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Abstract

We study the static pricing problem for a network service provider in a loss system with a tree structure.

In the network, multiple classes share a common inbound link and then have dedicated outbound links.

The motivation is from a company that sells phone cards and needs to price calls to different destinations.

We characterize the optimal static prices in order to maximize the steady-state revenue. We report new

structural findings as well as alternative proofs for some known results. We compare the optimal static

prices versus prices that are asymptotically optimal, and through a set of illustrative numerical examples

we show that in certain cases the loss in revenue can be significant. Finally, we show that static prices

obtained using the reduced load approximation of the blocking probabilities can be easily obtained and have

near-optimal performance, which makes them more attractive for applications.

1. Introduction

We consider a network service provider that can be modelled as a loss system with a tree topology.
Multiple customer classes share a common link and each class has its own outbound (or inbound)
link, as shown in Figure 1. The classes are characterized by a price-dependent arrival rate and
the random time they remain in the system. All classes are assumed to have the same bandwidth
requirement. This can be seen as the case when all classes demand the same service level which can
be satisfied by allocating a constant amount of resource in the corresponding links. Though many
situations could fit in this framework, for example a dial-up Internet provider or a call center, this
problem was originally thought for a company that sells phone cards. In that case, the customer
classes represent call destinations, for example, the phone calls to Santiago, Chile on a given day.
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Figure 1: A loss system with a tree topology.

Our objective is to characterize the optimal static prices in order to maximize the provider’s
revenue. We focus on static prices since this is the current standard in the phone card setting.
Indeed, instantaneous changes in prices are not well received among customers and can cause
goodwill losses for the company. Moreover, our results confirm that the loss in revenue from using
static over dynamic prices is usually small.

There is a vast literature on loss systems. Most of the effort has concentrated on finding
structural properties for the blocking probabilities and studying capacity allocation policies (see
Kelly [6] and Ross [15]). Though pricing in queueing models with infinite buffers has a long history
– see Mendelson [11] for one of the first seminal papers and see Courcoubetis and Weber [4] for more
recent references–, the same topic in loss systems has received much less attention. The exception
are models for a single link, which includes Courcoubetis and Reiman [3], Lanning et al. [8], and
Carrizosa et al. [2].

For our purposes, Ziya et al. [21] and Paschalidis and Tsitsiklis [12] are the most relevant
references in the single-link pricing literature. Ziya et al. consider multiple classes and show how
to reduce the pricing decisions to a single-dimension optimization problem. Then they use the
new formulation to establish analytical results. One of their findings is that the optimal prices
are decreasing in the capacity of the common link. Interestingly, we show the same result in
this paper using an alternative single-dimension reduction (note that both reductions were derived
independently). On the other hand, Paschalidis and Tsitsiklis consider a dynamic pricing model and
they show that static prices are asymptotically optimal in the sense that they achieve a performance
upper bound when the number of users grows to infinity in unison with the system’s capacity. The
extension of the asymptotic result to the network setting, in particular, a tree network, is done by
Paschalidis and Liu [13]. They characterize the rate of convergence to the asymptotic regime and
show that the analysis also carries through when substitution is allowed. Finally, with a slightly
different approach, Lin and Shroff [9] show that the static prices induced by the upper bound are
themselves asymptotically optimal. We take these prices as a benchmark and show that the revenue
loss with respect to the optimal static prices outside the asymptotic regime can be significant in
some cases.

In this paper we specifically study the pricing problem for a tree network, which includes the
single-link as a special case. Though the latter is shown to be a well-behaved problem, a general tree
network is significantly more challenging and properties such as monotonicity and quasiconcavity
cannot be taken for granted. In terms of contributions, from an analytical standpoint, we provide
new structural findings (Propositions 1 & 2 and Lemmas 2 & 3) as well as short alternative proofs
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to established results (Lemma 1 and Propositions 3 & 4). From a practical point of view, we show
that static prices computed using the reduced load approximation of the blocking probabilities have
near optimal performance. Overall, we derive insights that help to identify when an exact or an
asymptotic approach for pricing optimization is more desirable.

The remainder of the paper has the following structure: The next section §2 introduces the tree
network topology and the static pricing model. The characterization of the optimal static prices is
presented in §3. The asymptotically optimal prices are introduced in §4 and the numerical analysis
is described in §5. Finally, §6 summarizes the conclusions and possible extensions to more general
loss networks.

2. The Model

In what follows, boldface symbols represent vectors. Let k ∈ K = {1, ...,K} be the different
call destinations. The common link has capacity N and represents the physical switch where all
incoming calls are received. Each outbound link has capacity Nk and represents a carrier for a
particular destination. Let C = (N,N1, . . . , NK) denote the capacity vector. We assume C to be
given, which is usually the case at a tactical level.

Let pk ∈ [0, pmax
k ] be the price per unit of time charged to class-k customers. Class-k customers

arrive to the system according to an independent Poisson process with rate λk(pk) and average
holding time 1/µk. We do not consider substitution effects among classes. This is reasonable in the
case of a phone card company (variations in the price for calls to China does not affect the demand
for calls to Chile). The functions λk(pk) are assumed to be continuously differentiable and strictly
decreasing with inverse pk(λk). Let Rk(λk) ≡ λk · pk(λk) be the instantaneous reward rate, with
R′

k(0) > 0, ∀k ∈ K, to exclude trivial solutions. Let yk = λk/µk be the offered load of class k and
let y be the corresponding vector. In the analysis we let the service provider decide the arrival rate
λ or the offered load y, which in turn determine the price p.

An incoming class-k call is admitted as long as there is at least one line available in the common
link and in the k-th dedicated link. Otherwise, the called is blocked and lost. For class k, let
Xk(λ;C) be the number of calls in steady-state and let Bk(λ;C) be the nonblocking probability.
Let Λ = [0, λmax

1 ] × · · · × [0, λmax
K ], where λmax

k < λk(0), ∀ k ∈ K. The objective of the network
service provider is to maximize the steady-state revenue so it solves

(P ) max
λ∈Λ

J(λ;C) ≡
K∑

k=1

pk(λk)E
[
Xk(λ;C)

]
=

K∑

k=1

Rk(λk)
µk

Bk(λ;C), (1)

where the last equality follows from Little’s Law. Note that with an appropriate definition of
the Rk(λk) functions the model could also fit a social welfare maximization problem such as the
consumer surplus model proposed by Paschalidis and Tsitsiklis [12].

Given the capacity vector C, let Ω(C) =
{
n ∈ NK

∣∣ nk ≤ Nk, ∀ k ∈ K, and
∑K

k=1 nk ≤ N
}

be the feasible state space and let bk ≡ e1 + ek+1, where ei is the i-th canonical unit vector in
RK+1. For the non-blocking probabilities, we can write Bk(λ;C) = G(λ;C − bk)/G(λ;C) where
G(λ;C) =

∑
n∈Ω(C)

∏K
k=1

(λk/µk)nk

nk! is the product-form normalization constant for loss systems

(see [6, 15]). The identity ∂G(λ;C)
∂λk

= G(λ;C− bk)
/
µk is used repeatedly in the analysis below.
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Directly differentiating the revenue function in Equation (1) with respect to λk, and assuming
Nk > 0 so that ∂G

∂λk
6= 0, we obtain:

∂J(λ;C)
∂λk

=
Bk(λ;C)

µk

[
R′

k(λk)− (J(λ;C)− J(λ;C− bk))
]
. (2)

From the formula above, the first-order conditions for the optimal static arrival rates λ∗ can be
expressed as follows:

R′
k(λ

∗
k) = J(λ∗;C)− J(λ∗;C− bk) ∀ k such that λ∗k > 0. (3)

The condition says that at the optimum, if class k is active (i.e. λ∗k > 0), then the marginal revenue
of class k, R′

k(λ
∗
k), must be equal to the opportunity cost of admitting a call of class k and therefore

blocking future calls of other classes. Though in general J(λ;C) is not concave in λ, in most
relevant cases the first-order conditions (3) are still sufficient as it is shown next.

3. Characterization of the Optimal Static Prices

We begin by studying two particular cases. Namely, when
∑K

k=1 Nk ≤ N and when Nk ≥ N, ∀ k ∈
K. Following Ross [15], we refer to these cases as complete-partitioning and complete-sharing and
we study them in §3.1 and §3.2 respectively. In §3.3 we analyze the general case when

∑K
k=1 Nk > N

and Nk < N for at least one class k.

3.1 Single-class and complete-partitioning case.

We start the second-order analysis with a single customer class. For that case, the system reduces
to an M/G/N/N queue, also known as Erlang’s loss system. We first give a useful Lemma that is
well-known in the literature (see for instance [2, 7] and the references therein). However, we provide
a short proof that is interesting per se since Equation (4) here below shows that, in an M/G/N/N

system, the (discrete) concavity of the nonblocking probability with respect to N follows from the
(continuous) convexity of its reciprocal with respect to the offered load y, and vice-versa. We then
use this result to show quasiconcavity of the revenue function.

Lemma 1 In an M/G/N/N system, the reciprocal of the the nonblocking probability is convex with
respect to the offered load.

Proof: Consider the reciprocal of the nonblocking probability in an M/G/N/N system, B(y;N)−1 =
G(y;N)

/
G(y; N − 1), expressed as a function of the offered load y. For N = 1 the reciprocal is

linear in y and the result is trivial. Now assume N > 1. By differentiating the reciprocal twice we
have that the second derivative is non-negative if and only if the following inequality holds:
[(

G(y; N−1)G(y; N−2)+G(y; N)G(y; N−3)
)
G(y; N−1)2−2·G(y;N)G(y; N−1)G(y;N−2)2

]
6 0.

Dividing by G(y;N)G(y; N − 1)2G(y; N − 2) and rearranging terms we obtain:

∂2B(y; N)−1

∂y2
> 0 ⇔ B(y; N) + B(y; N − 2) 6 2B(y; N − 1). (4)
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Then, the result follows from the (discrete) concavity of the nonblocking probability with respect
to N (see Wolff and Wang [20]). 2

Proposition 1 For the single-class case: (i) If p(λ) is (strictly) concave, then J(λ; N) is (strictly)
concave in λ; and (ii) If R(λ) is (strictly) concave, then J(λ;N) is (strictly) quasiconcave in λ.

Proof: For a single-class, J(λ) = p(λ) · E[X(λ)] = R(λ) · B(λ)/µ. For ease of notation we omit
N . Note that E[X(λ)] is non-decreasing and concave in λ, see Proposition 1 in Ross and Yao [17]
and Harel [5]. If p(λ) is (strictly) concave, then J(λ) is (strictly) concave since it is the product
of a (strictly) concave and decreasing function and a concave but non-decreasing function. For the
second case, J(λ) can be written as the ratio of R(λ)/µ, that is non-negative (strictly) concave, and
B(λ)−1, that is positive convex from Lemma 1. Hence, J(λ) is (strictly) quasiconcave (see Avriel
et al. [1]). 2

Proposition 1 holds for the linear demand case as well as for p(λ) = a · λ−b with a > 0 and
0 < b < 1, or when λ(p) = a · exp(−b p) with a, b > 0. In all these cases, J(λ;N) is differentiable,
and therefore it is pseudoconcave, so the first-order conditions are sufficient (see section 3.6 of [1]).
When strict quasiconcavity holds, problem (P ) is guaranteed to have a unique optimal solution.
This result extends to multiple classes under complete-partitioning since each class can be optimized
separately.

3.2 Complete-sharing case.

In the complete-sharing case the blocking probability is the same for all classes. In fact, the system
is equivalent to an M/G/N/N queue with offered load equal to

∑K
k=1 λk/µk. We use this fact to

prove that the revenue function is quasiconcave:

Proposition 2 Under complete-sharing, if Rk(λk) is (strictly) concave, ∀ k ∈ K, then J(λ;C) is
(strictly) quasiconcave in λ.

Proof: In this case J(λ; N) =
( ∑K

k=1
Rk(λk)

µk

)/(
G(λ; N)/G(λ;N−1)

)
. From Lemma 1, the inverse

of the nonblocking probability is convex in y =
∑K

k=1 λk/µk, and therefore it is also convex in λ.
Then, J(λ;N) is quasiconcave in λ as it is the ratio of two functions, one non-negative concave
and the other positive convex. 2

Under complete-sharing the first order conditions (3) dictate that, at the optimum, all active
classes must yield the same marginal revenue, i.e., R′

k(λ
∗
k) = β∗ > 0, ∀ k ∈ K such that λ∗k > 0.

Using this observation, problem (P ) can be greatly simplified. Indeed, let φk = R′
k(0), ∀ k ∈ K,

and renumber the classes such that φ1 ≥ φ2 ≥ · · · ≥ φK ≥ φK+1 ≡ 0. We introduce the following
parametrization of the arrival rates: λP

k (β) = R′
k
−1(β) 1[β<φk], where 1A is the indicator function.

If Rk(λk) is not strictly concave, then the inverse must be generalized in the usual way, i.e.,
R′

k
−1(β) = inf

{
λ ∈ [0, λmax

k ]
∣∣ Rk(λ) = β

}
.
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It can be shown that solving problem (P ) is equivalent to solving the single-dimension fixed-
point equation β = ∆J

(
λP (β);N

) ≡ J
(
λP (β);N

)− J
(
λP (β);N − 1

)
, which has a unique interior

solution in the interval [0, φ1]. The parametric revenue function J(λP (β)) is continuous on [0, φ1]
but in general is not differentiable at the break points φk where an additional class becomes active.
However, the left- and right-hand derivatives always exist for any interior point. Moreover, it can be
shown that J(λP (β)) is quasiconcave in β. As mentioned in §1, Ziya et al. [21] suggest a different
parametrization for the single-link case. Though it also reduces the formulation to one dimen-
sion, which they exploit analytically, there is not much gain computationally since their reduction
still requires solving a multi-dimensional knapsack problem. In that respect, our parametrization
should be more convenient for applications as it only requires solving a one-dimensional fixed-point
equation.

The top graph in Figure 2 shows the shape of J(λP (β)) for different values of N and linear
demands such that φ1 = 30 and φ2 = 8 (the latter is marked with a solid vertical line and
corresponds to a non-differentiable point). In the bottom graph of Figure 2 we plot ∆J(λP (β)).
The optimal value of J(λP (β)) is obtained when ∆J(λP (β)) intersects the 45o line. If β∗ is the
unique fixed-point, then we know that β∗ < φ1, and therefore class 1 is always active, i.e. its
optimal arrival rate is nonzero. If β∗ < φ2, then class 2 is active, and so on. In general, all classes
“to the right” of β∗ will be active. For example, in Figure 2, class 2 has a zero arrival rate when
N = 10 because β∗ > 8, but it becomes active when N = 15 since then β∗ < 8.
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Figure 2: The parametric functions J(λP (β)) (top) and ∆J(λP (β)) (bottom). The solid vertical
line represents φ2 = 8. For easier representation, the vertical axis is not to scale.

The parametrization in terms of the marginal revenue β allows us to show next the monotonicity
of the optimal static prices p∗k(N) with respect to N . Once more, this is a direct consequence of
the concavity of the nonblocking probabilities and serves as an alternative to the proof shown in
Ziya et al. [21].
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Proposition 3 Under complete-sharing, p∗k(N + 1) ≤ p∗k(N), ∀ k ∈ K, for any positive integer N .

Proof: Let βa and βb be the optimal solution to the fixed-point equation for N and N + 1
respectively. It suffices to show that βa ≥ βb. The concavity of the nonblocking probabilities
implies that:

∆J
(
λP (β);N

) ≥ ∆J
(
λP (β);N + 1

) ∀β ∈ [0, β1] (5)

In other words, ∆J
(
λP (β);N

)
“lies above” ∆J

(
λP (β);N + 1

)
. This remark provides an intuitive

explanation of why βa ≥ βb must hold (see for example Figure 2). However, we continue with a
formal proof in order to show that the concavity of the nonblocking probability has even stronger
consequences. In fact, suppose that βa < βb. For N > 1, the right-hand derivative of ∆J(λP (β);N)
at βa is given by

∂∆J(λP (β+
a );N)

∂β
= −B(λP (βa))·

(
∆J(λP (βa);N)−∆J(λP (βa);N−1)

)
·
[ K∑

k=1

1
µk

∂λP
k (β+

a )
∂β

]
. (6)

From Equation (5) we have that the right-hand derivative (6) is non-negative for N > 1 (for N = 1,
∆J(λP (β); 1) = J(λP (β); 1) so the derivative is zero at βa). Then, there must exist β̂ > βa such
that ∆J(λP (β̂);N) < β̂. Let q(β) ≡ ∆J(λP (β);N) − β, which is a continuous function of β. On
the one hand we have q(β̂) < 0, and on the other hand, from βb = ∆J(λP (βb);N + 1) and (5), we
have that q(βb) ≥ 0. Then there must exist ξ ∈ [min(β̂, βb),max(β̂, βb)] such that q(ξ) = 0. This
implies ξ = βa (from the uniqueness of βa), which is a contradiction since ξ ≥ min(β̂, βb) > βa.
Consequently, it must be that βa ≥ βb, and the proof is complete. 2

3.3 General case.

For the general case we would like to identify when the following two conditions hold: (i) the
upper-level sets of the revenue function are connected, and (ii) the optimal solution of (P ) is
unique. Condition (i) is necessary (and sufficient under proper assumptions) for a greedy search
method to converge to a global maximum. Condition (ii) is a desirable property that allows the
construction of one-to-one mappings as we did in § 3.2. A sufficient condition for (i) and (ii), which
we denote (S), is the following: considering all K classes or less, the hessian of the revenue function
at any interior solution of the first-order conditions is definite negative. Condition (S) requires any
solution to the first-order conditions (3) to be a strict local maximum, which implies that a critical
point is a unique global maximizer. Moreover, it can be shown that condition (S) implies that the
upper-level sets are connected, see Proposition 3 in Mart́ınez-de-Albéniz and Simchi-Levi [10] and
the discussion thereafter. Note that in general condition (S) is weaker than quasiconcavity. In fact,
there exist functions that do not have convex upper-level sets, i.e., are not quasiconcave, but do
satisfy condition (S), see for instance Figure 2 in [10].

Let λ∗ > 0 be a feasible point for (P ) that satisfies the first-order conditions (3). The hessian
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of the revenue function at λ∗ can then be decomposed as:

H
(
J(λ∗;C)

)
=




. . . 0
Bk(λ∗;C)

µk
·R′′

k(λ
∗
k)

0
. . .




︸ ︷︷ ︸
Hr

+


 Bk(λ∗;C)

µk
· Bj(λ

∗;C−bk)
µj

·∆jkJ(λ∗;C)




︸ ︷︷ ︸
Hp

,

(7)
where ∆jkJ(λ;C) ≡ J(λ;C) − J(λ;C − bj) − J(λ;C − bk) + J(λ;C − bj − bk) is the double
backward difference operator. Then, for condition (S) to hold, we must verify that (7) is definite
negative, considering all K classes or less. When all Rk are strictly concave, clearly the diagonal
matrix Hr is definite negative. The contribution of Hp depends on the capacity vector C. For
instance, as expected, under complete-partitioning the matrix Hp becomes a diagonal matrix with
non-positive entries. However, the main result in this subsection is negative: for a general tree
network, condition (S) does not hold. In fact, consider a system with two classes and linear demands
λk(pk) = αk − pkγk. The capacities of the common link and the outbound links are respectively
N = 2, N1 = 2, and N2 = 1. Assuming, γ1 = 1/9, α1/γ1 = 30, γ2 = 1/7, α2/γ2 = 0.02, and
µ1 = µ2 = 1, we can see in Figure 3 that the revenue function has an inflexion point and the
upper-level sets are not connected.

1.16 1.2 1.24 1.28
0

1

2

3

λ
1

λ 2

Figure 3: Disconnected level sets for the general case.

The reason for condition (S) not to hold in the previous example is that N2 = 1 implies
B2(λ∗;C − b2) = 0 so the lower right entry of Hp is zero, meaning that Hp can never be semi-
definite negative. Then, we can chose the problem parameters so that H

(
W (λ∗;C)

)
becomes

indefinite. From the previous observation, it seems that having one of the outbound links with unit
capacity is problematic. Note also that the case N = 1 was always treated differently in the proofs
in §3.2. The immediate question is: does condition (S) hold if Nk > 1, ∀ k ∈ K? We address
this question numerically in §5 and we conjecture that the answer is affirmative when demands are
linear.

To solve the static pricing problem for a general tree network, we suggest a parametrization of
the first-order conditions (3) that lead to a fixed-point equation analogous to the one derived for
the complete-sharing case. Formally, let βk be a non-negative vector where the k-th component
represents the opportunity cost of admitting a class-k call. Then we have

λP
k (β) = R′

k
−1(βk) 1[βk<φk], ∀ k ∈ K, (8)
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βk = J
(
λP (β);C

)− J
(
λP (β);C− bk

)
, ∀ k such that βk < φk, (9)

where φk is defined as before. Equation (9) provides a critical point and a global maximum if
condition (S) holds. Though it is a K-dimensional fixed-point equation, it can still be solved by
repeated substitution. The main challenge could eventually be the computation of the non-blocking
probabilities to evaluate the revenue function. However, for practical applications we suggest using
the reduced load approximation (see [15]), which in the case of a tree network amounts to solving
another single-dimensional fixed-point equation given by

L = E
( ∑

k∈K
ykE(ykL ; Nk) ;N

)
, (10)

where E(ρ ; N) is the non-blocking probability in an Erlang system with offered load ρ and capacity
N . Again, Equation (10) can be solved efficiently through repeated substitution, and then the non-
blocking probability for class-k is computed approximately as Bk ≈ LE(ykL ; Nk).

4. Asymptotically Optimal Prices

We now consider a relaxation of the original static pricing problem (P ) to obtain an upper bound
on the optimal revenue. This is the same upper bound as in [9, 12, 13], but our derivation is specific
to the static pricing case and does not require the functions Rk(λk) to be concave. Instead, we use
the fact that pk(λk) is decreasing, ∀ k ∈ K.

Suppose that the service provider is allowed to admit an unlimited number of calls, but in
steady-state the occupancy of the links must not exceed the former nominal capacities on average
(where the average is with respect to the steady-state probabilities). In this relaxed problem, that
we call (Pub), the links correspond to independent M/G/∞ queues. Then, the average number of
customers is equal to the offered load, and we have that problem (Pub) can be formulated as the
following nonlinear program:

(Pub) max
∑K

k=1 Rk(λk)/µk

s.t.
∑K

k=1 λk/µk ≤ N

λk/µk ≤ Nk, ∀ k ∈ K.

(11)

We now show that the relaxed problem (Pub) indeed provides an upper bound.

Proposition 4 Assume pk(λk) is decreasing, ∀ k ∈ K, and let J∗ and Jub be the optimal value of
(P ) and (Pub) respectively. Then, J∗ ≤ Jub.

Proof: Let λ∗ be the optimal solution to the static pricing problem (P ). Since at any point in time
in the original (non-relaxed) system we have that Xk(λ∗;C) ≤ Nk, ∀ k ∈ K, and

∑
k∈KXk(λ∗;C) ≤

N , then the constraints must also be satisfied on average. That is, E∗
k ≡ E

[
Xk(λ∗;C)

] ≤ Nk, ∀ k ∈
K, and

∑
k∈KE∗

k ≤ N . Therefore, the solution E∗
kµk, k ∈ K, is feasible for problem (Pub), so we

can write
Jub ≥

∑

k∈K
pk

(
E∗

kµk

)
E∗

k ≥
∑

k∈K
pk

(
E∗

kµk

Bk(λ∗;C)

)
E∗

k = J∗,
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where the second inequality is because pk(λk) is decreasing, ∀ k ∈ K, and the last equality follows
from Little’s Law and the optimality of λ∗. 2

Besides the upper bound, problem (Jub) provides a static solution λub (or pub) for the original
problem (P ). If the capacity and the arrival rates λub are increased by the same factor, then
it can be shown that as the factor tends to infinity, the blocking probabilities tend to zero (see
[9]). Hence, the objective value of the scaled system evaluated in pub asymptotically reaches the
upper bound Jub, and for that reason we will refer to pub as the asymptotically optimal prices.
Given this asymptotic property, and since problem (Jub) is fairly easy to solve, the prices pub are a
natural candidate to use as an approximate solution for problem (P ). In the numerical section we
study the performance of pub versus the optimal static prices and those computed heuristically by
approximating the non-blocking probabilities. Finally, note that when the instantaneous reward
functions Rk(λk) are concave, then Jub is also a valid upper bound for any dynamic pricing policy
(see [13]).

We conclude this section providing bounds on the performance of the asymptotically optimal
static prices. For that, we first need the lemma below which shows that E(N ; N) is increasing in
N . Note that this result is non-trivial since E(ρ ;N) is decreasing in ρ for a given N so the fact
that E(N ; N) increases with N is not straightforward.

Lemma 2 Let N be a positive integer, then E(N ;N) is strictly monotone increasing in N .

Proof: The non-blocking probability in an Erlang loss system is given by E(ρ ; N) = 1− ρN
/
N !∑N

i=0 ρi
/
i!

.

We would like to show that E(N ; N) < E(N + 1;N + 1) for any N non-negative integer, which is
equivalent to showing

N+1∑

i=0

(N + 1)i

i!
>

(
N∑

i=0

N i

i!

)(
1 +

1
N

)N

, ∀N ∈ N ∪ {0}. (12)

We show this directly:

N+1∑

i=0

(N + 1)i

i!
=

(N + 1)N

N !
+

N∑

i=0

(N + 1)i

i!

=
(N + 1)N

N !
+

N∑

i=0

i∑

j=0

N j

j!(i− j)!

(By the binomial theorem)

=
(N + 1)N

N !
+

N∑

j=0

N j

j!

(
N−j∑

k=0

1
k!

)

(By interchanging the summation order and then defining i− j as k)

=
(N + 1)N

N !
+

N−1∑

j=0

N j

j!

(
N∑

k=0

1
k!

)
+

NN

N !


1−

N−1∑

j=1

N !
NN

N j

j!

( N∑

k=N−j+1

1
k!

)


(By rearranging terms)
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≥ (N + 1)N

N !
+

N−1∑

j=0

N j

j!

(
N∑

k=0

1
k!

)
+

NN

N !


1−

N−1∑

j=1

( N∑

k=N−j+1

1
k!

)


(Because N is the mode of a Poisson random variable with parameter N

so N j
/
j! ≤ NN

/
N !, ∀ j ≤ N)

=
(N + 1)N

N !
+

N−1∑

j=0

N j

j!

(
N∑

k=0

1
k!

)
+

NN

N !


1−

N−1∑

j=1

( j∑

`=1

1
(N − ` + 1)!

)


(By defining N − k + 1 as `)

=
(N + 1)N

N !
+

N−1∑

j=0

N j

j!

(
N∑

k=0

1
k!

)
+

NN

N !

(
1−

N−1∑

`=1

(N − `)
1

(N − ` + 1)!

)

(By interchanging the order of the last two summations)

=
(N + 1)N

N !
+

N−1∑

j=0

N j

j!

(
N∑

k=0

1
k!

)
+

NN

N !

(
1−

N−1∑

`=1

(
1

(N − `)!
− 1

(N − ` + 1)!

))

(By using some algebra to rewrite the term in the last summation)

=
(N + 1)N

N !
+

N−1∑

j=0

N j

j!

(
N∑

k=0

1
k!

)
+

NN

N !

(
1

N !

)

(By telescoping the last sum)

≥ (N + 1)N

N !
+

N−1∑

j=0

N j

j!

(
1 +

1
N

)N

+
NN

(N !)2

(By theorem 3.31 in Rudin [18])

=
N∑

j=0

N j

j!

(
1 +

1
N

)N

+
NN

(N !)2

>
N∑

j=0

N j

j!

(
1 +

1
N

)N

,

and the proof is complete. 2

Finally, the following lemma provides the bounds. Let λub be the optimal solution to (11) and
let yub

k = λub
k /µk, ∀ k ∈ K.

Lemma 3 Let M = mink∈KNk and ρub =
∑

k∈K yub
k , then:

1 ≥ J(λub;C)
Jub

≥ min
k

Bk(λub;C) ≥ min
k∈K

E(ρub; N)E(yub
k ; Nk) ≥ E(N ;N)E(M ;M). (13)

Proof: The first and second inequalities follow from the definition of Jub and J(λub;C). The third
inequality follows from the independent link bound for loss systems (see [15]). The last inequality
uses Lemma 2 and the worst case scenario ρub = N and yub

k = Nk, ∀ k ∈ K. 2
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5. Numerical Analysis

In this section we provide some illustrative numerical examples with linear demands λk(pk) =
αk−pkγk. The goal is twofold: (i) analyze and discuss the relationship between problem parameters
and the solution structure; and (ii) compare the performance of the asymptotically optimal, reduced
load approximation, and optimal static prices.

We first consider a two-class complete-sharing system with αk = 10γk, γ1 = 100, γ2 = 20,
and µk = k. Since φ1 = φ2 = 10, from §3.2 we know that both classes are “attractive” to the
network service provider. Moreover, from the optimality conditions (3) it follows that the prices
for both classes are equal. In Table 1 we compare the performance of the asymptotic and optimal
static prices for increasing values of N . We observe that pub

k > p∗k, which is intuitive (see the
proof of Proposition 4), and we also confirm the monotonicity property from Proposition 3. When
the blocking level goes down, so does the suboptimality gap of the asymptotic prices. Since the
relaxed problem Pub does not have blocking, it is clear that the asymptotically optimal prices pub

k

will perform well if they induce blocking probabilities that are close to zero. This fact is confirmed
by the convergence rate proved in [13] which shows that the system must be scaled until there is
no blocking for the asymptotic result to take place.

N J(pub;C) J∗ Jub pub
k p∗k Blocking Jub−J(pub;C)

Jub
Jub−J∗

Jub

5 35.59 46.91 49.77 9.95 9.67 0.86 28.49% 5.75%

10 77.83 93.40 99.09 9.91 9.63 0.76 21.46% 5.74%

20 165.16 185.14 196.36 9.82 9.55 0.61 15.89% 5.71%

40 340.68 363.63 385.45 9.64 9.39 0.43 11.61% 5.66%

60 512.66 535.49 567.27 9.45 9.22 0.32 9.63% 5.60%

90 760.61 780.84 826.36 9.18 8.98 0.23 7.96% 5.51%

Table 1: Asymptotically optimal pub and optimal static p∗ prices under complete-sharing.

The next set of numerical experiments studies the performance of a two-class general tree
network. The demand functions are the same as before and we excluded cases with N1 = 1 or
N2 = 1 since, as discussed above, the revenue level sets might not be connected. In particular, we
considered instances with N, N1 ∈ {10, . . . , 20} and N2 = 10. We used third-party algorithms [19]
to verify condition (S) (c.f. §3.3). The conclusion was that condition (S) holds in all the cases
considered, for any given set of parameters. To compute the non-blocking probabilities, we used
the normalization constant algorithm in Pinsky and Conway [14]. We chose this general algorithm
instead of a specialized routine for a tree network (such as Ross and Tsang [16]) because it can
easily handle numerical overflows which occur frequently even for mid-size instances.

In Figure 4 we perform a sensitivity analysis for the optimal static prices with respect to problem
parameters. In the left graph we keep everything fixed except for the demand intercept α1. By
increasing α1, the demand for that class becomes more inelastic. As expected, p∗1 increases since the
service provider can charge more and make a higher profit. The price p∗2 is also increasing (though
less pronounced), which reflects the fact that the capacity opportunity cost is higher. The middle
graph of Figure 4 shows the sensitivity with respect to N1. Interestingly, p∗1 is not monotone as the
system transitions through the three possible structures we have covered: complete-partitioning
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Figure 4: Sensitivity of the optimal static prices with respect to: demand intercept α1 (left graph,
N = 20, N1 = 15), outbound capacity N1 (middle graph, N = 20), and capacity increase x (right
graph, N = 20 + x,N1 = 11 + x), in a two-class tree network with N2 = 10.

(N1 = 10), general case (N1 = 11, . . . , 19), and complete-sharing (N1 = 20).1 The monotonicity
property is recovered if the capacity on both links used by class-1 increases simultaneously. This is
shown in the right graph of Figure 4, which would be the equivalent to Proposition 3 in the general
case.

For the instances in the middle graph of Figure 4 we computed the steady-state revenue for
the asymptotically optimal, reduced load approximation, optimal static prices. These values are
reported in Table 2, first in absolute terms, and then as a percentage difference with respect to
the upper bound Jub. From Equations (8)-(10) it can be seen that the effort needed to compute
the reduced load approximation prices is comparable to finding the asymptotically optimal ones.
However, the former outperforms the latter, as it can be seen in Table 2. Indeed, the reduced
load approximation prices yield a steady-state revenue that is only slightly worse than the optimal
static, whereas the asymptotically optimal prices are consistently ten percentage point below. Note
that the gap with respect to Jub could suggest that a dynamic pricing policy has room to do better,
but that is not clear as in these cases we believe that the bound is just not tight enough.

N1 J(pub;C) J(pr;C) J∗ Jub Jub−J(pub;C)

Jub
Jub−J(pr ;C)

Jub
Jub−J∗

Jub

10 148.44 168.14 168.26 189.00 21.46% 11.04% 10.97%

12 155.89 174.13 174.44 192.16 18.87% 9.38% 9.22%

14 159.35 178.44 178.57 194.44 18.05% 8.23% 8.16%

16 161.22 181.66 181.75 195.84 17.68% 7.24% 7.19%

18 162.54 183.96 184.01 196.36 17.22% 6.31% 6.29%

20 165.16 185.07 185.14 196.36 15.89% 5.75% 5.72%

Table 2: Percentage difference with respect to Jub for the asymptotically optimal pub, reduced load
approximation pr, and optimal static p∗ prices, in a two-class tree network (N = 20, N2 = 10).

To further investigate the performance gap between the asymptotic and optimal static prices,
we fix the common link capacity N = 100 and we consider K identical classes with αk = 5120, γk =
512, µk = 1 and Nk = M, ∀ k ∈ K. Note that if all αk are equal, or all γk are equal, then
condition (S) can be easily verified analytically through direct calculation of the corresponding

1In this last case, N2 < N but it is large enough to fall in the complete-sharing case. That is why the two prices

are identical.
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determinants (despite the extremely lengthy expressions, determining the sign of the inequalities
is straightforward). This provides additional support to our belief that condition (S) is satisfied in
general when Nk > 1, ∀ k ∈ K, and demands are linear.
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Figure 5: Percentage difference with respect to Jub for symmetric classes as a function of the
number of classes K (left graph, Nk = 2) and the outbound capacity Nk (right graph, K = 50).

In Figure 5 we plot the percentage difference of the steady-state revenue with respect to the
upper bound Jub for the asymptotically optimal and optimal static prices as a function of K and
Nk. The percentage difference for the asymptotically optimal prices is significant whereas for the
optimal static prices it quickly becomes minimal. This implies that even a dynamic pricing policy
has little room for improvement over the optimal static prices. For this symmetric example, the
next-to-last bound in (13) yields Jub−J(λub;C)

Jub = Bk(λub;C) ≤ 1−E(100; 100)E(N
K ;Nk). The latter

tends to 1−E(100; 100) = 7.57% as either K or Nk goes to infinity. In both graphs in Figure 5, the
curve with pub tends to the bound from above. The same observation can be made for any capacity
level N . Moreover, in all these cases, the reduced load approximation yields the optimal static
prices, which confirms even further that this approach seems preferable for systems outside the
asymptotic regime of (P ub). As for when the asymptotically optimal prices can be good enough,
the last inequality in (13) provides an indicator. This bound does not depend on the demand
parameters and can be easily tabulated for a quick reference.

6. Conclusions and Extensions

In this paper we presented a loss model for the pricing problem in a tree network. The work was
motivated by a company that sells phone cards. We restricted our study to static pricing policies and
focused on finding the optimal policy within that subclass. The first-order optimality conditions
have the same interpretation as many other revenue management problems: the optimal prices
must balance marginal revenue with opportunity costs. In terms of second-order conditions, for
two important cases, complete-partitioning and complete-sharing, it was shown that the revenue
function is quasiconcave. This property does not extend to the general tree network case, in
particular, when one of the outbound links has a single circuit (i.e., its capacity is equal to one).
Numerical evidence indicates that the latter seems to be the only problematic case, at least when
the demand functions are linear.

We then compared the performance of the optimal static prices with those obtained from solving
an asymptotic approximation where call blocking becomes negligible. We show that outside the
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the asymptotic regime there can be a significant gain from using the optimal static prices. Since
evaluating the normalization constant remains a computational challenge, our results suggest using
prices obtained with the reduced load approximation for the blocking probabilities.

We conclude the paper discussing which of our results extend to more general settings:

• Demand substitution: We assumed that the demand (arrival rate) of class k only depends
on its own price. This dependence can be extended to the complete price vector to allow for
demand substitution. Additional consistency assumptions, as those given in [3, 13], might
be needed. Assuming that the demand function is invertible, the instantaneous rewards
Rk(λ) = λkpk(λ) are now a function of the arrival rate vector. The first-order conditions (for
λ∗k > 0) become:

K∑

j=1

∂Rj(λ∗)
∂λk

· Bj(λ∗)
µj

=
Bk(λ∗)

µk
·
[
J(λ∗;C)− J(λ∗;C− bk)

]
. (14)

Note that each term is weighted by the corresponding nonblocking probability and holding
time, but the interpretation of “marginal revenue equal to opportunity cost” remains valid.
The results of §3.1 for the complete-partitioning case no longer hold since the objective
function is not separable. If Rk(λ) is jointly concave for all k, then the proof of Proposition 2
for the complete-sharing case is the same. In this case, the nonblocking probabilities in (14)
cancel out. If the equations

K∑

j=1

∂Rj(λ)
∂λk

· µk

µj
= β, ∀ k ∈ K,

can be solved uniquely for λ as a function of β, then problem (P ) can be reduced to a single
dimension as we did in §3.2. For a general tree network, the fixed-point formulation (8)-(9)
breaks down, though of course the reduced load approximation (10) can still be used. Finally,
in §4, Proposition 4 and Lemma 3 would now require concavity of the instantaneous reward
rates.

• Heterogeneous resource requirements: When customer classes have different bandwidth
requirement, the first-order conditions (3) hold with the vector bk appropriately defined. The
results for complete-partitioning also follow, but those for complete-sharing do not since the
blocking probabilities are no longer equal. The rest of the analysis remains unchanged. In
particular, Equation (7) remains valid, so having C − bk > 0, ∀ k ∈ K is necessary for
condition (S) to hold.

• General product form loss network: When the loss network has a general structure,
as long as the stationary probability distribution has a product form, then the first-order
conditions (3) will hold and the discussions in §3.3 and §4 will follow. However, calculating
the normalization constant for a general loss network is an NP-complete problem (see [15]),
so computing static prices using an approximation of the blocking probabilities becomes even
more relevant.
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