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ABSTRACT 
 
In the following thesis, I describe the investigation of two problems related to the organization and 
structural analysis of visual information: perceptual grouping and silhouette analysis and representation.  
For the problem of perceptual grouping, an intuitive model framework was developed which operates on 
raw images and locates relevant groupings utilizing a higher dimensional space that contains not only the 
two spatial dimensions of the image but one or more dimension corresponding to relevant image features 
such as luminance, hue, or orientation.  A psychophysical experiment was run to measure how human 
visual observers perform perceptual grouping across a variety of spatial scales and luminance differences.  
These results were compared with the predictions of our grouping model, and the model was able to 
capture much of the grouping behavior of the human subjects.  A second experiment was run in which the 
perception of groups was disrupted by the presence of noise or shifts in brightness.  Though the 
experiments showed only small effects resulting from these disruptions on the behavior of human 
subjects, the model was still able to successfully capture much of the image-to-image variability. 
 
For the question of silhouette representation and analysis, I suggest that human silhouette representation 
may be inextricably tied to 3D interpretation of 2D shapes.  To support this, I propose a novel algorithm 
for 2D silhouette inflation called Puffball, which closely matches human intuition for a variety of simple 
shapes and can be run on almost any input.  Using this algorithm, a new model of human part 
segmentation was derived using 2D-to-3D inflation; this model was evaluated against human-generated 
part segmentations and two competing part segmentation algorithms.  Across a variety of different 
analyses, Puffball part segmentation performed as well or better than its competitors, suggesting a 
potential role for 2D-to-3D inflation in the segmentation of silhouette parts. Finally, I suggest several 
avenues of research which may further illuminate the role of inflation in the human representation and 
analysis of 2D and 3D shape. 
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Introduction

Consider the image in Figure 1A. When you look at this image you likely perceive an array
of dots, arranged in six-dot columns, which themselves can be grouped into a large thirty-
dot array. What you probablly do not see is dots arranged in five-dot rows; it is possible
to perceive these rows, but only with some effort. This is a demonstration of the Gestalt
principle of grouping by proximity. If you consider the image in Figure 1B, however, you likely
perceive a different organization. Here you most easily see five-dot rows, which themselves
can be grouped into perhaps one or two larger arrays. The locations of the dots are identical
to those in Figure 1A, but the brightnesses have altered the perceived organization. This is
a demonstration of the Gestalt principle of grouping by similarity.

It is important to note that none of these organizations is explicitly present in the image;
as arrays of pixels, neither of these images carries any explicit organization whatsoever. Nor
is the interpretation of these images semantic; we have no conception of these dots as real
world object or entities, and our perception of their organization tells us nothing about
their identity or meaning. Yet the perception of structure and grouping is intuitive and
inescapable.

Now consider the two silhouettes in Figures 2A and 2B. You almost certainly perceive
these shapes as having a complex structural organization: there are clearly identifiable parts,
and each of those parts has shape properties which can be remembered and compared with
other parts. You also likely recognize a similarity or kinship between the two silhouettes,
one which is not shared with the third silhouette in Figure 2C. As with the grouped dots,
there is no explicit information present in the images of these silhouettes that suggests or

Figure 1: Arrays of dots demonstrating the Gestalt principles of grouping by proximity
and grouping by similarity.
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Figure 2: Several silhouettes illustrating shape parts analysis and similarity.

necessitates these judgments. One could segment these silhouettes into parts in any arbitrary
way, and each would be just as correct. There is no simple image measure which can capture
the similarity that we perceive between Figure 2A and Figure 2B; for example, the raw pixel
difference between the two images is very large, and smaller between A and C than between
A and B. Nor are these judgments semantically derived: your perception of the silhouettes
cannot be governed by their identities as objects because they have no identities as objects.
Yet the parts analyses and similarity judgments made by humans with shapes such as these
are both strong and consistent.

Though these examples seem somewhat trivial - rarely in your life will your survival or
success depend on perceiving rows of dots, and you will likely never encounter the silhouettes
in Figure 2 outside of this pape - they are indications of mechanisms which play an essential
role in how we perceive and organize the world. To identify the objects and materials in the
world, we must first separate them from one another. This requires a powerful system for
identifying, without top-down semantic knowledge, what parts of a visual scene are generated
by the same item or process; the Gestalt dot displays reveal this system at work. And few
cues tell us more about the identity, function, structure, and behavior of an object or entity in
the world than its shape; because the information presented to the eyes is two-dimensional,
how our visual system processes, organizes, and represents two-dimensional shape - and
relates it to three-dimensional shape - is fundamental to a successful understanding of the
world we interact with.

Both of these phenomena lie in the broad and poorly understood realm between low-level
processing and high-level semantic interpretation that is often referred to as mid-level vision.
Both deal with the structural and geometric interpretation of the visual world, above and
beyond what is explicitly present in the input. And both, I shall try to demonstrate, fall
into a class of visual problems which require a careful balance of scientific and engineering
considerations. One cannot simply treat these problems as black boxes, trying different
inputs, observing the outputs, inferring the dependence between the two; the underlying
computations are too complex. We cannot understand the computational structure without
some idea of what computational structures we are looking for; if our existing toolbox of
computational tools is insufficient, we must seek new tools. Thus the scientist’s goal of
seeking understanding cannot be divorced from the engineer’s goal of seeking newer and
more intuitive solutions to real world problems.

However engineering without science is also insufficient; there are many possible solutions
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to any problem, and most will offer little to no scientific insight when lined up next to the
human visual system. Our new models therefore must also be grounded not only in the
mechanics of computation, but in the conceptual framework of perception and perceptual
science. The behavior of our models must be relatable to measurable human behavior, and
they must be intuitive enough and adaptive enough that we can gain further insight and
understanding. In the following thesis, I will describe two such models; one of perceptual
grouping, the other of silhouette analysis and representation. Neither is the first model to
approach these problems, and neither will be the last word in their respective domains; but
both offer a new and unique bridge between the too-often separated worlds of human vision
and computer vision, opening the door to new insights that would not have been possible
without them.
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Part I

Gestalt Grouping
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Chapter 1

Motivation

When the visual system is presented with a scene, its goal is to extract from that scene
semantic information about the outside world, including what items and entities are present
and how they are spatially arranged relative to one another. It is implausible that the
visual system would accomplish this by learning the relationship between complete scenes
and full images; there are too many possible images for the visual system to experience and
it is difficult to believe that it would see the same one twice. Therefore, the visual system
must have a way of breaking the visual world into pieces and indentifying the individual
components.

One way to accomplish this is to combine the process of locating the pieces and identifying
the objects present into a single step, by searching for known object images in the visual
scene. This template-matching approach can be very effective, and is widely used in computer
vision; but it still suffers from several limitations. First, it would be highly inefficient to
search for every object category in every visual scene. Second, many objects, even some
that we see quite often, are too complex and variable to be expressed by one or a small
number of templates. Also, many scene components or real world entities do not have a
consistent appearance, including water, the sky, and other amorphous entities. Finally, such
an approach would have no way of dealing with a novel object. If the visual system is to
robustly comprehend the information presented to it, it must organize the visual world before
it understands it.

It is therefore necessary that the visual system be equipped with mechanisms for piecing
apart the visual world without full knowledge of the real-world entities that are present. It
is these mechanisms that the Gestalt theorists investigated when they proposed the Gestalt
laws of grouping, patterns and regularities which allow the visual system to infer that different
parts of the visual world are generated by the same underlying process. However, the precise
computational nature of these mechanisms remains an open question. In this part of my
thesis, I propose a computational framework which simply and intuitively captures much
of the strength and variety of these organizational principles. I then describe how this
framework can be extended and evaluated in comparison with human behavior, and describe
a pair of psycophysical experiments which measure human subjects’ ability to identify groups
under various conditions of proximity, similarity, and noise. I show the results of our model
framework capture much of the variation in human behavior in these experiments, and finally
describe several ways in which the model framework might be extended or improved.
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Chapter 2

Previous Work

One cannot discuss the history of the study of perceptual organization without discussing the
Gestalt theorists around the turn of the century. The Gestalt school of psychology arose, in
large part, in response to Wilhelm Wundt and the Structuralist school, which attempted to
codify the elements of thought and behavior in much the same manner as chemists, analyzing
each element as the composition of smaller elements, down to the fundamental particles of
mind. The Gestalt school, on the other hand, felt that one could not understand the mind
by breaking down the elements of thought into smaller components. They argued that the
most important aspect of the mind was not the particles, but the arrangements and forms in
which they occurred; Christian von Ehrenfels, one of the earliest proponents of the Gestalt
approach, introduced the idea of a gestalt (German for “shape” or “form”) and gave the
example of a musical melody, defined not by the identity of the individual notes but rather
by their placement and timing relative to one another (Ehrenfels, 1937). Later theorists,
most notably Koffka, Köhler, and Wertheimer furthered the concept of the gestalt as the
fundamental tool of perception (Koffka, 1922; Wertheimer, 1923; Köhler, 1929).

The ideas of the Gestaltists were nowhere more influential than in the study of vision.
The creation or detection of gestalts in the visual world was said to be the result of several
perceptual “laws” meant to enforce the Gestalt principle of pragnanz, a German term best
translated as “pithiness,” and usually understood as implying simplicity, regularity, and
elegance. The proposed “laws” included the law of proximity, the law of similarity, and
the law of good continuation, as well as other laws such as common motion, symmetry,
parallelism, and closure.

The term “law” here requires qualification because, unlike the laws of physics and chem-
istry by which they were inspired, the Gestalt laws were grossly limited in their specificity
and predictive power. Though based on extensive observation, and at least anecdotally cor-
rect, the Gestalt theory offered little insight into how these principles relate to one another,
when one applies and another does not, how competing principles are to be resolved, and
what exceptions may exist. In addition, little or no quantitative specification of the prin-
ciples was given, and the Gestalt theorists made few suggestions as to how these principles
were implemented neurologically or computationally. However, given the compelling (albeit
non-quantitative) evidence of the existence of these principles in some form, it was inevitable
that later perceptual scientists would begin to fill in these gaps.

Much of this later work has focused on the conditions under which grouping of perceptual
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elements does or does not occur. In the study of contour integration, initial studies focused
on the ability of subjects to detect straight lines in fields of randomized distractors (Smits
et al., 1985; Beck et al., 1989; Moulden, 1994); but the more flexible path paradigm developed
by Field et al. (1993) showed that humans are able to perceive completed contours with
considerable change in orientation. Work by Geisler et al. (2001) showed a close relationship
between the conditions under which contour integration occurs and the image statistics
of nearby oriented elements in the natural world, while work by Elder and Zucker (1993)
highlighted the apparent importance of closure in contour completion.

Grouping by proximity and similarity have also received considerable attention. A num-
ber of studies have investigated the strength or relative strength of different grouping con-
texts, either by having subjects adjust the parameters of a display until two competing orga-
nizations are evidently in equilibrium (Rush, 1937; Hochberg and Silverstein, 1956; Hochberg
and Hardy, 1960; Oyama et al., 1999) or by having subjects report which grouping they per-
ceive in a variety of potentially ambiguous grouping displays (Oyama, 1961; Callaghan, 1989;
Kubovy and Wagemans, 1995; Quinlan and Wilton, 1998; Claessens and Wagemans, 2005).
The results of these studies ranged from simple rank-ordering of grouping principle strengths
to sophisticated probabilistic models (for an in depth discussion of many of the various results
and conclusions, see Kubovy and van den Berg (2008)).

The grouping experiments described above largely make use of controlled and highly
abstract stimuli containing clear and discrete elements (dots, line segments, Gabor patches,
or simple shapes); this is a sensible approach as it allows for careful parametric control of
the conditions of the experiment and avoids the confounding top-down influences that would
arise with real-world objects and natural images. However, an unfortunate side effect is that
the several mathematical and/or computational models proposed to explain the results in
grouping by proximity and similarity (Kubovy and Wagemans, 1995; Kubovy et al., 1998;
Kubovy and van den Berg, 2008) all implicitly or explicitly presuppose the existence of these
discrete elements to evaluate their coherence. But this representation on which the models
depend - visual information neatly parceled into contained, finitely describable elements - is
precisely the form of visual information we are trying to reach when we perform perceptual
organization. In a sense, in order to operate, the models must assume that the problem
of organizing the visual input is largely already solved. This approach, unfortunately, can-
not be extended to the more general visual domain. In contour integration, integration
of the computational and mathematical has been somewhat more progressive, with several
computational models actually operating on raw image data (Lowe, 1985, 1989; Gigus and
Malik, 1991); nevertheless, the majority of models still make use of discrete contour elements
and mathematically defined association fields (Grossberg and Mingolla, 1985; Ullman and
Sha”ashua, 1988; Parent and Zucker, 1989; Kellman and Shipley, 1991; Field et al., 1993;
Elder and Zucker, 1996; Jacobs, 1996; Yen and Finkel, 1998; Elder and Goldberg, 2002).

Consider Figure 2.1A. This is still a relatively simple scene, and the elements can be easily
identified; but what are their parameters? What is the proximity in this scene? Figure 2.1B
is even more challenging. How do we describe the segments of this image? What is the
distance between them? Are they similar in shape? Any model which depends on abstract
parametric representations of an image has very limited utility beyond the narrow constraints
of the experiment on which it is built.

Another class of models comes out of the field of computer vision. These models tackle the
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Figure 2.1: (A) A simple scene that cannot be represented by a small number of parameters.
(B) An even more complex but still easily understandable scene.

problem of image organization directly, operating on raw image data; they utilize methods
like normalized cuts (Shi and Malik, 2000; Malik et al., 2001) and mean-shift (Comanciu
and Meer, 2002; Paris and Durand, 2007). Unfortunately, though some work has been done
to ground these models in human segmentation behavior (Martin et al., 2001), this work
has focused only on continuous segments. Little work has been done evaluating the ability
of these models to group elements across breaks or occlusions; nor has any work been done
to compare the behavior of the models with human behavior on the large variety of classic
Gestalt stimuli which form the foundation of human grouping research.

In addition, while these computer vision models are mathematically well grounded and
operate on a wide variety of inputs, they are often nonintuitive and difficult to manipulate.
The normalized cuts model is dependent on very large and nonintuitive linear algebra oper-
ations, making it difficult to predict how manipulations of the model will affect its output.
And both normalized cut and mean-shift have a counterintuitive tendency to over-segment,
particularly in large flat image regions, such as the sky (Figure 2.2).

Figure 2.2: (A) An image segmented by the Normalized Cuts algorithm (Malik et al.,
2001). Note that the field in the background and the main body of the horse have been
oversegmented somewhat arbitrarily. (B) An input image for the mean shift segmentation
algorithm (Paris and Durand, 2007). (C) The results of mean shift on that image. Again,
large flat regions have been arbitrarily oversegmented.
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What is needed therefore is an approach that combines the strengths of both these classes
of model. A successful and informative model of perceptual grouping should be intuitive
to manipulate, and grounded in the simple Gestalt principles that form the basis of the
perceptual grouping literature. Efforts should be taken to relate that model to psychophysical
results in a way that offers insight into how to refine and improve the model. But the model
must also be computational, rather than mathematical; it should operate on images rather
than descriptions, and should be versatile enough to handle a wide range of inputs, including
those not specifically designed for psychophysics experiments. My objective is to describe
such a model here.
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Chapter 3

The New Idea: From Grouping to
Clustering

Consider the image in Figure 3.1. The most common percept when viewing this figure is
that of dots arranged in columns, all part of a larger grid. It is possible to perceive the dots
organized as rows rather than columns, but only with some effort. It is more natural to
perceive the dots grouping vertically than horizontally; this is consistent with the classical
Gestalt principle of grouping by proximity.

Suppose we wish to develop a computational process which will yield the appropriate
organization of the dots in this image; that is, an algorithm or function which will take this
image as input, and produce an output which identifies five vertically oriented groups or
segments corresponding to the five columns of dots. If we wish our process to be of any use
beyond this simple toy example, the process should not be specific to this stimulus, or even
this class of stimuli. In short, the process should not seek or identify dots, grids, or columns,
as these entities may not have any meaning when organizing other visual inputs.

Because this signal is an image, a natural toolbox to draw from when developing our
algorithm is that of image processing. One of the most basic operations in image processing

Figure 3.1: A simple Gestalt array. The most natural percept is dots arranged in columns.
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Figure 3.2: (A) Blurring the image with a Gaussian filter causes nearby dots to blend into
one another. (B) Passing (A) through a threshold yields 5 columnar segments.

is filtering; and if we filter the above image with a basic blurring filter such as a Gaussian (of
sufficient size), we see that the dots in the columns blur into one another (see Figure 3.2A).
Selecting all parts of the image below some threshold will pick out five segments overlapping
the five columns that can be perceived in the image (Figure 3.2B). This process of filtering an
image with a varying smoothing kernel like the Gaussian to locate image structure is closely
related to the scale-space approach to image analysis (Witkin, 1983; Koenderink, 1984).

But how would we choose this threshold? Choosing the threshold incorrectly will fail to
identify the appropriate grouping in this image, and different images will require different
thresholds. A better solution would be one which requires no choice of threshold; we can
again take our cue from the scale-space literature and peform edge-detection at the appropri-
ate scale to partition the image and more robustly analyze its structure (Marr and Hildreth,
1980; Babaud et al., 1986; Perona and Malik, 1990). If we filter the image not with a Gaus-
sian filter, but with a difference-of-Gaussians filter (Figure 3.3A), partitioning the image at
zero-crossings identifies those regions of the image which are either darker or lighter than
the areas around them. Identifying the areas of negative response in Figure 3.3A yields same
five columns located before, without the need for a specific threshold (Figure 3.3B).

Figure 3.3: (A) Filtering with a Difference-of-Gaussians yields regions of positive and
negative response. (B) The zero-crossings carve out image pieces without the need for an
adaptive threshold.
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Figure 3.4: A more complex Gestalt dot array. The introduction of different luminance
values makes the perception of rows much easier, and the perception of columns more diffi-
cult.

While this approach can work quite well for images with only two luminance values,
introducing a third luminance reveals even deeper limitations. Consider now the image in
Figure 3.4. The locations of the dots in this image are identical to those in Figure 3.1,
but the luminance values of alternating rows are now noticeably different. In this image, it
becomes far easier to perceive the dots as grouping by rows; indeed the perception of rows
now dominates the perception of columns. In the classical Gestalt framework, the principle
of grouping by similarity (in this case luminance similarity) has overridden grouping by
proximity. However, if we filter the image with a difference-of-Gaussians as before, we find
that looking at areas of negative value does not give this result (Figure 3.5). In fact, it gives
a weaker version of the column interpretation we saw for Figure 3.1.

The problem is that filtering the image, regardless of the filter type, blends and merges
nearby pixel values, washing out and often obscuring the complexity and structure present
in the original signal. The solution is to filter not the image, but a higher dimensional

Figure 3.5: (a) Filtering with a Difference-of-Gaussians does not yield an intuitive results.
(b) The zero-crossing still identify columnar segments.
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Figure 3.6: An image with a clearly discernible organization.

representation of the image in which pixels with different feature values differences which
signal the structure of the world which generated the image do not interfere with one
another.

This approach was first described in Rosenholtz et al. (2009). The new representation of
the image exists in a higher-dimensional space which has not just the two spatial dimensions
of the original image, but one or more dimensions corresponding to the relevant feature in a
given image. In the above examples, the feature would be some measure of luminance (e.g.
L∗ of the CIELab colorspace). Given an image I(x, y) which maps locations in the image
domain to luminance values, we define a new function J on x-y-L∗ space:

J(x, y, L∗) = δ(L∗ − I(x, y)) (3.1)

If one views an image a continuous function, J will look like a surface in x-y-L∗ space;
but if we view an image as a discrete function, the resulting function J can be seen as a
three-dimensional scatterplot, in which pixels at nearby locations with similar luminance will
map to points that are near one another in a three-dimensional Euclidean space. Thus the
problem of grouping pixels becomes a problem of grouping nearby points; in other words, a
grouping problem becomes a clustering problem.

Take the image in Figure 3.6. This image contains two regions of Gaussian noise; though
the distributions of pixel values in these two regions do overlap slightly, the division between
them is quite clear. If we map this image into x-y-L∗ space as described above, the function
J will contain two clouds of points, centered on different luminance levels (Figure 3.7A).
There are many ways to perform this clustering, but one method that works very well is to
filter this three-dimensional space with a three-dimensional difference of Gaussians:

Jσs,σL = J ∗ (Gσs,σL −G1.5σs,1.5σL) (3.2)

where

Gσs,σL(x, y, L∗) =
1

(2n)3/2σs2σL
exp

(
−x

2 + y2

2σs2
− L∗2

2σL2

)
(3.3)
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Figure 3.7: (A) A representation of the image in Figure 3.6 in x-y-L∗ space. Note that
the two regions of the image map to two clouds or clusters in x-y-L∗ space. (B) The zero-
crossings of the function Jσs,σL which results from filtering J (Figure 3.7A) with a difference-
of-Gaussians filter. These zero-crossing clearly mark the boundaries of the two clusters that
can be seen in (A).

The zero-crossings of the resulting function Jσs,σL mark the boundaries of regions of x-
y-L∗ space with positive response (Figure 3.7B). These regions correspond to the identified
clusters, which themselves correspond to the predicted pixel groups.

Of course, luminance is not the only feature that one can measure in an image; and
grouping based on luminance will not always give the right interpretation. Consider the
image of intersecting arcs in Figure 3.8A. If we were to apply our grouping model as described
above to this image, it would easily separate the black curves in the foreground from the
white background, but would identify the two arcs as single group (Figure 3.8B), which is
not at all how we perceive them.

At the point of intersection, the feature that separates the two arcs is not their luminance,
but their orientation. Suppose then that instead we begin by calculating the strongest
orientation at each point in this image. There are many ways to do this; we use a technique
from Landy and Bergen (1991) that utilizes steerable filters (Freeman and Adelson, 1991).
The result is shown in Figure 3.8C. We can now map every pixel of our image to a point
in x-y-θ space, where θ is a circular dimension ranging from 0 to π representing orientation.
Of course, we do not wish points with absent or imperceptible oriented energy to influence
the perceived organization; so when we map a pixel to a point in x-y-θ space we weight the
pixel with the strength of the orientation at that point (Figure 3.8D). When we view the
representation of the image in this space, we can see that the points corresponding to the
pixels of the two arcs are now cleanly separated from one another; once again, mapping our
image to the appropriate x-y-feature space has turned a difficult grouping problem into a
very simple clustering problem.

If we filter the x-y-θ space as before, oriented segments and elements that are near one
another and similar in angle will group together; in certain circumstances this performs
an effective contour integration result (e.g. Figure 3.8A), but in general this approach is
far closer to a model of segmentation of simple oriented textures. For example, if we map
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Figure 3.8: (A) Two intersecting arcs. (B) Segmenting them according to luminance
similarity treats them as a single connected entity. (C) A representation of the oriented
energy in (D). (d) The oriented energy of (a) mapped in to x-y-θ space.

the image in Figure 3.9A into x-y-θ space, and filter the x-y-θ space representation with a
difference of Gaussians as we did with x-y-L∗ space, the image is cleanly separated into two
texture regions (Figure 3.9B).

If we wish to model contour integration more generally, we must refine our approach
slightly. Consider the oriented segments in Figure 3.10A. It is clear that according to good
continuation, element a should group with element b, as they are aligned and similar in
orientation; and element a should not group with element c because their orientations are
quite different. But neither should element a group with element d; for, though they have

Figure 3.9: (A) An image with two distinct oriented texture. (B) The groups identified by
our orientation grouping model.
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Figure 3.10: (A) Several oriented segments. The law of continuation stipulates that a
should join with b. (B) Oriented energy in (A). (C) If one blurs x-y-θ space isotropically,
nearby parallel contours blur into one another. (D) Blurring anisotropically yieds the appro-
priate continuation. Becuase we are blurring with a difference of gaussians filter, the reponse
is strongest at the ends of the oriented elements, resulting in slightlly lower response near
the center of the elements.

identical orientation, they are not aligned, and thus are unlikely to have been generated by
the same contour. However, if we run the orientation grouping algorithm described above,
the two parallel segments group quite easily (Figure 3.10C).

To achieve contour grouping rather than texture grouping, we must alter the way we
filter x-y-θ space. Until now, we have chosen our difference of Gaussians filter so that each
of the two Gaussians blurs isotropically in the x-y plane; distance, not direction, was what
mattered to grouping. But this is not the case for contours; so, to achieve a more effective
contour grouping we instead filter the space anisotropically. Specifically, each slice of x-y-θ
space is filtered with an anisotropic difference-of-Gaussians each oriented along that slices
corresponding orientation. Thus, points in a particular slice of x-y-θ space will be more likely
to blur together if they are both similar and aligned in orientation. Using this technique, we
see that the elements of Figure 3.10A group together much more intuitively (Figure 3.10D).
This model implements an implicit association field between nearby and similar oriented
elements, much like models described by previous work on contour integration and good
continuation (Parent and Zucker, 1989; Field et al., 1993; Yen and Finkel, 1998; Geisler
et al., 2001); our model differs from these approaches, however, in that it is implemented in
the language and framework of filtering and image processing. This added flexibility allows
it to be applied to any possible image input, and process continuous contours just as easily
– or even more easily – than isolated contour elements.
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Figure 3.11: The influence of the spatial blurring parameter.

While this model has the power to recreate a variety of classical Gestalt phenomena, and
the added versatility afforded by operating on raw images rather than highly constrained
scene descriptions, perhaps its greatest strength is its intuitiveness and simplicity. The wide
range of possible model outputs stem from two parameters, σs and σL, and the effect of these
two parameters is highly transparent. Take the black and white text image in Figure 3.11.
When we look at this picture we do not see just one grouping; we perceive a hierarchy of
organization, ranging from the contiguous segments of the individual letters, to the tightly
arranged words, to lines and sentences, and finally the sections and paragraphs of the overall
text. This rich multiscale organization is beautifully mirrored in the output of the luminance
grouping model across a range of values for σs. This example illustrates the highly intuitive
behavior of σs: as σs increases, so does the scale of the resulting groups.

Figure 3.12 similarly illustrates the effect of varying the luminance blurring parameter
σL. Given the patchwork quilt image shown, differing values of σL give very different orga-
nizations of the image. The lowest value identifies the faintly discernible individual squares
making up the smallest scale of the patch. Increasing σL then groups together the smaller
squares, identifying the larger-scale patches of similar luminance. Finally, at the broadest
setting of σL gives a segmentation in which all tiles have grouped except the very salient
lower right patch, which has a very different luminance from all its neighbors. Thus the
function of σL is quite clear: as it increases, the segmentation becomes more insensitive to
luminance variations and the internal luminance variability of the resulting groups is higher.

Though only the implementations of luminance and orientation are described here, any
low-dimensional feature that can be measured throughout an image can be fit into this frame-
work. One could implement grouping by one or dimensions of color (e.g. hue, saturation), a
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Figure 3.12: The influence of the luminance blurring parameter.

low-dimensional representation of local texture, or contrast energy; the power of the model
is that it can convert a wide variety of different dimension, features and properties tradi-
tionally each approached with their own classes of models into a single, easy-to-understand
computational framework.

Of course, the model is not without its limitations. While the clustering approach that
we employ filter with difference of Gaussians and use zero-crossings to identify regions of
high-density performs very well in most cases, it can sometimes undersegment. For example,
given the image in Figure 3.13, the model would likely identify all pixels as belonging to one

Figure 3.13: Two adjacent gradients, which the visual system easily separates, will be
grouped together by our model because the very small point of similarity in the middle of
the image.
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group, due to the very small point at the edge where the luminances are equal. There are
also some clear examples of undersegmentation in the finest grained segmentation of the
quilt image in Figure 3.12.

In addition, the model is computationally very demanding to implement, as it requires
filtering a high-dimensional space. This limitation is the primary reason we have not im-
plemented grouping with features represented by more than one dimension: though there
is no theoretical obstacle, processing such a large data structure becomes prohibitively slow
and demands a great deal of space. However, while such calculations are very inefficient in
modern digital computers, they would not necessarily be inefficient in a highly-distributed,
highly parallel information processing system like the human brain. Indeed, as several re-
searchers have observed, the connections present in V1 and V2 closely mirror the circular
orientation space described in our model of orientation and contour grouping (Bosking et al.,
1997; Yen and Finkel, 1998; Ernst et al., 2012). And given that cells in v1 V2 are known
to fire at the locations of illusory or completed contours (von der Heydt et al., 1984; Grosof
et al., 1993), it is not unreasonable to propose that a calculation like the one described in
our model might be utilized by V1 and V2 for the integration and completion of contours.
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Chapter 4

Putting It to the Test

4.1 Preliminary Results

Figure 4.1 shows the results of our grouping model on two Gestalt dot arrays, specifically
those from Figures 3.1 and 3.4. At smaller spatial scale, the dots of Figure 4.1A, which are of
the same luminance, are grouped together into columns, giving the perceptual organization
most people would report when viewing this image. At a broader spatial scale, the dots
in the same row also group together; the resulting segmentation identifies all 30 dots as a
single segment, as well as the lighter background. Figure 4.1D, on the other hand, exhibits
a rather different behavior. At a smaller spatial scale (and sufficiently small luminance
scale), adjacent dots in a column do not group together, because they sit at different levels
in x-y-L∗ space. Thus each dot is identified as a complete segment. At a broader spatial
scale, adjacent dots in rows now group together; because dots in the same column remain
separate, the resulting segmentation identifies the rows of dots as segments. So, with the
right parameter settings, the model can recreate the intuitive structure of these images.

Figure 4.2A shows a random field of oriented elements from Geisler et al. (2001); Fig-
ure 4.2B depicts the sets of elements which are grouped by a pair-wise local grouping function
derived from the co-occurrence statistics of contours in natural images. These groupings rep-
resent the contour integration selections of an ideal observer based on the learned statistics of
the natural world, and were shown by Geisler et al. to agree well with the contours perceived
by human observers. The results of our contour integration function, using only the image
in Figure 4.2A as input, are shown in Figure 4.2C; all contour groupings which covered more
than one contour element are shown. Not only does the model successfully locate the largest
and most salient contour, it also closely mirrors the predictions of the model from Geisler et
al. in grouping the remaining elements. Most importantly, it does all this with no implicit
or explicit representation of individual contour elements.

In addition to these classical psychophysics stimuli, we also tested our model on several
figures described and analyzed by information visualization expert Edward Tufte (1983).
One example is shown in Figure 4.3A; this graphic depicts cancer rates among white females
in counties across the United States, where darker values indicate higher rates of cancer..
According to Tufte, when viewing this figure, observers will note the large number of high rate
counties in the Northeast, along with isolated high-rate pockets in northern Minnesota and
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Figure 4.1: Grouping model results on two classical Gestalt dot arrays. Figures (B) and
(E) were generated with a σs of 20 pixels and a σL of 4. Figures (C) and (F) were generated
with a σs of 30 and a σL of 4.

Figure 4.2: Comparison of our grouping model with model of Geisler et al. (2001). (A) A
field of oriented elements with a single salient contour. (B) The groups of segments predicted
by cooccurence statistics of contours in natural images. (C) The contour groups located by
our contour integration model.
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Figure 4.3: (A) An information graphic from Tufte (1983). (B) Our model’s analysis of
image (A).

southern California. Figure 4.3B shows the results of our luminance similarity and proximity
grouping algorithm on this figure; in addition to broad low-rate swaths throughout the
country, the model similarly identifies the large cluster of high rate counties in the Northeast,
and the two high-rate pockets in northern Minnesota and southern California. This result
is quite encouraging: Tufte has pointed out that when presented with this information, the
human visual system unconsciously organizes the information in such a way that the cancer
clusters pop out. Any model of human perceptual organization should be able to replicate
this, without prior information, as ours does.

Figure 4.4 depicts another Tufte demonstration using variations of a plot by Pauling.
In the first plot (Figure 4.4A), several families of points can be easily perceived as lying

Figure 4.4: (A) A plot by Pauling. (B) Removing the dotted lines makes the image harder
to parse. (C,D) Our model agrees with this intuition.
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Figure 4.5: (A) Marey’s train schedule. (B) Decreasing the contrast of the vertical lines
makes the figure easier to understand. (C,D) Again, our model confirms this finding.

along a curved contour, depicted by the dotted lines running through them; in the second
(Figure 4.4B), the dotted lines have been removed, and as Tufte points out, it becomes
much more difficult to perceive the underlying structure of the plotted points. Figures 4.4C
and 4.4D depict the results of our contour integration model on these same figures. The
model of Figure 4.4A identifies several groups of points lying along the same contour, and
in particular does a good job connecting the sparser dots in the upper part of the plot with
the denser dots near the bottom. However, without the dotted lines, the model, just like a
human observer, has a much more difficult time organizing the plot; the dots at the bottom
are grouped haphazardly, and the sparser dots in the upper part of the figure are left out all
together.

A third example from Tufte is shown in Figure 4.5. Figure 4.5A depicts a section of
a train schedule by Marey, showing trains running between Paris and Lyon. In this plot,
the vertical axis is location between the two cities, and the horizontal axis is time; vertical
lines demarcate passing intervals of time (hours), while the diagonal lines indicate individ-
ual trains; occasionally a train will stop and wait at a location, which appears as a small
horizontal offset in the trains diagonal. In describing this figure, Tufte noted that the dark,
high-contrast vertical lines indicating the passing hours make the diagonal lines represent-
ing the trains more difficult to parse; he showed that if the contrast of the vertical lines
was decreased (Figure 4.5B), the same information could be conveyed without disrupting
the perception of the continuous paths of the trains. Once again, the contour integration
model confirms these insights; when the first schedule image is passed through the contour
integration model, the perception of the diagonals is highly disrupted and often prevented
altogether (Figure 4.5C). When the contrast of the verticals is reduced, however, the model
is able to identify and parse many of the trains paths, integrating them even across the
horizontal offsets corresponding to short stops (Figure 4.5D).

Unfortunately, while these examples are illustrative, they are largely qualitative in nature,
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especially the Tufte examples. Though it is encouraging that our model replicates the effects
described by Tufte, it is impossible to say how well our model is mirroring human behavior
in these cases. What is required is a more robust, quantitative method for evaluating the
output of our model; in particular, we need a method for comparing our output with more
controlled, quantitiative, experimental data.

4.2 From Data to Decision

We are now armed with an intuitive, flexible, and robust model of perceptual grouping
which can recreate many classic Gestalt phenomena. To achieve these results, we must hand
tune the blurring parameters of the higher-dimensional difference of Gaussians, but this is
by no means a major limitation: almost any set of parameters used will give a reasonable,
if sometimes uninformative, grouping, and a model with tunable parameters will in many
settings be more valuable to a user than one which chooses parameters automatically.

Nevertheless, we know that the human visual system, if it employs a system similar to
the one described above, must also employ a mechanism for selecting the appropriate set or
sets of parameters. We should therefore seek an intelligent way to filter the output of the
overall grouping framework and develop a parameter-free representation of the model results
on a given image.

The näıve approach is to simply select a wide array of possible parameter settings and
calculate the output of the grouping model for every combination of parameters. Though the
visual system likely employs a more adaptive and hence more efficient system, running a wide
range of parameter settings will give us the richest possible starting point for our analysis.
The problem is that running the model on such a wide range of values yields a very large
set of outputs. For the remainder of our discussion of this grouping model, we will assume
that the model is grouping by proximity and luminance similarity, and the output of the
grouping model for an image I and particular set of parameters σs and σL is a segmentation
of the image pixels, S(I, σs, σL); that is, pixels are grouped so that every pixel is in exactly
one group. Generating such a large number of segmentations produces an output which is
much larger and much more complex than the original input; hardly the direction we want
to move in.

What is needed therefore is a way to convert this large set of segmentations to a smaller,
better behaved piece of information which can be analyzed numerically and represented in
a manageable space so that inferences and predictions can be made with it. The solution
we propose is to introduce a set of appropriate hypotheses for explaining the image data;
this approach is similar to a task that a human subject might encounter in a psychophysics
experiment. For example, suppose a subject is shown an image like that in Figure 4.6A;
the subject is told that the image contains a region which is separate from its background,
and asked where that grouping might be found: above and left of center, above and right of
center, below and left of center, or below and right of center. The subject must evaluate how
well these four hypotheses about the structure of the image agree with his or her percept of
that image.

In this case, the correct hypothesis is that the region is above and left of center; one way
of representing this hypothetical image structure is a simple segmentation of the image into

33



Figure 4.6: (A) A random arrangement of dots with two discernible regions. (B) A simple
segmentation representing a hypothesis about the structure of (A).

two regions: the region above and left of center, and the background; this segmentation is
shown in Figure 4.6B.

There is in general no way to directly compare an image with a segmentation; but our
model takes an image as input and yields a segmentation of the pixels of that image as
output. We can thus calculate the degree to which a hypothesis agrees with the perceptual
structure of the image by comparing the segmentation representing that hypothesis with the
segmentation output by the model. Because we do not know a priori what set of model
parameters will yield an informative segmentation, we try a wide range and calculate each
segmentation’s similarity to the hypothesis segmentation.

Measuring distance between segmentations is by no means a straightforward task; there
are many metrics to choose from and each has its own strengths and advantages. For the
present study, the Variation of Information metric proposed by Marina Meilă (2007) was
used. For two segmentations (or partitions), S1 and S2, the variation of information is
defined as:

V I(S1, S2) = H(S1) +H(S2)− 2I(S1, S2) (4.1)

where H and I are entropy and mutual information, respectively. They are defined as:

H(S1) =
∑
i

P (s1i) logP (s1i) (4.2)

I(S1, S2) =
∑
i,j

P (s1i ∩ s2j) log
P (s1i ∩ s2j)
P (s1i)P (s2j)

(4.3)

where P (s) is the probability of a segment s, that is, the area of s divided by the total
area of the image; and the s1i and s2j are the individual segments of S1 and S2 respectively.
Many other metrics have been suggested as measures of differences between set partitions
(see Meilă (2007) for a full review), but few are conceptually suited to image segments; the
Variation of Information, on the other hand, is built around the sizes and intersections of
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segments. Two measures of disagreement between segmentations were proposed by Martin
et al. (2001), global consistency error and local consistency error:

LCE(S1, S2) =
1

A

∑
p

min (E(S1, S2, p), E(S2, S1, p)) (4.4)

GCE(S1, S2) =
1

A
min

(∑
p

E(S1, S2, p),
∑
p

E(S2, S1, p)

)
(4.5)

where A is the area of the silhouette, and E is defined as:

E(S1, S2, p) =
|R(S1, p) \R(S2, p)|

|R(S1, p)|

Unfortunately, these measures are designed to give zero error to refinements (that is, if S1

is a refinement of S2, then LCE(S1, S2) and GCE(S1, S2) will both be zero), which will not
work for our purposes.

There is also something intuitively appealing about this metric. Entropy and mutual
information are easy concepts to understand, and computationally simple to implement.
Researchers in both computer vision and human vision are familiar with these concepts;
and as we are trying to determine how well a particular hypothesis (represented by our
hypothesis segmentation) explains the perceptual structure of an image (represented by the
models output segmentation), using a measure based on the mutual information between
those two segmentations seems entirely appropriate.

So, let us suppose we are given the image and hypothesis shown in Figure 4.6A. To mea-
sure the degree to which this image agrees with this hypothesis, we run our grouping model
on the image at a wide range of blurring parameters; this yields a large number of segmenta-
tions of the image pixels. Several segmentations are depicted in Figure 4.7. For each of these
segmentations, we then measure the Variation of Information between that segmentation
(output by the grouping model) and the hypothesis segmentation (Figure 4.6B). This yields
an array of values which is illustrated in Figure 4.8. Figure 4.8 also shows the same array

Figure 4.7: (A) Segmentation of image 4.6 with a σs of 5 pixels and a σL of 4. (B)
Segmentation with a σs of 10 pixels and a σL of 4. (C) Segmentation with a σs of 20 pixels
and a σL of 4.
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Figure 4.8: Results of grouping model and hypothesis comparison on several images.

of values for two other images: one with a very similar image structure to Figure 4.6A, and
one without this image structure.

These figures contain a great deal of information, but they can be fairly intuitively un-
derstood. For all three images, when the spatial blurring parameter is very small, the image
is segmented into the background and each individual dot; the locations of these individual
dots is information that is not present in the hypothesis segmentation, so the VI at these
parameter settings is relatively high. Conversely, when the spatial blurring parameter and
luminance blurring parameter are both large, all the pixels in the image group together; there
is almost no information in this model output segmentation, so the VI is quite low. But when
the spatial blurring parameter is right in the middle (around 20 pixels) and the luminance
blurring parameter is low enough that the foreground and background are separate, the sin-
gle segment corresponding to the cluster of dots in the model output segmentation aligns
very well with the hypothesis segmentation, increasing the mutual information between the
two and lowering the VI relative to a similar image with no such cluster.

In short, this process - calculating an array of segmentations at different scales and
comparing with a hypothesis segmentation - yields an array of values which is closely linked
to perceptual structure in images. Images with similar perceptual structures will yield similar
arrays, and images with different perceptual structures will yield different arrays if one
chooses an appropriate hypothesis. With this method in hand, we can begin to analyze the
performance of our model with respect to actual human behavior.
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4.3 Experiment 1: The Effects of Proximity and Lu-

minance

4.3.1 Methods

Subjects performed a 2-alternative forced choice task. In each trial, they were presented
with two images containing random fields of dots; they were told that “one image contains
a region such the dots inside the region are different from the dots outside the region” while
the other image “contains no organization at all.” Subjects saw each image for 200 ms, with
a 400 ms ISI. After viewing both images, subjects were asked which image they believed
contained the region.

Subjects viewed 10 practice trials in which the region in question was clearly discernible
as a result of proximity or luminance. They then viewed 300 test trials in 6 blocks of 50
trials.

4.3.2 Subjects

The experiment was run on 19 subjects from the Boston area. There were 13 male subjects
and 6 female subjects. Ages ranged from 19 to 57, with a median age of 33.

4.3.3 Stimuli

In each pair, one image, referred to as the target image, was generated with an off-center
circular region such that the scene parameters of the dots inside the region were different
from those outside the region. The other image, referred to as the distractor image, contained
dots generated with uniform proximity such the number of dots was on average the same as
the first image. The luminances of the dots in the first image were then randomly permuted
and assigned to the dots in the second image. This generated two images with approximately
the same number of dots and same overall distribution of luminances.

The specific procedure for placing dots is described in Appendix A. In any region of the
image the proximity in that region was represented by distance parameter d; dots were placed
such that any dot placed in an area with distance parameter d must be at least d pixels away
from any other dot. Luminance values correspond to the L∗ value of the L∗ab colorspace,
and range from 0 to 100, where 100 is the maximum brightness of the experimental monitor.

On any given trial, the differences between the interior of the region and the exterior of
the region in the target image fell into one of four categories:

1. Proximity Alone (PA): Dots inside the region were generated with a different proximity
parameter than the dots outside the region. The minimum distance inside the region
and outside the region were varied so that the total number of dots was similar across
all trials. The ratio of the inner region minimum distance to the outer region minimum
distance (which shall be referred to as proximity ratio) varied from 0.59 to 1.43.

In all PA trials, the luminance (L∗) of all dots was 40, while the luminance of the
background was 80.
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2. Luminance Alone (LA): Dots inside the region had a different luminance from dots
outside the region. The difference in luminance between the interior and exterior dots
ranged from 6.67 to 26.67.

In 40% of LA trials, the luminance of all dots was darker than the background; specif-
ically, the luminance of the background was 80 while the luminances of interior and
exterior dots were equidistant from 40. In another 40% of LA trials, the luminance of
all dots was lighter than the background; specifically, the luminance of the background
was 20 while the luminances of interior and exterior dots were equidistant from 60. In
the final 20% of LA trials, the background luminance was set to 50 and the luminances
of the interior and exterior dots were equidistant from 50.

In all LA trials, the proximity parameter of the dots was the same throughout the
image.

3. Proximity and Luminance in Concert (PLC): Dots inside the region were generated
with a different proximity parameter and had a different luminance from those outside
the region. The proximity ratio ranged from .75 to 1.10, and the difference in luminance
was either 6.67 or 13.33.

In two thirds of PLC trials, the luminance of all dots was darker than the background;
specifically, the luminance of the background was 80 while the luminances of interior
and exterior dots were equidistant from 40. In the other third of PLC trials, the
luminance of all dots was lighter than the background; specifically, the luminance of the
background was 20 while the luminances of interior and exterior dots were equidistant
from 60.

4. Proximity with Luminance Distracting (PLD): Dots inside the region were generated
with a different proximity parameter than dots outside the region, while luminances
of all dots both inside and outside the region were assigned one of two different values
with equal probability. The proximity ratio ranged from .75 to 1.43, and the luminance
difference ranged from 6.67 to 20.

In one third of PLD trials, the luminance of all dots was darker than the background;
specifically, the luminance of the background was 80 while two luminance values were
equidistant from 40. In another third of PLD trials, the luminance of all dots was
lighter than the background; specifically, the luminance of the background was 20
while the two luminances value were equidistant from 60. In the final third of PLD
trials, the background luminance was set to 50 and the two luminance values were
equidistant from 50.

Examples of image pairs from the four categories of trial are shown in Figure 4.9.
One important note: though the dot images used in this experiment were randomly

generated, and the order of trials in the experiment was randomized for each subject, each
subject saw the same 300 images. Though this increases the noise in the overall result -
human behavior for a given set of scene parameters will be more strongly dependent on
the nature of individual images, as each of those individual images will appear multiple
times - it allows us to measure not only the performance of human subjects on certain scene
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Figure 4.9: Sample image pairs from Experiment 1. In each pair, the target image is on
the left and the distractor image is on the right. The target images have been generated
with a region just above and left of center.

parameters, but also on specific images themselves. We can thus determine whether our
model explains any variation of human performance that is not dependent on the underlying
scene parameters, but on the particular properties of an individual image.

4.3.4 Experimental Results

Experimental results for proximity alone trials are shown in Figure 4.10. In all figures, unless
otherwise noted, subject preference refers the proportion of trials in which subjects picked the
target image in an image pair rather than the distractor image; a subject preference of 0.5
represents chance. The results on the PA trials are very much what one would expect: when
the proximity ratio is low (that is, when the dots inside the region are much denser than
the dots outside) subject preference is very high. As the proximity ratio approaches 1 and
the densities inside the region and outside the region approach equality, subject preference
approaches chance. And finally, when the proximity ratio is high, with a lower density inside
the region than outside, the subject preference rises again, though not as high as for the
conditions with a low proximity ratio.

The results for luminance alone trials are shown in Figure 4.11; again, the results match
well with intuition. As the difference in luminance between the dots inside the region and
the dots outside the region increases, the subject preference also increases, with very small
luminance differences yield performance close to chance. One surprising result: when the
dots inside and outside the region have opposite polarity (that is, when the dots inside the
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Figure 4.10: Results from Experiment 1 on proximity alone trials. Proximity ratio is equal
to din/dout where din is the minimum distance between dots inside the region, and dout is
the minimum distance between dots outside the region; subject preference is the proportion
of trials in which subjects believed the target image contained a region different from its
background.

region are darker than the background and the dots inside the region are lighter than the
background, or vice versa) the subject preference is very high. Subjects are very good at
detecting groups defined by opposite polarity, far better than they are at detecting group
defined by equal luminance difference but the same polarity.

The results for proximity and luminance in concert (PLC) trials are shown in Figures 4.12
and 4.13. In these plots, the blue curves represent the subject preferences on images with
no luminance difference between the dots inside the region and the dots outside the region.
The red curves represent trials in which a small luminance difference of 6.7 was introduced
between the interior and exterior dots, and the green curve represents an additional set of

Figure 4.11: Results from Experiment 1 on luminance alone trials.
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Figure 4.12: Results from Experiment 1 on PLC trials with light backgrounds.

Figure 4.13: Results from Experiment 1 on PLC trials with dark backgrounds.

trials in which a larger difference of 13.3 was introduced. The results have been separated
into trials in which all dots are darker than the background and trials in which all dots are
lighter than the background. Though the results seem to agree with intuition - groupings
defined by proximity and luminance together are easier to detect than groupings defined by
proximity alone, particularly for the larger luminance difference - the effects are by no means
strong; many differences lie within the range of standard error. The results are suggestive,
but it would be difficult to make any strong inferences about the effect, and it is unlikely
that our model will successfully mirror it

Finally, the results of the proximity with luminance distracting (PLD) trials are shown
in Figure 4.14, 4.15 and 4.16. Again, blue curves represent trials in which all dots have the
same luminance; the red curves represent trials in which dots are randomly assigned one of
two luminances that differ by a small value (6.7 or 10), and green curves represent trials in
which the dot luminance differ by a larger value (20). The results have been separated into
trials where all dots are darker than the background, trials where all dots are lighter than
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Figure 4.14: Results from Experiment 1 on PLD trials with light backgrounds.

Figure 4.15: Results from Experiment 1 on PLD trials with dark backgrounds.

Figure 4.16: Results from Experiment 1 on PLD trials with central backgrounds (between
the two dot luminances).
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the background, and trails where the dot luminances lie on either side of the background
luminance. The results here are similar to those in the PLC trials; they seem to agree
with the intuition that the presence of varying luminance makes proximity groupings more
difficult to effectively separate from their backgrounds, but the effects again are quite small,
and not particularly reliable. Interestingly, the effect seems not to be present for very high
proximity ratios, but this makes intuitive sense. The images with high proximity ratios have
regions defined by a sparseness of dots; detecting sparseness would be largely unaffected by
the variability of the few dots present in the array. Still, it is something that a model of
perceptual grouping should consider.

4.3.5 Model Results

To evaluate the performance of our model in comparison to the human behavior in the above
experiment, we began by generating a large library of image pairs generated using the same
range of scene parameters as were used in the experiment. Both images in each of these
image pairs were run through the grouping model over a large range of model parameter
settings, and the resulting segmentations were compared with four structural hypotheses
like the one in Figure 4.6B. Thus every image pair in the library was converted to a full
response array; these arrays were then mapped using principal components analysis into a
much more manageable space ( 20-25 dimensions). In this space, images generated by the
same scene parameters and same hypothesis map to tight clusters of points, and the set of all
images generated by one hypothesis forms an intricate distribution of points that can easily
be modeled as a mixture of Gaussian distributions generated by each of the individual scene
parameter settings.

So, with a library of image pairs generated by the same hypothesis and their resulting re-
sponse arrays, we can estimate the likelihood of a new image pair given that same hypothesis
by calculating the new response array, and determining its likelihood in the response array
distribution. Doing this for all eight region locations (four possible region locations in both
images in the image pair) yields the likelihood of a new image pair given each of the eight
structural hypotheses. Thanks to Bayes’ Rule, if we assume that all eight hypotheses are
equally likely, then the probability of a hypothesis H given an image pair A is proportional
to the probability of A given H. Thus calculating the estimated relative likelihood of an
image pair for all eight hypotheses gives us the final calculation of the estimated probability
that the region is in the first or second image.

We’ll begin with only those images in which grouping is defined by proximity. These
are the images in which the model performs the most consistently, making them an ideal
testing ground for our model evaluation. The images in the experiment were generated at 7
different proximity ratios; using a sample distribution of images generated with those same 7
parameter settings, Figure 4.17 shows the average likelihood index of images generated with
those parameter settings. Likelihood index is a quantity defined as:

LI = log
P (I1)

P (I2)
(4.6)

where P (I1) is the estimated probability that the region is in the first image, and P (I2)
is the estimated probability that the region is in the second image. In general, the estimated
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Figure 4.17: Model prediction for proximity alone trials.

probabilities are very close to 0 or 1, so the likelihood index gives a richer sense of the relative
confidence of the model about different images.

We can see here that the confidence of the model regarding image pairs generated by the
different proximity parameter settings closely mirrors the qualitative pattern of preference
shown in the results of the experiment. Indeed, the model, like human subjects, is less
confident in identifying regions of lower density, thought the asymmetry in the model’s
confidence is not as pronounced. Figure 4.18 shows the relationship between the subject
preferences on individual image pairs and the models likelihood index for those pairs. The
figure also includes the reflection of the subject preferences and likelihood indices, to show
the subject preferences and model predictions for image pairs in which the target is the
second image; therefore, in this plot, subject preference refers to the proportion of trials in
which subjects selected the first image in the image pair, rather than the second. Though

Figure 4.18: Model prediction for individual image pairs in proximity alone trials. Model
data and subject data are correlated with r = 0.7177.
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Figure 4.19: (A) Image with proximity ratio of 2/3 judged by the model to be the most
easily grouped. (B) Image with same generating parameters judgedto be the least easily
grouped. (C) Image with proximity ratio of 1.4 judged to be the most easily grouped. (D)
Image with the same generating parameters judged to be the least easily grouped.

including these reflected points doubles the data, humans were presented with the image
pairs in both orders, so this plot gives a fuller sense of the behavior of humans and the
model across all possible image pairs.

While the results here are not as clean as we might like, there is nevertheless a clearly
discernible upward trend, suggesting the model is able to capture some of what drives human
grouping judgments. The correlation between the likelihood index and subject preference
for the points shown here is 0.7177, a highly statisically significant correlation (p < 0.001);
if we do not mirror the data points but only consider image pairs where the target image
came first, the correlation is weaker at 0.3872, but still statistically significant (p < 0.01).

One might now ask: does the model capture the variability in human grouping judgment
driven by individual images? Or is predictive power strictly tied to the underlying scene
parameters, and unaffected by the variability from image to image? To address this, consider
Figure 4.19. Figures 4.19A and 4.19B were both generated with a proximity ratio of 2/3,
but despite the similar underlying parameters, the two images came out very differently. In
Figure 4.19A the spacing of the dots inside the region is quite regular, and the transition
from high density to low density is easily perceived. In Figure 4.19B, on the other hand, the
dots have randomly landed further apart, and the transition from the higher density inside
the region to the lower density outside the region is much more difficult to perceive. Of
all images generated with a proximity ratio of 2/3, Figure 4.19A was the image the model
was most confident contained a group; while Figure 4.19B was the image the model was
least confident contained a group. The same is true of Figures 4.19C and 4.19D, except that
these two were generated with a proximity ratio of 1.4. Once again, the image judged more
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Figure 4.20: Model prediction for luminance alone trials.

confidently by the model is easier to parse, with a clearly discernible region of low density
and a sharp transition; conversely, in the image judged least confidently by the model, the
region of low density is poorly localized, and the transition is almost imperceptible. Clearly
the model is capturing the grouping strength of images beyond the broad influence of the
underlying scene parameters.

Figure 4.20 shows the predictions of the model when operating only on images in which
groupings are defined by luminance; once again the model successfully recreates the qual-
itative pattern of discriminability, though the shapes are not precisely the same, and the
model is far more confident about images with darker backgrounds. Figure 4.21 shows the
relationship between the model prediction and the subject preference for individual images.

Figure 4.21: Model prediction for individual image pairs in luminance alone trials. Data
are correlated with r = 0.798.
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Figure 4.22: Model prediction for individual image pairs in all trials calculated together.
Data are correlated with r = 0.479.

The relationship here is even stronger than with the PA trials, with a correlation of 0.798,
statistically significant with p < 0.001, driven once again by the models ability to respond
to individual variations between images; the correlation for unmirrored data is 0.4571, also
significant (p < 0.01).

Finally, Figure 4.22 plots the predictions of the model based on the complete family of
generating parameters. Clearly, the model has a bit more difficulty closely following human
behavior in this case. Nevertheless, a clear relationship between the model output and the
subject preference can be perceived, and manifests itself as a correlation of 0.479, which is
statistically signficant (p < 0.001); unfortunately, the correlation for the unmirrored data is
only 0.1392, which is much more weakly statistically significant (p < 0.05).

These results are encouraging, but many gaps remain. One vexing point in particular is
the influence of the image background; human observers seem to be able to discount it almost
entirely and group around it quite easily, but it can have very disruptive effect on the model’s
performance. In addition, it is clear from the results of the experiment - particularly the
luminance alone trials - that the further the luminances of the dots are from the background
luminance, the less salient their differences become. One possible method for modeling this
is to find a way to subtract out the image background, and pass the resulting signal through
a compressive non-linearity, which enhances differences near the background, and suppresses
differences which are further from the background. Such a point-nonlinearity could easily
have an analogue in the visual cortex; and the result of this non-linearity could easily be
passed into our model, just as luminance was here.
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Figure 4.23: Example image pairs under the two types of disruption used in Experiment
2.

4.4 Experiment 2: The Influence of Noise

4.4.1 Methods

Methods used were identical to those used in Experiment 1.

4.4.2 Subjects

The experiment was run using 11 subject from the Boston area. There were 7 male subjects
and 4 female subjects. Ages ranged from 21 to 56, with a median age of 40. An additional
4 subjects were excluded for failing to give consistent responses on test trials.

4.4.3 Stimuli

300 random dot image pairs were generated as in Experiment 1, using 4 scene parameter
settings. Two of these settings generated images as in PA trials; one setting with dots
darker than their background and one with dots lighter than their background. The other
two settings generated images as in LA trials; again, one setting with dots darker than
their background and one with dots lighter than their background. The magnitude of the
proximity and luminance differences in these images was chosen based on the results of
experiment 1 such that baseline performance on similar image pairs was above chance but
below ceiling.

Of these 300 image pairs, 76 were left unaltered. The remaining 224 image pairs were
passed through one of two disruptions:

1. Luminance Variation: (96 image pairs) Under this disruption, the luminance of each dot
was perturbed from its original value; these perturbations were drawn from a normal
distribution. The strength of this disruption - measured by the standard deviation of
the perturbation distribution - varied from 2.5 to 10.

2. 1/f Noise: (128 image pairs) Under this disruption, randomly generated pink noise, or
1/f noise, was added to both images in the image pair. The strength of this disruption
- measured by the standard deviation of the overall noise - also ranged from 2.5 to 10.

48



Example image pairs after both types of disruption are shown in Figure 4.23.

4.4.4 Experimental Results

The results of Experiment 2 are shown in Figures 4.24 through 4.27. Overall, perhaps the
most striking result is how stable the preferences are; in only one of the conditions - luminance
groups on a dark background disrupted by 1/f noise - is there any clear drop off in perfor-
mance as the noise increases. Despite disruptions of considerable noise, human grouping
preference seems surprisingly robust, especially to variations in individual dot luminances.

Of course, there may be some other factors at work here; take the image in Figure 4.28.
The disruption in this image has made the boundary between the interior region, defined
by brighter luminance, and the exterior region, defined by darker luminance, almost imper-
ceptible. But nonetheless, a savvy subject could likely pick up that the average luminance
in the upper right region is higher than that of the remainder of the image. Thus, while

Figure 4.24: Results from Experiment 2; influence of noise on detection of proximity-
defined groups on light backgrounds.

Figure 4.25: Results from Experiment 2; influence of noise on detection of proximity-
defined groups on dark backgrounds.
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Figure 4.26: Results from Experiment 2; influence of noise on detection of proximity-
defined groups on light backgrounds.

Figure 4.27: Results from Experiment 2; influence of noise on detection of proximity-
defined groups on dark backgrounds.

Figure 4.28: An image with large variance added to the dot luminances. A group or region
is no longer visible, but its presence may still be inferred from local statistics.
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the subject could not be said to perform any segmentation or grouping, he or she might
still be able to perform the task with relatively high accuracy. This blurred line between
true grouping and simple local statistical measurement is an important factor to consider in
future experiments.

4.4.5 Model Results

Based on the findings of Experiment 1, for these images, the model was fed not the raw
luminance of the original image, but the background subtracted and compressed signal which
enhances differences closer to the background. For images which did not have a constant
background, a simple local median filter larger than twice the size of one dot was used to
represent the “local” background. The predictions of the model for the various scene and
noise parameters in proximity grouping trials are shown in Figures 4.29 and 4.30.

The model seems to have had considerably more trouble with these images; the overall
likelihood indices are much lower than many of the images in previous conditions. But like
the subjects, the model seemed largely unaffected by the magnitude of noise; indeed, as the

Figure 4.29: Model predictions of the influence of noise on detection of proximity-defined
groups on light backgrounds.

Figure 4.30: Model predictions of the influence of noise on detection of proximity-defined
groups on dark backgrounds.
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1/f noise magnitude increased, the model actually performed better. It is not clear why
this is the case; it is possible that the 1/f noise in the background made the background
segment less coherent, and reduced interfering effects that the background pixels had on
the foreground pixels in x-y-L∗ space. The plots of the individual image predictions and
corresponding subject preferences is shown in Figure 4.31; again, the performance was con-
siderably lower. This is perhaps driven by the fact that subject performance on these images
was so consistently high. There are relatively few images whose preference rates lie at or
near chance; thus the model has little variablilty to predict.

Figure 4.31: Model prediction for individual image pairs in all noise trials calculated
together. Data are correlated with r = 0.3157.
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Chapter 5

Future Work

5.1 Experimental Variations

The experimental protocol described in section 4.3 far from exhausts its potential in the
experimental results shown here. One possible variation on the protocol is a task in which
subjects are shown one image rather than two. In each trial, the subject would be asked
where in the image a group is present; e.g. the group might be in the left half or the right
half of the image.

In such an experiment, the majority of images would contain only one grouping; but the
advantage of the single-image protocol rather than the serial two-image protocol is that in
some fraction of images, one can have two groupings present in the same image; by asking
the subject which side or region of the image contained a group, one can probe which of the
two groupings is more visible. This allows one to evaluate the relative strength or influence
of different factors, such as proximity vs. luminance similarity. But unlike earlier studies
analyzing the interaction and competition of different grouping factors, the use of randomly
generated grouping images rather than organized grids of elements creates a richer, broader
set of grouping stimuli and forces a grouping model to operate in a more generic, image-like
domain.

As described in the appendix, the method by which the random dot arrays are constructed
is a highly constrained random process; one result of this is that, in most cases, different scene
parameters generate completely non-overlapping ranges of images. Thus, an ideal observer
with complete knowledge of the image-generation process would be able to distinguish images
generated by different scene parameters with 100% accuracy. A more informative approach
would generate the images more probabilistically, such that any given image has non-zero
probability of being generated by several distinct sets of scene parameters; this would allow
statistically analysis of the ideal observer’s performance on the grouping detection task, which
could serve as a point of comparison for human and model performance. However, as we saw
in the results of experiment 2, introducing noise into the scene generation process can also
blur the distinction between region grouping and simple measurement of local statistics; so
any such changes to the dot array image-generation process would need to be done carefully.
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5.2 Variation of the Model

The two primary parameters investigated in the above experiments, σs and σL, encom-
pass much of the intuitive behavior of the model; but these are not the only parameter
choices present in the grouping model. For example, the model performs its filtering with a
difference-of-Gaussians; this DoG filter consists of a multi-dimensional Gaussian of integral
1, and subtracted from it another multi-dimensional Gaussian of integral 1, but with stan-
dard deviation equal to 1.5 times that of the first Gaussian. This family of filtering kernels
has performed well enough for us thus far, but it is possible that different kernels would
improve performance even further.

For example, one could increase the ratio of standard deviations to 2 or more; this would
broaden the area of space across which the strong presence of one feature suppresses other
nearby, similar features. One could also alter the filter to have an integral other than 0;
letting the positive Gaussian have a larger integral than the negative Gaussian would cause
the filter to give a positive response in large, flat regions of high density. This would improve
the model’s ability to detect large flat regions and reduce the number of unclassified pixels;
it might also, however, increase the models tendency to undersegment.

Though changing these aspects of the DoG filter would likely have a measurable impact
on the behavior of the model, we have thus far spent little time experimenting with these
changes. Without a means to quantitatively evaluate the overall performance of the model,
there has been no way to state that one form of the model is better than any other; so we
have continued to use the simplest form of the model. Given a robust method for evaluating
model performance, such as the one described in section 4.2, choice of filtering kernel should
be one of the first questions investigated.

An even wider variety of filtering options are available in the domain of contour integra-
tion. Our current approach utilizes a relatively simple anisotropic difference of Gaussians
(the parameters of which could also be varied and investigated); until now, we have made
use of the anisotropic Gaussian primarily for reasons of computability. But psychophysi-
cal work on contour integration by Field et al. (1993) and investigation of natural image
statistics by Geisler et al. (2001) suggest a much more complex kernel may be appropriate,
one that integrates considerations of alignment and co-circularity. Of course, even without
such complications, we have seen that our model is able to recreate some of the success
of these more complex formulations (Figure 4.2); and recent work by Watt et al. (2008)
has shown that contour integration behavior ascribed to complex association models can
be explained by much simpler models using anisotropic linking along the direction of local
orientation. Therefore it is possible that introducing a more complex filtering kernel will
improve performance only slightly.

One limitation of our model is that it is too accepting of abrupt changes in contour cur-
vature. Psychophysics show that humans can link adjacent contour elements even with a
large change in orientation, but contours which zigzag back and forth between orientations
are almost undetectable (Feldman, 1997; Sigman et al., 2001; Ledgeway et al., 2005); this
suggests that subjects can accept a relatively large curvature in a contour, but that the con-
tour must be relatively constant. Indeed, several models of contour integration make explicit
use of local curvature measurements to determine strength or likelihood of grouping (Parent
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and Zucker, 1989; Gigus and Malik, 1991), though it seems that enforcing co-circularity is
not necessarily the optimal choice ore the one made by humans (Singh and Fulvio, 2005;
?). One possible solution would be to add an additional dimension to the contour space,
locating contours in x-y-θ-κ space, where κ represents the local curvature. This would re-
quire a significantly more intricate blurring process, as the relationship between location,
orientation, and curvature is very non-linear, but it would enforce more constant curvature
contour integration; it would also reduce the prevalence of branching, in which two contours
merge into one. In such instances, the stronger curvature - usually the curvature with lower
magnitude - would suppress the other curvature, causing it to remain unlinked.

5.3 Classic Gestalt Dot Arrays

One of our original intentions when developing this model was to generate a computational
approach which had the generic applicability and versatility of a model which operated on
raw image data, but the intuitive simplicity and adaptability necessary to be compared with
human performance even simple abstract tasks. And while we have made great progress
towards satisfying those goals with the experiments described in section 4.3, a great deal
of phenomena in the Gestalt grouping literature remains unaddressed. One of the most
prevalent topics of investigation is the classic Gestalt array, such as the dot arrays depicted
in Figures 3.1 and 3.4 (reprinted here in Figures 5.1A and 5.1B); how might our grouping
model and hypothesis based evaluation process be applied here?

Figure 5.1: (A,B) Simple Gestalt dot arrays. Both can conceivably be organized as rows
or columns. (C,D) Two hypotheses about the images in (A) and (B), represented as seg-
mentations.

55



Each of these images has the same two possible mid-level interpretations; segmentations
representing these two hypotheses are shown in Figures 5.1C and 5.1D. (Of course, both
images can also be segmented into individual dots, grouped such that all dots form one
segment, or grouped entirely into one full-image segment. But these interpretations are
perceptually equally valid for both images.) For Figure 5.1A, hypothesis 5.1C seems more
appropriate; conversely, hypothesis 5.1D seems a better explanation of Figure 5.1B.

Given these two hypotheses, how do we determine the model’s prediction about these
two images? One solution is to generate a population of images consistent with each of
the two hypotheses. For example, an image consistent with hypothesis 5.1C would have
dots arranged in 5 columns; the number of dots in each column might vary; some columns
would contain dots of constant luminance, while in other the luminance would vary. The
proportions and ranges of the parameters of each column would form an implicit prior on
the set of possible images represented by hypothesis 5.1C. Each of these images would then
be passed through the grouping model at a range of parameters, and each of the resulting
segments would be compared with the hypothesis; thus one could calculate the distribution of
these response arrays for images consistent with hypothesis 5.1c. The same procedure would
be repeated for hypothesis 5.1D. With these two response array distributions in hand, a new
image, such as Figure 5.1A or Figure 5.1B, would also be run through the grouping model;
the resulting range of segmentations would be compared with both segmentations, yielding
two full comparison arrays. The likelihood of each would be calculated, and whichever
hypothesis yielded the highest likelihood would be deemed the correct interpretation of this
image.

This process is closely related to that described in Section 4.2. In both cases, we are
generating large sets of images generated by similar underlying structures. In Section 4.2,
those images had similar luminance and proximity parameters, but random placement of
individual dots; in this process, images are generated by the same structural hypotheis and
with regular dot placement, but with randomized dot numbers and luminances. Also in
both cases, we are representing a distribution of images with the distribution of hypothesis
based-repsonse arrays, and the likelihood of a novel image is judged by the likelihood of its
response array in that distribution.

Of course, there are many choices going into the extent and variety of images generated
by the two hypotheses. These choices, however, would provide valuable insight: for example,
if the model makes a prediction consistent with human behavior only when dot luminances
in the same row or column vary in a particular range, that implies that human observers are
making similar assumptions about the processes that generated the dot arrays. The grouping
model, paired with simple hypotheses and a variety of possible image distributions, allow
one to more directly probe the assumptions humans make when making inferences about the
structure the visual world.
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Part II

Silhouette Analysis and
Representation
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Chapter 6

Motivation

One of the greatest challenges the visual system must overcome is that the world we inhabit is
three-dimensional, while the information presented to the visual system is two-dimensional.
This difficulty manifests itself in many ways, but it is particularly troublesome in the analysis
and representation of shape. Consider the images in Figure 6.1. These two horses are different
in several ways - point of view, stance, background - but these differences are seemingly
superficial. However, if we look at the silhouettes of these two horses (Figures 6.1C and
6.1D), we can see that these superficial three-dimensional differences introduce complex and
variable changes in the resulting two-dimensional projections. Recognizing the similarity
between these two silhouettes is very difficult, and cannot be reduced to a simple geometric
comparison.

Nevertheless, silhouettes play an important role in the visual systems understanding of
shape. Silhouettes are relatively easy to extract from a visual scene, and humans can often
easily identify an object from its silhouette alone; in addition, some silhouettes, even very

Figure 6.1: (a,b) Two images of a horse. Though the horse is in a different position,
different background and viewed from a different angle, we can still clearly identify both
images as horses. (c,d) Though we can easily idenitfy these silhouettes as horses, it is clear
that no simple geometric relation will illuminate the kinship between these two silhouettes.
(e,f) The part structure of the silhouettes allows us to find this similarity; corresponding
parts have similar shapes, and the arrangement of parts is equivalent in both silhouettes.
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simple ones, can elicit a strong perception of three-dimensionality (?). Also, as we saw in
Figure 2, humans can makes sophisticated judgments of complexity and similarity about
completely unfamiliar shapes; judgments which appear to be closely linked to the apparent
part-structure of the given shapes.

It should come as no surprise that parts would play an important role in our under-
standing of silhouettes. Consider Figures 6.1E and 6.1F. Though the silhouettes of the two
horses are, by most metrics, very different, their part structure is highly-similar. In addition,
each of the parts, with the possible exception of the neck, has a very similar appearance in
both silhouettes. Thus, if parts of a silhouette could be consistently and robustly extracted,
recognition and identification of silhouettes would be greatly simplified. However, as with
Gestalt grouping in the previous section, though the importance of part segmentation has
long been recognized, a robust and versatile model of the process has remained elusive. In
this section of my thesis, I define a simple, intuitive inflation technique called Puffball; I
then describe how Puffball can be applied to the problem of silhouette part analysis in such
a way that it avoids many of the pitfalls of many previous techniques. I describe several
experimental and mathematical analyses which demonstrate that Puffball part segmentation
performs as well as or better than existing part segmentation techniques, despite a much
simpler implementation; and finally, I describe how Puffball might be applied to other sil-
houette analysis tasks, and what the success of Puffball part segmentation might suggest
about the representation of silhouettes in the human visual system.
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Chapter 7

Previous Work

Proposed by Harry Blum in 1967, the medial axis transform, or MAT, was one of the
first approaches to silhouette representation inspired by the human visual representation
of shape (Blum, 1967). (For clarity, in this proposal, when I say silhouette, I refer to
a two-dimensional region of arbitrary topology and complexity; hence, any binary mask
may be a silhouette.) More variable than the abstract classifications of topology, but more
robust than raw geometry, Blum envisioned the MAT as a fundamental building block of
human visual shape processing. The structure of the medial axis is robust to translations,
rotations, and many non-rigid distortions; in addition, the branches of the medial axis often
mirror the perceptual part structure of silhouettes (Figure 7.1). However, despite its power,
the medial axis suffers from several severe limitations as well. Medial axes often contain
extraneous branches or additional structural complexity, which do not reflect perceptually
salient aspects of the shape; also, the structure of the medial axis is very sensitive to the
path of the silhouette’s contour, with large branches often created or destroyed by slight

Figure 7.1: From Blum (1967). When calculated for humanoid shapes, the medial axis
displays a perceptually appropriate skeletal structure, the branches of which correspond to
the perceptual parts of the shape.
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perturbations of the silhouette. Burdened by these limitations, the MAT never claimed its
intended role as the foundation of human shape representation.

But despite considerable failings, the medial axis transform has not retreated to the back
shelves of vision science. On the contrary, over the last four decades, the medial axis has
become an essential component of the human vision, computer vision, graphics, and design
researcher’s toolbox. This is because, despite its imperfections, the MAT manages to capture
a remarkably compelling distillation of the perceptually relevant structure of silhouettes
with a surprisingly simple algorithm which can be run on a wide variety of inputs. This
phenomenon - a tool which achieves limited but still impressive accuracy, and does so in a
simple, intuitive, and versatile fashion - is not uncommon in the study of vision science, and
may play a greater role in the human visual system than we realize. It is these strengths
of the MAT, in addition to the MAT itself, that motivated our approach to the problem of
silhouette analysis and representation.

Since the development of the MAT, the study of silhouettes has fractured into many
different directions, both within human vision and into related fields such as computer vision
and graphics. In the human vision community, the study of silhouettes has largely focused on
how silhouettes may be used for object recognition; in particular, the question of segmenting
silhouettes into perceptually relevant parts. This question is motivated by the hypothesis
that silhouettes and real-world shapes cannot be represented and recalled in full formm; a
more compact representation would encode objects and shapes as arrangements of easily
describable geometrically simple parts.

Given a silhouette, it has been shown that humans do make part breaks quite consis-
tently, even in silhouettes which are not identifiable as nameable objects (Siddiqi et al., 1996;
De Winter and Wagemans, 2006). One class of approaches focuses on identifying the parts
of a silhouette as belonging to an “alphabet” of primitives; Biederman’s “geons” are perhaps
the most influential example of this approach (Biederman, 1987). But geons do not seem to
have a satisfying analogue for 2D shapes, and the identification of parallel contours which
indicate their presence can be quite difficult. Pentland (1990) increased the flexibility and
mathematical precision of the parts alphabet by proposing a technique that simultaneously
breaks a shape into parts and reinflates the shape as a union of superquadric volumes, but
his approach could still only be applied to shapes with relatively well-behaved, convex parts.

A second class of approaches instead focuses not on the parts themselves, but on the
boundaries where the parts meet. The most influential of these approaches is likely the
Minima Rule proposed by Hoffman and Richards (1984), which identified negative min-
ima of principal curvature as the markers of part boundaries on three-dimensional surfaces;
Hoffman and Richards theorized that the corresponding markers of part boundaries in two-
dimensional silhouettes would be concave minima of contour curvature. Earlier work by
Attneave supported the significance of curvature extrema (Attneave, 1954), and later psy-
chophysical work seemed to confirm that humans place part-boundaries such that endpoints
lie on or near minima of concave curvature (Braunstein et al., 1989; De Winter and Wage-
mans, 2006). However, the 2D Minima Rule proved difficult to develop into a working model;
later work extended and elaborated on the approach, but numerous exceptions and seeming
counterexamples to each system persist (Siddiqi and Kimia, 1995; Hoffman and Singh, 1997;
Singh et al., 1999)). A different approach proposed by Mi and DeCarlo has shown promising
results by moving away from the extrema of contour curvature, instead focusing axes of local
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symmetry and scanning them for likely part transitions (Mi and DeCarlo, 2007; Mi et al.,
2009).

Shape similarity is another application which has motivated a considerable amount of
silhouette work, particularly in the computer vision community, driven by the demand for
accurate content-based image retrieval systems. The variety of approaches to this problem
is very wide, and cannot be completely covered here, but several classes of silhouette repre-
sentations or models can be found in the shape similarity literature. Sharon and Mumford
(2006) use a generative approach, modeling the difference between two shapes as the com-
plexity or magnitude of a deformation required to map one shape onto the other. Others,
noting the significance of parts to human vision, have proposed approaches that compare
shapes by comparing non-metric part structure representations (Biederman, 1987); still oth-
ers have blended these approaches into a hybrid analysis (Basri et al., 1998; Latecki and
Lakämper, 2000). However, with effective methods for extracting parts from generic silhou-
ettes lacking, these approaches have remained limited in applicability. Abbasi et al. (1999),
perhaps inspired by the parts analysis work of Koenderink and van Doorn (1982), propose
a method of silhouette analysis which locates curvature zero-crossings, or inflection points,
in the shape’s contour across a variety of scales.

Deformation of the shape contour is a popular approach, even in more general inves-
tigations of shape representation. The shocks approach evolves the boundary of the shape
uniformly until singularities or “shocks” occur (e.g., a change in topology or the introduction
of a cusp) (Kimia et al., 1995). Conformal mapping , on the other hand, represents a shape
by analyzing the smooth deformation that takes that shape’s contour to some canonical
shape, such as the unit circle; and the similarity between two shapes can be viewed as a
function of the deformation that maps one shape to the other (Sharon and Mumford, 2006).

Though the analysis of silhouettes and shape has received considerable attention, much
of the work in this area has been restricted to the realm of computer science and applied
computer vision. As a result, demand for data on human performance on tasks such as part
segmentation and similarity judgments has been rather limited. Nevertheless, a number
of valuable pieces of work have been done evaluating human silhouette judgments. These
include investigations of human and mammalian similarity judgments (Scassellati et al.,
1994; Op de Beeck et al., 2008) as well as human segmentations of silhouette parts (Siddiqi
et al., 1996; De Winter and Wagemans, 2006). Any model of human silhouette analysis or of
subproblems such as silhouette similarity and silhouette part structure must take these data
into account. In addition, almost no work has been done relating human behavior to working
models; for example, in De Winter and Wagemans (2006), the most extensive investigation
of human part segmentation to date, the human part segmentation results are not compared
with any working model of silhouette part segmentation.
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Chapter 8

The New Idea: Puffball

8.1 Previous Work: Inflation

At the heart of the proposed approach to the representation and analysis of silhouettes is
a simple tool for mapping two-dimensional silhouettes to three-dimensional shapes, a task
known as inflation. As a formal problem, inflation is highly ill-posed: any given silhouette
could have arisen from an infinite variety of possible three-dimensional shapes, and there is no
clear ground truth against which to evaluate an inflation approach. Nevertheless, Tse (2002)
has shown that certain silhouettes can elicit a clear perception of three-dimensionality, so it
is not unreasonable to think that a process like inflation could occur in the visual system.

One early approach to inflation was developed by Terzopoulos et al. (1987); Terzopoulus
and Witkin (1988). Their approach began with a user provided central axis of a given silhou-
ette; the system then placed a deformable tube around the axis, and inflated or constricted
the shape around the axis to match the silhouette. The results of the approach were intuitive
and visually pleasing, but the physical surface model placed considerable limitations on the
structure and topology of the surface; only simple shapes with a single major axis could be
processed. Several more recent approaches also use the deformable surface model as their
inflation mechanism (Pentland, 1990; Karpenko and Hughes, 2006) but the nature of the
deformable surface approach requires careful selection of physical parameters (e.g. pressure,
elasticity) and can severely limit the topological complexity of the inferred shape or shapes.

Much of the inflation work of the last 10 years has come out of the sketch interface
community; because these algorithms utilize inflation as a design tool, rather than a shape
inference technique, the ill-posed nature of the inflation problem is less of a concern. One of
the best known techniques in this family is that of the Teddy system (Igarishi et al., 1999).
Teddy, which inflates discrete polygons into polygonal meshes, builds on the axial strategy
of Terzopoulos et al., but uses a more sophisticated axial structure which can be derived
for an arbitrary shape. It then extends ribs from points along this axis to the edge of the
shape, and places semicircular struts above and below these ribs. The inflated surface is
then traced out by these semicircular struts. Teddy is a very powerful inflation tool, but
is complex to implement; and, as pointed out in Alexe et al. (2004), piecing together the
semicircular points can result in a bumpy surface which is less smooth than the output of
some of its later competitors.
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To solve this smoothness problem, several later systems have taken a more slightly so-
phisticated approach (Karpenko et al., 2002; Alexe et al., 2004; Tai et al., 2004). These
systems calculate the same central axis structure as Teddy, but then use that structure to
create an overall potential function on 3-D space, the level surface of which traces out the
surface. This potential function is generally described by a finite set of parameters, which are
carefully optimized to give the most consistent ant pleasing results. For example, in Alexe
et al. (2004), spherical potential functions are placed along the central axis; to generate the
final level surface, the distance parameters of each of these functions must be optimized to
agree with the input silhouette.

8.2 Definition of Puffball Inflation

The grassfire height function, proposed by Blum (1967), can be thought of as a simple form
of inflation. The silhouette is repeatedly eroded, resulting in a sequence of smaller and
smaller silhouettes; these silhouettes can be summed over time to yield a height function on
the interior points of the original silhouette, where the height at a given point is equal to the
distance to the nearest edge (see Figure 8.1). Blum, of course, was not solving the problem
of inflation, but rather calculating the medial axis transform, or MAT, in an effort to create
a perceptually relevant skeletal shape descriptor.

The grassfire function forms the basis of many popular methods of creating beveled shapes
in images, such as the Bevel and Emboss operation in Adobe Photoshop. A silhouette, such
as the pair of Bs in Figure 8.2A, is passed through the grassfire function to give a beveled
three-dimensional shape (Figure 8.2B). If a rounded silhouette inflation is desired, this height
function can then be passed through a point-nonlinearity to give an appealing, rounded
shape; but the result is scale-dependent, so the inflation of the smaller B is not simply a
scaled-down version of the larger B (Figure 8.2C). The two Bs can be scaled properly if
they are passed through different point non-linearities (Figure 8.2D), but in many situations
a more desirable inflation approach is one which is inherently scale-invariant, and doesn’t
depend on post-hoc normalizations. We propose such an approach here, which we call
Puffball inflation, or simply Puffball.

At the core of Puffball inflation is the principle: anywhere you can place a circle, place a

Figure 8.1: The grassfire height function. Note the ridge in the function lying above the
medial axis of the shape.
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Figure 8.2: The bevel-nonlinearity inflation approach. (A) Two similar B silhouettes. (B)
The grassfire height function of silhouette (A). A cross-section of the height function at the
level marked by the hashes is shown in the inset. (C) Passing the grassfire height function
through a non-linearity can yield a circular cross-section in one shape, but not both shapes
simultaneously. (D) To get scale invariance, the two Bs must be passed through different
point nonlinearities.

sphere. In fact, this principle can fully describe the output of Puffball inflation; in equation
form, the Puffball inflation I of a silhouette S can be written:

I(S) =
⋃
{B3(p, r) | B2(p, r) ⊂ S} (8.1)

where B3(p, r) is the spherical ball centered on point p with radius r, and B2(p, r) is the
circular region centered on p with radius r contained in the plane of S. The set of such
circles, however, is massive: at any interior point of S, infinitely many circles centered on
that point lie entirely within S. So while Equation 8.1 is an elegant approach to silhouette
inflation, it is deeply impractical in a computational setting. Fortunately, the process can
be greatly accelerated by noting that

B2(p1, r1) ⊂ B2(p2, r2)⇒ B3(p1, r1) ⊂ B3(p2, r2)

Thus, in calculating the Puffball volume, we need only consider those circles not contained
in any larger circle which is also contained in S; that is, we need only consider the maximal
circles of S. The centers and radii of the maximal circles of a silhouette S form the medial
axis transform, or MAT, of the silhouette. As mentioned above, the MAT can be calculated
by locating the ridges of the grassfire height function; this leads us to an alternative and
much more practical definition of Puffball inflation:

I(S) =
⋃
{B3(p, r) | (p, r) ∈ MAT(S)} (8.2)

This process is illustrated in Figure 8.3.
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Figure 8.3: Puffball inflation. (A) Given a silhouette, (B) we can calculate the medial
axis using morphological operations. (C) If we place circles of the appropriate radius along
the medial axis, the resulting union completely reconstructs the original silhouette. (D)
To calculate the Puffball inflation, we implement the same procedure, but we place spheres
along the medial axis rather than circles. (E) The resulting inflated region.

MATLAB code implementing the algorithm can be found in Appendix B; the implemen-
tation takes a binary image as input and gives a height map image as output. Note that this
does not calculate the union of spheres simply by taking the maximum; instead we use a soft
maximum achieved by adding the exponential of each of the component spheres, and then
taking a logarithm of the resulting sum. If a raw maximum is used, small numerical errors
in the calculation of the grassfire height function (unavoidable in a discrete image) result in
unsightly and perceptually inconsistent creases; the soft maximum eliminates these creases,
while having a negligible effect on the overall shape of the output.

8.3 Strengths and Limitations of Puffball

The results of Puffball inflation on several simple silhouettes are shown in Figure 8.4. As the
figure demonstrates, Puffball yields very intuitive results on all four shapes; a circle maps
to a sphere, an ellipse maps to a prolate ellipsoid, etc. Puffball also achieves a high degree
of scale-invariance, as shown in Figure 8.5. This scale invariance applies not only to similar
silhouettes within an image but also to different parts of the same connected silhouette, and
requires no normalization or post-hoc processing.

Figure 8.6 depicts a complex silhouette which was generated by thresholding random low-
pass noise. The silhouette has multiple separate components, one of which is topologically
very complex, and several of which extend beyond the boundary of the image. For inflation
techniques which use physical models of the inflated surface, especially those dependent
on deformable surfaces (Terzopoulos et al., 1987; Terzopoulus and Witkin, 1988; Pentland,
1990; Karpenko and Hughes, 2006), inflating a shape would require extracting the topology
of the silhouette and constructing a surface with matching topology before any inflation
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Figure 8.4: Results of Puffball inflation on several simple silhouettes.

Figure 8.5: Scale invariance of Puffball inflation. (A) An offset annulus silhouette. The
most intuitive inflation of silhouette would have a circular cross-section in both the large
bend and in the small bend. (B,C) Passing the grassfire height function through a point
non-linearity cannot achieve a circular cross-section in both bends simultaneously. Forcing a
circular cross-section in the large bend introduces sharp ridges in the small bend; conversely,
forcing a circular cross-section in the small bend forces the remainder of the inflation to be
flat. (D) The Puffball inflation yields a circular cross-section in both bends of the resulting
torus, and is a smooth, intuitive inflation of the original silhouette.
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Figure 8.6: (A) A topologically complex silhouette generated by thresholding random low-
pass noise. For most algorithms, a silhouette with this level of complexity would require
considerable processing. (B) Puffball inflates the silhouette, with no additional machinery
or extra processing.

could even begin. Even sketch-interface inflation approaches like Teddy (Igarishi et al.,
1999; Karpenko et al., 2002; Alexe et al., 2004; Tai et al., 2004) which utilize a central axis
structure still represent the resulting surface as a triangle mesh, in which the topology of
the overall surface must be carefully monitored. But Puffball, because it operates entirely
in the image domain, has no such limitations; the silhouette in Figure 8.6 presents no more
difficulty to the algorithm than any other.

Figure 8.7: (A) The medial axis of a rectangle. (B) Perturbing the contour of the rectangle
by removing a small piece from it causes significant, discontinuous changes to the structure
of the medial axis. (C) The inflation of the rectangle. (D) Perturbing the contour of the
rectangle does change the resulting inflation, but as the perturbation becomes smaller, so
does the change in the inflated shape. So Puffball, unlike the MAT, is a continuous mapping.
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Figure 8.8: (A) A silhouette. (B) The Puffball inflation of silhouette (A). (C) The Puffball
inflation can be geometrical broken into spherical regions (shown in green) and canal surface
regions (shown in blue).

Because our implementation of Puffball is based around the medial axis transform, it is
reasonable to ask if it suffers from similar limitations. In particular, is the resulting inflation
robust to small perturbations of the input silhouette? Such perturbations can drastically
alter the structure and appearance of the medial axis. However, the medial axis transform
is not an essential component Puffball; Puffball may be defined with no mention of the
MAT at all. As a result, small perturbations which disrupt the structure of the MAT have
appropriately small effects on the resulting Puffball inflation (Figure 8.7). In short, Puffball is
a robust, continuous mapping from two-dimensional silhouettes to three-dimensional regions.

Finally, due to its simplicity, Puffball can be analyzed more completely than many com-
peting inflation approaches with existing mathematical knowledge. The surface that results
from the Puffball inflation of a shape with a finite medial axis can be broken in two well-
defined classes: spherical regions generated by a single branch-point, and intervening regions
generated by the branches of the medial axis (Figure 8.8). These intervening regions fall into
a class of surfaces known as canal surfaces, and they have been well studied in the math-
ematical literature (Garcia et al., 2006; Xu et al., 2006). This existing base of knowledge
gives Puffball an additional advantage as a computational and modeling tool as its behavior
can be analyzed mathematically as well as computationally.

Of course, Puffball is by no means the last word in inflation, nor is it a fully accurate
model of human intuition about the relationship between 2D and 3D shape. For example,
note how in Figure 8.6B, the shape contains noticeable bulges and creases. These are not the
result of improper setting of the implicit soft-maximum parameter, but inherent properties
of Puffball inflation. In addition, while most human observers interpret symmetric contours
as bounding surfaces of revolution, Puffball make no such prediction. Finally, Puffball is
constrained such that all silhouette contours are treated as extremal boundaries, where the
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surface becomes tangent to the line of sight; but humans frequently interpret boundaries
as hard corners or edges (Figure 8.9). But despite these limitations, Puffball’s simplicity
and intuitiveness - and ease of implementation - have yielded a number of illuminating
applications and results.

Figure 8.9: Humans can easily interpret this silhouette as a cylinder; in that interpretation,
the top and bottom contours correspond to sharp edges of the shape, rather than extremal
edges as would be predicted by Puffball inflation.
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Chapter 9

Silhouette Part Segmentation

9.1 Puffball Part Segmentation

In their paper, “Parts of Recognition,” Hoffman and Richards (1984) described two rules
for locating parts in shapes. The second of these two rules, which is most often referred
to as the “minima rule,” and which I will refer to as the 2D Minima Rule, describes how
part boundaries might be located in two-dimensional silhouettes using minima of contour
curvature. This rule, as mentioned above, has led to considerable computational challenges.
But the 2D Minima Rule was itself inspired by the first rule, also referred to as the “minima
rule,” which I will refer to as the 3D Minima Rule. The 3D Minima Rule is a much richer and
more robust principle than its 2D cousin, derived from a generative principle of parts referred
to as the principle of transversality. The 3D Minima Rule states that part boundaries on the
surface of a 3D shape should be placed along loci of negative minima of principal curvature
(Figure 9.1). Though far from a perfect description of real-world parts, the 3D minima
rule is an elegant and intuitive principle which satisfies all three of the constraints that
Hoffman and Richards placed on a valid approach to parts analysis: reliability, versatility,

Figure 9.1: Visual part boundaries on a three-dimensional surface can be placed at the loci
of minimal negative principal curvature.
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and computability.
Of course, as Hoffman and Richards correctly pointed out, the strength of the 3D Minima

Rule cannot be applied to silhouettes, as reconstructing a three-dimensional shape from
a two-dimensional silhouette is a mathematical impossibility; thus Hoffman and Richards
developed the 2D Minima Rule as an two-dimensional analogue. But the availability of
Puffball suggests an alternate approach: perhaps one does not need to correctly reconstruct
the three-dimensional surface to perform an effective parts analysis. It may be sufficient to
infer a sufficiently intuitive three-dimensional pseudoshape, which can then be analyzed using
the 3D Minima Rule. Indeed, I will later argue that using a regularly derived pseudoshape
can actually yield better parts analysis than knowledge of the real three-dimensional surface.

Thus, our new approach to part-segmentation proceeds as follows: given a silhouette,
such as one in Figure 9.2A, calculate the Puffball inflation (Figure 9.2B). On this surface,
calculate the principal curvatures at each point, and locate bands of minimal negative prin-
cipal curvature (Figure 9.2C). We are helped here by our understanding of the geometry
of Puffball surfaces: of the two classes of regions that appear in Puffball surfaces, we will
only find bands of negative curvature in the canal surface regions (spherical surfaces have
constant positive principal curvature). And on canal surfaces, one principal curvature is
always positive; thus we need only analyze the lesser principal curvature at every point.

According to the 3D Minima Rule, part boundaries are marked by loci of minimal neg-
ative principal curvature. In practice, however, locating these full loci can be challenging.
First, not all real-world part boundaries are have negative principal curvature along their
full length (consider the point where your arm joins your torso). In addition, the output

Figure 9.2: Puffball part segmentation. (A) An initial silhouette. (B) The Puffball infla-
tion. (C) Bands of principal curvature on the Puffball inflation mark part boundaries. (D)
Points of maximal principal curvature. (E) The resulting segmentation.
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of Puffball is a height surface, which makes measurement of principal curvature near the
extremal boundaries very unstable. Fortunately, a more robust, more reliable approach re-
quires only locating points of minimal principal curvature “along the top” of the Puffball
inflation (Figure 9.2D). Here, “along the top” means points where the derivative in the di-
rection of maximum principal curvature is 0; if a canal surface section of a Puffball inflation
is viewed as a series of circular ribs around a central spine, the points at the top of each
rib lie along the top of the Puffball inflation. Once the top-most points of minimal negative
principal curvature have been located, part-lines can be placed through them across the
shape; there are several ways to do this, but the simplest is to locate the shortest line across
the shape passing through the identified point. These lines segment the shape, yielding the
final part-segmentation (Figure 9.2E).

It is important to note that small numerical errors in the calculated inflation will result
in very shallow or transient principal curvature minima; it may also be the case that we
wish to evaluate and compare the relative strength of part boundaries. The simplest choice
is to threshold and rank part boundaries based on the magnitude of the principal curvature
at the point the generated them; but this introduces a scale invariance, as a surface that is
scaled up by a common factor will have all its principal curvatures scaled down by the same
factor. However, if we simply normalize the principal curvature by the height of the Puffball
height map at that point, the resulting normalized curvature is scale invariant. Using this
value allows one to ignore noisy minima and rank the resulting part boundaries in a simple
scale-invariant way.

9.2 Strengths of Puffball Part Segmentation

Consider the hand silhouette in Figure 9.3. This silhouette illustrates two of the issues any
algorithm based on the 2D Minima Rule must resolve. First while the boundary between
the palm of the hand and the index finger terminates at a curvature minimum (indicated
by a red dot in Figure 9.3B) on one end, the other end does not lie at or near a significant
curvature minimum. Though the majority of part boundaries terminate at or near two

Figure 9.3: Though the silhouette has very clearly discernible part structure, the 2D
Minima Rule leaves many questions unanswered. Though the curvature minima can be
easily located, it is difficult to tell what to do next.
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Figure 9.4: The Short Cut Rule. (A) According to the Short Cut Rule, given a silhouette
with two possible part interpretations, a human chooses the part cuts that are shorter. (B)
The Puffball inflation of the silhouette yields a higher principal curvature above the short
part-cut than above the long part-cut. Thus Puffball part-segmentation implicitly obeys the
Short Cut Rule.

part boundaries, it is still very common to have a part boundary with only one minimal
endpoint. On the other hand, both the boundary of the index finger and the boundary
of the middle finger terminate at the endpoint between the two fingers. If one has only
the locations of the curvature minima, there is no way to know whether two part-lines
meeting at the same endpoint are mutually inconsistent, or, as is the case here, are entirely
consistent. Thus, while curvature minima do generally lie at or near part boundaries, and
vice versa, curvature minima alone do not specify a part segmentation; any computable,
reliable segmentation requires substantial additional computational machinery.

One such piece of machinery, proposed by Singh et al. (1999) is the Short Cut Rule.
Though Singh et al. proposed several constraints on the selection of part-lines based on
curvature minima, the most important was the principle that given two inconsistent but
otherwise equally valid part-lines, humans will choose the part-line which is shorter. Thus,
if one had to choose between drawing vertical cuts or horizontal cuts in the segmentation of
the silhouette in Figure 9.4A, one would likely choose the shorter vertical cuts.

The Short Cut Rule does resolve some, if not all, of the ambiguities present in the 2D
Minima Rule; but is this additional constraint necessary? Figure 9.4B depicts the Puffball
inflation of the silhouette in Figure 9.4A; it is clear that the principal curvature above the
shorter part-lines is considerably larger in magnitude than the principal curvature above the
longer part-lines. Thus Puffball part segmentation will rate the shorter part-lines as better
part boundary candidates than the longer part-lines. Thus Puffball part segmentation, unlike
the 2D Minima Rule, implicitly includes the Short Cut Rule, making the extra computational
machinery of the Short Cut Rule unnecessary.

Another addition to the 2D Minima Rule part boundary approach is the Necks and
Limbs algorithm, proposed by Siddiqi et al. (1996). According to the Necks and Limbs
theory, humans identify two classes of part boundary: necks which form the bridges or
connections between two nearby components; and limbs, which separate larger components
from adjoining smaller parts. Both kinds of part boundaries are illustrated in Figure 9.5. In
the Necks and Limbs segmentation algorithm, necks and limbs are calculated through two
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Figure 9.5: Necks and Limbs. (A) The algorithm proposed by Siddiqi et al. (1996) sug-
gests different computational procedures to identify necks and limbs. (B) Bands of negative
principal curvature on the Puffball inflation which mark part boundaries appear over both
necks and limbs, making the division computationally unnecessary.

different computational methods.
If we inspect the Puffball inflation of a shape containing both necks and limbs, however,

we see that both part boundary types exhibit the bands of negative principal curvature that
Puffball part segmentation seeks (Figure 9.5B). Thus Puffball part segmentation identifies
both limb-type and neck-type part boundaries, with no additional or separate machinery
needed for either. While it is certainly possible that two separate methods are used by the
visual system for the two boundary types, there is no strong psychophysical evidence for this,
and Puffball part segmentation effectively proves that separate computational approaches
are not necessary.

Given that the motivation of Puffball part segmentations was to generate a candidate 3D
shape to which we can apply the 3D Minima Rule, one may wonder whether the ill-posed
nature of the inflation task limits Puffball part segmentation’s performance. That is, can
Puffball hope to give a reasonable part segmentation if it cannot hope to consistently and
correctly reconstruct a three-dimensional shape? If we return to the hand silhouette from
Figure 9.3, however, we find that, counter-intuitively, Puffball’s performance can be superior
to that of a method which correctly inferred the existing three-dimensional shape; for though
the 3D Minima Rule is a well-motivated and elegant approach to three-dimensional part
segmentation, it does not always apply. If one inspects a human hand, one will find that the
front of the hand does have creases or bands of negative principal curvature (Figure 9.6A),
but that the back of the hand contains no such part markers (Figure 9.6B). Nevertheless, it
is clear to us that a hand - and a hand silhouette - should be broken into parts, with part
boundaries at or near the base of each finger. If, on the other hand, we inspect the Puffball
inflation of a hand silhouette - which is clearly an incorrectly inferred three-dimensional
shape - we see that the telltale bands of negative principal curvature are present all the
way around the bases of the fingers (Figure 9.6C). Thus, searching for part boundaries on
the Puffball inflated shape yields clearer, more robust part boundaries than inspecting the
actual real world shape (Figure 9.6D).
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Figure 9.6: (A,B) On a real hand, bands of negative principal curvature can be seen at the
base of the fingers on the palm side, but not on the back side. (C) The Puffball inflation
displays much clearer and more complete bands of negative principal curvature (indicated
by saturated green). (D) This allows the Puffball inflation to perform a more intuitive part
segmentation than would result if one applied the 3D Minima Rule to an actual hand.
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Chapter 10

Evaluation

10.1 Preliminary Results

As an initial evaluation of Puffball’s part segmentation performance, a small study was run
on Amazon Mechanical Turk. The experiment compared part segmentations generated by
Puffball part segmentation with my best-effort implementation of the Necks and Limbs algo-
rithm (Siddiqi and Kimia, 1995) and a part segmentation algorithm imposing the constraints
of the Short Cut Rule (Singh et al., 1999). Necks and Limbs was implemented as described
in Siddiqi and Kimia (1995); a description of my implementations of the Short Cut Rule can
be found in the Appendix C.

The experiment was run using 24 silhouettes, 8 each in three classic part segmentation
categories: animals, hand tools, and human figures. Each silhouette was run through all
three part segmentation algorithms, and converted to a segmentation image in which different
segments were indicated by blocks of different colors (Figure 10.1).

In each trial of the experiment, a subject was presented with one of the silhouettes and
two segmentations of that silhouette, one of which was always generated by Puffball part

Figure 10.1: (A) A sample silhouette from the pilot experiment, from the category of
human figures. (B) A depiction of a segmentation of the silhouette in (A), generated by
Puffball part segmentation.
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segmentation. They were told that the silhouette had been broken down into parts by two
algorithms, and were asked to choose which of the two segmentations “looked more correct.”
The experiment was run by 40 total subjects; with 24 silhouettes and two comparison algo-
rithms, each subject ran a total of 48 trials (every subject saw each silhouette twice). Hence,
there were a total of 1920 trials, 960 each for each comparison algorithm and 320 each for
each comparison algorithm and category combination. Results of the experiment are shown
in Figures 10.2 and 10.3.

Figure 10.2: Results of pilot study comparing Puffball part segmentation with Short Cut
Rule-based part segmentation. The preference for Puffball in the hand tools category was
statistically significant with p < 0.025. The preference for Puffball in the human figure
category and for all shape together was significant with p < 0.001.

Figure 10.3: Results of pilot study comparing Puffball part segmentation with Necks
and Limbs part segmentation. The preference for Puffball in all categories and overall was
statistically significant with p < 0.001.
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Figure 10.4: Comparison of behavior of the three segmentation algorithms on two silhou-
ettes.

In every category, Puffball was chosen more often than the competing algorithm, with
the preference being statistically significant in all but one category. Though the pilot study
was quite small, the results do suggest that an inflation based part segmentation approach
can perform on par with more traditional, contour-curvature-based approaches that utilize
the 2D Minima Rule.

Figure 10.4 shows some sample segmentations, illustrating what mistakes Puffball seg-
mentation was able to avoid, and a silhouette on which Puffball did not perform as well. In
the human silhouette, the boundary between the torso and each arm terminates at only one
curvature minima; thus the 2D Minima Rule-based algorithms are unable to segment the
arms from the torso. Similarly, the boundaries of the legs have only one minimal endpoint;
to make matters worse, both leg boundaries terminate at the same curvature minimum; so
neither 2D Minima Rule based segmentation identifies the legs as separate segments either.
Puffball, however, is able to segment the arms and the legs, as it does not seek pairs of con-
tour minima. So, while the Puffball segmentation is not necessarily perfect (segmentation of
the waist seems largely unnecssary) it is far more intutive than the segmentations produced
by the 2D Minima Rule-based algorithsm. The wrench silhouette, however, presented some
difficulty for Puffball. In this case, flaring of the wrench near the bottom has little effect on
the inflation, because the negative space in the opening of the wrench prevents the inflated
shape from becoming too large. So very little curvature is present on the top of the inflated
shape, and the boundary between the shaft of the wrench and the “head” of the wrench is
not identified, as it is in the Necks and Limbs segmentation. Again, none of the segmenta-
tions is perfect - a proper segmentation would identify both the “head” of the wrench and
the loop at the other end as distinct functional parts - the Necks and Limbs algorithm is the
most intuitive of the three.

79



10.2 Further Experimental Evaluation

Further attempts to evaluate the segmentations in an experimental setting yielded frustrat-
ingly inconclusive results. With a relatively small number of subjects, statistical significance
was nearly impossible to achieve, and subject segmentation preferences were dominated by
one particular confounding factor: segment number. Far more often than not, subjects se-
lected the segmentation with fewer segments, independent of almost all other considerations.
In the absence of any clear right answer, it was clear that the subjects were often settling
on the simplest possible dimension along which to discriminate the segmentations they were
presented with.

To counteract this confounding factor, segmentations generated for the next experiment
used an adaptive threshold. Each algorithm includes a threshold which controls the number
of parts it predicts. For Puffball part segmentation this threshold is the minimum scaled
principal curvature along the top of the inflated shape; for Necks and Limbs and the Short
Cut Rule, it is the minimum contour curvature magnitude that constitutes a relevant cur-
vature minimum. For each silhouette and each algorithm, the threshold was chosen so that
the number of parts predicted was equal to the rounded mean number of parts segmented
by human subjects. In this way, the influence of segment number was eliminated from the
preferences in the experiment.

Once again the experiment was run on Amazon Mechanical Turk; because each pair of
segmentations needed to be compared multiple times, and it is less informative to show the
same pair of segmentations to the same subject more than once, a large number of subjects
were needed. Also, because the depiction of part segments is quite straightforward and
largely display independent, the varying conditions of Mechanical Turk workers have little
influence on the result.

Figure 10.5: (A) A silhouette used in the Mechanical Turk experiment. (B) A sample
human segmentation of silhouette (A). (C) The Necks and Limbs segmentation. (d) The
Short Cut Rule segmentation. (E) The Puffball part segmentation.
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The experiment was run using 44 silhouettes from the De Winter and Wagemans part
segmentation dataset. Of the 88 silhouettes used in that study, 44 were deemed easy to
identify, and 44 were deemed difficult to identify; our Mechanical Turk experiment focused
on the difficult to identify silhouettes, to minimize the effect of top-down knowledge and
object recognition. In every trial of the experiment, the subject was shown the silhouette,
and then shown two segmentations of that silhouette. Each of these two segmentations was
drawn from one of four possible sources: the three segmentation algorithms (Puffball part
segmentation, Necks and Limbs, or the Short Cut Rule), or a human generated segmentation
from the De Winter and Wagemans data set. Every subject saw all 44 silhouettes, seeing
each silhouette only once. When presented with the two segmentations, they were prompted
to select which of the two segmentations looked more correct. An example silhouette and
segmentations are shown in Figure 10.5.

Also included in the experiment were 6 simple silhouettes which were paired with one
intuitive segmentation and one highly counterintuitive segmentation. These silhouettes were
included to ensure that subjects were attending to the task. Of the 96 subjects who completed
the experiment, 5 subjects who chose the counterintuitive segmentation on at least 4 of these
6 test silhouettes were excluded. An example test silhouette and associated segmentations
are shown in Figure 10.6.

The results of this experiment are shown in Table 10.1. On the whole, the results are en-
couraging; as with the pilot study, Puffball was preferred over the two competing algorithms,
though in this case only the preference over Necks and Limbs was statistically significant.
What is most troubling is that by a highly statistically significant margin, all three segmen-
tation algorithms were preferred over the human segmentations. This does not mean that
the human segmentations in the De Winter and Wagemans study were wrong; nor does it
mean that the subjects in our Mechanical Turk experiment were incapable of evaluating the
segmentations. It does, however, reveal a very deep inconsistency between the two sets of
subjects understanding of what constitutes an appropriate part segmentation. Future work

Figure 10.6: (A) A sample test silhouette. (B) An intuitive part segmentation of that
silhouette. (C) A counter-intuitive segmentation of that silhouette.
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Puffball Short Cut Rule Necks and Limbs Human Subjects

Puffball 0.5074 0.5446 (*) 0.6239 (**)
Short Cut Rule 0.4926 0.5474 (*) 0.6146 (**)

Necks and Limbs 0.4554 (*) 0.4526 (*) 0.5985 (**)
Human Subjects 0.3761 (**) 0.3854 (**) 0.4015 (**)

Table 10.1: Results of the full Amazon Mechanical Turk experiment. Numbers indicate the
proportion of trials in which the segmentation source labeling the row was preferred over the
source labeling the column. Thus Puffball part segmentation was preferred over the Short
Cut Rule in 50.74% of trials. Cell shading has been added for clarity, with red indicating
positive preference, blue indicating negative preference, and saturation indicating degree of
preference. (*) indicates statistical significance with p < 0.025; (**) indicates statistical
significance with p < 0.001.

asking human subjects to generated part segmentations should take this fact into account,
by carefully selecting how they instruct their subjects to generate their segmentations, and
checking the reliability of those segmentations by having them evaluated by a different pool
of subjects.

10.3 Numerical Evaluation

While the results of the experimental evaluations were encouraging, I also performed exten-
sive mathematical and numerical evaluation of the competing part segmentations algorithms
using the human-generated part segmentations in the De Winter and Wagemans dataset. For
these analyses, all 88 silhouettes were run through the three part segmentation algorithms;
for these comparisons, the relevant thresholds in the three algorithms were again selected
for each silhouette such that the number of parts output by each algorithm was equal to the
rounded mean number of parts in the human segmentations of the same silhouette. The nu-
merical evaluations fell into three categories: comparison of full segmentations, comparison
of individual part-lines, and comparison of part-line endpoints.

10.3.1 Comparison of Full Segmentations

The simplest and most direct approach to evaluating a part segmentation algorithm would
appear to be to compare a full segmentation output by the algorithm with a number of seg-
mentations generated by human subjects. Unfortunately, as was mentioned in the chapter
on perceptual grouping, there is no accepted metric for comparing segmentations or parti-
tions. Therefore, to evaluate the performance of the three algorithms implemented for this
research, I tried several different metrics:

• One metric, which I derived, I will refer to as weighted incoherence:

WI(S1, S2) =
2 logN(S1 ∩ S2)

logN(S1) + logN(S2)
(10.1)
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where N(S) is the numerosity of the segmentation S, defined as:

N(S) =
(
∑
i |si|)2∑
i |si|2

where |si| is the area of an individual segment of S. If all segments are of equal
area, than the numerosity of a segmentation is the number of segments; otherwise, the
numerosity is strictly less than the number of segments. Weighted incoherence is equal
to 1 for identical segmentations, and larger for more dissimilar ones.

• Another metric, inspired by Martin et al. (2001), will be referred to as mean local
consistency error:

mLCE(S1, S2) =
1

2A

∑
p

E(S1, S2, p) + E(S2, S1, p) (10.2)

where A is the area of the silhouette and the function E is defined as:

E(S1, S2, p) =
|R(S1, p) \R(S2, p)|

|R(S1, p)|

where R(S, p) is the individual segment in the segmentation S containing the pixel
p and \ indicates set difference. When two segmentations are identical, the mean
local consistency error is 0; more dissimilar segmentations have a higher mLCE. This
measure is different from the local consistency error described by Martin et al. in that
the mean of the two values of E is taken for each pixel, rather than the minimum. As a
result of this change, a segmentation S1 which is a refinement of another segmentation
S2 will not have an error of 0 when compared to that segmentation.

• A third metric, described in the perceptual grouping chapter, is Meilă’s variation of
information (Meilă, 2007):

V I(S1, S2) = H(S1) +H(S2)− 2I(S1, S2) (10.3)

where H is entropy, and I is mutual information. The variation of information is equal
to 0 for identical segmentations, and larger for more dissimilar ones.

For each silhouette and each segmentation metric, each pair of human segmentations
was compared; all these measures were averaged to give a silhouette a mean inter-subject
disagreement. Then for each silhouette, each part segmentation algorithm, and each seg-
mentation metric, the resulting segmentation of that silhouette was compared with all the
human segmentation, to give a silhouette and algorithm a mean algorithm-subject disagree-
ment. The averages of these values for all three metrics are shown in Table 10.2.

Unfortunately the results of this analysis are by no means clear. While weighted inco-
herence indicated Puffball as having the best agreement with human subjects, mean local
consistency error and variation of information measured a higher agreement with the Necks
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WI mLCE VI

Inter-Subject 1.4148 0.1745 0.6143
Puffball 1.4901 0.1953 0.6690

Short Cut Rule 1.5040 0.2185 0.7542
Necks and Limbs 1.5624 0.1749 0.6223

Table 10.2: Comparison of full segmentations. Table shows comparison values under three
metrics: weighted incoherence (WI), mean local consistency error (mLCE), and variation
of information (VI). The inter subject row reports the average value across silhouettes of
the mean inter-subject disagreement. The remaining three rows show, for the three com-
peting algorithms, the average value across all silhouettes of the mean algorithm-subject
disagreement. Lower values indicate better agreement.

and Limbs theory. This may be in part due to the nature of the measures; variation of
information and mean local consistency error tend to have higher values for silhouettes with
on average more segments; thus the overall values will be skewed towards performance on
more complex silhouettes, where Puffball has a tendency to oversegment. However, no met-
ric declared Puffball part segmentation the worst of the three competing algorithms, lending
further weight to the idea that Puffball achieves competitive results with a much simpler
and more intuitive algorithmic approach.

10.3.2 Comparison of Part-Lines

Perhaps the clearest result of the previous analysis is that analyzing similarity of segmenta-
tions is as much art as it is science. To avoid some of this difficulty and ambiguity, we can
analyze a simpler data structure: the placement of individual part-lines. Of course, analyz-
ing individual part-lines does not capture the full complexity of a segmentation; after all,

Figure 10.7: (A) The set of all human generated part-lines on a silhouette of a human
arm. There are clearly several zones in which the part-lines cluster. (B) Plot of the same
part-lines in a two-dimensional circular part-line space. The plot is symmetric because part-
lines are equally valid in either direction. (C) The modeled distribution of part-lines for this
silhouette. Several modes can be picked out, corresponding to the elbow, wrist, and fingers.
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Mean Part-Line Likelihood (×10−5)
σ = 2.5 pixels σ = 5 pixels σ = 10 pixels

Inter-subject 7.5541 3.3637 1.4411
Puffball 24.144 14.221 6.5024

Short Cut Rule 12.484 8.8323 4.6982
Necks and Limbs 16.352 10.788 5.3582

Table 10.3: Mean part-line likelihood for human subjects, Puffball part segmentation, the
Short Cut Rule, and the Necks and Limbs algorithm, averaged over all 88 silhouettes.

a segmentation does not merely consist of a fixed number of independent samples from an
underlying distribution of part-lines. But valuable information may still be gleaned from the
distribution of part-lines for a given silhouette, and it is a much easier structure to analyze
statistically.

Each part-line drawn in a silhouette can be considered an unordered pair of points along
the contour of the shape. If we assume that the silhouette is a simple connected region, the
contour of the silhouette can be viewed as a circular one-dimensional space, and the space
of possible part-lines can be viewed as a circular two-dimensional space (Figure 10.7A and
Figure 10.7B).

On the assumption that human subjects place part-lines with a certain amount of noise
at locations around the silhouettes contour, we can model the distribution of part-lines by
plotting all human subject-generated part-lines in this circular two-dimensional space, and
filtering the space with a Gaussian window (Figure 10.7C). A new part-lines agreement
with the existing set of part-lines can then be calculated as its likelihood in this modeled
distribution.

For each silhouette, and each subject A, the distribution was modeled using all remaining
subjects B and the likelihood of all subject A’s part-lines was calculated; this way the

Figure 10.8: Example silhouettes on which all three algorithms performed well.
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Figure 10.9: Example silhouettes on which all three algorithms performed poorly.

inter-subject likelihood of every subject’s part-lines was calculated, to give a mean inter-
subject part-line likelihood for each silhouette. In addition, the likelihood of all part-lines
generated by each of the three competing part-segmentation algorithms was calculated using
the distribution of all human part-lines for a given silhouette, giving each algorithm and
silhouette a mean algorithm part-line likelihood. As the appropriate window width was not
known, several values were tried, but all three values yielded the same relative ordering of the
three algorithms. The averages part-line likelihood values across all silhouettes are shown in
Table 10.3.

To get an idea of what these evaluations mean, let’s consider a few examples. Figure 10.8
shows two examples where all three algorithms did rather well relative to mean human
performance. In the case of the bell silhouette, all three algorithms easily locate the boundary
between the knob at the top of the bell and the main body of the bell. The three algorithms
place their second part boundary somewhat haphazardly, but many human subjects did the
same; so on the whole, the performance of the algorithms is judged rather highly here. It is
easy to see why performance was judged so highly on the other bi-lobed shape; the boundary
between the two parts of the shape is perfectly clear, and all three approaches locate it easily.
Figure 10.9, on the other hand, shows a couple silhouettes where all three algorithms were
judged to perform poorly. Both silhouettes are largely convex, leading to no real global part
structure; if any parts are present in these shapes, they are very subtle, very peripheral, or
both. The human results were very inconsistent on these two silhouettes, and the likelihoods
of the algorithm generated part-lines for all three algorithms were similarly very low.

Figure 10.10 shows a silhouette on which the likelihood of part-lines generated by the
Necks and Limbs algorithm was much higher than those generated by the two competing
algorithms. Nearly all human subjects gave a segmentation similar to the one shown, in
which the handle of the teacup is partitioned from the main body of the teacup; the Necks
and Limbs algorithm correctly identifies this part as a “limb”. Puffball and the Short Cut
Rule, however, do not locate this part boundary. The Short Cut Rule is drawn to a much
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Figure 10.10: Example silhouette on which Necks and Limbs outpeformed its competitors.

shorter, but much less perceptually salient boundary, in large part because the negative
curvature at the lower end of the teacup handle is so low magnitude. Puffball, on the other
hand, is unable to inflate the teacup handle fully, because it does not extend out far enough;
Puffball often has difficulty identifying “limb”-like parts which do not extend out very far.

Figure 10.11 shows a silhouette on which the Short Cut Rule similarly outperformed
its competitors. In this case, the Short Cut Rules attraction to part-lines terminating on
two curvature minima leads it to choose the vertical part-line which was also selected by
the majority of human subjects. (The Short Cut Rule also chooses very non-intuitive part-
line to the upper right, but this does not bring down its average likelihood below either of
its competitors.) The Necks and Limbs algorithm, unable to classify the vertical part-line
as either a “neck” or “limb”, instead chooses two very shallow part-lines on the left pant-
leg. Puffball chooses two part boundaries which would actually be quite intuitive if it were
segmenting the lower half of a human form rather than simply a pair of pants. So, while it is
less consistent with human subjects here, it is difficult to call the Puffball part segmentation
incorrect.

Finally, Figure 10.12 shows two silhouettes in which Puffball part-lines were judged more
consistent with human subjects than the two competing algorithms. In the first, Puffball
gives a very intuitive segmentation, partitioning off the five arms of the starfish, as was done
in the majority of human segmentations (one of which is shown here). But this silhouette
presents problems for the 2D Minima Rule-based algorithms, because each inner corner of
the starfish lies at the end of two part boundaries; this is why the Necks and Limbs algorithm
fails to segment one of the arms, the Short Cut Rule places some boundaries very far from

Figure 10.11: Example silhouette on which the Short Cut Rule outpeformed its competi-
tors.
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Figure 10.12: Example silhouettes on which Puffball outpeformed its competitors.

the center of the starfish. Another, more complex example of Puffball’s success is shown
in Figure 10.12B. In this silhouette, all three algorithms (as well as most human subjects)
successfully segment the two front legs, and the larger of the two ears. But the two 2D
Minima Rule-based algorithms have a great deal of trouble with the back limbs and the
tail. The tail is bounded by a part boundary with only one curvature minimum, and the
curvature minimum between the two legs is the endpoint of two common part boundaries in
human subjects. Thus both algorithms fail to segment the tail, and either group the back
legs together or only segment one of them.

Silhouette-dependent relative likelihoods were also calculated; after all, a part-line in a
particular silhouette with low likelihood is less unimpressive if the average human part-line
likelihood for that silhouette is also quite low, and much more unimpressive if the average
human part-line likelihood for that silhouette is relatively high. So each part-lines likelihood
was divided by the average likelihood of a human part-line for that silhouette; this relative
likelihood could be averaged across a silhouette or all silhouettes. The overall average values
are shown in Table 10.4; they produce the same ordering as the raw likelihoods.

This analysis is by no means a complete demonstration of success; the distribution of
individual part lines does not tell us everything about human segmentations, and any depen-
dence between part lines is lost in this representation. Nevertheless, Puffball does consistently

Mean Part-Line Relative Likelihood
σ = 2.5 pixels σ = 5 pixels σ = 10 pixels

Puffball 3.4798 4.8635 5.3822
Short Cut Rule 1.4027 2.5210 3.6252

Necks and Limbs 2.0461 3.1690 3.9688

Table 10.4: Average part-line relative likelihood of all three algorithms across all 88 sil-
houettes.
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outperform the two competing algorithms; this result is robust to the smoothing parameter
used to model the distribution of human part lines. So this analysis effectively demonstrates
that part lines output by Puffball are numerically more consistent with human predictions
than the two Minima Rule-based algorithms.

10.3.3 Comparison of Part-Line Endpoints

Given that the distribution of individual part-line endpoints is easier to model and analyze
than complete segmentations, a logical next question is the behavior of individual part-line
endpoints. Though this seem somewhat far removed from the behavior of overall segmenta-
tions, it is not an unreasonable question to consider, as the core principle of the 2D Minima
Rule is that contour curvature minima are the foundation on which any part segmentation is
built. In their analysis of human subject data, De Winter and Wagemans did perform several
numerical analyses of the location of part-line endpoints, but only to test their consistency
with general principles such as the 2D Minima Rule; no evaluation of complete segmentation
algorithms was reported.

The analysis of part-line endpoints was performed much as the analysis of part-lines was
in section 10.3.2. A distribution of end-points was modeled by placing the endpoints of all
part-lines for a single silhouette from some number of subjects in a circular one-dimensional
space parameterized by arc-length around the silhouette contour; this space was then filtered
with a Gaussian window to estimate the distribution from which the end-points were drawn.
The likelihood of an individual endpoint could then be calculated using this distribution.

Once again, each subject’s part-line endpoints were evaluated with a distribution derived
from all the remaining subject’s part-lines for the same silhouette. Each algorithm’s part-
line endpoints were compared with the distribution derived from all human segmentations
of a silhouette. Average likelihoods for human subjects and the three algorithms are shown
in Table 10.5; average relative likelihoods, calculated as in section 10.3.2, are shown in
Table 10.6.

Once again, Puffball clearly outperforms the two competing algorithms, independent of
smoothing window size. The difference is not as pronounced as that of the likelihood of
part-lines, but is nonetheless much more noteworthy. After all, both the Necks and Limbs
algorithm and the Short Cut Rule are build on the basic assumption that however part-
lines are formed and ambiguities are resolved, the endpoints of those part-lines, with some
computable exceptions, can be found at minima of negative curvature. Thus, if these Minima

Mean Endpoint Likelihood (×10−3)
σ = 2.5 pixels σ = 5 pixels σ = 10 pixels

Inter-Subject 2.2400 1.5381 1.0476
Puffball 4.3011 3.7656 2.9519

Short Cut Rule 3.9104 3.4367 2.7175
Necks and Limbs 3.8239 3.3727 2.6389

Table 10.5: Mean endpoint likelihood for human subjects, Puffball part segmentation, the
Short Cut Rule, and the Necks and Limbs algorithm, averaged over all 88 silhouettes.
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Mean Endpoint Relative Likelihood
σ = 2.5 pixels σ = 5 pixels σ = 10 pixels

Puffball 1.9202 2.4926 2.9777
Short Cut Rule 1.7798 2.3113 2.7719

Necks and Limbs 1.6696 2.1794 2.5941

Table 10.6: Average endpoint relative likelihood of all three algorithms across all 88 sil-
houettes.

Rule-based algorithms should outperform Puffball at any task, it would be the selection of
part-line endpoints. But as we see in Tables 10.5 and 10.6, that is not the case. These
results suggest, more strongly than any results thus far, that though contour minima as
part-line endpoints are psychophysically consistent with human part segmentation behavior,
they need not, and likely do not, play an explicit role in the visual systems computation of
those part boundaries.
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Chapter 11

Future Work

11.1 Improving the Evaluation Dataset

As the resuilts of our experimental evaluation show, there are considerable issues with the
existing DeWinter and Wagemans dataset. First, while the silhouettes cover a wide variety
of object categories and exhibit a broad range of identifiabilities, many of the silhouettes
are very poor part-segmentation stimuli. These silhouettes are largely convex, and seem
to exhibit little or no part structure; Figure 10.9 shows two examples. In addition, only
segmentations in which at least one part-line was drawn were included; this does not allow
for the possibility that the best segmentation of a silhouette is no segmentation at all.
Finally, no effort has been made to evaluate the relative quality of the segmentations. Thus
when algorithms are compared with the human dataset, they are penalized just as much
for disagreeing with highly counter-intuitive segmentations as for disagreeing with highly
intuitive ones; and many of the segmentations included in the dataset are very counter-
intuitive. All of these factors make the evaluation of a part-segmentation algorithm or
algorithms considerably more difficult.

For future research into the nature of part segmentation, a more robust, more controlled
dataset is required. The existing dataset could be improved by a simple experiment designed
to rate or evaluate the relative intuitiveness of the existing segmentations. Segmentations
judged to be poor or counter-intuitive could be excluded from evaluation or simply given
lower weight in the final calculation. In addition, silhouettes that yield only counter-intuitive
segmentations could also be excluded as uninformative. However, it would also be very valu-
able to extend or replace the existing dataset; in particularly, effort should be made to gener-
ate a dataset which does not only include real-world or recognizable objects. Indeed, Siddiqi
et al. (1996) demonstrated that human part segmentation is more consistent on unrecogniz-
able nonsense silhouettes than on recognizable shapes; thus unrecognizable silhouettes are
likely a better probe of the feed-forward mechanisms of part-segmentation.

11.2 Symmetry and Parts Analysis

The above results suggest that Puffball part segmentation is a powerful and effective model
of human part segmentation; the next obvious question is why? We have seen that Puff-
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Figure 11.1: (A) A symmetric silhouette (Hoffman and Richards, 1984). (B) A three-
dimensional interpretation of this shape, as a surface of revolution. (C) Puffball’s inflation of
the shape is unaffected by the symmetric contours, and does not yield a surface of revolution.
(D) Puffballs part segmentation.

ball inflation seems to align closely with human intuition for the relationship between two-
dimensional and three-dimensional shape, but this may be unrelated to its part segmentation
success. Does the human visual system also use a 2D-to-3D mapping in its part analysis, or
is Puffball merely a convenient mathematical shortcut to what is really a two-dimensional
calculation? Put another way, does 3D shape play a role in human parts analysis of 2D
shape?

To begin to answer this question, we must concentrate on those circumstances in which
the agreement between Puffball inflation and our intuition about the relationship between
two-dimensional shape and three-dimensional shape begins to break down. If Puffball is
merely a proxy for a two-dimensional entity, then its performance in these cases should
still be quite strong; if, however, Puffballs success derives from a similar approach in the
visual system which uses the its own model of mapping 2D shapes to 3D regions, then
performance in these cases will suffer. One class of silhouettes where this may be possible is
silhouettes with a strong degree of symmetry. As mentioned in section 9.2, human subjects
often interpret silhouettes with highly symmetric contours as surfaces of revolution (Figures
11.1A and 11.1B); Puffball, however, makes no such inference, instead yielding a counter-
intuitive inflation with bulges and tabs (Figure 11.1C).

It is important to keep in mind that this is not strictly object recognition: the viewer has
likely never seen this particular surface before, and similar interpretations can be achieved
for shapes that are not as easily classified as an object. This effect appears to have more to
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do with our intuitive understanding of the relationship between general shapes in the world
and their contours than our experience with specific objects. It is best thought of as the
result of an implicit application of the Helmholtz likelihood principle: symmetric contours in
a silhouette would be highly coincidental if they were not generated by the same process, and
the most likely process which generates both contours is a surface of revolution. The more
complex the symmetric contour, the greater the coincidence, and the stronger the impression
of a surface of revolution. But such an explanation is only meaningful if the silhouette is
intuitively understood as the cross-section or projection of a three-dimensional shape. It is
also worth noting that the Puffball inflation in this case is not, in any real sense, wrong.
A three-dimensional shape such as the one given by Puffball is entirely consistent with the
two-dimensional silhouette shown; it simply seems like a less intuitive explanation of the
silhouette.

What happens to part segmentation in these circumstances? I hypothesize that when the
presence of symmetric contours pushes the intuitive 3D shape away from the Puffball infla-
tion, Puffball part segmentation will experience a similar drop in performance. To test this
hypothesis, I propose an experiment to evaluate the part segmentation behavior of human
subjects in the presence, or absence, of symmetry. Take, as an example, Figure 11.2A. If one
assumes, as we did with Figure 9.4 that one can only draw vertical part-lines or horizontal
part-lines, most existing part-segmentation models, including Puffball, would suggest that
we draw vertical part-lines, separating the two side sections from the central section. This
interpretation is consistent with a three-dimensional shape consisting of a thick central core
with two smaller conical points extending in either direction. But suppose we instead attend

Figure 11.2: (A) A silhouette with ambiguous part structure, and ambiguous three-
dimensional interpretation. (B) An illustration of how silhouette (A) could be interpreted
as a surface of revolution. (C) A silhouette with more pronounced symmetry but identical
local geometry. (D) A silhouette in which bilateral symmetry has been disrupted.
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to the symmetry of the shape about the central vertical axis; with this in mind, an alter-
nate three-dimensional explanation of this silhouette is a central core with a wide, tapering
disk running all the way around it, like a top (Figure 11.2B). With this three-dimensional
interpretation, the correct part segmentation, according to the 3D Minima Rule, is to place
horizontal part boundaries, connecting the two side sections as a single part. Of course, nei-
ther three-dimensional interpretation is correct or incorrect; and neither part segmentation
is correct or incorrect.

So how do we test the role that 3D interpretation might play? By influencing the effect
of symmetry. Figure 11.2C shows a silhouette with identical local geometry, but much
more pronounced overall symmetry; conversely, Figure 11.2D shows a silhouette in which
the symmetry has been disrupted. If the above hypothesis is correct, then subjects should
significantly more likely to infer horizontal part-lines in Figure 11.2C, and significantly less
likely to infer horizontal part-lines in Figure 11.2D. If this result is confirmed, it will be
a very strong affirmation of the hypothesis that intuitive three-dimensional interpretation
plays a role in two-dimensional shape analysis and representation.

Of course, the question of how to probe human subjects’ part segmentation is by no means
an easy one. As the experimental results of section 10.3.1 demonstrate, human intuition
about the parts of a silhouette is far from reliable. Indeed, one can see in the results of the
De Winter and Wagemans study that humans can have very different conceptions of how
to partition into important parts, as subjects were instructed. And this should come as no
surprise. If one were asked to break an apple into parts (Figure 11.3A), one’s understanding
of the purpose of that segmentation would significantly affect one’s choices. If one interpreted
the task as identifying geometric parts of the apple shape, then the appropriate segmentation
is likely to segment the stem and leaf (Figure 11.3B). But if one imagines breaking the apple
into parts in everyday life, it very well might make more sense to simply remove the leaf
and stem and split the apple in half, to make it easier to eat or to share with a friend
(Figure 11.3C). So simply asking subjects to “break a shape into parts” is not guaranteed
to yield consistent or satisfying results.

One possible solution is to give a richer context for what kind of parts we are looking
for. For example, consider the following instruction: Break the shape into two pieces, so
that each piece is simpler than the original shape. We have asked the subject to perform a
segmentation, but we have encouraged the subject to focus not on the purpose or function of
the shape, but only on its simplicity. Simplicity, though far from a well-defined concept, is

Figure 11.3: (A) An apple silhouette. (B,C) Human generated part segmentations of
silhouette (A).
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Figure 11.4: A demonstration that while we may not be able to define simplicity, we know
it when we see it. (a) A simple shape. (b) A more complex shape.

certainly something we have some intuitive understanding of. Figure 11.4A is clearly simpler
than Figure 11.4B, and that is likely because Figure 11.4B depicts a shape with many parts.
A subject in an experiment might be asked to continue to break the pieces into smaller pieces
until each piece was as simple as it could be. This would allow one to measure not only
where people place their part boundaries, but in what order they select them.

11.3 Puffball and Silhouette Similarity

In the perception of silhouettes, humans are capable of perceiving differing degrees of sim-
ilarity, even between abstract shapes, and such similarities can be both directly probed or
tested implicitly through reaction times in shape recognition tasks. Indeed, such similari-
ties play a very important role in the way humans relate different images as having similar
content, making shape similarity a key component of the problem of content-based image
retrieval, or CBIR. CBIR describes the challenge of searching for an appropriate image or
images based on their inherent content; most existing image search algorithms still depend
on tags, keywords or other text associated with an image file. Given the practical impor-
tance of the problem, it is no surprise that a considerable amount of work has been done on
the problem of shape and silhouette similarity; proposed approaches have yielded varied but
largely underwhelming success.

One problem is that almost all approaches have dealt with silhouettes as two dimen-
sional forms, utilizing either global shape moments, or manipulations and statistics of the
silhouette contour. Shape moments, though robust to many distortions and perturbations
that only slightly affect the perception of a shape, are in fact too robust, filtering out almost
all salient information about a shape. Measurements of the contour, though they capture
almost all information present in a shape, seem poorly related to the human perceptual
representation of shape. For example, if one represents a silhouette as a parametric function
with curvature as a function of arc-length - a very common approach to silhouette analysis -
a small perturbation of the curvature, even in a small region of the contour, can have drastic
effects on the perceived shape. It was in part this gap between global moments, which are
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in a sense too global, and local contour measurements, which are similarly too local, that
Harry Blum was attempting to address with the MAT. The MAT, however, is too unstable
to serve as a robust and reliable tool for the calculation of similarity in general.

Like the MAT, Puffball serves as a representation of the shape that lies between the purely
local nature of measurements like contour curvature and the purely global measurements like
shape moments; unlike the MAT, Puffball is a highly stable, continuous function of the input
silhouette; small perturbations of the input silhouette yield similarly small perturbations of
the inflated shape. Thus Puffball is an excellent candidate for representation of silhouettes
and the measurement of their similarity. One possible form of such a representation is a map
of Puffball surface normals. For example, if we inflate the shape shown in Figure 11.5A,
and calculate the surface normal of the resulting inflated shape, we get a map in which
every point is associated with a set of values related to where that point lies in the shape
(Figure 11.5B). Points near the center of the shape have a near vertical surface normal, while
points closer to the edge have surface normals closer to the have surface normals further from
the line of sight, pointing in the direction those points lie away from the center.

The advantage of this map is that it assigns to every interior pixel of the silhouette a
value which carries perceptually relevant information about the shape. So, when calculat-
ing similarity, instead of analyzing and comparing two very sparse binary signals, we are
comparing two rich and highly informative images; rather than looking for deformations of
contours leading from one silhouette to another, we can look for deformations of normal
maps, which will constrain the intervening shapes to themselves be perceptually similar.

To investigate this approach to shape similarity, it would be best to begin with simple con-
vex silhouettes. Though working only with convex silhouettes might seem too constrained,
it will allow us to eliminate the influence of part structure. Part structure undoubtedly
plays a key role in the representation, recognition, and similarity of shapes, but will add
considerable complexity and difficulty to the problem of modeling shape similarity. It is thus
best to begin with single part shapes; the best way to ensure that shapes have only one
part is to ensure that all contour curvature is non-negative; hence, only convex silhouettes.
However, even in this constrained silhouette domain, I believe that a great deal of insight

Figure 11.5: (A) An arbitrary silhouette. (B) The Puffball surface normal map of silhouette
(A). Saturation represents the slant of the surface normal, and hue represents the tilt.
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about shape similarity can be obtained; and I believe that the Puffball surface normal map
may be an excellent candidate representation for unpacking the structures that the human
visual system uses to perform these tasks.
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Conclusion

Throughout this thesis, we have seen the critical differences between two senses of the word
“model”: the classical scientific sense and the more modern computational sense. The clas-
sical scientific model can be found throughout the fields of physics and chemistry: Newton’s
laws of motion and gravitation, Maxwell’s equations of electromagnetism, Mendeleev’s pe-
riodic table. Each of these scientists saw a pattern in nature, and posited an equation or
structure which seemed to capture that pattern; these models each carry remarkable predic-
tive power, and have been pivotal to the development and progress of their fields.

It was the power of these models that drove the earliest perceptual scientists to try and
transplant their success into the study of vision and the study of the mind as a whole. We-
ber’s law, Fechner’s law, the Gestalt laws, and the creation of psychophysics (a revealing
name choice if ever there was one) were all built around the hopes of unlocking the funda-
mental regularities of the mind; even modern researchers continue to describe constraints on
Gestalt grouping as “forces” of “attraction” (Kubovy and Wagemans, 1995). But the study
of grouping is not like the study of physics, and models of Gestalt grouping cannot work in
the same way. The visual system is not a pocket universe with its own peculiar physics; the
mind is a haphazard, complex, messily assembled network of computational tricks and infer-
ential shortcuts. Over the millions of years in which it has developed, some computational
structures that worked have been preserved, while those that haven’t (and some that have)
have fallen by the wayside. It is not enough to understand the physics of vision; we must
also understand the engineering of the mind.

The study of silhouette parts shows another example of this disconnect. At its heart,
the 2D Minima Rule proposed by Hoffman and Richards arose because the authors observed
an apparent regularity in the visual world: part boundaries on three-dimensional shapes
usually lie in areas of negative principal curvature; in the two dimensional projections of
three-dimensional shapes, these areas of negative principal curvature appear as stretches of
negative contour curvature; hence, part boundaries in two-dimensional shapes will tend to
terminate at points of high negative contour curvature. This hypothesis was proposed, and
psychophysical data confirmed that humans indeed placed part boundaries such that they
very often terminated at or near minima of negative curvature. So why then has the 2D
Minima Rule not succeeded?

The answer is because it is a scientific model, and not a computational one. Hoffman
and Richards stipulate that a good model must not only be reliable and versatile, but
computable; but while the contour minima themselves are easily found, the computability of
the 2D Minima Rule stops there. Though the pattern described by the Minima Rule appears
to be an accurate one, its computational power is very limited. The 2D Minima Rule is an
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accurate description of what our visual system does; but it tells very little about what our
visual system will do.

Puffball part segmentation, on the other hand, was not derived from first principles or
inferred from an ideal observer; on the contrary, we came across the Puffball approach to
part segmentation largely by accident. There was no reason a priori to believe that it would
work well, but we tried it because as a tool Puffball was powerful enough to capture some-
thing important about shape, and computationally simple enough to be easy to experiment
with. This process drew as much from engineering as it did from science, and more insights
undoubtedly await the development of similarly unexpected innovations. Effort should be
expended exploring unusual ideas, trying out computational tricks and playing with hacks.
From such explorations, a wide array of valuable and powerful computational ideas have been
- and will continue to be - discovered; but until recently, these explorations have remained
largely the domain of engineers and computer scientists, and the results have often been
ignored or put aside by those more invested in the scientific underpinnings of the human
mind.

This is not, however, merely a matter of short-sightedness; for just as scientific thought
without engineering cannot give us insight in to the computational structure of the mind,
goal-driven engineering without consideration of the scientific knowledge and investigation of
the visual system will leave us equally lost. Computational models which are too complex, too
opaque, or too rigid will offer little scientific insight, even if their performance is unmatched.
Development of the Gestalt grouping model framework was no small challenge, but an equally
important and equally challenging step in my research was the development of a way to
compare the results of that model with measurable human behavior. Puffball is a powerful
and versatile inflation tool, but it is not the only, or even the most effective or efficient
inflation tool available; its true value is derived from its conceptual simplicity and well-
defined mathematical underpinning. This marriage of the two approaches, human vision
and computer vision, is a relatively new approach in the world of vision research; but it
is only through such efforts, combining creative computational ideas with scientifically and
psychophysically grounded evaluation, that we can hope to truly understand the deeper
aspects of the human visual system, and the human mind.
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Appendix A

Dot Placement Algorithm

The algorithm began with two images, D and I. I was an binary indicator function which
was updated throughout the process to denote which pixels could still be selected as dot
centers; it began at value 1 for all pixels. D was a distance map which represented the
proximity parameter at every pixel in the image domain: the minimum distance a dot placed
at that point could be from any other dot. If the dots were placed uniformly, D would be
the same everywhere.

In each cycle of the dot placement process, one of the remaining pixels, q, where the value
of I was 1 was selected at random to be the center of a dot. This pixel q was added to a
list of dot centers. Then every pixel p such that d(p, q) < max (D(p), D(q)) had the value of
I(p) set to zero. This process repeated until I was zero everywhere with in a central region
of the image. The result was a placement of dots such that every pixel p was less than D(p)
pixels away from at least one dot, and no dot placed at a pixel q was less than D(q) pixels
away from any other dot.

An illustration of such an image is shown in Figure A.1; this image was generated with
two different proximity parameters denoted by red and blue. Note that the circles fully cover
the central area of the image, but no dot center lies within another dot’s circle.

Figure A.1: An illustration of the dot placement process.
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Appendix B

MATLAB Implementation of Puffball

function h = Puffball(mask)

% CALCULATE GRASSFIRE HEIGHT FUNCTION %

% A 3x3-tap filter to smoothly erode an anti-aliased edge

fil = [0.1218 0.4123 0.1218; 0.4123 0.9750 0.4123; ...

0.1218 0.4123 0.1218]/1.2404;

nmask = double(mask);

surf = zeros(size(mask));

while ~isempty(find(nmask,1))

surf = surf+nmask/1.67; % Each iteration erodes the edge .6 pixels

nmaskpad = padarray(nmask,[1 1],’replicate’);

nmaskpad = conv2(nmaskpad,fil,’same’)-1.4241;

nmask = max(min(nmaskpad(2:end-1,2:end-1),1),0);

end

% LOCATE THE MEDIAL AXIS %

[dx dy] = gradient(surf);

dsurf = sqrt(dx.^2+dy.^2);

% Medial axis points have a grassfire gradient measurably less than 1

matr = bwmorph(dsurf<0.958&surf>2,’skel’,Inf).*surf;

% TAKE THE UNION (SOFT-MAX) OF MAXIMAL SPHERES %

[X Y] = meshgrid(1:size(mask,2),1:size(mask,1));

h = ones(size(mask));

[y x] = find(matr);

for i = 1:length(f)

r = matr(y(i),x(i))^2 - (X-y(i)).^2 - (Y-x(i)).^2;

h(r>0) = h(r>0)+exp(sqrt(r(r>0)));

end

h = log(h);

end

Box 1: MATLAB code implementing Puffball inflation.
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Appendix C

Implementation of the Short Cut Rule

To implement the Short Cut Rule, I endeavored to follow three constraints on part-line
choice described in Singh et al. (1999). First, that part-lines must cross an axis of local
symmetry; second, that if two part-lines are in conflict, one should choose the one that is
shorter; and three, that a sufficiently short part-line may be drawn even if it terminates at
only one curvature minimum.

To implement these constraints, the first task was to locate the curvature minima, and
hence to calculate the contour curvature. To do this, the edge pixels of a binay silhouette
image were located, and arranged into a single, cyclical chain which proceeded counterclock-
wise around the shape. (We shall assume that the silhouette contour is simply connected;
but the algorithm can be easily adjusted to handle shapes of more complex topology.) In
this chain steps between fully adjacent pixels were given a value of 1, while steps between
diagonally adjacent pixels were given a value of

√
2. These values were used to convert the

edge to a parametric function of t, where each step corresponded to an increase in t of the
appropriate size. This discrete parametric function was then fit at every point in a local
Gaussian window (σ = 5 pixels), so that at every edge point the functions x(t) and y(t) were
estimated as quadratic functions of t; these functions were then used to estimate the local
orientation and curvature. Curvature minima were those edgepoint with curvature lower
than the points around them and below some threshold curvature, which could be adjusted
to change the coarseness or fineness of the distribution.

Next was the selection of the possible part-lines. Every pairing of a curvature minimum
and any other edgepoint was considered a potential part-line, to allow for the possibility
of short, one-minimum part-lines. Pairs of points such that the line passing between those
points was not entirely within the shape were eliminated, as were pairs of points such that
the line between them did not cross exactly one axis of local symmetry (represented by the
medial axis, calculated as in Appendix B). All remaining possible part-line were ranked
according to their adjusted length; lengths were adjusted according to the curvature at the
two endpoints, such that a line between two highly concave endpoints would have its length
cut by as much as a factor of two, while a line terminating at a point of highly convex
curvature would have a very high adjusted length. This adjustment ensured that part-lines
between two curvature minima would still be chosen more often than equally short part-lines
with only one curvature minimum.

Once the part-lines had been collected and ranked, an iterative process began. In each
iteration, the top-ranked remaining valid part-line was selected, and added to a list of part-
line. Of the remaining part-lines, any lines that were in conflict with the recently selected
part-line were removed. Two part-lines were considered in conflict if they intersected, or
terminated at or near the same point; of course, we have seen that in reality part-lines can
terminate at the same point, but without this constraint the Short Cut Rule produces an
unreasonable number of part-lines and greatly oversegments. Once all conflicting part-lines
had been removed from the potential part-line list, the process repeated. This continued
until no valid part-lines remained.
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