Integrases,

Aliens,
 \& Bill Joy

Drew Endy
Stanford Bioengineering
The BioBricks Foundation

24 September 2012 SBWG Cambridge MA

Ton \& Jerome want 8 bio. bits

Aging

Anna Cosney and John Forsdyke

Aging

Anna Cosney and John Forsdyke

Development

Bruce W. Draper.
4

Development

http://waterston.gs.washington.edu/lineaging.htm

But really we are working on this
type of stuff because it challenges us
to get better at...
(i) composition of molecular parts
(ii) reliability of performance ("noise", evolution)

01010101

"flipee"

"flipee"

"flipee"

"flipee"

"flipee"

"flipee"

@®®

SET "flipper"

Integrase

@®®-

© © © ©

We can write one "memory"

œo

Integrase
(c) © (i) ©

(c) (i) ©

(cc) ©

Control of Phage Bxb1 Excision by a Novel Recombination Directionality Factor

Pallavi Ghosh, Laura R. Wasil, Graham F. Hatfull*
Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America

Abstract

Mycobacteriophage Bxb1 integrates its DNA at the attB site of the Mycobacterium smegmatis genome using the viral $a t t P$ site and a phage-encoded integrase generating the recombinant junctions attL and attR. The Bxb1 integrase is a member of the serine recombinase family of site-specific recombination proteins and utilizes small ($<\mathbf{5 0}$ base pair) substrates for recombination, promoting strand exchange without the necessity for complex higher order macromolecular architectures. To elucidate the regulatory mechanism for the integration and excision reactions, we have identified a Bxb1-encoded recombination directionality factor (RDF), the product of gene $47 . \mathrm{Bxb} 1 \mathrm{gp} 47$ is an unusual RDF in that it is relatively large ($\sim \mathbf{2 8} \mathbf{~ k D a}$), unrelated to all other RDFs, and presumably performs dual functions since it is well conserved in mycobacteriophages that utilize unrelated integration systems. Furthermore, unlike other RDFs, Bxb1 gp47 does not bind DNA and functions solely through direct interaction with integrase-DNA complexes. The nature and consequences of this interaction depend on the specific DNA substrate to which integrase is bound, generating electrophoretically stable tertiary complexes with either attB or attP that are unable to undergo integrative recombination, and weakly bound, electrophoretically unstable complexes with either attL or attR that gain full potential for excisive recombination.

Citation: Ghosh P, Wasil LR, Hatfull GF (2006) Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol 4(6): e186. DOI: 10.1371/journal.pbio. 0040186

Control of Phage Bxb1 Excision by a Novel Recombination Directionality Factor

Pallavi Ghosh, Laura R. Wasil, Graham F. Hatfull*

Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America

Figure 5. In Vitro Excisive Recombination Using gp47

Control of Phage Bxb1 Excision by a Novel Recombination Directionality Factor

Pallavi Ghosh, Laura R. Wasil, Graham F. Hatfull*

Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America

Figure 5. In Vitro Excisive Recombination Using gp47

(c) $)_{\mathrm{EY}}^{(1)}$ (2)

We can mostly erase a memory!

Even bigger problems putting together

Even bigger problems putting together

Integrase
RESET "flipper"

Even bigger problems putting together

Even bigger problems putting together

Even bigger problems putting together

SET "flipper"

Integrase

Even bigger problems putting together

SET "flipper"

Even bigger problems putting together

RESET "flipper"
Integrase Excisionase

Even bigger problems putting together

SET "flipper"

Integrase

Switch given sustained input pulses

Switch \& hold given 2000' input pulses

Switch \& hold given 200^{\prime} input pulses

Switch \& hold given 20 ' input pulses

Shorter Inputs: $\boldsymbol{\sim} \mathbf{2} \mathbf{5}$ cell doublings

~ 3 years and ~ 750 attempts...

© © © ©

$=\sigma=\sigma=\sigma=\sigma=\sigma=\sigma=\sigma=$

@®®

Note, not a formally bistable system
Works b/c we have two relatively nice A-to-D converters.

What else could you make with A-to-D converters?

Boolean Integrase Logic: OR

Boolean Integrase Logic: OR

Conditional Input Signals

[Battery, here]

Boolean Integrase Logic: OR

A	B	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Conditional

Boolean Integrase Logic: XOR

Conditional

Boolean Integrase Logic: NOR

Conditional

Boolean Integrase Logic: XNOR

Conditional

Boolean Integrase Logic: AND

Conditional

Boolean Integrase Logic: NAND

INPUT		OUTPUT
A	B	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Conditional

Boolean Integrase Logic Gates

Boolean Integrase Logic Gates

Function	Truth Table	Architecture	Measured
AND		$\xrightarrow{T} \rightarrow T$	
NAND			
OR			
NOR	and 0 0 1 1 0 0 0 1 0 1 1 0	$D_{\perp}+D_{\perp}$	
XOR	ARA/ATCl OUT 0 0 0	$\rightarrow \text { T }$	
XNOR	analatclour $\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{1}$ 1		

Boolean Integrase Logic Gates

Function	Truth Table	Architecture	Measured
AND		$\xrightarrow{+\rightarrow-\longrightarrow}$	
NAND			
OR		\ggg	
NOR	AREATACIOUH $\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$	$D_{\perp} \rightarrow D_{\perp}$	
XOR	1 Aratatciour 0 0 0	\xrightarrow{T}	
XNOR	anal\|atclour $\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$		

JOURNAL OF BIOLOGICAL ENGINEERING

| Home | Articles | Authors | Reviewers | About this journal |
| :--- | :--- | :--- | :--- | :--- | My Journal of Biological Engineering | Open Access |
| :--- |
| Research |

Engineered cell-cell communication via DNA messaging
Monica E Ortiz and Drew Endy
For all author emails, please log on.
Journal of Biological Engineering 2012, 6:16 doi:10.1186/1754-1611-6-16
Published: 7 September 2012

JOURNAL OF BIOLOGICAL

Home
Articles
Authors

Reviewers
About this journal
My Journal of Biological Engineering

Research

Engineered cell-cell communication via DNA messaging

Monica E Ortiz and Drew Endy

For all author emails, please log on.
Journal of Biological Engineering 2012, 6:16 doi:10.1186/1754-1611-6-16
Published: 7 September 2012

Scientists Examine Tiny Viruses For Messages From Outer Space

by walter suluivan

A search for messages from other
worlds is focusing not on the heavens but worlds is focusing not en the
The search in Japan, is for special meaning in the coded genetic signals
within the viruses. It was prompted by within the viruses. It was prompled by
the discevery that the genetic sequeace of one virus seems more contrived than
natural.

Two Japanese scientists have saga message encapsulated in virus parti. cles to survive prolonged space journeys
and dispatched into the universe by cone and dispatched into the universe by one or more highly advanced civilizations.
According to the hypothesis, the viruses, According to the hypothesis, the virises,
with their encoded messages, may now infect bacteria within the intestines of virtually every human being.
In 1973 Dr. Francis H. C. Crick, co-dis.
coverer of the structure of the molecule coverer of the structure of the molecule
within which the genetic messages are within which the genetic messages are
encoded (dearyriberveleic acid, of encoded (deoxyriberrocleic acid, of
DNA), saggested that soch a process migions to disperse the seeds of life zations to disperse the
throughout theuniverse.

Article in Icarus

He and Dr. Leslie E. Orgel of the University of California at San Diego pub-
lished this propesal in the journal Icarus lished this progosal in the journal icarus
under the title "Directed Panspermia." Dr. Orgel is an internationally recognized investigator of the origins of life.
The possibility that such viruses might carry messages is suggested in the carrent issue of Icarus by Hiromitsu Yokoc
of Kyorin University and Ta ro Oshima of of Kyorin University and Tairo Oshima of ences, both in Tokyo. Their attention is focused on the bacteriasinfecting virus, or phage, known as PhiX-174.
DNA information is in the form of
three-lecter "words," or nucleotides, three-letter "words," or mucleotides, using an "alphabet" that consists of only
four "letters" (chemical units known as bases). In 1977 British scientists, in the first complete dissection of sach a
phage's DNA, were able to spell out all 5,375 wards of its message. Those words, grouped into "sentences" - that is genes -not only specify the chemical composi. tion and structare of the
control all its functions.
A surprising discovery was that overread in three different ways, each of them meaningful, depending on where the reading began.
'Difficult to Explain'
This can be compared to a telegram
rith no spacing between the letters that with no spacing between the letters that
says one thing if the reader begins with says one thing if the reader begins with
the first jetter and something completely different it he or she starts with the secand or third letter.
As noted by the Japanese authors, "In evolution of overlapping peres in terms
of molecular evolution," For this reason

HERYY SCHLITZ DES: Heade CIIC Group

Leader of Anti-Defamation League in Era of Senator McCarthy

Henry E. Schultr, a retired national chairman of the Arti-Delamation League of B'nai B'nth and a former member of Doucation, died Saturday at the Mimeni Heart institute in Miami. He was 77 years old and lived in Miami Beach.
Mr. Schultz had been recently em-
ploged as a consultant to the J. B. Wilploged as a consultant to the J. B. Wil liams Company, where he was legal coun-
sel from 1960 until 195s. Prior to 1960 he sel fromi 1980 until lsis. Prior to 1560 he tomey.
tomey.
As chairman of the Anti-Delamation
League from 1982 until 1sis, Mr. Schultz League from 1955 until 1383, Mer. Schultz was in charge of its affairs during the tense years of public debate over the stitutions. He was credited with maintaining a necessary centrist policy for the Deith, a sriter and a league statf member during Mr. Schulta'stenare.
As a member of the Board of Higher
Edocation from 1941 to 13e9, Mr. Schultz Edacation from 1941 to $13 e 9$, Mr. Schultz "had been through the Communist wars on City
sald.

Questioned Senator McCarthy
"He put the question of anti-Semitism" to Senator Joseph R. McCarthy "directly in a persconal mpeting and came awny an anti-Semite," Mr. Belth said. But, be added, Mr. Schulta" noted the Senator's methods injured many of our Democratic institutions:
Mr. Schultr presided over the league in
15513 when it presented the Democratic $1 s 51$ when it presented the Democratic
Legacy A ward to President Eisenhower.
It It was during that dimner, held in Washfamous speech citing the "right of every
man to moet his accuser face to face." The speech was considered a signal event
in an eventual campaign against Senator in an eventual campaign against Senator McCarthy stactics.
Mr. Belth said,
Schultz "was concerned about the extreme left, toe."
In October 197, Ouring his member-
ski on the Board of Higher Education,
Mr . Schultz was strongly opposed by Mr. Schultz was strongly opposed by deans, administrators and faculty members of the city's four city colleges for har
role in propesing an amendment to bar ing on camposes.
Mor. Schulte, who was born in New York City, earsed his legal degree from New York Las School in 1928 . An honotary doctorate in the humanities was presented to him in 1961 by West Virginia
State College. tate Coliege
He $=25$ a
He was a member of the executive

Bernard Leach, 92, Noted Potter;

 Briton Learned From JapaneseLONDON, May 5-Bernard Leach, Sperth the internationally renowned potter, died at his bome in St. Ives, Cornwall, today. He was 92 years old.
Much of his work was infused with an
Oriental delicacy. The quit simplity Oriental delicacy. The quiet simplicity of
form of his pieces are nowhere more appreciated than in Japan, where for years he lived and worked.
He was cosscioss of his debt to the
Oriental potters; to him, the greatest Oriental potters; to him, the greatest compliment was to have his work comdyared to the Chinese pot
Mr. Leach was born in Hong Kong, the son of a colonial judge, and stadied art at the Slade School in London. His father, he recalled, looked askance at his artistic
ambitions, but did nothing to discourage ambiti
them.
Mr. Leach traveled widely in China and Japan in his carly 20 's. In Japan be studwho had inspired him to take up the art.

Initial Enthuslasm Recalled
When in his 80 's and almost blind, Mr. Leach, a tall, amiable man, recalled his born and I was torn between my first child and my first kiln," he said
The first pots he made sold for the equivalent of 25 cents. He progressed artistically and materially fairly quickly and he recalled how his pric
with each of his exh bitiors.
On his return to England from Japan in 1920, he settied in St. Ives, a small seaside resort, and with the help of a gifted Japanese potter, Shoji Hamada, fourded The Leach Pottery there. it is still producing pots with Mr. Leach's son David in
charge. Mr. Hamada, described by Mr. Leach as "my perfect friend," died in Japan in January 1988 at the age of 89. In the pottery at St. Ives only 10 percent

Col. Robert Heinl Jr.; Columnist and Author Of History of Marines

Specaln Thelice Yoktives

WASHINGTON, May 6 - Robert D Heini Jr, a retired colonel in the United Sated columnist and autbor, died of a heart attack yesterday in Saint heart attack yesterdiy in Saint 62 years old."
Colonel Heinl was appointed chief of the United States naval mission to Haiti in January 1959 and served until he was ordered to leave the country by former
Haitian President. Francois Duvalier, on Feb. 20, 1963. The dictator's arder came
of the first year's production of 2,000 to 3,000 pieces survived. Twenty percent, Mr. Leach recalled, was broken in the
kiln and the rest was scrapped because it was below his stamdard.
At the height of his endeavers, about 30,000 pieces a year were produced by Mr . Leach and his workers. Most were of the 69 to 70 shapes he used for objects
such as casseroles, jugs and jam pots.

Hosored for His Work
In "A Potter's Book" published in 1995, ore of several books be wrote on pottery, were quick to reject work with minor blemishes even mben the artistic merit ras not affected. "It is a pity people in England are so fussy about technical im-
perfections,"
be wrote, observing that a periections, from wrotl on a Rembrandt drawing would not cause it to becast aside.
The Times of London summed up a compretsensive conecioa of Mr. Leach's work by sayiing, "Ultimately his prodacsome utility or even as so many agreeable pieces of decoration with technical felicities of glaze, color and shape (though these are certainly to be found)
but fuindamentally as a translation of fout fuindamentally as a translation of
familiar virtues into stoneware or "familiar porcelain."

He was honared for his work in the United States, Japan and Britain. In 1973 Queen Elizabeth il made him a Companion of Horor "for services to the art of pottery
The follo
The following year mhen he won a
slit,000 prise awarded by the Japan Foun-
dation, Hidemi Kon, the foundation's

Bernard Leach
president, described him as "the most
distinguished ceramics artist the world as today."
Mr . Leach is survived by three sons and three daughters. His third wife is the mading potters in Pritain.

MARY LOUISE GILLERAN
Mary Louise Gilleran, an administrafive asslistant to the Metropolitan New York Chapter of the American Red Cross, he age of 61.
Mrs. Gilleran had worked for the agency for nearly a year and was previ-
usly employed as an administrator for rusly employed as an administrator for
the American Field Service. Born in Chiago, she attended Southern Seminary in jena Vista, Va. She had been a New ork City resident for the past 40 years. Mrs. Gilleran is survived by ber hasand, Robert J. Gilleran, circulation manager for Family Circle magazine,
and her daughter, Marianne.

Directed Panspermia

F. H. C. CRICK
Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, England

AND
L. E. ORGEL

The Salk Institute for Biological Studies, P.O. Box 1809, San Diego, California 92112

Received June 22, 1972; revised December 20, 1972

Abstract

It now seems unlikely that extraterrestrial living organisms could have reached the earth either as spores driven by the radiation pressure from another star or as living organisms imbedded in a meteorite. As an alternative to these nineteenth-century mechanisms, we have considered Directed Panspermia, the theory that organisms were deliberately transmitted to the earth by intelligent beings on another planet. We conclude that it is possible that life reached the earth in this way, but that the scientific evidence is inadequate at the present time to say anything about the probability. We draw attention to the kinds of evidence that might throw additional light on the topic.

Introduction

It was not until the middle of the ninetwenth century that Pasteur and Tyndall completed the demonstration that spontaneous generation is not occurring on the Farth nowadays. Darwin and a number of other biologists concluded that life must have evolved here long ago when conditions were more favourable. A number of scientists, however, drew a quite different conclusion. They supposed that if life does not evolve from terrestrial nonliving matter nowadays, it may never have done so. Hence, they argued, life reached the varth as an "infection" from another planet (Oparin, 1957).
resistant spore would receive so large a dose of radiation during its journey to the Earth from another Solar System that it would be extremely unlikely to remain viable. The probability that sufficiently massive objects escape from a Solar System and arrive on the planet of another one is considered to be so small that it is unlikely that a single meteorite of extrasolar origin has ever reached the surface of the Earth (Sagan, private communication). These arguments may not be conclusive, but they argue against the "infective" theories of the origins of life that were proposed in the nineteenth century.

It has also been argued that "infective"

Fig. 1. An approximate time-scale for the events discussed in the paper. To simplify illustration the age of the galaxy has been somewhat arbitrarily taken as $13 \times 10^{9} \mathrm{yr}$.

The Proposed Spaceship

The spaceship would carry large samples of a number of microorganisms, each having different but simple nutritional requirements, for example blue-green algae, which could grow on CO_{2} and water in "sunlight." A payload of 1000 kg might be made up of 10 samples each containing 10^{16} microorganisms, or 100 samples each of 10^{15} microorganisms.

Fig. 1. An approximate time-scale for the events discussed in the paper. To simplify illustration the age of the galaxy has been somewhat arbitrarily taken as $13 \times 10^{9} \mathrm{yr}$.

The Proposed Spaceship

The spaceship would carry large samples of a number of microorganisms, each having different but simple nutritional requirements, for example blue-green algae, which could grow on CO_{2} and water in "sunlight." A payload of 1000 kg might be made up of 10 samples each containing 10^{16} microorganisms, or 100 samples each of 10^{15} microorganisms.

It would not be necessary to accelerate the spaceship to extremely high velocities, since its time of arrival would not be important. The radius of our galaxy is about 10^{5} light years, so we could infect most planets in the galaxy within $10^{8} \mathrm{yr}$ by means of a spaceship traveling at only one-thousandth of the velocity of light. Several thousand stars are within a hundred light years of the Earth and could be reached within as little as a million years by a spaceship travelling at only (i), 000 mph , or within $10,000 \mathrm{yr}$ if a speed of one-hundredth of that of light were possible.

Is Bacteriophage $\oint \mathrm{X} 174$ DNA a Message from an Extraterrestrial Intelligence?

HIROMITSU YOKOO* and TAIRO OSHIMA \dagger
*Department of Physics, School of Medicine, Kyorin University Hachioji, Tokyo 192, Japan and \dagger Mitsubishi-Kasei Institute of Life Sciences, Machida, Tokyo 194, Japan

Received May 22, 1978; revised August 30, 1978
We speculate that a simple biological system carrying a message and capable of self-replication in suitable environments may be one possible channel for interstellar communication. A preliminary experiment was performed to test the hypothesis that phage ϕ X174 DNA carries a message from an advanced civilization.

Electromagnetic waves are generally accepted as the best medium for interstellar communication (Cocconi and Morrison, 1959; Bracewell, 1960; Drake, 1961 ; Cameron, 1963; Shklovskii and Sagan, 1966 ; Oliver and Billingham, 1971; Ponnamperuma and Cameron, 1974; Black et al., 1977), and little attention has been paid to other information transfer systems. So far, 13 projects have been devoted to the search for radio signals which might be transmitted to us by other civilizations (Black et al., 1977). Numerous discussions have also been devoted to the appropriate receiving systems and frequencies to be used. However no scientific attempt seems to have been made to search for messages from extraterrestrial intelligence (ETI) by media other than electromagnetic radiations.
The purpose of this paper is to stress that biological media should not be neglected as possible information exchange systems between interstellar civilizations, and to encourage the examination of certain living systems. A preliminary effort has been made to investigate whether or not phage $\phi \mathrm{X} 174$ DNA carries a message

A BIOLOGICAL MEDIUM

It might be possible that a civilization more advanced than ours prepares an artificial or artificially modified phage (or bacterial) DNA which is capable of proliferating actively under suitable conditions and at the same time carries an intelligent message encoded in its base sequence. Biochemistry on our planet is still not advanced enough to synthesize such sophisticated biomolecules, but, judging from the recent progress in biological sciences, it is most likely that our civilization will gain enough information to carry out such a project within a few decades. It has already been suggested that there is no technical difficulty in sending a phage or microorganism to other stars (Crick and Orgel, 1973). The message-carrying particles encapsulated for safety can easily be launched to other stars directionally or isotropically by a civilization such as ours.

Biological media have certain advantages over electromagnetic waves. The phage or microorganism carrying the message can self-replicate after arriving on an appropriate planet. Unlike long distance tele-

31

Is Bacteriophage $\$$ X174 DNA a Message from an Extraterrestrial Intelligence?

HIROMITSU YOKOO* and TAIRO OSHIMA \dagger
*Department of Physics, School of Medicine, Kyorin University Hachioji, Tokyo 192, Japan and \dagger Mitsubishi-Kasei Institute of Life Sciences, Machida, Tokyo 194, Japan

Received May 22, 1978; revised August 30, 1978

Abstract

We speculate that a simple biological system carrying a message and capable of self-replication in suitable environments may be one possible channel for interstellar communication. A preliminary experiment was performed to test the hypothesis that phage ϕ X174 DNA carries a message from an advanced civilization.

Electromagnetic waves are generally accepted as the best medium for interstellar communication (Cocconi and Morrison, 1959; Bracewell, 1960; Drake, 1961 ; Cameron, 1963; Shklovskii and Sagan, 1966 ; Oliver and Billingham, 1971; Ponnamperuma and Cameron, 1974; Black et al., 1977), and little attention has been paid to other information transfer systems. So far, 13 projects have been devoted to the search for radio signals which might be transmitted to us by other civilizations (Black et al., 1977). Numerous discussions have also been devoted to the appropriate receiving systems and frequencies to be used. However no scientific attempt seems to have been made to search for messages from extraterrestrial intelligence (ETI) by media other than electromagnetic radiations.
The purpose of this paper is to stress that biological media should not be neglected as possible information exchange systems between interstellar civilizations, and to encourage the examination of certain living systems. A preliminary effort has been made to investigate whether or not phage $\phi \mathrm{X} 174$ DNA carries a message

A BIOLOGICAL MEDIUM

It might be possible that a civilization more advanced than ours prepares an artificial or artificially modified phage (or bacterial) DNA which is capable of proliferating actively under suitable conditions and at the same time carries an intelligent message encoded in its base sequence. Biochemistry on our planet is still not advanced enough to synthesize such sophisticated biomolecules, but, judging from the recent progress in biological sciences, it is most likely that our civilization will gain enough information to carry out such a project within a few decades. It has already been suggested that there is no technical difficulty in sending a phage or microorganism to other stars (Crick and Orgel, 1973). The message-carrying particles encapsulated for safety can easily be launched to other stars directionally or isotropically by a civilization such as ours.

Biological media have certain advantages over electromagnetic waves. The phage or microorganism carrying the message can self-replicate after arriving on an appropriate planet. Unlike long distance tele-

Hmm....
 ~IE3I phage per Earth...

Fig. 1. Genetic structure of $\phi 174$ DNA, modified after a figure appearing in Sanger et al., (1977),

Fig. 1. Genetic structure of $\phi 174$ DNA, modified after a figure appearing in Sanger et al., (1977).

Scaffold

3000

Fig. 1. Genetic structure of $\phi 174$ DNA, modified after a figure appearing in Sanger et al., (1977),

Fig. 3. Possible two-dimensional pictures constructed from the sequence listed in Fig. 2. The first (a, d), second (b, e), and third (c, f) nucleotides were arranged in 11×11 arrays, respectively. These letters were put in order from top left to bottom right as in writing an English sentence. In pictures a-c, dark squares were given to purine bases; in d-f, guanine and cytosine were assigned dark squares.

Fig. 3. Possible two-dimensional pictures constructed from the sequence listed in Fig. 2. The first (a, d), second (b, e), and third (c, f) nucleotides were arranged in 11×11 arrays, respectively. These letters were put in order from top left to bottom right as in writing an English sentence. In pictures a-c, dark squares were given to purine bases; in d-f, guanine and cytosine were assigned dark squares.

Manuscript Number: VIRO-12-430R1
Title: A fully decompressed synthetic bacteriophage \varnothing X174 genome assembled and archived in yeast

Article Type: Special Issue: Viruses of Microbes
Section/Category: 10 Genomes \& Evolution
Keywords: refactoring; bacteriophage $ø X 174$; yeast; recombination; synthetic biology; genome engineering; synthetic genomics; DNA assembly; irreducible complexity; overlapping genes

Corresponding Author: Dr. Drew Endy,
Corresponding Author's Institution: Stanford
First Author: Paul R Jaschke
Order of Authors: Paul R Jaschke; Erica K Lieberman; Jon Rodriguez; Adrian Sierra; Drew Endy

Manuscript Number: VIRO-12-430R1

Title: A fully decompressed synthetic bacteriophage $ø X 174$ genome assembled and archived in yeast

Article Type: Special Issue: Viruses of Microbes
Section/Category: 10 Genomes \& Evolution
Keywords: refactoring; bacteriophage $ø X 174$; yeast; recombination; synthetic biology; genome engineering; synthetic genomics; DNA assembly; irreducible complexity; overlapping genes

Corresponding Author: Dr. Drew Endy,
Corresponding Author's Institution: Stanford
First Author: Paul R Jaschke
Order of Authors: Paul R Jaschke; Erica K Lieberman; Jon Rodriguez; Adrian Sierra; Drew Endy

øXI74 is known to have I/ CDSs.

However, analysis suggests ~ 82
ORFs of length 30+ codons with putative RBSs...

Going to try exploring "reverse negative" genomics.
"No matter who you are, most of the smartest people work for someone else" - Bill Joy (?)

"No matter who you are, most of the smartest biological engineers work for someone else"
"No matter who you are, most of the smartest biological engineers work for someone else"
"No matter who you are, most of the smartest biologists work for someone else"
"No matter who you are, most of the smartest biological engineers work for someone else"
"No matter who you are, most of the smartest biologists work for someone else"
"No matter who you are, most of the best bio. parts you need will be engineered by someone else"
"No matter who you are, most of the smartest biological engineers work for someone else"
"No matter who you are, most of the smartest biologists work for someone else"
"No matter who you are, most of the best bio. parts you need will be engineered by someone else"
"No matter who you are, most of the opportunities for what you can engineer will exist somewhere else"
"No matter who you are, most of the smartest biological engineers work for someone else"
"No matter who you are, most of the smartest biologists work for someone else"
"No matter who you are, most of the best bio. parts you need will be engineered by someone else"
"No matter who you are, most of the opportunities for what you can engineer will exist somewhere else"
"No matter who you are, most of the issues arising from what you engineer will ramify somewhere else"
"No matter who you are, most of the smartest biological engineers work for someone else"
"No matter who you are, most of the smartest biologists work for someone else"
"No matter who you are, most of the best bio. parts you need will be engineered by someone else"
"No matter who you are, most of the opportunities for what you can engineer will exist somewhere else"
"No matter who you are, most of the issues arising from what you engineer will ramify somewhere else"
"No matter who you are, most of the best biotechnology ideas will be imagined and made true by someone else"

So what do you (we) do about it?

