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Open boundaries (OBs) are usually unavoidable in numerical coastal circulation simulations. At OBs, appropriate 

open boundary conditions (OBCs) are required and a good OBC should be able to let outgoing waves freely pass to 

the exterior of a computational domain without creating reflections at the OBs. In the present study, a methodology 

has been developed to predict two parameters, phase speed c� and decay time T�, in a standard OBC formulation, so 

that the OBC is significantly improved compared to commonly used existing OBCs with specified c� and T�. For the 

conditions where wave period is unknown, the OBC with approximated c� and T� may be applied and a test reveals 

that this OBC is able to yield good results in typical coastal flow conditions. In addition, a Swing-Door Boundary 

Condition (SDBC) is proposed and tested for application at an offshore open boundary where both incoming and 

outgoing waves exist.  

Keywords: open boundary condition, bottom friction, phase speed, decay time, swing door boundary condition, 

numerical coastal model 

1. INTRODUCTION  

In most numerical simulations in coastal waters, open boundaries are always present and therefore 

an appropriate open boundary condition (OBC) must be applied. This OBC should be able to prevent 

any reflection of outgoing waves generated at the open boundary. Due to small water depth, the bottom 

friction may play a very important role in wave propagation in coastal waters. Thus, the bottom friction 

influences should be taken into account in the open boundary condition. Chapman (1985) summarized 

some commonly used open boundary conditions and tested their capability to prevent reflections, such 

as clamped boundary condition, Gravity-wave radiation boundary condition, the partially clamped 

boundary condition (Blumberg and Kantha, 1985), Orlanski radiation boundary condition (Orlanski, 

1976), and sponge plus Orlanski radiation boundary condition, etc..  Among these open boundary 

conditions, only the partially clamped boundary condition introduced by Blumberg and Kantha (1985) 

has considered bottom friction effect by introducing a decay time of �� which, based on a test case, was 

suggested by the authors to be taken as 4hours. This open boundary condition is also used in the coastal 

ocean model FVCOM (Chen et al., 2006) with a specified decay time of ��=3hours.  

It is known that, besides inducing wave attenuation, the bottom friction in coastal waters also 

reduces the phase speed c�. However, this effect is not considered in the study of Blumberg and Kantha 

(1985) and in FVCOM, where c� is taken as ��ℎ. Clearly, both specified c� and T� should be related to 

flow and bottom friction conditions rather than fixed values, as suggested by the study of Blumberg 

and Kantha (1985) and in FVCOM. Additionally, when simulating wave propagation from the offshore 

region towards the coast, one may have both incoming waves and outgoing reflected waves from the 

coast at the same offshore open boundary. Thus special treatment needs to be made at this type of open 

boundaries to avoid reflected waves being reflected back into the computational domain. 

The objective of the present study is to develop a methodology for the prediction of c� and T� and 

propose an OBC at an offshore open boundary where both incoming and outgoing waves are present. 

2. FORMULATION 

Here we consider one dimensional shallow water equation described in terms of surface elevation 

� and volume transport rate �  
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where � = ��ℎ + �� is the volume transport rate with h, the still water depth, � the depth-averaged 

velocity, and  �� is the bed shear stresses which can be related to velocity � by a quadratic form  

 ��/ = !�|�|�        (3) 

where  !�  is a dimensionless bottom friction factor. This friction factor is dependent on bottom 

roughness, #$% , experienced by the current, U, as !� = &'/()�11ℎ/#$%�+, . The presence of wind 

waves can significantly enhance the bottom roughness, e.g. Grant and Madsen, 1979. Thus the value of 

 !� can vary over a wide range in coastal waters. For example, in a coastal region with water depth of 

ℎ = 20m  and typical conditions of waves, � = 8s and 4 = 0.5~3m , current, � = 0.5m/s , and 

sediment, grain size d of 0.2, 0.4 and 0.6mm, bottom roughness can be estimated by a wave-current-

sediment interaction model proposed by Madsen(2002) and therefore the friction factor !�  can be 

calculated from the above formulation. The results in Figure 1 reveal that the friction factor is small in 

weak wave conditions where the bed is flat and significantly increased when ripples are present due to 

stronger wind waves. When the wave height increases further, very strong near-bed flow may wash out 

ripples and therefore bottom friction factor is smaller than for rippled bed conditions, e.g. the case with 

grain size of 0.2mm in Figure 1. In these typical coastal conditions, the estimated bottom friction factor, 

as shown in Figure 1, varies from  !� = 0.93 × 10;< corresponding to weak flow and fine sediment 

condition to  !� = 6.92 × 10;< for strong wave and coarse sediment condition.  
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Figure 1 Bottom friction factor in typical coastal conditions  

 

As introduced by Blumberg and Kantha (1985), a standard formulation of OBC in coastal waters 

in terms of free surface elevation can be expressed by  

  
�
� + >?

�
� = − �

@A
       (4) 

Where >? = the real part of wave phase speed at the open boundary and �� = the time scale of wave 

damping which should be related to bottom friction.  

The OBC (4) can be reduced to other commonly used OBCs by choosing different combinations of 

>?  and �� . The radiation gravity wave condition can be obtained for >? = ��ℎ & �� = ∞ with � =
9.81m/s,, the gravity acceleration. The Orlanski (1976) boundary condition is obtained if �� = ∞ and 

the phase speed >? is computed by numerical results at interior points and in previous time steps as 

>? = −�B� BC�/�B�/BD�⁄ . If �� = 0, the boundary condition (4) becomes a clamped condition, � = 0. 

The OBC (4) has been employed by Blumberg and Kantha (1985) in simulating wind-driven flow in a 

continental shelf sea and also by a community coastal ocean model, FVCOM (Chen et al., 2006). In 

both studies, the phase speed is computed by >? = ��ℎ , whereas the decay time �� = 4hours  is 

suggested by Blumberg and Kantha’s study based on numerical tests and �� = 3hours is the default 

value in FVCOM.  
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Having the standard OBC (4), we can test the performance of some of the commonly used OBCs: 

the one used in Blumberg and Kantha (BK OBC) and the gravity wave open boundary condition (GW 

OBC). The test is carried out in an open channel with length of K = 80km and still water depth of 

ℎ = 20m. A semi-diurnal tidal wave with period of � = 12.4hours, the most common long wave in 

coastal waters, is prescribed at the upstream open boundary D = 0 as � = MNsinPC with MN = 1m and 

GW OBC or BK OBC is applied at the downstream open boundary at D = K = 80km. The Princeton 

Ocean Model (POM) is employed to carry out all tests in the present study. In this test, a grid size of 

∆D = 2km and time step of  ∆t = 12s are used. Two types of bottom friction conditions are considered 

in the test: one is low friction condition with !� = 0.001 and the other is high friction condition 

with !� = 0.008. A numerical simulation in a very long channel with length K = 6000km for each 

friction condition is conducted to provide a no-reflection solution. The amplitudes of elevation along 

the channel, which are computed by M = ��R%� − �RS$�/2 with the maximum elevation �R%�  and 

minimum elevation �RS$  obtained after periodic steady state is reached, are plotted in Figure 2.  
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Figure 2 Amplitudes of surface elevation along the channel corresponding to long channel solution (solid), 
GW OBC (dashed) and BK OBC (dotted) with incident wave amplitude of TU = VW. 

 

It can be seen from Figure 2 that the results with GW OBC show fairly good agreement with the 

long channel solution for the low and very poor agreement for the high friction condition, with 3.7% 

and 17.2% reflections at D = K for the two conditions, respectively. On the other hand, the BK OBC 

works quite well for high and very poorly for the low friction condition, with 1.8% and -15.9% 

reflections at D = K for the two friction conditions, respectively. These results suggest that GW OBC 

and BK OBC can only be used for a certain condition and this may be caused by poorly specified 

values of >? and �� in GW OBC and BK OBC. This implies that good agreement should be possible for 

both friction conditions if we can find a way to predict the parameters >? and �� in OBC (4).  

To predict the two parameters, we consider a small amplitude wave problem in a domain with 

constant depth of h so that the nonlinear terms in Equations (2) and (3) can be neglected. We also 

assume a linear relation between the bottom shear stress and the volume transport rate as 

 ��/ = X�       (5) 

For X = X�C�, the linearized equation can be written 

Y�
�Y − �ℎ Y�

�Y + X �
� = 0      (6) 

From (3) and (5), the linear friction factor X can be related the nonlinear fiction factor !� through 

 X = !�|�|/ℎ        (7) 
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Obviously, (7) gives a friction factor R which is varying both in time and space. For convenience 

of derivation, we may replace |�| in (7) by a constant, such as the amplitude of |�| or the period-

averaged value of |�|, so that the friction factor R becomes a constant.  

We assume equation (6) has a progressive wave solution  

 � = Z[S�\�;]��       (8) 

Introduction of (8) into (6) gives  

 # = #? + ^#S = ± ]
�`a �1 + ^X/P     (9) 

Where “+” represents a wave propagating in +x direction and “-” represents a wave propagating in –x 

direction. In the present study, we just consider waves propagating in +x direction. Thus, the real and 

imaginary parts of the wave number read 

 #? = ]
�`a b�cdeY/]Ydc

,       (10a) 

 #S = ]
�`a b�cdeY/]Y;c

,       (10b) 

Thus, the progressive wave (8) can be re-written as 

 � = MN ⋅ [;\g� ⋅ [S�\h�;]�� = M[S�\h�;]��    (11) 

Where M = MN ⋅ [;\g� is the attenuating wave amplitude due to bottom friction, with MN the amplitude 

at x=0.  

Now, we have the analytical solution for attenuating long waves and may substitute this solution 

into the OBC formulation given by (4) to obtain 

  >? = ]
\h = ��ℎ/b�cdeY/]Ydc

,      (12a) 

 �� = \h
]\g

= b�cdeY/]Ydc
�cdeY/]Y;c /P     (12b) 

Apparently the values of >? and �� depend on the wave period and the bottom friction conditions. 

In some extreme conditions, the formulations of >?  and ��  in (12a) and (12b) can be significantly 

simplified. Thus, for X/P ≪ 1, (12a) and (12b) can be approximated by 

 >? ≈ ��ℎ       (13a) 

 �� ≈ 2/X        (13b) 

In this relatively low friction or short period wave case, the variable P  drops out from the 

formulations. This means that the OBC (4) can be applied without the wave period being known a 

priori. This may be very useful since the typical wave period is often unknown for realistic coastal flow 

conditions.  

On the other hand, if X/P ≫ 1, e.g. long period motion with very strong frictional effects, (12a) 

and (12b) reduce to  

 >? ≈ ��ℎ ⋅ �2/�X/P�      (14a) 

 �� ≈ 1/P       (14b) 

Essentially, the simpler formulae (14a) and (14b) do not simplify the problem as all variables remain in 

the formulations. 

Based on (12a) and (12b), the values of non-dimensional speed and decay time, >?/��ℎ and ��/� 

with � = 2l/P, are computed for X/P ranging from 0.01 to 100 and plotted in Figures 3a and 3b. The 

parameters computed from the simplified formulae (13a), (13b), (14a) and (14b) are also shown in the 

figures. Apparently, the simplified formulae (13a-b) and (14a-b) provide good approximations for very 

small and very large value of X/P, respectively. And >?/��ℎ and ��/� computed by (13a) and (13b) 
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are reasonably good for X/P up to O(1) compared to those obtained from (12a) and (12b) as shown in 

Figures 3a and 3b.  

In coastal waters, the typical order of magnitudes of relevant parameters in the above formulations 

are ℎ~m�10m�, �~m�1m/s�, !�~m�10;<� and P~m�10;os;c�. Thus the order of magnitude of X/P 

is m�1�. This implies that one needs to be careful when using the approximate formulations of >? and 

��   in numerical coastal simulations. For example, for water depth of 20m, semi-diurnal tide with 

velocity amplitude of |�|~1m/s  and friction coefficient of !� = 0.005, the value of  X/P  with X 

computed from (7) is about 1.78 and therefore  >?/��ℎ ≈ 0.8 and �� ≈ 0.27� = 3.3hours, and the 

approximation (13b) gives �� = 2/X ≈ 2.2hours and (14b) gives �� = �/2l ≈ 2.0hours.  
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Figure 3 Variations of non-dimensional parameters with ratio q/r for exact solution (solid), approximation 

for s/t ≪ V (dashed) and approximation for s/t ≫ V (dotted). (a) Phase speed uv/�wx (b) Decay time yz/y 

 

3. APPLICATION TO TIDAL DOMINANT CONDITIONS 

Having predicted >? and ��, we re-run the test case in Figure 2 with OBC (4). To be consistent 

with the derivation which assumed a constant value of R, the maximum velocity at D = K = 80km 

obtained from a long channel solution is chosen to obtain the constant value of R as X = !�|�R%�|/ℎ 

and this OBC is referred to as OBC1. Although consistent with the derivation of (12a) and (12b), this is 

clearly inconvenient, especially for simulations in real coastal waters where we may not be able to 

obtain a representative velocity from a simulation in a very large domain. Alternatively, we may 

calculate >? and ��  in a very convenient way by using the instantaneous velocity at the closest interior 

grid points and taking this value for |U| to compute R. We refer to this as OBC2.  

In the derivation of >?  and �� , linearity has been assumed. This actually requires the wave 

amplitude to be very small. However, waves may have finite amplitudes in most real conditions and 

nonlinear effects may not be negligible. In the case of large waves, we may modify OBC (4) by 

including some nonlinear effects related to elevation and velocity, including replacing the still water 

depth ℎ by the total water depth, ℎ + � , and replacing phase speed >?  by that for nonlinear waves 

superimposed on a current. Hence the factor R and the phase speed >?  are evaluated from 

 X = !�|�|/�ℎ + ��       (15a) 

 >? = ]
\h ��ℎ + ��/ℎ + � = ���ℎ + ��/b�cdeY/]Ydc

, + �  (15b) 

The decay time ��  is computed by (12b) based on the modified friction factor given by (15a). The 

nonlinear characteristic analysis suggests that, with >? given by (15b), the calculation of �� by using 

(12b) is accurate enough for most conditions unless both �/ℎ and X/P are very large. In (15b) the 

value of U is obtained as in OBC2, i.e. from the nearest interior grid point. For convenience, the OBC 

with these nonlinear effects included is referred to as OBC3.  

The predicted amplitudes of elevation along the channel from OBC1 and OBC2 for the incident 

wave amplitude MN = 1m  are shown in Figure 4a for three friction factors !� = 0.001, 0.0025 
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and 0.008. To test OBC3, we specify the semi-diurnal tidal wave with amplitude of MN = 3m at D = 0 

and apply OBC2 or OBC3 at D = K = 80km to carry out simulations in the same domain as in the 

previous test. The amplitudes of elevation along the channel are shown in Figure 4b. 
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Figure 4 Wave amplitudes along the channel (a) Incident wave amplitude of TU = VW with long channel 
solution (solid), OBC1 (dotted) and OBC2 (dashed); (b) Incident wave amplitude of TU = {W with long channel 
solution (solid), OBC2 (dotted) and OBC3 (dashed). 

 

As expected, the OBC1 with predicted >?  and ��  works very well for all of the three friction 

conditions shown in Figure 4a. And the results show much better agreement with the long channel 

solutions than GW OBC and BK OBC in Figure 2. OBC1 causes -1.3% and -0.8% reflections at D = K 

for friction conditions of !� = 0.001 and 0.008, respectively, as opposed to 3.7% and 17.2% for GW 

OBC and -15.9% and 1.8% for BK OBC. The results corresponding to OBC2 show even better 

agreements than those corresponding to OBC1, with -0.5% and -0.06% reflections at D = K for friction 

factors of !� = 0.001 and 0.008, respectively. This seems to be inconsistent with the derivation of 

>? and ��  where R was assumed constant. Nevertheless this should be theoretically reasonable if we 

look at the OBC (4) along the characteristic lines expressed by |D/|C = >?  as |�/|C = −�/�� . 

Numerically it can be expressed as ∆�/∆C = −�/�� in which the elevation is the one at time C and 

therefore the corresponding ��  should be related to the velocity at the same time, i.e. ��C�. The better 

results associated with varying R is very encouraging as we can obtain better results in a far more 

convenient way.  

The calculations with OBC1 show that the predicted values of  >? in this test varies only slightly 

for the three friction conditions, >?/��ℎ = 0.99, 0.98 and 0.91 whereas the predicted values for �� are 

far more sensitive, 17.9, 8.8 and 4.7 hours for !� = 0.001, 0.0025 and 0.008 , respectively. This 

confirms our conjecture for the reason behind the poor performance of GW and BK OBC shown in 

Figure 2, i.e. it is caused primarily by the poorly specified values for ��. Actually the value of  �� =
 4hours in BK OBC happens to be close to the one predicted for the large friction condition, 4.7hours. 

And ��=17.9hours, as predicted for the low friction case, actually gives quite weak damping effect 

which is not much different from ��=∞ as assumed in GW OBC.  

Surprisingly, it can be seen from Figure 4b that the open boundary conditions, both OBC2 and 

OBC3, work very well for this large amplitude wave condition, with reflections at D = K  less than 1% 

for all the cases in Figure 4b. Further analysis of the time series of elevation suggests that the mean 

water elevation and mean velocity corresponding to OBC2 and OBC3 are quite different, with the mean 

values from OBC3 much closer to the long channel solutions. These mean values are obtained by 

taking a period-average of elevation and velocity over the wave cycle from 130 to 142.4hour. Some 

mean values at selected locations, i.e. mean velocity at D = 0, 40km and 80km, referred to as �}N, �}oN,
�}~N, and mean elevations at D = 40km and 80km, referred to as  ��oN, ��~N, for the wave amplitude of 

3m and friction factor of !� = 0.001 and 0.008 are listed in Table 1. Apparently, for both friction 

conditions, the mean values from OBC3 are much closer to the long-channel solutions than those from 

OBC2, e.g. the mean surface elevation at D = K = 80#� from OBC3 for !� = 0.001  has only a -0.7% 

difference from the long channel solution whereas that from OBC2 has a -59% difference. It can be 

also observed in Table 1 that the period-averaged velocities from OBC2 at D = 40km and 80km have 



COASTAL ENGINEERING 2010  7 

   

 

positive values whereas those from long channel solutions and OBC3 are negative. This could be 

crucial if one is interested in predicting long term averaged flows, such as residual tidal flows. Some 

numerical investigations with a smaller wave, MN = 1m, suggest that the performance of OBC2 relative 

to OBC3 is even worse as far as the mean water level and period-averaged velocity are concerned 

despite the smaller amplitude. These results indicate that OBC3 is superior to OBC2, especially as far 

as mean water level and return flow are concerned.  

 

Table 1 Period-averaged elevation and velocity along the channel  

  
��oN 

(cm) 
��~N 

(cm) 
�}N 

(cm/s) 
�}oN 

(cm/s) 
�}~N 

(cm/s) 

!� = 0.001 
MN = 3� 

LONG 9.74 15.91 -9.87 -7.15 -5.15 

OBC2 4.70 6.60 0.65 3.27 5.27 

OBC3 9.35 15.80 -10.76 -8.06 -6.02 

!� = 0.008 
MN = 3� 

LONG 17.10 20.78 -6.34 -2.32 -0.60 

OBC2 11.43 10.67 -3.53 0.58 2.35 

OBC3 15.15 17.13 -5.42 -1.28 0.48 

 

4. A TEST ON THE OBC WITH APPROXIMATE uv and  yz 

In the above tests, we have assumed wave period is known a priori so that parameters >? and  �� 

can be computed via (12a) and (12b). This is feasible in some coastal areas where tidal flow is 

dominant. However, in some circumstances, we may not know the wave period, such as wind 

generated oscillations and storm surges in coastal waters. To handle such problems, we may use some 

approximate form of OBC. As discussed in Section 2, the leading terms of >? and  ��  in (13a) and (13b) 

for small values of X/P are independent of wave period. Thus, we may apply (13a) and (13b) as an 

approximation when we do not have accurate information about wave period. The typical period of 

wind generated flow motion and storm surges is several hours. With this period, the value of  X/P =
!�|�|/&�ℎ + ��P+ would have a value smaller than 1 for typical coastal conditions. Surely, there are 

some slowly varying motions in coastal waters which lead to a large value of X/P and therefore make 

(13a) and (13b) invalid. To investigate how the value of X/P  affects the performance of the 

approximation of (13a) and (13b), we perform two tests here: one is for semi-diurnal tidal flow with 

period of � = 12.4hours and amplitude of MN = 1m at D = 0 which gives X/P <1 and the other is for 

slowly varying flow which has a period of � = 62hours  and amplitude of MN = 3m at D = 0 and 

gives X/P >1 for most of the time. As in previous tests, the elevation time series is specified at D =
0 and the approximate values for >?  and ��  in the OBC are expressed by (13a) and (13b) and the OBC 

(we refer to it as OBC4) is applied at x=80km. The results with OBC3 are also shown for comparison.  

The amplitudes of elevation along the channel are shown in Figure 5a and 5b for the tidal wave 

case and the slowly varying motion case, respectively. The time series of values of X/P  over 

approximately one wave cycle are shown in Figure 6a and 6b for the two cases, respectively. Again, 

three types of friction conditions are considered, i.e. !� = 0.001, 0.0025 and 0.008. It can be seen 

from Figure 5a that the predicted wave amplitudes from OBC4 agree with the long channel solutions 

very well, which are very close to the solutions with OBC3. These good results can be expected as 

relatively small values of X/P are obtained for this case. Time series of X/P in Figure 6a suggest that 

X/P <1 is assured for most conditions except for high friction conditions with !� = 0.008. In fact, for 

the case with !� = 0.008, the value of X/P is not small enough to assure the validity of OBC4. The 

good result for this case may be partially due to the vanishing of the first order term in X/P in the 

expansion of �� in terms of the small parameter X/P as 1/�� = X/2 + m�X,/P,� .  
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Figure 5 Elevation amplitudes along the channel for various OBCs. (a) Small amplitude M2 tide case with 
small s/t; (b) Large amplitude slowly varying motion case with large s/t.  
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Figure 6 Time series of s/t in about one wave cycle computed based on long channel solutions. (a) Small 
amplitude M2 tide case; (b) Large amplitude slowly varying motion case.  

 

Based on the derivation, OBC4 should introduce errors if applied to conditions with X/P >1. In 

the test of slowly varying motion, the value of X/P shown in Figure 6b is greater than 1 even for the 

low friction condition with  !� = 0.001 and as large as nearly 10 in the high friction condition with 

!� = 0.008. With these large values, one would expect very poor agreement compared with long 

channel solutions. However, the predictions with OBC4 in Figure 5b show quite good agreement with 

long channel solutions, especially for the case with !� = 0.001 and 0.0025. Even in the high friction 

condition with !� = 0.008 where X/P has values up to nearly 10, the relative error at D = 80km  is 

only about 18%. This is surprising and interesting. Further investigations suggest that the good results 

may be obtained because the errors caused by the inaccurate >?  and �� somehow cancel out. In OBC4, 

the approximate value of >?  from (13a) is larger than the more accurate value obtained from (12a) and 

��  from (13b) is smaller than the more accurate value obtained in OBC3 from (12b). Considering the 

OBC along the linear characteristic, |D/|C = >?, the OBC  |�/|C = −�/�� gives the solution along 

the characteristic as � ∝ exp �−C/��� = exp�−D/�>?����. From this, we can see that for a given travel 

distance x, the predicted wave amplitude will increase if phase speed >? is over-estimated and decrease 

if ��  is under-predicted. This suggests that the good results in the case with large value of X/P may 

actually be due to, at least partially, the canceling out of the errors induced by the inaccurate values of 
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>? and ��  in OBC4. Regardless of this coincidence, the OBC4 may be a reasonable choice in 

circumstances when we do not have any information on the dominant wave period of the motion. 

5. SWING-DOOR BOUNDARY CONDITION (SDBC) 

When simulating flows in continental shelf seas, another kind of problem may be encountered. 

Sometimes waves propagate from the offshore region towards the coast and the incident wave is known 

at an offshore location. In such a scenario, waves at this offshore location consist of both incoming 

waves and outgoing waves reflected by the coast. Therefore a good OBC at this offshore location 

should allow incoming waves to freely propagate into the domain and at the same time let the outgoing 

reflections pass out to the exterior without any reflection back into the computational domain. Here we 

propose an OBC to deal with this situation and refer to it as a Swing-Door Boundary Condition 

(SDBC). This SDBC is implemented in the following way. 

Considering a one-dimensional problem, we assume an offshore open boundary at D = 0 and the 

coast at D = K. The total elevation �@ at any location inside the domain can be expressed as the sum of 

the incoming wave �S and the outgoing reflection �? created by the coast at D = K 

 �@ = �S + �?       (16) 

The incoming wave �S at x=0 is known as 

�S = MN[S]�       (17) 

To obtain the total surface elevation �@ at x=0 for use in the numerical integration, one needs to 

know the reflected wave �? at x=0. Obviously, the OBC (4) can be applied to calculate the reflected 

wave �? at D = 0, i.e. 

  
�h
� + >?

�h
� = − �h

@A
       (18) 

where >?  and ��  can be computed by assuming linear friction condition at the first grid of the 

computational domain, D = 0~ΔD. With this approximation, the linearized friction factor at D = 0~ΔD 

can be computed by  

 X = !�|�|��∆�/�ℎ + ��      (19) 

where U is the total velocity at D = ΔD calculated by the numerical model. Since this reflected wave 

propagates in –x direction, cr in (18) should in principle be negative. However, we choose it to be 

positive to be consistent with our sign convention for outgoing waves, and obtain B�?/ ∂D numerically 

from B�?/BD = ��?,��N − �?,��∆��/∆D. With the linear friction condition in the first grid, the incoming 

wave �S at D = ΔD can be computed analytically by �S�D = ∆D� = MNexp �−#S∆D�exp &^�#?∆D − PC�+ 
with #? M)| #S  computed by (10a) and (10b) based on friction factor R given by (19). Then the 

reflected wave �? at D = ΔD can be computed by subtracting the incoming wave from the total wave at 

D = ΔD, i.e. �?�D = ∆D� = �@�D = ∆D� − �S�D = ∆D�.  Having �? at D = ΔD , the reflected wave �? at 

D = 0 can be computed from (18). Eventually, the total elevation at D = 0 is computed by (16). 

For a linear problem, this SDBC should be exactly correct. However, if nonlinear effects are 

involved, it is approximate and hard to verify since we do not have an equivalent to the long channel 

solution used in the tests of the OBC. One way we can verify the SDBC is to check if there is evidence 

of reflection in the time series of elevation at a certain location, e.g. at the coast x=L. If the SDBC 

works perfectly, there will be no reflection generated at D = 0  and the total wave at any location inside 

the domain is the combination of the incoming wave and the first reflected wave by the coast. 

Therefore the wave amplitude at the coast should be unchanged after the periodic steady state is 

reached. On the other hand, if just specifying the incoming wave at D = 0, i.e. �@ = �S, the offshore 

open boundary will act to fully reflect the outgoing wave and the wave will be reflected back and forth 

inside the domain. Consequently the wave amplitude at the coast will be varying. Particularly, if we 

select a domain length corresponding to resonance, the wave amplitude at the coast will keep on 

increasing. Therefore we can compare the time series of surface elevation at the coast from these two 

types of OBCs to check the performance of our SDBC. 

In this test, we assume the incoming wave has a period of  � = 2hours and the domain has a 

length of K = 0.75� with � the wavelength of the incoming wave so that resonance takes place for the 

OBC of  �@ = �S at x=0. The following parameters are used in the tests: incoming wave amplitude of 
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 MN = 1m; still water depth of ℎ = 20m; channel length of K = 0.75� = 76km; grid size of ∆D = 1km; 

time step of  ∆t = 2s; and friction factor !� = 0.001, 0.0025 or 0.008.  

At this length of channel, it takes the incoming wave or reflected wave at D = 0 about 1.5 hours to 

reach the coast at D = K. This means the wave amplitude at the coast, D = K, would be changed by 

reflections every 3 hours. Here we show the elevation time series at D = K only for !� = 0.001 in 

Figure 7a, since resonance effect is more pronounced for small frictional attenuation. It can be seen that 

the amplitude becomes nearly 2m when the incident wave reaches the coast and is reflected back by the 

coast. The results in Figure 7a suggest that, if SDBC is applied, the wave amplitude changes very little. 

On the other hand, if applying �@ = �S at x=0, the wave amplitude increases after t=4.5hours to be 

about 3m and keeps increasing until the multi-reflected wave decays to near zero by the bottom friction 

at about C = 12hour. The nearly unchanged wave amplitude associated with the SDBC in Figure 7a 

suggests that the SDBC is able to let reflections created at D = K leave the domain at D = 0. The 

amplitude variation for different friction conditions are shown in Figure 7b for the two boundary 

conditions. It can be observed clearly in Figure 7b that the SDBC works very well for the purpose of 

preventing reflections at the offshore open boundary.  

While testing the SDBC, it has been found that the mean water level may shift quite a lot if OBC2 

is applied to the reflected wave �? at D = 0 and the shift is very small if OBC3 is used. This shift is not 

obvious if the resonance length is selected as in the above test. An example with channel length 

K = 0.85� and bottom friction factor of !� = 0.0025 shown in Figure 8, suggests that the mean water 

level is apparently shifted by about 0.5m when linear form of OBC (OBC2) is applied, which is 

relatively huge as the incident wave amplitude is only 1m, and the shift is very small if nonlinear 

effects are incorporated (OBC3). This is similar to the difference between OBC2 and OBC3 predictions 

of mean elevation and velocity discussed in the previous section.  

The underlying reason for this is not clear to the authors, but the results indicate that OBC3 

appears to be the better choice.  
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Figure 7 Tests on Swing-Door Boundary Condition in a channel with length of � = U. ���. (a) Time series of 
elevation at x=L for small friction condition, �� = U. UUV; (b) Variation of elevation amplitude at x=L for 
various friction conditions. 
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Figure 8 Elevation time series at x=∆x in a channel with length of � = U. ��� 

 

6. CONCLUSIONS 

In the present study, a methodology has been developed to predict the two key parameters in a 

standard open boundary condition, phase speed >?  and decay time �� , to significantly improve the 

performance of the boundary condition. Derived from linearized shallow water equations, the two 

parameters are dependent on the wave period and constant linearized friction factor. In accordance with 

the derivation, a test with linear friction factor computed by the maximum velocity is carried out and 

good results suggest that the open boundary condition (OBC1) is able to prevent most reflections at the 

open boundary. For convenience of numerical implementation, an open boundary condition (OBC2) 

with varying friction factor based on instantaneous velocity at the nearest interior grid point is proposed 

and the test shows OBC2 is able to produce a even better results than the OBC1. Furthermore, when 

including nonlinear terms in predicting >?  and �� , the open boundary condition (OBC3) is able to 

predict very good results for large wave conditions in which the nonlinear effects could be important. 

Meanwhile, the tests also suggest that the OBC3 can predict much better mean water levels and mean 

velocities over a wave period than OBC2. This is very important if one is concerned with return or 

residual flows. 

Despite the good performance of the OBC, either one of OBC1, OBC2 or OBC3, it has a serious 

limitation, i.e. the wave period needs to be known a priori to predict >?  and �� via (12a) and (12b). To 

remove this restriction, an OBC (OBC4) with an approximate >? and �� , (13a) and (13b), valid for 

X/P ≪ 1 is tested for two types of coastal flows in which one is small amplitude tidal flow for which 

X/P < 1 holds and the other is large-amplitude slowly varying motion, for which X/P < 1 is violated. 

As expected, good performance is obtained for the small amplitude tidal flow case. And surprisingly, 

OBC4 only produces an error of amplitude less than about 18% for the case of large amplitude slowly 

varying motion even though the value of X/P is as large as 10. Investigations reveal that the effects of 

over-predicted >? and under-estimated ��, resulting from the evaluation of these from the approximate 

expressions (13a and 13b), somehow cancel out. This result is very encouraging as X/P is of O(1) in 

most typical coastal conditions. This indicates that we may, with some confidence, apply OBC4 in 

numerical coastal simulations when wave period is unknown. 

To prevent reflections occurring at an offshore open boundary where both incoming wave and 

outgoing wave exist, a Swing-Door Boundary Condition (SDBC) is proposed. In this SDBC, the 

standard OBC is applied to the outgoing reflected wave which is separated from the total wave so that 

the incoming wave can freely propagate into the domain and at the same time outgoing reflections from 

the interior can pass out through the same open boundary without creating any reflection. A simple test 

suggests that the SDBC works very well for the purpose of preventing reflections at the offshore open 

boundary.  
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The tests in the present study suggest that the OBC3 predicts very close wave amplitudes 

compared to OBC2 and both of OBC2 and OBC3 are convenient for numerical implementation. 

However, the OBC3 predicts much better result as far as residual flow and mean water level are 

concerned as discussed in Section 3. Furthermore, a simple SDBC test shows that the mean water level 

near the offshore open boundary may shift remarkably when OBC2 is applied and very little when 

OBC3 is used. This indicates that the OBC3 should be the best choice of OBC to apply in numerical 

coastal models if the dominant wave period is known. 

Despite of the good performance of the OBC with predicted values for >?  and ��, there are some 

limitations of the present study. One of the limitations is that the tests are essentially one-dimensional 

problems, i.e. waves propagate in the normal direction to the open boundary. This is not the case in 

most real flows in coastal waters where waves may move across an open boundary at any angle. A 

methodology is being developed to incorporate the effects of oblique incidence at open boundaries so 

that the OBC can be applied to more realistic coastal conditions. Another restriction is that all of the 

tests in the present study are for simple periodic wave conditions which is an oversimplification for 

most flows encountered in coastal waters. Some tests are being undertaken for combined wave 

conditions where waves have different periods and amplitudes as well. Furthermore, Coriolis force may 

be very important in some large scale simulations. Hence investigation of its effect on the OBC is 

currently being pursued. 
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