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Abstract

In a decentralized supply chain, supplier-buyer negotiations have a dynamic aspect that requires
both players to consider the impact of their decisions on future decisions made by their counterpart.
The interaction generally couples strongly the price decision of the supplier and the quantity decision
of the buyer. As a result, the outcome of the negotiation may not have an equilibrium. We propose
a basic model for a repeated supplier-buyer interaction, during a number of rounds. In each round,
the supplier first quotes a price, and the buyer places an order at that price. We find conditions for
existence and uniqueness of subgame-perfect equilibrium in the dynamic game. We furthermore identify
some demand distributions for which these conditions are met, when costs are stationary and there are
no holding costs. In this scenario and for such demands, we examine the efficiency of the equilibrium
and in particular show that, as the number of rounds increases, the profits of the supply chain increase
towards the supply chain optimum.

1 Introduction

The management of supply chain relationships is an operational lever that can be critical to

a firm’s profitability. Indeed, supplier-buyer negotiations play a central role in establishing

revenues (for suppliers) and costs (for buyers). Well-conducted negotiations are critical in

retail for example, where giants like Wal-Mart in the United States or Aldi in Germany strive

to offer a low-cost proposition.

The process by which a buyer and a supplier interact to fix price and sales quantity is

complex. It is fraught with tensions, as the buyer is interested in obtaining a lower price and

the supplier prefers a higher price provided that the sales quantity is sufficient. Generally,

the outcome of such process is not necessarily efficient for the supply chain. Indeed, prices

are typically higher than the supply chain’s preferred one, because the supplier requests a

price strictly larger than its cost. As a result, the transacted quantities are lower than what

would be best for the chain. This situation is called double marginalization, and has been

documented and analyzed since the 1950s, see Spengler [18]. A lot of research has been done to

propose supply contracts that are beneficial to buyer and supplier, such as buy-back contracts,

revenue sharing or quantity discounts. These mechanisms allow the supply chain to move from

local optimization, where each company takes decisions individually, considering only its own

profits, towards global optimization, where the decisions of all the companies take into account
1A previous version of this paper was titled “Improving Supply Chain Efficiency Through Wholesale Price Renegotiation.”
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aggregated supply chain profits. While these have been implemented with great success many

times, they presuppose a simple negotiation process that cannot always be taken for granted.

In particular, negotiations have a dynamic aspect that expands the strategy space of both

buyer and supplier. This dynamic aspect requires both players to consider the impact of

current decisions on future decisions made by their counterpart. In particular, the strategic use

of inventory by the buyer has been identified as a lever to obtain lower prices from the supplier,

see Anand et al. [1]. We can provide an example in the procurement of scrap metal for a steel

manufacturer. Even though the manufacturer does not need to carry a high level of scrap metal

inventory at any time, it actually stores large piles of it outside the factory, as a way to obtain

lower prices from the suppliers. Indeed, this is a credible threat of the buyer: it will only buy

more raw materials if the price is low enough. Hence, a dynamic negotiation contains many

interesting elements that cannot be revealed in static settings.

The analysis of the dynamic interaction between supplier and buyer is hence complex. It has

only been studied under simplistic settings. Namely, most of the academic work has focused

on two-period models and/or simple linear demand functions. This is because the interaction

generally couples strongly the price decision of the supplier and the quantity decision of the

buyer. As a result, the analysis usually becomes intractable. In particular, it is unclear whether

the outcome of the negotiation actually has an equilibrium where supplier and buyer have no

incentive to unilaterally deviate (as in single-period models). Furthermore, such outcome may

not necessarily be unique.

The purpose of this paper is precisely to tackle these questions. We propose a basic model for

repeated supplier-buyer interaction, during a number of rounds T . In each stage, the supplier

first quotes a price, and the buyer places an order at that price. The costs of delivering the

order may vary over time, and the buyer may have to pay for inventory holding charges. At the

end of the T rounds, the buyer faces a stochastic demand and fulfills it with its total purchase

over the negotiation. With this relatively simple setting, that extends some of the existing

models (Anand et al. [1] and Erhun et al. [9]), we determine how the negotiation will proceed,

and under which circumstances it will have a well-defined and unique outcome. In other words,

we find conditions for existence and uniqueness of subgame-perfect equilibrium in the dynamic

game. We furthermore identify some demand distributions for which these conditions are met,

when costs are stationary and there are no holding costs. In this scenario and for such demands,

we examine the efficiency of the equilibrium and in particular show that, as T increases, the

profits of the supply chain increase towards the supply chain optimum. Our paper hence offers

a technical contribution: it describes how the negotiation proceeds during multiple periods and

a general demand specification.
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Our model reveals that the supplier will in equilibrium propose different prices in each

round, which decrease over time. At each one of these prices, the buyer will place an order.

Even though prices are decreasing in time, the buyer finds it in its best interest to place a

positive order, to force the supplier to reduce its price in the following round. This results

suggests that the buyer uses its cumulative purchase to reduce supplier prices, in the same

way as strategic inventories. Interestingly, as the length of the negotiation increases, both the

supplier’s and the buyer’s profits increase. Indeed, this simple scheme is equivalent to using

a non-linear pricing schedule, which is able to reduce the impact of double marginalization.

In other words, the effects of renegotiation are similar to those of volume discounts, which

push buyers to place larger orders by promising lower prices for the last units ordered. This

insight, that renegotiation has in general the same qualitative effect as a static quantity discount

scheme, is another contribution of the paper that echoes that of Erhun et al. [9].

It is worth pointing out that our model extends previous work from the economics literature

on price skimming, in the case where the buyer is strategic, in the context of a supply chain.

Strategic customers have been studied before, but this paper considers the market power of

buyers as well. That is, in our model, the buyer takes into account the impact of its purchasing

decisions on future prices, in contrast with the literature, e.g., Besanko and Winston [3]. In

addition, our model can be used for further extensions with many buyers and many suppliers,

where buyers are not only strategic but can use their market power.

We start by discussing the literature relevant to this work in §2, and turn to the model in

§3. We present our results in §4 and analyze supply chain efficiency improvements in §5. We

conclude the paper in §6 with a summary of the insights and further research. All the proofs

are contained in the appendix.

2 Literature Review

This paper is related to many models of supplier-buyer interactions. These models are generally

included in the supply contracts literature, which focuses on aligning supply chain incentives.

Cachon [4] provides an excellent review of the field. Pasternack [15], Cachon and Lariviere [5],

Barnes-Schuster et al. [2], Eppen and Iyer [8], among others, present supply contracts that

move the supply chain towards better coordination. Our model also considers the effect of the

supplier-buyer interaction on supply chain efficiency, and in particular, it shows that extending

the negotiation length is beneficial to both parties and the supply chain.

More specifically, the model presented here is directly related to Lariviere and Porteus

[13], where the buyer’s purchased quantity and the supplier’s price are analyzed in a single-
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interaction setting. Song et al. [17] examine the equilibrium price and quantity decisions

for a price-setting newsvendor, and in particular present the same regularity condition on the

demand distribution as in Lariviere and Porteus. Van den Berg [20] discusses the properties of

the demand distribution that guarantee a well-behaved solution to the supplier’s price decision.

Perakis and Roels [16] investigate how serious double marginalization can be in a single-period

model. For this purpose, they study the worst-case performance of supply chains, among all

possible demand distributions, by considering the price of anarchy, i.e., the worst-case ratio

between profits achieved by a decentralized supply chain and a centralized one.

The dynamic nature of supplier-buyer interactions has also been explored before. Debo and

Sun [6] consider an infinitely-repeated game and investigate when supply chain collaboration can

be sustained. They find that, when the discount rate for future profits is high, it is more difficult

to achieve supply chain collaboration. Anand et al. [1] coin the term “strategic inventory”,

and show, in a two-period setting with linear price-dependent demand, that a buyer will find

it profitable to carry inventory so as to reduce the price quoted by the supplier. Keskinocak

et al. [12] analyze a related problem with capacity constraints. Our model uncovers a similar

effect. Namely, the price decision of the supplier is driven by the total purchase made by the

buyer up to the date, and hence it can be used strategically by the buyer to reduce future

prices. Erhun et al. [9] is probably the work that is most similar to ours. They also analyze

a multi-period supplier-buyer interaction, with the difference that in their model the demand

is deterministic and linear with price, as in Anand et al. [1]. This can be mapped in our

framework to having the buyer face a uniform stochastic demand. They observe, as we do,

that supply chain efficiency is improved as the negotiation is extended. In contrast, the focus

of our work is to study the general relationship between supplier prices and buyer purchases,

when demand is not necessarily uniform (i.e., linear in price for Erhun et al. [9]). In particular,

without linearity it is no longer guaranteed that the supplier-buyer game has an equilibrium.

We hence focus on providing a set of conditions on the demand, for which this type of games

can be analyzed. We thus prove some of the observations made in Erhun et al. [9], that suggest

that equilibrium exists when the demand is Pareto or exponentially distributed when T = 2.

In addition, we extend the efficiency study of Erhun et al. to uncover how it depends on the

demand distribution.

Finally, some papers from the revenue management literature are also related to ours, as we

study the pricing problem of the supplier. Talluri and van Ryzin [19] provide an overview of the

literature, and devote one section to price skimming models, which is one of the features of our

equilibrium solution. Elmaghraby and Keskinocak [7] also review the literature: our work falls

into their replenishment/strategic-customers category, since we have no capacity constraint, and
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the buyer considers its effect on the supplier’s pricing strategy. With a myopic buyer, Lazear

[14] develops a model where demand is constant equal to one unit, but the buyer’s valuation is

uncertain and uniformly distributed. The buyer places an order as soon as the price is below its

valuation. The price schedule that maximizes the expected revenue extracted by the supplier is

characterized and decreases over time. Granot et al. [11] extend Lazear’s model by introducing

competition between suppliers, and show that the price decrease may be exponential, rather

than linear. Closer to our work is the model of Besanko and Winston [3], that consider one

supplier and many buyers. They introduce the notion of strategic customers, i.e., when the

buyers anticipate price decreases before placing their orders. They implicitly assume that

the buyers have no market power, i.e., their strategy has no impact on the supplier’s price.

In contrast, since we consider a single buyer, we take into account how the buyer’s ordering

strategy influences the supplier’s prices.

3 The Model

3.1 The Setting

We consider a firm, that we call the buyer, that has a single opportunity to serve a stochastic

demand D. In order to fulfill the demand, the buyer must install inventory prior to the demand

realization. This inventory can be ordered from a supplier. If the total order quantity is lower

than the demand, then sales are lost; otherwise there is excess inventory that must be discarded

for a low salvage value. We denote by f the p.d.f. of the demand, and by F its c.d.f. F . Let

F = 1− F .

Upstream on the supply chain, the supplier sells to the buyer, at a price that it must choose

appropriately. The details of the interaction between supplier and buyer go as follows. There

are T negotiation stages, from t = 1 (first) to t = T (last, immediately before demand is

realized). In each stage, the supplier proposes a price pt to the buyer, and the buyer buys

qt ≥ 0. We denote by xt be the cumulative order of the buyer from period 1 up to t− 1, both

included. Thus, we have x1 = 0, and xT+1 the total quantity purchased through the entire

negotiation.

The per-unit cost for the supplier in period t is denoted ct ≥ 0. Hence, the supplier’s profit

can be expressed as
T∑

t=1

(pt − ct)qt.

For the buyer, the supplier’s revenue corresponds to a cost. The buyer must also take into

account the cost of holding the inventory purchased: we assume that it pays a per-unit cost

of ht for each unit that has been purchased at t or before. The total holding cost can thus be
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written as
T∑

t=1

htxt. Finally, we must in addition consider the revenue obtained at the end of

the negotiation. Without loss of generality, let r = 1 be the per-unit sales revenue and v = 0

the salvage value, which leads to a revenue of E min {D, xT+1}. The buyer’s profit is hence

E min {D,xT+1} −
T∑

t=1

htxt −
T∑

t=1

ptqt.

Buyer and supplier take decisions so as to maximize their respective expected profits. We are

interested in determining the subgame-perfect equilibrium of the game that buyer and supplier

play, as defined in Fudenberg and Tirole [10]. For this purpose, we consider that the strategies

of each player in period t may depend on the current state of the negotiation (since we focus

on subgame-perfect equilibrium, players’ decisions can only depend on state variables that can

influence the subgame from period t to T ). Specifically, for each time period t, for each state

of the world (this is captured through the cumulative purchase xt), the supplier sets the price

pt(xt) that maximizes its profit-to-go given the buyer’s strategy; alternatively, for each t, xt and

pt, the buyer purchases qt(pt, xt) that maximizes its profit-to-go given the supplier’s strategy.

When T = 1, our model corresponds to Lariviere and Porteus [13].

In order to understand the players’ decisions, we denote by Bt(xt) be the maximum expected

profit that the buyer can achieve from period t to T , with a stock of xt at the beginning

of period t. This formulation assumes (for now, we prove it later) that both players follow

subgame-perfect equilibrium strategies from t + 1 to T . Clearly,

BT+1(xT+1) = E min {D,xT+1} =
∫ xT+1

0
F (a)da.

Similarly, we denote by St(xt) the maximum profit that the supplier receives from period t + 1

to T when the buyer has a starting stock of xt at the end time t. We have that ST+1(xT+1) = 0,

since, when the negotiation is over, the supplier cannot sell to the buyer anymore.

We can describe the buyer’s problem in period t, given pt, as

max
qt≥0

{
− ptqt − htxt + Bt+1(xt + qt)

}
. (1)

Let q∗t (pt, xt) be the order that maximizes the buyer’s profit at time t. Note that when Bt+1

is concave, the optimal policy is to order up to xt+1, where B′
t+1(xt+1) = pt, i.e., q∗t (pt, xt) =

max
{(

B′
t+1

)−1 (pt)− xt, 0
}

.

Using the optimal quantity from Equation (1), the supplier’s problem can simply be ex-

pressed as
St(xt) = max

pt

{
(pt − ct) q∗t (pt, xt) + St+1 (xt + q∗t (pt, xt))

}
. (2)
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From Equation (2), we obtain p∗t (xt) and the corresponding x∗t+1(xt) = xt+q∗t (p∗t (xt), xt). With

this notation, we have

St(xt) = (p∗t (xt)− ct) (x∗t+1(xt)− xt) + St+1

(
x∗t+1(xt)

)

Bt(xt) = −p∗t (xt)
(
x∗t+1(xt)− xt

)− htxt + Bt+1

(
x∗t+1(xt)

) (3)

We observe that the problem’s order and price paths depend only on the parameter xt, the

cumulative amount of orders placed before the negotiation stage t. In particular, the supplier

implicitly fixes the buyer’s order quantity by setting the right price.

Note that for each negotiation stage,

Bt(xt) + St(xt) = Bt+1(xt+1) + St+1(xt+1)− ct(xt+1 − xt)− htxt

= BT+1(xT+1)−
T∑

τ=t

cτ (xτ+1 − xτ )−
T∑

τ=t

hτxτ .

Obviously, the total supply chain profit does not directly depend on the payments between

buyer and supplier.

After formulating the supplier-buyer interaction, several questions arise. First, one must

ensure that a subgame-perfect equilibrium in pure strategies exists. As in most dynamic games,

it is important that this equilibrium is also unique, in order for the value functions Bt and St

to be uniquely defined. Second, it is important to understand what drives the equilibrium

decisions and profits. It is particularly interesting to understand the impact of the length of

the negotiation on profits, as this will drive the incentives for buyer and seller to conduct longer

or shorter negotiations.

3.2 Example and Intuition

Consider the case of a buyer that faces a stochastic demand uniformly distributed in [0, 1] and

that the production cost is c = 0 and there is no holding cost. In that case, a centralized supply

chain would install inventory up to the maximum demand, i.e., x = 1. The supply chain profits

would thus be ED = 0.5.

In the decentralized supply chain, supplier and buyer will sequentially decide pt and qt so

that their respective expected profits are maximized. In general, their decisions will not coincide

with the supply chain optimum, i.e., xT+1 < 1. This phenomenon, double marginalization, will

generally occur in our model.

For example, when there is only one negotiation period, T = 1, the supplier would set a

wholesale of w = 0.5, so that the inventory level installed by the buyer is x = 0.5. Consequently

the profit of the supplier is wx = 0.25, while the expected profit of the buyer is Emin{x,D} −
wx = 0.125. The total supply chain profits are thus 0.375, only 75% of the centralized case.
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Consider now the simplest dynamic problem: the situation where there are two negotiation

periods, T = 2. We can show that in equilibrium, in the first period, the supplier sets a price

of w1 = 0.5625, so that the buyer places an order for q1 = 0.25; in the second period, the

supplier lowers the wholesale price to w2 = 0.375, and the buyer places an additional order

for q2 = 0.375. Thus the total inventory purchased is x2 = 0.625, which yields profits of

w1q1 + w2q2 = 0.28125 > 0.25 for the supplier and Emin{x,D} − w1q1 − w2q2 = 0.1484375 >

0.125. Thus, both supplier and buyer win. More generally, this example suggests that, as the

number of negotiation stages increases, supply chain efficiency increases. This is true provided

that there are no holding costs and costs are stationary, as seen in §5.

In this example, one may wonder why the buyer places an order at price w1 > 0.5. Indeed,

the buyer can perfectly anticipate the decrease in price at the final period. However, its rational

choice is to purchase q1 > 0: by placing a positive-quantity order, it takes into account that

this will result in a price decrease even larger than if no order was placed. This improves its

overall profits. This dynamic interaction is similar to the one derived in Anand et al. [1], where

it is optimal for the buyer to initially carry excess inventory in order to force the supplier to

decrease prices.

Through the example above, we can see how extending the negotiation length T can benefit

both players. In the next section we develop conditions under which the buyer and supplier

problems are well-behaved, so that a unique equilibrium exists. Under these conditions, we can

characterize the optimal supplier pricing and buyer purchasing strategies.

4 The T -periods Negotiation

4.1 Existence and Uniqueness of Equilibrium

We first need to guarantee that a multi-period equilibrium exists, and is unique. It is guaranteed

when the optimality problems in Equations (1) and (2) have interior unique solutions for all

t = 1, . . . , T . This is true if and only if:

• for all t and pt, Bt(z)− ptz is pseudo-concave in z: in that case, p∗t (xt) = B′
t+1(x

∗
t+1(xt));

• for all t and xt, (B′
t+1(z)− c)(z − xt) + St+1(z) is pseudo-concave in z.

It is not clear that these properties are always satisfied by the recursive Equation (3).

Some regularity conditions, involving the demand distribution, are hence necessary for pseudo-

concavity to be preserved in the recursion. In the single-period setting with T = 1, it has been

suggested in Lariviere and Porteus [13], Song et al. [17] or van den Berg [20] that it is sufficient

that the demand distribution has the IGFR (increasing generalized failure rate) property, i.e.,
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that
zf(z)
F̄ (z)

is increasing in z. Interestingly, this statement is accurate provided that the starting

inventory is zero. In order to extend it to a multi-period situation, the requirement is somewhat

stronger: in the last period,
(z − x)f(z)

F̄ (z)
has to be increasing in z for all x. Hence, it seems clear

that some strong distributional properties are necessary to extend single-period negotiation into

a multi-period one.

In order to simplify the exposition, we define for each xt, the auxiliary variable xfin that

represents the final total order quantity:

xfin := x∗T+1

(
x∗T (. . . x∗t+1(xt) . . .)

)
.

Let yt such that

yt(xfin) = xt. (4)

yt relates xt, the starting inventory level at the beginning of period t, to the total order placed

from 1 to T , assuming that supplier and buyer follow their optimal strategies from t to T . In

addition, it is clear that yT+1(xfin) = xfin. Generally, yt be defined sequentially for t = T + 1,

then for t = T , etc.

It turns out that we can rewrite in relatively simple way Bt and St as functions of xfin, using

the auxiliary function yt. Let bt(xfin) = Bt (yt(xfin)) and st(xfin) = St (yt(xfin)) . Working

with xfin instead of xt+1, we can rewrite the buyer’s problem of Equation (1) as

max
xfin≥xt

{
− pt(yt+1(xfin)− xt)− htxt + bt+1(xfin)

}
. (5)

For the maximization problem to have a unique interior solution, we must have that−pty
′
t+1(xfin)+

b′t+1(xfin) = 0 has a unique solution, and is positive before, and negative after that solution.

It is thus sufficient that

ut(xfin) :=
b′t+1(xfin)
y′t+1(xfin)

(6)

is decreasing in xfin.

In that case, for each pt, the buyer selects a unique x∗fin such that ut(xfin) = pt. In

particular, uT (xfin) = F (xfin).

Using this observation in Equation (2) allows us to rewrite the equation into

St(xt) = max
xfin≥xt

{
(ut(xfin)− ct) (yt+1(xfin)− xt) + st+1 (xfin)

}
. (7)

The theorem below provides the conditions to ensure that both the buyer’s and the supplier’s

problem have a unique optimal solution, and that both yt and ut are well-defined. In the

theorem, we let cT+1 = hT+1 = 0.
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Theorem 1 Define yT+1(x) = x and uT ≡ F . For all t = T, . . . , 1, let

yt(x) := yt+1(x)−max

{
0,

F (x)−∑T+1
τ=t+1(cτ−1 − cτ + hτ )y′τ (x)

−u′t(x)

}
(8)

and

ut−1(x) := ut(x) + max

{
0,

F (x)−∑T+1
τ=t+1(cτ−1 − cτ + hτ )y′τ (x)

y′t(xfin)

}
− ht. (9)

When for all t = 1, . . . , T , ut(x) is decreasing and yt(x) increasing, then there exists a unique

subgame-perfect equilibrium in the T -period game. In this equilibrium, if the current inventory

position is xt in period t, the supplier sets a price equal to p∗t = ut(y−1
t (xt)) and the buyer

purchases q∗t = yt+1(y−1
t (xt))− xt.

The theorem characterizes recursively yt, that allows us to retrieve the optimal control

from the supplier’s point of view, and ut, that determines the buyer’s response to the supplier’s

price. More importantly, it provides a sufficient condition that guarantees that the multi-period

supplier-buyer game has an equilibrium. This condition is non-trivial, and has an implicit

formulation. For example, when T = 1, the sufficient condition is that uT = F is decreasing

and that yT (xfin) = xfin − F (xfin)−cT

f(xfin) is increasing.

For the equilibrium to be well defined and unique, we need the demand distribution (through

F ) to satisfy some regularity conditions. As t decreases away from T , it becomes increasingly

difficult to verify that yt is increasing and ut is decreasing. We investigate next some conditions

that lead to these desired regularity conditions. For this purpose, we focus on the scenario where

the production cost is constant and there are no inventory costs: ht = 0 and ct = c ∈ [0, 1], for

t = 1, . . . , T . This simpler setting allows us to derive stronger results analytically.

In that case, Equations (8) and (9) become yt(x) = x, ut(x) = 0 when F (x) ≤ c, and when

F (x) > c

yt(x) := yt+1(x)− F (x)− c

−u′t(x)
(10)

and

ut−1(x) := ut(x) +
F (x)− c

y′t(x)
. (11)

4.2 Conditions on the Demand Distribution

Notice that in Equations (10) and (11), the recursion depends on the shape of the demand

distribution, through F (x)− c. We can transform the problem to identify the demand features

that lead to an equilibrium. For this purpose, define

g(p) = f
(
F
−1(p + c)

)
. (12)
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Lemma 1 Consider yt, ut satisfying Equations (10) and (11). Let zt(p) := F
−1(p + c) −

yt

(
F
−1(p + c)

)
and vt(p) := ut

(
F
−1(p + c)

)
. Then zt and vt satisfy zT+1 ≡ 0, vT (p) = p + c,

and for all t = T, . . . , 1,

zt(p) = zt+1(p) +
p

g(p)v′t(p)
(13)

and

vt−1(p) = vt(p) +
p

1 + g(p)z′t(p)
. (14)

If zt − F
−1(p + c) and vt are increasing for all t = 1, . . . , T , there exists a unique subgame-

perfect equilibrium in the T -period game.

This reformulation simplifies the analysis. Indeed, both the cost and the demand distribution

have been collapsed into a single parameter, the function g(p) = f
(
F
−1(p + c)

)
. In order to

use Theorem 1, g must have some regularity properties. Interestingly, this function is related

to the log-concavity of the demand distribution. Indeed, g is concave if and only if f ′/f is

non-increasing, i.e., f is log-concave, since

g′(F (x)− c) = −f ′(x)
f(x)

. (15)

Note that the demand distribution is log-concave for uniform, exponential, gamma or normal

demands, among many others. Next, we solve the recursion of Equations (13) and (14) for

selected demand distributions.

Lemma 2 Consider g(p) = apb, with b ≤ 2. Then the solution to the recursive equations (13)

and (14) is given by zt(p) = ztp
1−b and vt(p) = vtp + c, where, for all t = 1, . . . , T ,

zt =
1

a(1− b)

(
T−t∏

k=0

(2− b)(k + 1)
(2− b)k + 1

− 1

)
(16)

and

vt = (2− b)(T − t + 1)

(
T−t∏

k=0

(2− b)k + 1
(2− b)(k + 1)

)
. (17)

The lemma thus provides a closed-form expression for zt and vt when g = apb. Notice that

the case with b = 0 corresponds to the case of the uniform distribution. The case b = 1 + 1/β,

with β > 1 corresponds to a Pareto distribution with finite mean, i.e., F (x) = (1 + x)−β, with

c = 0. The case b = 1 corresponds to the exponential distribution with c = 0. This leads to

the following corollary.

Corollary 1 When ht = 0 and ct = c, there exists a unique subgame-perfect equilibrium in the

T -period game when

11



• the demand is uniformly distributed;

• the demand is Pareto distributed with finite mean and c = 0;

• the demand is exponentially distributed and c = 0.

In addition, Lemma 2 can be used to establish the properties around 0 of the solutions to

Equations (13) and (14) for any demand distribution.

Lemma 3 Consider g such that g(0) > 0. Then the solution to the recursive equations (13)

and (14) are such that, for all t = T, . . . , 1,

zt(0) = 0,
dzt

dp
(0) =

1
g(0)

(
22(T−t+1)((T − t + 1)!)2

(2(T − t + 1))!
− 1

)

and

vt(0) = c,
dvt

dp
(0) =

(2(T − t) + 1)!
22(T−t)((T − t)!)2

.

Lemma 3 characterizes the slope of the function zt around p = 0. When a unique subgame-

perfect equilibrium exists, this result allows us to derive the asymptotic efficiency of the supply

chain for large T , see §5,

Lemma 2 is appropriate when the demand distribution is such that f is decreasing, which

results in g(p) being an increasing function from Equation (15). In contrast, when f is unimodal,

then g(p) is first increasing and then decreasing. While the general analysis in that case is

intractable, the following lemma identifies one family of distributions for which a closed-form

solution exists.

Lemma 4 Consider g(p) = ap
(
1− p

r

)
, with a ≥ 0, r ≥ 1 − c. Then the solution to the

recursive equations (13) and (14) is given by

zt =
1
a

(
T+1−t∑

k=1

1
k

(
1− p

r

)−k
)

and

vt = c + r

(
1−

(
1− p

r

)T+1−t
)

.

This lemma implies that for the unimodal demand distribution such that g(p) = ap
(
1− p

r

)
,

a unique subgame-perfect equilibrium in the T -period game. Interestingly, this distribution can

be chosen to approximate accurately a normal demand distribution. Indeed, consider a normal

distribution of average µ and standard deviation σ, and c = 0. As shown in Figure 1, F can

be approximated well by

F a(x) =
1

1 + e
x−µ
σa

.

12



where σa = σ

√
Π
8

. This approximation is very accurate for values around the mean, but has

heavier tails than the normal distribution.

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Normal distribution p.d.f.
Approximated p.d.f.

Figure 1: Comparison of the p.d.f. of the normal distribution of mean µ = 100 and standard deviation

σ = 30, with the p.d.f. fa with σa = σ

√
Π
8

.

For this distribution, fa(x) =
e

x−µ
σa

σa
(
1 + e

x−µ
σa

)2 and when c = 0, ga(p) =
p(1− p)

σa
, for which

Lemma 4 can be applied. Hence the result shows that for a demand that is quite similar to the

normal distribution, an equilibrium exists.

Finally, to conclude this section, we analyze in detail the solution of the recursion presented

in Lemma 1 for the exponential demand. When F (x) = e−ax with a > 0, then g(p) = a(p + c).

Lemma 5 Consider g(p) = a(p + c). Then the solution to the recursive equations (13) and

(14) is given by

zt(p) =
POL1

t

(p
c

)

aPOL2
t

(p
c

) and vt(p) = c

[
1 +

POL3
t

(p
c

)

POL4
t

(p
c

)
]

13



where POLi
t are polynomials. The sequence of polynomials satisfies the recursion

POL1
T+1 = 0, POL2

T+1 = 1, POL3
T = X, POL4

T = 1

POL2
t = (X + 1)POL2

t+1

{(
POL3

t

)′
POL4

t −
(
POL4

t

)′
POL3

t

}

POL1
t = (X + 1)POL1

t+1

{(
POL3

t

)′
POL4

t −
(
POL4

t

)′
POL3

t

}
+ XPOL2

t+1

(
POL4

t

)2

POL4
t−1 = POL4

t

[(
POL2

t

)2
+ (X + 1)

{(
POL1

t

)′
POL2

t − POL1
t

(
POL2

t

)′}]

POL3
t−1 = POL3

t

[(
POL2

t

)2
+ (X + 1)

{(
POL1

t

)′
POL2

t − POL1
t

(
POL2

t

)′}]
+ XPOL4

t

(
POL2

t

)2
.

We present below the first elements of the sequence.

POL1
T = X,

POL2
T = X + 1,

POL3
T−1 = X(X + 1)(2X + 3),

POL4
T−1 = (X + 1)(X + 2).

POL1
T−1 = X(X + 1)3(3X2 + 12X + 10),

POL2
T−1 = 2(X + 1)5(X + 3),

POL3
T−2 = 2X(X + 1)9(X + 2)2(6X3 + 40X2 + 75X + 45),

POL4
T−2 = 2(X + 1)9(X + 2)2(2X3 + 15X2 + 33X + 24).

As t decreases away from T , we obtain a sequence of polynomials with positive coefficients. In

addition, we observe that these polynomials are such that
POL1

t

POL2
t

and
POL3

t

POL4
t

are non-decreasing.

These curves are illustrated in Figure 2.

5 Supply Chain Efficiency

In this section, we analyze the gains of supply chain efficiency achieved by extending the length

T of the negotiation. For this purpose, we compare the highest supply chain expected profit,

achieved by global optimization, to the supply chain expected profit in the decentralized setting,

where buyer and supplier have T negotiation periods before facing the demand. We focus again

on the case where ct = c, ht = 0 to derive analytical results.

Let Q∗ be the optimal centralized quantity, that achieves global optimization: Q∗ is such

that F (Q∗) = c. In addition, let SC∗ be the corresponding supply chain profit. We compare

14
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Figure 2: Plot of
POL1

t

POL2
t

and 1 +
POL3

t

POL4
t

for t = T, T − 2, T − 4, T − 6. This implies that zt is increasing

concave, and vt increasing convex.

Q∗ and SC∗ to QT and SCT , the total ordering quantity and supply chain profit, after T

negotiation rounds. QT satisfies y1(QT ) = 0.

Theorem 2 Consider yt and ut defined by Equations (10) and (11) and assume that, for

t = 1, . . . , T , yt(x) is increasing and ut(x) decreasing for x < Q∗. Then QT and SCT are

increasing in T . In addition,

lim
T→∞

QT = Q∗ and lim
T→∞

SCT = SC∗.

Thus, the efficiency of the supply chain improves with the number of negotiation rounds.

In addition, the longer the time horizon, the higher the buyer and the supplier’s profits, and

hence the higher the supply chain profit. Both players benefit from extending the negotiation.

This insight extends the observation made in Anand et al. [1] that a two-period interaction

yields higher profits than the single-period scenario.

This result immediately leads to another question: how fast does the ordering quantity QT

and supply chain profit SCT converge to the optimal Q∗ and SC∗? It turns out that the

convergence rate of the ordering quantity is independent of the demand distribution, as long

some regularity conditions are satisfied, as shown below.

We consider first the uniform distribution in [Dmin, Dmax]. Applying Lemma 2 with a =
1

Dmax −Dmin
, b = 0, yields that for z ∈ [Dmin, Dmax]

yT (x) = x−
(

22T (T !)2

(2T )!
− 1

)
(Q∗ − x).
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where Q∗ = Dmax − c

a
is the centralized optimal order quantity. The total capacity installed

after T negotiation stages QT satisfies y1(QT ) = 0. Solving the algebra yields that
Q∗ −QT

Q∗ =

(2T )!
22T (T !)2

. The Stirling factorial approximation allows us to approximate the relative deviation

to Q∗ for large T , as
Q∗ −QT

Q∗ ≈
√

1
ΠT

, (18)

where Π ≈ 3.1416. Furthermore, the supply chain profit can be expressed as SCT =
∫ QT

0
F (t)dt−

cQT while the centralized optimal profit is SC∗ =
∫ Q∗

0
F (t)dt− cQ∗. Thus, we have

SC∗ − SCT =
∫ Q∗

QT

F (t)dt− (Q∗ −QT )F (Q∗) =
∫ Q∗

QT

(t−QT )f(t)dt.

and since f(t) = a and SC∗ =
a(Q∗)2

2
,

SC∗ − SCT

SC∗ =
(

(2T )!
22T (T !)2

)2

. (19)

For T = 1, the supply chain inefficiency is thus 25% and for large T ,
SC∗ − SCT

SC∗ ≈ 1
ΠT

.

The supply chain loss of optimality thus decreases with 1/T .

The split of profit between supplier and buyer can also be calculated. The supplier’s profit

can be expressed as

s1(QT ) =
T∑

k=1

(uk(QT )− c) (yk(QT )− yk−1(QT ))

= a (Q∗ −QT )2
T∑

k=1

(2k − 1)!
22k−2((k − 1)!)2

22k−2((k − 1)!)2

(2k − 1)!

= a (Q∗ −QT )2 T

= 2T

(
Q∗ −QT

Q∗

)2

· SC∗

As a result, when T → ∞, sT (QT ) → 2
Π

SC∗, a result contained in Erhun et al. [9]. Also,

since
Q∗ −Q1

Q∗ =
1
2
, s1(Q1) =

1
2
SC∗. Thus, the maximum gain achieved by the supplier

is 4/Π − 1 ≈ 27.3%. The maximum supply chain gain is 4/3 − 1 = 33.3%, while the gain

by the buyer is (4 − 8/Π) − 1 ≈ 45.6%. The extension of the negotiation thus benefits the

buyer more than the supplier, and the supply chain share of profit for the supplier goes from
s1(Q1)
SC1

=
2
3

= 66.6% to
sT (QT )
SCT

→ 2
Π
≈ 63.7%.
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Interestingly, the asymptotic behavior of QT and SCT in the general case can be derived

from the uniform demand case. Indeed, Lemma 3 shows that, around Q∗ (and p = 0 by using

the transformation proposed in Theorem 1), the functions z1 and y1 can be approximated

locally by linear functions. This allows us to derive the following result.

Theorem 3 Consider yt and ut defined by Equations (10) and (11). Assume that f(Q∗) > 0

and that around Q∗, f is smooth, i.e., infinitely differentiable. Assume also that yt is increasing

and ut is decreasing for x < Q∗. Then, for large T ,

Q∗ −QT

Q∗ =
1√
Π
· 1√

T
+ εQ

(
1√
T

)

and
SC∗ − SCT

SC∗ =
f(Q∗)(Q∗)2

2SC∗Π
· 1
T

+ εSC

(
1
T

)
,

where εi(s)/s → 0 when s → 0.

This asymptotic result complements the observations of Erhun et al. [9] and Anand et al.

[1]. It establishes that not only the outcome of the multi-period negotiation improves supply

chain efficiency, but also it provides a technical derivation of the speed of this improvement.

The theorem suggests that QT converges to Q∗ with the square-root of T . In addition,

1 − QT

Q∗ falls with
γ√
T

, where γ =
1√
Π

, independent of the distribution, and relies only on

the fact that the demand p.d.f. is sufficiently smooth near Q∗. Finally, we observe that the

sub-optimality gap 1 − SCT

SC∗ falls with
1
T

. The convergence coefficient does depend on the

demand distribution.

Theorem 3’s convergence results are illustrated by the numerical experiments below. We

examine the improvement of supply chain efficiency, as a function of the length of the negotiation

horizon. We focus on uniform, exponential, normal and Pareto distributions. Interestingly,

Perakis and Roels [16] show that, when T = 1, the class of Pareto distributions achieves the

worst-case sub-optimality gap. As we show below, this gap is rapidly corrected as T increases.

Figure 3 (right) shows how, for all four distributions plotted, the sub-optimality gap decreases

with
1
T

approximately. Figure 3 (left) shows the decrease of 1− QT

Q∗ . Figure 4 shows how the

sub-optimality gap goes to 0, for several distributions.

Finally, we have compared the share of the supply chain profit going to the buyer. It is

relatively stable, as shown in Figure 5. This implies that the additional profit generated by

extending the negotiation horizon is shared approximately in a proportional manner, according

to the initial split of profit with T = 1.
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Figure 3: Evolution of 1 − QT

Q∗ (left) and 1 − SCT

SC∗ (right) as a function of T , shown in a log-log scale

plot. We show the results for several demand distributions: the uniform [0,1], the exponential of decay

rate 1, the normal distribution of mean 100 and standard deviation 30, and the Pareto distribution with

F (x) =
1

(1 + x)2
. We set c = 0.2. We observe that the log-log slope is approximately −1/2 for the left

figure, and −1 for the right figure.

T = 1 T = 2 T = 5 T = 20

Uniform [0,1] 24.9% 14.0% 6.0% 1.6%

Uniform [5,6] 8.8% 3.3% 1.4% 0.4%

Exponential z = 1 29.8% 15.9% 6.9% 1.7%

Normal µ = 100, σ = 30 23.0% 12.6% 5.8% 1.6%

Normal µ = 100, σ = 50 24.4% 15.9% 7.0% 1.7%

Pareto β = 2 34.6% 15.9% 7.5% 1.7%

Pareto β = 1.1 29.7% 17.2% 7.4% 1.7%

Figure 4: Optimality gap 1− SCT

SC∗ , for several demand distributions, and c = 0.2. Note that the gap for the

uniform [5,6] is much smaller than the rest because there Q∗ = 5.8, SC∗ = 4.32, and thus
f(Q∗)(Q∗)2

2SC∗ ≈

3.89, relatively high. This is in contrast with the uniform [0,1], where
f(Q∗)(Q∗)2

2SC∗ = 1.

18



T = 1 T = 2 T = 5 T = 20

Uniform [0,1] 33.4% 34.6% 35.6% 36.2%

Uniform [5,6] 0% 2.6% 3.5% 4.2%

Exponential z = 1 37.3% 38.4% 39.3% 40.1%

Normal µ = 100, σ = 30 19.1% 21.6% 23.2% 23.6%

Normal µ = 100, σ = 50 26.9% 25.3% 26.8% 27.4%

Pareto β = 2 36.6% 39.1% 39.6% 41.2%

Pareto β = 1.1 45.4% 44.9% 45.1% 45.4%

Figure 5: Share of supply chain profit going to the buyer, for several demand distributions, and c = 0.2.

6 Conclusions

In this paper, we have presented a model to analyze repeated supplier-buyer interactions. The

buyer faces a stochastic demand, and must purchase inventory to serve this demand before it

is realized. The inventory can be ordered from a supplier, over a T -period horizon, where in

each period, the supplier chooses the price in its best interest.

We use the concept of subgame perfection to define the equilibrium price (for the supplier)

and quantity purchase (for the buyer). We provide sufficient conditions to guarantee that such

equilibrium exists and is unique. These conditions are satisfied for several demand distributions

including uniform, approximate normal and exponential demand. In the resulting equilibrium,

the buyer will place initial orders in order to force the supplier to reduce its prices, a motivation

that is similar to the use of strategic inventory in Anand et al. [1].

In addition, we show that supply chain efficiency increases with the length of the negotiation

T . Specifically, we show that the sub-optimality gap between the T -periods negotiation and the

centralized supply chain falls with 1/T , regardless of the demand distribution. Thus, for large

T , the negotiation situation approaches the highest possible efficiency for the supply chain.

Interestingly, our iterative approach provides an asymptotic coordination mechanism with a

single profit sharing between buyer and supplier. While it requires a more complex interaction

between supplier and buyer, it replicates the effect of a quantity discounts, since the buyer now

places orders at different prices with the supplier.

Furthermore, our work presents a number of interesting questions to be explored in the

future.

First, our work focuses on the negotiation between one supplier and one buyer, both strate-

gic. The revenue management literature has studied in a different setting the pricing problem
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of one supplier pricing against one buyer with probabilistic willingness-to-pay. Since the sup-

plier maximizes its expected profit, this is equivalent to pricing against infinite buyers. This

situation has been studied both for myopic buyers, see Lazear [14], and for strategic customers,

see Besanko and Wilson [3]. Thus, both the one-buyer situation and the infinite-buyer situation

have been studied. The n-buyers situation is an immediate extension of this work.

Second, following Granot et al. [11], the extension to the case of multiple suppliers is

also interesting. In that situation, the buyer faces the trade-off between placing orders in the

beginning, at a higher price, so that suppliers can offer lower prices, or wait for the suppliers to

compete and reduce prices. This new trade-off may change the suppliers’ behavior in comparison

with the present paper.
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Online Appendix: Proofs

Proof of Theorem 1

Proof. We prove the theorem by recursion for t = T to 1. The induction property at t is

the following: if for τ = t to T , uτ is decreasing, yτ is increasing, then there exists a unique

subgame-perfect equilibrium for the subgame from t to T that satisfies the properties from the

theorem.

The property is clearly true for t = T . We assume it is true for t + 1, and prove it for t.

Let us assume that for τ = t to T , uτ is decreasing, yτ is increasing, and show that there is a

unique subgame-perfect equilibrium starting at t.

We first focus on the buyer’s decision at t. As mentioned before the theorem, the buyer’s

problem is well-behaved when ut is decreasing, which we assumed.

Second, the final order quantity xfin preferred by the supplier is unique when

s′t+1(xfin) + b′t+1(xfin)− ct

(
y′t+1(xfin)

)
+ u′t(xfin)

(
yt+1(xfin)− xt

)
= 0 (20)

has a unique solution no smaller than xt (or is always negative above xt).

Noting that bt(xfin) + st(xfin) =
∫ xfin

0
F −

T∑
τ=t

cτ (yτ+1(xfin)− yτ (xfin))−
T∑

τ=t

hτyτ (xfin),

we have that b′t(xfin)+ s′t(xfin) = F (xfin)−
T∑

τ=t

cτ (y′τ+1(xfin)−y′τ (xfin))−
T∑

τ=t

hτy
′
τ (xfin). We

can rewrite this as

b′t(xfin) + s′t(xfin) = F (xfin) + ct−1y
′
t(xfin)−

T+1∑
τ=t

(cτ−1 − cτ + hτ )y′τ (xfin).

Hence Equation (20) can be expressed as

F (xfin)−
T+1∑

τ=t+1

(cτ−1 − cτ + hτ )y′τ (xfin) + u′t(xfin)
(
yt+1(xfin)− xt

)
= 0

Hence, it is sufficient that

yt+1(xfin)− F (xfin)−∑T+1
τ=t+1(cτ−1 − cτ + hτ )y′τ (xfin)

−u′t(xfin)

is increasing, because it is equal to yt(xfin), which was assumed to be increasing. Hence, a

unique equilibrium exists in the subgame from t to T .

The characterization of the optimal order quantity is such that

xt = yt(xfin) = yt+1(xfin)− F (xfin)−∑T+1
τ=t+1(cτ−1 − cτ + hτ )y′τ (xfin)

−u′t(xfin)
.
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when the solution is interior. When the optimal solution is xfin = xt, then xt = xt+1 = . . . =

xfin, and hence

xt = yt(xfin) = yt+1(xfin).

This explains Equation (8).

Finally, we can rewrite the buyer’s profit, i.e., bt(xfin):

bt(xfin) = −ut(xfin)(yt+1(xfin)− yt(xfin))− htyt(xfin) + bt+1(xfin) (21)

which implies, when the solution is interior, that

b′t(xfin) = b′t+1(xfin)− ut(xfin)(y′t+1(xfin)− y′t(xfin))− u′t(xfin)(yt+1(xfin)− yt(xfin))− hty
′
t(xfin)

= ut(xfin)y′t+1(xfin)− ut(xfin)(y′t+1(xfin)− y′t(xfin))

+F (xfin)−
T+1∑

τ=t+1

(cτ−1 − cτ + hτ )y′τ (xfin)− hty
′
t(xfin)

or equivalently

ut−1(xfin) = ut(xfin) +
F (xfin)−∑T+1

τ=t+1(cτ−1 − cτ + hτ )y′τ (xfin)
y′t(xfin)

− ht.

In contrast, when the solution is not interior, yt(xfin) = yt+1(xfin), and hence b′t(xfin) =

b′t+1(xfin)−hty
′
t(xfin), and hence ut−1(xfin) = ut(xfin)−ht. This provides Equation (9). Note

that the recursion can proceed while yt is increasing and ut decreasing, the required condition.

Proof of Lemma 1

Proof. This simply involves the change of variables p = F (x)−c. Thus zt(F (x)−c) = x−yt(x)

and vt(F (x)− c) = ut(x). zt and vt satisfy the recursion stated in the lemma because

−f(x)z′t(F (x)− c) = 1− y′t(x) and − f(x)v′t(F (x)− c) = u′t

and hence

zt(p) = zt+1(p) +
p

g(p)v′t(p)
and vt−1(p) = vt(p) +

p

1 + g(p)z′t(p)

When vt and zt−F
−1(p+ c) functions are increasing in p for t = 1, . . . , T , then yt is increasing

and ut is decreasing. Applying Theorem 1 yields the existence and uniqueness of equilibrium.
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Proof of Lemma 2

Proof. We can verify easily that the recursion given by Equations (13) and (14) is satisfied

by zt = ztp
1−b and vt = vtp + c, where zT+1 = 0, vT = 1 and for t ≤ T ,

zt = zt+1 +
1

avt
, vt−1 = vt +

1
1 + a(1− b)zt

.

The coefficients zt and vt can be found observing that
(

(1− b)zt +
1
a

)
vt−1 =

(
(1− b)zt +

1
a

)
vt +

1
a

=
(

(1− b)zt+1 +
1
a

)
vt +

2− b

a

Thus, using the initial conditions at t = T+1, we have that
(

(1− b)zt +
1
a

)
vt−1 =

(2− b)(T + 1− t) + 1
a

and hence

vt−1 =
(2− b)(T + 1− t) + 1

a(1− b)zt + 1
. (22)

In addition, substituting this in the recursion for zt yields zt = zt+1 +
(1− b)zt+1 +

1
a

(2− b)(T − t) + 1
. Thus,

(1− b)zt +
1
a

=
(

(1− b)zt+1 +
1
a

)(
1 +

1− b

(2− b)(T − t) + 1

)
=

1
a

T−t∏

k=0

(2− b)(k + 1)
(2− b)k + 1

,

which implies

zt =
1

a(1− b)

(
T−t∏

k=0

(2− b)(k + 1)
(2− b)k + 1

− 1

)
.

Substituting this expression in Equation (22) yields for t ≤ T ,

vt = [(2− b)(T − t) + 1]

(
T−t−1∏

k=0

(2− b)k + 1
(2− b)(k + 1)

)
= (2− b)(T − t + 1)

(
T−t∏

k=0

(2− b)k + 1
(2− b)(k + 1)

)

Proof of Lemma 3

Proof. The recursion around p = 0 yields

zt(0) = zt+1(0) + 0

z′t(0) = z′t+1(0) +
1

g(0)v′t(0)
+ 0

vt−1(0) = vt(0) + 0

v′t−1(0) = v′t(0) +
1

1 + g(0)z′t(0)
+ 0,
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which results on the recursion used in Lemma 2 with b = 0, i.e., z′t(0) = zt and v′t(0) = vt.

Proof of Lemma 4

Proof. We prove the expression for zt, vt−1 by induction. It is true for t = T + 1. If it is true

for t + 1 ≤ T+1, at time t, we have:

v′t = (T + 1− t)
(
1− p

r

)T−t
.

Hence,

zt =
(

1
a

) (
T−t∑

k=1

1
k

(
1− p

r

)−k
)

+
1

a
(
1− p

r

)
(T + 1− t)

(
1− p

r

)T−t
=

(
1
a

) (
T+1−t∑

k=1

1
k

(
1− p

r

)−k
)

which yields

z′t =
(

1
ar

) (
T+1−t∑

k=1

(
1− p

r

)−k−1
)

=
(

1
ar

) (
1− p

r

)−2




(
1− p

r

)−(T+1−t)
− 1

(
1− p

r

)−1
− 1




=
(

1
ap

) (
1− p

r

)−1
[(

1− p

r

)−(T+1−t)
− 1

]
.

Thus,

vt−1 = c + r

(
1−

(
1− p

r

)T+1−t
)

+
p

1 + ap
(
1− p

r

)
z′t

= c + r

(
1−

(
1− p

r

)T+1−t
)

+
p

1 +
(
1− p

r

)−(T+1−t)
− 1

= c + r

(
1−

(
1− p

r

)T+1−t
)

+ r
(p

r
− 1 + 1

)(
1− p

r

)T+1−t

= c + r

(
1−

(
1− p

r

)T+1−(t−1)
)

.

This completes the induction.

Proof of Lemma 5

Proof. The result is derived by induction and is quite straightforward: if

zt+1(p) =
POL1

t+1

(p
c

)

aPOL2
t+1

(p
c

) and vt(p) = c

[
1 +

POL3
t

(p
c

)

POL4
t

(p
c

)
]
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then letting q =
p

c
,

zt(p) =
POL1

t+1

aPOL2
t+1

+
q

a (q + 1)

(
POL3

t

)′
POL4

t−POL3
t

(
POL4

t

)′
(

POL4
t

)2

=
(q + 1)POL1

t+1

{(
POL3

t

)′
POL4

t − POL3
t

(
POL4

t

)′}
+ qPOL2

t+1

(
POL4

t

)2

a(q + 1)POL2
t+1

{(
POL3

t

)′
POL4

t − POL3
t

(
POL4

t

)′}

and

vt−1(p)

= c +
cPOL3

t

POL4
t

+
cq

1 + a(q + 1)

(
POL1

t

)′
POL2

t−POL1
t

(
POL2

t

)′

a

(
POL2

t

)2

= c


1 +

POL3
t

[(
POL2

t

)2
+ (q + 1)

{(
POL1

t

)′
POL2

t − POL1
t

(
POL2

t

)′}]
+ qPOL4

t

(
POL2

t

)2

POL4
t

[(
POL2

t

)2
+ (q + 1)

{(
POL1

t

)′
POL2

t − POL1
t

(
POL2

t

)′}]


 .

Proof of Theorem 2

Proof. From Theorem 1, we have that yt is decreasing in t, and ut increasing in t. Thus, the

solution to y1(x) = 0, that characterizes QT after T negotiation rounds, is increasing in T . As

a result, SCT = b1(QT ) + s1(QT ) =
∫ QT

0
F − cQT also increases in T .

Finally, as a function of T , QT increases but cannot grow larger than Q∗, since pT > c

always. As a result, it converges to a finite limit. This limit Q can be calculated from the

recursion: it satisfies Equation (8) taken for large T − t, where yt−1(Q) = yt(Q) = Q:

Q = Q +
F (Q)− c

−u′t(Q)
,

which can only hold when F (Q)− c = 0, i.e., Q = Q∗.
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Proof of Theorem 3

Proof. Assuming that f is sufficiently smooth around Q∗, e.g., when it is infinitely differen-

tiable near Q∗, the Taylor expansion of z1 around p = 0, using Lemma 3, is

z1(p) =
1

f(Q∗)

(
22T (T !)2

(2T )!
− 1

)
p + εz(p),

where εi denote functions such that εi(p)/p → 0 when p → 0. Using the reverse transformation

of Lemma 1, around x = Q∗, we have

y1(x) = x−
(

22T (T !)2

(2T )!
− 1

)
(Q∗ − x) + εy (Q∗ − x) .

As a result, the solution to y1(QT ) = 0 can be also approximated, so that when T →∞:

Q∗ −QT

QT

(
(2T )!

22T (T !)2

)−1

→ 1.

In addition, using the Stirling approximation, we have that
(

(2T )!
22T (T !)2

)√
ΠT → 1.

This yields the result for Q∗ −QT . The approximation of SC∗ − SCT follows from

SC∗ − SCT =
∫ Q∗

QT

(x−QT )f(x)dx =
f(Q∗)(Q∗ −QT )2

2
+ εSC

(
(Q∗ −QT )2

)
.
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