Robust Stochastic Lot-Sizing by Means of Histograms

Abstract

Traditional approaches in inventory control first estimate the demand distribution among a
predefined family of distributions based on data fitting of historical demand observations, and
then optimize the inventory control using the estimated distributions. These approaches often
lead to fragile solutions whenever the preselected family of distributions was inadequate. In this
work we propose a minimax robust model that integrates data fitting and inventory optimization
for the single-item multi-period periodic review stochastic lot-sizing problem. In contrast with
the standard assumption of given distributions, we assume that histograms are part of the input.
The robust model generalizes the Bayesian model, and it can be interpreted as minimizing history
dependent risk measures. We prove that the optimal inventory control policies of the robust
model share the same structure as the traditional stochastic dynamic programming counterpart.
In particular, we analyze the robust model based on the chi-square goodness-of-fit test. If
demand samples are obtained from a known distribution, the robust model converges to the
stochastic model with true distribution under generous conditions. Its effectiveness is also

validated by numerical experiments.

1. Introduction

The stochastic lot-sizing model has been extensively studied in the inventory literature. Most of
the research has focused on models with complete information about the distribution of customer
demand. However, in most real-world situations, the demand distribution is not known; only
historical data is available. A common approach is to hypothesize a family of demand distributions
and then to estimate the parameters specifying the distribution using the historical data. Once the
probability distribution has been identified, the inventory problem is solved following this estimated
distribution. This implies that the inventory policy is determined under the assumption that the
fitted distribution adequately characterizes the demand to be realized in the future.

The estimated demand distribution may not be accurate and hence the approach of fitting the
distribution and optimizing the inventory decisions sequentially may not work as expected. As
shown in Liyanage and Shanthikumar (2005) for the newsvendor model, such an approach may
generate suboptimal solutions. Besides, in distribution fitting, one needs to assume a parametric
family of a demand distribution in the first place, and this hypothesis may also go awry. For
instance, we may fit the historical data to a lognormal distribution while it actually follows a
uniform distribution.

The robust inventory models, without assuming a parametric family of distributions, provide an
approach to address ambiguity in the demand distribution. A brief review of these robust models
is provided in Section 1.1. These models adopt a minimax approach targeting to minimize the
worst case expected cost maximized over the set of distributions. Without exception, the existing

literature either considers a pre-specified set for demand distributions without detailed discussions
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about how to generate the set, e.g., Notzon (1970), or derives the set of distributions based on
certain statistics of the historical data such as the sample mean and variance, e.g., Bertsimas and
Thiele (2006) and See and Sim (2010). Comparing with the classical approach with separate fitting
and optimization, the robust models based on historical statistics may miss important information
about the demand distribution conveyed in the historical data set, e.g., the shape of the distribution,
which, in the separate, two-phase approach, is usually used to determine the parametric family of
the distributions.

In this paper, we merge the merits of both approaches, namely, (i) to fully utilize historical
data as in the classical approach and (ii) to concurrently optimize the demand distribution and the
inventory decision without assuming a distribution family as in the robust models. We analyze the
single-item stochastic finite-horizon periodic review lot-sizing model, under the assumption that the
demand is subject to an unknown distribution and only historical demand observations (given by
histograms) are available. As all practitioners in inventory control start with histograms and then
fit an underlying demand distribution, this assumption reflects the practical value of this research.

By adopting the minimax robust optimization approach, rather than first estimating the de-
mand distribution and then optimizing inventory decisions, we combine these two steps to minimize
the worst case expected cost over a set of demand distributions, which is defined as all possible dis-
tributions satisfying the chi-square goodness-of-fit test. The advantage of this approach is twofold.
First, the historical data is used in the same manner as in the goodness-of-fit test, thus we use all
the information conveyed by the historical data that can be utilized by the goodness-of-fit test in
distribution fitting. Second, we avoid the assumption about the parametric family of distributions,
which is a must in distribution fitting. We show that the (s, .S) policy remains optimal, discuss the
behavior of the model as the number of samples increases, and demonstrate through a numerical
study that this model outperforms (i) the classical approach where distribution estimation and
inventory optimization are separate and (ii) a robust model where the set of distributions is defined
by sample mean and variance.

Our two main contributions are as follows. First, we develop a robust minimax model that only
requires historical data, and allows correlated demand. Note that most minimax models (see, e.g.,
Notzon 1970 and Ahmed et al. 2007) as well as Bayesian inventory models (e.g., updating demand
distributions as suggested in Iglehart (1964) in the literature can be interpreted as special cases of
our framework.

Unlike the classical inventory model, which solves a single-variate optimization problem in
each period, the robust model needs to identify the ordering quantity and probability distribution
represented by a vector of decision variables simultaneously. Despite this complexity, the optimal
policy of the robust model still shares the same structure as the corresponding policy in the classical
stochastic lot-sizing model. In particular, the optimal policy is a state-dependent base-stock policy
for the multi-period inventory problem without fixed procurement costs, and a state-dependent
(s,.5) policy if the fixed procurement cost is considered.

While the first contribution mainly serves as an extension to existing models, the second major
contribution regards combining the statistical test in distribution fitting within a single inventory

control model. We consider a special case of the general robust framework when the set of demand



distributions is directly related to the chi-square goodness-of-fit test. Such a distribution set can
be defined by a set of second-order cone constraints and hence it is tractable to compute the (s,.5)
levels for each period. To the best of our knowledge, this is the first endeavor to integrate the
goodness-of-fit statistical test with inventory optimization and to explicitly consider the shape of
the distribution in a robust framework.

We also prove that the robust model based on the chi-square test converges to the stochastic
model with true demand distribution under generous conditions if samples are drawn from this
distribution and they grow indefinitely. In particular, if the demand distributions are discrete, the
robust model converges to the stochastic model with the true demand distribution as the number of
independent samples drawn from the true distribution for each period tends to infinity. Moreover,
the rate of convergence is in the order of 1/v/k, where k is the number of samples. Slightly weaker
results are obtained for continuous distributions. These convergence results ensure the effectiveness
of the robust approach when the sample size is sufficiently large.

When the sample size is relatively small, the performance of the robust model is illustrated by
means of computational experiments. We argue that the robust model based on the chi-square
test outperforms the traditional approach, which optimizes the inventory decisions by using fitted
distributions, as well as the minimax robust model where the set of distributions is based on the
set proposed by Delage and Ye (2010). We also provide insights on the performance of the robust
model with different parameters and sample sizes.

In Section 2 we describe our robust model, which incorporates historical data, and present the
optimality equation in a compact form. The structure of the optimal policies is characterized in
Section 3. Section 4 considers a special case with robustness defined by the chi-square goodness-
of-fit test. We also discuss selected convergence results for the chi-square test based models in the
same section. The computational results are presented in Section 5. Finally, additional extensions

are presented in Section 6. We conclude the introduction with the literature review.

1.1 Literature Review

This work is built upon two streams of literature: stochastic inventory control and robust opti-
mization. The discrete-time stochastic inventory model has been studies since 1950s. Scarf (1960)
proposes the concept of K-convexity and proves that the (s, S) policy is optimal in the presence
of a fixed ordering cost. Since then, the research in this area has flourished. We refer the reader
to Zipkin (2000) for a detailed review. The concept of K-convexity has been generalized to attack
various problems related to inventory control, e.g., Chen and Simchi-Levi (2004). Efficient algo-
rithms, e.g., Guan and Miller (2008) and Halman et al. (2009), have also been proposed to solve
other more general stochastic inventory problems.

Robust optimization was pioneered by Soyster (1973), which proposes robust linear program-
ming formulations for linear programs with coefficient uncertainty. This line of research has enjoyed
popularity in recent years. Some of the important works include but are not limited to Ben-Tal
and Nemirovski (2000) and Bertsimas and Sim (2004) for robust linear programming, Ben-Tal and
Nemirovski (1998) for robust convex optimization, and Kouvelis and Yu (1997) and Bertsimas and

Sim (2003) for robust discrete optimization. More relevant to this research, Iyengar (2005) and



Nilim and El Ghaoui (2005) develop a robust optimization framework for dynamic programming
models, extend the Bellman recursion to the robust counterpart, and investigate its computational
complexity. Delage and Ye (2010) propose a data-driven robust framework for any single-stage opti-
mization problem, which minimizes the maximum expectation over a set of distributions defined by
the sample mean and variance. They identify sufficient conditions under which the corresponding
robust problem is polynomially solvable and provide probabilistic arguments for using this model
by considering a confidence region for the mean and variance as a random vector.

In this paper, we apply the idea of robust optimization to inventory control models. This notion
of robust inventory control is not new in the literature. The earliest work in minimax inventory
control is attributed to Scarf (1958), where minimization of the maximum expected cost of the
newsvendor model over all distributions with a given mean and variance is considered. Gallego and
Moon (1993) present another proof of Scarf’s result and consider various extensions of the model.
The recent work by Natarajan et al. (2008) extends the result of Scarf (1958) by considering the
set of distributions with a given mean, variance and semivariance information. Perakis and Roels
(2008) minimize the maximum regret of the newsvendor model over a convex set of distributions
with certain moments and shape.

Notzon (1970) is among the earliest works that considers a minimax multiple-period inventory
model. The demand in each period is assumed to be independent and its distribution function
is ambiguous but within a specified class of distribution functions. The minimax control policy
minimizes the maximum expected cost. The optimality of the (s,.S) policy is proved.

Bertsimas and Thiele (2006) analyze distribution-free inventory problems, in which demand in
each period is assumed to be a random variable that takes values in a given range. The demand is
assumed to be a random variable controlled only by two values: the lower and upper estimators.
To capture the trade-off between robustness and optimality, a parameter is defined to control the
budgets of uncertainty at every time period. They show that for a variety of problems, the structures
of the optimal policy remain the same as in the associated model with complete information about
the distribution of customer demand. A related model from the base-stock perspective is analyzed
in Bienstock and Ozbay (2008).

See and Sim (2010) consider a factor-based demand model with given mean, support, and devi-
ation measures. To obtain tractable replenishment policies, the worst case expected cost among all
distributions satisfying the demand model is minimized by solving a second order cone optimization
problem.

Ahmed et al. (2007) propose an inventory control model which minimizes a coherent risk
measure instead of the overall cost function. They show that risk aversion treated in the form of
coherence risk measures is equivalent to the minimax formulations, and it is proved that the optimal
policies conserve the properties of the stochastic dynamic programming counterparts. They do not
consider demand dependent evolutions.

Liyanage and Shanthikumar (2005) first provide concrete examples in a single period (newsven-
dor) setting, which illustrate that separating distribution estimation and inventory optimization,
as done in the classical approach, may lead to suboptimal solutions. They propose the use of

operational statistics where it is assumed that the demand distribution function belongs to a spe-



cific (predetermined) family and estimate the (single) parameter of the family within an inventory
optimization model.

In addition, selected recent papers also consider lost-sale inventory problems with censored de-
mand data, i.e., the observed historical demand data excludes the lost-sale information as the lost
sales are not observable. Huh and Rusmevichientong (2009) propose nonparametric adaptive poli-
cies to solve this problem and provide a bound for the asymptotic performance, which interestingly
is the same as the converenge rate of our model under discrete distributions.

The models by Notzon (1970) and Ahmed et al. (2007) do not take the historical data into
account, and they predefine the class of distribution functions. The robust optimization approaches
from Bertsimas and Thiele (2006) as well as See and Sim (2010) do not use any historical data
except to determine the support, expectation and deviation measures. On the other hand, Liyanage
and Shanthikumar (2005) use historical data but predetermine the family of distributions. In fact,
they consider only distributions characterized by a single unknown parameter. This is the only
work besides the one proposed in this paper that concurrently optimizes the ordering quantity
and applies techniques in distribution fitting to determine the demand distribution. Our research
combines both strategies by integrating distribution fitting with robust optimization. Specifically,
we consider the set of demand distributions that satisfy a certain data fitting criterion with respect

to historical data and characterize an optimal policy that minimizes the maximum expected cost.

2. Formulation of Robust Stochastic Lot-Sizing

The classical multi-period inventory problem considers a finite planning horizon of T periods. We
assume that all shortages are backlogged. For each period t =1,...,T, let D, be a random variable
representing demand in that period. The sequence of events is as follows.

At the beginning of each period ¢, the decision maker reviews the net inventory level z;, and
places an order for ¢; (possibly zero) units. The procurement cost in each period t = 1,...,7 — 1
includes two components: a fixed procurement cost K if ¢; > 0, and a unit procurement cost ¢; for
each unit ordered.

Assuming zero lead time, this order arrives immediately and increases the inventory level up
to y¢, where 4y = x4 + ¢¢. After observing demand Dy, inventory holding cost is charged at a rate
of hy for any unit of excess inventory after satisfying demand Dy, and a unit backorder cost b; is
incurred for any unit of unsatisfied demand. The net inventory at the beginning of period ¢ + 1 is
reduced to xry1 = yp — [)t.

Thus, the total cost for period ¢ given the net inventory levels before and after ordering (z; and

y: respectively) as well as demand Dy in that period is

Ci (It,yubt) = Kl(yt — @) + ct(ye — o) + by (yt - Dt)+ + b (yt - Dt) t=1,...T, (1)

where 7 = max(z,0), 2~ = max(—=x,0), [(z) = 1 if z > 0 and I(z) = 0 otherwise.
In the standard dynamic programming formulation, we consider Vj(z;), ¢t = 1,...,T, which

denotes the optimal expected cost over horizon [¢,T], given that the net inventory level at the



beginning of period t is x; and an optimal policy is adopted over horizon [¢,7]. We assume
Vrii(ori1) = 0. Let 6 € [0,1] be the discount rate. The optimality equation reads
‘71:(%&) = m>in {E [Ct <xt7yt7bt>i| +0FE [‘N/tﬂ (yt - ﬁt)]} t=1,..,T. (2)
Yt2we
Note that the distribution of Dy, t = 1,..., T is required to solve this dynamic programming formu-
lation.
In practice, the demand distribution is not known. Rather, an inventory manager has at her
disposal only historical data. Depending on the realized past demand in the planning horizon, the
manager may choose different aggregations of historical data to forecast the demand distribution.

For example,

e the demand data of the last n observations are considered, which is analogous to the moving

average forecast, or

e the realized demand in periods 1 to t — 1 is accounted for when forecasting the demand in

period t.

Historical observations are often aggregated to a histogram with respect to unknown distribution
D;. The bins are (D¢, Dy,i+1), which denotes the ith possible range of the demand in period ¢ (all
observations within a given range are indistinguishable). Let the vector d; = [dy, ..., d;_1] denote
the realized demand in periods 1 to ¢t — 1, where d,, 7 = 1,...,t — 1 corresponds to the realized
demand in period 7. The number of observations falling within the ¢th bin is a function of the
realized demand d; and is denoted by N;;(d;). Finally, we define n,(d¢) = >, N¢i(d¢), which
corresponds to the total number of available observations under realized demand d;. In practice,
the decision maker observes only these histograms, i.e., the historical samples.

We assume that D;; = 0 and D; pr,41 = +00, where M; corresponds to the number of bins in
the histogram for time period t. Let P;; = P (ﬁt € [Dy4, Dtﬂ‘+1)) be the probability that demand
in period ¢ falls in the interval [Dy;, Dy 1) under the fitted distribution. Clearly, n(d¢)P;; is the
expected number of observations that fall in this interval according to the fitted distribution.

The classical approach to identify the best distribution representing the observed data is to use
a goodness-of-fit test. The objective is to fit a distribution that “closely” follows the observed data.
Under this criterion, there should be a set of distributions depending on d;, which satisfy the given
goodness-of-fit test. We denote this set by P:(d;). Throughout this paper, we assume that P(d:)
is compact for any ¢ and d;.

As defined in the dynamic programming field, a decision rule p; at time ¢ is a function of net
inventory z;, which decides the ordering quantity at time ¢ given xy, i.e., y; = pu(x¢). We formally
state our problem in the context of a two-player game, which is also presented in Iyengar (2005).
The first player chooses the decision rule u; at time t and pays the cost. The second player chooses
a distribution of Dy in Pi(d;) after observing the order quantity, and receives a reward equal to the
cost paid by the first player. Therefore, the second player may select a different distribution for
different x; and p;. Let Py(xy, pu(x¢)) denote the distribution chosen by player 2 at time ¢ given



net inventory x; and decision rule ;. The the set of all distributions available to player two is
Ot = {P(xt, ue(t)) € Pe(dy) over all xy,d;}.

In O¥* we merely express that for each xy, y;, d¢, we might have a different distribution. Moreover,
a policy 7 is defined as the decision rule to be used at every period, i.e., m = (i1, ..., ur). A policy

7 also yields a set of distributions @™ which can be used by the second player or adversary, where
Q" = QM x QM2 x ... x QWT, (3)

As the second player will maximize her reward, given policy =, net inventory x;, and realized

demand d¢, the cost paid by player one from period t to T is

Vi (2, dy) = EQD
2 (71, dy) nax

T
S 07Cy (wrir(w0), Dy ) + 07T Vi (e, dT+1)] ,

T=t

where C; (xT, (), ZNDT) denotes the cost incurred in period 7 in (1), and Vi1 (2741, d741) is the

terminal cost. Also note that Q defines the distributions D,, 7 = ¢, ..., T. Unless stated otherwise,

we assume that Vpri1(-) = 0. We also have
Try1 = /’LT(x’T) - DT and d7'+1 = |:d7'7DT:| .

Since the first player will choose a policy that minimizes the cost, the optimal cost from period

t to T given net inventory x; at time ¢, and the realized demand d; from period 1 to ¢t — 1, is

Vi(xy,dy) = min max EQD
t (¢, dy) in e

T
S 07Cr (e pr(0), Dr ) + 67 Vi (o4, dT+1)] .M

T=t

for t = 1,...,T. Note that the model minimizes the maximum expected cost arising from any
distribution in the set P;(d;) for any ¢, which is known as the minimax robust approach. We next

state an optimality equation, which is essential to establish the optimal control policies.

Proposition 2.1. The optimality equation of the robust model is

Vt(xta dt) = ;tnzlgt Ptlel%%)({dt) {Z Pt,z’ (Ct(xm Yt, Dt,i) + 0Vt (yt - Dt,z’y [dt; Dt,z‘])) } (5)

fort = 1,...,T, where Pi(d;) is the set of distributions satisfying the goodness-of-fit condition at
period t, and Cy(xt,yr, Dy ;) is defined by (1).

Proof. 1t follows from Theorem 2.1 in Iyengar (2005) when P;(d) is arbitrary. If P;(d¢) is convex,
the proposition can also be proved by the Von Neumann’s minimax theorem (see, e.g., Von Neumann
1928). O

An immediate observation from Proposition 2.1 is that we minimize the worst case expected

cost over a set of distributions. Therefore, our robust stochastic model may not be as conservative



as the classical minimax models, where the worst case is defined by the realized demand instead of
distribution, e.g., the minimax model discussed in Section 2.4 of Notzon (1970).

Note that the Bayesian inventory models assume a prior demand distribution, and the posterior
distribution at time ¢ is obtained by updating the prior distribution using d;, e.g., Iglehart (1964)
updates the demand distribution belonging to the exponential and range families after observing
realized demand information. Our model only requires the set of distributions P:(d;) to be a
function of the realized demand d;. Therefore, we can define it as a singleton updated by a
Bayesian rule. In this case, the robust minmax model is reduced to a Bayesian inventory model,
which indicates that the Bayesian models are special cases of our minimax model.

Proposition 2.1 also gives us an interpretation of the robust model from a risk measure perspec-
tive when set P;(d¢) is convex. Ahmed et al. (2007) establish the correspondence between coherent
risk measures and minimax models over convex sets of distributions. From this perspective, our
minimax robust model essentially minimizes a coherent risk measure with respect to the total cost.
If we consider P;(d;) = Py for any d; and ¢, i.e., the set of distributions is independent of any
realized demand in previous periods, then the minimax robust model (5) minimizes a coherent risk
measure in any period ¢ and it reduces to the model considered in Ahmed et al. (2007). When the
set of distributions P;(d;) depends on demand realization d;, model (5) also minimizes a coherent
risk measure in every period ¢. However, this model is different from that in Ahmed et al. (2007) in
the sense that the risk measure in period ¢ is updated by the realized demand in previous periods.
Intuitively, if the decision maker lost a significant amount in the previous period, he or she would
tend to be more risk-averse in subsequent periods. Therefore, it is reasonable to adjust the risk
measure based on the realized demand information d;.

In addition, let constant p; denote the selling price of the product in period t. We can maximize
the expected total profit from periods 1 to T' by subtracting term p; » , Dy ;P ; in the objective
function of (5). All of the results, such as the optimal policy and the convergence properties, still
hold for such an objective function. In addition, if we suppose that all the distributions in set P(d;)
could have the same expectation ﬁt(dt), i.e., constraint ) , Dy ;P ; = ﬁt(dt) is included in the
definition of P;(d;), then the models that minimize cost and that maximize profit are equivalent to
each other. However, as long as the demands follow certain distributions, which are not necessarily
known to the decision maker, the expected total revenue is independent of any inventory decision,
i.e., the order quantity in any period t. Therefore, it is sufficient to consider the cost minimization

model presented in (5).

3. Properties of Optimal Policies

In this section we study optimal policies of the general robust stochastic model (5). Notzon (1970)
and Ahmed et al. (2007) show the optimality of (s,S) policy when the set of distributions in the
minimax model is independent of the realized demand d; (Ahmed et al. 2007 also assume the set of
distributions is convex). Here we extend the optimality of (s,.S) policy to the more general model
in (5).



We assume that the reader is familiar with standard concepts in inventory theory such as
K-convexity and (s, S) policies (see, e.g., Zipkin 2000 and Porteus 2002).
Let us define

Ui(y,d) = ht (ye — Dt,i)+ + bt (yt — D i)™ 4+ O0Vig1 (yr — Dy, [de, D)) s (6)

which corresponds to the expected cost incurred from period t to T if the inventory level after

receiving the order in period ¢ is y; and the demand in period ¢ is D;;. Consider the function

d) = Ui(y,d)P;.!
f(y,d) P (y.d)

Since optimality of the (s, S) policy follows directly from K-convexity, first we are going to establish
that the function f(y,d) is K-convex in y.

Lemma 3.1. If U;(y,d) is K-convex in y for any given d, then f(y,d) is a K-convex function in
y for any given d.

Proof. Please refer to the Online Supplement. O

Lemma 3.1 shows that K-convexity is preserved under maximization over a set of distributions.

Base on this property, we show the K-convexity of the cost-to-go functions.

Proposition 3.1. If Viii(x¢11,dit1) is a K-convex function in xi41 for any fized dyy1, the cost-

to-go function Vi(xy,dy) is a K-convex function in xy for any fived dy, and for any t =1,...,T.

Proof. The proposition is trivially true for ¢ = T4+ 1. Suppose that the proposition holds for period
t + 1, and consider period t.
To simplify the notation, let us define

fe(ye, de) = crye + P ggifz(d )Z B ; [ht (ye — Dt,i)+ + b (y+ — Dii)™ + Vi1 (ye — Dy, [dy, Dt,im .
(7)

Therefore, the optimality equation in (5) is equal to
Vi(z,dy) = —cpwy + ym>1£1 {K(ys — x¢) + fie(ys, de)} -
t—&t

According to Lemma 3.1, if Vi1 (2441, d¢41) is K-convex in xy, fi(y:,dy) is K-convex in y;. Let
Si(d;) be a global minimizer of fi(y,d;) for any given d;. Moreover, let s;(d;) be the smallest
element of the set {s;(dy) | s¢(d¢) < Se(de), fi(se,di) = fi(St,d¢)+K}. According to the properties
of K-convex functions (see, e.g., Zipkin 2000 and Porteus 2002), we have

K —ciwe + fi(Se(de), de) if oy < s¢(dy),
—cxy + fi(zg, dy) otherwise.

Vi(ae, di) = {

K-convexity of Vi(x¢,d;) follows from K-convexity of fi(y:,ds). O

Note that here we drop subscript ¢ in order to simplify the notation.



From the structure of V;y1(-), we can derive an optimal policy.

Theorem 3.1. A state dependent (s,S) policy is optimal for the robust stochastic model. More
precisely, for any t and dy, there exists Sy(d:) and si(dy) such that Si(d¢) — x; units are ordered in

period t if xy < s¢(dy) and no order is placed otherwise.

Proof. The structure of the policy follows directly from the proof of Proposition 3.1 and general
theory of K-convexity (see, e.g., Zipkin 2000 and Porteus 2002). O

If there is no fixed cost, then V;(x¢,d;) is convex in x; for any t. Therefore, a state dependent
base-stock policy is optimal, and the base-stock level given the realized demand d; is S(dy).

A drawback from the practical point of view is the fact that s; and S; depend on d;. We next
characterize a special case where different values of d; correspond to the same (s, .S) levels. Suppose
that d; and d} denote two different demand realizations from period 1 to ¢ — 1. Let us assume that
if demand realizations in periods 1 to ¢t —1 are d; or d}, then the same demand realization in period
t to T generates the same histogram in any period t,...,7. Then vectors d; and dj correspond to
the same (s,S) levels. To formalize this property, let s;(d;) and S;(d;) (respectively s;(d};) and
Si(d})) denote the (s,S) levels corresponding to history d; (respectively d}). For any 7 > ¢, let
the vector [dy, cft, Jt+1, . CZT_l] denote the realized demand up to period 7 — 1 where the demands
from periods 1 to t — 1 are aggregated in vector d;, and the realized demand in periods ¢ to 7 — 1

is labeled by Jt, citH, ey JT_l, respectively.

Proposition 3.2. Let Vrii(ovry1,dry1) = Vrgi(eryr,dpy,) for any xryr, dryr, dpy, and
consider any T = t,...,T. Suppose that realizations d; and d} give the same number of samples in

interval [Dr;, Dy iy1) for any i as long as the realized demand in periods t to T —1 is the same, i.e.,

NT,Z'([dhCZta Jt+17 ceey JT*l]) - NT,’L'([d;7Jta Jt+17 ceey d‘l’*l])

for any i and any realization [dy, dyy1, ..., dr—1] of [Dy, Dis1, ..., Dr—1]. Then we have s;(d;) = si(d}),
Si(dy) = Si(d}), and Vi(xy,dy) = Vi(zy, d}) for any xy.

Proof. Consider period T. According to the assumption stated, Ng;(dr) = Nr,(d) for any
i, and hence we have ny(dr) = np(d}) and Pr(dr) = Pr(d}). By assumption on Vpyg(-),
we obtain sp(dr) = sp(d}) and Sp(dr) = Sr(d/}) from Theorem 4.1. Moreover, the result
Vr(zr,dr) = Vp(zr,d;) follows from (5).

Suppose that the proposition is true for any period 7 > t. Hence, Vii1(xy1, [ds, Dii]) =
Vit1(@i41, [d}, D)) for any x441 and i. Moreover, we have Ny;(d;) = N;;(d}) for any ¢, which
implies ny(dy) = ny(d}) and Py(d;) = Pi(d}). According to Theorem 4.1 and (5), the results hold
for period t. O

Suppose that we use the same bin intervals [Dy ;, Dy ;41) for any period ¢ in the planning horizon.
Furthermore, let us assume that we update the histogram in time period ¢ only based on the realized
demand in periods 1 to ¢t — 1, or, for example, given a fixed n, we update the histogram in time

period ¢t only based on realized demand in time periods ¢ — n through ¢ — 1. Observe that these
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two scenarios do not allow any forecasting based on the just realized demand. From Proposition
3.2, it now follows that the number of different (s,.S) levels at time ¢ cannot exceed the number of

bins to the power of ¢. This observation substantially reduces the computational burden.

4. Robust Models Based on the Chi-Square Test

The most widely used goodness-of-fit test is the chi-square test (see, e.g., Chernoff and Lehmann
1954) with the statistical test

3 (Nyi(dy) — ny(dy) Py y)? <2
ne(de) Py -

i
where parameter x? controls how close the observed sample data is to the estimated expected
number of observations according to the fitted distribution (P;;)i=1,.. a,-

More specifically, suppose that k is the number of bins, ¢ is the number of estimated parameters
for the fitted distribution (e.g., ¢ = 2 for normal distributions due to the mean and variance), and
consider the null hypothesis Hy that the observations are independent random samples drawn
from the fitted distribution. Chernoff and Lehmann (1954) show that if Hy is true, the test
statistic converges to a distribution function that lies between the distribution functions of chi-
square distributions with £ —1 and & —c—1 degrees of freedom. Let a denote the significance level,
and consider X%—l,l—a such that F(X%—l,l—a) = 1 — «a, where F(x) is the distribution function of
the chi-square distribution with k& — 1 degrees of freedom. It is often recommended that we reject
the null hypothesis at the significance level « if the test statistic is greater than X%—l,l— ., (see, e.g.,
Law and Kelton 2000). In our context, k = M; and «, whose interpretation is as above, is given
by the decision maker.

Since P;; should define a probability distribution, we have >, P;; = 1 and P;; > 0. Let Py
denote the vector of (P ;);. The set 