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Abstract

Music has been shown to form an essential part of the human experience—every
known society engages in music. However, as universal as it may be, music has
evolved into a variety of genres, peculiar to particular cultures. In fact people acquire
musical skill, understanding, and appreciation specific to the music they have been
exposed to. This process of enculturation builds mental structures that form the
cognitive basis for musical expectation.

In this thesis I argue that in order for machines to perform musical tasks like
humans do, in particular to predict music, they need to be subjected to a similar
enculturation process by design. This work is grounded in an information theoretic
framework that takes cultural context into account. I introduce a measure of musical
entropy to analyze the predictability of musical events as a function of prior mu-
sical exposure. Then I discuss computational models for music representation that
are informed by genre-specific containers for musical elements like notes. Finally I
propose a software framework for automatic music prediction. The system extracts
a lexicon of melodic, or timbral, and rhythmic primitives from audio, and generates
a hierarchical grammar to represent the structure of a particular musical form. To
improve prediction accuracy, context can be switched with cultural plug-ins that are
designed for specific musical instruments and genres.

In listening experiments involving music synthesis a culture-specific design fares
significantly better than a culture-agnostic one. Hence my findings support the impor-
tance of computational enculturation for automatic music prediction. Furthermore I
suggest that in order to sustain and cultivate the diversity of musical traditions around
the world it is indispensable that we design culturally sensitive music technology.
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Chapter 1

World Music Technology

1.1 Musical Culture

Human beings are musical creatures. While every known society engages in music—
whether as an art form, an accompaniment to dance, or a spiritual offering—each
one of them has developed its own set of rules for music. Hence there exists a variety
of musical genres, which have evolved by coming into contact with other musical

traditions and new musical instruments.

In 1957 Max Mathews, then at Bell Labs, developed MUSIC, a computer program
for music representation and synthesis, paving the way for computer music as a field
of scientific and artistic inquiry. Computers are not simply tools for musicians; they

are also composers, performers, and even listeners: they are musicians themselves.

To this day, however, computational models of musical elements have been biased
towards Western music. They seldom account for the complexities of what is generally
referred to as ‘World Music’ in the West (and which is actually a widely varied collec-
tion of distinct musical traditions that share little beside their ‘non-Western’ label).

For instance MIDI (Musical Instrument Digital Interface) can only coarsely approxi-
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mate the intricacies of gamakas, pitch contours that are an essential characteristic of

musical notes in Carnatic (South Indian) music.

Current music technology, with its ‘one-size-fits-all’ approach, does not do justice
to the variety of musical genres around the world. As with other forms of digital
media, the creative affordances offered by digital music systems and tools are con-
strained by design decisions and engineering trade-offs. I would argue that the popu-
larization of music technology that lacks cultural specificity has led to the emergence
of commonalities and generalities in music production, and may have contributed to

homogenous music listening patterns the world over.

Nothing may be more telling than the advent of musical ‘ringtones’ in India. In the
late 1990s, mobile phone operators started providing the capability to customize one’s
ringtone. The first popular ringtone was an excerpt of a patriotic song (‘Saare Jahan
Se Accha’), but soon most of them were taken from ‘Bollywood’ films—a major source
of popular music in India. In contrast with later MP3 playback that could accurately
reproduce a piece of recorded music, the first ringtones were simply polyphonic—or
even monophonic—versions of the original usually generated in realtime by an FM
(Frequency Modulation) synthesizer and a MIDI sequencer. Anecdotal observations
suggest that people didn’t mind the distortions introduced by the gquantization (or
approximation) in pitch and timbre introduced by MIDI and FM as long as the
tune was recognizable, but market data suggests that the tunes were selected from
simple popular songs, rather than the more complex ones influenced by classical
music (with intricate pitch modulations and rhythms). Whether this was a case of
unconsciously selecting the source to ensure optimal rendering, or of choosing the
popular music of the day that was itself a product of studio technology influenced
by FM synthesizers and MIDI sequencers with fixed quantization steps, the fact is
that technology pervasively influenced the music that was produced and heard, and

thereby the society’s cultural fabric.

I suggest that if we are to build computer music systems for music from around

18



Table 1.1: Elements of music

Physical Perceptual Cognitive
Frequency Pitch, modulation | Melody, harmony, scale, mode, key
Amplitude Loudness Intensity, dynamics
Spectrum and amplitude shape Timbre Tone color, instrument identity
Simultaneity Grouping Note, chord, stroke, texture
Duration (short) Beat Rhythm, tempo, meter, time
Duration (medium) Cell, figure, motif
Duration (long) Phrase, form

the world then we must design technology that is sensitive to each of those musical
traditions. In this dissertation I propose to define a measure of culture, develop a
culturally sensitive representation of music, and design a model for music prediction

based on that model.

1.2 Music Representation and Prediction

As individuals listen to sound and music, they develop mental primitives that deter-
mine pitch, beat, timbre, and learn higher-order constructs that identify scale, meter,
instrument labels by extracting relationships and hierarchies from sequences of musi-
cal elements. Table 1.1 lists the elements of music. Top-down (culturally grounded)
and bottom-up (biological) perceptual and cognitive processes lead to the acquisition
of musical skill, as well as the ability to derive taste and emotion from music (see

figure 1-1).

There is much evidence that points to musical expectation (the capacity to pre-
dict subsequent musical events) as a key to music understanding and emotion (Meyer,
1961). Musical expectation relies on the memorization and recall of musical struc-
tures, and consequently on the exposure to prior music. The role of enculturation in

music understanding and music prediction is therefore of prime importance.

Memories of musical elements are regularized (i.e. rendered invariant to pitch
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Cultural

exposure
Recognition Skill Understanding
Audio Signal ﬂ ﬁ (primitives, ﬁ (judgement, ﬂ (emotion,
constructs) expectation) appreciation)
Auditory
system

Figure 1-1: Top-down and bottom-up processing of music

transposition or tempo variation) and stored, and then retrieved on presentation of
an auditory stimulus (whether from an external sound source, or from an internal
recall or spontaneous generation). Context is important. Specifically, a particular
individual’s mental representations depend on the auditory content that the person
has been exposed to. In fact, even the experience of language can have an influence
on the acuity of pitch perception: it has been shown (Wong et al., 2012) that speakers
of a tonal language like Mandarin exhibit higher sensitivity to pitch variations and
interval distances than speakers of a non-tonal language, thereby supporting the idea

of “culture-to-perception influences.”

This supports the idea that cultural context needs to be considered when rep-
resenting musical structures. Furthermore I suggest that the enculturation process
needs to be taken into account when attempting to design machine listening systems
that learn musical structures from audio data. However, where an individual would
acquire auditory primitives and build musical constructs through a process of listen-
ing through mere exposure, it may not be practical or feasible to subject a machine
to the same time-consuming process. In a computer music system one alternative
could be to design well-formatted containers in order to embed well-formed cultural
knowledge by bootstrapping internal music representations with models suitable to a

particular culture in a way that simulates the enculturation and learning processes.
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As suggested by Piaget’s constructivist theory of learning (1952), new knowledge
arises from experiences through assimilation (by incorporating new experiences in
an existing framework) and accommodation (by reframing our internal models when
our expectations are violated). In addition, Piaget stresses the importance of the
environment and of social interactions with knowledgeable people who give meaning
and utility to symbolic structures (i.e. labeling). State-of-the-art machine listen-
ing systems (for Computational Auditory Scene Analysis for instance) incorporate
some amount of contextual information (the equivalent of cultural knowledge) in the
form of statistical models. I propose to provide cultural context as a starting point
(with empty, but appropriate containers), emulate the process of assimilation through
exposure to musical content, and continuously update internal representations by ac-
commodation to new incoming information. Labeling is optional, but the grouping of

similar elements is explicitly defined by supervised learning.

1.3 Motivation and Philosophical Thoughts

In Why People Think Computers Can’t, Minsky (1982) observes “how even the earliest
Al programs excelled at ‘advanced’ subjects, yet had no common sense,” and that
“much ‘expert’ adult thinking is basically much simpler than what happens in a child’s
ordinary play!” In other words, machines can do well what humans can’t, and vice

versa.

It follows that music prediction, which seems so natural, almost intuitive, to hu-
mans is a difficult task for machines. The current work strives to propose strategies
to improve automatic music prediction. In fact, the engineering motivation behind
this research is to propose design principles based on cultural relevance for the com-
putational representation of music and its predictive-capability building. This work
is also driven by an anthropological motivation, which is to shed light on the cultural

aspects of music perception and cognition that contribute to musical expectation.
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While similitudes and parallels have often been drawn between music and lan-
guage, music is widely considered ‘universal’ because on the surface its tokens do
not require translation. However, [ would argue that a deeper understanding of mu-
sic, one which leads to predictive capabilities and gives rise to emotions, is tied to a
particular instantiation of culture as a genre. In fact most people would agree that
a Western classical music aficionado would find it difficult to make sense of heavy
metal, or an exclusive fan of hip-hop would find it challenging to understand, let
alone appreciate Hindustani (North Indian) music—unless they had been informally

exposed to or formally trained in the other genre.

Is music similar to language in that it has to be learnt and can indeed be translated
from one genre to another? How much of Noam Chomsky’s theory on universal
grammars can be applied to music? If music and language share an innate common
grammar, is it only sufficient to learn its lexicon and grammatical constraints to

understand and appreciate a specific genre of music?

The question of whether music can be predicted, and if so, by how much raises the
question of a deterministic world (Hofstadter, 1979). As much as the complexity of
the world precludes us from making such an assumption, experience suggests that the
short-term future can be predicted to some extent. In the case of music prediction, this
raises two questions: what can be considered short-term (i.e. how many milliseconds)
and to what extent are predictions valid (how constrained, or how small, can the

solution space be made)?

Generally, probabilistic models tend to provide ‘most likely’ solutions in stochastic
environments. However, our concern here is with individual musicians’ responses to
specific inputs (preceding musical events) with particular priors (cultural context and
stylistic rules). Therefore approaches that tend to model the self-replicating patterns
of music (articulations - tones - phrases - forms) with a dynamic rule-based system

that is evolved from data are favored over those that learn probabilistically.

In some sense, the proposed system should convey a sense of musical intention

22



that meets listeners’ expectations by generating well-formed constructs that ‘make

sense’ in the musical idiom under consideration.

The current work is situated in the following fields of scholarship: music perception
and cognition (psychology), computational ethnomusicology, machine listening (DSP,

machine learning, Al), and communication theory (symbolic representations).

1.4 Scope and Definitions

The present work is concerned with the symbolic representation of music, rather than
its sample-based digital form. While some music processing systems are culture-
agnostic because they represent music as an audio signal in a communication model
like that of Shannon-Weaver (1949)—see for example the PCM audio scheme or the
MP3 compression format—most systems that use a symbolic representation for music

tend to be biased towards a particular musical tradition, Western music in most cases.

A symbolic representation of music does not imply that there should be a score
or any other form of notation. As it happens, most non-Western musical cultures are
based on oral traditions, which by definition lack formalized or well-specified nota-
tional systems that could serve as a basis for their machine representation. Therefore
improvised, or score-less, performances are considered as the source material for train-

ing rather than score following.

In the case of symbolic structures, appropriate representations are especially crit-
ical because the granularity of control is at the level of musical ideas, rather than at

the sample level.

In anthropology, culture is defined as a combination of shared values (in terms of
knowledge, belief, behavior, etc.) within a community. Individuals get acquainted
with a particular culture through interactions with members of the community and

exposure to artifacts and media such as music. The anthropological point-of-view
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establishes culture as arising from people’s capacity for symbolic thought and social
(or imitative) learning. These are the principles by which I aim to design computa-
tional representations of particular cultures. Furthermore, a certain culture can have
multiple styles, movements, or schools for its artistic activity. Western tonal music

for instance consists of forms like sonata, symphony, and concerto.

In this dissertation certain words that pertain to the subject matter appear with a
certain frequency. Although some of them might sometimes be used interchangeably,

I define them in appendix A with the meaning I intend them to have in this document.

When referring to music prediction, this dissertation actually concerns itself with
melodic, or timbral (in the case of percussive instruments), and rhythmic prediction.
To limit the scope of this work, and following a reductionist approach, other dimension
of sound and music like amplitude and timbre (in the case of instruments that produce
tones) are treated as independent variables. Furthermore only monophonic textures

are considered to the exclusion of polyphonic and harmonic material.

In addition to purely auditory stimuli, other cues like the orchestration, the effects
used (e.g. reverberation parameters), or the ‘sound’ of a piece of music set expecta-
tions. Context and metadata also inform what people hear. The current work does

not take these into consideration.

North Indian music and South Indian music are studied as proxies for ‘world
music’ and compared with Western music. The audio material used in this study has
been sourced from personal recordings and downloaded from user-generated content
on the internet. This work focuses on modeling existing forms of acoustic music,
and although the system described here could lead to new types of music it is not a

primary concern.
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1.5 Research Questions and Hypotheses

Can music be predicted? On the one hand, this work can be described as an attempt
to predict music in a way that, even if the estimations are off, they still make sense in
the particular musical idiom under consideration. The system’s role, therefore, is not
so much to make accurate predictions in short time windows as it is to convey a sense
of the performer’s musical intentions at longer time scales. On the other hand, this
work provides insights into musical creativity—what parts of music follow tradition,
stylistic rules and known patterns, and how much does the performer shape? Music
indeed strikes a balance between predictability and surprise, but how much of each

is up to the composer or performer versus the rules of the genre?

What can be considered an appropriate representation of music? In order to ac-
curately analyze, process, or synthesize music from around the world, computational
representations that incorporate a model for each specific musical style under con-
sideration are required. I propose in this thesis to develop and study music systems
that take into account culture-sensitive features. These representations are meant to
include a lexicon of musical events (e.g. notes, embellishments, percussive strokes,
durations) and relationships between them (in terms of sequence and timing), as well
as specific stylistic rules. Representations are initialized with assumptions and con-
straints from the culture under consideration, and get dynamically updated with the
incoming stream of auditory events. The proposed musical representations are, to
borrow a computer science paradigm, object-oriented data structures: they are the

containers, the data, and the processes that apply to them.

How can music be predicted? What are the perceptual and cognitive cues that
allow for musical expectation? How much should systems for automatic music predic-
tion inspire themselves from biological and psychological processes versus being based
on machine-specific models? And how much insight on human musical expectation

can we glean from computational models for music prediction?
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Based on the above, the research questions that I aim to tackle in this dissertation

are:

e Can music be actually predicted, and if so, to what extent?

e Can musical traditions be quantified and compared?

What is the role of musical enculturation in musical expectation?

What is an appropriate representation of music?

Can the human capacity for musical expectation be modeled with a machine-

based prediction engine?

I hypothesize that in order to predict music, statistical analysis is necessary, but
not sufficient. The machine learning algorithm development process requires the
designer to select appropriate representations (data structures) similar to the possibly
hardwired receptacles in the mind that get filled with musical structures through the
process of enculturation. In addition, to establish an accurate representation of music,
I posit that a symbolic system needs to extract ad-hoc primitives from audio because

there are no currently suitable representations (e.g. MIDI, **kern).

The proposed model is trained from data. If the model is too general (in that it
has too many degrees of freedom), prediction may be inaccurate because too little
constrained. On the other hand, if the model is too specific, it may not account for
surprises (outliers in a statistical model) or creativity. Therefore the model needs to
find the right amount of complexity through selection of training data and selection

of data structures—both of which are the responsibility of the system designer.
The experimental work described in this thesis arises from the following hypothe-

Ses:

e Music complexity (i.e predictability) is a function of musical culture.
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e Computer music systems that incorporate a culturally appropriate symbolic
representation provide a perceptually equivalent output to a signal-level repre-

sentation of the musical source.

e Music prediction systems that are culturally specific are more robust and ac-
curate than systems that generate symbolic musical data with no attempt to

understand cultural content.

e The input-output behavior of a culturally sensitive design for automatic music

prediction performs similarly to human musical expectation.

1.6 Contributions

No prior work on synthetic music systems has, to my knowledge, included models
that learn from exposure to a particular culture. In some sense, such systems must
convey a sense of musical intention by fitting to the musical form and its associated
higher-level structures rather than to localized events: local prediction errors are to be
expected, but prediction results should be judged on their ability to preserve higher-
level constructs, like repetitions or surprising variations, especially as they relate to

each other in a dynamic ecological setting by generating well-formed constructs.

Experimental results indicate that cultural learning is indeed an essential compo-
nent of intelligent music systems that collaborate and participate in live interactions
with musicians and listeners. It is thus a worthy, if challenging, enterprise to propose
an analytical framework for culture in music. I propose a series of experiments on two
sets of musical sources that will enable us to analyze and compare musical traditions.
The learning algorithm lets us study how being exposed to one tradition can lead
us to make correct judgments and predictions on music from other cultures. This
method can also be used on an unfamiliar piece of music to compute how closely
related it is to other known styles and devise a cross-culture transformation to better

understand it.
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The analytical framework to quantify musical culture is based on the principles of
information theory—in particular, a measure of entropy for melody and rhythm. In
this case, entropy, or information content, denotes the capacity for a listener, whether
human or machine, to predict musical events as a function of prior musical exposure
(i.e. enculturation): musical culture is to be understood here as an aggregate of the
music collection that has been subjected to experience, either direct (by a particular
individual) or indirect (by the community, resulting in a set of shared rules). This
approach not only provides us with the means to compare the information content of
various musical genres, but also allows us to investigate cross-cultural influences in

musical styles.

The present work will result in the following artifacts and contributions:

1. An analytical tool to measure and compare musical cultures with a measure
of musical entropy, from the perspectives of melody and rhythm, based on the

principles of information theory.
2. Design principles and strategies for culturally sensitive music representation.

3. A software framework for music prediction based on machine listening and music
synthesis that generates musical symbols corresponding to future estimates of

the current musical input.
4. Cultural plug-ins for this framework that will include models for:

(a) tabla (North Indian percussion used in Hindustani music)
(b) drums (Blues)
(¢) bansuri (North Indian transverse bamboo flute used in Hindustani music)

(d) flute (Blues)

5. A study that supports the importance of computational musical enculturation

for music prediction.
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6. Iintroduce the concept of prelag (‘negative lag’) when music prediction precedes

musical expectation in the cognitive realm.

7. A series of computer music applications enabled by culturally sensitive auto-

matic music prediction.

I expect that the work presented in this thesis will justify and enable the design
of culturally sensitive music technology that will sustain and cultivate the diversity
of musical traditions around the world, and especially empower underserved commu-
nities in the areas of creativity and education in ways that are relevant to them. The

tools under development here can also serve to support ethnomusicology research.

1.7 Outline

Chapter 2 strives to answer the question of whether music can be predicted by taking
an information theoretic approach to measuring musical complexity from a cultural
referential. Measures of melodic and rhythmic entropy are introduced and computed.
They represent the predictability of Indian and Western popular music based on prior
exposure to music of either genres. This establishes an objective baseline for music

prediction.

The following chapter is concerned with music representation. Culturally sensi-
tive models are contrasted with culturally agnostic ones. Design principles for genre-
specific containers for musical elements are introduced along with the notion of com-
putational musical enculturation. Symbolic music data is extracted from audio and

provides the content that informs as well as fills those containers.

In chapter 4 an automatic music prediction engine inspired by human musical
expectation and cultural specificity is described. The proposed algorithm is based on
a hierarchical grammar of genre-appropriate lexical tokens for melody or timbre, and

rhythm.
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Chapter 5 concludes this document by summarizing findings, presenting applica-
tions of the technology and concepts developed in the current work, and describing

my contributions.
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Chapter 2

Can Music Be Predicted?

2.1 An Information Theoretic Approach to Mea-

suring Cultural Footprint in Music

In order to understand how people experience music, it is not only important to study
the process by which the human auditory pathway analyzes musical acoustic input,
but it is also essential to appreciate the role of prior musical exposure. Narmour (1990)
distinguishes these two complementary processes, which he refers to respectively as

bottom-up (biological) and top-down (cultural).

Listening to music from a young age (as early as one year old according to Mor-
rison and Demorest, 2009) leads to an enculturation process that shapes how people
interpret music that they later hear. This background knowledge sets the stage for
composers to tickle the human cognitive capacity for anticipation, and either to fulfill
people’s expectations or to create surprise, and thereby generate tension, frisson, or
even laughter. The mechanisms for human learning extract statistical regularities
from the world around, including from music, and generate mental representations

for structures like pitch sequences and rhythmic primitives.
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The current chapter examines a method to quantify musical culture based on
the principles of information theory. In particular, entropy, or information content,
denotes the capacity for a listener, whether human or computer, to predict musical
events as a function of prior musical exposure. Morrison and Demorest (2009) explain
how “exploring music cognition from the standpoint of culture will lead to a better
understanding of the core processes underlying perception and how those processes

give rise to the world’s diversity of music forms and expressions.”

Musical structures are stored in memory as symbolic structures invariant to lin-
ear transformations (e.g. time stretching and compression, or pitch transposition)
and robust to noise (Snyder, 2000). Mental representations of auditory data may be
associated with other sensory inputs, or contextual metadata (e.g. visual or textual
information). This way of describing enculturation matches the role of the environ-
ment in Darwinian literature, which specifies that human behavior is determined by

heredity, learning, and environmental exposure (Huron, 2001).

As much as this combination of factors would make for highly individual responses
to similar music stimuli, it has been shown that people from a similar cultural back-
ground understand and respond in similar ways to music (Cross, 2001). Therefore
the importance of common references in making sense of music cannot be discounted.
As essential and universal as music may be to the human experience and to human
expression, it has evolved into a diverse set of musical practices. In spite of that,
music theory has largely focused on tonal Western music. Nonetheless, various sub-
fields of computer science, in particular artificial intelligence, machine learning, and
information theory, are well suited to the study of music from around the world with

models based on rules extracted from data rather than input manually.

The understanding and appreciation of particular musical styles through encul-
turation result in the creation and encoding of musical constructs and sequences in
memory, which lead to an increase of musical skill and the ability to derive pleasure

and emotion from music. Expectation, or how well a person can regularize and retrieve
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musical constructs from memory, plays a crucial role. The tools of information theory
and statistical learning applied to symbolic and non-symbolic (audio) representations
of music can provide us with insights not only on the prediction mechanisms used
by people, which can be leveraged for algorithm design, but also on the relationships
between the stylistic aspects of music from different cultures, and thereby support

the study of comparative music theory.

Although information theory as introduced by Shannon and Weaver (1949) has
oft been explored as a tool for musical analysis, it has met with mixed results. 1
briefly survey the literature on using musical information theory to model musical
expectation. I propose to use entropy as an information theoretic measure to ana-
lyze cultural content in music. This approach not only allows a comparison of the
information content of various musical genres, but also enables an investigation of

cross-cultural influences in musical genres.

2.2 Music as Information: Prior Art

2.2.1 Nature and Nurture in Musical Skill

In music cognition, like with other biological processes, there is an ongoing debate
about the innate or learnt nature of many auditory phenomena. Huron (2006) shows
that nature actually does not have this preoccupation. From a biological perspective,
there is a decisive factor by which it is best for a behavior to be instinctive or learnt.
The determining factor is the stability of the environment: when there is little en-
vironmental change, conditions favor instinctive or innate (or hardwired) behavior,
which are usually fast and effective; on the contrary, when the environment changes
quickly it is best to learn. Therefore, the difference between instinctive and learnt be-
havior is not that the first one is genetic and the second one, environmental—learning

involves more genetic machinery than do instinctive behaviors. In fact, instincts re-
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" flect a longer and more profound interaction with the environment than does learning.

This evolved capacity to learn is referred to as the Baldwin Effect.

For instance, some recent studies argue that rhythmic grouping may not be innate
but rather a product of enculturation. Iversen et al. (2008) performed an experi-
ment to compare the perceptual grouping of rhythmic patterns between English and
Japanese native speakers. They found that the two groups came up with very differ-
ent results. This finding extrapolates into melody, suggesting that the comprehension
of melodic structures (segmenting a sequence of tones into motives and phrases) is a
function of musical exposure. Povel and Okkerman (1981) previously described the
rhythmic grouping of equitone sequences, but did not focus on the cultural aspect of

the perceptual response.

On the other hand, Krumhansl (1995) performed a series of studies to test Eugene
Narmour’s implication-realization model (1990; 1991; 1992) for tone-to-tone melodic
expectancies. This study provides insights into how our minds encode, organize,
remember, and process musical information over time. Her conclusion is that per-
ceptual organization is based on bottom-up processing alone, negating any role of
musical training or enculturation. However, Larson and McAdams (2004) suggests
that Narmour’s theory and Krumhansl’s experiments seem to work only for melodic
continuation (i.e. the next tone), and not for melodic completion (i.e. the whole
phrase). His experiments demonstrate that including the top-down component of

Narmour’s model allows it to generate entire completions.

Evolutionary musicology, which is part of the broader and relatively recent field of
‘biomusicology,” has seldom been studied in the context of machine listening systems.
However, as an increasing number of theories are formulated on the evolution of the
mind, explaining the evolutionary significance of music and its adaptive function is a

worthy enterprise.

The study of the origin of music is highly speculative. Although most scholars

(traditionally ethnomusicologists) have focused on the psychological, social, and cul-
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tural origins of music, many (cognitive psychologists, most recently) have also sought
to explain music within an evolutionary framework. In fact there are archeologi-
cal, anthropological, biological, and ethological indications that support the fact that
music may result from evolutionary adaptation: the first complex human artifacts to
be found have been musical instruments (including a bone flute), and “every known
human society has what trained musicologists would [recognize] as ‘music’ ” (Black-
ing et al., 1995); moreover infants acquire early on naive musical abilities similar
to adults, which may suggest an innate ability for music and an opportunity found
through it to refine motor skills; finally the amount of resources (time, money) that is
spent on listening to and making music in various cultures is considerable regardless

of the society’s development level.

The main question, according to Huron, is: “What advantage is conferred on those

individuals who exhibit musical behaviors over those who do not?”

Several theories have been exposed to explain the origin of music from an evolu-

tionary perspective:

i Pinker’s position is that music is “auditory cheesecake,” an unnecessary by-product

of other adaptive functions (1997);

ii Miller (2000), following some indications by Darwin, supports the view that music

evolved on the basis of sexual selection;

iii Dunbar and others (1996) argue that music allows for social cohesion and sol-
idarity through mutual grooming and “muscular bonding” (e.g. synchronized

dancing).

Pinker links music with other aspects of demonstrably evolutionary human expe-
rience (concerned with survival so having a clear functional role): language, auditory
scene analysis, habitat selection, emotion, and motor control. In other words, music

may be harmless to natural selection and therefore has not interfered with it. Cross
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(1999) revisits Pinkers arguments from a musicologist’s perspective: “our musical-
ity is grounded in human biology as expressed in the evolution and development of
our cognitive capacities and of our social and environmental interactions,” thereby
suggesting that music does not only result from, but also participates in individual
and social development (through enculturation) while contributing to the evolution
of our species. He emphasizes the importance of music in helping individuals acquire
emotional intelligence: the ability to communicate ones feelings through one’s face,

voice, body, and decode them in others.

Miller supports his view on the role of music in sexual selection by submitting an
anecdote of Jimi Hendrix and the sexual attraction he elicited on the opposite sex.
Some authors have supported this position by recounting evidence of the correlation
between interest in music (evidenced by time and money spent on music listening),
which generally peaks during adolescence and as young adults, and sexual activity.
Moreover Miller showed that creativity was valued more highly than wealth when
looking for a potential mate; the former being considered as genetically superior for
the purpose of child fathering, while the latter, considered as circumstantial, being

viewed as simply adequate for child rearing.

A concurrent view to that of Dunbar is that of Kogan (1997) who sees music as
adaptive through group selection: for him music promotes group morale and identity
through common activities—leading to a common emotional response when moving
rhythmically in a synchronous manner. This group behavior leads to a tension-
releasing function for the individual without any destructive influence on social cohe-
sion, and may actually contribute to group effort. This may have an evolutionary role:

according to Cross, “music enables risk-free action and facilities risky interaction.”

A different view is taken by Mithen (2005) who describes human cognitive devel-
opment as the capacity for information-processing mental modules (which perform
specialized tasks rapidly and efficiently as the result of adaptation) to transfer compe-

tences across domains by the formation of a general representation. Mithen supports
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the view that music and language co-evolved and first appeared as proto-music and
proto-language. His outlook considers music as an adaptation contributing to per-

ceptual development.

Levitin (2006) presents a summarized account of the various views held on the
origins of music and notes that due to evolutionary lag our brains are currently
adapted to the music and dance forms of around 50,000 years ago. At that time
music was not just an aural commodity, but with no specialized role for music in
society, the relation between music and action was much more explicit. In fact, Cross
argues that music’s adaptive role may have been through sound and movement (e.g.
singing, playing instruments, dancing) and may have occurred by exercising some of
the faculties that were necessary for survival (e.g. prosody, recognition of emotions

from facial expression, periodicity of movement).

Patel (2010) doubts the adaptive role of music and assigns it a different category:
that of a transformative technology (to exercise or stimulate our capabilities) rather
than an innate and adaptive predisposition. Patel argues that we might be able to
live without music, but we value it because it transforms our lives in ways we care
about deeply—through emotional and aesthetic experience, identity formation, and

social bonds.

The brain processes all sounds, but not equally. According to Minsky (1981)
“much of sound is one-time (...) [which] is why we dont have ear-lids.” But musical
sounds differ from other acoustic signals in that they convey human-induced meaning,
in a mode of abstract communication. While the emotion that is conveyed in music
is ‘deeper’ than the intellect (in an evolutionary sense and according to the cerebral
areas that are solicited), Handel (1993) observes that the low-level primitives supplied
by our auditory system clearly have an evolutionary function, in particular by alerting
us of danger (as remarked earlier they are ‘always on’ even when we are asleep)—for
instance the crack of a twig has high frequency content to which we respond much

faster on a neurophysiological level than low frequency content.
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In his book The Musical Mind Sloboda (1985) proposes a taxonomy of the world’s
music in order to understand the relation of music to culture. The parameters that are
suggested include instruments, forms, scales and tuning systems, and social context.
Sloboda explores the cultural and social factors that account for the wide differences
between musical cultures. He suggests that the existence of a system for musical
notation (versus an oral tradition), and more recently of recording technology, might

play a significant role in the evolution of a musical culture.

2.2.2 Information Theory in the Context of Music

In the field of information theory, entropy is defined as a measure of uncertainty,
or information content, associated with a random variable in a probabilistic model.
Entropy quantifies the average number of bits per symbol needed to encode a message
for a particular data source (Shannon and Weaver, 1949). In communications theory,
entropy is used to specify the amount of lossless compression that can be applied on

a particular transmission channel.

Assuming that a source of music can be modeled as a Markov process, for a zero-
order source (i.e. each symbol independent from the preceding symbols) entropy is

given as:

H(z)=— Zpilongi

where H is the amount of uncertainty, p; is the probability of observing event 7, and

h is the information content of event .

For a first-order Markov source (i.e. the probability of a symbol is dependent of

the immediately preceding symbol), the entropy is:
H(z)=—=> p Y p;(i)log,p;(i)
( J

where p; () is the probability of observing symbol j given that the preceding symbol
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As we increase the order of the Markov source, the computation of entropy be-
comes increasingly complex. Given that the entropy is maximal if all the output
symbols are equally likely, such value would describe complete randomness in the
data. However each musical tradition has constraints that distinguish it from others.
Therefore we can assume that the entropy value for each musical style or genre is a

distinct value that allows musical traditions to be compared to each other.

For music, information has been understood to refer to “the freedom of choice
which a composer has in working with his materials or to the degree of uncertainty
which a listener feels in responding to the results of a composer’s tonal choices”
(Youngblood, 1958). Youngblood thereby suggests that information content could
serve as a method to identify musical style. He showed that excerpts of Schumann’s
music have slightly greater entropy than excerpts from Mendelssohn’s. But to this

end he only uses one scalar entropy value.

In 2008, Margulis and Beatty modeled the dynamic adaptive expectation of melodies
based on various pitch information sources. She notes that entropy has been inter-
mittently pursued as a potential tool for musical analysis; however, significant prob-
lems have prevented it from leading to a fruitful theoretical approach. According
to Margulis, three challenges have hindered the development of information theory
applications in music: first, obscurities in the framing of the musical questions that in-
formation theory might answer; second, practical obstacles to tabulating the musical
entities needed for information-theoretic analysis; and third, uncertainties regarding

the type of musical entity that should serve as the unit of analysis.

Entropy can help explain and illustrate melodic structures: in its thermodynamic
incarnation, entropy represents a state of little potential energy. It is common for
melodic patterns to follow structures in the form of consonance (balance) — dissonance
(tension) — consonance (cadence). Dissonance here suggests a state of high energy

that leads to resolution. This characteristic of melodic phrases can benefit from being
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quantized by its dynamic entropic value.

Knopoff and Hutchinson (1983) suggest that entropy could be used to study the
distribution characteristics found in particular musical styles and identify the musical
style. He views a music composition as a path in the sparsely populated space of music

parameters for which the composer selects elements from several musical parameters.

2.2.3 Entropy, Complexity, and Prediction

In the case of melody, entropy can be defined as the ability for an informed listener to
infer the next note in a phrase. This notion can be quantified by the number of bits
required to specify the next note. (In a concrete representation of sound we would

consider how many bits were needed to specify the next signal sample.)

Other dimensions of music, like timbre, necessitate additional encoding. However,
this information can also be constrained by the instruments of the orchestra, or in the
case of computer music, by the parameters of a particular synthesis method. Csound
and its related NetSound, which is at the basis of the Structured Audio Orchestra
Language in the MPEG-4 audio standard, encodes synthesized musical instruments

in a surprisingly small, text-based, payload (Scheirer and Vercoe, 1999).

Speech recognition uses the concept of entropy to evaluate a string of potential
phonemes by using machine learning techniques like Hidden Markov Models and the

Viterbi algorithm for decoding.

It has been suggested that comparing, or even ranking, composers or whole genres
or musical traditions by some metric—why not musical entropy—might be an inter-
esting endeavor. The difficulty then seems to come down to identifying the proper
dimensionality of the entropy vector and its adequate mapping to musical features in

order to account for the multi-dimensional characteristics of music.

Dubnov et al. (2004) have studied how listeners react to an unfamiliar piece of
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contemporary music over time by comparing their reaction to predictions based on
automatic analyses of the audio signal. Subjects were asked to continuously rate
their level of Familiarity (based on self-similar structures in the piece) and Emotional
Force. For their part, the algorithms computed signal similarities and measured signal
predictability over time. The results showed a correlation between signal properties
and human reactions. The information theoretic analysis of signal predictability used
low-order cepstral coefficients as feature vector to describe the evolution of the spectral
envelope over time. To evaluate signal predictability, Dubnov introduced the notion
of Information Rate—the “reduction of uncertainty that an information-processing
system achieves when predicting future values of a stochastic process based on its
past,” or in other words, “the additional amount of information that is added when
one more [event] of the process is observed”. The information rate can be interpreted
as the amount of information a signal carries into its future. Dubnov et al. (2006)
shows the significance of this measure over music signals and natural sounds. As the

number of events n grows large, the Information Rate becomes:
p(.T) = lim p(l'l,l'g, e 7$n) = H(l’) - HT(x)
n—>o0

where z is the sequence of events, H(z), the marginal entropy and H,(z), the entropy
rate, with:

H(z) == pilog,p;

and

1
H.(z) = lim —H(xy,z2,...,%p).

n—o 1

The information rate can hence be interpreted as the amount of information a
signal carries into its future. In fact, Dubnov demonstrated the signicance of this

measure for music signals and natural sounds.

Cont (2008) modeled musical expectation in his doctoral work under Dubnov. Ac-

cording to Cont expectation characterizes information content and provides insights
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into the stored musical structures.

As much as information theory seems to have fallen out of favor as a music-
analytic tool, statistical learning has emerged in psychology and the learning sciences
(for a review see Saffran, 2003). Statistical learning refers to the ability of learners
to exploit statistical regularities in their environment to generate abstract structures.
Infants have been shown to exploit such statistical properties to learn about their
.environments. New empirical evidence suggesting that humans can track complex
statistical properties in numerous domains makes information theory newly interest-
ing from the perspective of psychology. It follows that information theory could be
useful not merely in characterizing styles, but also in addressing questions in music

cognition.

In this context it makes sense to consider a musical entropy vector that takes
into account contour, duration, and intervals. Simon (2006) has proposed multiple
entropies to account for music’s multi-dimensional characteristic (in the case of jazz),
including melodic entropy, harmonic entropy, rhythmic entropy, and a composite
musical entropy: )

H=- Z ﬂlog2ﬁ
i=1
where v; is the number of times the i*" melodic variation appears, t is the total number

of melody notes and k is the total possible melodic variations.

Henry (2000) introduces the concept of genre entropy in his study of Indian folk
songs where entropy represents the diversity of melodies used within a genre. Henry
explains that with more melodies come less order and more uncertainty. In some
societies in North India, particular genres of folk songs have few distinct melodic
lines. Henry illustrates his point by comparing folk music, which is basically a carrier
for the text in various rituals, to highly entropic entertainment music, which makes

use of musical and poetic novelty and a blurring of the boundaries between genres.
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2.3 Musical Entropy

Can music indeed be predicted? If so, to what extent?

How much information is required to identify and classify a piece of music in a

particular culture? Can musical traditions be quantified and compared?

How do learnt musical structures influence predictions about musical events?
What is the role of musical enculturation in musical expectation? Does culture-

specific training improve predictability?

If we are to understand how people identify music pieces, we must determine the
set of audio features required to do so. I propose to investigate the use of musi-
cal entropy to quantify cultural influence on music in light of the previous research

questions.

Initial inquiries are constrained to the study of melody. T use a repository of MIDI

files of popular Indian music and compare it to a study of popular Western music.

The experimental steps consist in:

1. Feature extraction: contour, duration, and interval distribution.

2. Non-supervised clustering to group pieces for ground truth classification, and

comparison with human labeling.

3. Computation and comparison of melodic entropy for each tradition.

The current approach analyzes the complexity required of a relevant musical fea-
ture, namely melody contour, to retrieve a song from a catalog of 224 popular Indian
instrumental songs. To achieve this goal, I developed a theory of musical features
inspired by Ullman’s theory for visual features (2002). I implemented a computer
program that analyzes instrumental MIDI versions of the songs to extract relevant

parameters. My program identifies music pieces based on a melody contour of varying
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length and complexity. I experimentally verified the hypothesis that music pieces are

recognized by a melody contour of intermediate complexity.

The entropy of melody contour is defined by the number of ‘quantization steps’:
from 3 (starting from a base note, the next note goes up, goes down, or remains the
same) to 7 (where harmonic intervals are taken into account). The musical interval
cut-off point is determined by the analysis performed on the interval distribution
in the song database. The Indian music files in my test set suggest that most of
the information is located below a perfect fourth (5 semitones above and below the

reference note).

A query program lets the user enter a melody contour with a 3-, 5- or 7-quantization -
step in order to retrieve songs; the system provides the track numbers where the pat-
tern is found weighted by the number of occurrences in the tracks. Another program
computes statistical scores by retrieving songs depending on the quantization step
(3-, 5- and 7) and sample length (from 3 notes to 11 notes in steps of 2). Results
indicate that for a sample length of 5 notes and above, the 5-step quantization model
works as well as the 7-step quantization. This confirms that very little information
is encoded in the higher musical intervals. This suggests that the optimal melody

contour model needed to retrieve a song is of intermediate complexity.

This finding is a significant step in understanding how we recognize music and

build a cognitive model of expectation.

People can recognize a piece of music by listening to just a few notes. Sometimes,
based on context, as little as 2 or 3 notes are enough to identify a song. A minimum
number of features are needed to retrieve a song from memory. Nevertheless, there
is also evidence that too many features are detrimental to musical recall: a song
never sounds exactly the same. Every time a song is played, its loudness, background
noise, reverberation, even its interpretation, affect its ‘quality’. Moreover, if some
parameters, such as its frequency response (for instance with bass enhancement), are

modified, or the piece undergoes transposition, tempo variation, or remix, the song
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generally remains recognizable to a large extent. Therefore I suggest that there are

higher-level features that enable people to recognize and identify music from memory.

When we hear a song at a rock concert, it takes us no more than a few sec-
onds to recognize it, even though the noise affects what we hear, and the version
that is performed may be different from the one on the CD. This suggests that we
extract regularities from the music we hear. At the lowest level we identify notes
and timbres. At the highest level we identify rhythmic patterns and melody contour
as an abstraction that is for the most part pitch-invariant, loudness-invariant, and

timbre-invariant.

Literature indicates that music has the following perceptual attributes along dif-
ferent orthogonal dimensions:

e Pitch or melody contour: the most salient feature of a musical piece

e Rhythm

e Pitch: absolute pitch is not as important as relative positions

e Tempo

e Timbre

e Loudness

e Spatial location

o Reverberation

In this section we investigate musical source from a top-down perspective.

Most of the existing work on melody contour has been conducted on Western
music (from various periods and genres). In order to generalize my theory I chose

Indian music for my experimental data. My test set is representative of modern
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Figure 2-1: Depiction of melodic contour in Western music notation

popular Indian music. Being modal, Indian music has features that are technically

different from Western tonal music.

Melody contour is the identity of the melody, its general shape. This may seem
like a coarse approximation because musical interval (the interval between consecutive
notes) is not considered as significant as the shape of the melody. Although we gain
more understanding of musical intervals with training, I show that it does not play a

major role in music recognition.

In the mid-70s, Parsons, inspired by Barlow and Morgenstern’s Dictionary of
Musical Themes (1948), published The Directory of Tunes and Musical Themes, also
known as the “up-down book”. This volume contains 10,000 themes, which are
uniquely identified by a maximum of 16 nodes that describe melody contour with
three values: up, down, and same. This may seem like too simple a model for our
brain because we need much less than 16 notes to recognize a melody. However my
findings indicate that musical intervals may have less importance than our intuition
suggests. This work also supports the importance of the relative rather than the

absolute positioning of notes.

The current model uses 3 different quantization formats for melody contour, rang-
ing from the simple “up-down” model, to a 7-step quantization, which takes into

account limited knowledge of musical intervals.

I downloaded 227 MIDI files from various sources on the internet, out of which
3 were unusable. I performed little checking on the quality of the song transcription

because I required only a suitable approximation of the songs for my model.
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Table 2.1: Musical intervals

Interval Quantization Steps
Minor third +3 semitones
Perfect fourth +5 semitones
Perfect fifth +7 semitones

A program computes the interval distribution of the downloaded songs. The
program parses each instrument channel in each MIDI file, and compares each note
with the previous one to determine the information content of the melody contours
of this particular set of files. I do not consider chords (simultaneous notes), which do
not provide melody contour information. This data is assumed to be buried in the

noise.

Then the program drops all non-relevant information and creates strings of char-
acters from the note sequence in each track. The basis for this program is the concept
of musical idiom set forth by Jackendoff who suggests in his work on music cogni-
tion that the mental representation of high-level musical features is akin to grammar.
Therefore I construct a string that can be interpreted as language tokens assembled
according to the musical grammar used by the piece of music. The purpose of this
step is to create a searchable database of songs containing only the relevant features.
Each output file stores melody contour information for a particular instrument track
in a song in three different formats: a 3-step quantization, a 5-step quantization, and
a 7-step quantization. Running this module generated 1838 files corresponding to an

average of 8 tracks per song.

A retrieval program allows users to enter a melody contour using textual input.
Starting from a base note, users enter the value for the next note based on the
following mapping (for a 3-step quantization):

/: 80 up
\: go down

0: stay the same
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For a 5-step quantization, the parameters are the following:
0: stay the same
/: go up by less than a perfect fourth (5 semitones)
\: go down by less than 5 semitones
+: go up by more than a perfect 4th

-: go down by more than 5 semitones

For a 7-step quantization, we introduce another limit at 7 semitones (above and

below the reference note).

The retrieval program outputs song names, track numbers, and occurrences of the

input sample in the song database.

2.4 Musical Enculturation

Figure 2-2 shows the interval distribution for popular Indian music. It indicates that
20% of the time, a note is played twice in succession. The graph also shows that
around 50% of the information is gathered in the [-5; 5] semitone interval. There is
also a significant drop at 6 semitones (tritone), an interval rarely used in Indian music,
but often heard in jazz. We notice another peak at -7 and 7 semitones, and then the

curve drops significantly (higher intervals have little information to contribute).

We compare the interval distribution for Indian music with that of Western music
(figure 2-3), which shows two significant peaks at -3 and 3 semitones (minor third),
which is a common interval in Western music. Kim and his colleagues chose this
interval to quantize their 5-step melody contour. The optimum choice of interval
quantization is dependent on the content of the music. The appropriate interval for

the melody contour model can be computed by analyzing the music source.

Figure 2-4 shows the results obtained by running a test over the complete database

with random sampling (with at least one match). With each quantization step (3,
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Figure 2-3: Interval distribution for popular Western music (Kim et al., 2000)
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Comparison Between Interval Quantizations
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Figure 2-4: Melody retrieval for 3-step, 5-step, and 7-step interval quantizations

5 and 7), I used 25 samples of varying length (3 notes to 11 notes). The number of
occurrences corresponds to the number of ‘hits’ in the song database of the sample

melody under consideration.

We observe that for the three quantization steps an increase in the sample size
(number of notes) results in a decrease of the number of occurrences in the database
(we can presume that the system zeroes-in onto the right set of songs). At a sample

size of 3 notes, the higher the quantization step, the better the model performs.

The important (and surprising) result here is that for a sample size of 5 notes,
the 5-step quantization curve dips below the 7-step quantization curve. This strongly
suggests that the best 5-step quantization model performs as well as the 7-step quan-
tization model above sample sizes of 5 notes, which may be the average number of

notes required to recognize a song.
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This evidence points to the optimality of a model of intermediate complexity in

melody contour for the purpose of music recognition.

This work is a significant step in the understanding of human melodic represen-
tation and recognition. It is a simplified model that takes into account only melody
contour as a particular attribute of music. In reality rhythm and other dimensions

also contribute in discriminating music.

2.5 Measuring Musical Culture

To ground this work on an analytical framework, I introduce a measure of entropy to
compute culture footprint in melody. Entropy, or information content, in this context
refers to the capacity for a listener to predict musical events as a function of prior
musical exposure, or enculturation. Using this model we compare pieces of popular
Indian music with popular Western music. We explore how learnt musical structures
influence predictions about musical events, and how much information is required to

identify and classify a piece of music in a particular culture.

The result of this experiment is the computation of an asymptotic entropy vector
based on the level of enculturation or exposure, and hence on the level of generaliza-
tion achieved by the system. The entropy vector describes how well the next event

can be predicted by quantifying the information content of the music.

In this measure of entropy, priors play the role of cultural context: we train the
model in culture A and predict in culture A, and then train in culture B and predict

in culture A.

Table 2.2 reports on the entropy values for music from different cultures based on

the enculturation model from priors.
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Table 2.2: Musical entropy based on cultural priors

Source | Context | Entropy
Indian Indian 0.37
Indian | Western 0.59

Western | Western 0.31

Western | Indian 0.65

These results suggest that Indian melody is more complex than Western melody.
In linear note-to-note sequences, there is more uncertainty in Indian music than their
is in Western music. From a musicology perspective this makes sense. Complexity
in popular Western music is found in chords and harmonic progressions (the ‘ver-
tical’ component) whereas Indian music, popular or traditional, is concerned with

"horizontal’ intricacies.

Results from table 2.2 support our hypothesis when taking priors into account.
We find that Western music is more predictable when trained on Western music than
when trained on Indian music. And the same holds for Indian music. This suggests
that enculturation does indeed create mental models that help with music prediction
in a particular genre. Music is not universal: people best understand the music they

have been exposed to.

We find that music can be predicted to some extent. Based on the entropy values
we find, the amount of uncertainty is significantly lower than chance. By taking into
account musical structure of varying length we suggest that it is possible to make
informed decisions as to the continuation of melody and other musical constructs,

based on appropriate priors.

These findings support the hypothesis that music complexity (i.e predictability)

is a function of musical culture:

music_complexity = f(musical_culture)

and provide the rationale for designing a music prediction engine.
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Chapter 3

Culturally Inspired Models for

Music Representation

3.1 Music Representation by People and Machines

Even though a music representation language like Humdrum Toolkit’s **kern (Huron,
1993) is significantly ahead of a digital music format like MIDI (Musical Instrument
Digital Interface) in terms of expressivity and accuracy, it is biased towards the con-
structs of Western music. Although characteristics of non-Western music like pitch
inflections found in Indian music can be approximated, both in **kern and in MIDI,
they do not have a native and formal representation. On this basis I argue that a

music representation model must be specified for a particular musical tradition.

In You Are Not a Gadget: A Manifesto (2010), Lanier tellingly says: “[MIDI]
could only describe the tile mosaic world of the keyboardist, not the watercolour

world of the violin.”

When represented as a signal, digital music is culture-agnostic. Pulse Code Mod-

ulation and perceptual coding (e.g. MP3) for instance treat music as any other sound
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source. On the other hand symbolic representations like MIDI or MPEG-4’s Struc-
tured Audio Orchestra Language (Scheirer and Vercoe, 1999), which may have been
specified for music ‘in all its forms’ actually embed constructs specific to Western
music. Prime among them is the concept of a note. It is generally assumed that a
note can be described as a single pitch value sometimes with associated parameters
for vibrato or ornamentations. It is common practice in Indian music however to

consider a note as a pitch contour (called gamaka in South Indian Carnatic music).

Here we consider music as event-based, rather than sample-based. A format like
**kern is a syntactic description language. For music from various traditions I propose
a lexical representation that should automatically recognize tokens from audio and
identify them as part of a specific genre. The tokens considered here are low-level

elements such as notes, or drum strokes, and associated pitch inflections.

The computational representation template that I propose is inspired by the men-
tal representation of musical structures, which is itself informed by the elements of

the musical traditions one has been informally exposed to through enculturation.

In the process of enculturation, mental structures are formed according to the
following process that starts when hearing musical material:

1. Segmentation and identification of musical primitives

2. Adaptation of container structure to capture musical primitives

3. Adaptation of hierarchical musical grammar to capture musical constructs (i.e.

structured primitives)

4. Adaptation of higher-level cognitive structures for appreciation, expectation,

skill, etc.

Rather than developing systems that learn musical representations from scratch by

creating containers adequate for specific musical content, the present work concerns

54



itself with designing appropriate representations that can be used by machine listening

systems to perform auditory and musical tasks like humans do.

Even though sound is a succession of discrete events in time, music is explicitly
built with repetitive structures (e.g. a regular rhythmic pulse, a form that alter-
nates verse, chorus, and bridge) to allow people to develop mental representations
at different scales and to derive meaning from music. Minsky (1981) considers that
a piece of music explores a musical space like mental map-making—in metaphorical
terms, it starts at one location (theme), explores some (e.g. chorus), then heads
back home (theme) before venturing back further (variation). Minsky distinguishes
knowing, or memorizing, from understanding (i.e. representing a concept or an idea
from different angles so they can be ‘thought’ about). Applied to music, this defi-
nition of ‘understanding’ leads to the storage of musical structures of “intermediate

complexity”—similar to visual recall—like is described in chapter 2.

To clarify our taxonomy we define pitch, amplitude, timbre, localization, etc. as
“low-level” musical primitives, and musical phrases, forms, and style as “high-level”
constructs. Like other cognitive tasks, music functions by pattern recognition in the
brain. The learning of patterns happens through enculturation, or informal exposure,
but also depends on a proclivity to learn that may be, according to Huron, the result

of an adaptive function (i.e. the Baldwin Effect).

Music is a source of pleasure and strength, of ritual, joy, and laughter. It is
the carrier of emotion and moves us into various affective states. Bernstein (1976)
attempted to transpose Chomskys universal grammar for language to music. While
his results were mitigated—maybe partly because the idea of innate knowledge for
language is more widely accepted than for music—Jackendoff and Lerdahl (1996)
devised a generative theory for tonal music (GTTM) that illustrates the recursive
and self-similar structures of Western tonal music. The genetic basis of the neural
structures in the brain enables us to handle music, like we do language, and provides

the motivational drive for it, in particular with its link with emotion. In contrast,
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animals probably have the capability to perceive perceptual features like pitch, but
may not have the motivation to do so, unless it is used for some survival task—

information transmission, in the case of birdsong.

[ would argue that the relevant parameters to distinguish the adaptive or otherwise
functional roles of music are based on their processing level (physical to cognitive, see
table 1.1) rather than their category. For instance, the physical parameters of fre-
quency, amplitude, and spectrum, and their perceptual correlates as pitch, loudness,
and timbre (perception of auditory objects through spectral fusion), may be derived
from an evolutionary mechanism because they result from the processing of auditory
events that are demonstrably required for survival. On the other hand, higher-level
mental representations of these parameters as scales (and melodic contours), dynam-
ics, and instrument identity are culturally motivated and not adaptively evolved.
Similarly, timing as a low-level (and adaptive) construct leads to mid-level beats and

tempo, and high-level meter, phrases, and forms.

This dichotomy hardly lets us speak of ‘adaptive’ versus ‘non-adaptive’ music;
most music has components of both the adaptive and the contextual, or environmen-
tal. However some types of music may be approximated to one category or another.
For instance, community drumming encountered in the drumming circles of Africa
or Australia has many low-level features involved, and few high-level structures. The
meaning conveyed by this type of music is often linked to its social role as mentioned
previously (which plays, arguable, an adaptive function). On the other hand, music
with little dynamic changes could be considered as ‘non-adaptive’ where the meaning
of music is often linked to the emotional response it elicits from the listener, often

putting him or her in a pleasurable state of relaxation or meditation.

Keeping some of our assumptions and approximations in mind, we find that
there are indeed some musical forms that can be categorized as ‘adaptive’ and ‘non-
adaptive’ based on the level of musical parameters they draw on. It is helpful in this

context to look at how some authors define proto-music: multimodal (with sound and
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movement), dynamic (temporal, rhythmic, melodic elements), mimetic (containing
sound symbolism, gesture), holistic (with no segmented elements), and manipulative

(capable of influencing emotional states, behaviors).

The brain does not store sounds. Instead, it interprets, distills, and represents
sounds. It uses a combination of several underlying representations for musical at-
tributes. But how does the brain know which representation to use? Huron (2006)
suggests that expectation plays a major role. There exists evidence for a system
of rewards and punishments that evaluates the accuracy of our unconscious predic-
tions about the world. Mental representations are being perpetually tested by their
ability to usefully predict ensuing events, suggesting that competing and concurrent

representations may be the norm in mental functioning (Cont, 2008).

The issue of music representation is a complex and challenging one. While many
elements of music, like rhythm and harmony, are mathematical constructs, which com-
puter languages are well suited to represent, many other, less tangible, elements form
other essential dimensions of music. Dannenberg (1993) argues that the knowledge
we gain from specifying as completely as possible a language for musical description
provides us with insights into music theory and music understanding by machines, but
also into music cognition. Current music representations range from highly symbolic
and abstract music notation schemes to concrete recorded audio signals. Intermediate
to these are languages that explicitly describe a set of musical parameters, such as

Csound or MIDI.

In spite of its shortcomings, MIDI is well suited to the study of melody. The main
argument that favors it is the ready availability of musical pieces of various cultures for
download on the Internet (albeit of varying quality). According to Dannenberg, one
of the main limitations of MIDI is its lack of structural relationships between musical
elements; in particular MIDI considers each note as independent. However, this is
compensated for by the implicit grouping mechanism built in the 16 channels that

segregate instruments and their control parameters. Moreover if we assume melody

57



to be a Markov chain with no priors, we do not need to take structural relationships

into account.

3.2 Indian and Western Musical Traditions

In the present work we compare existing models suited to Western music with new

ones that we develop for Indian music.

3.2.1 Percussions

In the case of percussion we analyze the tabla, a pair of hand drums from North India.
In my master’s thesis I write about the tabla: “They are played with the fingers and
palms of both hands. The right drum (from a player’s perspective) produces a high
pitched sound, whose pitch can be tuned with the rest of the orchestra. The left
drum produces bass sounds with varying pitches depending on the pressure applied
on the drumhead with the palm of the hand. The tabla can play a variety of different
sounds, both pitched and unpitched. Each of these sounds, called bol, has a syllable
associated with it. Thus rhythmic compositions can be [vocalized], and transmitted

in an oral tradition.”

Some of the questions that are raised are:

e How well can different bols be discriminated by a human listener?

e How well can a machine automatically classify tabla strokes compared to a

human musician?

Tabla stroke recognition can be interesting both for music information retrieval
in large multimedia databases, or for automatic transcription of tabla performances.

In my case, I look at it from the point of view of the representation of tabla strokes.
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Figure 3-1: Tabla stroke waveform: na

Figures 3-1 to 3-5 show the time-domain waveforms of various strokes (more than
10 different strokes can be played). Na and Tin, which sound—and look—quite simi-
lar, are played on the right hand drum. Dha is played with both hands, a combination
of Na and Ga. Ka is a damped sound played on the bass drum.

Spectrograms of the strokes are shows in figures 3-6 to 3-10. Additional informa-
tion can be inferred from these: for instance the Na has a clear steady pitch, while

Ka consists mostly of transitory noise.

In my previous work, I extracted Power Spectral Density (Welch’s method) fea-
tures and reduced vector dimensionality using Principal Component Analysis for
stroke recognition. Using a k-Nearest Neighbor algorithm I achieved above 90% recog-
nition rate (as compared to 87% for human recognition with no contextual information

surrounding the strokes).

The confusion matrix 3.1 for automatic recognition rate is interesting because it
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Figure 3-3: Tabla stroke waveform: dha
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Table 3.1: Confusion matrix for tabla stroke recognition

Na | Tin | Ga| Ka | Dha | Dhin | Te | Re | Tat | Thun

Na 5 0 0 0 0 0 0 0 0 1
Tin 0 3 0 0 1 0 0 0 0 2
Ga 0 0 4 0 0 2 0 0 0 0
Ka 0 1 0 3 0 1 0 1 0 0
Dha 0 0 2 0 2 1 1 0 0 0
Dhin | 0 0 1 0 1 4 0 0 0 0
Te 0 1 0 0 0 0 1 0 4 0
Re 0 0 0 0 0 0 1 4 0 1
Tat 0 0 0 0 0 0 2 1 3 0
Thun | 0 1 0 0 0 0 0 0 0 5

matches the results for human stroke identification.

Two observations point to the unsuitability of a traditional computational model

of Western drums to the tabla.

First, the window size used for detecting each stroke from the onset time is specific
in that it has to account for strokes of longer durations due to pitch inflections (by
applying continuously varying pressure to the drum head, usually on the bass drum)
and by treating strokes with a quick succession of multiple onsets as one single stroke
with its associated bol. Frame size has a considerable influence on recognition rates.
In the case of a Western drumset individual drum sounds or strokes are of finite and
limited duration. In the case of the tabla, varying the frame size increases recognition
accuracy until a threshold (750ms in the dataset used) where the next stroke takes

place. Therefore windows of varying lengths have to be implemented.

Second, is the presence of pitched sounds and pitch bends. Tabla sounds can
therefore not be synthesized accurately with simple wavetable-type synthesis, like

drum sounds often are. I use waveguide synthesis.

In contrast, drums used in blues music are modeled using a General MIDI syn-

thesizer.
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3.2.2 Winds

Indian music is based on the multi-dimensional concept of raga. Here I am especially
concerned about the notion of gamakas that are embedded into them. Gamakas are
ornaments (quite different from the embellishments of Western music) that form an
integral part of Carnatic music. They are characterized by micro-tonal oscillations

and variations.

A raga is a musical concept or system that comprises, among other things, a scale
or mode, gamakas, characteristic phrases, and visiting notes. “Raga is a vast ocean

of latent potential, waiting to be realized” (Allen, 1998).

Modeling gamakas are therefore an essential step in modeling ragas. It is im-
portant to note that there exists classification schemes for gamakas. Depending on
the author, the number of categories ranges from 23 to 15 to 10 to 3 (Swift, 1990).
The present work does not aim to provide fixed templates for gamakas, but rather to
provide an extensible language to represent gamakas with the ability for users to add

their own types.

I analyzed an excerpt from the recording of raga Hamsadvani sung in the context
of the Pagavari varnam (singer Kamala Ramamurthy recorded by Richard Wolf in
Madurai, Tamil Nadu India, 1985). Raga Hamsadvani comprises the following notes:

do re mi sol ti do (both in the ascending and descending scale).

To analyze the recording, I created a pitch-tracker patch on Max/MSP using
Jehan’s pitch object. The collected samples were then imported into Matlab for
alignment and plotting. I performed an analysis on the pitch contour after having
aligned each musical entity. The estimated pitch is scaled according to the MIDI
pitch number to maintain linearity. Figures 3-14 to 3-25 plot the pitch contour of
various notes of the raga. The y-axis represent pitch-equivalent MIDI note values (60

is the middle C). Gamakas are clearly visible.
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Table 3.2: Swaras (note entities) in Carnatic music

Note (Carnatic) | Note (Chromatic) | Frequency (Hz) | MIDI pitch

SA C 261.626 o4
RI D 293.665 56

311.127 57
GA E 329.628 o8

349.228 99

369.994 60
PA G 391.955 61
NI B 493.883 65
SA C 523.251 66

It is important to observe that some notes (swaras) have a different pitch contour
whether they are ascending or descending. The pitch tracker has trouble with the Ni

and jumps an octave down during the analysis window. This can be controlled for.

To synthesize the South Indian bamboo flute (Pulangoil), I use the Csound pro-
gramming environment. To model gamakas I took advantage of function-tables (i.e.
look-up tables) to create cubic spline curves that match the analyzed pitch contour
for each note. Each gamaka is considered as a separate instrument (in Csound ter-
minology), and can therefore be triggered anytime in the score file. Synthesis is done

using waveguide synthesis (adapted from Perry Cook’s instruments).

Table 3.2 describes various representations of the note entities used in the synthe-

sis process.

Figure 3-26 shows the pitch tracking result of the synthesized version of raga

Hamsadvani. Despite some artifacts gamakas can be observed.

Notes in Indian music (both Carnatic and Hindustani) have different instantiations
on ascent and descent. Moreover, pitch inflections are an inherent part of their identity
and need to be encoded along with pitch values. It follows that a representation of

notes in Indian music has to have more than a pitch value. We introduce the idea of
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Figure 3-26: Synthesis of Carnatic music: raga Hamsadvani ascending and descending

a data structure for musical elements in order to represent musical entities that are

not adequately captured with the models used in current music technology.

For the Western concert flute we use simple MIDI notes and a similar Csound

instrument.

3.3 Culturally Appropriate Containers

What is an appropriate representation of music?

Based on the previous analysis, it may seem evident that a generic representation,
or one that is biased towards one particular musical tradition, will perform poorly
when capturing music from a vastly different tradition. We test this idea with listening

experiments in section 3.4.

The representation template for musical elements is specified as an object-oriented
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data structure that is designed specifically for a particular tradition.

For instance in the case of Carnatic music we propose the following structure for

a note:

struct carnatic_swara {
pitch_t pitch;
raga_t raga;
bool ascend;
gamaka_t gamaka; // gamaka template
gamaka_t transition_from;

gamaka_t transition_to;

3.4 Representation and Recognition of Musical El-

ements

We test the hypothesis that computer music systems that incorporate a culturally
appropriate symbolic representation provide a perceptually equivalent output to a

signal-level representation of the musical source:

synthesis(appropriate_symbolic_representation) =perception Signal_representation

The music prediction system is evaluated on the following musical data:

e Pulangoil in Carnatic style

e Western flute playing Blues

The data is sourced from user-generated websites like YouTube. Excerpts of music
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Figure 3-27: Synthesis-by-analysis via culture-specific containers for listening exper-
iments

are pitch-tracked and stored in a Carnatic container (data structure with multiple
features) or a Western container (MIDI note). Then the containers are used for

sound synthesis. The containers are compared in a qualitative evaluation.

Music aficionados well-versed either in Indian music (Hindustani or Carnatic)
or in Western music (Blues) were recruited for listening tests. (The MIT institu-
tional review board approval of the research study on file.) The experiment evaluates
the perceptual merit of one culturally relevant representation versus another non-
culturally specific. In blind listening tests, participants are presented snippets of
audio—sequences of musical primitives (tokens) assembled in musical phrases. Par-
ticipants are asked to rate the subjective well-formedness of the phrases based on
their familiarity with each musical style. Audio clips are randomly presented to par-

ticipants.

3.5 Culturally Sensitive Design Principles

In 85% of the cases, participants judged the culture-appropriate container a better
fit for the source material in terms of musical ‘well-formedness.” This supports that
a specific representation performs better than a generic one because it enables more

accurate reproduction of a musical idiom.
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This finding supports the idea that representation models are to be specifically
designed to capture the complexity of a musical culture. The representation of a
particular genre is not only evaluated for its intrinsic perceptual quality, but it is also
evaluated in conjunction with a prediction algorithm where its suitability to generate

well-formed musical constructs is analyzed quantitatively (chapter 4).

While in the present work, tokens are specified by a human designer, it would be
worthwhile to study whether containers can be identified automatically with unsu-
pervised learning, for instance with a clustering algorithm, and how well those would
perform perceptually in comparison with human-designed ones. This approach might
be especially relevant when the designer may not be familiar with a particular genre

of music that the model should cater for.
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Chapter 4

Automatic Music Prediction

4.1 Musical Expectation by People

No study of musical expectation can be complete without the mention of Meyer’s
Emotion and Meaning in Music 1961. In his book, Meyer, a Western music theorist,
uses psychological insight (including Gestalt principles) to explain musical meaning

and musical communication, and the rise of emotion from music.

Meyer suggests that emotion in music comes from the satisfaction of expecta-
tions and especially from the lack thereof: “The customary or expected progression
of sounds can be considered as a norm, which from a stylistic point of view it is;
and alteration in the expected progression can be considered a deviation. Hence de-
viations can be regarded as emotional or affective stimuli.” This norm comes from

enculturation, or exposure to previous music sharing similar stylistic rules.

Meyer further states that “because expectation is largely a product of stylistic
experience, music in a style with which we are totally unfamiliar is meaningless.” In
other words, musical enculturation is key to music understanding. He defines musical

styles as “more or less complex systems of sound relationships understood and used
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in common by a group of individuals.” This is what I call culture in this dissertation.

Narmour (1990, 1991, 1992) built on Meyer’s work on musical expectation and cre-
ated a model called Implication-Realization. Music theorists agree that Narmour’s
model is complex to understand. In a Music Perception review from 1995, lan Cross
describes Narmour’s theory as "treat[ing] melody primarily as a note-to-note phe-
nomenon.” Narmour’s theory is interesting in light of the empirical studies that

followed to test the theory (Krumhansl, 1995).

Huron (2006) has published much work recently on the nature of musical expec-
tation from a cognitive psychology point-of-view. As for Patel (2010) he has been
interested in drawing parallels between language and music in order to understand

human cognition.

4.2 Music Prediction by Machines

Computational prediction of signals has a long history. Speech signals have used
Linear Predictive Coding for efficient transmission by modeling the excitation source
and the speech tract. At the far-end Finite Impulse Response filter coefficients are
predicted based on past samples. Similarly Kalman filtering uses estimation and
prediction for stochastic processes, for instance to track objects by predicting their

future position based on their previous one.

Symbolic systems also have significant background. Most work on symbolic music
processing systems has involved music composition and score following. Harry Olson’s
early work at Bell Labs involved the generation of musical scores based on the analysis
of songs by Stephen Foster. Following his footsteps, Lejaren Hiller and Robert Baker
used Markov processes to create their Computer Cantata in 1963. Their statistical
model defined the sequence of notes and durations by setting the next event, but did

not take into account larger order structures of the piece of music. Hiller, who started
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the Experimental Music Studio at the University of Illinois, further collaborated with
John Cage on HPSCHD (1969), a piece that combined electronic sound tapes with

solo compositions for harpsichord where the choices were made by throw of dice.

That same year, John Melby, composed Forandrer: Seven Variations for Digital
Computer at the University of Illinois. Instead of using the university’s ILLIAC
computer solely for composing music and producing a score, he used it to synthesize
sound. He later used Barry Vercoe’'s Music360 to compose 91 Plus 5 for IBM 360/91
and 5 brass instruments. In both cases the signal was first transferred to tape and

later played back.

In the early days, while many US computer musicians were building on Max
Mathews’ work at Bell Labs and focusing their efforts on sound synthesis, many Eu-
ropean composers were pushing the boundaries of computer-based music composition
by creating new musical styles instead of mimicking existing ones. Among them were
Gottfried Michael Koenig and Pierre Schaefer. And then there was Pierre Boulez’s
ever-important IRCAM in Paris, which at the time concentrated much of the work

in computer music throughout the world.

Chomsky’s work on universal grammar (1957, 1965) has proven to be almost as
important a landmark in music theory as it was in linguistics. However the modeling
of music with a grammar has remained disputed. While Roads and Wieneke (1979)
supports the use of grammar as representation for music, Dempster (1998) refutes
this idea by supporting that musical structure is not a genuine grammar because it

does not encode meaning.

Composer David Cope from the University of California Santa Cruz has been
interested in writing music in a specific style with his Experiments in Musical In-
telligence. Drawing on Schenkerian analysis and on Chomsky’s generative grammar
of natural languages, Cope performed hierarchical analyses of the components of a
composition and reassembled parts as to resemble the original style (“recombinant

music”). He released a CD called Virtual Mozart in 1995 and other Chopin-like pieces

81



that received good reviews, including by Douglas Hofstadter who managed to fool a
majority of faculty and students of the Eastman School of Music who could not tell

apart a piece produced by the computer and an original piece of Chopin’s.

Manzara et al (1992) studied cognitive models of melodic expectations with Bach
Chorale melodies. Conklin (1990) followed this up with a prediction and entropy
computational model for melodic continuation in Bach Chorales. In his work he finds

that chorale melodies with low entropy achieve good continuation success.

Music theory has historically emphasized the study of Western tonal music. While
ethnomusicology has catered to non-Western music, it has done so to a much lesser
extent than traditional musicology. It is therefore of interest to design computational

tools to help in the study and comparison of music from different cultures.

Generative music systems have often made use of probabilistic modeling tools like
Hidden Markov Models. However, can a music sequence be likened to a Markov pro-
cess? Many composition generators make that assumption, but I would argue that
music is a hierarchical process that has its roots in a cultural body of knowledge,
which does not only depend on immediately preceding musical events (at the very
least far-order (n-order, nj; 1) effects have to be considered for melodic and rhythmic
continuation). In my view generative grammars on symbolic data are more likely to
capture the essence of music, and perform adequate predictions, than statistical mod-
els. However, there may be musical traditions that a Markov process may accurately
represent and therefore predict. The key is in choosing the right tool for a particular

cultural context.

4.3 A Computational Model of Music Prediction

Can the human capacity for musical expectation be modeled with a machine-based

prediction engine?
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I aim to test the following two hypotheses:

error_rate(predictioneyure_specific) < error_rate(predictioncyiture agnostic)

predictioneyiture_specific = human_musical_expectation

In other words:

1. Music prediction systems that act on culture-specific containers are more robust
and accurate than systems that generate symbolic musical data with no attempt

to understand cultural content.

2. The input-output behavior of a culturally sensitive design for automatic music

prediction performs similarly to human musical expectation.

The automatic music prediction system presented here is based on a hierarchical

grammar model.

The choice of a data structure for prediction is based on the specifications of the
musical style. Much music establishes a norm, then disturbs it, and finally resolves it.
A tree structure is selected to represent the musical forms under consideration-—North

Indian and South Indian music, and Blues.

It is important to take into account self-similarity in music as well. Variations
should be correctly classified either as identity-preserving embellishments, or as vari-
ations with significant dissimilarities. Similarly, the grouping of events in the rhythmic

domain is culture-dependent.

I designed a software framework for the automatic prediction of musical events
in the melodic (or timbral in the case of percussive elements) and rhythmic spaces.

Figure 4-1 presents the software framework with its architecture for cultural plug-ins.

This system mediates musical communication between a performer and a machine
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Figure 4-1: Automatic music prediction system block diagram

by incorporating an appropriate representation to the music prediction framework.
Music prediction serves the dual purpose of evaluating the chosen representation
scheme by comparing its output with the actual input and with listeners’ expectation,

and of providing for a variety of novel applications.

The system is evaluated on quantitative as well as qualitative grounds by a series
of experiments. The representation models are evaluated on the accuracy of the
prediction outcomes in relation to people’s expectations. Quantitative measurements
assess the prediction engine’s error rate as related to the maturity of the underlying

representation, in terms of enculturation.

The front end of the system listens to incoming audio, detects auditory events at
their onset with an envelope follower and segments them, then applies machine lis-
tening techniques: pitch tracking in the case of musical notes, and feature extraction
for classification purposes in the case of drum strokes. Each recognized note or per-
cussive stroke is then labeled along with a timestamp and associated properties (e.g.
ornamentation, articulation, dynamics). Additional machine listening techniques for

beat detection and tempo estimation are applied on longer time windows.

A prediction model generation process captures symbolic information from the
front-end and trains a grammar model from a lexicon of primary musical elements
that are designed for the particular musical instrument and genre under consideration.

Lexical tokens are assembled into grammar rules that follow a hierarchy, accounting
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for multiple levels: linear sequencing of notes, assembly of notes and cells into fig-
ures, motifs, and phrases, and global structure, or form, of the piece. The grammar
model is meant for a particular genre in that it takes into account its structure and

characteristics.

The final stage is the prediction engine, which:

e Generates a symbolic output from the grammatical model. The output is in the
form of a piano roll (time as x-axis, and pitch or timbre as y-axis). In addition,
a tree of possible future outcomes with likelihood function is generated. As the
incoming musical events unfold, the tree is pruned and a unique path, the most

likely one, is traversed.

e Includes a feedback loop to compare predicted output with corresponding input

to continuously learn from successes and errors.

e Plays back audio from a sound synthesizer for the most likely next event.

When the prediction engine receives an incoming event it performs a lookup
through its grammar model and outputs a predicted symbol that triggers a sound

synthesis engine for audio output.

The formal grammar model follows the rules of an unrestricted grammar in the

Chomsky hierarchy. The hierarchy levels consist in phrases, cells, and notes.

The software framework provides an infrastructure for cultural plug-ins, which
embed knowledge about the characteristic of a musical instrument playing in a par-
ticular musical tradition. Container are designed explicitly in a way that is relevant
to a particular genre (see chapter 3) and filled with content during the training, or

computational enculturation, phase
Table 4.1 lists the cultural plug-ins that were developed for this study.

While Indian music, both Hindustani and Carnatic, have strong rules within which
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Table 4.1: Cultural plug-ins

Instrument & Tradition | Percussion Wind
Hindustani Tabla Bansuri
Carnatic Mrindangam Pulangoil
Western Drums Concert Flute

each performer expresses their individuality, Blues is more individualized with weak
rules. One of the characteristics of Blues that is expressed in the temporal model is

syncopation.

4.4 Machine Prediction and Human Expectation

The music prediction system is evaluated on 4 types of musical data (4 instruments

belonging to 2 musical traditions):
e Tabla, a pair of North Indian hand drums (in the North Indian Hindustani
tradition)
e Drums (Blues)
e Bansuri, a North Indian transverse bamboo flute (Hindustani music)
e Western Flute (Blues)
The data is sourced online from user-generated content on sites like YouTube,

and manually annotated. Audio clips are randomly grouped in training, testing, and

evaluation sets.

4.4.1 Quantitative Evaluation

The model is trained with musical data from culture A and tested with musical data

from cultures A and B. Prediction output is compared with ground truth and averaged
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Figure 4-2: Tabla prediction error rate for teental, a 16 beat cycle
over several instances of varying lengths of sequences of musical events.

As an objective measurement, prediction error rate is compared to manually la-

beled audio input (ground truth).

It is futile to measure a static value for the error prediction rate as it continuously

varies based on the input and the dynamically updating prediction model.

As mentioned in chapter 3 the stroke recognition rate is close to 95%. Based on

figure 4-2, the phrase prediction error rate decreases from 100% to 40% within 30

strokes and continues to vary from there on.

4.4.2 Qualitative Evaluation

Qualitative studies are designed to compare the prediction output with people’s mu-

sical expectations.
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I recruited participants (musicians familiar with Indian music or Western music)
for perceptual tests. In these tests, the output of the prediction engine is evaluated
for its intrinsic merit (subjective structural quality) and compared in blind tests with
non-predicted data based on the original (through appropriate containers and generic

containers for primary musical elements).

Each of the following blocks has 2 versions: one for Hindustani music and one for
Blues. Both are for the flute (Bansuri or Western concert flute):

1. Source material

2. Container

3. Grammar model (prediction engine)

The output of the grammar model is synthesized and played to the listener.

The combinations are as follows:

1. Bansuri through Hindustani container with no prediction

2. Bansuri through Hindustani container with Hindustani prediction
3. Bansuri through Hindustani container with Western prediction

4. Bansuri through Western container with no prediction

5. Bansuri through Western container with Hindustani prediction

6. Bansuri through Western container with Western prediction

7. Flute through Western container and no prediction

8. Flute through Western container and Western prediction

9. Flute through Western container and Hindustani prediction

88



Table 4.2: Results of qualitative experiments on perceptual cultural fitness

Instrument | Container | Prediction | “Western’ | ‘Indian’
Bansuri Hindustani | no prediction 3.8 4.0
Bansuri Hindustani | Hindustani 3.2 3.8
Bansuri Hindustani Western 2.6 2.8
Bansuri Western | no prediction 3.0 2.6
Bansuri Western Hindustani 2.2 2.6
Bansuri Western Western 2.8 2.4

Flute Western | no prediction 4.6 4.4
Flute Western Western 4.2 4.4
Flute Western Hindustani 3.2 3.0
Flute Hindustani | no prediction 3.4 3.0
Flute Hindustani Western 3.0 3.0
Flute Hindustani | Hindustani 2.2 3.2

10. Flute through Hindustani container and no prediction
11. Flute through Hindustani container and Western prediction

12. Flute through Hindustani container and Hindustani prediction

5 participants were recruited for this task. Feedback was collected in the form of a
survey that was administered during listening. Experiments were conducted double-
blind to avoid bias. Listeners were asked to rate the ‘well-formedness’ of each musical

phrase on a scale of 0 to 5.

4.5 Can Machines Predict Music?

Results of the qualitative experiments are in table 4.2. The instrument are ana-
lyzed (pitch tracked) and placed into a container either suitable or unsuitable for
its tradition. Then the container is used as an element to a prediction model that is
trained either on a similar or on a dissimilar genre. "Western’ and ’'Indian’ correspond

respectively to listeners familiar with Western music and Indian music.

Some observations can be noted:
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e As expected an appropriate container with no prediction performs best for In-

dian and for Western music.

e Western flute through an Indian container performs relatively well because the

container captures a superset of the parameters required of it.

e No prediction performs better than prediction indicating room for improvement

in the prediction engine.

e Listeners familiar with Indian music were also mostly familiar with Western
music so their ratings of the Western container and/or predictor are almost on

par with Western listeners.

o [ was expecting ‘Western listeners’ to generally rate the output higher than
‘Indian listeners’, maybe because of their familiarity with synthesized music,
but it turns out that Indian listeners were more comfortable with the output

(average of 3.26 versus 3.18).

It turns out that the system performs like an intermediate player. Although low-
level predictions at the note and cell level are oftentimes error-prone, we observe
that they are robust with respect to intermediate-level figures (or riffs) or motifs,
and phrases—in most likelihood because they are constrained by higher-level rules of
musical form (e.g. scale, meter, structure) and style. I posit that such music predic-
tion constitutes a system of communication that conveys a sense of musical intention
through musical ideas, rather than an objective transmission of the ‘implementation’

details. In other words it trades off accuracy of musical elements for musical meaning.

Possible latency compensation using this system is a function of tempo. In var-
ious realtime musical applications, especially online or where much computational
resources are required, music is subject to lag between the incident musical gesture or
event, and the corresponding response. For instance, in a network music performance
setup, network latency introduces much of the lag, which is further compounded by

algorithmic delays. It turns out that music prediction in the way that it is defined
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here allows to submit a ‘negative lag’, which we call prelag. With prelag, people hear
musical events ahead of their expectations. This is especially relevant for performers
whose expectaﬁon model is tuned to their acoustic environment—it is either depen-
dent on reverberation time or, in case of a remote interaction, learnt by adaptation

to network delays.

Edmund Husserl, the founder of the philosophical school of phenomenology, has
described the phenomenology of temporality in perception with three aspects: re-
tention (memory), the present, and protention (expectation) (Merleau-Ponty, 1945).
Protention corresponds to our perception of the next moment—a few milliseconds

ahead of time.
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Chapter 5

Towards Culturally Sensitive

Music Technology

5.1 From Music Representation to Music Predic-

tion

To design computational music systems for existing musical genres from around the
world it is indispensable that we fully understand the role of culture in music per-
ception and cognition, and incorporate mechanisms of musical enculturation in our
designs. This dissertation discusses the importance of a culturally sensitive design for

music representation and music prediction.

This dissertation introduces a measure of musical entropy for melodic contour that
allowes us to quantify the role of prior musical exposure. My findings suggest that
musical complexity is a function of musical enculturation, in that predictability for
a particular piece of music is enhanced when the entropy model is trained by music

with shared features (i.e. in the same genre).

Current musical representations have inherent limitations due to design choices
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that are based on Western music. This work introduces design principles for music
representations that aims to cater to music from other traditions. Listening experi-
ments suggest that there is no one representation that satisfies the requirements and
salient features of all musical genres. Instead this work supports the design of specific

representations for specific musical traditions.

A system for automatic prediction is then presented. The system predicts mu-
sical events described by the culture-specific representations introduced previously.
Prediction accuracy is evaluated quantitatively, and more importantly by subjective
listening tests. The goal of music prediction is to satisfy human musical expectation

in a listening situation rather than ground truth from the musical source.

To conclude this work I present some scenarios that the design strategies intro-

duced here can be applied to.

5.2 Music Prediction in the Real World

A system that implements culture-based computational music representation and

automatic music prediction enables several applications such as:

A network music performance system where music prediction compensates for

network lag.

A music generation system that ‘predicts’ an entire piece from an initial seed

(i.e. the first note) and its learnt grammar.

A music transcription system that generates a score from audio.

An automatic feedback or accompaniment system for individual performers.

A music ‘translation’ mechanism between musical instruments or genres.
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A system the predicts music can serve to compensate latency in remote music
collaboration by synthesizing estimated future events with no wait time. Such a

system was demonstrated by Sarkar and Vercoe (2007).

The system presented in this dissertation has been tested for the prediction of one
future event. Informal experiments have shown that the error rate quickly deteriorates
when predicting more events in advance. However, if the generative grammar is
modeled after a particular tradition, the output will still match its requirements and
constraints. Nothing stops the system from predicting a whole piece of music from a
seed feeding into its grammar model: it will produce music ‘in the style of” whichever

model it is based on.

The building blocks of the system presented here (e.g. pitch tracking, beat de-
tection) enable monophonic music transcription. If we were to invent a notation
system for non-Western oral traditions, we could imagine the system generating a
score for a particular instrument in that tradition based on the salient parameters of

its representation model.

Such a system could also provide feedback based on recognized primitives for a

music learner to learn and improve musical skill.

Taking the idea of the network music system presented above and keeping it
local, we could devise a system that would have a grammar where left input elements
would correspond to the instrument played locally, and the right output elements
would trigger another musical instrument. The system would then ‘accompany’ the

local instrument with a synthesized instrument.

Or instead of accompaniment, we could think of a ‘translation’ mechanism between
musical instruments or genres by having the grammar modified to output idioms

corresponding to another tradition.
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Figure 5-1: TablaNet: a real-time online musical collaboration system for Indian
percussion (Sarkar and Vercoe, 2007)

5.3 Network Music Performance: a Killer App?

One of the most promising application seems to be a system for network music perfor-
mance. Network latency has a physical limit that is bounded by networking overhead
and the speed of light, which cannot be reduced by conventional means. A predictive
approach is a creative way to deal with network lag by generating and synthesizing
future musical events based on the previous events that are transmitted across the
network. In this scenario the automatic music prediction engine is used in a dynamic

realtime environment within a closed feedback loop involving machines and humans.

In my master’s thesis at the MIT Media Lab, I designed TablaNet 2007, an online

collaboration system for the tabla based on recognition and prediction.

In this work I was striving to overcome network latency for online musical collab-
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oration so that musicians remain perceptually synchronized with each other as they
play in real-time over the internet. I developed a system that is tuned to a particular
musical instrument and musical style—the tabla in North Indian (Hindustani) mu-
sic. The system includes hardware and software components, and relies on standard
network infrastructure (no low latency required). Software modules at the near-end
process the acoustic signal and recognize individual drum strokes. Symbolic events
are sent over the network, and high-level rhythmic features are extracted and stored
as generative grammar rules at the far-end. Rules are also applied to each incoming
event in order to estimate the most likely next event so it can be synthesized at the

far-end. Each performer has both the input and output parts of the system.

Because the system predicts one event in advance, the amount of lag that auto-
matic music prediction compensates for is a function of the musical content itself,
in particular its tempo. In fact the amount of lag compensation varies continuously
based on the individual timing of successive musical events. For musical passages
that have a series of onsets in rapid succession, we may consider encoding them as a
single musical primitive in order to allow for longer lag times and improved prediction

accuracy.

The system was tested live in a lecture-demonstration during a workshop at the
MIT Media Lab with collaborators in India and at the Center for Computer Research
in Music and Acoustics at Stanford University. The system compensated delays up to
100ms between the US East Coast and the West Coast, and up to 300ms with India.
Tempo variations (faster and slower) were demonstrated with performers at each end
recounting their experience at the end of the performance. It turned out that the
system was able to compensate for latencies far above any audio-based system, and
trade-offs (i.e. prediction errors) were “manageable” during improvised live jamming.
According to the audience members, the system was able to convey the gist, or high-

level musical intentions, of the performers in the appropriate musical style.
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5.4 Contributions

This dissertation results in scientific contributions in the realm of music perception
and cognition. It also contributes to the design, engineering, and technology of com-
putational music systems. Finally, as an artistic component to this work, it uncovers

a new perspective that emphasizes the role of culture in computer music.

In this work, I:

e Defined a method to quantify and compare cultural complexity in music using

information theory.

o Introduced a measure of musical entropy to analyze the predictability of a piece

of music based on its context.

e Conducted a study that supports the importance of computational enculturation

for music prediction.

e Proposed design principles for a culturally sensitive computational representa-

tion of music.

e Designed a software framework for automatic music prediction that takes mu-

sical culture into account.

e Developed cultural plug-ins that incorporate an appropriate representation of
several musical instruments in various traditions, including tabla (Hindustani),

drums (Blues), bansuri (Hindustani), and flute (Blues).

e Invented the concept of prelag (negative lag) when music prediction anticipates

musical expectation in the cognitive realm.

98



5.5 Future Work and Final Remarks

This work is by no means complete. In addition to filling a gap in human knowledge
the purpose of a doctoral thesis seems to be to uncover more questions and unknowns.
Music prediction is a new field of inquiry in music technology. At the time of “going
to press” I am aware of several computer music departments that have received grants
and advertised research positions for the study of computational music prediction. It
is my hope that culture will be taken into consideration when attempting to design
music prediction algorithms, and that claims of a universal system won’t be taken

lightly.

Among the follow-ups that this work could benefit from, and the new fields of

scholarship that this work opens, some merit attention:

A system that switches context (i.e. selects the appropriate cultural plug-in)

automatically based on the musical content (i.e. genre) of the incoming audio.

e An audio-based prediction system that works on audio samples instead of mu-

sical symbols.

e Multi-dimensional prediction that models pitch, rhythm, loudness, timbre, and

other parameters of music.

e A system that would create appropriate musical representations for each genre

without the intervention of a human designer.

e A computational model of music perception and cognition that would lead to a
fully autonomous Artificial Intelligence that would learn through enculturation

and perform prediction like a human would.

This work brings together years of research in what I call culturally sensitive music
technology. 1 strongly believe that tools influence creative output (through what we

call their affordances), and I think it unfair to provide the world with tools biased
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towards a particular culture. I don’t believe it is necessary to provide the ‘containers’
and the content that will cater to all the cultures found in the world—local designers
will often do a better job in making the right choices for their own community and

culture—but I strongly believe that it is of the utmost importance to be aware of it.
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Appendix A

Glossary of Terms

Element Basic building block of music, e.g. pitch, beat, timbre.
Event Discrete time-based element of music, e.g. note, percussive stroke.
Symbol Label and associated parameters of a musical event.

Primitive Low-level perceptual representation of a musical element, e.g. pitch, tac-

tus, loudness.

Construct High-level or cognitive, usually learnt, combination of musical primitives,

e.g. scale, rhythm, dynamicity.

Structure Generic term for a musical primitive or construct, or a combination

thereof.

Representation Mental or computational mapping corresponding to a musical struc-

ture.

Culture (also Tradition) Set of pieces of music that share a common representa-

tion.

Genre Set of pieces of music in a particular tradition that share common generative

rules.
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Form Overall structure or plan of a piece of music.

Style Characteristics that are specific to the performance of a particular piece of

music.
Expectation Cognitive capacity for predicting music in a listening context.

Anticipation Cognitive capacity for predicting music in an active context, i.e. while

performing.

Prediction In general, computational estimation of forthcoming musical events.
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