and (c) TiN coated and oxygen stuffed. Images captured every 10 hours after
firing at 1200 *C. Total 30-hour firing test results under nitrogen flowing at 5
sccm. Ramped up and down at a rate of 3 "C/min.
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TiN + Oxy. stuffing

0.5 Pm 0.5 pm
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(a)
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0.5 pAm
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(b)
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(c)

Figure 3.8 Oxidation of tungsten surface. (a) untreated sample, (b) TiN coated and (c)
TiN coated and oxygen stuffed. Images captured every 10 hours after firing at 1200 "C,
same test sample but nano-scale structures. Total 30-hour firing test results under nitrogen
flowing at 5 sccm. Ramped up and down at a rate of 3 *C/min.
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However, for given operation conditions, generally isothermal and isobaric, surface diffusion is

fully determined by the second derivative of curvature. This is because all the other parameters

are identical for the same temperature, pressure and material. The velocity of the surface in the

normal direction, v, is then given by:

2DS a 2 K
v, = y2 _L - (3.2)

kT as 2

where y is the interfacial free energy, Q is the atomic volume, and n is the number of atoms per

unit area. Ds is the coefficient of surface diffusion, k is Boltzmann constant, T is absolute

temperature, and a 2 K/0s 2 is the second derivative of the curvature of the surface.

3.3.2. Modeling and simulation

Although some of the parameters are adopted from other research such as the surface

diffusion coefficient and the surface interfacial energy [79], this calculation is mainly dependent

on both partial press of forming gas and the firing temperature.

For the 3-D simulation of cylindrical tungsten holes, we used a method called the level-

set method. A finite element solver (COMSOL) is used to monitor the evolution of the surface

with respect to time at 1200 "C (Th = 0.4) (Figure 3.9 - 3.11, Appendix A).

From both the 2-D and 3-D modeling and simulations, there was not much change in the

width of trenches during the first 50-100 hours but the curvature at the corners changed

significantly. To link the geometric deformation to the emissivity spectra, Maxwell's equations

for transmission and reflection spectra over a wide spectrum of frequencies need to be solved.

We used the Meep (or MEEP), which is a free finite-difference time-domain (FDTD) simulation

software package developed at MIT [80], to model electromagnetic systems and calculate

emission spectra with deformed 3-D geometry.

By modifying general MEEP code for emission spectra calculation with specific 3-D

geometry input, we could obtain the emission spectrum of these degraded samples with respect

to time at 1200 0C, see Figure 3.11. As seen in Figure 3.11, the area enclosed under power

spectrum decreases with time. It means that the emitter radiates less photons at lower wave
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length and radiated more at the longer wavelength region, which results in decreased emission

power.
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Figure 3.9 2-D modeling of tungsten surface diffusion at 1200 *C (Th = 0.4), 1.5 Pm depth
and 1 prm width: (a) 10 hours, (b) 50 hours, (c) 100 hours, and (d) 200 hours.
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Figure 3.10 3-D modeling for 1200 C (Th 0.4), (with Michael Ghebrebrhan in
collaboration, 1 pm diameter, 2pm depth and 1.6 pm period.
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Figure 3.11 Calculated radiative flux at 1200 C form the degraded sample by surface
diffusion at 1200 *C. The simulation is done with Michael Ghebrebrhan by using
MEEP, Appendix A.
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3.3.3 Experiments for surface diffusion

Single crystalline tungsten and silicon samples were prepared for firing tests. To avoid

coupled effects of grain growth or recrystallization, single crystalline materials were chosen. To

minimize oxidation, in addition to nitrogen, hydrogen (5%, 20 sccm) was flown during the entire

time of the firing tests. For observation of surface diffusion on single crystalline tungsten and

silicon, prepared samples were not coated with a diffusion barrier.

Tungsten micro/nano-holes were fabricated using focused ion beam milling (details of

fabrication parameters for focused-ion beam milling are in Appendix B. 1). Silicon micro-

trenches and nano-holes were fabricated using interference lithography and dry etching

techniques, see Figure 3.12 and Figure 3.13.

11pm 0.5pm 300 m

Figure 3.12 Fabricated single crystal tungsten by focused-ion beam milling (FIB), 30-degree
tilted views.

20pm 1pm 500nm

(a) (b) (c)

Figure 3.13 Fabricated single crystalline silicon
method: (a) micro-trench (2 degree tilted), (b)

tilted), and (c) cross-sectional view of sample (b)
and parameters are in appendix B.2).
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Unfortunately, firing tests with tungsten sample had several issues: fabrication, cross

sectional observation, and firing test setup (a detailed explanation and suggestions will follow in

Chapter 6). In this reason, silicon samples were prepared. Compared to tungsten, silicon

fabrication processes are well developed and material price is also lower. It has been reported

that materials behaviors at high temperature, such as surface diffusion, are showing universalities

in solid materials with its homologous temperature, Th. The homologous temperature is the ratio

of absolute temperature to its melting temperature [81].

In this regards, firing tests conducted on silicon samples. The silicon micro-trench was

fired for 25 hours at 850 0C (Th = 0.67), see Figure 3.14, and submicron holes array on silicon

2pm 2pm 2pm

Figure 3.14 Cross-sectional SEM images of fired silicon samples: fired at 850 "C (Th
0.67), images taken at 0 hour, 1 hour, and 25 hours later. Nitrogen flow rate was 5 sccm, and
ramp up and down rates were 3 'C/min.

2 un

Figure 3.15 Cross-sectional SEM images for submicron-sized silicon hole arrays: fired at
400 'C (Th = 0.40), images taken at 0, 25, 50, and 100 hours later (zoomed-in images are in
Chapter 5. Nitrogen flow rate was 5 sccm and ramp up and down rate were 3 "C/min).
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was fired for 100 hours at 400 0C (Th = 0.4), see Figure 3.15. In both cases, the width (radius)

increased and the depth got shallow with time. Based on the modeling and simulation, we

brought the parameter, h/r, which is the ratio of the depth of the hole to the radius (or half of the

width for 2-D). This h/r is decreased dramatically initially and saturated after 100 hours, Figure

3.16 (a). The measured values of h/r and normalized values for comparison are well matched

with the model, see Figure 3.16.

3.4. Evaporation

The final mechanism of surface evolution is evaporation and condensation. At high

temperatures, the amount of material that is vaporized from a solid surface can be significant.

This "gas" creates a locally high vapor pressure and re-deposits on the surface nearby. This

phenomenon was separately investigated with surface diffusion by preparing partially coated

samples. Firing tests, similar to surface diffusion, were performed with single crystal silicon with

a micro-meter scale trenches. However, for this, TiN diffusion barriers coated on the side-wall

Is3 - -- -II

30

0 100000 200000 300000 400000 500000

tw(sec) OyW(sec)

(a) (b)

Figure 3.16 (a) height-to-radius ratio (h/r) with respect to time by surface diffusion modeling for

tungsten at 1200 "C (T= 0.40) and (b) normalized height-to-radius ( h/r ) from measured data

from submicron silicon holes at 400 0C (Th= 0.40), see Figure 3.15.
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and bottom of the trenches. Top surface is originally coated with TiN but this layer was polished

out by mechanical-chemical polishing. To make the same condition with previous surface

diffusion test, the sample was heated to 850 0C and left for 100 hours, Figure 3.18. As seen in

Figure 3.17, the width does not change much as it had before, see Figure 3. 14. These two

samples were analyzed for height-to-width ratio. Interestingly, the coating on the side-wall and

bottom reduced the geometry loss by evaporation. Since the test setup included flowing a large

amount of forming gas to prevent oxidation, it was very hard to observe the re-condensation

phenomena. Figure 3.18 shows the difference in changing height to width ratio. The difference

between these two lines is the result of evaporation. Dashed line represents normal degradation

by surface diffusion and evaporation. Solid line represents the degradation only by surface

diffusion.

In Kinetics ofMaterials, R. W. Balluffi et. al. show how the normal surface velocity (v,)

that results from this redistribution of material is, in general, proportional to the curvature of the

surface (K) and the ambient (non-local) vapor pressure (Pamb) of the material [82]:

vn = APanbK (3.3)

Depending on the application, this material flux may be controlled by lowering the ambient

vapor pressure. Knowledge of this vapor pressure and the various elements that make up the

constant of proportionality are required to determine the relative importance of condensation and

evaporation . Also, it needs to be estiblished to know that diffusion barrier on the surface

effectively prevents evaporation.

In detail, the normal velocity of the surface by which evaporation and re-condensation is

derived, too:

Afl yPeg
Vn =- k eK (3.4)

kT

where, A is a vapor transport rate constant, Peq is the vapor pressure in equilibrium with a

local region of the surface with zero curvature, k: Boltzmann constant, T: absolute temperature,

and K: curvature.
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Figure 3.17 Firing tests with micro-scale trench fabricated on single crystal silicon. For this
sample, the side-wall and bottom surfaces were coated with 5nm TiN. The top surface was
planarized with chemical-mechanical polishing. Firing temperature was 850 C and nitrogen
flow rate was 5 sccm. The ramp-up and ramp-down rates were 3 'C/min.
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Figure 3.18: Height-to-radius ratio (h/r) versus time by surface diffusion modeling for
silicon at 850 "C (Th = 0.67). The dashed line represents degradation by surface diffusion
and evaporation. Solid line represents degradation only by surface diffusion.
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Chapter 4

Design and Solution

4. Proposed Solution for Long Term Thermal Stability of TPV Emitters

4.1 Design Idea

Through experiments, modeling and simulation, it has been found that four major modes

of degradation of 2-D tungsten (or silicon) photonic crystal at high temperature: grain growth,

oxidation, surface diffusion, and evaporation. The following ideas were suggested in the

previous chapters for preventing the degradation of micro/nano-scale structure. First, grain

growth or recrystallization can be avoided by using single crystal tungsten or by pre-annealing

the polycrystalline sample before the fabrication of micro/nano-scale structures. Since surface

diffusion occurs where a geometry has sharp curvature, a geometry of topographically flat but

optically patterned surface will prevent the surface diffusion and evaporation. Thus, the second

design idea which can prevent the surface diffusion is a flat surface photonic crystal (FSPC)*.

4.1.1. Flat Surface Photonic Crystal (FSPC)

Flat surface Photonic Crystal (FSPC) design is invented based on scientific/engineering

analysis of fundamental sources of thermal degradation in micro/nano-scale structures. Surface

diffusion and evaporation and re-condensation are unavoidable phenomena in micro/nano-scale

structures at high temperatures. The governing equation of thermal degradation for each surface

diffusion and evaporation and re-condensation depend on its material properties and its

geometry. Recall the Equation 3.2 and Equation 3.4,

v D)Q 2C a 2 K (4.1)
kT as

2

* US Patent pending: application number 61/563,396
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4/ Diffusion barriers

Figure 4.1 Conventional 2-D Photonic Crystal and the proposed design of Flat Surface
Tungsten Photonic Crystal (FSTPC) Cross-sectional view for material description: First a
thin inter-diffusion barrier is coated, then IR transparent ceramic is plugged, followed by
(after flattening the surface by CMP) coating the surface with a thin layer of oxidation and
evaporation barrier.

V = - K (4.2)kT

At the certain temperature, material properties are not changes much, then the thermal

degradation is dominant by geometrical factors, specially the curvature of the surface. Based on

equations, if the curvature is zero, then there are no surface evolution by which surface diffusion

or evaporation and re-condensation. FSPC design is based on the theoretical background of flat

surface, zero curvature, will not have driving force for surface diffusion or evaporation and re-

condensation.

This FSPC concept works under the assumption that the plugging material is optically

transparent and the thin layer of inter-diffusion barrier and oxidation/evaporation barrier does not

affect the optical performance of the device. Also, the material properties or geometry must be

maintained at high temperature of TPV operation, 800 - 1100 "C. In Chapter 3, it has been

observed that a thin layer of TiN coating followed by oxygen stuffing effectively prevents

oxidation on the surface. However, oxygen stuffed TiN layer was not verified as an inter-

diffusion barrier between plugged ceramic and tungsten. Also, the optical transmittance of

plugging material must be tested by measuring its transmissivity for proving the concept.
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4.1.2. Inter-diffusion Layer

An effective diffusion barrier between a metal and a ceramic plug would maintain the

structure and its photonic crystal properties. The diffusion barriers reduce losing its selective

optical property by inhibiting diffusion of substrate elements (such as Si, Ta, and W) into the

ceramic material, and prolong the corrosion and oxidation resistance.

In this study, oxygen stuffing method along with TiN coating was used. Since the TiN

film has a columnar structure, atoms can travel through the gap between the grains. Oxygen

stuffing is the method to fill these gaps with oxygen molecules. This stuffing can be done by

breaking the vacuum just after sputtering TiN film to allow the oxygen penetrate into the gap and

fill the grain boundaries. Another method is to heat up the sample to 300 - 400 "C for 30 minutes

to allow oxygen to fill the gap by being partially oxidized as TiON.

Since the transmissivity is inversely proportional to the thickness of the opaque material,

the lesser the thickness of inter-diffusion barrier layer is, the lesser the radiation loss would be.

Thus 5-7 nm of TiN was deposited for both inter-diffusion and evaporation barrier. Later in

Chapter 5, the energy dispersive spectrometer (EDS) x-ray images to diagnose the penetration of

material through this inter-diffusion barrier are presented.

4.2. Material Selection

4.2.1 Tungsten photonic crystals

To achieve the FSPC, the most important consideration is material selection. The criteria

for material selection are that: the material has to be transparent at the wavelength below infra-

red; the structure has to survive at the elevated temperature over 800 'C; and, the structure has to

be manufacturable with current processing techniques. Materials for high operation temperature

and IR transparancy are listed in Table 4.1. Tungsten (W) is the most common choice for

selective emitter due to its high operation temperature and selective emissivity property. To keep

the IR transparent plug stays inside of Tungsten micro/nano-scale pits at high temperature, the

thermal expansion coefficient (TEC) of plugging ceramic should have slightly higher value than

that of tungsten. Maintaining compressive stress while it expands at high temperature will

mechanically secure the plug and keep it inside. Therefore, for W photonic crystal, zirconia

(ZrO2) or hafnium oxide (HfO 2) can be selected as a plugging material.
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If the hole is positively tapered, plug may pop out due to the interfacial stresses generated

by the force on the plug with acting toward outside. Therefore, the holes on tungsten should have

slightly negative-tapered side walls. The sub-micron scale scallops on the side-wall, which is the

results of the deep reactive ion etching process (D-RIE), can naturally secure the plugs. If the

thermal expansion coefficient of the plugging material is too high, too much compression stress

may occur. Stresses distribution around the boundary of tungsten and zirconia at 1200 0C (top

view) is obtained from Ansys programming, Figure 4.2 (a). The SEM image of scalloped side-

wall by D-RIE on silicon trench is shown by Figure 4.2 (b).

(a) (b)

Figure 4.2 (a) Analysis of the stress distribution when FSTPC is heated up to 1200 0C. Plugging
material is Zirconia (ZrO2) and the substrate is tungsten (W). At 1200 "C, 1540 MPa compressive
stress at the boundary (sky blue), 1400 MPa compressive stress on Zirconia (blue), and 0 - 400
MPa compressive stress on Tungsten (green). (b) Scalloped side wall of the silicon trench. The
image shows the plugged ZrO2 but cracked. This issue is discussed in Chapter 5 (details process
of parameters is in Appendix B).
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Table 4.1: Properties of materials for FSTPC

Material Melting Working TEC E Optical
Temp ('C) Temp ('C) (x10-6 ) (GPa) Properties

W 3442 < 1700 4.3 411 Radiate

Ta 3017 < 1375 6.3 186 Radiate

Si 1414 < 1000 3.0 150 Radiate

HfO2  2758 < 1500 5.9 220 0.25-10 mm
Transparent

ZrO2 2715 < 1500 10.3 200 0.3-7 mm
Transparent

SiC 2730 < 1650 4.0 410 Semi-
Transparent

TiN 2930 < 1500 9.3 251 Semi-
Transparent

SisNx 1900 < 1200 3.3 310 Transparent
Si 3 Nx1900Rh2.05

SiO2 1600 < 1300 0.4 73 Transparent
MgO 1600 <R re.46

MgO 2852 < 2000 8 295 Transparent
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4.2.2. Silicon photonic crystals

Although tungsten is the most common material for selective emitter, micro fabrication

techniques for tungsten are still under development and some of the firing tests require very high

temperature. In order to prove the concept of FSPC, an alternative material, whose fabrication

processes are well-developed and firing test conditions are much more favorable is chosen. From

Table 4.1, silicon is the most common material for integrated circuits, and its fabrication process

and equipment are proven by many other researches. Since silicon has a much lower melting

temperature, the temperature required for accelerating test can be much lower than that of

tungsten. Its lower thermal expansion coefficient also maintains the compressive stress at high

temperature.

In this regard, silicon has been used for fabrication of the flat surface photonic crystal and tested

with this sample to show the mechanical and optical performance at high temperature. A detailed

study of the time-temperature relationship for different materials is described in Chapter 5.

4.3. Fabrication methods

After selecting the materials, manufacturability of the FSPC structure is another issue to

solve. To achieve the structure in Figure 4.3 (a), the process flow for FSPC, Figure 4.3,is

proposed. First, single crystal tungsten is prepared and drilled to have cylindrical micro/nano-

scale trenches, and then a thin diffusion barrier layer is coated. An IR transparent ceramic is

plugged and the surface is flattened by chemical mechanical polishing (CMP). Finally, the

surface is coated by a thin layer of oxidation/evaporation barrier.

4.3.1 Fabrication method for plugging nano-pits

The most challenging part of the proposed processes is plugging the ceramic into the

nano-pits. Initially, inkjet printing, spin coating, electroplating, and sputtering methods have

been considered. Inkjet printing can be a good candidate for filling the holes due to its capability

of generating pico liter droplets and it being free from the step-coverage issue from spin-coating

or sputtering methods.

Spin coating is the most well-known process for zirconia coating on a flat surface, but the

high step on the cylindrical holes may generate uneven stress at the corner which may results in

cracks during annealing. Sputtering looks is promising process to maintain dense and uniform
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coating over the whole area, but poor step coverage would result in incomplete filling of the

holes. Electroplating or cathodic electrolytic deposition (ELD) was also considered but the inter-

diffusion layer, TiN, has insufficient electrical conductivity and prevents ELD. To fill the micro-

scale gap with ZrO2 solution, the sol-gel method including a brushing step was modified. After

spin coating the zirconia solution on the surface of the sample, the surface was brushed with a

plastic Q-tip. In this process, additional zirconia solution fills the trench and excessive solution

can be removed from the surface. In this way, the non-uniform stress distribution and cracking

issue are solved during the pyrolysis process occurs. However, the results of annealing the

sample for densification brought about the non-uniform stress distribution from the corners

which resulted in the cracking of the plugged zirconia, Figure 4.4.

4.3.2. Challenges of Plugging

The most challenging process was filling the nano-pits with IR transparent, dense and

crack-free ceramic. The source of cracking was non-uniform stress distribution from the surface,

especially at the corners. Non-uniform thickness also results in cracking while annealing the

ceramics, which is one of the typical failure modes of spin coatings on stepped structures.

While looking for the solution, a water-based solution coating method of ceramics was

found. It is known that hydrolysis and condensation of metal species, while inhibiting the

formation of large colloids, converted wet precursor coatings smoothly to dense films [83]. The

precursor chemistry allowed a unique densification of the film and enabled to fabricate crack-

free devices. Both ZrO2 and HfO2 can be coated by this method. From Table 4.1, I found that

HfO2 has a higher melting point and its thermal expansion coefficient is much less than that of

ZrO2. HfO2, itself is also known as a common diffusion barrier material. However, just like

other oxides, adhesion to metal is not strong, so the thin TiN layer can be used as an adhesion

layer, Figure 4.5. Finally, the holes were successfully plugged with crack-free HfO2, and the

yield rate was above 90%, Figure 4.6 and Figure 4.7 (a), detail process flow and condition

described on Appendix B).
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Surface coating'
rent ceramic

barrier

1. Tungsten nano-holes
(FIB or Interference Lithography)

2. Diffusion Barrier Coating
(TiN sputtering + Oxygen stuffing)

4. Surface Oxidation barrier Coating 3. IR transparent Ceramic damascening
(TiN sputtering + Oxygen stuffing) (Ceramic Sol-gel coating + CMP)

(b)

Figure 4.3 (a) 3-D schematic drawing of FSTPC and (b) process flow for obtain FSTPC.
The concept and process is in pending patent, the U.S. application number is 61/563,396.
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(a) (b)

Figure 4.4 Cracked ZrO2 fills inside the silicon trenches after annealing at 650 C for 2 minutes by
rapid thermal annealing (RTA). The cross-section images were taken by focus ion beam, the large
pocket milled and the samples were tilted by 52-degree for observation (the bright cracked area is
zirconia and dark gray region is silicon).

'TiN (Diffusion barrier)

(a)

TiN (Adhesion layer)

(b)

Figure 4.5 Design change for crack free and denser plug: (a) original design with TiN inter-
diffusion barrier and zirconia plug, (b) hafnium oxide (HfO2) was chosen for filler material
due to its higher melting temperature and lower thermal expansion coefficient than zirconia
(ZrO2). For (b), TiN layer can be thinner than previously and its role now is as an adhesion
layer.
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However there is another problem. The shrinkage in the thickness direction after final

annealing is substantial, Figure 4.7 (b). The blue line on Figure 4.7 (b) represents the original si

surface level. There was no crack generated inside the plugs but shrinkage along the longitude

direction causes non-uniform thickness at the surface and detached plug from the bottom and

side walls.

For solution based coating, the shrinkage happens after final annealing. Because of a

single final annealing step at the end of the process, Figure 4.8 (a), a big shrinkage has occurred.

After the process was modified with intermediate annealing steps, Figure 4.8 (b), the shrinkage

problem was avoided, Figure 4.9.

Figure 4.6 The yield rate was above 90%. Only 28 out 300 devices are cracked.
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5PM
-02 coated (after annealing) SiPhC

(a) (b)

Figure 4.7 (a) Crack-free HfO2 coating on Silicon 2-D photonic crystal after annealing and (b)

cross-sectional view of Hf0 2 filled 2-D Si-PhC. The blue line is its original level surface. The
shrinkage along the longitude direction was significant but no cracking on the plug.

Brush & spin coat HfO2 (aq)
Repeat
50 times

Hydrolysis 150 OC, 1min

Anneal at 400 oC, ihr

Brush & spin coat HfO2 (aq)
Repeat
3~5 times

Repeat
12 times Hydrolysis 150 OC, 1min

Anneal at 400 OC, 30 min

Final Annealing at 400 oC, 60 min

(a) (b)

Figure 4.8 (a) Original HfO2 plugging recipe with huge shrinkage, only single final
annealing step and (b) modified recipe to minimize shrinkage after annealing. Intermediate
annealing steps are added
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Chapter 5

Experimental Result and Discussion

5. Experiments

5.1. Accelerated Test Conditions

The goal of lifetime of FSPC emitters is over 30 years. To test designed device,

accelerated tests is required for verifying the FSPC concepts. Not only with its accelerated test

among the identical material, is the relationship among the materials at different temperature

studied.

5.1.1. Based on activation energy (Arrhenius acceleration model)

The most frequently used acceleration model for diffusion and evaporation is the

Arrhenius model, which assumes that the activation energy for each failure mechanism is unique

and that every material has a constant value independent of temperature. The model equation is:

Ea
rate of degradation = Ae-kT (5.1)

where Life (or rate of degradation) is the median life of a population, AO is a scale factor

determined by experiment, Ea is activation energy, k is Boltzmann's constant (8.62 x 10-5 eV/K),

and T is temperature in Kelvin.

For silicon, the activation energy is Ea,si = 1.7 eV/atom, and that for tungsten is

Ea,w = 2.79 eV/atom. Based on Equation (5.1), after putting all the values for silicon at 850 0C

and the equivalent temperature of tungsten is calculated to be 1570 0C. It means that for diffusion

and evaporation, the degradation of identical geometry but for different materials can be

calculated by comparing the values of activation energy. For the same amount of time, the

degradation will be the same at 850 0C for silicon and 1570 0C for tungsten.
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To obtain equivalent temperature, we need to modify Equation 5.1 with a surface

diffusion formula, Equation 3.2:

Ea Ea

2 DSa zK 2 Doe kT 2K e kT (5.2)
v, = yK2 _ zn = B

kT Osz kT as o k

Since all the parameters remain the same, except the activation energy and temperature, similarly

with Arrhenius acceleration model, the equivalent temperature for different materials for surface

diffusion can be obtained. With this formula, the equivalent temperature for silicon at 850 "C is

1640 0C for tungsten.

Therefore, in this study, silicon sample at 850 0C were tested to investigate the thermal

degradation effects which are equivalent for tungsten sample approximately at 1600 "C.

5.1.2. Homologous temperature (Th)

Homologous temperature is the ratio of the absolute temperature of a material to its

absolute melting temperature. It is expressed as:

Th = (5.3)

It is well known that from various experimental data the material properties, such as tensile

strength, shear strength and modulus of elasticity, of metal changes based on this homologous

temperature for both poly- and single-crystalline materials.

For examples, creep, the tendency of a solid material to move slowly or deform

permanently under the influence of stresses, occurs as a result of long term exposure to high

levels of stress that are below the yield strength of the material. Creep is more severe in materials

that are subjected to heat for long periods, and near melting point.

Recently, Flynn reported an interesting study regarding universality of surface diffusion

by homologous temperature. His experiments that determine surface diffusion Ds on the close

packed surfaces of vacuum compatible metals revealed that surface diffusion is approximately

universal when scaled to homologous temperatures, Th [81]. Similar behavior for vacancy-driven

diffusion in bulk metals has been recognized, too.
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This is an interesting result, because through this finding, the temperature acceleration

tests among the different materials can be performed. It means that thermal degradation test by

surface diffusion for tungsten at 1200 0C, homologous temperature Th = 0.40), will show same

surface diffusion with silicon at Th 0.40, which is 400 0C, which is much lower temperature. In

this thesis, temperature acceleration tests (firing tests) based on Flynn's research were perfomed

at a homologous temperature was 0.4.

5.1.3. Acceleration Factor

The Scale-accelerated failure time model (SAFT), which is also known as accelerated

failure time (AFT) model, is a parametric model that provides an alternative to the commonly

used proportional hazards models in the statistical area of survival analysis.

Under a SAFT model, lifetime at temperature T, L(T), is scaled by a deterministic factor

that might depend on temperature and unknown fixed parameters. More specifically, a model for

the random variable L(T) is [84]:

L(T) = L(Tuse)/AF(T) (5.4)

where the acceleration factor, AF(T) is a positive function of t satisfying AF(Tuse) = 1. Lifetime is

accelerated (decelerated) when AF(T) > 1 (AF(T) < 1).

For example, it the structure survived at T = 1200 C for 100 hours, L(1200C) = 100

hours and the life time at 800 C, L(800'C) can be obtained from the Equation (5.2). The

acceleration factor for Arrhenius acceleration test can be obtained as[84]:

A F (T) = AF(T, Tuse, Ea) = Exp (E ( 1 - (5.5)

For prediction of the life time of designed and fabricated selective emitter, these equations are

used and the result is shown in secssion 5.3.2

L(8000 C) = L(12000 C) x AF(12000C) (5.6)
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AF(1200*C) = Exp 2 (31 1473.1s)) = 3617

5.2. Firing test of SiPhC

Before the crack-free plugging process was developed, firing tests we conducted at 850
0C. Total firing time was 100 hours, and scanning electron microscope (SEM) and electron.

dispersive scattering x-ray (EDS) images were taken at 0, 5, 20, 50, and 100 hours of ZrO2

plugged silicon photonic crystal for analysis. With these experiments, it was expected to see that

the oxygen stuffed TiN minimizes inter-diffusion and oxidation. Also, the flat surface design

Silicon trench (cross-sectional view of EDS and SEM)

0 hr Shr 20 hrs 5hr

- Silicon trench with Zr 2 lug

4 MMO

100 hrs

ONmM M

4MM 41

Figure 5.1: Firing tests with silicon micro trenches. ZrO2 plugged samples prepared by
the proposed process of pattering, TiN coating, plugging, polishing, and another TiN
coating. EDS images tracks the Si. Silicon-based flat surface design had a cracking issue
but still provides the function of maintaining the physical structure. Nitrogen flow rate
was 5 sccm and ramp up and down rates were 3 0C/min.

(5.7)



prevents surface diffusion and maintains its physical structures. By taking EDS images, Si was

tracked along the interface between silicon-TiN-ZrO 2 . As seen from ZrO2 plugged trenches,

Figure 5.1, there was no significant inter-diffusion observed with EDS even after 100 hours at

850 C. SEM images and height-to-width ratio (Figure 5.2) also showed that plugged samples

were maintained within less than 5 % range.

Therefore, the flat surface idea is a promising solution for the thermal degradation issue,

but the scale is still in sub-micron level and the cracked plug may affect the optical properties of

the device.

0.7

0.6

r, 0.5
cis
E0.4

":0.3

r 0.2

0.1

0

Silicon trench with ZrO2 Plug

Silicon trench only
+-- -m

0 20 40 60 80
Annealing time (hours)

100 120

Figure 5.2: Height to width ratio with respect to firing time. While
trenches degraded and changed the shape greatly, the plugged
maintained the structure.

untreated silicon
silicon trenches
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5.3 Optical Measurement of Flat Surface Silicon Photonic Crystal

5.3.1. Measurement system and Kirchoff's law

After proving the concept of flat surface design, which can prevent geometrical/thermal

degradation, its optical performance was checked. First of all, the plugging material has to be

transparent in the rage of application. Secondly, the emissivity of the samples has to be

maintained after firing test.

To show theses two performances, a Fourier transform infrared spectroscopy (FTIR) for

measuring emissivity with Kirchoff's law of radiation and incoming radiation equation was used.

FTIR is a technique which is used to obtain an infrared spectrum of absorption, emission,

photoconductivity or Raman scattering of a solid, liquid or gas [85]. An FTIR spectrometer

simultaneously collects spectral data in a wide spectral range. In the present case, Kbr beam

splitter and DTGS detector, which can measure optical spectra from approximately 1 tm to 5 Im

were used. However, since at room temperature, the emission is too weak for detection, I called

upon Kirchoff s law, which states "for opaque material, emission and absorption are equal at

any wavelength and any phase [86]." Also, based on incoming radiation equation, "Incoming

light consists of only absorptivity, reflectivity and transmissivity. From Equation 5.3, the

emissivity can be obtained by measuring reflectivity and transmissivity.

p + a + r = 1 (5.8)

The FTIR spectroscope can measure transmissivity and reflectivity at the same spot. I

prepared two silicon photonic crystal samples, one is silicon photonic crystal and the other is

HfO2 plugged sample, which is made from the process introduced in Chapter 4. With simple

emissivity measurement, we could see that the plugged sample, even without flattening the

surface with polishing can have almost the same optical performance, Figure 5.3. That means the

HfO2 plug does not affect the optical property at wavelength range between 1 pim to 5 pam.
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5.3.2. Optical performance along with the firing tests

These prepared samples were then fired at 400 *C (Th =0.4) for 100 hours under 5 sccm

of nitrogen flow. Cross-sectional images were taken with SEM and their emissivity measured

with FTIR at 50 hours, 100 hours later. Figure 5.4 and Figure 5.5 show thermal degradation of

silicon photonic crystal structure and corresponding images for flat surface HfO2 plugged

samples. As time goes, the holes depth is getting shallower while plugged samples remains its

original geometry. It is more clear with zoomed-in images, Figure 5.5, that untreated samples

approach its geometry to the flat surface by surface diffusion or evaporation and re-condensation.

N1
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
wavelength (Im)

Figure 5.3: The effect of plugging HfO2 on silicon photonic crystal. The emissivity difference

is less than 5 % at wavelengths between 1 to 5 jim. Details of filter and detector selection and
process condition are described in Appendix B.
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Silicon holes array (150 titled view)

U0h
Silicon holes with Hf0 2 plugged (150 titled view)

2 pim

Figure 5.4: Thermal degradation of silicon photonic crystal structures and corresponding SEM
images for HfO2 plugged sample. Fired at 400 0C with nitrogen 5 sccm and ramp up and down
rate were 3 "C/min.

2U hrs U rs

Silicon holes array (10 titled view)

25 brs 50 hrs

soonm

100 hrs

5Onm
Silicon holes with HfO 2 plugged (cross sectional view)

Figure 5.5: Cross-sectional view of thermal degradation of silicon photonic crystal structures

and corresponding SEM images of HfO 2 plugged sample. Fired at 400 oC with nitrogen 5

sccm, and ramp up and down rate of 3 *C/min.
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Finally, to examine the optical performance, the emissivity is measured for each sample

after 0, 50, and 100 hours fired at 400 "C. As seen in Figure 5.6, the silicon photonic crystal

emissivity curve decreases its emission as it degraded, and the emission curve approaches the flat

silicon surface. By contrast, the HfO2 plugged silicon photonic crystal does not lose its optical

performance even after 100 hours of firing at 400 "C.

Therefore, at same Th=0.4, 2-D tungsten photonic crystal can be survived at least 100 hours,

which is equivalent temperature of 1200 *C and acceleration factor of AF(12000C) = 3,612. From

Equation 5.4, the life time of tungsten photonic crystal at 800 "C is at least 361,267 hours, which

is approximately 41 years. If we use the same PhC at 900 0C, the life time will be at least 3 years.

0 hours

50 hours

100 hour's44

Flat Si
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Figure 5.6: Measured emissivity after 0, 50, 100 hours of firing test at 400 "C for: (a) silicon
photonic crystal without any treatment (coating or plugging) and (b) HfO2 plugged silicon
photonic crystal sample.
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Chapter 6

Conclusions

6. Conclusion and Future works

6.1. Summary of Accomplishments

Chapter 1 reviewed the currently available solar energy conversion systems focused on

photovoltaic systems: p-n junctions, multi-junction, and other third generation PV cells. Their

reported and theoretical conversion efficiencies are also presented. Among the third generation

PV technologies, solar-thermophotovoltaic (S-TPV) system's concept is briefly introduced.

Compared to multi-junction PV cells, the merits of S-TPV are presented: lower price materials,

less complicated, easier fabrication process, and broader applications. However, the issue on S-

TPV or TPV, thermal stability of 2-D selective emitters, is stated. Finally, the goal of this thesis,

design and fabrication of thermally stable 2-D selective emitters was presented,

Chapter 2 focused on the literature of TPV energy conversion systems and their basic

components: selective emitters (Photonic crystals) and PV diodes. A brief history of TPV was

reviewed. The importance of spectral control and state of the art for high-efficiency are

introduced. In more detail, the working principle, history, types of photonic crystals as selective

emitters are presented.I concluded that 2-D photonic crystal is favorable in cost, manufacturing,

and performance. However, for maximum efficiency, the 2-D photonic crystal must operate at

very high temperatures, 800 - 1300 0C. Since, at such a high temperatures, micro/nano-scale

structured 2-D photonic crystal cannot survive for a long time, the direction for solving this issue

and a literature review on this specific issue were presented.

Chapter 3 presented a detailed investigation of four major modes of thermal degradation.

Modeling, simulation, and experiments for these four major sources were investigated: grain

growth, oxidation, surface diffusion, and evaporation. For each degradation mode, feasible

solutions and tests are done. In detail, for the case of recrystallization and grain growth, pre-
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annealing the substrate prior to micro/nano fabrication is proposed. If the selective emitters do

not require large area, using single crystal tungsten can be a good choice. For oxidation, thin

layer of TiN coating fellowed by oxygen stuffing was helpful to prevent or minimize the

oxidation on the selective emitters' surface. Surface diffusion is unavoidable phenomena, but

with having no curved surface, the source of surface diffusion can be fundamentally removed.

Evaporation was also found by experiment and diffusion barrier coating method is proposed.

Chapter 4 provided the design guideline based on the findings of Chapter 3. The most

challenging degradation mode was surface diffusion. To prevent surface diffusion, the structure

should have optically periodic structure but it should be physically flat. To obtain this structure,

plugging the nano-pits with optically transparent ceramic material, which has high thermal

stability, is proposed. Next issue was oxidation. To minimize oxidation or evaporation, a

diffusion barrier coating on top of the surface was proposed. This layer must be thin enough to

pass the photons without losing its original energy but it must be thick enough to prevent

oxidation or evaporation. For recrystallization issue, the substrate must be free from grain

growth or recrystallization (single crystalline) or the grain size is already large enough (pre-

annealed) so that the further grain growth may not affect much on the overall optical properties

of selective emitters. A detailed design and fabrication of thermally stable structure, flat surface

photonic crystal (FSPC), its fabrication process, and prepared samples were presented.

Chapter 5 mostly focused on proof of concept with experimental test. Both firing tests

and optical measurement with fabricated samples were preformed. With these results, it may be

concluded that ceramic plugged flat surface design with thin layer of inter-diffusion and

oxidation barrier coated structure can guarantee significantly improved life time for 2-D selective

emitters. Although the proof of concept of flat surface tungsten photonic crystal is done with

different material, silicon, the relationship of time-temperature with different material based on

activation energy and homologous temperature were useful tool for accelerated tests.

6.2. Suggestion for Future Studies

Since there are several limitations of fabricating tungsten photonic crystal, silicon 2-D

photonic crystal was used for proving the concept for thermal stability. However, in real world

application, the device is supposed to be made with tungsten. A general tungsten 2-D fabrication

process is introduced in Figure 6.1. To generate micro/nano pattern, interference-lithography is
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Figure 6.1: General process flow for 2-D tungsten photonic crystal. Bi-layer coating and

hard-mask required for tungsten etching.

used. For this reason, bi-layer photo resist is required. The general process flow is depositing a layer

of chromium (Cr) on the tungsten substrate, and then two lithography layers of anti-reflection coating

(ARC) and photoresist (PR) coated on the chromium successively. After lithographic exposure, the

desired pattern is transferred until periodic cylindrical holes on the W substrate are obtained [87].

However, this prooess includes wet etching of Cr, the final side-wall has very rough side

wall. There have been attempts to solve this issue with high temperature etching of Cr, but still

the wall roughness remains a problem, Figure 6.2.

Another issue is that by using interference-lithography, it can only generate square array

holes of photonic crystal patterns. It is known that hexagonal array of the cylindrical holes array

will give better control of emission selectivity [88]. In this regard, dry etching process or single

step lithography may be required to improve the side-wall quality.
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Thus, stepper lithography is suggested. The stepper allows up to five times image

reduction ratio and the conventional minimum pattern width is about 2 pm, with up to 400 nm

patterns on tungsten wafer. The most common issues for dry etching small samples are mounting

and heating problem. Since the dry etching process is very sensitive to its substrate temperature

during etching, mounting small samples on a standard size wafer, which is generally 6 inches,

will have heat transfer problem and cause non-uniform etching throughout the process. Since the

stepper also can generate the pattern in a small area, small samples using stepper will provide a

single step of lithography process and avoid the heat transfer issue from dry etching.

Among high temperature transition metals, tantalum (Ta) recently received more interest

since it has a higher melting temperature and is relatively cheaper than tungsten. Most of all, it

has a much larger dry etching selectivity to photo resist (PR) compared with tungsten. The only

consideration is that its thermal expansion coefficient is higher than HfO2, Table 4.1. For the

case of Tantalum (Ta), it is strongly suggested to using ZrO2 as a plugging material. A water-

based solution of ZrO2 sol-gel can be prepared as the same method of HfO2 water-based solution,

Appendix B.

75veconds 85Sconds

Figure 6.2: Wet etched chrome mask at difference etching times. It has very rough

side-wall (SEM top view) [87].
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Appendixes

Appendix A: Calculation of Radiative Power Flux (Emission)
(This work is done with Michael Ghebrebrhan)

;;2D planar tungsten slab
;;a in units of micron (i.e. a = lum)

(define-param a 1)
(set-param! resolution 40)
;(set! Courant 0.25)
(use-output-directory)
(define-param normalization? true)

(define-param Lx 1.6)
(define-param Ly 15)
(define-param dpml 1.0)
(set! geometry-lattice (make lattice (size Lx Ly no-size)))
(set! pml-layers (list (make pml (thickness dpml) (direction Y))))

;; Tungsten LD data from Adrian
(include "../material-epsilon.ctl")
(set! extra-materials (list tungsten-epsilon))
(define-param d 3) ;;;slab thickness
(define-param slab-center (/ (+ 2.56 -1) 2)); (- (/ Ly 2) dpml 1.0 (/ d 2)))
(define-param hole-depth 2.1)
(define-param hole-width 0.9)
(define-param hole-center (- slab-center (/ d 2))) ;;placed at surface of slab b/c hole is defined to
have double its height

(if normalization?
(set! geometry (list (make cylinder (center 0 0 0) (radius .1) (height infinity)

(material (make dielectric (epsilon 1.01)))))))

(define-param kx (/ 0.0 Lx))
(set! k-point (vector3 kx 0 0))

(define-param df (- 1 kx))
(define-param fcen (/ (+ 1 kx) 2))
(define (planewave-amplitude r)

(make-polar 1 (* 2 pi (vector3-dot (vector3 kx 0 0) r))))

(set! sources (list (make source
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(src (make gaussian-src (frequency fcen) (fwidth df)))
(component Ez) (center 0 (- (/ Ly 2) dpml 2) 0) (size Lx 0)

(amp-func planewave-amplitude))))

(define file-a (open-input-file "fl 0000-a.txt"))
(define surface-list-x-a (list (read file-a)))
(define surface-list-y-a (list (read file-a)))

(define file-b (open-input-file "flOO0O-b.txt"))
(define surface-list-x-b (list (read file-b)))
(define surface-list-y-b (list (read file-b)))

(define file-c (open-input-file "flO00-c.txt"))
(define surface-list-x-c (list (read file-c)))
(define surface-list-y-c (list (read file-c)))

(define echo-file-a
(lambda (n)
(if (eof-object? n)

(print "This is only a test.\n")
(begin

(set! n (read file-a))
(set! surface-list-x-a (append surface-list-x-a (list n)))
(set! n (read file-a))
(set! surface-list-y-a (append surface-list-y-a (list n)))
(echo-file-a n))))

(echo-file-a 1)

(define echo-file-b
(lambda (n)
(if (eof-object? n)

(print "This is only a test.\n")
(begin

(set! n (read file-b))
(set! surface-list-x-b (append surface-list-x-b (list n)))
(set! n (read file-b))
(set! surface-list-y-b (append surface-list-y-b (list n)))
(echo-file-b n)))))

(echo-file-b 1)

(define echo-file-c
(lambda (n)
(if (eof-object? n)

(print "This is only a test.\n")
(begin

(set! n (read file-c))
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(set! surface-list-x-c (append surface-list-x-c (list n)))
(set! n (read file-c))
(set! surface-list-y-c (append surface-list-y-c (list n)))
(echo-file-c n)))))

(echo-file-c 1)

(define (is-between-a px n)
(if (and (< (list-ref surface-list-x-a n) px) (>= (list-ref surface-list-x-a (+ n 1)) px))

n (is-between-a px (+ n 1))))

(define (is-between-b px n)
(if (and (< (list-ref surface-list-x-b n) px) (>= (list-ref surface-list-x-b (+ n 1)) px))

n (is-between-b px (+ n 1))))

(define (is-between-c px n)
(if (and (< (list-ref surface-list-x-c n) px) (>= (list-ref surface-list-x-c (+ n 1)) px))

n (is-between-c px (+ n 1))))

(define (surface-builder-a p)
(let ((idx (is-between-a (vector3-x p) 0)))

(define yi (list-ref surface-list-y-a idx))
(define yi+l (list-ref surface-list-y-a (+ idx 1)))
(define xi (list-ref surface-list-x-a idx))
(define xi+1 (list-ref surface-list-x-a (+ idx 1)))
(if (<= (vector3-y p) (+ yi (* (/ (- yi+l yi) (- xi+l xi)) (- (vector3-x p) xi))))

tungsten-epsilon air)))

(define (surface-builder-b p)
(let ((idx (is-between-b (vector3-x p) 0)))

(define yi (list-ref surface-list-y-b idx))
(define yi+1 (list-ref surface-list-y-b (+ idx 1)))
(define xi (list-ref surface-list-x-b idx))
(define xi+1 (list-ref surface-list-x-b (+ idx 1)))
(if (<= (vector3-y p) (+ yi (* (/ (- yi+1 yi) (- xi+1 xi)) (- (vector3-x p) xi))))

air tungsten-epsilon)))
(define (surface-builder-c p)

(let ((idx (is-between-c (vector3-x p) 0)))
(define yi (list-ref surface-list-y-c idx))
(define yi+1 (list-ref surface-list-y-c (+ idx 1)))
(define xi (list-ref surface-list-x-c idx))
(define xi+1 (list-ref surface-list-x-c (+ idx 1)))
(if (<= (vector3-y p) (+ yi (* (/ (- yi+1 yi) (- xi+1 xi)) (- (vector3-x p) xi))))

tungsten-epsilon air)))

(if (not normalization?)
(set! geometry (list (make block (center 0 slab-center 0) (size Lx 3.56 infinity)
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(material (make material-function (material-func surface-builder-a))))
(make block (center 0 (/ (+ 1.116 -1) 2) 0) (size 0.74 2.116 infinity)

(material (make material-function (material-func surface-builder-b))))
(make block (center 0 (/ (+ 0.413 -1) 2) 0) (size 0.74 1.413 infinity)

(material (make material-function (material-func surface-builder-c)))))))
(define trans (add-flux fcen df 400 (make flux-region (center 0 (+ (/ Ly -2) dpml 1)) (size Lx

0))))
(define refl (add-flux fcen df 400 (make flux-region (center 0 (- (/ Ly 2) dpml 1)) (size Lx 0))))
(if (not normalization?) (load-minus-flux "refl-flux" refl))
(run-sources+ 200

(at-beginning output-epsilon)
(at-time 1 (output-png Ez "-A $EPS -a green:0.7 -Zc dkbluered -S2"))
(at-every 10 (output-png+h5 Ez "-A $EPS -a green:0.5 -Zc dkbluered -S2")))

(if normalization? (save-flux "refl-flux" refl))
(display-fluxes refl trans)

(exit)

94



Appendix B: Fabrication Details

Appendix B. 1 Preparing tungsten sample for firing tests

1. Poly-crystalline tungsten sheet (t = 0.3mm) prepared.

2. Cut is it as 10 mm by 10 mm by die-saw.

3. Mechanical polishing.

a. 300, 500, 1200, 1500, 4000

4. Focused Ion Beam Milling (beam size 11, 20 dose with Joel 4600F).

5. AJA sputter- TiN coating.

a. Titanium Source *with Argon and nitrogen flow (5:7).

b. 250V (300W).

c. 5-7 nm (5 min, measured by quartz crystal reflectance).

d. Oxygen stuffing: heating for 30 min in air at 300 C (hot plate).

Appendix B.2 Silicon trench and silicon photonic crystal fabrication

1. N-type 2" silicon wafer prepared (t=0,35mm).

2. RCA cleaning.

3. HMDS, Spin coat photo resist (OCG 825), Soft baking for 30 minutes at 95 0C.

4. Lithography with MA6 (vacuum contact).

5. Develop resist with OCG 934 2:1 for approximately 90 seconds.

6. Rinse with Di-water, dry and hard backing at 95 0C for 30 minutes.

7. Wafer mount to 6" dummy wafer (back-side polished).

8. Asher for 2 minutes.

9. Deep-RIE for 2:30 min (MIT recipe name: MIT39 at STS3).

10. Piranha cleaning for detach wafer (immerse for 30 minutes).

11. Rinse with DI-water.

*Mask for micro-scale trench prepared with conventional e-beam method (thanks to Denis Ward
at MTL).
**Mask for sub-micron scale photonic crystal prepared with the interference lithography (IL)
method (thanks to Dr. Veronika Rinnerbauer).
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Appendix B.3 HfO2 water-based solution synthesis

1. HfOCl 2-8H 20 (Alfa Aesar, 98+%) dissolved in H2 0 to a Hf concentration of 0.12M

(2.457g of HfOC12-8H2 0 dissolved in 50 mL Di-water for 0.12M of Hf).

2. 16.75 mL of IM NH 3 (aq) (Mallinckrodt, ACS) added to the solution and stir vigorously until

the pH reach 8.5.

3. Centrifuge the precipitates then wash with H20 to remove Cl- and ammonia (5-6 times).

4. Check with AgNO 3 (aq) for no remained Cl and ammonia (until clear solution obtained with

the precipitates).

5. Rinse 5-6 time with Di-water and collect precipitates.

6. 37 mL of 1OM H20 2 (aq) (Mallinckrodt, ACS) and 8 mL of 2M HNO 3 (aq) (EDS, ACS) were

added to the precipitates and stir for 12-24 hour.

Appendix B.4 HfO2 plugging

1. Oxygen plasma at 10 mTorr, 5 sccm 02, and 0.75 W/cm2 for 10 minutes.

2. Spin coat the solution at 800-1000 rpm.

3. Swipe the surface with clean Q-tip.

4. Bake with hot plate at 150 0C.

5. Repeat step 2 to step 4 for five times..

6. Anneal with hot plate at 400 C for 30 minutes.

7. Repeat step 5 and 6 until desired thickness is achieved.

8. Final annealing at 400 0C for 1 hour.
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