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Abstract

The adaptive immune system is an extraordinarily diverse inventory comprised of

highly specialized cells, the differentiation of which requires numerous lineage

specifications at various developmental stages. The precise control of immune cell

differentiation and the delicate balance of their population composition are crucial for

effective protection against infectious environmental agents, without triggering

autoimmune responses or allergies. It is therefore important to understand at the

molecular level in individual cells how lineage commitment is regulated. I explored the

heterogeneous gene expression during the lineage specification of single T helper cells,

by quantitatively measuring mRNA and protein levels. I have discovered a paradigm of

cell lineage specification governed by the signaling interplay between extracellular cues

and intracellular transcriptional factors, where the strength of extracellular signaling

dominates over the intracellular signaling components. In the presence of extracellular

cues, T helper cells stochastically acquire any intermediate Thl/Th2 states. The states of

T helper cells can be gradually tuned by depriving availability of extracellular cytokines,

which are produced stochastically by a small subpopulation of cells. When extracellular

cues are removed, the weak intracellular signaling network reveals its effect, leading to

classic mutual exclusion of antagonistic transcriptional factors.
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CHAPTER 1

Introduction

Mammals consist of many distinct types of highly specialized cells, the

differentiation of which requires numerous lineage specifications at various

developmental stages. In the developmental paradigm, a progenitor cell is capable of

differentiating into several lineages. The precise control of progenitor cell differentiation

is crucial for achieving a delicate balance in composition of the differentiated cell

populations. Commitment to a specific cell fate hinges on the regulation of a single or a

handful of master regulators, which are often transcription factors. Given the appropriate

signals, which can be extracellular cues such as cytokines, these master regulators

orchestrate the expression of a set of effector genes and repression of the genes associated

with alternative cell fates.
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1.1 Stochastic Gene Expression in Eukaryotic cells

However, gene expression is a fundamentally stochastic process, because noise in

transcription and translation can lead to cell-to-cell variations in mRNA and protein

levels even in genetically identical cells (Raj and van Oudenaarden, 2008). Studies on

gene expression in eukaryotes indicate that gene expression is noisy (Fig 1.1), because

transcription occurs in bursts. This can be attributed to that the gene transitions between

an inactive and active state (Becskei et al., 2005; Raj et al., 2006; Raser and O'Shea, 2004;

Warren et al., 2006), or other possible mechanisms such as the formation of pre-initiation

complexes at the promoter region of the DNA and multiple transcription events

facilitated by RNA polymerase (Blake et al., 2006; Blake et al., 2003; Raj and van

Oudenaarden, 2008). Given the noisy nature of gene expression and the important goal of

achieving a precise composition of various lineages of differentiated cells, it is interesting

to examine at the molecular level in individual progenitor cells the expression levels of

the master regulators.
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Fig. 1. Stochastic gene expression in eukaryotic cells. The upper panel shows the scatter

plot of YFP and CFP, driven by the same promoters on different chromosomes in

individual yeast cells, grown under the same condition (Raser and O'Shea, 2004). The
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lower panel shows the heterogeneous gene expression in mammalian cell subjected to the

same culture environment (Raj and van Oudenaarden, 2008).

To study transcript levels quantitatively in individual cells has been a challenging

problem until the past two decades with the invention of novel detection tools that detect

single mRNA molecules, such as MS2-GFP method (Beach et al., 1999; Bertrand et al.,

1998; Golding et al., 2005), single molecule FISH (smFISH) (Femino et al., 1998; Raj et

al., 2006; Raj et al., 2008), single-cell RT-PCR (Bengtsson et al., 2005; Warren et al.,

2006), and molecular beacons (Tyagi and Kramer, 1996; Vargas et al., 2005). In this

thesis, we deployed a novel smFISH technique for imaging individual mRNA molecules

in fixed cells. This method probes each mRNA species with 20 or more short, singly

labeled oligonucleotide probes that are about 20-mers in lengths (Fig. 1.2). Simultaneous

binding of the probe set to each mRNA molecule results in a diffraction-limited

fluorescent spot by fluorescence microscopy, which can be computationally identified

using a log filter. By labeling each probe set with a different fluorophore with non-

overlapping absorption and emission spectra, we can simultaneous detect multiple

mRNA species in single fixed cells. Since this method offers single-molecule resolution,

it is more sensitive than conventional quantitative RT-PCR, which relies on exponential

signal amplification and thus performs poorly at resolving differences of less than two

folds. In addition, single-molecule mRNA FISH is compatible with quantitative

immunofluorescence, enabling concurrent quantification of mRNA and protein levels in

individual cells. This will enable us to question how many transcripts of the genes of

interests are expressed in individual cells and what the correlation between each mRNA

and protein species is in individual cells. We can then examine the heterogeneity of

mRNA and protein levels in progenitor cells at various time points during their

differentiation.
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20-mer probes, each coupled to a fluorophore

Target mRNA

Figl.2. mRNA FISH with single molecule resolution. This method probes each mRNA

species with 20 or more short, singly labeled oligonucleotide probes that are about 20-

mers in lengths. Simultaneous binding of a probe set, which typically consists of at least

20 different oligonucleotide probes, to each mRNA molecule results in a diffraction-

limited fluorescent spot under fluorescence microscope.
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1.2 The Road to finding a suitable model system of cell differentiation

To select a model cell differentiation system, I have tested a few systems. First I started

with mesenchymal stem cells, which can differentiate into a variety of cell types,

including osteoblasts, chondrocytes and adipocytes (Rosen and Spiegelman, 2000). My

plan was to track the expression of master transcription factors for each lineage. I first

tested the feasibility of this model system by inducing the mesenchymal stem cells

towards the adipose lineage, by adding exogenously added cues such as dexamethasone.

The mesenchymal stem cells accumulated fat droplets and acquired the phenotypic

features of adipocytes. However, I then realized these cells are not amenable to

microscopic imaging. First, extremely high cell confluence was required to differentiate

mesenchymal stem cells to adipocytes, resulting cells stacking on top of each other (Fig.

1.3). Secondly, the fat droplets have sharp circular boundaries on the microscopic images,

making cell segmentation algorithm confused with real cell boundaries. Thirdly, the fat

droplets are fluorescent over a large of spectra under the fluorescent microscopic imaging,

resulting in high background noise that mask the real fluorescent signals from single

molecule FISH.
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Fig. 1.3. Differentiation of mesenchymal stem cells towards the adipose lineage. The left

panel is the bright-field image of the cells, showing accumulation of fat droplets. The

right panel is a fluorescent image, showing that fat droplets have strong fluorescence,

rendering single-molecule mRNA FISH infeasible in these cells.
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1.3 Differentiation of CD4 T helper cells

I continued to examine several types of progenitor cells and nailed down to the

naive CD4* T helper cells, because of its important role in adaptive immunity and

technical feasibility to culture and image these cells. The naive CD4* T helper cells are

capable of differentiating into Thl, Th2, Thl7, induced regulatory T cells (iTreg) and

follicular T cells (fTh). The classical dichotomy of the ThI versus Th2 is well-established.

Th1 lineage, characterized by secretion of hallmark cytokine interferon-y (IFNy), is

essential for eradicating intracellular pathogens, primarily by activating natural killer

(NK) cells and cytotoxic CD8* T cells that can kill pathogen infected cells and secreting

cytokines such as IFNy to hinder further pathogen entry into cells (Szabo et al., 2000). In

contrast, Th2 lineage, characterized by secretion of IL-4, is essential for eliminating

extracellular pathogens, primarily by activating B cells to secret antibodies that sequester

pathogens or neutralize toxins.
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Tbet, encoded by Tbx21, is the master transcription factor of Th1

differentiation(Szabo et al., 2000), whereas Gata3 is the master transcription factor of

Th2 differentiation (Zhang et al., 1997; Zheng and Flavell, 1997) (Fig. IA). Tbx21 and

Gata3 expressions are postulated to be mutually exclusive in individual cells (Lohning et

al., 2002; Mariani et al., 2004; Murphy and Reiner, 2002; Zhou et al., 2009), owing to

positive feedback loops and cross inhibitions. These regulatory networks consist of two

types: one that depends on cytokine signaling and the other that is independent of

extracellular cytokines and involves only the intracellular players such as transcription

factors. Specifically, Tbet activates Ifng (Djuretic et al., 2007), and binding of

extracellular IFNy to its receptor triggers STAT1 signaling and induces expression of

Tbx21 (Leonard and O'Shea, 1998). In addition, Tbet induces its own expression in an

IFNyR/STATl independent manner, possibly through autoinduction and interaction with

the transcription factor Hlx (Mullen et al., 2002). Similarly, Gata3 activates 114 (Jenner et

al., 2009; Tykocinski et al., 2005), and binding of extracellular IL4 to its receptor triggers

STAT6 signaling and induces the expression of Gata3 (Kaplan et al., 1996; Shimoda et

al., 1996; Takeda et al., 1996). In addition, Gata3 binds the Stat6 promoter, leading to a

positive feedback independent of extracellular IL4 (Jenner et al., 2009). Furthermore,

Gata3 can also be autoinduced in an IL4R/STAT6 independent manner, possibly by

binding its own promoter or enhancer, or mediated by intermediate factors such as c-maf

(Ouyang et al., 2000). For cross inhibition, Tbet silences 114 (Djuretic et al., 2007), and

Gata3 silences Ifng (Chang and Aune, 2007; Schoenborn et al., 2007). In addition, Tbet

blocks the functions of Gata3 through direct protein-protein interactions between the two

transcription factors (Hwang et al., 2005). It has been proposed that small random

fluctuations in gene expression can set Tbet or Gata3 level above a threshold required for

maintaining subsequent high expression of one transcription factor while silencing the

other (Callard, 2007; Chang and Aune, 2007; Schoenborn et al., 2007; Szabo et al., 2003;

Yates et al., 2004). However, this notion is largely supported by conjectures based on the

current understanding of Th signaling networks and mathematical simulations.
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1.4 T cell antigen receptor and its associated kinases

The T cell antigen receptors (TCR) are responsible for recognizing specific antigens

presented by major histocompatibility complex (MHC) molecules, forming the basis for

the specificity of T cell immunity. Specifically, TCR on CD4 T cells recognizes antigens

presented by MHC class II molecules. Being a heterodimer, in 95% of T cells, TCR

consist of a/s chains, whereas the remaining 5% consist of y/6 chains. The CD4 T cells

under study in this thesis bear a/p TCRs. TCR by itself is not a signal transducer. Instead,

it is associated with the CD3 (cluster of difference 3) protein complex, which contains an

immunoreceptor tyrosine-based activation motif (ITAM) useful for signaling. In

mammals, CD3 consists of four peptide chains: one CD3y chain, one CD36 chain, and

two CD3a chains. Taken together, the TCR-CD3 complex is a hexameric complex.

The TCR signaling pathway consists of proximal signaling, including

phosphorylation of the invariant signaling protein CD3 and early signaling molecules

such as kinases, calcium-mediated signaling, which leads to release of intracellular Ca2+

stores and influx of extracellular Ca2+, and GTP Ras-mitogen-activated protein kinase

(MAPK) signaling (Fig. 1.3) (Morris and Allen, 2012; Smith-Garvin et al., 2009).

Activation of CD3 is dependent on the affinity between TCR and peptide-MHC complex

(pMHC). High affinity TCR-pMHC interactions may be sufficient for signaling, whereas

TCR-pMHC interactions with lower affinities depend on coreceptors for signaling. TCR

complex in CD4 T cells is associated with CD4 (in cytotoxic T cells, it is associated with

CD8 coreceptor), which recruits kinase Lck to activate CD3.
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Fig. 1.3. TCR signaling pathways. When TCR recognizes ligands presented by MHC

molecule, its associated CD3 triggers a signaling cascade that involves the

phosphorylation of proximal TCR components (blue), signaling by the Ras-Erk pathway

(green), activation of the transcription factor NF-rB (pink) by PKC-0, and Ca 2 flux -

mediated signaling (yellow). These pathways activate transcription factors that mediate a

variety of T cell developmental and effector programs (Morris and Allen, 2012). In naive

CD4 T cells, these pathways leads to expression of Tbx21 and Gata3, as shown in the

later chapters of this thesis.
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1.5 Advantages and caveats of studying CD4 T cell differentiation in cell
culture

Because our goal is to study stochastic gene expression during CD4 T cell

differentiation, we have to ensure that each T cell receives signals of identical strength at

the stage of CD3 signaling, with no upstream variations. We decided to culture CD4 T

cells on cell culture dishes coated with anti-CD3 antibodies, which leads to clustering of

CD3 molecules and thus signaling. This method normalizes a large number of external

factors. First, the culture media is uniform, ensuring that each cell is exposed to the

identical extracellular cues with no biases in the cytokine milieu, as shown in the data

presented in the following chapters. Secondly, since the culture well is uniformly coated

with anti-CD3 antibodies, the signaling strength in each cell does not have a spatial

dependence. Thirdly, signaling through CD3 directly bypass the need for TCR-pMHC

interaction, avoiding variable signaling strengths as an outcome of the diverse TCR

repertoire with variable affinities to a specific antigen.

Under physiological conditions, signaling by CD3 is elicited from TCR-pMHC

interaction in an affinity-dependent manner. However, in the cell culture used in this

study, CD3 signaling is elicited from clustering of CD3 by anti-CD3 antibodies coated on

the surface of the cell culture dish. As a result, the downstream signaling strength in cell

cultures may be significantly different from that under physiological conditions, failing to

capture the TCR-pMHC-affinity-dependent feature of CD3 activation in vivo. As a result,

differentiation of CD4 T cells in vivo is expected to be a more variable process among

individual cells than our results on CD4 T cell cultures.

A method that can potentially address the artificiality of anti-CD3 antibody

mediated cell culture is to co-culture CD4 T cells with antigen presenting cells (APC).

However, this method can result in heterogeneity in CD3 signaling strengths, because

activation of CD4 T cells depends on cell-cell contact with APCs, which are not equally

available to every T cell in the culture.
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1.6 Overview of the thesis

In this thesis, we quantified both mRNA transcript and protein levels in single

CD4* T helper cells upon activation and explored their heterogeneous cell fate decisions.

In Chapter 2, we quantified the number of transcripts of five different genes in

differentiated Th2 cells. We found that all genes had Fano factors (&2/p ) larger than 4,

indicating that they had super-Poisson variation (a Poisson random variable would have

u2/p= 1) and therefore burst-like transcription (Raj et al., 2006). In Chapter 3, we

quantified mRNA and protein levels during the early differentiation of naive CD4 T

helper (Th) cells into Thi versus Th2 states. Surprisingly, we observed ubiquitous high-

level co-expression of antagonistic transcription factors in individual cells. The

expression of these transcription factors can be gradually tuned by extracellular cytokines,

which are produced stochastically by a small subpopulation of cells. Upon inhibition of

cytokine signaling, we observed the classic mutual exclusion of antagonistic transcription

factors, thus revealing a weak intracellular network otherwise overruled by the strong

signals that emanate from extracellular cytokines. Chapter 4 concludes our discoveries on

stochastic gene expression during lineage specification of single T helper cells, and

provides perspectives on future research directions.
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CHAPTER 2

Stochastic Gene Expression in Differentiated Single Th2 Cells

This work was published in Molecular Systems Biology 7:497 (2011), in collaboration

with Teichmann group at the MRC Laboratory of Molecular Biology in Cambridge, the

United Kingdom. The paper was titled "RNA sequencing reveals two major classes of

gene expression levels in metazoan cells", authored by Daniel Hebenstreit, Miaoqing

Fang, Muxin Gu, Varodom Charoensawan, Alexander van Oudenaarden and Sarah A

Teichmann.

My contribution to this work is to conceive and perform the smFISH experiment, perform

image analysis, and write the manuscript.
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2.1 Abstract

The expression level of a gene is often used as a proxy for determining whether the

protein or RNA product is functional in a cell or tissue. Therefore, it is of fundamental

importance to understand the global distribution of gene expression levels, and to be able

to interpret it mechanistically and functionally. Here we use RNA sequencing of mouse

Th2 cells, coupled with a range of other techniques, to show that all genes can be

separated, based on their expression abundance, into two distinct groups: one group

comprising of lowly expressed and putatively non-functional mRNAs, and the other of

highly expressed mRNAs with active chromatin marks at their promoters. These

observations are confirmed in many other microarray and RNA-sequencing datasets of

metazoan cell types.

Key words: expression levels/RNA-seq/ChIP-seq/RNA-FISH/bimodal
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2.2 Introduction

Expression level is frequently used as a way of characterizing gene function, by Northern

blotting, PCR, microarrays, and, more recently, RNA-sequencing (Wang et al., 2009a)

(RNA-seq). Therefore, it is a central issue in molecular biology to know how many

transcripts are expressed in a cell at what levels. This question was studied very early in

the history of molecular biology using methods such as reassociation kinetics (Hastie and

Bishop, 1976), which indicated the existence of distinct abundance classes, and recently,

we pointed out that separate peaks are visible in the abundance distributions of a number

of microarray data sets (Hebenstreit et al., 2011). At the same time, microarrays or RNA-

seq data have been described as displaying broad, roughly lognormal distributions of

expression levels with no clear separation into discrete classes (Hoyle et al., 2002; Lu and

King, 2009; Ramskold et al., 2009). There are several reasons for this: many samples are

heterogeneous in terms of cell type (Hebenstreit and Teichmann, 2011) or are based on a

previous generation of less sensitive microarrays, many are from unicellular organisms

rather than animals, and finally, data processing and plotting methods can obscure the

presence of distinct abundance classes. Here, we provide experimental and computational

support for two overlapping major mRNA abundance classes. Our findings hold for

metazoan datasets including human, mouse and Drosophila sources.
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2.3 Results and Discussion

We initially based our analysis on murine Th2 cells (Zhu et al., 2010) as these

cells can be obtained in large quantities ex vivo and can be prepared as a pure and

homogeneous cell population. Furthermore, there is a well characterized set of genes

whose proteins are known to be expressed and functional in Th2 cells, as well as a set of

genes known to be not expressed in these cells (Table 2.S1 lists the genes we used in our

study, Figure 2.S1 shows expression of two marker proteins in the cells).

We generated Th2 poly(A)+ RNA-seq data for two biological replicates and

calculated gene expression levels using the standard measure of Reads Per Kilobase per

Million (RPKM) (Mortazavi et al., 2008) (Table 2.S2 gives the number of reads and

mappings we obtained). The expression levels of the biological replicates are highly

correlated (r2 = 0.94, Figure 2.S2). We then calculated the mean RPKMs of the two

samples for all genes and log2 transformed these values.

Displaying the distribution of all gene expression levels as a kernel density

estimate (KDE) reveals an interesting structure: the majority of genes follow a normal

distribution which is centered at a value of ~4 log2 RPKM (~16 RPKM), while the

remaining genes form a shoulder to the left of this main distribution (Figure 2. 1A, solid

line). This was conserved under different KDE bandwidths (Figure 2.S3, left panel) or

different histogram representations (Figure 2.S3, right panel). As genes with zero reads

cannot be included on the log scale, we prepared an alternative version of Figure 2. 1A

where we assigned low RPKM values to these. This helps to illustrate the fraction of zero

read genes (Figure 2.S4). As a comparison, we studied microarray data for the same cell

type from a recent publication (Wei et al., 2009). The correlation between the microarray

and the RNA-seq data was very good and highly statistically significant (Pearson r2

0.83, Spearman p = 0.84, Figure 2.S5). Surprisingly, displaying the distribution of

microarray expression levels results in a clearly bimodal distribution (Figure 2.1B).

Again, the appearance of the distribution was insensitive to the KDE bandwidth choice or

histogram bin size (Figure 2.S6). The bimodality was conserved when alternative

normalization and processing schemes were used, independent of KDE bandwidths

(Figure 2.S7).
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Visual inspection of both microarray and RNA-seq data thus reveals two

overlapping main components of the distribution of gene expression levels. Quantifying

this by curve fitting confirms a good fit to two distributions: the goodness-of-fit

(measured by Akaike Information criterion, AIC (Akaike, 1974), Bayesian Information

Criterion, BIC (Schwarz, 1978) or Likelihood ratio tests (Casella and Berger, 2001))

shows strong increases for both microarray and RNA-seq data when two-component

models are fit by expectation-maximization (compared to single- or more-component

models) (Figure 2.S8). We designate the two groups of genes as the lowly expressed (LE)

and highly expressed (HE) genes (Figure 2.1 C), because we will present evidence below

that the LE genes are expressed rather than simply being experimental background. Our

findings are not limited to Th2 cells and hold for virtually all recently published

metazoan RNA-seq datasets (e.g. (Marioni et al., 2008; Mortazavi et al., 2008; Mudge et

al., 2008; Wang et al., 2008), Figure 2.S9 and (Cloonan et al., 2008), Figure 2.Sl0A, B)

and all microarray data sets (e.g. (Cui et al., 2009), GNF Atlas 3 (Lattin et al., 2008),

(Chintapalli et al., 2007), Figure 2.S 11) we have studied. The existence of further, minor

groups of genes cannot be excluded, but is not clear at this point due to the diverse curve-

fitting results for the different datasets if higher-order (more than two components)

models are considered.

The difference between the microarray and RNA-seq distributions is explained by

the fact that the microarrays yield a signal for all genes, part of which is due to cross-

hybridization of oligo-nucleotide probes if the gene is not strongly expressed. RNA-seq

on the other hand yields a signal for a gene only if at least one sequencing read is found.

The accuracy of RNA-seq is biased towards longer and more highly expressed genes, e.g.

5 % of all genes account for 50 % of all reads in our data as well as in other datasets

(Bullard et al., 2010; Mortazavi et al., 2008; Oshlack and Wakefield, 2009).

To explore how this accuracy bias affects the shape of the LE distribution, we

studied the RNA-seq detection limit. We first plotted the number of genes with zero reads

as a function of the total number of reads (taking subsets of the total reads). The number

of genes without reads decreases slowly, with no change in slope and hence no indication

of reaching a plateau. Even at a total of 25 million reads, -30% of all genes are

undetected (Figure 2.2A). We further estimated the numbers of genes remaining
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undetected at each expression level by assuming Poisson-distributed read numbers (Jiang

and Wong, 2009) and determining the expected frequency of zeroes. This confirms the

sensitivity drop at the lower end of the LE peak (Figure 2.2B). Extrapolating the numbers

of expressed genes including the undetected ones reveals an emerging LE peak (Figure

2.2B). Thus the smaller portion of LE genes in the RNA-seq data compared to the

microarray data is at least partially due to the RNA-seq detection limit, although this only

becomes a problem for genes at less than ~ -3 to -4 log2 RPKM. It should be noted that

these low expression levels correspond to an absence of transcripts in the majority of

cells, as we demonstrate further below.
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Figure 2.2. Sensitivity of RNA-seq. (A) Detection of genes in dependency of the total

read numbers on linear scale and l0g2 scale (inset). Random subsets of the total reads for

the two RNA-seq replicates were taken and the number of genes with zero reads were

plotted versus the total read numbers used. The Figure 2.represents an average of five

independent subsets for each data point. (B) Prediction of genes remaining undetected

due to Poisson statistics underlying RNA-seq. The theoretically expected fraction of

genes remaining undetected (red, y-axis on the right side of the Figure in red) was

determined for each expression level and was used to infer from the binned (small ticks

on top indicate the bins) actual expression data (black) the expressed genes including the

undetected ones (blue). In addition to the RPKM scale, the reads per kilobase (RPK)
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scale (without normalization to the total number of mapped reads) is shown (on top),

which was used for the calculation of the (integer-) Poisson statistic and which, in

contrast to the RPKM scale, depends on the total number of sequencing reads. (C) RT-

PCR for the genes listed in Table 2.Sl. The RNA-seq expression levels of the genes are

plotted versus the negative threshold cycles (Ct) of the PCRs. The plot is overlaid (with

the same x-axis scaling) upon the kernel density estimate of the RNA-seq expression

level distribution (black line) to show the positions of the genes in the total expression

distribution. Genes either in the LE peak of the RNA-seq distribution or which have been

previously characterized as not expressed in Th2 cells are shown in orange. Genes known

to be expressed are shown in purple. Error bars indicate standard error of mean from

three independent biological replicates. Please refer to Tables Si and 2.S6 for details of

genes and PCR primers. (D) Correlation of RPKM within exons and introns from RNA-

seq data of Figure 2.1A. Correlation and significance of correlation were calculated for

the whole distribution (gray) or for LE and HE genes separately. Division into LE and

HE was performed along a line (white) perpendicular to a fitted trendline (gray), centered

at Exon RPKM = 1. The data points are shown as 2D kernel density estimate.
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To further confirm that the LE genes correspond to low expression and not

experimental noise, we performed realtime PCRs. We tested amplification by exon

spanning primers of a set of genes that are known to be expressed or not expressed in Th2

cells, plus five random genes that we detected between -3.7 and -5 log2 RPKM in the

RNA-seq experiment (Table 2.S1). We were able to successfully PCR-amplify all genes

with high specificity. The expressed genes map to the HE peak, while almost all

unexpressed genes map to the LE peak, if we align the PCR results with the

microarray/RNA-seq data (Figure 2.2C).

We also tested the extent to which genomic DNA can be detected in our polyA-

purified mRNA sample, as proposed by Ramskold et al (Ramskold et al., 2009) as a

means of quantifying experimental background. We randomly selected intergenic

fragments with the same length distribution as genes, 10 kb away from genes. The

resulting RPKM distribution contains a high number of zero-RPKM fragments (79 %)

while the majority of non-zero fragments peaks slightly left of the LE shoulder (Figure

2. lA). The 90 % quantile of this intergenic background distribution is at -4.97 log2

RPKM, which means that we can be quite confident (with probability > 90 %) that genes

with an RPKM value above this level are truly expressed rather than representing

experimental background noise (Figure 2.1A). Further, the overlap between the

intergenic and the normalized LE fit is small (Figure. 2.S12). We cannot rule out that

detection of intergenic DNA corresponds to transcription as well, which would make the

case for transcription of LE genes even stronger.

Analysis of the strand-specific mRNA-sequencing data of ES cells of Cloonan et

al (Cloonan et al., 2008) yields similar conclusions. The poly(A)-purification protocol

selects for reads antisense to genes (the antisense reads correspond to mRNA). In the

distribution of 'sense' reads (corresponding to antisense transcripts in genic regions),

more than 50 % of genic regions have zero reads. This distribution is unimodal and

shifted by ~ 2 log2 RPKM with respect to the LE distribution, and overlaps almost

perfectly with the distribution of reads in intergenic regions (Figure 2.1 OA).

We next determined the distribution of RPKM within introns, again using

fragments with the same length distribution as transcripts. (Please note that our intronic

read densities are not enriched at 5' or 3' ends of the intronic regions (Figure 2.S13).)
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The resulting intronic distribution is significantly higher than the intergenic background

(two-sided Wilcoxon rank sum test, p < 2.2 x 10-16) and peaks at roughly -1 log2 RPKM

(Figure 2. lA). Introns thus have one- to two orders of magnitude lower read density than

exons. This suggests that we are detecting incompletely processed transcripts at a low but

significant and uniform level across all the whole range of transcript abundances.
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from two RNA-seq biological replicates. (D-E) 2D kernel density estimates of gene
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expression level vs. ChIP-seq signal for each gene for RNA-seq (D) and microarray (E)

data. Divisions between background and signal for the ChIP-seq component were

determined by curve fitting with the software EpiChIP (Hebenstreit and Teichmann, 2011)

and are indicated. Divisions between LE and HE groups of genes are indicated. (F)

Scheme summarizing the results.
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Since introns are one- to two orders of magnitude longer than exons, introns

should be detecTable 2.with roughly the same accuracy as exons, if the full-length set of

introns of a gene is used. If we plot the RPKM in exonic regions versus the RPKM in

intronic regions for each gene, there is significant correlation (r2 = 0.86, p < 2.2 x 10-16)

across the whole spectrum of expression levels. Calculating the correlation for lowly and

highly expressed genes separately yields only slightly lower correlations among LE genes

compared to HE genes, and both correlations are highly significant (Figure 2.2D). This

provides evidence that confirms that LE genes are transcribed rather than experimental

background: there would not be such a high correlation between introns and exons,

particularly in the low abundance region, if their detection were due to noise.

We next studied gene expression using a single cell approach by performing

single molecule RNA-FISH (Raj et al., 2008) for five genes that are expressed at different

levels according to the literature and our RNA-seq data. The distributions of mRNA

numbers per cell were very broad for expressed genes (e.g. Gata3), while low mRNA

numbers from 'not-expressed' genes (e.g. 112) were still detected (Figure 2.3A). All genes

had Fano factors (&2/p) larger than 4, indicating that they had extra-Poisson variation (a

Poisson random variable would have cy2/p = 1) and therefore burst-like transcription (Raj

and van Oudenaarden, 2009) (Table 2.S3). Importantly, cells expressing Tbx2l were not

anti-correlated with cells expressing Gata3 (Figure 2.3B), meaning that we do not have a

sub-population of Thl cells in our Th2 cell populations. This further demonstrates that

LE expression is not due to a contaminating cell type, as the same cells express groups of

genes at HE and others at LE levels.

Since the RPKM as measured by RNA-seq should be proportional to the mean

mRNA numbers per cell, we can use the RNA-FISH results to estimate how our RPKM

values translate into mRNA numbers. We find that one RPKM corresponds to an average

of roughly one transcript per cell in our Th2 data set (Figure 2.3C). Please note that the

value of one RPKM/one transcript on average per cell serves as an estimate only as it is

based on a limited number of data points. See Figure 2.S14 for log transformed versions

of Figure 2.3A-C.

It should be noted that the two groups of genes at high versus low expression

levels cannot result from a mixture of different cell types. Mixing of different cell types
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leads to gene expression levels for each gene that are an average across cell types. Hence

such distributions will become more unimodal, not less so (following the central limit

theorem).

To study the nature of the LE and HE groups in more detail, we prepared Th2

ChIP-seq data for the activating H3K9/14 acetylation histone modification (Roh et al.,

2005; Wang et al., 2009b) (H3K9/14ac) and one IgG control. We calculated the histone

modification level at each gene by identifying a globally enriched window around the

transcription start sites of genes, and using reads in this window as a measure of each

gene's modification level, normalized by the total reads (giving the normalized locus

specific chromatin state, NLCS, as used in (Hebenstreit et al., 2011)). Thus we were able

to plot histone modification levels of each gene against expression levels from the RNA-

seq or microarray data using a heatmap representation (Figure 2.3D, RNA-seq, Figure

2.3E, microarrays). Figure 2.S15 is an alternative version of this figure, where we

randomly assigned low RPKM values to the zero-read genes.

This strikingly confirms the two groups of gene expression levels, as there is a

very good agreement between LE genes and absence of histone marks on one hand, and

HE genes and presence of H3K9/14ac marks on the other hand (Figure 2.3D-E). This is

seen for both the microarrays as well as the RNA-seq data. This extends previous

findings of the relationship between H3K9/14ac and transcriptional activation by

revealing an on/off-type of correlation between this histone mark and the LE/HE groups

of genes. It should be noted that there is a very weak correlation within the LE and HE

groups. The strongest correlation is within the RNA-seq HE group with a correlation

coefficient r2 = 0.29 in log space and r2 = 0.097 on linear space.

Since the LE group of genes is still expressed at low levels and contains at least

five genes that are characterized as not expressed and non-functional in Th2 cells, it

seems likely that the HE group of genes represents the active and functional

transcriptome of cells. This is supported by SILAC proteomics data (Graumann et al.,

2008) which is available for the embryonic stem cell data we presented earlier (Figure

2.S10) and which indicates protein expression of HE genes only (Figure 2.S10C). The

tight correlation recently observed between RNA and protein levels in three mammalian

cell lines also supports this (Lundberg et al., 2010).
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Gene ontology (GO) analysis of LE and HE genes in the Th2 cells supports the

notion that HE comprises the functional transcriptome, as many T cell specific processes

(e.g. GO:0050863, GO:0045582, GO:00421 10) and housekeeping processes are enriched

(Table 2.S4). On the other hand, many GO terms referring to differentiation of other

celltypes (e.g. ear development GO:0043583, neuron fate commitment GO:0048663) are

enriched among the LE set of genes (Table 2.S5).

In conclusion, our data shows that two large groups of genes can be discriminated

based on the distribution of expression levels. RNA-FISH indicates that the boundary

between the groups is found at an expression level of roughly one transcript per cell. In

addition, H3K9/14ac marks are associated with the promoters of highly expressed genes

only (Figure 2.3F). It thus seems likely that the LE/HE groups reflect different

transcription kinetics depending on the chromatin state or vice versa. The LE group is

likely to correspond to 'leaky' expression, producing non-functional transcripts. The

majority of LE genes are expressed at less than one copy per cell on average, and it

would be interesting to know whether such stochastic expression has any function, e.g. in

cell differentiation, or any deleterious effects. There may be a trade-off between the cost

of repressing expression entirely and unwanted consequences of stochastic expression.

Regulation of gene expression is mostly mediated by transcription factor binding

events at promoters and enhancers, e.g. (Heintzman et al., 2009). Often, differential

regulation induces only small changes in expression levels, probably serving to fine-tune

expression and shifting genes within the HE group. Our data suggests that in addition to

this, there is a key decision about whether a gene becomes "switched on" and expressed

which coincides with a boost in both transcription and H3K9/14ac histone modification.
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2.4 Materials and methods

Th2 cell differentiation culture

Spleens of C57BL/6 mice aged from 7 weeks to 4 months were removed and softly

homogenized through a nylon mesh. The medium used throughout the cell cultures was

IMDM supplemented with 10 % FCS, 2 pM L-glutamine, penicillin, streptomycin and 50

pM p-mercaptoethanol. Cells were washed twice and purified by a Ficoll density gradient

centrifugation. CD4+CD62L+ cells were isolated by a two-step MACS purification using

the CD4+CD62L+ T Cell Isolation Kit II (Miltenyi Biotec). Cells were seeded into 24

well plates that had been coated with a mix of anti-CD3 (1 pig/ml, clone 145-2Cl 1,

eBioscience) and anti-CD28 (5 pig/ml, clone 37.51, eBioscience) antibodies overnight, at

a density of 250,000 cells/ml and a total volume of 2 ml. The following cytokines and

antibodies, respectively, were added to the Th2 culture: recombinant murine IL-4 (10

ng/ml, R&D Systems), neutralizing IFN-y (5 pg/ml, Sigma). Cells were cultured for 4 to

5 days at 37 'C, 5 % CO2 . After this, cells were taken away from the activation stimulus,

diluted 1:2 in fresh medium containing the same cytokine concentration as before. After

two to three days of resting time, cells were directly crosslinked in formaldehyde for

preparing ChIP-seq samples. For FACS stainings, cells were restimulated with phorbol

dibutyrate and ionomycin (both used at 500 ng/ml, both from Sigma) for four hrs in the

presence of Monensin (2 pM, eBioscience) for the last two hrs after the resting phase. For

Realtime PCRs, the cells were lysed in Trizol.

FACS staining

After restimulation, cells were washed in PBS and fixed overnight in IC fixation buffer

(eBioscience). Staining for intracellular transcription factor expression was carried out

according to the eBioscience protocol, using Permeabilization buffer (eBioscience), and
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the following antibodies: anti-GATA3-Alexa647 (one test, TWAJ, eBioscience), anti-

Tbx2l-PE (1/400, clone eBio4B10, eBioscience). Stained cells were analysed on a

FACSCalibur (BD Biosciences) flow cytometer using Cellquest Pro and FlowJo software.

Realtime PCR

RNA of ~106 cells was isolated with Trizol (Invitrogen) according to the manufacturer's

protocol. cDNA was produced using Superscript III reverse transcriptase (Invitrogen),

following the protocol supplied by the manufacturer. The cDNA was subjected to

realtime PCR, using the SYBR green PCR master mix (Applied Biosystems) and a 7900

HT Real-Time PCR system (Applied Biosystems). The threshold cycles (Ct) were

determined. The primer sequences used are listed in Table 2.S6 and were mostly obtained

from 'Primerbank' (http://pga.mgh.harvard.edu/primerbank/) (Spandidos et al., 2010).

RNA-seq data generation

poly-(A)+ RNA was purified from ~500,000 cells using the Oligotex kit (Qiagen). The

manufacturer's protocol was slightly modified to include additional final elution steps

resulting in a larger volume. After precipitation of RNA to concentrate it, 1st and 2 nd

strand cDNA synthesis was performed using the Just cDNA kit (Stratagene), skipping the

blunting step and directly proceeding to PCI extraction. Quality of the cDNA was tested

by realtime PCR for a housekeeping gene. After this, the cDNA was sonicated for a total

of 45 min using the Diagenode Bioruptor at maximum power settings, cycling 30 sec

sonications with 30 sec breaks. After precipitation, the sample was processed using the

ChIP-seq sample prep kit (Illumina) with a slightly modified protocol (PCR before gel

extraction). Sequencing for 36 or 41 bp was carried out on an Illumina GAII genome
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analyzer. The data was deposited at Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/), accession number GSE28666.

RNA-seq data processing

Reads were mapped to the mouse genome (mm9) with Bowtie (Langmead et al., 2009)

using the command options -m 1 --best -strata --solexal.3-quals, and were assigned to

exons of RefSeq genes using custom perl scripts. We used the gene symbol as the

primary identifier. Table 2.S2 shows the numbers of mapped reads. We further generated

a library of splice junctions based on RefSeq genes, mapped unmapped reads to these and

added the numbers of hits to the genes. The numbers of mapped reads per gene were

corrected for mapability based on the 'CRG' tracks of the UCSC genome browser.

RPKM were then calculated. In the case that multiple splice variants existed, the most

highly expressed one was selected as representative for a gene's expression level. For

generating the RPKM distributions of intergenic regions, we considered regions with a

distance of at least 10 kb to any RefSeq or Ensembl gene. The distribution was based on

random fragments of the same length distribution as gene lengths. Mapability was

accounted for, and the randomization was performed twenty times. The same procedure

was followed for determining the read distribution within introns (of RefSeq genes). To

test for a possible RPKM bias in 5' or 3' ends of intronic regions, the introns of each

gene were lined up. If the intronic region was at least 6 kb in total, RPKM were

separately determined for the most 5' 2 kb, for the 2 kb in the center and for the most 3' 2

kb. The full-length of introns was used (for the sake of higher sensitivity) for plotting

RPKM of introns versus exons (as in Figure 2.2D). A trend line was calculated based on

a least squares fit of the log2-transformed data. Division into LE and HE was made along

a line perpendicular to the trendline, crossing at Exon RPKM = 1. Correlations and

significances calculated were based on Pearson's product moment correlation coefficient.
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We prepared alternative versions of Figure 2.1A and Figure 2.3D, where we

assigned a random log2 RPKM value derived from a Normal distribution with P = -12

and cY = 1 to each gene without sequencing reads (Figure 2.S4 and 2.S 15).

Integration of the RNA-seq data with mircoarray- and histone-modification data

was based on gene symbols.

The RNA-seq data of (Cloonan et al., 2008) was downloaded from the NCBI

short read archive (http://www.ncbi.nlm.nih.gov/sra/), accession number SRX003912.

The reads were mapped to mm9 in colorspace format using Bowtie with similar settings

as above. The mapped reads were separated into those sense and those antisense to

RefSeq genes and processed similarly as described above. Read distributions in

intergenic regions were determined as described above for our data.

RNA-seq data from (Mudge et al., 2008) was downloaded from GEO, accession

number GSE12297. We used the processed data for 'Cerebellar cortex 40 Control'

directly and performed no further calculations except log transformation and kernel

density estimation. The RNA-seq data for 'skeletal muscle' from (Wang et al., 2008) was

downloaded from GEO (accession number GSE12946). We used the data that was

mapped to the human genome (hgl8), assigned it to RefSeq genes, and processed it

similarly as described above. We further downloaded RNA-seq data from (Marioni et al.,

2008) from the Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra/). The

data for human liver tissue was used (accession numbers SRX000571 and SRX000604).

The two files were concatenated, mapped to the human genome (hg 18) with Bowtie and

processed further as described above. Finally, RNA-seq data for mouse brain (Mortazavi

et al., 2008) was downloaded from SRA (accession numbers SRX000350 and

SRX001866). As described above, the two files were concatenated, mapped to the mouse

genome (mm9) with Bowtie and processed further.

Kernel density estimation

Gene expression distributions were displayed as kernel density estimates in most cases.
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These were calculated using the function 'densityo' of the freely available statistical

software package 'R' (http://www.r-project.org/). We used default settings of this

function unless stated otherwise. This means a Gaussian kernel and that the 'bandwidth

equals 0.9 times the minimum of the standard deviation and the interquartile range

divided by 1.34 times the sample size to the negative one-fifth power (corresponding to

Silverman's "rule of thumb", ((Silverman, 1986), page 48, eqn (3.31)) unless the

quartiles coincide when a positive result will be guaranteed' (R manual). For 2D kernel

density estimations we used the function 'kde2dO' of the R library 'MASS' with the

default bandwidth and a Gaussian kernel. This bandwidth is calculated based on a

variation of above formula for the ID case, where the factor 1.06 instead of 0.9 is used.

Densities were estimated at 50 grid points in either direction and displayed as heatmaps.

RNA-seq data sensitivity analysis

The RNA-seq detection limit was explored by two different approaches. Firstly, random

subsets of different sizes were taken from the total reads we generated. The number of

genes that remained undetected (zero reads) were plotted as a function of the subset size.

The subsetting was performed five times for each subset-size and the average number of

zero-read genes was determined.

As a second approach, we determined the expected number of zero-read genes

depending on the expression level. To this end, we calculated the expected number of

reads for each gene in dependency of the expression level (as reads per kilobase, RPK,

instead of RPKM which includes normalization by the total number of mapped reads)

and gene-length (the length distribution of all genes was used). The expected read

number is generally assumed to be Poisson-distributed (Jiang and Wong, 2009) and can

be used as an estimator of the single parameter of a Poisson distribution, k, which is

equal to mean and variance of the distribution. Studying the probability density function

of a Poisson distribution for a certain X reveals the expected frequency of zeros, which

corresponds to genes of a certain length that remain undetected at a certain RPK despite
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being expressed. Assuming an equal distribution of gene lengths at all expression levels,

we could thus sum up the proportion of zero read genes for all gene lengths and thus

obtain the total expected portion of undetected genes for all RPK levels. For instance, at

RPK = 1 we would expect two sequencing reads for a gene that is 2 kb long and one read

for a 1 kb gene (giving the same expression level). Since the actual read numbers vary

according to a Poisson distribution, not all genes that are expressed at that level will have

exactly one or two reads, respectively, but some will have more and some none at all.

The Poisson distribution gives the expected portion of zeros, which would be 37 % for

the 1 kb gene and 13.5 % for the 2 kb gene. Thus, if we detect 150 1 kb genes and 250 2

kb genes at RPK = 1, we can estimate that a further 127 (= 150/(1 - 0.37) - 150 + 250/(1

- 0.135) - 250) genes of the same lengths are expressed at the same level but remain

undetected.

We further used above calculation to estimate how the distribution of expression

levels is affected by the sensitivity of RNA-seq. To this end, we binned the actual

expression distribution into bins of size 1 on the log2 RPK scale and extrapolated the

number of expressed genes by adding the inferred number of undetected genes to each

bin.

Microarray data

Microarray data (Th2) of (Wei et al., 2009) were downloaded from GEO, accession

number GSE 14308. Either normalized (by the authors) microarray data was used (Figures

2.1B, 2.S5, 2.S6 and 2.S8), in which case present (P) and absent (A) calls of the probesets

were ignored, or custom processing schemes were applied to the raw data (Figure 2.S7

and S8). The mean of the two replicates of the microarray data was calculated for each

probeset and was log2-transformed. These values were then linked to RefSeq genes based

on the Affymetrix MOE430 2.0 annotations of build 27. If more than one probeset was

mapping to a gene, the probeset with the highest intensity was chosen as representative of

the gene's expression level.
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We further downloaded microarray data for murine bone cells from the GNF

Mouse GeneAtlas V3 ((Lattin et al., 2008); GEO, GSE10246) and processed them as

described above. Similarly, the processed microarray data for two replicates of human

Cdl33+ cells (Cui et al., 2009) was downloaded from GEO, accession number

GSE12646 and processed (using Affymetrix build 28 annotations for the Affymetrix

U133A chip). Finally, we downloaded from GEO (accession number GSE7763)

microarray data for Drosophila eye tissue from the FlyAtlas (Chintapalli et al., 2007). We

mapped the probesets to genes using Affymetrix probe annotations (build 28) for

GeneChip Drosophila Genome 2.0 and processed the data the same way as the other

datasets.

Curve fitting

Curve fitting and/or clustering of the data into LE and HE sets by expectation

maximization was performed on the log2 transformed RNA-seq or microarray data using

the R library 'Mclust'. The log likelihood values output by Mclust were used to calculate

AIC (Akaike, 1974), BIC (Schwarz, 1978) and likelihood ratio statistics (Casella and

Berger, 2001). The latter were calculated for the model with n components as the null

model and the one with n+1 components as the alternative model (0 < n < 9). We

approximated the test statistics with Y distributions and calculated the p-values with R.

SILAC data

Processed SILAC data for murine embryonic stem cells was downloaded from the

supplementary material of (Graumann et al., 2008). Using UCSC Table 2.browser, we

linked the protein expression data to the RNA-seq data of (Cloonan et al., 2008) by

referencing the RefSeq protein ID provided by Graumann et al to the gene symbol which

39



we used as gene identifier for the RNA-seq data. A protein was regarded as expressed if

it had a non-zero 'MS intensity' value.

GO analysis

Genes were clustered into LE and HE subsets by expectation maximization using the R

library Mclust. Enrichment analysis of 'process' GO terms was performed with the

Generic Gene Ontology (GO) Term Finder (http://go.princeton.edu/cgi-

bin/GOTermFinder) (Boyle et al., 2004) using the combined LE/HE set of genes as the

custom background. Bonferroni-adjusted p-values were used.

Single molecule fluorescence in situ hybridization

We performed single-molecule FISH on the Th2 cells and counted the mRNAs in

individual cells as described previously (Raj et al., 2008). Briefly, harvested Th2 cells

were fixed with 3.7% formaldehyde for 10 minutes, washed twice with PBS, and

permeabilized in 70% ethanol. For hybridization, the samples were resuspended in 100 pl

of hybridization solution containing labeled DNA probes in 2xSSC, 1 mg/ml BSA,

10mM VRC, 0.5 mg/ml Escherichia coli tRNA and 0.1 g/ml dextran sulfate, with 10 to

25% formamide, which varies for different probes, and incubated overnight at 300C. The

next day, the samples were washed twice by incubating in 1 ml of wash solution

consisting of 10 to 25% formamide and 2xSSC for 30 minutes. The sequences of the

probes are available upon request.
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Image acquisition

The samples were resuspended in glucose oxidase anti-fade solution, which contains 10

mM Tris (pH 7.5), 2xSSC, 0.4% glucose, supplemented with glucose oxidase and

catalase. Then 8 pl of cell suspension were sandwiched between two coverglasses, and

mounted on a glass slides using a silicone gasket. Images were taken with a Nikon

TE2000 inverted fluorescence microscope equipped with a 100x oil-immersion objective

and a Princeton Instruments camera using MetaMorph software (Molecular Devices,

Downington, PA). Stacks of images were taken automatically with 0.4 microns between

the z-slices.

Image analysis

To segment the cells, a marker-guided watershed algorithm was used. Briefly, cell

boundaries were obtained by running an edge detection algorithm on the bright-field

image of the cells. To generate markers, the centroid of the region enclosed by individual

cell boundaries is computed. A marker-guided watershed algorithm was then run on the

distance transformation of the cell boundaries, using the markers located within the cell

boundaries (Figure 2.S16). The resultant cell segmentation image was then manually

curated for occasional mis-segmentations.

To quantify the number of RNA molecules in each cell, a log filter was run over each

optical slice of an image stack to enhance signals. A threshold was taken on the resultant

image stack to pick up mRNA spots. The locations of mRNA spots were then taken to be

the regional maximum pixel value of each connected region (Figure 2.S 17). The number

of mRNA spots located within the cell boundaries of an individual cell was thus

quantified.
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ChIP-seq data analysis

We used murine Th2 cell data for the H3K9/14ac histone modification and an IgG

control from (Hebenstreit and Teichmann, 2011) (available on GEO, accession number

GSE23092). The reads were mapped to the mouse genome (mm9) using Bowtie as for

the RNA-seq analysis. Further steps of the analysis were performed using the software

EpiChIP (http://epichip.sourceforge.net/index.html) (Hebenstreit et al., 2011). Briefly, the

mapped reads were assumed to be the ends of 200 bp long fragments following the XSET

method (Pepke et al., 2009). Then EpiChIP was used to identify an optimal sequence

window with respect to gene coordinates for analysis of the histone modification stati at

all (RefSeq) genes. The resulting window of -400 to +807 bp at transcriptional start sites

was used to quantify the ChIP-seq signal for each gene (the area below the peaks within

this window) which was normalized by the total (genomewide) area to yield the

"normalized locus specific chromatin signal" (NLCS)(Hebenstreit et al., 2011). These

values were log2 transformed and displayed against the RNA-seq or microarray

expression levels as two dimensional density estimations. The threshold separating

background from signal was determined with the curve fitting function of EpiChIP. For

the alternative version of Figure 2.3D (Figure 2.S15), we assigned a random log2 RPKM

value derived from a Normal distribution with t = -3 and a = 1 to each gene without

ChIP-seq sequencing reads.
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2.5 Supplementary Information

Supplementary figures
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Figure 2.S1. Th2 cells were stained by intracellular staining with anti-Gata3, anti-

Tbx21, anti-Ifng, and anti-1113 antibodies and analyzed by FACS. Gata3 and 1113 are

markers of Th2 differentiation, so a high proportion of Gata3 and 1113 expressing cells

indicates a high level of Th2 homogeneity in the cell population. Tbx21 and Ifng are

markers of Thl cells, and are shown as a control. Each dot represents a single cell with

fluorescence intensities for the two antibody stains on the x- and y-axes. Overlapping

dots change color to indicate the density of cells at that point. The purple lines separate

the plots into four regions each, depending on whether cells are expressing or the proteins

or not. -80 to 90% purity was routinely achieved, indicating successful Th2

differentiation.
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Figure 2.S2. Correlation between two RNA-seq replicates. A scatter plot (left) and a 2-

D kernel density estimation are shown (right). Correlation coefficient and significance of

correlation are inset in the left panel.
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Figure 2.S3. Examples of how different visualization methods affect the appearance of

the RNA-seq data. The left panel corresponds to kernel density estimates (KDE). To

demonstrate that the structure of the data is conserved under different settings, the
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bandwidth (corresponding to the standard deviation of the Gaussian kernel) was

increased in 2-fold steps from top to bottom (blue, left side). The bandwidth in the center

corresponds to Silverman's 'rule of thumb'. The right panel shows histograms with

different bin-sizes (indicated in blue on the right side). The structure of the data is

conserved if the bin-size is less than the distance between the two peaks.
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Figure 2.S4. Kernel density estimates of RPKM distributions of RNA-seq data within

exons, introns and intergenic regions as in Figure 2.1A. To indicated the fractions of

fragments/genes with zero reads (grey), they were assigned random RPKM values, drawn

from a normal distribution with mean = -12 and standard-deviation = 1 on the log2 scale.
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Figure 2.S5. Correlation between RNA-seq and microarray data (Wei et al., 2009). A

scatter plot (left) and a 2-D kernel density estimation are shown (right). Correlation

coefficients and significance of correlations are inset in the left panel.
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Figure 2.S6. Examples of how different visualization methods affect the appearance of

the microarray data ((Wei et al., 2009). The left panel corresponds to kernel density

estimates (KDE). To demonstrate that the structure of the data is conserved under
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different settings, the bandwidth (corresponding to the standard deviation of the Gaussian

kernel) was increased in 2-fold steps from top to bottom (blue, left side). The bandwidth

in the center corresponds to Silverman's 'rule of thumb'. The right panel shows

histograms with different bin-sizes (indicated in blue on the right side). Bimodality is

conserved if the bin-size is less than the distance between the two peaks.
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Figure 2.S7. Examples for three further processing schemes in addition to MAS5 used

in the main text. The raw data of (Wei et al., 2009) were processed by schemes a), b), and

c) as indicated in the Table 2.and on top of the figure. PM, perfect match, RMA, robust
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multi-chip average, MAS, microarray suite (Affymetrix). See the R Vignette of the 'affy'

library for explanations of the individual methods and algorithms. Kernel density

estimates (KDE) of the gene expression level distributions are shown. To demonstrate

that the structure of the data is conserved under different KDE settings, the bandwidth

(corresponding to the standard deviation of the Gaussian kernel) was increased in 2-fold

steps from top to bottom (the bandwidth is given as 'bw =' in blue). The bandwidth in the

center corresponds to Silverman's 'rule of thumb'.
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Figure 2.S8. Goodness-of-fit tests for mixture models of one- to nine lognormal

components fit to our RNA-seq data (A) and the microarray data of (Wei et al., 2009) (B,

C) by expectation maximization. Tests for data normalized by MAS5 (B), as used in the

main text, and by the three alternative normalization methods (C) as demonstated in

Figure 2.S7 (a), b) and c)) are shown as indicated. The tests used were the Akaike

Information criterion (AIC), the Bayesian information criterion (BIC), and a likelihood

ratio test. For the latter, we compared each model to the next more complex one in terms

of components. We numerically calculated the logio p-values based on a X2 distribution.

In the case that the numerical p-value was zero, we included it on the log scale as -oo.

55



Mudge el al Wang et al Marioni et al
human cerebellum human skeletal muscle human liver

0 5 0 0.0 0 10 1 .5 0 5 08 8 8
6 o 0 i i i i

log, expression (AU) - log, RPKM -

.0-0.0.0.0 -0-0

N

-'B Cn BIC-
-o - AIC c-4+ AIC 0 AIC

2 4 6 8 2 4 6 8 2 4 6 8

Zn

C

0)
2

CL

Cn

R.

00 0 000 00 0 0

o o o oo o? o oooo6

1 2 3 4 56 7 8 1 2 3 4 5 6 7 8
versus versus

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
number of components

Mortazavi et al
mouse brain

0
0

-10 -5 0 5 10

0

A

)

2 4 6 8

12 3 4 5 6 7 8
versus

2 3 4 5 6 7 8 9

Figure 2.S9. Kernel density estimates (KDE) and goodness-of-fit test for four

additional RNA-seq datasets (Marioni et al., 2008; Mortazavi et al., 2008; Mudge et al.,

2008; Wang et al., 2008). The KDE are shown on top using a Gaussian kernel and a

bandwidth corresponding to Silverman's 'rule of thumb'. All distributions exhibit a

shoulder on the left side. The goodness-of-fit tests used were the Akaike Information

criterion (AIC), the Bayesian information criterion (BIC), and a likelihood ratio test. For

the latter, we compared each model to the next more complex one in terms of

components. We numerically calculated the logio p-values based on a Y2 distribution. In

the case that the numerical p-value was zero, we included it on the log scale as -oo.
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Figure 2.S10. LE and HE groups in RNA-seq data of murine embryonic stem cells

from (Cloonan et al., 2008). (A) The kernel density estimates (KDE) of expression levels

are shown separately for genes in sense or antisense with reads mapping to them, since

the data was prepared in a strand-specific manner (reads antisense to genes are selected

by the experimental protocol), and for intergenic regions as indicated. The KDE use a

Gaussian kernel and a bandwidth corresponding to Silverman's 'rule of thumb' (see

Materials and Methods). Curve fitting was carried out as described for Figure 2.1C. (B)

Plots of AIC, BIC and p-values of likelihood ratio tests as goodness-of-fits indicator for

one- to nine-component normal distribution mixture models as described in Figure 2.S8

and S9. (C) Genes were separated into LE and HE sets based on the expectation-

maximization based curve fittings. SILAC protein expression data of murine embryonic

stem cells (Graumann et al., 2008) was used to determine the fraction of genes that are

expressed as proteins for the LE and HE sets separately.

57



Cui et al
human Cd133+ cells

'7

Go

0 5 10 15

4)
a

U'

0

0
05

M

Lattin et al
murine bone cells (GNF)

C
'p
0

4

QO

0 5 10 15
log2 expression levels (AU)

Chintapalli et al
Drosophila eye cells

| 7 1 1

0 5 10 15

-- BIC
-0- AIC

2 4 6 8

0

0 0

00

0

0

0

*0

I I I I 1

3 4 5 6 7 8
versus

4 5 6 7 8 9

0

CL

CL
M

0n
0n

0 -

0

0
('-I -

0

0

2 4 6 8

0 * 0 o 0

0

0

10

1 2 3 4 5 6 7 8
versus

2 3 4 5 6 7 8 9

o-
a)

E
0.
2.
0L

8

Co
A- BIC

-*- AIC

2 4 6 8

0 0
0

0
0

1 2 3 4 5 6 7 8
versus

2 3 4 5 6 7 8 9

Figure 2.S11. Kernel density estimates (KDE) and goodness-of-fit test for three

additional microarray datasets (Chintapalli et al., 2007; Cui et al., 2009; Lattin et al.,

2008). The KDE are shown on top using a Gaussian kernel and a bandwidth

corresponding to Silverman's 'rule of thumb'. All distributions exhibit bimodality. The

goodness-of-fit tests used were the Akaike Information criterion (AIC), the Bayesian

information criterion (BIC), and a likelihood ratio test. For the latter, we compared each

model to the next more complex one in terms of components. We numerically calculated

the logio p-values based on a X2 distribution. In the case that the numerical p-value was

zero, we included it on the log scale as -oo.
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Figure 2.S12. Distributions of RPKM for LE genes and intergenic regions. The

fragments used to estimate intergenic RPKM were based on randomizations using the

same length distribution as the exonic parts of genes. The area under the LE distribution

is normalized to one (in contrast to Figure 2.1A where it is part of the total RPKM

distribution within exons). The area under the intergenic distribution is less than one

because of the fragments with zero reads (please see Figure 2.S4).
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Figure 2.S13. No RPKM bias in 5' or 3' ends of intronic regions. Introns of each gene

were lined up. If the intronic region was at least 6 kb in total, RPKM were determined for

the most 5' 2 kb, for the 2 kb in the center and for the most 3' 2 kb. The log2 RPKM

distributions for all selected genes are shown and are almost identical.
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Figure 2.S15. 2D kernel density estimates of RNA-seq gene expression level vs. ChIP-

seq signal for each gene as in Figure 2.3D. To indicate the fractions of fragments/genes

with zero RNA-seq or ChIP-seq reads, random RPKM value were assigned to them,

drawn from normal distributions with mean = -12 or mean = -3, respectively, and

standard-deviations = 1 (in both cases) on the log2 scale. These genes appear as additional

blobs with respect to Figure 2.3D.
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Figure 2.S16. Segmentation of cells using bright-field images. The left panel is a

bright-field image of the cells. The right panel is the segmented image.
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Figure 2.S17. Analysis of mRNA spots. The left panel is a fluorescent maximum Z-

projection image showing Gata3 transcripts in Th2 cells. The right panel is processed

binary image showing each individual mRNA transcript as a single bright pixel.
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Supplementary tables

Expressed in Th2
cells (literature)?

Expressed in
Th2 cells (our
RNA-seq)?

Used in
FACS
stain?

Amplified in
PCR?

Yes (house keeping Yes Yes
gene used as PCR

Arbp control, e.g.
(Hebenstreit et al.,
2008))

Cd4 Yes (Zhu et al., Yes Yes Yes
2010)

Gata3 Yes (Zhu et al., Yes Yes Yes Yes
2010)

I113 Yes (Zhu et al., Yes Yes Yes
2010)

Il4 Yes (Zhu et al., Yes Yes
2010)

Il7r Yes (Gregory et al., Yes Yes Yes
2007)

Tbx21 No (Zhu et al., Yes Yes Yes Yes
2010)

Ifng No (Zhu et al., Yes (LE) Yes Yes
2010)

Il17a No (Zhu et al., Yes (LE) Yes
2010)

112 No (Malek, 2008) No Yes Yes

Rore No (Zhu et al., Yes (LE) Yes
2010)

Pgf Yes (LE) Yes
Ptprg Yes (LE) Yes

Wdfy3 Yes (LE) Yes
Ripply3 Yes (LE) Yes
GIp1r Yes (LE) Yes

Table 2.S1. Genes examined in this study.
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Sample
Read
length Total reads

Unique reads
mapped to
genome

Reads
mapped to
exons

Reads mapped
to splice
junctions

Replicate 1 41 bp 16,445,455 11,366,694 9,040,864 1,168,912
Replicate 2 36 bp 26,408,070 8,913,202 6,420,356 670,093

Table 2.S2. RNA-seq sequencing read statistics.

66



Cd4 39 54.86 67.83 83.88
Gata3 75 82.56 48.41 28.39
112 0 0.68 1.64 4.00
117r 24 35.55 36.89 38.29
Tbx2l 0 0.93 3.15 10.64

Table 2.S3. Single Molecule RNA-FISH statistics of five genes.
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Gene
symbol fwd rev

Table 2.S6. Primer sequences.
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Exon
spanning?

Junctions
binding?

AATCTCCAGAGGCAC ACCCTCCAGAAAGC Yes No
Arbp CATTG GAGAGT

AAGGGGCATGGGAG AAGGTCACTTTGAA Yes Yes
Cd4 AAAGGAT CACCCAC

CCCTCCGGCTTCATC CTGCACCTGATACT No
Gata3 CTCT TGAGGC

CCTGGCTCTTGCTTG GGTCTTGTGTGATG No
1113 CCTT TTGCTCA

CTCCAGAAGGCCCTC AGCTTTCCCTCCGC Yes No
1117a AGACTAC ATTGACACAG

TGAGCAGGATGGAG TGTTGTCAGAGCCC Yes Yes
112 AATTACAGG TTTAGTTTT

TATGTGGGGCTCTTT GCCTCGGCTTTAAC Yes Yes
117r TACGAGT TATTGTGT

ATGAACGCTACACAC CCATCCTTTTGCCAG Yes No
I TGCATC TTCCTC

TCTGCTGGGAACAAC GTGAGACACCTCAT Yes Yes
Pgf TCAACA CAGGGTAT

AGTCAGTCCGAGGG GGTGGCGTAGTCAA Yes Yes
Ptprg ACAATTC GGAGC

CCGCTGAGAGGGCTT TGCAGGAGTAGGCC Yes Yes
Rorc CAC ACATTACA

TTTCCAAGAGACCCA ATGCGTACATGGAC Yes Yes
Tbx21 GTTCATTG TCAAAGTT

CCACCATCGGGTTCA GTGGGACAGAGATG Yes No
Wdfy3 TTAACA CCTATGT

GGCCCGAAAGTTCCA CTCCCGATGTGTGTT Yes Yes
Ripply3 TTCCA GGTCT

ACGGTGTCCCTCTCA ATCAAAGGTCCGGT Yes No
Glpir GAGAC TGCAGAA



CHAPTER 3

Stochastic Cytokine Expression Induces Mixed T Cell States

3.1 Abstract

During eukaryotic development, the induction of lineage-specific transcription factors

typically drives differentiation of multipotent progenitor cells, while repressing that of

alternate lineages. We explored the early differentiation of naive CD4 T helper (Th) cells

into Thl versus Th2 states by counting single transcripts in individual cells. Contrary to

the current dogma of mutually exclusive expression of antagonistic transcription factors,

we observed their ubiquitous co-expression in individual cells, at high levels that are

distinct from basal level co-expression during lineage priming(Arinobu et al., 2007;

Rothenberg, 2007). The expression of these transcription factors can be gradually tuned

by extracellular cytokines, which are produced stochastically by a small subpopulation of

cells. Upon inhibition of cytokine signaling, we observed the classic mutual exclusion of

antagonistic transcription factors, thus revealing a weak intracellular network otherwise

overruled by the strong signals that emanate from extracellular cytokines. These results

suggest that during the early differentiation process CD4 T cells stochastically acquire a

mixed Th 1 /Th2 state, biased by extracellular cytokines.
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3.2 Introduction

A multipotent progenitor cell can differentiate into a particular lineage by turning

on the expression of a lineage-specific transcription factor, which coordinates the

expression of a defined set of target genes. Numerous examples of such toggle switch-

like cell fate decisions have been observed in the differentiation of hematopoietic

cells(Rothenberg, 2007). For example, common myeloid progenitor cells differentiate

into granulocyte-monocyte progenitor versus megakaryocyte-erythrocyte progenitor cells

based on expression of PU.1 versus Gatal(Arinobu et al., 2007); naive CD4 T cells

differentiate into Th1 versus Th2 driven by the expression of Tbet or Gata3(Ouyang et al.,

1998; Szabo et al., 2000; Szabo et al., 2003; Zheng and Flavell, 1997). Antagonistic

transcription factors are therefore believed to be expressed exclusively in the pertinent

cell types, or co-expressed at basal levels in hematopoietic progenitors prior to

commitment to "prime" the cells for rapid deployment of transcription factors to execute

a particular lineage program(Laiosa et al., 2006). For instance, common myeloid

progenitors can co-express low levels of PUl and GATA! during lineage priming(Hu et

al., 1997), though their expression is mutually exclusive in fully committed state(Laiosa

et al., 2006). In the previous studies, high concentrations of cytokines were added to the

culture media to bias the cellular decision process towards one particular cell

fate(Arinobu et al., 2007; Ouyang et al., 1998; Shaffer et al., 2002; Szabo et al., 2000).

To study the plasticity of the early Thl/Th2 decision, we sought to avoid this bias by

exploring the spontaneous differentiation of naive CD4 T cells in the absence of

exogenously added cytokines.

Tbet, encoded by Tbx2l, is the master transcription factor of Th1 differentiation

associated with production of the hallmark cytokine IFNy(Szabo et al., 2000), whereas

Gata3 is the master transcription factor of Th2 differentiation associated with IL4

production(Zheng and Flavell, 1997). In terminally differentiated individual CD4 T cells,

the expression of Tbx21 and Gata3 is mutually exclusive(Murphy and Reiner, 2002;

Zhou et al., 2009). This is usually attributed to positive feedback loops and cross-

inhibitory interactions in the regulatory network (Fig. 3.3.1 a). This network consists of

two types of interactions: those that depend on cytokine signaling and those that are
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cytokine-independent and involve only intracellular players including transcription

factors. Specifically, Tbet activates Ifng(Djuretic et al., 2007), and extracellular IFNy can

induces Tbx21 via receptor signaling(Leonard and O'Shea, 1998). Tbet also induces itself

independently of signaling via cytokine receptors(Mullen et al., 2002). Similarly, Gata3

activates J/4(Jenner et al., 2009; Tykocinski et al., 2005) and extracellular IL4 can induce

Gata3(Takeda et al., 1996). Furthermore, Gata3 can be autoinduced independently of

signaling via cytokine receptors(Jenner et al., 2009; Ouyang et al., 2000). Finally, Tbet

silences Jl4(Djuretic et al., 2007), Gata3 silences Jfng(Chang and Aune, 2007;

Schoenborn et al., 2007), and Tbet blocks the function of Gata3 through direct protein-

protein interactions(Hwang et al., 2005), leading to cross-inhibitory interactions.

To quantify the number of Tbx21 and Gata3 transcripts in activated CD4 T cells,

we isolated total CD4* cells from C57BL/6 mice. CD4 cells were then activated by

culturing them in wells coated with anti-CD3 and anti-CD28 antibodies, in the absence of

polarizing cytokines or neutralizing antibodies against cytokines, such that CD4 T cells

would choose their cell fates without being biased. We performed single-molecule

fluorescent in situ hybridization (smFISH)(Raj et al., 2008) combined with

immunofluorescence to quantify transcripts and protein levels in individual cells

(Supplementary Fig. 3.3.1-2).
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3.3 Results and Discussions

Without artificially imposed Thl- or Th2-biasing cues, naive CD4 T cells,

essentially expressing zero copies of Tbx21 and Gata3 transcripts, turned on expression

of both Tbx21 and Gata3 simultaneously in individual cells, not in a mutually exclusive

fashion as current models would predict (Fig. 3.3.lb-d). Distinct from basal co-

expression in lineage priming, co-expression of Tbx2l and Gata3 are at high levels, such

that the mean number of Gata3 transcript per cell at 48 h is comparable to fully

differentiated Th2 cells(Hebenstreit et al.). In addition, the expression levels of Tbx21

and Gata3 under non-biased condition are comparable to that treated with polarizing

conditions as previously described(Djuretic et al., 2007). High-level co-expression of

Tbx21 and Gata3 in individual cells is a robust phenomenon observed over a large range

of seeding cell density (Supplementary Fig. 3.3.3). Mutant cells that lack a functional 114

or Ifng gene and therefore exclusively differentiate towards Th1 or Th2 fate

respectively(Dalton et al., 1993; Kuhn et al., 1991), display a very different behavior.

Tbx21 and Gata3 are expressed in a mutually exclusive manner (Fig. 3.3.le,f,

Supplementary Fig. 3.3.4). Importantly the expression levels are similar to wild-type cells

(Fig. 3.3.1c). Interestingly, the median stoichiometry between Tbx2l and Gata3

expression was 1:1 until 24 h after activation, but Gata3 levels continued to increase after

24 h while Tbx2l levels decreased (Supplementary Fig. 3.3.5). As activation time

increases, the culture system presumably accumulates more Th2-favoring cytokines.

Since most of the significant changes in gene expression occurred within this 48 h period,

we focused our analysis on this window in subsequent experiments.
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Figure 3.1 Tbx2l and Gata3 are transcribed simultaneously in individual CD4 T cells.
(a) Current gene regulatory network proposed to govern Thl/Th2 lineage specification. (b) Visualization of single transcripts of Tbx2l
(red) and Gata3 (green) in individual CD4 T cells 24 h after activation. White dashed lines are boundaries of individual cells. Scale
bar is 10 pm. (c) Mean counts of Tbx2l and Gata3 transcripts per cell as a function of activation time. (d) Scatter plots of Tbx2l and
Gata3 transcripts in individual cells, with marginal distributions. The red line is the median line that divides data points into halves.
Individual cells do not show mutual exclusion of Tbx21 and Gata3 expression. (e, f) Scatter plots of Tbx2l and Gata3 transcripts in
CD4 T cells treated with Thl-polarizing (e) and Th2-polarizing (f) conditions at 24 h. Error bars are s.e.m. of replicate experiments.
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To demonstrate that transcript counts serve as a good proxy for protein levels, we

performed immunofluorescence against Tbet or Gata3 simultaneously with smFISH.

Transcript counts and protein levels showed strong correlations in individual CD4 T cells,

with a Pearson's correlation coefficient R of 0.59 p <101 4 ) for Tbet and 0.85 (p <10- 4 )

for Gata3 (Supplementary Fig. 3.3.6). In addition, translational efficiency, measured by

the ratio of immunofluorescence intensity over transcript count, remained constant as a

function of activation time (Supplementary Fig. 3.3.7).

We postulated that ubiquitous Tbx21 and Gata3 co-expression must be associated

with both Th1 and Th2 cytokines produced by CD4 T cells upon activation(Schmitz et al.,

1994), since no cytokines were supplied exogenously. We thus investigated the

expression of Ifng and 114 in individual CD4 T cells. Current understanding of the gene

regulatory network that governs Thl/Th2 lineage specification would predict that Ifng or

114 transcripts would be proportional to Tbx21 or Gata3 levels in individual cells.

Surprisingly, we observed that Ifng and 114 were expressed only in a rare cell population.

While the vast majority of cells were in the OFF state and contained essentially zero

copies of Ifng or 114 transcripts, the rare ON cells expressed up to more than 1000

transcripts (Fig. 3.3.2a,b, Supplementary Fig. 3.3.8). In cells expressing more than 200

transcripts, we could not resolve individual mRNA molecules. Instead, we extrapolated

the number of transcripts from the linear relationship between the total fluorescence and

number of transcripts using cells with fewer transcripts (Supplementary Fig. 3.3.9). There

was a weak positive correlation between Tbx21 and Ifng expression (R = 0.15, p <10-6),

or between Gata3 and 114 expression (R = 0.3 2 ,p<1o-11) (Fig. 3.3.2c). There was no

negative correlation between Gata3 and Ifng expression (R = 0.06, p = 0.04), or between

Tbx21 and 114 expression (R = 0.26, p <10-9) (Supplementary Fig. 3.3.10). In addition,

cellular Tbx2l and Gata3 levels do not depend on the distance from cytokine producing

cells (Fig. 3.3.2a, Supplementary Fig. 3.3.11), indicating that diffusion of cytokine is not

rate-limiting and results in a well-mixed milieu. Cells that express high number of

cytokine transcripts also contained high levels of cytokine protein as detected by

immunofluorescence. Transcriptionally inactive cells did not contain measurable levels of

cytokine protein (Supplementary Fig. 3.3.12).
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To ensure that the rare cytokine producing cells were not non-naive CD4* T cells,

such as Natural Killer T (NKT) cells, we analyzed the expression of Klrbic, which

encodes the NKT cell marker NKl.1, and did not observe any NKl .1-expressing cells

(Supplementary Fig. 3.3.13). To ensure that the CD4* T cells we isolated did not contain

effector memory cells, we analyzed CD44 levels using immunofluorescence. There was

no significant positive correlation between cytokine expression and CD44 levels in

activated cells (Supplementary Fig. 3.3.14). In addition, CD44 levels in naive T cells

were low (Supplementary Fig. 3.3.14).

Taken together, we conclude that a rare naive CD4 T cell population

stochastically turns on Ifng or 114 independently of Tbet or Gata3 levels. These rare cells

secrete cytokines into their surroundings and instruct other cells to ubiquitously express

Tbx21 and Gata3, and may thus play a pioneer role in determining the differentiation

outcome of the entire cell population.

While naive CD4 T cells contain essentially zero copies of cytokine transcripts,

the fraction of Ifng expressing cells increased from 0 to 16 h and decreased moderately

afterwards, whereas the fraction of IL4-producing cells increased monotonously (Fig.

3.3.2d). This pattern is consistent with the trend of the mean Tbx2l and Gata3 counts per

cell (Fig. 3.3.1c). Coupled with the absence of a correlation between cytokine and

transcription factor transcript counts in individual cells, the general trend of an increasing

fraction of cytokine producing cells indicates that initial cytokine expression is stochastic

in individual cells. It is worth noting that at the population level, the fraction of cells

transcribing Ifng and 114 still positively correlates with the means of Tbx2l and Gata3

transcripts over time (correlation coefficient = 0.35, p =0.044 between Tbx21 and Jfng;

correlation coefficient = 0.98, p =1.6 x 10-4 between Gata3 and 114). Cytokine expression

becomes ubiquitous as differentiation proceeds, consistent with gene locus modifications

mediated by transcription factors over a longer time scale(Ansel et al., 2006; Hegazy et

al.; Hofer et al., 2002; Ouyang et al., 2000).
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We then revisited the signaling network governing Thl/Th2 lineage specification

during early CD4 T cell differentiation. Given that Ifng is stochastically transcribed in a

rare pioneer cell population independently of Tbx21 and Gata3 levels, induction of Ifng

by Tbet and repression by Gata3 do not apply to early stages of CD4 T cell differentiation,

and a similar situation applies to 114. Since Tbx2l and Gata3 are expressed

simultaneously in individual cells without mutual exclusion, we postulated that the

strength of receptor signaling mediated by cytokines must dominate over the intracellular

network, which alone would lead to mutually exclusive expression of Tbx21 and Gata3.

To demonstrate that the strength of cytokine signaling is dominant, we

manipulated the amount of cytokine molecules available to cells by adding neutralizing

antibodies. In the presence of saturating amounts of anti-IFNy and anti-IL4 we

recapitulated the expression patterns of Tbx21 and Gata3 in Ifrg' or 114- cells

respectively (Fig. 3.3.le,f), strongly suggesting that this depletion strategy was specific

(Supplementary Fig. 3.3.15). Adding an antibody against the Th1 cytokine IL12 had no

effect on Tbx2l or Gata3 expression (Supplementary Fig. 3.3.16). Downregulation of the

appropriate transcription factor could be modulated depending on the amount of

neutralizing antibody (Fig. 3.3.3a). To quantitatively interpret data, we converted the

Tbx21-Gata3 scatter plot into polar coordinates of (r, 0) such that a small 0 means that a

cell is Thl-skewed, and a 0 close to z/2 means Th2-skewed (Fig. 3.3.3b). Converting the

data for cells at 24 h in the absence of exogenously added antibodies into polar

coordinates shows that 0 follows an approximately uniform distribution, a hallmark of

lacking mutual exclusion (Fig. 3.3.3c, Supplementary Fig. 3.3.17). In other words, in the

absence of any exogenous polarizing cues, CD4 T cells during early differentiation

occupy any intermediate cell states between Thl and Th2 with equal probability. As the

concentration of anti-IFNy increases, the distribution of 0 shifts towards ;/2 (more Th2-

like), whereas when the concentration of anti-IL4 increases, the distribution of 0 shifts

towards 0 (more Thl-like) (Fig. 3.3.3d, Supplementary Fig. 3.3.18-19).
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Figure 3.3 Depriving cells of IFNy and IL4 downregulates Tbx2l and Gata3 respectively.

(a) As the concentration of anti-IFNy antibody increases, the mean number of Tbx21

transcripts per cell decreases, while that of Gata3 transcripts remains constant. The

reverse is observed upon addition of anti-IL4 antibody. (b) Conversion of Tbx21-Gata3

scatter plot into polar coordinates. Small 0: Thl-like state; large 0: Th2-like state. For

subsequent analysis, we excluded cells with r < 10 (shaded region), because 0 is not

robust against small fluctuations in the number of transcripts in these cells. (c)

Distribution of 0 for cells treated with no cytokine-neutralizing antibodies is uniform,

using the same data as Fig. 3.3.1 c. (d) Distribution of 0 indicates that as concentration of

anti-IFNy antibody increases, the cells adopt larger 0 (Th2-like state). The reverse is

observed upon addition of anti-IL4 antibody. Red lines show the medians of the 0. All

data shown are from cells at 24 h. Error bars are s.e.m. of replicate experiments.

Our results suggest that the role of extracellular cytokine signaling in specifying

lineage choice is to upregulate the corresponding transcription factor, rather than to

repress that of the alternate lineage. We can then explain the ubiquitous co-expression of

Tbx2l and Gata3: when CD4 T cells are exposed to both IFNy and IL4 secreted by the

rare cytokine producing cells, they upregulate both Tbx21 and Gata3. The key to the

absence of mutually exclusive expression of Tbx21 and Gata3 is that cytokine signaling

must predominate over the self-activation of Tbet and Gata3 as well as mutual repression

between Thet and Gata3. This suggests that expression of Tbx21 and Gata3 is maintained

at high levels by extracellular cytokine cues, with comparatively minimal effects from the

intracellular signaling network (Fig. 3.3.4a). Therefore, our model of early CD4 T cell

fate specification proposes that CD4 T cells are bathed in a cocktail of well-mixed

cytokine molecules produced by the rare pioneer cells, thus simultaneously inducing the

expression of Tbx2l and Gata3 in individual CD4 T cells ubiquitously (Fig. 3.3.4b).
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network consists of all the interactions depicted in thin arrows. (b) Illustration of the CD4

T cell population during early activation. (c) Scatter plots showing downregulation and

mutual exclusion of Tbx21 and Gata3 transcripts in individual cells treated with both

anti-IFNy and anti-IL4 antibodies. (d) Distribution of 0 shows that vast majority of cells

adopt either very large or small 0 (same data as in Fig. 3.3.4a). By two-sample

Kolmogorov-Smirnov goodness-of-fit test, distribution of 0 for cells under IFNy and IL4

deprivation are significantly different from untreated cells, p <10 at 16 h, p <10- 19 at 24

h, p <10 at 48 h. Error bars are s.e.m. of replicate experiments.

According to our model, we hypothesized that elimination of extracellular IFNy

and IL4 would leave only the intracellular signaling networks intact and should result in

mutually exclusive expression of Tbx21 and Gata3 in individual cells. To verify this, we

added both anti-IFNy and anti-IL4. We tested multiple combinations of different

concentrations of anti-IFNy and anti-IL4 antibodies to find an optimum where the median

of 0 was close to c/4 (exactly in the middle of Th1 and Th2). Under such conditions,

Tbx21 and Gata3, in addition to being downregulated, were expressed in a mutually

exclusive manner, such that the majority of cells lay near either along the Tbx21 or Gata3

axis on the scatter plot and the distribution of 0 has higher density near 0 and r/2(Fig.

3.3.4c,d). Thus we observed that under IFNy and IL4 deprivation, only the comparatively

weak intracellular signaling components that consist of autoactivation of Tbet and Gata3

as well as their mutual repression are functional, leading to mutually exclusive expression

of Tbx21 and Gata3. Interestingly, after 24 hours of activation, cells co-expressing Tbx2l

and Gata3 can still adopt mutually exclusive expression, if switched to IFNy and IL4

deprivation (Supplementary Fig. 3.3.20).
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3.4 Conclusion

Using CD4 T cells as a model of cell fate specification, we found ubiquitous co-

expression of antagonistic transcription factors during the early stages of CD4 T cell

differentiation. Specifically, Tbx2l and Gata3 are co-expressed at high levels when both

Thl- and Th2-favoring cytokines - IFNy and IL4 respectively - are available, or

mutually exclusively expressed when cells are deprived of both cytokines. Strikingly,

activation and cross-inhibition of Ifng and 114 expression appear to be decoupled from

Tbx21 and Gata3 levels in individual cells (Fig. 3.3.4a). Instead, Ifng and 114 are

expressed by a rare population, which does not appear to be a contaminating NKT or

memory CD4 T cell population. We therefore postulate that these naive CD4 T cells

stochastically turned on expression of Ifng or 114 and translate protein molecules ahead of

the bulk population. These cytokine producing cells, though rare, can direct the entire cell

population into assuming one particular cell fate. Our data also indicate that signaling

strength evoked by extracellular cytokines can override intracellular signaling networks.

It would be interesting to explore if these types of stochastic strategies are shared by

other cell types in vitro and in vivo.
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3.5 Supplementary Information

Supplementary Fig. 3.3.1. Segmentation of cells using bright-field images. The left

panel is a bright-field image of cultured Th cells. The right panel is the segmented image,

using custom software written in MATLAB.
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Supplementary Fig. 3.3.2. Image analysis of mRNA spots. The left panel is a

fluorescent image showing Thx21 (red) and Gata3 (green) transcripts in Th cells. The

right panel is the processed image showing each individual iRNA transcript as a single

bright red or green pixel. Scale bar is 10 pm.
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Supplementary Fig. 3.3.3. Scatter plots of Tbx21 and Gata3 transcripts in cell cultures

of 250,000 cells per well at 24 hours. The cell density in this experiment is 4 times lower

than that used in other experiments at 1,000,000 cells per well. It shows that the co-

expression of Tbx21 and Gata transcripts in individual cells is robust over a range of

cell densities.
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Supplementary Fig. 3.6. Visualization of single Tbx21 (a) and Gata3 (b) transcripts by

mRNA-FISH (left of each panel) simultaneously with protein levels by

immunofluorescence (right of each panel) in individual Th cells at 24 hours after
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activation. Scale bar is 10 pm. Panel (c) is scatter plots showing that transcript counts and

protein levels have strong correlations for Tbet and Gata3 in individual Th cells at 24 h,

with Pearson's correlation coefficient of 0.59 ( p <1 x 10-44 ) for Tbet and 0.85

(p <1 x 10- 84 ) for Gata3.
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Supplementary Fig. 3.7. GATA3 immunofluorescence intensity versus Gata3 transcript

counts for cells at 24 hours (left) and 48 hours (right) after activation. The red line is the

least square fit of the data. The slope of 24-hour data is 0.0032; that of 48-hour data is

0.0038. The two experiments were performed on the same day with the same reagents

and same microscope with same exposure time. This result shows that translational

efficiency, indicated by the ratio of immunofluorescence intensity over transcript counts,

remain constant as a function of activation time.

90



a
0.8- >40

0.02
0.6
c 0.01

00.4-
0.2- 0

0 10 20 30 40
0

0 200 400 600
Ifng transcripts

b 1

0.8
0.1

"' 0.6-0-
00.05

0.2- 0o
0 50 100 150 200

0
0 100 200 300 400 500

114 transcripts

Supplementary Fig. 3.8. Fraction of cytokine-expressing cells at 24 hours, in a control

experiment that uses CD4 T cells purified by negative selection (MACS CD4* T cell

isolation kit II), in contrast to CD4 T cells purified by positive selection by CD4+

microbeads used in other experiments. Panel (a) shows the probability density of cells

expressing Ifng transcripts; Panel (b) shows the probability density of cells expressing 114

transcripts. We have shown that cultures of cells selected by negative selection also give

rise to rare cells that stochastically express Ifng and 114 at high levels. Therefore, rare

cytokine-expressing cells observed in the Fig. 3.2a,b are not an artifact of positive

selection by CD4* microbeads.
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Supplementary Fig. 3.9. Linear relationship exists between total fluorescent intensity of

FISH and the computed mRNA transcripts in cells expressing fewer than 200 transcripts.

For the Ifng plot excluding points with more than 200 computed mRNA transcripts,

Pearson's correlation coefficient = 0.86, p = 5 x 10-2 4 ; for the 114 plot excluding points

with more than 200 computed mRNA transcripts, Pearson's correlation coefficient = 0.90,

p = 4 x 10-99. We can then extrapolate of the number of transcripts in highly expressing

cells using the slope of the linear fit for cells expressing fewer than 200 transcripts.
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Supplementary Fig. 3.10. Scatter plots showing that there is no negative correlation

between Gata3 and Ifng expression, with Pearson's correlation coefficient = 0.06,

p = 0.04, and that there is no negative correlation between Tbx2l and 114 expression,

with Pearson's correlation coefficient = 0.26, p < 1 x 10-9.
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Supplementary Fig. 3.11. The Scatter plot of Tbx21 (a) and Gata3 (b) transcripts in

individual cells versus the distance to the nearest Jfng-expressing (a) or I14-expressing

cell (b), which is defined as containing more than 20 transcripts of cytokines. The

position of each cell is computed as its centroid. It shows that the expression level of

Tbx21 and Gata3 does not correlate with the distance from the near cytokine-expressing

cell. Therefore, diffusion of cytokines from the source cells is not rate limited on the time

scale of Tbx2l and Gata3 expression. Note that cells at 0 pm for the distance axis are the

cytokine-expressing cells. Absence of cells between 0 gm and 7 gm is attributed to the

fact that cell diameter is 7 pm, because cells are not overlapping during imaging.
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Supplementary Fig. 3.12. Immunofluorescence together with single-molecule FISH on

IFNy shows that only cells expressing Jfng transcripts contain IFNy protein. Cytokine

secretion was inhibited for 1 hour to allow cytokine accumulation in these cells before

harvesting. The top left panel is immunofluorescence image; the top right panel is single-

molecule FISH image; the bottom left panel is the merge of immunofluorescence and

single-molecule FISH; the bottom right panel is the bright field image. Scale bar is 10 pim.

95



Correlation between Kirb1c and Ifng Distribution of Kirb1c transcript count

1000 0.5

0.4

5 100

0.3

0 10 0.2

0 0lEA
0 5 10 15 20 0 5 10 15

Number of Kirb1c transcripts Kirb1c transcripts

Supplementary Fig. 3.13. The left panel is the scatter plot of Ifng and Kirbic transcripts

showing that there is no significant positive correlation between Ifng and Klrbic,

Pearson's correlation coefficient = 0.095, p = 0.001, at 16 hours after activation; the right

panel shows the distribution of Kirbic transcripts, indicating that Kirbic expression is

essentially OFF in all cells. Because Kirbic encodes the marker NKl.1 for NKT cells,

the cells expressing Ifrg are not NKT cells that are not removed during magnetic sorting.
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Supplementary Fig. 3.14. Cytokine-expressing cells are not memory T cells. (a) Scatter

plot of CD44 immunofluoscence versus the number of Ifng or 114 transcripts shows that

there is no significant positive correlation between CD44 levels and Ifrg (correlation

coefficient = 0.27, p = 4.9 x 10-15 at 24 hours; correlation coefficient = 0.094, p = 0.054

at 48 hours) or 114 expression (correlation coefficient = 0.13, p =1.4 x 104 at 24 hours;

correlation coefficient = 0.00 17, p = 0.96 at 48 hours). Cd44 is a marker of memory T
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cells. Because cytokine-expressing cells do not preferentially express high levels of Cd44

transcripts, they are not contaminating memory T cells that are not removed during

magnetic sorting. (b) Probability density plot of CD44 immunofluorescence of naive T

cells isolated by positive selection (CD4* microbeads) or depletion (MACS CD4* T cell

isolation kit II). It shows that T cells isolated by positive selection, as used ubiquitously

in this paper, are similar to T cells isolated by depletion, have low CD44 levels, and do

not contain memory cells that are CD44*.
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Supplementary Fig. 3.15. Scatter plots with and marginal distributions showing that

IFNy antibody downregulates Tbx21, and IL4 antibody downregulates Gata3 at 24 h.
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Supplementary Fig. 3.16. Scatter plots and marginal distributions of Tbx21 and Gata3

transcripts in individual cells treated with IL12 antibody, with the red line divides data

points into halves. The left panel shows cells 16 hours after activation; the right panel

shows cells 24 hours after activation. The result shows that anti-IL12 has no effect on the

expression of Tbx21 during early differentiation of Th cells.
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Supplementary Fig. 3.17. Distribution of 0 in the absence of neutralizing antibodies.

The left panel is 16 hours after activation, where 0 follows a uniform distribution. The

right panel is 48 hours after activation, where 0 is skewed towards r/2, indicating cells

become more Th2-like.

101

0,



a [anti-IFNy]=4 pg/mi [anti-IFNy]=20 pg/mi

0 n/4 n/2 0 nr/4 7r/2

[anti-M41=0.032 ps/mi [anti-Mt]=o.16 pg/mi

I I

[anti-IENy]=o.8 pg/mi
0.8

0.6

0.4

0.2

0

0 n/4 t/2

Lanti-iL4]=o.0054 pg/mi
0.8

0.6

0.4

0.2

0 1C4 Ir/2
0

0

b

4.'

0

0 0

[anti-IFNy]=100 pg/mI

0 n/4 n/2

[anti-L4=0.8 pg/mi

0 x/4 n/2
0

Supplementary Fig. 3.18. Distribution of 0 at 16 hours after activation. Panel (a) shows

that as concentration of anti-IFNy antibody increases, the cells adopt larger 0. Panel (b)

shows that as concentration of anti-IL4 antibody increases, the cells adopt smaller 0. Red

lines are the medians of the 0 distribution.
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Supplementary Fig. 3.19. Distribution of 6 at 48 hours after activation. Panel (a) shows

that as concentration of anti-IFNy antibody increases, the cells adopt larger 6. Panel (b)

shows that as concentration of anti-IL4 antibody increases, the cells adopt smaller 6. Red

lines are the medians of the 6 distribution.
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Supplementary Fig. 3.20. Distribution of 0 at 48 hours, where cells were not treated

with any polarizing antibodies for the first 24 hours, followed by the addition of both

anti-IFNy and anti-IL4 antibodies at 24 h. It shows that vast majority of cells adopt either

very large or small 6, adopting either a ThI-like or Th2-like cell fate.
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Materials and Methods

Strains of mice used

Experiments on wildtype cells were from C57BL/6 mice; experiments on J14- cells were

from B6.12 9 P2-Il4tmcgn / J mice; experiments on Ifng-- cells were from B6.129S7-

Ifng'nTs/J mice. C57BL/6, Ifng'- and 14- mice were obtained from Jackson labs. All

animals were housed at the Whitehead Institute for Biomedical Research and were

maintained according to guidelines approved by the Massachusetts Institute of

Technology (MIT) Committee on Animal Care.

Cell culture

Spleens and lymph nodes of mice aged from 6 weeks to 2 months were removed,

suspended in PBS supplement with 2% FCS, and gently homogenized through a nylon

mesh. Red blood cells were lysed with ammonium chloride solution (StemCell

Technologies). CD4* cells were isolated by MACS purification using the CD4

microbeads (Miltenyi Biotec) in all experiments except those that explicitly mentioned

negative selection. In experiments where cells were selected by depletion, MACS CD4*

T cell isolation kit II was used. The medium used throughout the cell cultures was RPMI

supplemented with 10% FCS, 2 mM L-glutamine, 1% penicillin and streptomycin.

Cells were seeded into 8-well Lab-tek 1.0 coverglass chambers that had been coated

with a mixture of anti-CD3 (15 tg/ml, clone 17A2) and anti-CD28 (15 Ig/ml, clone

37.51) antibodies for at least 3 hours, at 1,000,000 cells per well in a total volume of 0.5

ml, except one control experiment that explicitly mentioned 250,000 cells per well. The

following neutralizing antibodies were used: IFNy antibody (clone R4-6A2), IL4

antibody (clone BVD4-1Dl 1) and IL12 antibody (clone C17.8). Cells were cultured at

370C, 5% CO 2. The first refresh of culture media occurred at 48 hours, after which media

was refreshed every 24 hours. In experiments with Th1 polarization, 10 ng/ml IFNy and

IL12 and 10 ptg/ml anti-IL4 antibodies were supplemented in the media; in experiments

105



with Th2 polarization, 10 ng/ml IL4 and 10 ptg/ml anti-IFNy antibodies were

supplemented in the media.

Single-molecule fluorescence in situ hybridization (smFISH)

We performed smFISH on the T cells and counted the mRNAs in individual cells as

described previously(Hebenstreit et al.; Raj et al., 2008). Harvested T cells were fixed in

PBS buffer with 3.7% formaldehyde for 10 minutes. After fixation, the cells were washed

twice with PBS, permeabilized in 70% ethanol for at least two hours, and stored at 4'C.

The T cells were hybridized in the same glass chamber as cell culture. After the 70%

ethanol was aspirated, the samples were washed in a solution of 25% formamide and

2xSSC for 5 minutes. After the wash buffer was aspirated, 100 pil of hybridization

solution containing labeled DNA probes in 2xSSC, 1 mg/ml BSA, 10 mM VRC, 0.5

mg/ml Escherichia coli tRNA and 0.1 g/ml dextran sulfate, with 25% formamide was

added to the sample and incubated overnight at 30*C. The next day, the samples were

washed twice by adding 1 ml of wash solution consisting of 25% formamide and 2xSSC.

For each wash, the sample was incubated in wash solution for 30 minutes. Then, the

sample was resuspended in 2xSSC buffer. The sequences of FISH probes are available

upon request.

Immunofluorescence

To simultaneously visualize mRNA and protein levels in cells, we performed

immunofluorescence after FISH protocol. The cells were incubated with 2xSSC, 0.2%

Triton X-100, 5 mg/ml BSA and fluorescent antibodies for 3 h at 4'C. Where a secondary

antibody is required, the samples were incubated with 2xSSC, 0.2% triton X-100, 5

mg/ml BSA and the secondary antibody for 1 h at 4'C. The cells were then washed by

incubating with 2xSSC, 0.2% triton X-100, 5 mg/ml BSA for 1 h at 4'C. Tbet antibody is

clone 4B10; Gata3 antibody is clone L50-823; IFNy antibody is polyclonal (AMC4034,
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Invitrogen) and a secondary goat-anti-rabbit antibody (A 11034, Invitrogen) is used. We

test multiple IL4 antibodies for immunofluorescence, but none of them gave satisfactory

signal to noise ratio.

Image acquisition

For imaging, the samples were soaked in glucose oxidase (glox) anti-fade solution, which

contains 10 mM Tris (pH 7.5), 2xSSC, 0.4% glucose, supplemented with glucose oxidase

and catalase. A coverslip was put over the sample. All images were taken with a Nikon

Ti-E inverted fluorescence microscope equipped with a lOOX oil-immersion objective

and a Photometrics Pixis 1024 CCD camera using MetaMorph software (Molecular

Devices, Downington, PA). Stacks of images were taken automatically with 0.4 microns

between the z-slices.

Image analysis

To segment the T cells, a marker-guided watershed algorithm was used. Briefly, cell

boundaries were obtained by running an edge detection algorithm on the bright-field

image of the cells. To generate markers for watershed algorithm, the centroid of the

region enclosed by individual cell boundaries is computed. A marker-guided watershed

algorithm is then run on the distance transformation of the cell boundaries, using the

markers located within the cell boundaries. The resultant cell segmentation image is then

manually curated for occasional mis-segmentations.

To quantify the number of RNA molecules in each cell, a log filter is run over each

optical slice of the image stack to enhance signals. A threshold is taken on the resultant

image stack to pick up mRNA spots. The locations of mRNA spots are then taken to be

the regional maximum pixel value of each connected region. The number of mRNA spots

located within the cell boundaries of an individual cell can thus be quantified.
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To quantify fluorescence signal in each cell, an optical slice corresponding to the

central plane of the cells is analyzed. For each image, which covers up to 100 correctly

segmented cells, the mean fluorescence per pixel of each cell is computed. The minimum

of mean fluorescence is taken to be the background. Then for each cell in the image, the

total fluorescence of the cell is computed as the sum of the fluorescence at each pixel

subtracting the background. If this value is negative, zero is used instead.
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CHAPTER 4

Conclusion and Future Work

In this thesis, I explored the heterogeneous gene expression in single cells during the

differentiation of T helper cells. I have discovered a paradigm of cell lineage

specification governed by the signaling interplay between extracellular cues and

intracellular transcriptional factors, where the strength of extracellular signaling

dominates over the intracellular signaling component. In the presence of extracellular

cues for both lineages, naive T helper cell co-express Tbx21 and Gata3 at high levels,

stochastically acquiring any intermediate Thl/Th2 states. The states of T helper cells can

be gradually tuned by depriving availability of extracellular cytokines, which are

produced stochastically by a small subpopulation of cells. In this model, the rare

cytokine-expressing cells act as leaders and can secret cytokines to instruct the whole cell

population express the appropriate transcription factors ubiquitously. When the cytokines

are removed with neutralizing antibodies, cells down-regulate the expression of the

corresponding transcription factor, thus biasing towards cells states that are closer to the

alternative lineage. When extracellular cues are removed, the weak intracellular signaling

network reveals its effect, leading to classic mutual exclusion of antagonistic

transcriptional factors.
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Looking forward, many intriguing questions remain to be answered. What is the

generality of the paradigm we have discovered in T helper cells? How relevant is our

model to T helper cell differentiation in vivo? Are the rare cytokine-expressing cells the

main providers of cytokines cues, compared to antigen presenting cells? How does

cytokine micro-environment affect T helper cell differentiation in vivo? How can cells

achieve the appropriate Thl/Th2 response to pathogens, given the significant

heterogeneity in gene expression levels among individual cells?
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4.1 Other CD4 T helper cell lineages - Th17 and iTreg

In addition to Thi and Th2 lineages, naive CD4 T cells are capable of

differentiating into Thl7 and induced regulatory T cells (iTreg). Therefore, it is

interesting to explore the gene expression pattern of master transcription factors

governing Th 17 and iTreg lineages to investigate whether these antagonistic transcription

factor are also co-expressed at high levels. The master transcription factor governing

Th17 lineage specification is RORyT, encode by the gene Rorc2 in mice; the master

transcription factor governing iTreg lineage specification is Foxp3.

We performed single-molecule FISH on both untreated cells and that treated with

transforming growth factor p1 (TGFplI), which is a cytokine that pushes cells towards the

Thl7-iTreg paradigm in contrast to the Thl-Th2 paradigm. We found that Rorc2 and

Foxp3 are co-expressed at high levels in some cells, while a significant portion of cells

express only Rorc2 or Foxp3 at high levels.
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Fig 4.1. Scatter plots with marginal distribution of Foxp3 and Rorc2 expression in CD4 T
helper cells. The upper panel shows cells untreated with any cytokines; the upper panel
shows cells untreated with 0.3 ng/ml of TGFl I.
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4.2 T cell differentiation in vivo

To explore T helper cell differentiation in vivo, one experimental setup would be to

examine the challenged lymph nodes by utilizing fixed tissue sections. Specifically, one

can inject one of the mouse footpads with pathogen and adjuvant complex, while leaving

the contralateral footpad untreated, then isolate the popliteal lymph nodes on both sides,

section the fixed the lymph nodes, and perform smFISH and immunofluorescence for

analysis. We explore the technical feasibility of imaging lymph nodes and our

preliminary data show that lymph node tissues are amenable to smFISH and

immunofluorescence (Figure 4.1 and 4.2).
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Figure 4.1. Immunofluorescence of the lymph node section. The upper panel shows an

image in the cortex region probably inside a germinal center. The cells were labeled with

anti-B220 (red) and anti-CD3 (green) antibodies. Anti-B220 labels B-cells and anti-CD3

labels T cells. The scale bar is 10pim. The lower panel shows a processed map of the

lymph node, with each red dot indicating a single cell marked by anti-B220 and each blue

dot indicating a single cell marked by anti-CD3. The scale bar is 200pm.
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Figure 4.2. smFISH image of thymus tissue section, labeled with probes that detects

CD8a. The scale bar is I Opm.

Although studying lymph node tissues with smFISH and immunofluorescence is

technically feasible, to quantitatively understand gene expression during T helper cell

differentiation in vivo remains as a challenging endeavor. First, problem is being able to

nail down which cells amongst billions of cells in the lymph nodes are the T helper cells

of interest. Only 20% of the all the cells in the lymph nodes are CD4* T cells. Since T
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cells have diverse repertoire of TCR that can recognize different epitopes, only a very

small subset of T helper cells will respond to pathogens presented. From our preliminary

data, it is extremely hard to identify the T helper cells of interest in the ocean of other

irrelevant cell types. This problem might be partially solvable by using a TCR transgenic

line which has uniform TCR on CD4* T cells, so that theoretically 20% of the all the cells

become relevant. We explored this approach in OT-II mice, but failed to see significant

upregulation of Tbx2l and Gata3. Second, given higher autofluorescence in tissue

sections than in cell cultures, the noise in the quantification methods is significantly

increased. In addition, cells can be sliced through in tissue sections, making segmentation

of cell boundaries inaccurate. As a result, it will be impossible to generate clean single-

cell data by studying tissue sections. Third, it is much more technically challenging to

manipulate the system. For example, it is almost impossible to ensure the CD4* T helper

cells of interest are exposed to controlled dosages of cytokine or neutralizing antibodies

against cytokines by intravenous injections, because of problems with metabolism,

degradation, interactions with components of the blood stream, and inefficient transfusion

into the lymph nodes. Fourth, it is technically impossible to synchronize the cells to

initiate differentiation, because not CD4* T helper cell receives the signaling cue at the

same time. Despite the challenges of studying lineage specification in vivo, fixed tissue

sections remain as a valuable avenue for studying lineage specification under

physiological conditions, though probably not with a goal of single-cell resolution.
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