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Abstract
Human adaptation of avian influenza viruses pose an enormous public health challenge as the

human population is predominantly naive to avian influenza antigens. As such, constant

surveillance is needed to monitor the circulating avian strains. Of particular importance are

strains belonging to H5N1, H7N7, H7N2 and H9N2 subtypes that continue to circulate in birds

worldwide and have on occasions caused infections in humans. A key step in influenza human

adaptation is the accumulation of substitutions/mutations in the viral coat glycoprotein,
hemagglutinin (HA), that changes HA's binding specificity and affinity towards glycan receptors
in the upper respiratory epithelia (referred to as human receptors). Unlike for the H1, H2, H3
and more recently H5 HA a correlation between the quantitative binding of HA to human

receptors and respiratory droplet transmissibility has not been established for H9 and H7

subtypes.

This thesis is a systematic investigation of determinants that mediate changes in HA-glycan

receptor binding specificity, with focus on the molecular environments within and surrounding

the glycan receptor binding site (RBS) of avian HAs, particularly the H9 and H7 subtypes. The

glycan receptor binding properties of HA were studied using a combination of biochemical and

molecular biology approaches including dose dependent glycan binding, human tissue staining

and structural modeling. Using these complementary analyses, it is shown that molecular

interactions between amino acids in and proximal to the RBS, including interactions between

the RBS and the glycan receptor converge to provide high affinity binding of avian HA to human

receptors. For the H9 HA a2-*6 glycan receptor-binding affinity of a mutant carrying Thr-

189->Ala amino acid change correlated with the respiratory droplet transmission in ferrets

conferred by this change. Further, it was demonstrated for the first time that two specific

mutations; Gln226->Leu and Gly228-+Ser in glycan receptor-binding site of H7 HA substantially
increase its binding affinity to human receptors.

These approaches and findings contribute to a framework for monitoring the evolution of HA
and the development of general rules that govern human adaption applicable to strains beyond
ones currently under study.

Thesis Supervisor : Prof. Ram Sasisekharan
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1 Introduction

1.1 Summary

In the context of recently emerged novel influenza strains through reassortment, avian

influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms

of their adaptation to the human host. Among these subtypes, it was recently demonstrated

that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted

viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted

viruses). It has been previously demonstrated that the quantitative binding affinity of HA to

a2->6 sialylated glycans (human receptors) is one of the important factors governing human

adaptation of HA. Although the H7 subtype has infected humans causing varied clinical

outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of

these subtypes stand in regard to human adaptation since its binding affinity to glycan

receptors has not yet been quantified.

The molecular interactions of HA with avian and human receptors have been captured using a

topology-based definition of glycan receptors [1]. Glycan array platforms comprised of

representative avian and human receptors have been widely employed to study the glycan

receptor binding of HAs and whole viruses [2-5]. The relative binding affinities of recombinant

HAs of avian- (such as HINI and H5N1) and human-adapted (such as H1N1 and H3N2) viruses

to avian and human receptors have been quantified by analyzing these HAs (or whole viruses)

in a dose-dependent manner on glycan array platforms[1, 6-8]. Furthermore, the glycan array

binding properties of the HAs have been shown to correlate with their binding to physiological

glycan-receptors in human respiratory tissues [9]. Importantly, it has been shown that the

human receptor-binding affinity of HINI HAs correlated with the efficiency of airborne viral

transmission in the ferret animal model [[6, 7]], which is an established model to evaluate viral

transmissibility in humans [[7, 10-12]. Such a relationship has yet to be shown for the avian H9

and H7 subtypes. Given increasing number of isolated incidents of human infections by
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contemporary strains a detailed analysis of how far these strains have evolved and more

importantly how their affinity compares with pandemic and epidemic strains of Influenza A

viruses with proven mammalian host transmissibility is addressed in this thesis.

The last part of this thesis focuses on developing in vitro platforms that mimic antigenic drift of

the virus in an attempt to map viral evolution and better understand the proclivity of the virus

to undergo certain changes in vivo than others. To this end, reverse genetics, quantitative PCR

and genome sequencing protocols were tools explored to address the probability of mutation

predicted in silico appearing in a natural population.

These approaches/findings contribute to a framework for monitoring the evolution of HA and

the development of general rules that govern human adaption applicable to strains beyond

ones currently under study.
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1.2 Influenza Viruses

Influenza viruses belong to the Orthomyxoviridae family of single stranded enveloped RNA

viruses. There are three genera of Influenza viruses (viz A, B and C) classified based on the

nucleoproteins and matrix proteins of the virus. The influenza A viruses are classified based on

two surface proteins Hemagglutinin (HA) and Neuraminidase (NA) as these proteins are

primarily responsible for the antigenic changes observed in these viruses. There are 17 known

HAs and 9 NAs that have been isolated from their natural reservoir. Based on their antigenicity

Influenza viruses are classified into two groups (1 and 2) which are further divided into five

clades (Fig. 3).The virions are ~80-120 nm spherical particles with a segmented genome of 8

strands of negative sense RNA that code for 12 viral proteins (HA, NA, matrix proteins M1 and

M2, viral polymerases PB1, PB1-F2, PBi-N40, PB2 and PA, Non-structural proteins NS1 and NS2,
Nucleoprotein NP)[13]. There are ~400 HA homotrimers and ~100 NA homotetramers on the

surface of the mature virion. Widely circulating human influenza viruses are limited to two HA

(H1 and H3) and two NA (N1 and N2) subtypes while wild aquatic birds are the predominant

hosts for the remaining subtypes (Fig. 1.1)[14].

1.2.1 Viral Genome

The influenza A virus genome consists of eight single-stranded RNAs that encode 11 or 12

proteins. These are nuclear export protein (NEP; also known as NS2) and the host antiviral

response antagonist non-structural protein 1 (NS1), which are encoded by the NS segment; the

matrix protein MI and the ion channel M2, which are encoded by the M segment; the receptor-

binding protein haemagglutinin (HA), the sialic acid-destroying enzyme neuraminidase (NA),
nucleoprotein (NP), and the components of the RNA-dependent RNA polymerase complex (PB1,
PB2 and PA), all expressed from their respective genome segments; and the newly identified

N40 protein, which is expressed from the PB1 segment and has an unknown function. In

addition, some viruses express the pro-apoptotic protein PB1-F2, which is encoded by a second

ORF in the PB1 segment. Within the virion, each of the eight viral segments forms a viral

ribonucleoprotein (RNP) complex: viral RNA is wrapped around NP, and this structure is then

bound to the viral polymerase complex.
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1.3 Influenza virus life cycle

The first step in the life cycle of the virus is attachment to host cell receptors mediated by HA.

The viral HA attaches to host cell receptors that contain terminal a-2,6-linked or a-2-3-linked

sialic acid (a-2,6-SA or a-2,3-SA) moieties, and the virus enters the cell by receptor-mediated

endocytosis. Cleavage of HA by cellular proteases exposes the HA peptide for fusion between

viral envelope and the endosomal membrane. Acidification of the endocytic vesicle opens the

M2 ion channel, resulting in proton flux into the inside of the virion, a process that is required

for proper uncoating of the RNP complexes that contain the viral genome. Acidification of the

endosome also triggers the pH-dependent fusion step that is mediated by HA and results in the

cytoplasmic release of the RNP complexes. These translocate to the nucleus, where the RNA-

dependent RNA polymerase transcribes and replicates the negative-sense viral RNA ((-)vRNA),

giving rise to three types of RNA molecules: the complementary positive-sense RNA ((+)cRNA),

which it uses as a template to generate more vRNA; negative-sense small viral RNAs (svRNAs),

which are thought to regulate the switch from transcription to replication; and the viral mRNAs,

which are exported to the cytoplasm for translation. Viral proteins that are needed in

replication and transcription are translocated back to the nucleus, and progeny RNPs are then

exported to the cytoplasm for packaging, assisted by M1 and NEP. Viral HA, NA and M2 are

transported by the trans-Golgi secretory pathway, and the mature proteins arrive at the plasma

membrane, where M1 assists in the formation of virus particles. Budding then occurs, and

release from the host cells is mediated by the neuraminidase activity of NA, which destroys the

SA of the cellular and viral glycoproteins that would otherwise retain the new virions at the cell

surface (Fig. 1.4)[9, 15].

1.4 Viral Evolution

The epidemiological success of Influenza viruses can be largely attributed to the rapid antigenic

change that they continuously undergo [16]. The error-prone viral polymerase has a mutation

rate of one nucleotide exchange per genome or per replication cycle. [17]. In case of selective

pressures from neutralizing antibodies, chemical antivirals mutants with selective advantages

(to facilitate escape from neutralization) may be singled out and become the dominant variant

in the viral quasi species in that host or population.
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1.4.1 Antigenic Drift

Antigenic Drift refers to slight changes in the viral surface proteins (point mutations that

typically involve one or two amino acid changes) that allow the viruses to evade human

immune responses. It may take 3-5 years for a given subtype to gradually accumulate enough

point mutations to cause disease when it re-infects a previously exposed population. Antigenic

drift causes epidemics.

1.5 Genesis of Pandemic Influenza

Of the known 16 HAs and 9 NAs that make up all know Influenza virus strains only a small

subset circulate in the human population; the others being endemic to the natural reservoir for

these viruses wild aquatic birds. The few known instances of acquisition of human tropism by

avian strains have led to enormous global health consequences the most recent of being the

2009 HIN1 Swine flu pandemic[18] (Fig. 1.5).

1.6 Role of HA in host adaptation

Interspecies transmission of Influenza viruses is a polygenic event with the entire genome

programmed for efficient replication and transmission in the new host species which explains

why only a small subset of the 144 subtype combinations thrive in mammalian hosts. Host

restriction is partly mediated by the viral surface glycoprotein hemagglutinin (HA) which binds

to sialylated glycan receptors, complex glycans terminated by N-acetylneuraminic acid

(Neu5Ac) expressed on the host cell surface. Attachment is mediated via trimerized mature

viral HA with monovalent complexes between HA and host glycans being weak and easily

dissociated. Attachment is further stratified by the glycosidic linkage to the penultimate

galactose and the composition of the further inner fragments of the sialyloligosaccharides

present at the cell surface. Thus, it is conceivable that host restriction is imposed by the variety

of different sialyloligosaccharides expressed with restriction to tissue and species in the

different hosts of the virus. Glycans terminating in Neu5Ac that is a2->6-linked to the

penultimate sugar are predominantly expressed in human upper respiratory epithelia and serve

as receptors for human-adapted influenza A viruses (henceforth referred to as human

receptors). Binding to human receptors consequently allows the virus to replicate in the
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respiratory epithelium in addition to allowing the virus to be conveyed via respiratory droplets

when the infected individual sneezes. On the other hand, glycans terminating in Neu5Ac that is

a2->3 -linked to the penultimate sugar residue, serve as receptors for the avian-adapted

influenza viruses (henceforth referred to as avian receptors) and are typically found to replicate

in the gastrointestinal tract of birds allowing these avian strains to spread via fecal-to-oral

route[19, 20] (Fig 1.2).

When avian influenza viruses are transmitted from avian reservoir hosts to highly susceptible

poultry like chickens and turkeys only mild symptoms are induced with the birds remaining

mostly asymptomatic except in cases of coinfection with other strains or the virus mutating

without warning to a highly pathogenic strain consequently resulting in complete mortality.

Poultry species like the waterfowl, quail and turkey support multiple cycles of infection and

recent studies have shown the birds to have a human receptor distribution in the upper

respiratory epithelium consequently allowing these avian HAs to mutate towards adaptation to

their new hosts which results in the acquisition of human receptor specificity increasing the

likelihood of transmission to humans in immediate contact with the birds (Fig 5).

1.7 A Toplogy based definition of HA-Glycan Interactions for a biological read out

Given the imporatance of HA-glycan interaction in governing infection and transmissibility

numerous tools have been used to discern a particular strain's pandemic potential based on the

receptor binding specificity of HA. Agglutination assays, Fetuin capture assays, crystal structures

of HA with glycans and more recently advances in chemical and chemoenzymatic synthesis of

glycans have allowed fine exploration of the HA-glycan interactions [9]. However, one limitation

of these tools is that the viral titers or HA concentrations used are often very high and only look

at ax2-3 or cx2-6 glycans and often times proving inconsistent in explaining the apparent

differences in transmission capabilities of numerous strains that have similar profiles or

preferences discerned by these assay platforms.

The molecular interactions of HA with avian and human receptors have been captured using a

topology-based definition of glycan receptors [1]. Glycan array platforms comprised of

representative avian and human receptors have been employed to study the glycan receptor
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binding of HAs and whole viruses [2-5]. The relative binding affinities of recombinant HAs of

avian- (such as HIN1 and H5N1) and human-adapted (such as HINI and H3N2) viruses to avian

and human receptors have been quantified by analyzing these HAs (or whole viruses) in a dose-

dependent manner on glycan array platforms[1, 6-8]. Furthermore, the glycan array binding

properties of the HAs have been shown to correlate with their binding to physiological glycan-

receptors in human respiratory tissues [9]. Importantly, it has been shown that the human

receptor-binding affinity of H1N1 HAs correlated with the efficiency of airborne viral

transmission in the ferret animal model [[6, 7]], which is an established model to evaluate viral

transmissibility in humans [[7, 10-12] as these animals have similar glycan structures to humans

including a predominance of a2-6 glycans in their upper respiratory tract epithelium.

1.8 Quantitative PCR

Molecular based techniques for detecting Influenza viruses have become an integral

component of human and animal surveillance programs over the last two decades. The recent

pandemic of swine origin (HiNI) and the continuing circulation of highly pathogenic avian

influenza viruses have further stressed the need for rapid and accurate identification of viral

species. To this end, there has been remarkable progress on the detection and molecular

characterization of influenza virus infection in clinical, mammalian and domestic poultry and

wild bird samples in recent years. The application of these techniques including reverse

transcriptase PCR, real-time PCR, microarrays and other nucleic acid sequencing based

amplifications has been extensively documented. This thesis refers to numerous excellent

reviews on the applications of such tools/techniques in Influenza virus research [21-23]. Real

time PCR was used to evaluated IC50 changes in response to drugs/therapeutic compounds in

an effort to map viral evolution in this thesis.

1.9 Reverse Genetics

The term reverse genetics simply refers to the generation of a whole infectious virus particle

from cDNAs of individual virus genes. The ability to generate any combination of internal genes

and surface proteins is an excellent tool for systematic exploration of the contribution/role of

the various components of the virus in virulence and transmissibility. While the glycan array
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platform described above allows testing of engineered mutants of HA, using reverse genetics

one could engineer a live virus bearing the mutant surface glycoprotein and explore

transmission in vivo thus completing the entire cycle[24-28].

1.10 Motivation for thesis and thesis outline

The 2009 Swine origin Influenza pandemic was a gentle reminder that in spite of extensive

research our ability to predict when or how severe or even the subtype for the next pandemic

still remains poor[29]. The continuing spread of the high pathogenic H5N1 virus in several

continents leading to numerous fatalities has raised the pandemic stakes significantly. Although

overshadowed by H5N1 outbreaks, there have been several other poultry epizoonotics

involving human respiratory infections; H9N2 and H7 subtype viruses being prominent players

in this category[30-33].

Fundamental questions on how influenza viruses switch hosts from wild birds to domesticated

poultry, pigs or horses and eventually to humans remain unanswered, especially those

regarding changes that would allow human-to-human transmission capabilities[34, 35]. With

data suggesting that the 1918 virus was avian-like prior to human adaptation and that the H2N2

and H3N2 pandemics in '57 and '68 were reassortments with the '18 and '57 respectively; the

need to analyze systematically the possibility of both a de novo human adaptation by a hitherto

avian strain and reassortment become important for pandemic preparedness.

Broadly divided into the following major sections, this thesis addresses the aforementioned

inadequacies via the use and development of novel in vitro platforms for the study of Influenza

viruses:

1.10.1 Quantitative Characterization of Glycan-Receptor Binding of H9N2 Influenza A Virus

Hemagglutinin

The glycan receptor-binding properties of both H9N2 viruses isolated from avian species and

reassorted viruses comprising of wild-type and mutant forms of H9 HA have been studied by

screening them on glycan array platforms [36]. Such screening analyses served as a quick

readout for the number of different types of glycans that can bind to the virus at a fixed high
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viral titer and limited biochemical information on glycan affinity and specificity. Previously, the

Sasisekharan lab had demonstrated that correlating glycan-receptor binding properties from

such screening assays to transmissibility of virus had major limitations [8]. Instead, deriving

quantitative parameters from a dose-dependent binding to representative human and avian

receptors to compare relative human:avian receptor binding affinities correlated with the

respiratory droplet transmissibility of the virus was a better way to get a handle on human

adaptation [8, 37, 38]. Such a correlation remains to be determined for the H9 subtype in the

context of the reassorted viruses that show respiratory droplet transmission in ferrets and this

section delves into the evaluation of the pandemic potential of contemporary H9N2 strains.

1.10.2 Understanding receptor binding specificity of H7 Hemagglutinin containing strains of

Influenza A virus

As with H9N2 strains, screening initiatives have been undertaken to elucidate the glycan

binding preferences for H7 subtype viruses.

This section is an investigation of glycan-receptor binding properties of avian H7 subtype HAs

given that this subtype has been known to infect and cause disease in humans. Using a

combination of structural modeling, glycan array and human tissue binding analyses in this

study; glycan-receptor binding specificity and affinity of wild-type and mutant forms of H7 HAs

was quantitatively characterized. Such a quantitative description of glycan-binding properties of

H7 HAs has not been reported earlier.

1.10.3 In Vitro platforms to screen/identify/isolate escape mutants Influenza viruses

While the aforementioned sections primarily focus on the use of recombinant proteins for

receptor specificity and affinity evaluations the question/s of whether the same conclusions

would hold good in vivo remain. In an effort to develop an in vitro platform that mimics the

physiological representation of HA this section proposes the use of reverse genetics for

mutational analysis of HA. In addition, quantitative PCR as a tool for escape mutant detection

could be use in tandem to hone our understanding of the direction of evaluation of these

complex viruses that would aid in vaccine and drug development.
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1.10.4 Decoding Pectins - Establishment of a structure-function relationship for complex

glycans in cancer

This final part of this thesis, is focused on taking lesson from the structure and conformational

analysis of glycan-protein interactions of influenza A virus hemagglutinin to its sialylated glycan

receptors to the another disease modality viz cancer.

The use of a similar framework to isolate the test carbohydrate oligosaccharides as cancer

therapeutics is discussed.

1.11 Significance

To improve the ability to predict influenza pandemics it is necessary to use quantitative tools

and complementary analyses to gain a better understanding of host-switching events.

Enhanced surveillance and prospective analysis of strains in circulation are crucial in a complex

ecological system. The need for development of cost-effective and rapid readout platforms that

would help make intelligent choices on how best to evaluate the risk posed by Influenza viruses

would be important when addressing a global health challenge. To this end a structure-function

relationship paradigm proposed in this thesis attempts to address the aforementioned

challenges in a systematic fashion. Presented are two studies, the first being the study of the

relationship between the Influenza virus surface glycoprotein HA and its glycan receptors and

the second being the study of the role of complex carbohydrates in cancer.
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Fig 1.1. Cartoon of Influenza A virus Mature Infectious Virion.

The Influenza surface glycproteins, HA and NA that form the basis for classification of the
various strains are shown. M2, a component of the viral envelope and the 8 different gene
segments that are encapsulated by the viral envelope are seen.

Inset: the vRNP that consists of the viral RNA wound around NP.
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Fig 1.2. Human and Avian Sialylated Glycan Receptors for Influenza Viruses.

Receptors that are a2-3 linked (avian; shown in red) or a2-6 linked (human; shown in blue).
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2 H3,H4,H7,H10,H14,H15 N2, N3, N6, N7 and N9

Fig 1.3. Antigenic Classification of Influenza viruses.

The 17 known HAs and 9 NAs that comprise all known strains of Influenza viruses are broadly
classified into two groups (viz 1 and 2) based on their antigenicity.

25

GROUPI



1

ti

2 -00 OM MM

(
3/

Fig 1.4. Life Cycle of influenza viruses.

The influenza virus life cycle can be divided into the following stages: 1. entry into the host cell

with attachment to host cell receptors mediated by Hemagglutinin; 2. entry of vRNPs into the

nucleus preceded by pH dependent fusion step; 3. transcription and replication of the viral

genome; 4. export of the vRNPs from the nucleus; and 5. assembly and budding of newly

formed nascent virions at the host cell plasma membrane

26

<tt

Ap

XMMMMMMS,
;-Ma XMMMM,



Reservoir (Wild Aquatic Birds)
16 HA 9 NA subtypes

Domestic Galliformes (Viral Adaptation)

4I

Human Adaptation (Pandemic)

A

Lateral Spread; Ravaging disease

Spontaneous mutation @ HA cleavage site HPAI

Fig 1.5. Genesis of Pandemic Influenza
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Fig. 1.6 Microarray platforms for probing HA- Glycan interactions.
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2 Quantitative Characterization of Glycan-Receptor Binding of H9N2 Influenza
A Virus Hemagglutinin

2.1 Summary

Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to

establish airborne transmission between humans. However, lab-generated reassorted viruses

possessing hemagglutinin (HA) and neuraminidase (NA) genes from an avian H9 isolate and

other genes from a human-adapted (H3 or H1) subtype acquired two amino acid changes in HA

and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We

previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding

affinity of their HA to a2->6 sialylated glycan receptors correlates with respiratory droplet

transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA.

In this study, we performed a quantitative biochemical characterization of glycan receptor

binding properties of wild-type and mutant forms of representative H9 HAs that were

previously used in context of reassorted viruses in ferret transmission studies. We demonstrate

here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs

affect the glycan-binding specificity and affinity. Further we show that a2->6 glycan receptor-

binding affinity of a mutant H9 HA carrying Thr-189-->Ala amino acid change correlates with the

respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to

a framework for monitoring the evolution of H9 HA by understanding effects of molecular

changes in HA on glycan receptor-binding properties.
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2.2 Introduction

Among subtypes of influenza A viruses isolated from avian species, H5N1, H7N2, H7N3 and

H9N2 have been known to infect humans but are yet to adapt to human host so as to establish

airborne human-to-human transmission. In the past few years, novel influenza strains such as

2009 HINI and 2010 H3N2 that naturally emerged from multiple reassortment of viral gene

segments between avian, swine and human isolates were able to successfully adapt to human

host [29, 39]. In the context of these novel strains, the avian influenza subtypes pose a

significant threat of human adaptation [40]. With the human population predominantly naive

to these avian influenza antigens, constant surveillance with particular focus on molecular

changes geared towards human host adaptation becomes vital in this era of pandemics [41].

The adaptation of influenza A viruses to human host has been studied extensively in model

animal systems such as ferrets [12, 42]. One of the important factors governing human

adaptation of the virus is the gain in its ability to transmit via respiratory droplets in the ferret

animal model [12, 42]. The transmissibility of human-adapted pandemic influenza strains, 1918

H1N1, 1957 H2N2 and 2009 H1N1, in ferrets has been demonstrated to correlate with the

specificity and quantitative affinity of the viral surface glycoprotein hemagglutinin (HA) binding

to a2-*6 sialylated glycans (or human receptors) [8, 37, 38]. These human receptors are

predominantly expressed in upper respiratory epithelium of humans and ferrets [43, 44]. The

HA of influenza viruses isolated from avian species typically binds to a2->3 sialylated glycans

(or avian receptors) [44]. Therefore, the gain in the ability of HA from an avian isolate (such as

H5, H7, H9, etc.) to preferentially bind to human receptors (high relative binding affinity to

human receptor over avian receptor) is implicated as one of the important factors for the

human adaptation of the virus [9].

H9 is unique among avian subtypes since its HA has naturally acquired a mutation in the 226

position (based on H3 numbering) in glycan-receptor binding site (RBS) from GIn to Leu [45].

Leu-226 is predominantly found in human-adapted H2 and H3 HAs and is critically involved in

their binding to human receptors. It was demonstrated that among different avian H9N2

isolates, those with Leu-226 in the RBS showed a similar tropism of preferentially infecting non-

ciliated human airway epithelial cells (characteristic of human-adapted viruses) [45]. Although
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the H9N2 virus is yet to adapt to a human host, reassorted viruses carrying HA and NA from a

H9N2 virus isolated from a wild terrestrial bird (A/Guinea Fowl/Hong Kong/WF10/99 or WF10)

and other genes from human-adapted H3N2 [46] or 2009 pandemic H1N1 [47] have been able

to transmit via respiratory droplet in ferrets by acquiring as few as two amino acid changes,

Thr-189-Ala (in RBS) and Gly-192->Arg in HA.

The glycan receptor-binding properties of both H9N2 viruses isolated from avian species and

reassorted viruses comprising of wild-type and mutant forms of H9 HA have been studied by

screening them on glycan array platforms [36]. Such screening analyses served as a quick

readout for the number of different types of a2->3 and a2->6 sialylated glycans that bind to

the virus at a fixed high viral titer and limited biochemical information on glycan affinity and

specificity. Previously, we demonstrated that correlating glycan-receptor binding properties

from such screening assays to transmissibility of virus has major limitations [8]. Instead, we

demonstrated that deriving quantitative parameters from a dose-dependent binding to

representative human and avian receptors to compare relative human:avian receptor binding

affinities correlated with the respiratory droplet transmissibility of the virus [8, 37, 38]. Such a

correlation remains to be determined for the H9 subtype in the context of the reassorted

viruses that show respiratory droplet transmission in ferrets.

In this study, we focused on investigating the glycan receptor-binding specificity and affinity of

H9 HAs from the representative avian isolates WF10 and A/Quail/Hong Kong/A28945/88

(Qu88) that had been recombinantly constructed via reverse genetics for ferret transmissibility

studies carried out previously [36, 46, 47]. We first quantified glycan-receptor binding

specificity of WF10 and Qu88 HAs using a dose-dependent glycan array assay mentioned above

[8]. We then constructed homology-based structural models of these HAs to investigate the

effect of these mutations on the glycan-receptor binding of HA. We finally made these

mutations on WF10 and Qu88 HAs and experimentally quantified the glycan receptor-binding

affinities of these mutant HAs. Our results demonstrated and corroborated that the mutations

on H9 HAs that were found to confer respiratory droplet transmission in the ferret model also

substantially increased human receptor-binding specificity and affinity in comparison to those

of wild-type HAs.
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2.3 Results

As stated earlier, WF1O and Qu88 H9 HAs were chosen as representative HAs for

characterization of glycan-receptor binding properties. These HAs are isolated from different

avian hosts. While WF10 is from guinea fowl (wild terrestrial bird), Qu88 is from a strain that

has been established in domestic poultry in China. WF1O HA has Leu-226 in the RBS while Qu88

has Gln-226 [45]. As pointed our earlier, reassorted viruses comprising of WF1O HA acquired

additional mutations in the HA that conferred the viruses with the ability to transmit via

respiratory droplets in ferrets after repeated passaging in these animals [46].

2.3.1 Characterization of glycan receptor-binding properties of WF1O and Qu88 HAs

We previously developed a dose-dependent glycan array binding assay to quantitatively

characterize glycan receptor binding affinity of HA by calculating an apparent binding constant

Kd' [1, 8]. WF10 HA was recombinantly expressed and analyzed using this assay. WF1O HA

showed a highly specific binding to a representative human receptor, 6'SLN-LN (Fig. 2.1A).

Although the WF10 virus showed binding to both avian and human receptors in previous glycan

array screening studies [36], our results indicate that its quantitative binding affinity to human

receptor is orders of magnitude higher than that to avian receptor.

The Kd' ~300 pM for WF1O HA binding to 6'SLN-LN is 5 fold higher than that of 2009 H1NI HA

(Kd' ~ 1.5 nM) [37] and 60-fold lower than that of 1918 H1NI and 1958 H2N2 (Kd' ~ 5 pM) HA

[8, 38]. The human receptor-binding property of WF10 based on the glycan array was

consistent with its extensive staining of apical surface of human tracheal epithelium, which

predominantly expresses human receptors (Fig. 2.1B).

Qu88 HA, on the other hand showed predominant binding to avian receptors 3'SLN-LN and

3'SLN-LN-LN (Kd' 30pM) with minimal binding to human receptors (Fig. 2.1C). Therefore not

only does the Qu88 virus preferentially bind to higher number of avian receptors as observed in

previous glycan array screening studies [36], the quantitative avian receptor-binding affinity of

Qu88 is orders of magnitude higher than its human receptor-binding affinity. Furthermore, the

avian receptor-binding property of Qu88 HA was consistent with its extensive staining of

human alveolar tissue section (Fig. 2.1D), which predominantly expresses these receptors [44].
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2.3.2 Molecular Interactions of WF10 and Qu88 HA with avian and human receptors

To better understand the contrasting glycan-binding properties of WF1O and Qu88 HAs we

analyzed the molecular interactions of these HAs with representative avian and human

receptors. The X-ray crystal structures of a swine H9 HA and its complexes with an avian (LSTa)

and human receptor (LSTc) [48] were used to generate structural models of Qu88-LSTa and

WF10-LSTc complexes (Fig. 2.2). Analysis of these structural complexes shows differences in

amino acids that constitute the glycan receptor-binding site (RBS) of WF10 and Qu88 HAs.

Specifically, there are differences in residues at positions 156 and 226 (numbering is based on

H3 HA) and also orientation of side chain of Asn-193. There is also a difference in amino acid at

the 137 position (which is not shown in the figure for the sake of clarity) wherein WF1O has Arg

while Qu88 has Lys at this position.

In the case of RBS of Qu88 HA, Gin-226 is positioned to make ionic contact with glycosidic

oxygen atom of Neu5Aca2->3Gal linkage. On the other hand, in WF1O, Leu-226 is positioned to

make van der Waals contact with C-6 atom of Neu5Aca2->6Gal linkage. The difference in

nature of contacts involving amino acid position 226 is one of the molecular features that

explain the differences in the glycan receptor-binding specificity of WF10 and Qu88 HAs. The

residue at 156 position appear to be involved in making contacts with the human receptor and

not the avian receptor and therefore changes in this position is likely to affect binding of HA to

human receptors. The orientation of side chain of Asn-193 is such that it is positioned to make

contact with human receptor (in WF10-LSTc complex) and not the avian receptor (in Qu88-LSTa

complex). There appear to be interconnected networks of inter-residue interactions involving

the following sets of residue positions, (136, 137, and 226), (186, 222, and 227), (183,186, 187,

189, and 190) and (187, 189, 193, 156). These interaction networks are likely to govern the

orientation of the side chains of the residues at the corresponding positions in the network,

which in turn would govern contacts with glycan receptor. Therefore, differences in the amino

acids at positions 137, 156, 183, 186, 187, 189, 193, 222, 226, and 227 between different H9

HAs would impinge on the quantitative glycan receptor-binding specificity of the HAs.

One of the observed mutations in WF10 HA in the reassorted virus that shows airborne

transmission in ferrets is Thr-189->Ala. Although Thr-189 does not make direct contacts with
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both avian and human receptor, this position is a part of two critical amino acid interaction

networks involving key residues at positions 190, 193 and 156 that are involved in making

contact with the glycan receptor. Therefore, we postulated that the Thr-189-+Ala mutation, in

the context of a given HA, would alter binding to both avian and human receptors by affecting

side chain orientation of residues (in a given HA) that make contact with these receptors.

2.3.3 Design of WF1O and Qu88 HA mutants and characterization of their glycan receptor-

binding properties

To experimentally test the effect of changes in the amino acid positions (based on the above

structural analysis) on the glycan receptor-binding properties of WF10 and Qu88 H9 HAs, we

designed the following mutant forms of these HAs. We designed two mutant forms of WF10

HA; mWF1O:T189A (to investigate the effect of Thr-189->Ala mutation on human receptor-

binding) and mWF10:L226Q (to determine if Leu-226->Gln mutation would change its binding

preference from human to avian receptor). In the case of Qu88 HA, we defined three mutant

forms; mQu88:T189A (to establish if changes to Thr-189 would affect avian receptor-binding),

mQu88:Q226L (to determine if GIn-226-+Leu mutation would change its binding preference

from avian to human receptor), and mQu88:Q226L/T189A (to explore if the additional

Thr189-4Ala mutation would further modulate human receptor-binding of mQu88:Q226L). The

amino acid changes were made to WF1O and Qu88 using site-directed mutagenesis and the

glycan-receptor binding properties of the mutant HAs were characterized using glycan array

and human tissue binding analyses.

mWF1O:T189A showed a more specific binding to 6'SLN-LN than WF1O HA where binding to

other representative glycan receptors at > 40 pg/ml concentration was minimal when

compared to WF1O HA at the same concentration (Fig. 2.3A). However the Kd' for the 6'SLN-LN

binding of the mutant was the same as that of WF1O HA. Staining of mWF1O:T189A HA on

human upper respiratory tracheal tissue sections revealed a pattern similar to that observed

with WT WF1O viz., extensive binding of the protein to the apical side and weak to no binding to

the human deep lung alveolar tissue (Fig. 2.3A). The single amino acid change in mWF1O:L226Q

mutant, on the other hand, completely reversed its glycan-binding preference from human to

avian receptors (with Kd' ~ 30 pM for 3'SLN-LN and 3'SLN-LN-LN) (Fig. 2.3B). Tissue binding
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assay was consistent with the observed glycan specificity with no tracheal tissue staining

observed and extensive alveolar tissue binding (Fig. 2.3B).

In the case of Qu88 HA, a single amino acid change in the mQu88:Q226L mutant completely

changed its glycan-binding preference from avian to human receptors viz 6'SLN-LN (Fig. 2.4A).

Furthermore, the Kd' ~ 50 pM for 6'SLN-LN binding of this mutant HA indicates that it shows a

5-fold increase in binding affinity to human receptor relative to the WF10 HA (which as Leu at

226 position). In fact the Kd' of mQu88:Q226L is in the same range as that of HAs from seasonal

influenza strains [8]. Notably, both WF1O and mQu88:Q226L viruses showed similar pattern of

binding to both avian and human receptors in the glycan array screening assays performed

earlier [36]. Therefore, the glycan array screening of these viruses at single high titer was

unable to capture these key differences and nuances in their quantitative human receptor-

binding affinity.

The additional Thr-189-Ala change in the mQu88:Q226L/T189A mutant leads to an increase

in the binding specificity to 6'SLN-LN where binding to other glycan receptors at 40 pg/ml was

minimal when compared to mQu88:Q226L at the same concentration (Fig. 2.4B). The Kd' ~ 60

pM for 6'SLN-LN binding of mQu88:Q226L/T189A was in the same range as that of

mQu88:Q226L. Both these mutant HAs showed extensive staining to apical surface of human

tracheal epithelium consistent with their human-receptor binding properties on the glycan

array (Fig. 2.4A and B). The third mutant mQu88:T189A increased specificity to 3'SLN-LN and

3'SLN-LN-LN without altering the Kd' (~30 pM) when compared to that calculated for the wild-

type Qu88 HA (Fig. 2.4C). Consistent with its glycan array-binding properties, mQu88:T189A

also showed extensive staining to human alveolar tissues (Fig. 2.4C).

2.4 Discussion

In this study we investigated glycan-receptor binding properties of avian H9N2 HA given that

this subtype has been known to infect and cause disease in humans. Using a combination of

structural modeling, glycan array and human tissue binding analyses in this study we

quantitatively characterized glycan-receptor binding specificity and affinity of wild-type and

mutant forms of WF10 and Qu88 HAs. To our knowledge, such a quantitative description of

glycan-binding properties of H9 HA has not been reported earlier.
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While Qu88 does show measurable binding to human receptors at concentrations higher than 5

pg/ml, its binding to avian receptors is substantially higher. This relative binding preference to

avian receptor is typical of what we have observed with avian-adapted HAs including H5 HA [1,

8, 38]. It is important to note that WF1O, which is as HA derived from an avian isolate, showed

highly preferential binding to human receptors.

Although the Kd' ~300 pM for WF1O HA binding to human receptor is 5 fold higher than that of

2009 HINI HA [37], a reassorted virus with HA and NA from WF10 and other internal genes

from a human-adapted H3N2 virus did not show respiratory droplet transmission in ferrets [46].

Repeated passaging of this reassorted virus in ferrets led to a strain (RCP10) that had additional

mutations in HA and NA and transmitted via respiratory droplets in ferrets. One of the

mutations Thr-189-+Ala is in the RBS of H9 HA while the other mutation is in HA2 close to the

transmembrane region (unlikely to impact RBS features and hence receptor binding). It was

demonstrated that both these mutations are needed for conferring respiratory droplet

transmission. Our structural model of WF1O HA - human receptor complex showed that the

amino acid in 189 position would indirectly influence glycan-receptor binding through inter-

residue interactions. We demonstrated that Thrl89-+Ala mutation in WF10, mQ88:Q226L and

Qu88 HAs increases binding specificity. The fact that the Thr-189--+Ala mutation is needed for

respiratory droplet transmission highlights the role of improving human receptor specificity in

the context of other genes in a reassorted virus in conferring airbone transmissibility. To our

knowledge, the effect of the amino acid change at the 189 position on the glycan-binding

property of H9 HAs has not been reported earlier.

The contribution of Gln-226 to avian receptor binding and Leu-226 to human receptor binding

was corroborated by the preferential avian receptor binding of mWF10:L226Q and human

receptor-binding of mQu88:Q226L mutants respectively. Unlike H2 and H3 subtypes where

change in receptor binding preference from avian to human receptor has been associated with

at least two mutations Q226L and G228S, it appears that in the case of H9 HA a single mutation

Q226L might be sufficient to alter its glycan-receptor binding properties. Based on the

calculated Kd', the mQu88:Q226L mutant shows 5-fold higher affinity to human receptor than

WF10. This suggests that Leu-226 in context of His-156 and Lys-137 in the Qu88 RBS provides a
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more optimal environment than Leu-226 in the context of Gln-156 and Arg-137 in WF10 RBS for

achieving a higher quantitative human receptor affinity. Therefore, this study provides an

important framework to understand key mutations such as Gln226->Leu in the context of the

entire RBS in different H9 HAs to appropriately monitor the evolution of H9 viruses.

In summary, our results demonstrate that H9 HAs from avian isolates such as WF10 show

binding affinity and specificity to human receptors characteristic of HAs from human-adapted

subtypes such as HI, H2 and H3. While H9N2 subtype is yet to adapt to the human host,

reassorted strains with H9 HA and NA have acquired as few as 2 amino acid changes in HA and a

single lle-28->Val change in NA to confer respiratory droplet transmission in ferrets

(characteristic trait of human-adapted viruses). Such an outcome has not been possible with

HAs from other avian subtypes. The 2 mutations in WF10 HA are much fewer than those

reported for H5 HA in the context of reassorted strains that transmit via respiratory droplets

between ferrets. Given that natural triple reassortments have led to novel swine-origin H1N1

(2009 H1N1) [29] and H3N2 [39], it is important to monitor H9 HA and NA from strains such as

WF10 in the context of their potential natural reassortment with other subtypes. Our study

contributes to a framework that facilitates monitoring of molecular changes in RBS of H9 HA

that govern its human-receptor binding properties.

2.5 Materials and Methods

2.5.1 Cloning, baculovirus synthesis, expression and purification of HA

Briefly, recombinant baculoviruses with WF10 or Qu88 gene and mutants off of each

background, were used to infect (MOI=1) suspension cultures of Sf9 cells (Invitrogen, Carlsbad,

CA) cultured in BD Baculogold Max-XP SFM (BD Biosciences, San Jose, CA). The infection was

monitored and the conditioned media was harvested 3-4 days post-infection. The soluble HA

from the harvested conditioned media was purified using Nickel affinity chromatography

(HisTrap HP columns, GE Healthcare, Piscataway, NJ). Eluting fractions containing HA were

pooled, concentrated and buffer exchanged into 1X PBS pH 8.0 (Gibco) using 100K MWCO spin

columns (Millipore, Billerica, MA). The purified protein was quantified using BCA method

(Pierce).
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2.5.2 Homology based structural modeling of H9 HAs

Using the SWISS-MODEL web-based automated homology-modeling platform

(http://swissmodel.expasy.org/) the structural models of WF10, and Qu88 were constructed.

The template structure chosen by SWISS-MODEL was that of crystal structure of A/swine/Hong

Kong/9/98 H9N2 HA (PDB ID: 1JSD). The co-crystal structures of A/swine/Hong Kong/98 HA

with representative avian (PDB ID: 1JSH) and human (PDB ID: 1JSI) receptors were used to build

structural models of WF10 and Qu88 in complex with glycan receptors.

2.5.3 Binding of recombinant WF10, Qu88 and mutant HAs to human tracheal and alveolar

tissue sections

Paraffinized human tracheal (US BioChain) tissue sections were deparaffinized, rehydrated and

incubated with 1% BSA in PBS for 30 minutes to prevent non-specific binding. HA was pre-

complexed with primary antibody (mouse anti 6X His tag, Abcam) and secondary antibody

(Alexa fluor 488 goat anti mouse, Invitrogen) in a molar ratio of 4:2:1, respectively, for 20

minutes on ice. The tissue binding was performed over different HA concentrations by diluting

the pre-complexed HA in 1% BSA-PBS. Tissue sections were then incubated with the HA-

antibody complexes for 3 hours at RT. The tissue sections were counterstained by propidium

iodide (Invitrogen; 1100 in TBST). The tissue sections were mounted and then viewed under a

confocal microscope (Zeiss LSM 700 laser scanning confocal microscopy). Sialic-acid specific

binding of HAs to tissue sections was confirmed by loss of staining after pre-treatment with

Sialidase A (recombinant from Arthrobacter ureafaciens, Prozyme), This enzyme has been

demonstrated to cleave the terminal Neu5Ac from both Neu5Aca2-93Gal and Neu5Aca2->6Gal

motifs. In the case of sialidase pretreatment, tissue sections were incubated with 0.2 units of

Sialidase A for 3 hours at 370C prior to incubation with the proteins. The loss of staining of a

representative HA after sialidase pretreatment is shown in Fig. 2.5.

2.5.4 Dose dependent direct binding of WF10, Qu88 and mutant HAs

To investigate the multivalent HA-glycan interactions a streptavidin plate array comprising of

representative biotinylated a2->3 and a246 sialylated glycans was used as described

previously [8]. 3'SLN, 3'SLN-LN, 3'SLN-LN-LN are representative avian receptors. 6'SLN and
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6'SLN-LN are representative human receptors (see Table 2.1). The biotinylated glycans were

obtained from the Consortium of Functional Glycomics through their resource request

program. Streptavidin-coated High Binding Capacity 384-well plates (Pierce) were loaded to the

full capacity of each well by incubating the well with 50 pl of 2.4 pM of biotinylated glycans

overnight at 4*C. Excess glycans were removed through extensive washing with PBS. The

trimeric HA unit comprises of three HA monomers (and hence three RBS, one for each

monomer). The spatial arrangement of the biotinylated glycans in the wells of the streptavidin

plate array favors binding to only one of the three HA monomers in the trimeric HA unit.

Therefore in order to specifically enhance the multivalency in the HA-glycan interactions, the

recombinant HA proteins were pre-complexed with the primary and secondary antibodies in

the molar ratio of 421 (HA: primary: secondary). The identical arrangement of 4 trimeric HA

units in the pre-complex for all the HAs permit comparison between their glycan binding

affinities. A stock solution containing appropriate amounts of Histidine tagged HA protein,

primary antibody (Mouse anti 6X His tag IgG) and secondary antibody (HRP conjugated goat

anti Mouse IgG (Santacruz Biotechnology) in the ratio 4:2:1 and incubated on ice for 20 min.

Appropriate amounts of pre-complexed stock HA were diluted to 250 pl with 1% BSA in PBS. 50

I of this pre-complexed HA was added to each of the glycan-coated wells and incubated at

room temperature for 2 hours followed by the above wash steps. The binding signal was

determined based on HRP activity using Amplex Red Peroxidase Assay (Invitrogen, CA)

according to the manufacturer's instructions. The experiments were done in triplicate. Minimal

binding signals were observed in the negative controls including binding of pre-complexed unit

to wells without glycans and binding of the antibodies alone to the wells with glycans. The

binding parameters, cooperativity (n) and apparent binding constant (Kd'), for HA-glycan

binding were calculated by fitting the average binding signal value (from the triplicate analysis)

and the HA concentration to the linearized form of the Hill equation:

log4T ) =n * log([HA]) -log (KI')

where y is the fractional saturation (average binding signal/maximum observed binding signal).

The theoretical y values calculated using the Hill equation:
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[HA]"

[HA]"+I

(for the set of n and Kd' parameters) were plotted against the varying concentration of

HA to obtain the binding curves for the representative human receptor (6'SLN-LN).
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Fig.2.1 Glycan receptor-binding properties of WF1O and Qu88 HA.

A, Dose-dependent direct binding of WF1O HA to glycan array (left) shows that it binds

specifically to a representative human receptor (6'SLN-LN). Tissue staining (right) shows

extensive staining of apical surface of human tracheal epithelia and minimal observable staining

of alveolar tissue section by WF1O HA (in green) shown against propidium idodide staining (in

red). B, Dose-dependent direct glycan array binding of Qu88 HA (left) shows specific binding to

avian receptors (3'SLN-LN and 3'SLN-LN-LN). The panel on the right shows poor staining of

apical surface of human tracheal epithelia and extensive staining of alveolar tissue section by
Qu88 HA (in green) shown against propidium idodide staining (in red).
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Fig. 2.2. Structural model of H9 HA-glycan receptor complexes.

A, Structural model of Qu88 HA with an avian receptor. The glycan receptor-binding site of HA
is shown as a cartoon (carbon atom colored in cyan) with side chains of key residues in the RBS
shown in stick representation. B, Structural model of WF1O with human receptor. The glycan
receptor-binding site of HA is shown as a cartoon (carbon atom colored in gray) with side
chains of key residues in the RBS shown in stick representation. The glycan receptor is shown in
stick representation (carbon atom colored in green)
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Fig.2.3. Glycan receptor-binding properties of mWF10:T189A and mWF10:L226Q.

A, Dose-dependent direct glycan array binding of mWF10:T189A HA (left) shows increased
specificity to the human receptor 6'SLN-LN when compared to WF1O in Figure 1A. Tissue-
binding of mWF10:T189A HA (right) shows extensive staining (in green against propidium iodide
in red) of apical surface of human tracheal section and minimal staining of human alveolar
section consistent with human receptor-binding specificity. B, Dose-dependent direct glycan
array binding of mWF10:L226Q HA (left) shows a complete reversal in binding from human to
avian receptors (3'SLN-LN and 3'SLN-LN-LN). The panel on right, shows poor staining of apical
surface of human tracheal epithelia and extensive staining of human alveolar sections by
mWF10:L226Q HA (in green) shown against propidium idodide staining (in red).
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Fig.2.4. Glycan receptor-binding
mutant mQu88:Q226L/T189A HA.

specificity of mQu88:Q226L, mQu88:T189A and double

A, B show dose-dependent direct glycan array binding of mQu88:Q226L and
mQu88:Q226L/T189A respectively. The single Q226L mutation completely changes glycan
binding property from avian to human receptor. Additional T189A mutation increases binding
specificity for human receptor (6'SLN-LN). C, Dose-dependent direct binding of mQu88:T189A
shows that this mutant retains avian receptor-binding but specificity for avian receptors is
higher when compared to mQu88 HA in Figure 1B. D, Consistent with glycan array-binding
mQu88:Q226L/T189A HA shows extensive staining of apical surface of human tracheal
epithelium and mQu88:T189A HA shows extensive staining of human alveolar section. HA (in
green) shown against propidium idodide staining (in red).

46

1040

B
0.9

0.8

0.7

0.6

a 0.5 -

0.4

.2-4 0.4

0.2

0.2

0l

20

mQB8:Q226L/T189A
PI red Alveolus

60-00. -1 -1IAL., 1 -1 A.-A

,



mQu88 PI Red mQu88:Q226L/T189A PI Red
Human Alveolus 10x Human TrachealOx

Figure 2.5. Sialidase A treated sections of human trachea and alveolus stained with
mQu88:Q226L/T189A and mQu88 HA respectively.

No binding to either tracheal or alveolar sections is observable. HA (in green) and propidium
iodide (in red).
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Glycan Expanded nomenclature

3'SLN Neu5Accx2-3GaIp1-4GlcNAc 1-

6'SLN Neu5Aca2-6GalP1-4GlcNAc 1-

3'SLN-LN Neu5Acx2-3Gal1-4GIcNAcP1-3GaIP1-4GlcNAcfl-

6'SLN-LN Neu5Acx2-6Gal1-4GIcNAc 1-3Gati1-4GIcNAc$l-

3'SLN-LN-LN Neu5Acax2-3GaI1-4GlcNAc 1-3GaI$1-4GIcNAc$1-3Galp1-4GlcNAc 1-

Table 2.1. Expanded nomenclature of glycans used in the glycan array

Key: Neu5Ac: N-acetyl D-neuraminic acid; Gal: D-galactose; GIcNAc: N-acetyl D-glucosamine. a/
P: anomeric configuration of the pyranose sugars. All the sugars are linked via a spacer to biotin
(-Sp-LC-LC-Biotin as described in
http://www.functionalglycomics.org/static/consortium/resources/resourcecored5.shtm1)
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3 Quantitative Description of Glycan-Receptor Binding of Influenza A Virus H7
Hemagglutinin

3.1 Summary

In the context of recently emerged novel influenza strains through reassortment, avian

influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms

of their adaptation to the human host. Among these subtypes, it was recently demonstrated

that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted

viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted

viruses). We previously demonstrated that the quantitative binding affinity of HA to a2->6

sialylated glycans (human receptors) is one of the important factors governing human

adaptation of HA. Although the H7 subtype has infected humans causing varied clinical

outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of

these subtypes stand in regard to human adaptation since its binding affinity to glycan

receptors has not yet been quantified. In this study, we have quantitatively characterized the

glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and

North American (H7N2) lineages that have caused human infection. Furthermore, we have

demonstrated for the first time that two specific mutations; Gln226->Leu and Gly228->Ser in

glycan receptor-binding site of H7 HA substantially increase its binding affinity to human

receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be

able to adapt to human host.
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3.2 Introduction

Avian influenza virus subtypes known to infect and cause disease in humans include H5N1,

H7N7, H7N2, H7N3 and H9N2 strains. These viruses circulate in domestic poultry but have not

yet adapted to the human host to establish sustained airborne human-to-human transmission

capabilities [31]. One of the characteristic features of human-adapted subtypes such as HiN1,

H2N2 and H3N2 is the ability of their viral surface glycoprotein hemagglutinin (HA) to bind

preferentially to ct2-+6 sialylated glycan receptors (or human receptors) that are predominantly

expressed in the human upper respiratory epithelium. The HA of influenza viruses isolated from

avian species typically binds to a2->3 sialylated glycans (or avian receptors) [44]. Therefore, the

gain in the ability of HA from an avian isolate (such as H5, H7, H9, etc.) to preferentially bind to

human receptors (high relative binding affinity to human receptor over avian receptor) is

implicated as one of the important factors for the human adaptation of the virus [9]. In the past

few years, novel influenza strains such as 2009 H1N1 and 2010 H3N2 that naturally emerged

from multiple reassortment of viral gene segments between avian, swine and human isolates

were able to successfully adapt to human host [29, 39]. In the context of these novel strains,

the avian influenza subtypes pose a significant threat of human adaptation [40]. With the

human population predominantly naive to these avian influenza antigens, constant surveillance

with particular focus on molecular changes geared towards human host adaptation becomes

vital in this era of pandemics [41].

Specific mutations in glycan-receptor binding site (RBS) of H5 and H9 HAs have been shown to

correlate with respiratory droplet transmissibility of laboratory-generated reassorted viruses

possessing either of these mutant HAs (and internal genes from human-adapted virus) in a

ferret animal model[49-51]. Aerosol transmissibility in ferrets, a hallmark property of human-

adapted viruses, has been shown to correlate with specificity and quantitative affinity of viral

HA binding to human receptors [1, 8]. In fact a single amino acid mutation Gln226-+Leu in H2

HA completely shifts its receptor binding preference from avian to human receptors and

confers airborne viral transmission in ferrets[52] . Studies on H7 subtype have thus far focused

on specific H7N7 and H7N2 strains isolated from infected patients in Eurasia and North America

respectively (Fig. 3.4). The H7N7 strains were isolated from two patients with very different
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clinical conditions during a local highly pathogenic outbreak in the Netherlands in 2003 [53].

One of the strains was isolated from a patient with a conjunctivitis infection

(A/Netherlands/230/03 referred to henceforth as CC); which is typical of H7 human infection,

and the other was isolated from a patient with acute respiratory illness that eventually resulted

in fatality (A/Netherlands/219/03 henceforth referred to as FC); which was the first of its kind.

The HAs from both CC and FC comprise of the polybasic sequence between HA1 and HA2

analogous to the highly pathogenic H5N1. The RBS of CC and FC HAs differs by a single amino

acid substitution in position 135 (H3 numbering), which is Ala in CC but Thr in FC (Fig. 3.4). The

presence of Thr in 135 in FC introduces a glycosylation sequon at Asn-133 [54-56].

The H7N2 strain A/New York/107/03 or NY/107 was isolated from a single human case with

respiratory infection [53]. The NY/107 HA does not possess the HA1-HA2 polybasic sequence,

which is typically associated with high pathogenicity. A dramatically unique feature of NY/107

HA is the complete deletion of the 220-loop region in the RBS (Fig. 3.4), which plays a key role

in governing glycan receptor-binding specificity of HA [57].

The glycan receptor-binding properties of CC, FC and NY/107 HAS have been characterized by

screening the HAs and whole viruses on glycan array platform. These screening assays provide

an overall readout in terms of the number and different types of avian and human receptors

that bind to the HA (or virus) when analyzed at a high protein concentration or virus titer. A

limitation of such screening studies is that they do not quantify the relative binding affinities of

HA to avian versus human receptor. It is important to quantify the nuances in relative binding

affinities in order to understand how molecular changes in the HA such as deletion of 220-loop

and differences in glycosylation at Asn-133 impinge on glycan receptor-binding. We have

previously demonstrated that a change in glycosylation at a single site subtly alters human

receptor-binding affinity of the pandemic 1918 HIN1 HA[58]. Furthermore we have

demonstrated that quantitative parameters derived from a dose-dependent binding of HA to

representative human and avian receptors correlated with the respiratory droplet

transmissibility of the virus [8, 37, 38].

In this study, we quantify the relative human and avian receptor-binding affinity of CC, FC and

NY/107 HA. We also characterized the effect of altering glycosylation at Asn-133 on NY/107 HA
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in the context of the deletion of 220-loop on the relative glycan-receptor binding affinities of

this HA. Finally we introduced the Gln226->Leu and Gly228--Ser double mutation in the RBS of

FC and CC HAs since the Leu-226/Ser-228 combination in the RBS is a hallmark of all the human-

adapted H3N2 HAs (belong to the same group 2 clade as H7) and characterize the effect of

these mutations on quantitative glycan receptor-binding affinity of these HAs. Our study

provides important biochemical insights for monitoring the evolution of H7 HAs as they

continue to circulate in avian species and cause sporadic human outbreaks and also pose a

constant threat of adapting to human host through reassortment.

3.3 Results

FC, CC and NY/107 HA were recombinantly expressed as described earlier [1, 8, 37, 38]. Given

that FC and CC HA differ by a single amino acid change at RBS, CC HA was generated by

introducing a Thr135-+AIa mutation through site-directed mutagenesis. The wild type and

mutant HAs were analyzed on a glycan array platform in a dose-dependent fashion and an

apparent binding parameter Kd' was calculated to quantify the relative binding affinities as

described earlier [8, 38] (see Methods).

3.3.1 Quantitative glycan-receptor binding affinities of H7N7 CC and FC HAs

FC HA exclusively bound to the avian receptors, 3' SLN, 3'SLN-LN and 3' SLN-LN-LN (Kd' ~25 pM;

based on 3'SLNLN and 3'SLNLNLN; Kd values were similar for binding for both glycans) (Fig.

3.1A). The apparent binding affinity of FC HA to avian receptors was comparable to HAs from

avian H2N2 and H5N1 strains analyzed in a similar fashion previously [8, 38, 52]. The HA from

CC which lacks glycosylation at Asn-133 also showed predominant binding to avian receptors

(Kd'~ 65 pM) (based on 3' SLNLN 3'SLNLNLN binding; Kd values were similar for binding for both

glycans) (Fig. 3.1B). CC showed observable binding to human receptors in a dose dependent

fashion although at several orders of magnitude lower than avian receptor binding (Kd' was not

calculated since saturation was not reached in the concentration window for avian receptor

binding). The presence of glycosylation at Asn-133 therefore appears to increase avian receptor

specificity for H7N7 HAs. On the other hand lack of glycosylation at this site appears to increase

propensity for binding to human receptors.
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3.3.2 Quantitative glycan-receptor binding affinities of H7N2 NY/107 HA

As mentioned earlier, NY/107 HA has a deletion of 8 amino acids in the 220-loop (which is

almost the entire loop). The glycan array screening of NY/107 carried out previously showed

that this HA shows mixed binding to both avian and human receptors [59]. X-ray

crystallography studies of NY/107 HA complexed with avian and human receptors have been

solved. The binding of NY/107 HA to avian receptor is clearly observed in terms of resolving the

coordinates of the sugar units in the RBS in the X-ray crystal structure [57]. On the other hand,

much poorer electron density map and fewer interactions were observed for human receptor in

RBS of NY/107 HA [57]. These structural observations do not fully explain the observed mixed

binding to both avian and human receptors by this HA.

NY/107 HA showed predominant high affinity binding (Kd'~63 pM) (Based on 3'SLNLN) to avian

receptors and a significantly lower binding to human receptors in our dose-dependent binding

analysis (Fig. 3.1C). The orders of magnitude higher relative affinity for binding to avian over

human receptors by NY/107 HA is consistent with the observed interactions in the X-ray co-

crystal structure of HA-glycan complexes[57]. Given that glycosylation at Asn-133 appeared to

improve specificity for avian receptors in the H7N7 FC HA, we wanted to test if a similar effect

was seen in the case of NY/107 HA specifically in the context of the deletion of the 220-loop.

Therefore the Ala135->Thr mutation was introduced on NY/107 HA and this mutant HA showed

the identical binding profile in a dose-dependent fashion as that of the wild type HA (Fig. 3.1D).

This result suggested that the glycosylation at Asn-133 is not likely to affect glycan-receptor

binding of H7N2 HAs in which the 220-loop is deleted like in the case of NY/107 HA.

3.3.3 Quantitative glycan-binding affinity of H7N7 HAs double Gin226->Leu/Gly228-+Ser

mutations

A double Gln226-+Leu/Gly228-+Ser mutations has quantitatively switched the glycan receptor

binding specificity and affinity from avian receptor to human receptors for H3 and H2 HAs[38].

However such a double mutation has not quantitatively switched or increased binding of avian

H5 HAs to human receptors[60]. Given that H7 HA belongs to the same phylogenetic clade 2 as

H3 HA, we wanted to evaluate the effect of the double mutation on the H7N7 HAs (given that

NY/107 HA does not have the 220 loop).
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Introducing the double Gln226--Leu/Gly228->Ser mutations on FC (mFC:LS) and CC (mCC:LS)

resulted in binding to both avian and human receptors. The human receptor binding affinity

(Kd' ~ 1nM) (Based on 6' SLNLN binding) of mFC:LS and mCC:LS HAs was orders of magnitude

higher (Figure 2A and 2B) and the human receptor binding observed for H7N7 CC and NY/107

HAs based on the quantitative dose-dependent binding assay. Interestingly the avian receptor

binding affinity of mFC:LS (Kd ~ 70 pM) (based on 6' SLNLN) and mCC:LS (for Kd ~ 225 pM)

(based on 6'SLNLN) was lower than that of their respective wild type HAs (Fig. 3.2A and 3.2B).

3.3.4 Binding of H7 HAs to human respiratory tissues

To compare observed binding specificities of H7 HAs on the array with their binding to

physiological glycan receptors, human tracheal (upper respiratory tract which is main target for

human-adapted viruses) and alveolar sections were stained using representative wild type and

the mutant HA with the double mutation. mFC: LS showed extensive staining of apical surface

of the tracheal epithelium where human receptors are predominantly expressed (Fig. 3.2A).

Specifically it also predominantly stained what appear to be non-ciliated (goblet) cells.

Extensive staining of goblet cells is a property that we have previously observed to be shared by

human adapted 1918 HINI and 1958 H2N2 HAs [8,10]. The staining of tracheal epithelium by

the mutant HA is consistent with its observed human receptor-binding in the glycan array

analysis. On the other hand, the wild-type FC HA showed minimal staining of the apical surface

of the human tracheal epithelium (Fig. 3.3B) consistent with its minimal human-receptor

binding on the glycan array. Both the wild-type FC and mutant mFC:LS HAs showed extensive

staining of the human alveolar section, which predominantly expresses a2->3 sialylated glycans

(Figure 3C and 3D). This staining pattern is consistent with the binding of these HAs to the avian

receptors on the glycan array.

3.4 Discussion

The functions of HA in terms of glycan-receptor binding specificity and cleavage sequence for

membrane fusion is among the key factors that contribute to the pathogenicity, severity of

infection and transmissibility of influenza A virus. In this study we characterized in a
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quantitative fashion, the relative binding affinities of H7 HA to avian and human receptors given

that some H7 strains especially from the Eurasian lineage are highly pathogenic and have

caused human infections. To our knowledge, such a quantitative description of glycan-binding

properties of H7 HA has not been reported earlier.

The FC, CC and NY/107 strains were also previously analyzed for their ability to transmit in the

ferret animal model NY/107 and the highly pathogenic CC strain showed some transmission via

direct contact, however the other highly pathogenic strain isolated from fatal case did not show

any transmission. None of the viruses transmitted via respiratory droplets. Since we previously

demonstrated that the human receptor-binding specificity and affinity correlates with

respiratory droplet transmissibility in ferrets, we sought to investigate any potential mutations

that would significantly increase the human-receptor binding of H7 HAs in this study. We

demonstrated that the double Gln226-+Leu/Gly228->Ser mutation (hallmark changes for

human adaptation of H3 and H2 HA) dramatically increased human receptor-binding affinity of

FC and CC HA. This study is therefore the first to report mutations in H7 HA that quantitatively

increase its human receptor-binding affinity. Although the double mutation increased human

receptor binding of FC and CC HAs, the binding affinity of this HA to human receptor was still

lower relative to avian receptor. This is not a typical characteristic of human-adapted HAs such

as prototypic pandemic 1918 H1N1 and 1958 H2N2 HAs. However a natural variant of 1918

H1N1 HA isolated from humans which has a single amino acid mutation in the RBS (A/New

York/1/18) shows a similar relative binding affinity as that of the mCC:LS and mFC: LS HAs. This

observation warrants further investigation of the aerosol transmission in ferrets of reassorted

viruses carrying these mutant H7 HAs in context of other human adapted genes similar to the

previous studies carried out for H9 and H5 subtypes[49, 50].

In summary our results highlight the nuances in biochemical glycan-binding binding affinities of

H7 HAs from two very different lineages and also show mutations in the Eurasian lineage that

quantitatively increase their human receptor-binding affinity. Our studies would pave way for

investigating the effect of these changes in contributing to the human adaptation of H7 HA

based on additional ferret transmission studies that need to be performed on viruses carrying

these mutant HAs.
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3.5 Materials and Methods

3.5.1 Cloning, baculovirus synthesis, expression and purification of HA

Briefly, recombinant baculoviruses with FC or NY/107 gene and mutants off of each

background, were used to infect (MOI=1) suspension cultures of Sf9 cells (Invitrogen, Carlsbad,

CA) cultured in BD Baculogold Max-XP SFM (BD Biosciences, San Jose, CA). The infection was

monitored and the conditioned media was harvested 3-4 days post-infection. The soluble HA

from the harvested conditioned media was purified using Nickel affinity chromatography

(HisTrap HP columns, GE Healthcare, Piscataway, NJ). Eluting fractions containing HA were

pooled, concentrated and buffer exchanged into IX PBS pH 8.0 (Gibco) using 100K MWCO spin

columns (Millipore, Billerica, MA). The purified protein was quantified using BCA method

(Pierce). N-glycosylation is known to play an important role in folding and maintaining the three

dimensional structure of HA [38]. In order to ascertain that mutation at position 143 did not

affect protein stability circular dichroism analysis of the all wild type and mutant HAs was

performed alongside H2 HA, A/Albany/6/58 (Alb58) isolated from the 1957-58 pandemic. The

circular dichroism spectra of all the mutant proteins were generated between 190nm and

280nm. All the mutants showed similar circular dichroism spectral signatures as that of their

wild-type counterparts and Alb58, a H2N2 HA (A/Albany/6/58) (Fig. 3.5).

3.5.2 Dose dependent direct binding of FC, NY/107 and mutant HAs

To investigate the multivalent HA-glycan interactions a streptavidin plate array comprising of

representative biotinylated a2->3 and a246 sialylated glycans was used as described

previously [8]. 3'SLN, 3'SLN-LN, 3'SLN-LN-LN are representative avian receptors. 6'SLN and

6'SLN-LN are representative human receptors (Fig. 3.4). The biotinylated glycans were obtained

from the Consortium of Functional Glyconics through their resource request program.

Streptavidin-coated High Binding Capacity 384-well plates (Pierce) were loaded to the full

capacity of each well by incubating the well with 50 I of 2.4 pM of biotinylated glycans

overnight at 4*C. Excess glycans were removed through extensive washing with PBS. The

trimeric HA unit comprises of three HA monomers (and hence three RBS, one for each

monomer). The spatial arrangement of the biotinylated glycans in the wells of the streptavidin
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plate array favors binding to only one of the three HA monomers in the trimeric HA unit.

Therefore in order to specifically enhance the multivalency in the HA-glycan interactions, the

recombinant HA proteins were pre-complexed with the primary and secondary antibodies in

the molar ratio of 421 (HA: primary: secondary). The identical arrangement of 4 trimeric HA

units in the pre-complex for all the HAs permit comparison between their glycan binding

affinities. A stock solution containing appropriate amounts of Histidine tagged HA protein,

primary antibody (Mouse anti 6X His tag IgG) and secondary antibody (HRP conjugated goat

anti Mouse IgG (Santacruz Biotechnology) in the ratio 4:2:1 and incubated on ice for 20 min.

Appropriate amounts of pre-complexed stock HA were diluted to 250 pl with 1% BSA in PBS. 50

l of this pre-complexed HA was added to each of the glycan-coated wells and incubated at

room temperature for 2 hours followed by the above wash steps. The binding signal was

determined based on HRP activity using Amplex Red Peroxidase Assay (Invitrogen, CA)

according to the manufacturer's instructions. The experiments were done in triplicate. Minimal

binding signals were observed in the negative controls including binding of pre-complexed unit

to wells without glycans and binding of the antibodies alone to the wells with glycans. The

binding parameters, cooperativity (n) and apparent binding constant (Kd'), for HA-glycan

binding were calculated by fitting the average binding signal value (from the triplicate analysis)

and the HA concentration to the linearized form of the Hill equation:

log =n * log([HA]) -log (KI'

where y is the fractional saturation (average binding signal/maximum observed binding signal).

In order to compare Kd' values, the values reported in this study correspond to the appropriate

representative avian (3'SLN-LN or 3'SLN-LN-LN) and human (6'SLN-LN) receptor that gave the

best fit to the above equation and the same slope value (n ~1.3).

3.5.3 Binding of recombinant FC and mFC: LS HAs to human tracheal and alveolar tissue

sections

Paraffinized human tracheal (US BioChain) tissue sections were deparaffinized, rehydrated and

incubated with 1% BSA in PBS for 30 minutes to prevent non-specific binding. HA was pre-

complexed with primary antibody (mouse anti 6X His tag, Abcam) and secondary antibody
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(Alexa fluor 488 goat anti mouse, Invitrogen) in a molar ratio of 4:2:1, respectively, for 20

minutes on ice. The tissue binding was performed over different HA concentrations by diluting

the pre-complexed HA in 1% BSA-PBS. Tissue sections were then incubated with the HA-

antibody complexes for 3 hours at RT. The tissue sections were counterstained by propidium

iodide (Invitrogen; 1100 in TBST). The tissue sections were mounted and then viewed under a

confocal microscope (Zeiss LSM 700 laser scanning confocal microscopy). Sialic-acid specific

binding of HAs to tissue sections was confirmed by loss of staining after pre-treatment with

Sialidase A (recombinant from Arthrobacter ureafaciens, Prozyme), This enzyme has been

demonstrated to cleave the terminal Neu5Ac from both Neu5Aca2-93Gal and Neu5Aca2->6Gal

motifs. In the case of sialidase pretreatment, tissue sections were incubated with 0.2 units of

Sialidase A for 3 hours at 37*C prior to incubation with the proteins.
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Fig 3.1. Glycan receptor-binding specificity of FC, CC, NY/107 and mNY/107:A135T HA.

A, Dose-dependent direct glycan array binding of FC HA. Specific high affinity binding to avian
receptors (3' SLN, 3' SLNLN and 3' SLNLN IN) and no binding to human receptors is observed. B,
shows dose-dependent direct glycan array binding of CC HA. High affinity binding to avian
receptors is observed. In comparison with FC, there is observable binding to human receptors
(6'SLN-LN and 6'SLN) albeit at orders of magnitude lower affinity than binding to avian
receptors. C, shows dose-dependent direct glycan array binding of NY/107 HA. High affinity
binding to avian receptors (3'SLN-LN and 3'SLN-LN-LN) is observed with binding affinity for
3'SLN lower than that of FC and CC HAs. Binding to human receptor is observed but at much
lower affinity (by orders of magnitude) than binding to avian receptors. D, shows dose-
dependent direct glycan array binding of mutant mNY/107:A135T HA. Introduction of
glycosylation sequon at Asn-133 does not seem to alter binding of this mutant HA in relation to
the wild-type.
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Fig. 3.2. Glycan receptor-binding specificity of GIn226->Leu/Gly228--+Ser mutant of FC and
CC.

A and B, respectively show dose-dependent direct glycan array binding of mFC: LS and mCC: LS
mutant HAs. The double mutation leads to a substantial increase in human-receptor binding
signals to a level that allowed calculation of apparent binding affinity parameter Kd'. The
double mutation also lowers the avian-receptor binding affinity of mutant HAs relative to the
corresponding wild-type HAs.
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FC PI red Human Trachea 10x FC: LS P1 red Human Alveolus 10x

Fig 3.3. Tissue binding specificity of FC and mFC:LS for human tracheal and alveolar sections.

A, Extensive staining of apical surface of human tracheal epithelia for the mFC: LS (green)
against propidium iodide staining (in red) is observed. Bright staining of what appears to be
goblet cells (inset at 20x magnification; indicated by white arrow) by this mutant HA resembles
a similar pattern that was previously observed with 1918 H1N1 and 1958 H2N2 HAs. B, Shows
minimal to no staining of apical surface of tracheal section by FC consistent with its low binding
to human receptors on glycan array. C and D respectively show intense staining of alveolar
section by mFC:LS and FC consistent with their high affinity binding to avian receptors.
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133 135

RESGGIDKETMGFTYSGIR TSACRRSGSSFYAEMKWLLSNTDNAAFPQMTKSYKNT

RESGGIDKETMGFTYSGIR SACRRSGSSFYAEMKWLLSNTDNAAFPQMTKSYKNT

RESGGINKETMGFTYSGIR SACRRSGSSFYAEMKWLLSNTDNAAFPQMTKSYKNT

RRSGGIGKESMGFTYSGIR SACTRSGSSFYAEMKWLLSNSDNAAFPQMTKAYRNP

220 Loop
226 228

RKDPALIIWGIHHSGSTTEQTKLYGSGNKLITVGSSNYQQSFVPSPGAlPQVN SORID *

RKDPALI IWGIHHSGSTTEQTKLYGSGNKLITVGSSNYQQSFVPSPGAIPQVN S4RID j
RKDPALIIWGIHHSGSTTEQTILYGSGNKLITVGSSNYQQSFVPSPGAlPQVN SRID'

RNKPALI IWGVHHSESVSEQTKLYGSGNKLITVRSSKYQQSFTPNPGA1 -------- -RID:

* ********** * *************** ************.............

Fig 3.4: Sequence Alignment of glycan-receptor binding site of H7 HAs.

Shown in the figure is the sequene alignment of HAs used in this study. The tk_ItalyH7N3 HA is

also included since its X-ray crystal structure has been solved. The residue positions 133, 135,
226 and 228 are marked given that their properties have been modified throught mutagenesis

in this study. The deletion of the 220-loop in NY/107 HA is also shown.
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CircularDichroism Analysis of H7 WT and Mutants
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Fig 3.5: Circular Dichroism Analysis of H7 wild type and mutant HAs used in the study.

Circular dichroism spectra for FC, CC, NY/107, mFC: Q226L, mCC: Q226L and Alb58
(A/Albany/6/58; H2N2 HA) are shown as indicated in the legend. All examined HAs show similar
spectral signatures indicative of no general misfolding due to amino acid substitutions.
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4 Characterization of Viral Escape Mutants by Sequencing and qPCR

4.1 Summary

The evolutionary success of Influenza viruses can be largely attributed to their propensity to

rapidly undergo antigenic change to evade detection by the host immune system. Advances in

research have led to therapeutics and vaccines for these viruses whose efficacy is shortened

due to viral escape mutants rapidly becoming fixed in the population. In vitro platforms that

mimic antigenic drift and screens for escape mutants, in an effort to map viral evolution under

selective pressure, would aid rationalized drug design to combat these viruses.

To this end, the goal was to develop a rapid, quantitative and high throughput method to

identify, isolate and characterize viral quasi species (Fig. 4.1).

1. An MDCK cell culture system in 96-well format for passaging virus under varying drug

concentrations was optimized.

2. As the next step, a screen for the detection of viral populations that escaped neutralization

was developed. This included,

a. Quantitative PCR with probes designed against internal genes was used for evaluation

of any/all changes in sensitivity to the drug by IC50 evaluation.

b. Viral genome sequencing for identification of nucleic acid changes in any of the eight

genes of the virus that manifested in the phenotype by,

i. Isolation of vRNA from the vS/N for cDNA generation.

ii. The dsDNA generated was sequenced using gene-specific primers to reveal the

substitutions.

3. After identification, the viral proteins were cloned, transfected and expressed using an

insect cell expression system and tested for stability, activity and receptor binding (for

Influenza Hemagglutinin).

4. An alternate reverse genetics approach to generate mutant whole viruses was attempted in

an effort to systematically analyze the ramifications of the substitutions on overall viral

fitness.
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This approach was validated using commercially available antibodies against the Influenza viral

surface protein Hemagglutinin, the primary cause for flu vaccines to be reformulated each year

and allowed a systematic exploration of the viral genome to better understand sites that were

prone to undergo change reflected in the virus' escape of neutralization.

68



4.2 Overview and Significance

Results from previous sections of this thesis were derived using recombinant proteins and

proved valuable as a first step towards understanding changes that impinge on receptor

binding; the orthogonal approach provided a biochemical rationale for transmission seen in

vivo. The ability to predict mutations that would impinge on transmission followed by validation

in ferret models further consolidated the effectiveness of such complementary analyses in

understanding receptor binding. However, the question whether such substitutions would be

seen in a real world scenario where the virus, constantly exposed to selective pressure evolves

in many different ways to evade detection by the host immune system remained unanswered.

Recent work has suggested that studying viral evolution of the Influenza HA, through numerous

cycles of replication, in a mammalian host could provide valuable insights on sites that are more

mutation prone than others, thus paving the way for rationalized drug design impinging on the

invariant sites on the viral proteins for better efficacy[6]. However, a method to routinely

screen for mutants as a way to map viral evolution, alongside rapid and quantitative in vitro

ways for isolation and characterization of mutants has not been reported.

To this end, the current section explores using reverse genetics for live virus engineering for

function/dysfunctional Influenza mutants designed in silico. In conjunction, sequencing and

quantitative PCR for screening for escape mutants are tools that could be used iteratively to

examine how viral replication under selective pressure leads to selection of viral progeny with

specific characteristics.

This thesis focuses on the role of influenza HA in transmission and using the aforementioned

paradigm in mapping the evolution of this particular glycoprotein is discussed. The glycan array

was used as an "activity" assay for phenotypic characterization of the mutant/s isolated. It is

believed that such an approach could be extended to understand the variability in other viral

components.
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4.3 Introduction

With a mutation rate of one change per replication per genome, influenza viruses generate vast

numbers of quasi species. Such substitutions consequently lead to small but permanent

changes in the RBS of HA that have implications in vaccine and therapeutic development.

Molecular-based techniques including reverse transcriptase-PCR, real-time PCR, microarrays

and other nucleic acid sequencing-based amplifications for detecting influenza viruses have

become an integral component of human and animal surveillance programs, outbreak

management, diagnosis and treatment of influenza viruses [61-72]. Passaging of the virus in a

ferret model has been used to discern mutants under immune pressure although performing

such animal studies on a regular basis for therapeutics in parallel would be cost prohibitive. This

section elaborates on tying quantitative PCR and reverse genetics with cell based assay

platforms to understand binding of HA when presented as a trimer on a mature virion to glycan

receptors and map the "natural" variants of the protein.

Such a platform would enable prediction of mutations likely to emerge in vivo. Further, the

novel HA mutations detected would be analyzed on the glycan array to quantitatively measure

changed HA binding affinity thus furthering our understanding of the possible mutations in the

HA RBS that facilitate human adaptation while simultaneously looking at the probability of such

mutations arising in vivo.

Finally, this platform is designed and presented in a fashion that makes it extendable to any of

the 11 other proteins in the viral genome.
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4.4 Results

Quantitative PCR and genome sequencing as a screen for detection of escape mutants of

Influenza viruses in response to pressure from neutralizing compounds

4.4.1 Method Development

4.4.1.1 Overview

MDCK cells in 96 well plates were used for passaging the Influenza virus (A/Puerto Rico/8/34

H1N1). IC50 was determined using PCR. In parallel, the vS/N was processed for RNA extraction,

cDNA and dsDNA generation and sequencing of the genome (Fig 4.1). Then, neutralizing

compounds were added to vS/N and IC50 changes monitored. Changes in viral genome that

resulted in IC50 alterations could be identified via the sequencing paradigm. This protocol was

validated using C179, a commercial antibody again the viral hemagglutinin.

4.4.1.2 Quantitative PCR

Quantitative PCR protocols as described by Suarez et al., [73] with primer and probe sequences

for Taq-man based PCR. The protocol was validated using C179, a commercially available

monoclonal antibody that has previously been shown to broadly cross-neutralize Hi and H2

Influenza viruses was chosen to provide selective pressure[74-77]. The virus chosen was

A/Puerto Rico/8/34 H1N1 virus Pr8 that was purchased from ATCC. IC50 for the neutralizing

antibody (nAb) C179 at MOI = 0.005 of the HI N1 virus Pr8 was determined using qRT-PCR. This

value is in agreement with previous reports for this monoclonal antibody whose epitope lies

within the stem region of HA [76, 78].

4.4.1.3 Selection of neutralization escape mutant

The HINI virus Pr8 was propagated in MDCK cells for 72h in the presence of varying

concentrations (1-20 ug/ml) of the nAb C179. The internal genes and NA were sequenced as

described. Positive control for the assay was Pr8 in the absence of the antibody at the same

MOl. Plaques isolated from vS/N passaged in similar fashion allowed calculation of viral titer

that matched the original titer of virus. Viral titer was also calculated using qRT-PCR and

sequencing confirmed that the virus had not undergone any amino acid changes during the
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passaging. As a negative control the assay was repeated in the absence of virus. C179 was non

toxic to the cellular monolayer at ~100 fold higher concentrations than what was used in the

assay. qRT-PCR confirmed the absence of a viral titer.

4.4.1.4 Reverse Genetics and Plaque Isolation

A method to generate whole infectious viral particles from cDNAs of individual viral genes was

first described by Palese and colleagues in 1989[79-82]. Hoffmann et al., were pioneers in

provide a simple tool kit for generation of infectious virions after transfection of 8 plasmids into

the host cells eliminating the need for helper viruses that was a significant advancement. High

titers 1*108 PFU/ml was reproducibly generated using this new method [83-85]. This thesis

does not attempt to provide a detail overview of the advancements made in the field or the

applications of reverse genetics but refers the reader to several excellent reviews on the

subject [16, 24, 25, 27, 82, 86-98].

The ability to reconstruct any strain of Influenza viruses via reverse genetics provides a tool for

systematic analysis of pathogenesis, virulence and transmission apart from receptor binding.

Whole infectious virions or viral-like particles generated via transfection of plasmids

corresponding to all 8 viral genes or a smaller subset would present a more physiologically

relevant HA to the glycans on the array allowing a more biologically relevant interpretation for

the affinity calculated. To this end, it was attempted to establish a reverse genetics platform

using HEK293 and MDCK cells as described in the original Hoffman et al., publication [84,

85].However, despite availability of the original plasmids the tissue culture based system ran

aground due to technical difficulties.

4.5 Discussion

Key gaps exist in our understanding of the evolution of Influenza virus HA in the presence of

antigenic pressure notwithstanding the advances that have been made in our understanding of

these viruses. The need to understand the changes that HA may undergo in the presence of

antibodies generated upon vaccination and/or previous exposure to other Influenza strains

would have implications on how the HA would evolve as seen from an immune perspective.
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Platforms for screening for escape mutants are essential for ascertaining the probability of a

given subset of mutations emerging in vivo. Advances in reverse genetics allows live

engineering of the virus based on mutations designed in silico and qRT-PCR and sequencing

allows for screening of mutants in tandem with the glycan array assay to map the evolution of

the viral surface protein and determine whether the mutations predicted to enhance human

receptor binding could be expected to emerge in vivo.

4.6 Materials and Methods

4.6.1 Infection: Calculations for Passage 1

MDCK cells were seeded 18-20h before the infection at 3*104 cells/well in a 96 well plates in a

100 ul volume of 1x MEM. MOI of orig. virus Pr8 purchased from ATCC equaled 3*106 pfu/ml

(This was previously determined via plaque assay and verfified by qRT-PCR). This was diluted

1/100x in 1x MEM to give MOI = 1. The virus-antibody mixture was pre-incubated in a 20 ul

volume on ice. 2 ul of 100x diluted virus was added to 20 ul of 1x MEM containing antibody

effectively diluting the virus concentration by another lOx. C179 in lyophilized form was re-

constituted in DNAse/RNAse free water to a final concentration of 2 ug/ul and further l0x

diluted to give 0.2 ug/ul in 1x MEM. 2 ul of this 0.2 ug/ul C179 was used for preincubation. 2ul

C179 (0.2 ug/ul) + 2 ul Pr8 (MOI 0.1) + 16 ul media (1x MEM) make a final volume of 20 ul that

is incubated for 1h on ice. The mixture is then diluted 20x to give a total volume of 400 ul that

was added 50ul/well making the final MOI 0.005 and antibody concentration 1 ug/ml.

Infection was allowed for 1h at 37C, after which add 3ml of avicel overlay was added per well.

Plates were returned to 37C and left undisturbed for 72h. At the end of the incubation the

avicel was carefully removed from the wells and discarded and the plates immunostained for a

titer estimation via plaque assay.

Alternately, if the virus were being passaged on MDCK cells, then the virus-antibody mixture is

carefully pipetted out of the wells and antibody diluted in lx MEM with TPCK trypsin made to a

final concentration of 1 ug/ml (100ul/well). Plates are returned to the incubator for 48h. At the

end of this time interval, the vS/N is removed and processed for whole genome sequencing.
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The MDCK monolayer is stained with crystal violet to check for intactness viz failure to

neutralize virus by antibody would result in loss of cell monolayer and cell death.

4.6.2 Processing of vS/N for qRT-PCR and genome sequencing (Fig 4.2; Fig. 4.3 and 4.4

provide finer details)

4.6.2.1 vS/N harvest

RNA/cDNA/dsDNA generation was optimized for vS/N obtained from a single well~100 ul (Fig.

4.3). Aliquots can be frozen upon harvest (-80C) and RNA extracted later. Freeze/thaw of RNA

repeatedly is not recommended. QiAamp Viral RNA Mini Kit (Qiagen Cat # 52906) was used for

extraction. Briefly, vS/N collected from each well were spun down at 1500g for 10min to pellet

the floating cells and transferred to fresh tubes. At this stage the vS/N could be frozen at -80C

until further use. Upon thawing, recentrifuge at 1500g for 10 min (To pellet any cells in vS/N

and to ensure that there is no cellular DNA contamination). Prepare carrier RNA and aliquot

into smaller volumes and freeze at -20C. Freeze-thawing of carrier RNA is not recommended

more than 3times. Prepare buffer AVL-carrier RNA according to the number of samples. The

extraction and purification protocol is optimized for a sample volume of 140 ul. Adjust sample

volume to 140ul with PBS. Ratio of the sample volume (140 ul) to buffer AVL-carrier RNA (560

ul) is maintained. The remainder protocol is as provided in the handbook with the reagents.

Elution is done twice, each at a volume of 40 ul instead of a single elution in 60 ul volume (Fig.

4.3).

4.6.2.2 Quantitative PCR

qRT-PCR based on the matrix gene using taq man probes was optimized for the Qiagen OneStep

RT-PCR kit. PCR primers and probe were HPLC purified. Primers and probes were centrifuged

briefly to ensure that the DNA pellet is at the bottom of the tube before opening and

reconstitution. Nuclease-free water was used for reconstitution and concentrated stock

solutions stored at -80C. Primer stock solutions were at 200 uM and probe stock solutions

made to 120 uM. Working dilutions for primer and probe were 20 pmol/ul and 6 pmol/ul and

these were stored at 4C. Primer and probe sequences described in Suarez et al., were used [73].
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4.6.2.3 Real-Time RT-PCR reaction

The reverse transcription step is one cycle of 30 mins at 50C and 15min at 94C. Heat activation

of the taq polymerase is a 15 min 94C step. The PCR phase of the cycle for influenza specific

primers and probes is 45 cycles of 94C for Is and 60C for 20s [73].

4.6.3 Processing of vRNA for sequencing the virus genome (Fig. 4.2, 4.3 and 4.4)

4.6.3.1 1st strand generation (cDNA)

Use of fresh RNA is recommended. 9ul of the elutant is optimal. Add 9ul of vRNA, 2 ul of Uni12

HA primer (Uni12 HA primer- AGC AAA AGC AGG) and 1 ul of 10mM dNTP mix into a Rnase-free

tube and incubate mixture (12ul) for 5 mins @ 65C (PCR machine). Then add 5ul cDNA synthesis

buffer, 1 ul 0.1M DTT, lul RNase OUT (40 units/ul) and 1 ul water and 1 ul Thermoscript

(15U/ul) to the same tube. Returned the tube to the PCR machine for 1h at 65C. This should be

immediately followed by incubation at 85C for 5 mins. Contents of the tube are briefly

centrifuged to spin down contents. 20 ul of cDNA (1st strand) is generated. (Fig 4.3)

4.6.3.2 Digestion with RNASE H.

Add 1 ul of RNASE H to the cDNA reac of 20 ul and incubate for 20mins at 37C before

proceeding to PCR. This cDNA can immediately be used to generate dsDNA via PCR. (Fig. 4.4)

4.6.3.3 dsDNA Synthesis

Use 45ul of High Fidelity PCR MIX (Invitrogen Catalog # 12532-016 or # 10790-020) and add 1-2

ul each of forward and reverse primers with 3 ul of the cDNA to make 50 ul volume PCR

reaction. The thermalcycler conditions are 94C - 2min, (94C - 30s, 55C - 30s, 68C - 2 min)

Repeat for 32 cycles followed by annealing at 68C - 7 min. Primer stocks are prepared at 200

picomoles/ul. This stock is 10 fold diluted to give a working conc of 20 picomoles/ul. (Fig 4.4)

4.6.3.4 Agarose gel electrophoresis

Run a 1% agarose gel with the samples. Load 30 ul of the PCR reaction/well. Run at 120V for 1h.

This should give good separation. Cut out the portion of the gel required. (Fig 4.4)
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4.6.3.5 Gel Purification

Use the Invitrogen Gel Purification Kit to extract DNA. 400 mg is a typical band weight of gel

which requires 1.2 ml of the gel solubilization buffer supplied in the kit. Use a water bath set to

50C for gel solubilization. This should generate ~15-20 ng/ul of dsDNA which is sequenced (Fig

4.4).

4.6.3.6 Primer Sequences

As outlined in Table 4.1. The usefulness of these primers in amplifying specific gene segments

was validated (Fig 4.5 and 4.6). Gel purified products were sent out for sequencing and

sequence alignments with sequences was used to discern for changes if any sustained upon

passaging.
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Fig 4.1 Characterization of viral escape mutants to understand viral
pressure.

vS/N from 96 well format

- .~ .. ...............

vRNA extraction

cDNA Synthesis

dsDNA Synthesis

Aga rose Gel followed by Purification

Whole Genome Sequencing] ~Two Reactions/Gene

evolution under selective

80



vS/N obtained from 96 well format
(Collected during time course and frozen @ -80C)

2 vRNA extraction

3 cDNA Synthesis

4 dsDNA Synthesis

5 Agarose Gel followed by Purification

6 Sequencing
(Two Reactions/Gene - www.genewiz.com )

Fig 4.2 Rapid PCR based screen platform for detection of escape mutants to therapeutic
pressure for Influenza Viruses.

Outlined are the steps for: Generation of dsDNA from vS/N that could be used for HA (& other
viral genes) sequencing.
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1. vS/N harvest
- The escape mutant generation assays were designed and performed in 96 well format and hence rna/cdna/dsDNA

generation were all optimized for vS/N obtained from a single 96 well.
- Volume - 50 -100 ul of vS/N.

- Aliquots can be frozen upon harvest (-80C) and RNA extracted later.
- It would be a good idea NOT tofreeze/thawRNA repeatedly and hence best to collect vS/N and cumulatively extract RNA

and proceed immediately to cDNA/dsDNA generation.
- dsDNA can be stably stored for up to 6months if reqd.

2. vRNA Extraction

- Use the Qiagen kit& elution volume is 80ul. vI5h

- QiAamp Viral RNA Mini Kit Cat# 52906 a totalof80ul) 9ul 5xcDNAsynthesis buffer 4ul

3. cDNA synthesis. Uni 12 Primer (20 pmol) l ul 0.1 M DTT 1 ul

- Use of fresh RNA is recommended. 9ul of the 10 mM dNTP 2 ul Rnase OUT (40 units/ul) 1 ul
* Step 1-GREEN TABLE Water lul

- Add components in Rnase-free tube and incubate mixture (12ul) for 5 mins
- STEP 2-BLUE TABLE ThermoScript (15U/ul) 1 ul

- Add the remaining components and place the reaction mixture in the PCR machine at 65C for 1 hour.
- This should be immediately followed by 85C for 5 mins.

- Then spin down the contents of the tube to obtain 20ul of cDNA.

- Unil2 HA primer- AGC AAA AGC AG

Fig. 4.3 Expanding on the first three steps as outlined in Fig 4.2 viz 1. vS/N Harvest 2. vRNA
Extraction and 3. cDNA Synthesis
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4. Digestion w. RNASE H. 
94C-2min

cDNA 3 ul

- Use the Invitrogen Gel Purification Kit to extract DNA. Total 50 ul

- This after purification gives around 15-20 ng/ul of dsDNA which is sequenced.

- 400 mg is a typical band weight of gel which requires 1.2 ml of the gel solubilization buffer supplied in the kit. Use a water bath

set to 50C for gel solubilization.

Fig 4.4 Details on Steps 4 and 5 as outlined in Fig 4.2. (viz 4. Rnase H Digestion; ds DNA
generation and 5. Agarose gel eletrophoresis and gel purification).
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- Add 1 ul of RNASE H to the cDNA reac of 20 ul and incubate for 20mins at 37C before proceeding to PCR. 94C -30s
55C - 30s

- This cDNA can immediately be used to generate dsDNA via PCR. 68C-2 min

Repeat for 32 cycles
4. dsDNA Synthesis

68C-7 min

- Use 45ul of High Fidelity PCR MIX (Invitrogen Catalog # 12532-016 or # 10790-020) and add 1-2 ul each of forward and reverse
primers. RED Table.

- A stock for each primer is prepared at a conc of 200 picomoles/ul. This stock is 10x diluted to give a working conc of 20

picomoles/ul.

5. Agarose Gel Electrophoresis

- Run a 1% agarose gel with the samples.

- Use broad frame which takes in about 30 ul of the PCR reaction/well

- Run at 120V for 1h. This should give good separation. *omp*n*nt 'ol*me

- Cutout the portion of the gel required. PCR SuperMix High Fidelity 45 ul

Primer (Use 20 picomoles/ul conc) lul For + 1 ul Rev
- Gel Purification

94C - 2min4. Digestion w. RNASE H.



nent - GTTTAAAAACGACCTTGTTTCTACT
agion is common w. Hoffmann et al.,

Table 4.1. Sequencing Primers for the viral genome.

84



A B

HA17/8R ~ ~ ~ 1/O 7

Fig 4.5 A. HA gene amplified after processing vS/N. B. Validation of NA Primers.

Gel Purified Products were sent out for sequencing. Note : HA-1770R (+HA1) provided shorter
sequence read (the difference cannot be visualized on the gel). HA-1 778R (+HA1) was chosen for
the longest sequence length).
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Fig. 4.6 A. Sequencing guidelines in the context of Reverse Genetics. B. Amplification of HA,
NA and M plasmids from v S/N of transfection reaction
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A.
1. Check validity of primers ( A +ve Control for Reverse Genetics)

- Use Plasmids with primers designed and PCR
- 2ul of each primer + 3 ul plasmid + 45 ul PCR platinum super mix

- Run on gel and you should see product bands
2. Gene-specific primersto amplify plasmids in S/N

- Use S/N (~2-3 ul) after 1x media change post-transfection as the DNA template and verify product formation.
- Run on gel and see product band
Note: If you do have infectious particles in the S/N then extract RNA and proceed to generate cDNA and dsDNA.

3. VerifySequences
- Use the gene-specific Primers and sequence dsDNA generated from Step #2

" (Sequences shouldshow alignment to the Pubmed sequences of Pr8 EF467817-EF467824).
e HA Primers

- HA-1 (FORWARD) and HA-1778R (REVERSE).

e M Primers

- M-8 (FORWARD) and M-1023R (REVERSE).
* NA Primers

- NA-1 FORWARD and NA-1413 (REVERSE)

B.
Sul of vS/N after syringe filtering using 0.45 um filter. 48h samples were tested.

- HA, M and NA primers were used.
- HA-iFor + HA1778 Rev

1 1.8 kb
- M - M-FOR + M-1023REV

* ~1kb
- NA-1For+1413Rev

- ~1.4 kb

III r-I I III

1:":l 1:2 1:2-L-2
3
2



5 Decoding Pectins - Establishment of a structure-function relationship for
complex glycans in cancer.

5.1 Summary

The use of pectins, natural polysaccharides derived from plant sources as anti-cancer agents

have offered promising results [99, 100]. Studies suggest that the pectic oligosaccharides

generated by enzyme digestion have a greater protective effect than untreated pectins and

imply that specific components of pectic oligosaccharides (i.e., galactan and structures released

by enzymatic degradation) may provide therapeutic efficacy. However, defining specific

structural motifs responsible for this observed activity would be crucial to develop pectin based

therapeutics. Biochemical binding assays to determine specific activities and in vivo

experiments to test more rigorously this therapeutic potential of the natural carbohydrates

would need to follow. To this end, outlined in this section is a detailed research plan for

isolation, in vitro screening and structural characterization of pectic oligosaccharide fractions

(POFs) with anti cancer properties. Preliminary work on developing protocols for generation of

pectin fragments after enzymatic and acid based digestion were contributed by a former

postdoc Toomas Haller in the lab. The in vitro and in vivo approaches outlined were developed

by a former graduate student David Evarone. Under the tutelage of both Tom and Dave, I learnt

the basis of dissecting pectins for a more biological read out and have outlined a proposal

based on Integration of known approaches that would aid in the establishment of a structure-

function relationship for complex glycans in cancer.
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5.2 Introduction

5.2.1 Structural complexity of pectins

Pectin is a complex carbohydrate network composed predominantly of galacturonic acid rich

polysaccharides and a major component of all primary cell walls. Pectin is loosely composed of

"smooth" and "hairy" regions [101, 102]. Smooth regions are defined by homogalacturonan, a

linear polymer of poly 1-4 linked x-D-galacturonic acid (GalA) moieties with varying degrees of

carboxymethylation (Fig.5.1). The hairy regions of pectin are divided into two distinct

components known as Rhamnogalacturonan I and II. Rhamnogalacturonan I is composed of

homogalacturonan randomly interspersed with cx-L-rhamnose (Rha) residues, adjacent to GalA

residues[103]. Each of these Rha residues is a potential branch point for side chains.

Rhamnogalacturonan 11 is the most complex form of pectin, possessing multiple branch points

containing various sugars [104]. Pectin is a classic example of a complex sugar which contains a

variety of individual monosaccharides, diverse glycosidic linkages and many chemical

modifications like methylation and acetylation. Given the heterogeneity and complexity of

pectins, many approaches have been used to degrade the pectins derived from the natural

source to produce pectic oligosaccharide fractions (referred to henceforth as POFs). Although

these POFs are also heterogeneous mixtures of oligosaccharide, they are more strictly defined

in terms of their structural attributes such as the distribution of oligosaccharide chain lengths,

chemical composition and branching patterns, etc. Pectins and POFs are achieving prominence

as potential anti-cancer agents [105-110]. Specifically, there are promising studies that have

demonstrated the anti-tumor action of low molecular weight pectins (LMPs) derived citrus fruit

pectins using a two-step base and acid hydrolysis [105-107, 110]. These complex

polysaccharides offer tremendous potential for development of various therapeutic strategies.

A series of proof-of-principle experiments demonstrating that the combination of analytical

tools and biological assays can lead to a substantial structure-function understanding of pectins

demonstrated that this approach can be used to produce a pectin-derived mixture (LMP) which

has potent anti-tumor activity in addition to extending this analytical platform to structurally

characterize LMP-derived fragments [111-113].
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5.2.2 In vitro and in vivo inhibition of cancer cell growth with LMP treatment

Various concentrations of LMP (0-666 mg/ml) were used to treat B16F1O cells in a 96-well plate

format. A dose-dependent decrease in the number of viable cells was observed over the 2 day

exposure to LMP. Using this assay, an LD50 for the drug was calculated to be 116±5 mg/ml (Fig.

5.2). Treatment of the cells with PBS produced no changes in cell viability (data not shown) and

suggested that the observed effect was directly attributable to LMP. This dose-dependent

decrease in B16F10 cell viability confirmed this as a legitimate model for studying the cellular

biology underlying the anti-tumor effect of LMP. Additionally, a similar effect in other cell lines,

including SK-ES-3 murine osteosarcoma cells (LD50 of 275 mg/ml) and Lewis lung carcinoma cells

(LD50 53 mg/ml) was observed suggesting that LMP is capable of producing a dose-dependent

decrease in cell viability in diverse tumor cell lines.

Further, this observed dose-dependent response is typical of what is seen with a variety of

standard chemotherapeutic agents designed to specifically target proliferating cells through

mechanisms such as irreversible DNA damage [114]. Such a defined, reproducible response was

surprising for LMP given its structural heterogeneity and no real a priori cellular target or

mechanism of action. Other polysaccharide polymers, including unmodified pectin,

polygalacturonic acid, and heparin do not produce such a response when used to treat B16F10

tumor cells in this model (data not shown). This confirmed a specific sugar motif exposed

during the generation of LMP that directly produces the cell mortality observed and a specific

interaction at the cell surface that initiates a signal transduction cascade leading to observed

cellular response.

Encouraged by the in vitro response of the B16F1O cell line to LMP, an initial experiment was

performed to test the effect of the therapeutic in an in vivo tumor model. Primary tumors were

initiated by the subcutaneous injection of B16F10 melanoma cells into the rear flank of

syngeneic mice. The mice were treated with daily tail vein injections of 4 mg/kg, 10 mg/kg

LMP, or PBS control beginning on Day 7 when tumors first became palpable. Treatment

continued for 15 days before the mice were sacrificed. Tumor-bearing mice treated with 4

mg/kg LMP showed a 75% decrease in overall tumor volume while mice treated with 10 mg/kg

demonstrated a 95% decrease in tumor volume in comparison with the PBS controls (Fig. 5.3).
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There was a significant, dose-dependent decrease in tumor size over the period of treatment

when compared to mice treated with PBS alone (Fig. 5.4). There were no deaths or observed

changes in overall body weight, as well as no observed cell death in tissue surrounding the

tumors upon the administration of the LMP which confirmed that LMP was not toxic to the

mice at the current doses over the period of administration (results not shown).

These pilot experiments that were developed to monitor the anti-tumor effects of LMP

revealed that LMP treatment leads to a decrease in B16F1O cell viability in vitro and to an

inhibition of primary tumor growth in vivo thus serving as a biological platform to elucidate the

structure-function relationship of pectin structures that possess anti-cancer properties.

5.2.3 Analytical tools to elucidate pectin structure

In parallel with the development of the in vitro and in vivo assays, Toomas Haller began to apply

experience with the structural analysis of GAGs to the study of LMP. The first step in this

analysis was to demonstrate that enzymatically could degrade LMP and analyze its products

using a CE-based approach similar to that used to study GAGs. Pectin lyase (PL) was employed

to begin these enzymatic studies because, like the heparinases and chondroitinases, it leaves

behind a A4'5 double bond that serves as an internal chromophore (Xmax = 232 nm) in the

reaction products [115]. With minor modifications to the CE methodology developed for the

analysis of GAGs, Dr. Haller was able to detect the PL-generated products of LMP (data not

shown). Unsurprisingly, the primary peak in the electropherogram was identified as GalA by co-

migration with known standards. PL specifically cleaves the homogalacturonan regions of LMP,

regardless of methylation and leaves behind GalA monosaccharides and larger, intact "hairy"

regions. In the future other HPLC-based analytical techniques could be used to isolate these

remaining hairy regions and examine their structure and biological activity.

Further, LMP was degraded using polygalacturonase (PG), a hydrolytic enzyme specific for

regions of unmethylated homogalacturonan [116, 117]. Since PG digestion does not result in

products containing the A4'5 double bond, the enzymatic reaction products were end-labeled

using 1-aminopyrene-3,6,8-trisulfonate (APTS). In addition to being a chromophore (Xmax = 488

nm), APTS-labeling introduces a negatively charged trisulfonate residue onto the reducing end

of the reaction products [118]. This redistribution in the aggregate charge in the mono- and
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oligosaccharides necessitated development of a novel CE methodology for the adequate

separation of the PG reaction products [119]. PG digestion of LMP reveals multiple GalA-

containing products, ranging from simple to higher order oligosaccharides (Fig. 5.5).

MALDIMS was used for further, examination of the PG-generated mono- and oligosaccharides

[120, 121]. Similar to the CE results, the presence of mono- to multimeric GalA-containing

saccharides, consistent with the degradation of the homogalacturonan regions of LMP was

observed (data not shown).

These initial experiments served as initial proof-of-principle that the tools developed for the

analysis of GAGs could be extended to the structural analysis of the pectic fractions generated

as outlined in the research design.

5.3 An integrated research design for the isolation, in vitro screening and structural

characterization of pectic oligosaccharide fractions (POFs) with cancer inhibiting

properties

5.3.1 Rationale

The goal would be to develop a robust structure-function framework for generating POFs as

potential inhibitors for cancer. To accomplish this goal the first objective would be to develop

chemical and enzymatic methodologies for the controlled and reproducible degradation of

citrus pectin to obtain different POFs that would then be tested for activity using quantitative

biochemical assays. From these results biochemical studies, the POFs with notable antagonist

activities would then be subjected to detailed structural characterization using a combination of

analytical methods such as composition by capillary electrophoresis (CE), linkage determination

and degree of substitution, such as methylation, by nuclear magnetic resonance (NMR) and

mass/chain length by mass spectrometry (MS). The structural attributes will then be used to

generate theoretical structural models of individual oligosaccharide(s) representing the

predominant attributes of a given POF or mixtures. Cognizant that the properties of a

distribution of oligosaccharides are mapped to a representative oligosaccharide in this

approach, multiple 'modeled' oligosaccharides for a given POF would then be generated. The

models will be used as a framework to identify the specific structural attributes that contribute
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to anticancer activity as well as to provide feedback to modify the POF-generating methods to

enhance these structural attributes in the oligosaccharide mixture. The overall strategy shown

in Fig. 5.6 is described below in detail.

5.3.2 Strategy

5.3.2.1 Enzymatic and chemical degradation of pectins to generate POFs

5.3.2.1.1 Developing and using enzymatic tools for precise degradation of pectins

There are three broad classes of enzymes that degrade pectin: 1) enzymes that cleave the

homogalacturonan backbone; 2) enzymes that degrade the backbone of "hairy" regions; and 3)

enzymes that selectively degrade the neutral side chains off the rhamnose branch points (Fig.

5.7). The first class of enzymes includes pectin lyase (PL) and polygalacturonase (PG) used

extensively in preliminary studies to characterize the pectic oligosaccharide fragments

constituting LMP. As previously mentioned, PL and PG differ in their ability to cleave

carboxymethylated homogalacturonan regions of pectin, with PG being refractory to a high

degree of methylation in the pectin backbone. By incubating these enzymes for different

durations with pectin starting material, we will be able to generate POFs comprising

homogalacturonan oligosaccharides with diverse chain length and composition (GalA vs.

methylated GalA).

Rhamnogalacturonan lyases (RGL) represent the second class of pectin degrading enzymes. This

class of enzymes specifically cleaves bonds in the rhamnose-interspersed backbone found in the

"hairy" regions of pectin [122]. RGLs specifically cleave the 1->4 bond between Rha and GalA

in the hairy region backbone leaving the neutral sugar side chain of the Rha residue intact (Fig.

5.7). Similar to pectin lyase, RGL leaves a A4'5 double bond, which increases its utility for

studying reaction kinetics and monitoring product formation., since the product absorbs UV

light at approximately 230 nm. Two RGLs (designated RGL A and B) have been isolated and

cloned from Aspergillus aculeatus [123]. Other members of the Apergillus genus are also

reported to be rich sources of pectin degrading enzymes, including different RGLs [124]. In

varying incubation times of pectin with RGL A and B, we will be able to liberate the smooth
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regions from the branched neutral side chains, enabling generation of POFs with distinct

structural attributes including enrichment in the branched neutral galactan chains.

Finally, pectin-degrading enzymes, such as -galactosidase, arabinase and galactanase, can be

used to selectively degrade components of the neutral sugar side chains found in the "hairy"

regions of pectin [125, 126]. Together these enzymatic tools will be critical to the generation as

well as structural investigation of a reasonable number of POFs with distinct structural

attributes that will then be screened for anti cancer activities.

5.3.2.1.2 Chemical methods to generate POFs:

Chemical methods viz., high temperature and alkaline treatment of the starting material have

been used to derive LMPs. We will first try using. High temperature treatment of pectin,

without a pH change, catalyzes chain fragmentation via acid-based hydrolysis, generating

smaller oligosaccharides. Alkaline conditions favor the chemical processes of demethylation

and depolymerization of the homogalacturonan backbone [127]. Conversely, acidic treatment

under controlled conditions will favor the liberation of long chains of polygalacturonic acid due

to the preferential cleavage of glycosidic bonds in hairy regions [128]. In addition to generating

POFs using these chemical methods coupling chemical approaches with enzyme digestion by

treating enzyme digested POFs with specific temperature and pH schemes would produce POFs

with a greater diversity in the structural attributes that will be used in screening studies.

5.3.2.2 Testing pectic derivatives for Anti Cancer Activity

5.3.2.3 Development of analytical tools for structural characterization of POFs

The POFs demonstrating significant antagonist activities will be structurally characterized using

a combination of analytical techniques including CE, MALDI-MS, HPLC and NMR (Fig. 5.8). A

critical component of the analysis of mono- and oligosaccharides derived from the POFs will be

labeling the reducing end of the saccharide with a chromophore to enable its detection using a

diode array detector. In initial experiments the enzymatically derived reaction products were

end-labeled with APTS to promote their separation and detection using CE [129]. We will

employ a variety of other charged and hydrophobic labels previously used for the end-labeling

of carbohydrates including 2-anthralilic acid (2-AA), 2-aminoacridone (AMAC), and 8-
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aminonapthalene-1,3,6-trisulfonic acid (ANTS) as application specific tags for the separation

and detection of LMP-derived fragments [118, 130-132]. 'H and 13C, 1D NMR analysis of the

POFs would provide valuable information on the relative abundance of modifications such as

methylation and acetylation of the oligosaccharide chains, average chain length and abundance

of unsaturated uronic acids (derived from n-elimination of GalA). In addition to CE, MALDI-MS

and NMR techniques for the analysis for the fine structure of the POFs, HPLC-based separation

analysis of different enzymatic and chemically generated fractions. We will use both size

exclusion (SEC-HPLC) and strong anion exchange (SAX-HPLC) methods to separate the

constituent oligosaccharides in POFs based on size and charge respectively. These techniques

allow for the separation of the larger components of enzymatic digests, and provide a suitable

compliment to the use of CE that allows for the detection and fingerprinting of smaller reaction

products. Finally, we will interface HPLC with electrospray ionization mass spectrometry (LC-

ESI-MS) to enable the separation and online mass identification of the various components of

enzymatically and chemically generated POFs. For this application, we will rely on C18 reverse

phase chromatography to separate the oligosaccharide components of the POFs based on their

hydrophobicity. Labels such as AMAC will be introduced to increase the overall hydrophobicity

of the oligosaccharides and to provide a facile means of detection [131]. We will also perform

MS/MS analysis on the oligosaccharide component to derive defined sequence information of

the parent molecule. Combining this technique with CE, MALDI-MS, and a variety of HPLC

separation techniques, we will be able to provide a more comprehensive understanding of the

structural attributes of POFs that will be valuable for understanding their structure-function

roles in cancer inhibition.

5.3.2.4 Modeling approaches with pectic oligosaccharides

Although these POFs comprise a heterogeneous mixture of oligosaccharides, the modeling of

oligosaccharide structures which possess a representative set of the predominant structural

attributes will enable the correlation of these attributes to the cancer inhibiting properties of

the POFs. The Sasisekharan lab has performed several studies involving structural and

conformational analysis of glycan-protein interactions including the recent study demonstrating

the key role that glycan structural topology plays in determining the binding specificity of
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influenza A virus hemagglutinin to its sialylated glycan receptors [1]. A modeling approach will

also provide a feedback mechanism for the POF generation process to enrich specific structural

attributes that enhance their cancer inhibition properties.

In summary, the enzymatic as well as chemical methods will not only be useful for the

generation and structural characterization of diverse POFs; but they will be critical tools that

will also be used in an iterative fashion to generate distinct POFs. Positive hits and other

feedback from our screening assays along with structural information on promising POFs are

critical constraints for glycan-protein modeling studies. The glycan-protein structural

investigation will help us refine the sample space of distinct POFs that will be further generated

and tested. Once promising pectic oligosaccharides are generated, further optimization using

the above tools, will be undertaken (this logic is schematically shown in Fig. 5.9). Such an

iterative approach has been previously implemented by the lab in the generation of more

defined low molecular weight heparins as well as LMPs. This strategy has led to the successful

development of a polysaccharide that is a clinical candidate currently in Phase |1 trials in

humans [14].

5.4 Experimental Methods

5.4.1 Production of pectic derivatives by temperature and pH:

Temperature treatment is performed by incubating a solution of purified pectin in an

incubation oven, ranging from 40-800C for 0.5-3 hours. Treatment with pH is performed by

addition of NaOH to achieve a final pH value ranging from 7-12.

5.4.2 Capillary electrophoresis (CE)

For CE studies analyzing monosaccharide composition, pectins are first hydrolyzed into their

monosaccharide constituents by 72-hour incubation in 200mM trifluoroacetic acid (TFA) at

800C. To ensure complete hydrolysis, the samples are then incubated with 2U of pre-dialyzed

pectinases (Sigma-Aldrich) for 48 hours in 60 mM sodium acetate buffer, pH 5 at 450C. After

lyophilization, the hydrolyzed pectins (and reference monosaccharides) are labeled with the

APTS flourophore [118], using a 3:1 molar ratio of APTS: pectin. The samples are then analyzed

with 40mM sodium tetraborate running buffer using a Beckman Coulter P/ACE MDQ
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instrument. Peak assignment is determined by spiking samples with known standards of

labeled monosaccharides. For CE analysis of pectin lyase products, the samples are monitored

by absorbance at 232 nm using the same running conditions. The polygalacturonase products

are labeled with APTS, as described above, and run under the same conditions using laser

induced fluorescence (LIF). For both enzyme degradation products, assignments of peaks are

determined by co-migration of known standards.

5.4.3 MALDI-MS

Mass spectral analysis is performed using a Voyager Workstation instrument. Sample

preparation was performed by mixing pectin samples with the matrix 2,5-dihydroxybenzoic acid

(DHB), a commonly utilized matrix for MALDI-MS of oligosaccharides [133]. The samples are

then analyzed using linear negative mode.

5.4.4 NMR

H-NMR is performed by using pectin samples at 10 mg/ml in D20. Data collection is done at

800C using 500 scans with a 400 MHz Bruker instrument. 13C-NMR is performed in the same

manner except spectrum acquisition is completed at room temperature and with 20,000 scans.

Given the heterogeneity of pectins, the generation of POFs in a controlled and reproducible

fashion is a sizeable undertaking which offers several potential challenges. For example, the

same generation method could result in POFs with variations in the structural attributes such as

distribution of chain lengths or relative abundance of different monosaccharide units. We have

observed similar issues with heparin and have been able to address this effectively. Thus, we

anticipate the need to evaluate the effect of these variations in the competitive binding of the

POFs to the cancer cells in the inhibition assay. This evaluation will be further refined using our

modeling approach to determine if the variation of a specific attribute is likely to cause

significant perturbation to the molecular contacts with the glycan binding site.
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Figure 5.1: Structural complexity of pectins (adapted from Gunning et al)
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Figure 5.2: LMP inhibits B16F1O cell growth in vitro.

B16F10 cells were treated with LMP in a 96 well plate. Cell viability was quantified using the
CellTiter reagent (Promega). The LD50 calculated using this assay was 116±5 lag/ml LMP. This
graph represents one of the experiments used in calculating the LD50 (n=6).
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Figure 5.3. Inhibition of primary tumor growth by LMP.

Primary tumors were initiated by subcutaneous injection of B16F1O melanoma cells into
syngeneic mice were measured daily with calipers. Animals were treated daily with PBS (0), 4
mg/kg LMP (o), and 10 mg/kg LMP (V) via i.v. administration. LMP produced a dose-
dependent inhibition in primary tumor growth.
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Figure 5.4: LMP treatment inhibits tumor growth in vivo.

Comparison of two tumor-bearing mice (top) treated with PBS (left) and 10 mg/kg LMP (right),

respectively. Gross comparison of the primary tumors (bottom) of the mice from (A). After 15

days of treatment, LMP significantly inhibited the growth of primary B16F1O tumors and led to

an increase of leaky blood vessels in the tumor bed.
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Figure 5.5. CE analysis of APTS-labeled oligosaccharides from LMP.

LMP was degraded with PG, end-labeled with APTS, and products were separated using CE.
Each of the labeled peaks represents (GaIA)n where n = 1-5. The peak * is observed in both the
sample digest and the GalA standard control.

105



I PECTIN I

1W - Enzymatic

seneration/Separation of pectin fragments
- Chemical

-Direct binding
Screening for receptor antagonist activity LS

I - CEStructural Analysis of pectic fragments DI-MS
with antagonist activity MA- N M

Figure 5.6. Flow chart of the strategy for Specific Aim 1.
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6 Summary and Significance of Thesis Research

6.1 Is Pandemic Influenza predictable?

A 1931 editorial in the Journal of the American Medical Association[134] stated, . . . it does not

seem possible, with our present knowledge, to make any prediction as to whether or not an

epidemic might be expected in the near future." Unfortunately, despite more than nine

decades of intensive study of influenza virus biology since this editorial was written, and almost

two hundred years after the question was first posed by the German Physician Georg Friedrich

Most[135], we are still unable to predict future pandemics, as evidenced by the completely

unexpected emergence of the 2009 swine-origin H1N1 virus[35, 136, 137].

6.2 Avian influenza viruses and the continuing risk of a future pandemic

The past decade has been witness to the spread and establishment of stable lineages of both

HPAI (H5 and H7) and LPAI Influenza virus strains (H9N2) in poultry leading to repeated human

infections and consequently broad interest in pandemic prediction [138, 139]. Although

overshadowed by H5N1, major poultry epizootics have occurred caused either by H7 subtype or

H9N2 viruses resulting in human infections and rare human fatalities [31, 140]. Of all known

avian influenza strains only H5 and H7 viruses are known to acquire the requisite polybasic

insertional mutation at the HA cleavage site that makes them highly pathogenic to poultry. The

last four human pandemics caused by Hi (1918, 1977, 2009), H2 (1957), and H3 (1968)

subtypes, were by definition not HPAI viruses. Neither is there evidence that a human

pandemic or even an epidemic has been caused by any of the many other HPAI viruses making

finding the answer to whether the HPAI H7 strains in circulation could become human adapted

even more pertinent. As with H5N1 [139], different genetic lineages of H9N2 have been

established primarily due to prolonged circulation in domestic birds like the water fowl and

quail. Some H9N2 viruses have even acquired enhanced specificity for the human form of the

HA receptor[141] but whether these viruses posses sustained human-to-human transmission

and consequently true pandemic potential is still unclear.

Finally, with research that shows that the most devastating of the flu pandemics, the 1918

Spanish flu rose de novo after the human adaptation of a hitherto avian strain underscoring the
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need to monitor all strains of the continuously evolving virus in both wild and domestic bird

populations with focus on those that have either established stable lineages in poultry and/or

known to cause sporadic human respiratory infections.

Despite significant research, fundamental questions about how influenza A viruses switch hosts

from wild avian species to domestic poultry and mammals, and subsequently to human hosts,

remain unanswered. To cause a pandemic, an avian virus would have to adapt at least to

human HA receptors and acquire human transmissibility properties; a challenge that is rarely

met by most influenza A viruses.

6.3 Role of HA in Human Adaptation

Host restriction is partly mediated by the viral surface glycoprotein hemagglutinin (HA) which

binds to sialylated glycan receptors, complex glycans terminated by N-acetylneuraminic acid

(Neu5Ac) expressed on the host cell surface. Glycans terminating in Neu5Ac that is a2-96-

linked to the penultimate sugar are predominantly expressed in human upper respiratory

epithelia and serve as receptors for human-adapted influenza A viruses. Binding to human

receptors consequently allows the virus to replicate in the respiratory epithelium in addition to

allowing the virus to be conveyed via respiratory droplets when the infected individual sneezes.

On the other hand, glycans terminating in Neu5Ac that is a243 -linked to the penultimate

sugar residue, serve as receptors for the avian-adapted influenza viruses and are typically found

to replicate in the gastrointestinal tract of birds allowing these avian strains to spread via fecal-

to-oral route [19, 20]. Recent studies from the Sasisekharan lab have shown that high affinity

binding to human receptors correlates with transmission in vivo. A biochemical rationale for

transmission capabilities of H9N2 and H7 HA containing strains of avian influenza viruses has

not been reported. Further recent publications elucidating transmission capabilities for the

H5N1 strains emphasize the need for similar analysis on other avian strains that pose a

significant threat of becoming human adapted. Just as for H5N1 a thorough investigation of the

molecular determinants of H9 and H7 subtype viruses to gain a permanent foothold in the

human population is crucial for pandemic preparedness. This thesis is an analysis of the of the

H9 and H7 HAs and an evaluation of their pandemic potential using a variety of techniques to

provide a quantitative rationale for transmission observed in vivo for these strains.
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6.4 Developing general rules for human adaptation, applicable to any Influenza

strain

Only few mutations in the receptor-binding site were required to convert the avian/swine HI,

H2, and H3 HAs counterparts from displaying avian receptor-binding patterns to human

receptor-binding patterns [8]. Mutations to H5 HA that now afford to the human form of the

receptor have now been reported; with some significant advances being made very recently

[60, 142]. Changes in HA receptor binding during host adaptation are complex, and differ from

subtype to subtype. The avian H5, H7 and H9 viruses and other avian subtypes may well face

biological barriers in achieving efficient binding to human receptors. The approaches outlined in

this thesis aim to address the aforementioned need to develop a broad set of rules that would

aid in the surveillance of novel strains for human adaptation capabilities. Apart from endorsing

a complementary set of techniques including quantitative biochemical characterization of

binding affinity to glycan receptors, tissue staining and molecular modeling to facilitate

comparison with strains already human adapted for ascertaining how far or how close the HA is

from becoming human adapted; the development of quantitative PCR and reverse genetics as

elegant tools for in vitro interrogation of the whole infectious virion provides an elegant route

to segway into conducting in vivo studies for the transmissibility of the strains.

Ultimately, can we predict when/whether a particular avian strain will acquire sustained

human-to-human transmission capabilities using the entire repertoire of tools outlined in this

thesis? Answers to questions raised would also aid in development of general rules that govern

human adaption applicable to strains beyond ones currently under study and therein lays the

true significance and impact of this work.
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