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Abstract

With research institutions from various private, government and academic sectors
performing research into autonomous vehicle deployment strategies, the way we
think about vehicles must adapt. But what happens when the driver, the main
conduit of information transaction between the vehicle and its surroundings, is
removed?

The EVITA system aims to fill this communication void by giving the autonomous
vehicle the means to sense others around it, and react to various stimuli in as
intuitive ways as possible by taking design cues from the living world. The system
is comprised of various types of sensors (computer vision, UWB beacon tracking,
sonar) and actuators (light, sound, mechanical) in order to express recognition of
others, announcement of intentions, and portraying the vehicle's general state. All
systems are built on the 2 nd version of the 1/2 -scale CityCar concept vehicle,
featuring advanced mixed-materials (CFRP + Aluminum) and a significantly more
modularized architecture.
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[i.o] Introduction

[1.1] The State Of Today's Cities

Today's cities are experiencing rapid urban densification, the likes of which has

never been before seen in human history. For the first time in 2007-2008, the

United Nations Population Division estimates that more than half of the world's

population now lives in cities'. This trend is expected to continue, with over 90% of

expected population growth to occur in these urban cells. With this growth comes

the opportunity to reduce suburban sprawl, integrate more mixed-use zoning, and

increase the efficiency at which the city operates from both an energy and

transportation point of view. More dense urban environments create a sense of

vibrancy, as its inhabitants interact in ways suburban sprawls cannot achieve.

However, today's cities were not built with this rapid growth in mind. In fact, the

exact opposite is occurring. According to the United Nations Department of

Economic and Social Affairs, Population Division, there is a trend of decreasing

density. If current rates remain, the average land occupied by cities with

populations of over 100,000 inhabitants will increase by a factor of 2.75 by 20302.

Current infrastructure in most modern cities is already struggling to keep up with

the demand being asked of it. The American electric grid is largely made up of

components built decades ago. Energy supply does not match demand, and so

there are frequently megawatts of electricity being produced for non-existent

loads. Similarly, spikes in electricity demand puts massive strain on the grid,

requiring supplemental sources offering little to no resiliency or redundancy

should portions fail.

1 United Nations, Department of Economic and Social Affairs, Population Division. (2011). World Population
Prospects: The 2010 Revision. New York
2 United Nations, Department of Economic and Social Affairs, Population Division. (2011). Population
Distribution, Urbanization, Internal Migration and Development: An International Perspective. New York, p12
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[1.2] The State Of Today's Transportation

Transportation systems are similarly at peril. There exists an excess of personally

owned automobiles, causing traffic congestion in most major metro areas, and

represents a large portion of total C02 and other greenhouse gas emissions per

year. The US Environmental Protection Agency (USEPA) 2012 Greenhouse Gas

Inventory states, "The transportation end-use sector accounted for 1,772.5 Tg C02

Eq. in 2010, which represented 33 percent of C02 emissions, 23 percent of CH4

emissions, and 48 percent of N20 emissions from fossil fuel combustion,

respectively." Further, it states that of that figure, passenger vehicles and light-

duty trucks accounted for 61% of total transportation related emissions3. If a non-

incremental modal shift in how we think about mobility does not occur, the veins

and arteries of the city, supplying its lifeblood - the people - will be constantly

congested.

z5W PAW"~ CWdoxn2X

2 Fgr 1-1 21 CO2 0E0m 1,74S

500 22430
42

Figure 1-1: 2010 C02 Emissions from Fossil Fuel Combusfion4

In order to support the growth we can expect to see, cities will have to move away

from traditional, private ownership-centric transportation models, integrating a

mobility ecosystem that is designed specifically around the needs of its

3 USEPA. (April 2012). Inventory of U.S Greenhouse gas emissions and sinks: 1990-2010, p3-13
4 USEPA. (April 2012). Inventory of U.S Greenhouse gas emissions and sinks: 1990-2010, Figure 3-5
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inhabitants. In the last decade, there has been a notable boom in small to medium

scale rollouts of such systems, providing some evidence that there are individuals

and municipalities considering the implications of integrating shared mobility.

[1-3] Changing Mobility

outolib'
!rHubway

Figure i-2: Selection of implemented shared mobility system providers

One such system is Mobility on Demand (MoD). Originally conceptualized by the

Smart Cities research group within the MIT Media Lab under Professor William J.

Mitchell (1944-2010). MoD is a one-way, shared use mobility system which seeks

to better balance the mobility supply and demand ratio, all the while integrating

sustainable vehicle technology, distributed information and renewable energy

systems, and minimizing the urban footprint required to move people from A to B.

Vehicles can be picked up or rented from a nearby MoD station, and driven to the

user's destination, parking it any other non-full station with no responsibility or

even expectation for the vehicle to returned to its original pickup point. Outlined in

18



further detail in Reinventing the Automobile: Personal Urban Mobility for the 2 1st

Century (2010), MoD combines many of the best features of currently deployed

shared mobility systems, some of which as presented in Figure 1-2.

Figure 1-3: Reinventing the Automobile cover

Some of the key features of MoD include its one-way sharing, dynamic pricing

incentive-based vehicle redistribution, and constant information sharing across

the system. Perhaps most interestingly, however, are the types of vehicles used in

MoD. Other one-way systems such as Autolib' and Hubway utilize only one kind of

vehicle throughout: cars and bicycles, respectively. MoD seeks to improve upon

this by providing a mobility ecosystem of connected electric vehicles of various

types and form factors, allowing users to take the right kind of vehicle for the type

of trip they intend to take. By providing a fleet of electric assist bicycles and

tricycles, scooters and lightweight passenger vehicles, MoD is able to provide

clean, efficient mobility satisfying the lion's share of most urban trips.
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[1.4] The CityCar

Figure 1-4: The MIT Media Lab CityCar. Image by W. Lark.

Of these vehicles, the concept CityCar not only solves many of the mobility issues

MoD attempts to tackle, but also sets a far reaching precedent for the future of

mobility. The CityCar is a lightweight, two passenger electric vehicle, built on a

highly modular platform, giving it a feature set that directly complements and

enhances MoD's effectiveness. Central to the CityCar's architecture are the Robot

Wheels at its corners. The core principle of Robot Wheel technology, as defined by

Raul Poblano5, is the consolidation of a vehicle's complexity into its wheels, thus

freeing the rest of the chassis from its typically static construction. Each corner

contains its own drive motor, steering actuator, braking, and suspension systems,

has no direct mechanical link between units, and is independently controllable

through drive-by-wire technology. Each wheel has a total sweep of approximately

8o degrees, allowing for high maneuverability, including the ability to spin around

its own central axis, dubbed an'O-Turn'.

5 Poblano, R V. (2008). Exploration of robotic-wheel technology for enhanced urban mobility and city scale
omni-directional personal transportation. M.S. Thesis. Massachusetts Institute of Technology, USA.
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Figure 1-5: The MIT Media Lab CityCar's maneuverability enabled by its robot wheels.

Image by W. Lark.

By removing the traditional drivetrain, the chassis can be much more dynamic: the

vehicle can be made to fold. By enabling folding, the CityCar can reduce its total

footprint to take up less than 1/3 of the space of a normal car. Coupled with the

front ingress and egress, three of these vehicles can fit in one 8' by 18' parking

spot.

a?-rpO fnw* 4-1 (1500 MV4

CtyCar (unfodc CityCw olded

Folde Cfty~w v& conventlon 4-doo sedan
Parldng ratio- 3.3: 1

Figure 1-6: Parking ratio enabled by the CityCar folding structure6

6 Mitchell, W. J., Borroni-Bird, C. E., Bums, L. D. (2010), Reinventing the Automobile: Personal Urban
Mobility for the 21st Century, Figure 9.20
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This complements MoD by increasing the utilization rate of the land, and reducing

the total urban footprint required of the mobility system as a whole. Introducing

dynamic incentives for redistribution of the MoD fleet is a solution viable with

technology available today. This requires relying on human behavioral dynamics,

which at best is sporadic. Other vehicle sharing programs rely on the much more

difficult, inefficient and expensive method of manually moving vehicles to the

stations where they are needed.

[1.5] Introducing Autonomy

ga, lo

Figure 1-7: Changing parking density afforded by autonomy and the CityCar

What then, if we enabled this system to redistribute itself on demand, utilizing

vehicles that redistribute themselves. Further, if we remove the need for human

ingress, we can pack these vehicles even tighter, up to a ratio of 7 vehicles to the

space required to park and move one regular sedan. The CityCar is more of an

electronic car, than simply electric. It is already controlled by on board computer

systems in a way not found in today's available vehicles. This makes it a

particularly viable platform to deploy autonomous vehicle technology, as it only

requires the addition of the various sensors needed to enable autonomy.
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Figure 1-8: Some of the key stakeholders in autonomous vehicle research

Searching for the terms "autonomous car", or "cars that drive themselves" gives a

very quick glimpse into the ever-expanding world of autonomous vehicle research.

Parallel parking assists, which perform the sometimes tricky maneuver

automatically for the driver, have been installed in vehicles as early as 2003;
Toyota being the first to deploy a commercially viable solution on that model year's

Prius sedan7. Those shopping for new high-end luxury automobiles such as the

2012 Lexus LS are afforded a vehicle that has advanced pre-collision detection

systems, and 'Lane Keep Assist'that uses radar to keep the vehicle driving down

the middle of its current lane8. The DARPA urban challenge, which blends the

interests of the US Department of Defense and those of academia, answers "[ ...] a

congressional mandate [ ...] to develop autonomous vehicles that reduce or even

eliminate the presence of conductors in order to limit the loss of life on land

military operations."9 Private corporations such as Google have already logged

over 100,000 miles of driving with little to no human intervention.10

7 Time. (2003). Best Inventions of 2003. Retrieved October 25, 2011, from Time Magazine:
http://www.time.com/time/specials/packages/article/o,28804,1935038_1935083_1935719,oo.html

8 Lexus. (2011). LS Safety & Security. Retrieved October 25, 2011, from Lexus:
http://www.lexus.com/models/LS/features/safety.html

9 Induct. (2011, June). Company Presentation. Paris, France. p8
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driver vehicle
full control full control

Figure 1-9: The basic gradient of autonomy

What this exposes is that autonomous vehicle research is actively occurring on a

spectrum. In fact, one of the key tasks of the majority of the stakeholders in

autonomous vehicle technology is to ratify a legally robust definition set of the

various levels of autonomy, examples of which are used above in Figure 1-8.

Currently, one of the accepted starting points towards this goal is the BASt

definition set, presented below."

Definition of vehicle automation-degrees:
*Driver Only: Human driver executes manual driving task

c- *Driver Assistance: The driver permanently controls
either longitudinal or lateral control. The other task can be
automated to a certain extent by the assistance system.

ePartial automation: The system takes over longitudinal
and lateral control, the driver shall permanently monitor
the system and shall be prepared to take over control at
any time.

* High automation: The system takes over longitudinal
and lateral control; the driver must no longer permanently
monitor the system. In case of a take-over request, the

12 driver must take-over control with a certain time buffer.
* Full automation: The system takes over longitudinal and

lateral control completely and permanently. In case of a
take-over request that is not carried out, the system will
return to the minimal risk condition by itself.

Tom M. Gasser 26t Oct. 2011 slide No. 12

Figure 1-1o: Definition of vehicle automation, as recommended by BASt

10 Markoff, J. (2010, October 9). Smarter Than you Think. Retrieved October 25,2011, from The New York
Times: http://www.nytimes.com/2lo/o/o/science/logoogle.html

11 Gasser, T. M. (October 26, 2011), Additional Requirements for Automation Liability and Legal Aspects
Results of the BASt-Expert Group, p12
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[1-5.1] The Expanded Gradient Of Autonomy

The world of 'Google' vehicles may be some years away though, as both technology

and policy are not yet ready. The state of Nevada recently became the maverick on

the policy front, however, by becoming the first municipality to sign into law,

provisions that will set the precedent for autonomous vehicles to operate on their

highways12. Once the technology becomes commoditized to the point of mass

deployment, as the stakeholders in Figure 1-7 are working towards, there are

several new use cases for self-driving vehicles - also occurring on its own gradient.

As a nascent technology, which involves relinquishing human trust to a mechanical

system, autonomous vehicle technology will not immediately be the Google car.

Figure 1-10 not only shows how autonomy not only progresses from driver to

vehicle control, but also that two versions of autonomy exists - with and without a

driver. Autonomy may begin simply as controlled, indoor operation such as in a

confined parking structure. This 'robotic valet' involves a system where the

complex sensor arrays and computing requirements are moved from the vehicle

into parking lot infrastructures, allowing drivers to have their vehicles park

themselves into ultra-efficient arrays. At the far end of the spectrum are vehicles

whose driver algorithms are fine-tuned to the function the vehicle will be

performing. Using biometric data and driving behavior extracted by analyzing the

habits of good taxi drivers, good truck drivers, autonomous vehicles can behave as

if they are expert drivers of their designated jobs. It could be taken further, such

that an autonomous vehicle operating in a sleepy southern town will be a lot more

polite, than say one tasked to navigate the hectic streets of Manhattan.

12 Shunk, C. (2011, June 12). Nevada passes law governing the use of autonomous vehicles. Retrieved October
25, 2011, from Autoblog: http://www.autoblog.com/2011/o7/12/nevada-passes-law-governing-the-use-of-
autonomous-vehicles/
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Figure 1-11: The expanded gradient of autonomy

Most use cases of autonomy currently assume that there will always be a driver in

the seat, being shuttled from A to B with minimal input from the vehicle's

passengers. Platooning, dynamic self-redistribution, on-demand pickup, and fixed-

circuit autonomous shuttles are all applications where there is no driver while the

vehicle navigates the environment. Normally, when on-road vehicles are operating,
the feedback loop always occurs through the driver or passenger(s): eye contact,

horns, turn signals, shouting, and hand gestures. These communication

conventions are largely taken for granted, and happen in a very fast, natural way.

This can be easily realized by observing a busy intersection.

But if an autonomous system such as the one described above was to proliferate,

how do we go about handling these intuitive conventions once we remove the

human factor? Statistics from NHTSA show that in 2009, there were 4092

pedestrian fatalities caused by accidents with motor vehicles.13 This accounted for

13 National Highway Traffic Safety Administration. (2012), Fatality Analysis Reporting System (Fars)
Encyclopedia. Retrieved June,28, 2012, from NHTSA:
http://www-fars.nhtsa.dotgov/Main/index.aspx
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12% of all vehicular fatalities that year. It is not difficult to imagine that most of

these incidents were likely because of miscommunication, or reduced

pedestrian/driver vigilance. This situation gives us the unique opportunity to not

only match, but also exceed the currently low levels of communication quality

between vehicles and pedestrians, regardless of whether or not a human is in the

driver seat.

[1.6] Introducing IEVITA

The purpose of this thesis is to provide various answers to this problem space, by

breaking the question down into its constituents, and proposing viable

electromechanical interventions that address each concern. As a pedestrian, one

has to be able to know what the autonomous vehicle is about to do next. The

vehicle has to be able to communicate recognition of those around it, and

subsequently announce its intentions. These communication protocols have to be

achieved immediately, and intuitively, so as to not require the populous to read an

instruction manual prior to feeling safe. Such a system will be most powerful when

it can be applied to many different stages of the driverless car gradient, and is

highly transposable to many different vehicle types.

Lastly, a way has to be found to take design cues from the living world to effectively

tie the above three concerns together. The successful implementation of this work

will lead to the transposition of the developed system on to any autonomous

vehicle platform, and help to significantly alleviate robotic vehicle operational

anxiety by those who will have no choice but to navigate the same spaces with

them. The name of the developed system to answer the above stated problems is

the Autonomous Electric Vehicle Interaction Testing Array, or EVITA. As Figure

1-n1 below demonstrates, AVITA was primarily developed for application to the

arm of full autonomy that does not have a human in the driver seat. However, the

system is not exclusively confined to this arm. Driver vigilance as it is currently

could always be better. Hence, removing responsibility from the driver to watch
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the road, one could expect the conduit of information transfer to be sleeping,

reading, texting, or generally not aware of his or her surroundings. In this case,
EVITA may also be applicable as a constantly aware communication entity.

driver d wihive
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application
space to be bleto
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autonomy autonomy
without driver with driver

Figure ii: The application space of the/EVITA system

In summary, /EVITA has three layers of communication it leverages, attempting to

cover the simplified spectrum of how we communicate with each other../EVITA is

built to be able to:

* Express its recognition of humans in its field of view

o Recognition System

- Announce its intentions through directed contextual messages

o Announcement System

- Utilize the dynamic CityCar platform, its various sensors and actuators to

evoke body language

o Body Language System

28



[2.o] Related Work

[2.1] Purpose Built Autonomous Vehicle Deployment

There are many groups who are actively working towards deploying autonomous

vehicle technology. Some of the best examples of autonomy gradient occupiers

were previously mentioned in Section 1.5. Most research currently occurring

involves the retrofit of traditional vehicles with the sensors and computing systems

required to achieve autonomy. Several platforms however have been purpose built

with the intention of building autonomous operation as a feature, not an add-on.

Figure 2-1: The GM EN-V

The GM EN-V (Electric Networked Vehicle) project was a joint project between

GM and Segway to develop a prototype of what the future of urban mobility would

look like.14 In fact, the leaders of the EN-V project collaborated closely with the

Smart Cities Group during its conception, and it was built with the same mindset

as the CityCar, which is why an early version of the EN-V concept shares space on

14 Motavalli, J. (March 24, 2010). G.M. EN-V: Sharpening the Focus of Future Urban Mobility. Retrieved June

2 8h, 2012 from New York Times: http://wheels.blogs.nytimes.com/2010/o3/24/g-m-en-v-sharpening-the-
focus-of-future-urban-mobility/
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the cover of Reinventing the Automobile. Some of the core features of the EN-V

are:

" Leverages electrification and connectivity, creating a new class of

personal urban mobility

" Autonomous driving, parking and retrieval with advanced sensors and

drive-by-wire systems 15

Sharing such close DNA with the CityCar and its goals of changing the mobility

landscape make it almost its cousin. Having autonomy built-in as a core feature

does set the two apart to some degree, however the system's description makes no

mention of rich communication pathways from the vehicle to pedestrians.

The EN-V may remain a technological demonstration at best, but there are already

fully autonomous systems available for public in place. Companies such as Paris

based Induct are working not only on closed-loop, campus style autonomous

transport vehicles, but also on robotic valet systems16. The larger CityMobil

initiative incorporates many subprojects aimed at creating multimodal intelligent

transportation systems - many of which include the incorporation of autonomous

Personal Rapid Transit (PRT) solutions.17 One of the projects currently operating

in France is the Cybus. Similar to the closed-loop bus concept from Induct, it picks

up passengers on demand along a predetermined route and carries them to their

requested destination.18 Both systems are viable platforms for the inclusion of the

IEVITA, as they also completely lack of any pedestrian communication protocols.

15 GM. (March 24, 2010). EN-V Fast Facts. Retrieved June 2 8t, 2012 from GM:
http://media.gm.com/autoshows/Shanghai/20lo/public/cn/en/env/news.detail.html/content/Pages/news/c
n/en/2010/March/envo3.html

16 Induct, (June 2011). Company Presentation. Paris, France. p28 -45

17 CityMobil. (2012). CityMobil Objectives. Retrieved June 2 8t, 2012, from CityMobil: http://www.citymobil-
project.eu/site/en/Objectives.php

18 Inria. (December 5, 2011). Le Cybus d'Inria en demonstration a la Rochelle. Retreived June 28t, 2012, from
Inria: http://www.inria.fr/actualite/mediacenter/cybus-inria
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In the field of autonomous vehicle deployment and communication, the system

most closely resembling /EVITA is the voice-commandable robotic forklift

developed by Seth Teller, et.al. In a 2010 IEEE Conference paper titled A Voice-

Commandable Robotic Forklift Working Alongside Humans in Minimally-

Prepared Outdoor Environments, the authors describe a system built to

demonstrate how an autonomous machine that has to operate in human inhabited

environments may receive input from a supervisor, navigate the obstacle-filled

workspace, and interact with humans it encounters.19 The last of those three main

features is achieved through the two of the three categories defined by the /EVITA

system - recognition and announcement. The robotic forklift expresses its

recognition by activating a set of marquee lights (addressable LED strings) in the

direction of the person, and audibly announces that a human is approaching. It

goes further to announce its state through written text on LED signage based on

the context of the situation.

While this work does go further into the reverse communication case, where a

human send commands or gestures to the autonomous vehicle, the robotic forklift

utilizes methods of vehicle-to-pedestrian communication that may not be intuitive

or rapid enough for an on-street environment. Reading text output may be slower

than what is needed in the streetscape, and it cannot be assumed that all persons

around an autonomous vehicle can understand the message for various reasons.

Aside from the audio warning, the system also does not emulate any natural

human or animal interactions in a biomimetic sense, nor does it take advantage of

explicit body language responses, with the recognition marquee lights being a close

abstraction of this concept.

19 S. Teller, A. Correa, R. Davis, L. Fletcher, E. Frazzoli, J. Glass, J.P. How, J.h. Jeon, S. Karaman, B. Lud- ers,
N. Roy, T. Sainath, and M.R. Walter. (2010). A voice-commandable robotic forldift working alongside humans
in minimally-prepared outdoor environments. In International Conf. on Robotics and Automation, pages
526-533, Anchorage, AK.
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[2.2] Biomimetic and HMI Research

Figure 2-2: Personal Robotics Group's Aida

Anthropomorphism and biomimicing research in the field of robotics has been on

going for a number of decades. In the MIT Media Lab, work by Dr. Cynthia

Breazeal in the Personal Robotics Group, where robots such as Kismet2o and

MDS21 were developed specifically to understand ways to engage human-robot

interaction. While the depth of interaction between humans and the class of robots

in this thesis is far beyond what may be necessary for the living EV, it helps to

define what kinds of electromechanical solutions can be found to personify an

autonomous electric vehicle. Moving towards the automotive, Aida (Affective

Intelligent Driving Agent)22 also developed by the Personal Robotics Group, shows

how robots can be integrated into a vehicle, but can only provide insight into

driver/passenger to vehicle communication.

20 Breazeal, D. C. (2000). Kismet Overview. Retrieved October 26, 2011, from Kismet:
http://web.media.mit.edu/-cynthiab/research/robots/ldsmet/overview/overview.html

21 Personal Robotics Group. (2008). MDS Overview. Retrieved October 26, 2011, from Personal Robots
Group: http://robotic.media.mit.edu/projects/robots/mds/overview/overview.html

22 Personal Robotics Group. (2003). Aida Overview. Retrieved October 26, 2011, from Personal Robotics
Group: http://robotic.media.mit.edu/projects/robots/aida/overview/overview.html
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In the Biomimetic Robotics Lab, headed by Assistant Professor Sangbae Kim,

entire mechanical assemblies are designed to match or exceed the performance of

its naturally occurring counterparts. Robots such as Stickybot and the Hyper

dynamic quadruped robotic platform (Cheetah Robot)23 are the truest form of

biomimetic design. The Stickybot was built to demonstrate how to build active and

passive limb locomotion, as well as researching the ways gecko's feet adhere to low

friction surfaces.24 The Cheetah Robot attempts to develop a high-speed

locomotion platform, designed with high torque motors and the natural gait

dynamics of a real Cheetah. However, both of these prototypes do not integrate

any form of human interaction, focusing on electromechanical replication are not

interactive, and are not designed to exhibit naturally understandable behaviors.

In both fields of biomimetics and HMI, the above presented are only a few

examples of the work being done. Prof. Kim's previous lab at Stanford, where for

example Stickybot was originally designed, continues to push the design

boundaries of design electromechanical systems based on nature. Prof. Breazeal's

PhD adviser, Prof. Emeritus Rodney Brooks, was one of the pioneers in developing

responsive robots with which humans may interact.25

23 Biomimetic Robotics Lab. (2008). Research. Retrieved October 26, 2011, from Biomimetic Robotics Lab:
http://sangbae.scripts.mit.edu/biomimetics/

24 Cutkosky, M. (May 24, 2011). Stickybot III. Retrieved June 2 8th, 2012, from: Biomimetics and Dexterous
Manipulation Lab: http://bdml.stanford.edu/twiki/bin/view/Rise/StickyBotIn.html

25 CSAIL. (July 2010). Rodney Brooks - Roboticist. Retrieved July 29t, 2012 from CSAIL:
http://people.csail.mit.edu/brooks/
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In a paper submitted to a 1997 IEEE conference, Shibata et al explored the idea

that robots have advanced to the point where we may begin to treat them as

equals, and so both verbal and non-verbal communications will be important.26

They proposed to build a pet robot with which to begin understanding this space.

Observing human-to-human, as well as human-to-animal interactions will provide

important indicators to programming the right kinds of human machine

interactions. This idea resonates with the objectives of ANITA, however, the

system presented in this thesis focuses firstly on the machine to human

interactions, as well as specific interventions suitable for an automotive

application.

26 Shibata, T., Yoshida, M., & Yamato, J. (1997). Artificial emotional creature for human-machine
interaction. 1997 IEEE International Conference on Systems Man and Cybernetics Computational
Cybernetics and Simulation, 3, 1-6. Ieee. Retrieved June 28t, 2012 ,from:
http://ieeexplore.ieee.org/xpls/abs-all.jsp?arnumber=635205
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[3-0] 2 nd Generation City Car System

Development

[3-1] Predecessors

The EVITA system is built on top of a custom half-scale prototype of the MIT

CityCar. Over the past three and a half years, there have been several half-scale

prototypes developed for various purposes. The first generation half-scale was

built as the first fully functional driving and folding platform, meant to used as a

proof-of-concept and expose of the various core features of the CityCar idea. The

five core principles of the CityCar are:

i. Robot wheel technology

ii. Drive-by-wire controls

iii. Front ingress/egress

iv. Foldable chassis

v. Fully electric drivetrain

Figure 3-1: it half-scale CityCar prototype
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Figure 3-2: CAD - 1st generation half-scale CityCar prototype

Following the development of the first generation fully functional prototype came

the first museum/exhibition version, based on the same chassis design, but

featuring a polished all-aluminum exoskeleton. This version was built for the

Smithsonian Copper-Hewitt Design Museum in New York City for their National

Design Triennial "Why Design Now" exhibit, 2010. It is currently on display at the

MIT Museum for the MIT 150th year anniversary.
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[3-1.1] Hiriko

These two first generation prototypes lead directly to the culmination of almost a

decades worth of research into the concept: the commercialization and realization

of the first full-sized, operational, and to-be-sold version of the CityCar. The Hiriko

Fold was developed by the graduate students of the Smart Cities/Changing Places

research group, in conjunction with a sponsor of the MIT Media Lab, Denokinn,

and a consortium of traditional automotive suppliers operating in capacity as co-

manufacturers. Current work is being done to fully homologate and crash test the

vehicle, with an estimated availability late 2013-14.

Figure 3-3: The Hiriko Fold, commercialization of the concept CityCar
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[3.2] 2 nd Generation 1/2 Scale Platform Design Overview

Figure 3-4: CAD - The 2 nd generation 1/2 scale CityCar platform with AEVITA, unfolded

Building on much of what was learnt from developing the 1st generation

prototypes, as well as working with the folding chassis of the Hiriko Fold, the 2 nd

generation 1/2 scale platform, referred to from this point on as the 2GHS, improves

upon the design of its predecessors in several ways. The platform makes use of a

revised folding architecture, repeated modules in the front and rear, and fully

redesigned robot wheels. It makes heavy use of advanced composite materials and

thorough finite element analysis (FEA) on almost all components and assemblies

in order to minimize weight while maintaining structural integrity.
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Figure 3-5: CAD - The 2GHS platform with /EVITA, folded

The platform was also designed specifically with the intention to incorporate

various sensor systems, integrated microcontroller subsystems, as well as various

lighting and motion actuators. The platform is designed to fully incorporate the

key operational features of the CityCar concept, as outlined in Section 3.1, and can

be broken down into four main subassemblies:

- Main structural frame

- Powertrain modules

- Folding linkages

- Robot wheels
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Each main subassembly is made up of several smaller assemblies, of which more

detail will be described in the following Sections. The three main /EVITA system

modules are deeply integrated into the 2GHS structure. The announcement system

has its own mechanical subassembly, as does the recognition system. The body

language system largely relies on the electromechanical design already existing on

the 2GHS. Details of the mechanical and sensor design and integration of the

EVITA system are discussed in Section 4.
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[3-3] Main Structural Frame

Figure 3-6: CAD - The 2GHS main structural frame

Central to the 2GHS is the main structural frame, which not only serves as the

primary pivot points for most of the folding linkages, but also as the final load

bearing element of the platform. There are five parts that make up the main

structural frame: two main bars, two carbon fiber reinforced plastic (CFRP)

underbody members, and a single CFRP top member. The five parts of

mechanically bonded together to form a single structure.

The main bars are T6-6o6i aluminum alloy (T6-6o6i) rectangular bars that have

been cut and welded to incorporate the necessary angular changes as the design

called for. T6-6o6i tubular pieces are also welded into the main bars, forming the

main folding linkage pivot bushing housings.

CFRP was chosen for the remaining structural members for a single reason. CFRP

is an advanced composite material, finding its way into more and more
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mainstream automotive applications due to its exceptional tensile strength to

weight ratio. Assuming a volume of im3, CFRPs can achieve up to 0.94 MPa/kg,

while stainless steel AISI 304, for example, reaches only 0.14 MPa/kg

(substech.com). This constitutes an order of magnitude greater strength for CFRP

versus conventional steel structures. CFRPs also have the added ease of forming

complex surface pieces without the need for very expensive forming processes, as it

relates to a one-off prototype such as this. However, CFRP is inherently much

more expensive to manufacture as it requires pricey carbon-fiber filaments, either

left as strands or woven into cloth, and is also costly create on a large scale since

much of the standard layup process is done by hand. It is because of this why

CFRP and other composite materials are typically only used in advanced

motorsports and the aerospace industry.

As prices continue to fall and manufacturing processes improve, CFRP will be

seen on many more classes of vehicles, including electric vehicles. Weight is a

cyclical problem for electric vehicles. As weight increases, larger motors are

required to move the vehicle at usable velocities. Larger motors require more

power, and so larger battery packs must be integrated. Larger battery packs

increase the overall weight, and so the cycle restarts. To counteract this, the use of

composite materials in the vehicle's structural members becomes very attractive,

for the reasons outlined previously. BMW has taken this exact stance with the

introduction of their new'i'line of electric and hybrid vehicles27.

For the 2GHS, the carbon cloth chosen was a 2x2 twill weave, 3K weight roll, with

a nominal thickness of 0.22mm. 2x2 twill refers to a cloth that has 2 weaves, or

threads, woven equally over and under. 3K weight means that each thread has

3000 carbon filaments. This weave and weight was chosen for its moderate

strength, and high formability over complex and small radii of curvature molds. All

CFRP parts were laid-up using a two part clear epoxy, and cured using vacuum

2 7 Ozler, L. (September 3,2011). The Carbon Age Begins: Start of Carbon Fiber Production for BMW i3 and
BMW i8. Retrieved June 20t, 2012 from Dexigner: http://www.dexigner.com/news/23727
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bagging techniques over positive molds. All molds were 3-axis CNC machined out

of high-density polyurethane foam, and surface sealed using thickened epoxy. Both

underbody pieces are made up of 3 layers of the carbon fiber cloth described

above, while the top member has 5 layers. The top member features contours

designed to provide a clear range of motion for the various folding elements

beneath it, as well as two wing-like structures on its side, serving as mounting

points for the prototype's exoskeleton frame (See Appendix 9-E)

Figure 3-7: CAD - The 2GHS main structural frame, as viewed from below

The component parts of the main structure are fastened together using machine

screws, the positions of which were determined by placing the various sub-

structures in a jig to ensure dimensional accuracy. The total weight of the main

structure comes in at 2.16kg, which when compared to the ist generation /2 scale

represents a 54.4% reduction in mass, whilst being optimized to bear anticipated

loading factors during normal vehicle operation.
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Figure 3-8: The 2GHS platform, with both underbody CFRP pieces top center

Figure 3-9: CAD - The 2GHS platform, with the top CFRP attached
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[3.4] Powertrain Module

Figure 3-10: CAD - The 2GHS powertrain module, with some robot wheel components

attached

As the main structural frame is the mechanical backbone of the 2GHS, the

powertrain modules can be thought of as both its torso, as well as the electronic

heart. The 2GHS has two powertrain modules: one at the front of the vehicle and

one at its rear. The powertrain modules are the mounting points for the robot

wheel assemblies, houses the micro-controllers, batteries, & power distribution

buses, as well as being two linkages in the folding structure. In the previous design

iterations of the 1/2 scale vehicle, it was determined that the vehicle needed to be

designed to allow for driving and steering in both the unfolded and folded
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positions. Based on the design at the time, however, the front arms of the vehicle

would be tilted at an angle such that attempts to steer the vehicle would collapse

the entire wheel structures underneath the vehicle.

Figure 3-11: The dry 2GHS powertrain module with tray

To remedy this, the lead/trail arms connecting the robot wheels to the main

chassis of the vehicle were instead attached to a structural element that pivoted on

the main bar. It was then connected to the rest of the folding linkages via another

link, called the synchro link, which maintains a close-to-perpendicular relationship

between the steering axis of the front wheel assemblies and the ground throughout

the folding process. As the design evolved, it was realized that both the front and

back structural elements serving as the robot wheel attachment points could be a

single repeated design. This saved manufacturing time, as CNC cut files were

combined on metal plates of the same thickness, and the number of unique
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finishing machining operations were be significantly reduced. As Figure 3-13

below shows, the only structural difference between the front and rear modules is

that the front has a single pivot point in middle of its back wall, while the rear has

two.

Figure 3-12: CAD - The 2GHS powertrain module, with some robot wheel components

attached, as viewed from top
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FRONT

Figure 3-13: CAD - The 2GHS platform showing structural difference between front and

rear powertrain modules, as viewed from below
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Figure 3-14: The lead/trail arm attached to the powertrain module, showing the angular

offset

The powertrain module makes extensive use of FEA in order to reduce its weight

as much as possible. Entirely constructed out of T6-6o6i aluminum alloy, each

module has a dry mass of 6.92kg. As shown in Figure 3-10 the powertrain modules

have two mechanical mounting points of a robot wheel module. Each robot wheel

rotates about a pivot point that is 200 offset from being perpendicular to the side of

the powertrain. The upper mounting point had to be designed in such a way so as

to allow for the normal compression and extension of the gas suspension. While

the design was verified digitally in the CAD process, it was important to also verify

the free motion of the suspension and lead/trail arm on the physical model. Figure

3-15 shows an early iteration of the upper connection point that was 3D printed in

ABS plastic to quickly perform this verification. Dimensionally, the design worked

as expected, however some modifications were made. FEA was used to arrive at the
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currently used design, which is a lattice structure with elements as thin as imm.

Figure 3-16 shows this final design execution, with suspension element attached.

Figure 3-15: 3D printed ABS plastic suspension upper connection point

Figure 3-16: FEA optimized 6o6i-T6 suspension upper connection point
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The powertrain module houses a polycarbonate tray, mounted to the module on

removable drawer slides, and held in place with magnetic latches. This tray was

designed to house the majority of the vehicle's electronic systems, and its power

source and distribution buses. The tray is fitted with two 26.5cfm exhaust fans to

aid in the movement of stagnant hot air. The top of the tray is also removable,

which in conjunction with the drawer slides simplifies the process of working on

the tray's internal components. The front and rear trays are responsible for

different vehicle functions, and as such, have unique internal elements.

Figure 3-17: Powertrain module with tray pulled out on drawer slides

The front tray contains:

- 1 microcontroller 10 box, with 2 Arduino microcontrollers

o Primary front micro - Arduino Mega 2560

o Pupil controller micro - Arduino Uno

- 1 K2 Energy K2B24V1oEB 24V ioAh Lithium Iron Phosphate Battery

- 15VDC bus

- 1 12VDC bus

- 124VDC bus
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The rear tray contains:

* 1 microcontroller 10 box, with 1 Arduino microcontroller and 1 relay board

o Primary rear micro - Arduino Mega 1280

o Folding actuator bidirectional relay switch

- 1 K2 Energy K2B24V1oEB 24V 1oAh Lithium Iron Phosphate Battery

- 1 DC-DC converter board, with 5v and 12v outputs

o Cosel CBS502412 12V 4.2A output

o Cosel SFS302405 5V 6.oA output

- 15VDC bus

- 1 12VDC bus

- 1 24VDC bus

A power umbilical cord connects the front and rear power buses, with the 5V and

12V lines being supplied entirely from the rear DC-DC converter board, and tying

the front and rear 24V K2 batteries in parallel. Both trays also house a 30A power

switch, and a Turnigy 130A Precision Watt Meter and Power Analyzer to easily see

the average power being drawn from each tray, especially useful during initial

tabletop system tests. Further details on the microcontroller board and shield

stacks are covered in Section 4.1.

Figure 3-18: Internals of the front powertrain module's tray. At right, IO Box
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Figure 3-19: The completed rear powertrain module's tray

Each 10 box was created in order to consolidate the wiring required to tie the

various motor controllers, sensors and actuators to the Arduino microcontroller

network. The 10 boxes utilize 9-pin D-subminiature (DE-9) connectors to interface

with these various systems, with the front box requiring three connectors, and the

rear box requiring two. Pin 10 schematics can be viewed in Appendix 9-D. The IO

box is also fitted with an intake fan, primarily to aid in moving air over the voltage

regulators built into each microcontroller. Prolonged use of the system saw the

microcontrollers exhibiting behavior akin to overheating (random resets, hardware

chip lockups), so heat sinks were attached to each voltage regulator, and the fans

added as an extra precaution.
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[3-5] Folding Linkages

The unfolded platform has wheelbase of 944mm, and a track width of 800mm.

When folded, the wheelbase reduces 36.8%, to 597mm, with no change to the

previously defined track width. This favors comparably to the target 30% reduction

the full-scale CityCar achieves. In the patent filing Dual Four-bar Linkage System

for Folding Vehicle Chassis (Lark, Pennycooke), current designs allow for a

maximum of 40% reduction in wheelbase, with the mechanism and geometry

chosen for the 2GHS existing on the upper end of that spectrum. There are 7 main

elements in the folding linkage structure, shown in Figure 3-20 below.

Powertrain Modules

Folding Actuator Primary Linkages

Figure 3-20: CAD - The 2GHS folding linkage main elements
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The total linkage system can be best described as a hybrid front 4-bar linkage and

rear (4+1)-bar linkage. The front of the vehicle's 4-bar linkage is made up of the

front powertrain, the main bars of the main structural frame, the synchro link, and

the secondary link. The rear 4-bar linkage's elements are the rear powertrain, the

primary linkages, the main bars, and the secondary link. The "+1" refers to the

folding actuators between the primary linkage and the main bar. The actuators are

fully extended when the chassis is unfolded, and literally pulls the system together

to complete a fold.

Both linkage systems share the secondary linkage as a fourth element, thus tying

all motion enacted upon the rear linkage system to the front through the synchro

link. As was stated in Section 3.4 on p.31, this synchronized motion allows for the

powertrain modules to remain relatively parallel to the ground throughout the

folding process, enabling full driving and steering in both the folded and unfolded

positions. A second benefit of this arrangement is that the majority of the vehicle's

weight (the powertrains) stays low, while folding, resulting in little increase in the

height of the center of mass. Figure 3-26 demonstrates the full folding sequence of

the chassis.

It should be noted that the manufactured design of each of the linkages is different

in appearance to those portrayed in the figures in this Section. With regards to

kinematics, the manufactured linkages perform exactly as the displayed design,

however due to several limiting factors including cost and turnover time, their

method of manufacture had to be changed. All linkages were originally designed to

be lost-wax or investment casted in 356-T6 Al, but were redone so that they could

be assembled from several machined planar pieces.
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[3.5-1] Primary Linkages

Figure 3-21: CAD - The 2GHS primary linkage

The primary linkage acts as a functional mirrored pair, connecting the rear

powertrain module to the rear most pivot point of the main structural frame. It

also serves as the rear connection point for the folding actuators. During the

folding process, the folding actuators pull on the primary linkages, and because of

the linkage geometry, they lift the main structural frame up at its rear. Because the

mass being lifted is relatively small, liberties could be taken with the construction

of the primary linkages. Each primary linkage uses 6o6i-T6 Al for all

bushing/pivot points, connecting them with high-density foam sandwiched with

CFRP. The assembly is fastened using a combination of machine screws and high-

strength, high peel-resistant epoxy.

This method of construction reduces the weight of the linkage, and also creates a

virtual crumple zone. The CFRP sections will fail before irreparable warping to the

other folding elements occurs if one of the actuators fails, or if any type of rear

impact.
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[3.5.2] Folding Actuators

The two folding actuators are the animators of the entire dynamic chassis system.

They behave as a 5th linkage between the main bars and the primary linkage. Each

actuator is a Linak LA23 non-back-drivable linear actuator, with ioomm of stroke,
1200N of force in pull, and approximately 700N of static holding force23.Non-

back-drivable actuators where intentionally sought out so as to eliminate power

draw by the actuators should the folding process pause between its normal binary

states. This is important for both the energy efficiency of the system, as well as the

maintenance of safety, should there be a power failure during a folding operation.

The actuators also feature a safety nut to prevent catastrophic failure during pull

operations.

In previous designs of the folding mechanism, specifically on the ist generation

prototype, the actuators were designed to extend to bring the vehicle from an

unfolded to a folded state. However, this was problematic as it constrained the

packaging and geometry of the entire chassis since the actuator had to be mounted

to at least one preexisting linkage pivot point. By changing to a retraction based

folding system, the size (width) of the actuator is no longer confined to a very small

space as it can be moved to outside of the main structural frame, and by not

limiting the design of the mounts to a point between two existing pivot points, a

vast array of stroke lengths can be designed. As built the folding actuators are

mounted between the primary linkages and the main bars.

28 LINAK. (2010). Product Data Sheet Actuator LA23. Retrieved June 29t, 2012 from IINAK:
http://www.linak.com/corporate/pdf/ENGLISH/DATA%2oSHEET/Linear%2oActuatorLA23_Data%2oShe
etEng.pdf
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Figure 3-22: The Linak LA23 actuator, extended

Figure 3-24: The Linak LA23 actuator, retracted
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[3.-.3] Secondary And Synchro Link

Figure 3-25: The secondary and synchro links

The secondary link connects the rear powertrain module to the main bars, and the

synchro link connects the front powertrain to the secondary link. Both elements

underwent extensive motion analysis FEA to create the planar assemblies required

to replicate the functionality of the originally to-be-casted pieces. With CFRP

plates covering 6o6i-T6 Al lattice structures, each piece is geometrically optimized

to handle expected static and dynamic loading conditions throughout the entire

folding sequence. Matching the pivot points available on the front and rear

powertrain modules, the synchro link has one pivot point interfacing with it, and

the secondary link has two. This allows the linkage pivot points to overlap laterally,

thus enabling the wheelbase reduction previously described.
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Figure 3-26: CAD - The 2GHS folding sequence, showing the lift of the main structural

frame, and the overlap of the front and rear powertrain pivot points
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[3-6] Robot Wheel Module

Figure 3-27: CAD - The 2GHS front-left/rear-right robot wheel module, without

suspension

The robot wheels are what make this dynamic robot chassis into a fully functional

vehicle. The concept of the robot wheel simply requires the consolidation of a

vehicle's traditional drivetrain and steering mechanisms into the corners of the

vehicle, forming a repeated module that requires a simple mechanical, power, and

data connection. Because of this flexibility, over the past several years, there have

been many iterations of the design employed on the various prototypes created

within the research group. As designed, the front-left, and rear-right robot wheels

are exact copies of each other, while the front-right and rear-left are mirror copies.

The robot wheels used on the 2GHS are designed to operate with a maximum total

steering sweep angle of 540. This allows for traditional steering angles of ±15*

about dead ahead, as well moving the wheels into an'o-turn' position tangential to

the center circle described by the folded and unfolded wheelbases and track.
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[3.6.1] Arm And Suspension

Figure 3-28: The 2GHS front-left/rear-right arm and suspension structure

The lead/trail arm design of the lower suspension arm of the robot wheel module

was chosen for several reasons. It does not impede on the large sweep space

required by the wheel and tire for the vehicle to be able to perform an O-turn.

Secondly, it has very simple mechanical connection to the chassis of the vehicle,

requiring the removal of only two pivot point shafts for the total removal of the

module. Lastly, because much of the top surface area of the arm is not needed to

mechanically support the robot wheel, this space can be utilized to house the

steering mechanism and control electronics.

Constructed of 6o6i-T6 Al, the design of the arm, like much of the rest of the

vehicle, takes car to minimize its overall weight. Perpendicularly arranged 2mm

thick support framework are aligned to the expected direction of most loads the
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wheel will encounter, i.e. running parallel and orthogonal to the axis of symmetry

of the chassis. The large gap in the middle of the structure facilitates the mounting

of the steering actuator, and as mentioned in the powertrain module, the gas

spring suspension connects the angularly offset arm to the rest of the chassis. The

step-down design of the arm also brings the axis of rotation of the wheel assembly

concentrically aligned with the pivot point in the powertrain module connecting

the rear to the primary linkages, and the front to the main bars. This is

advantageous as it eliminates errant moment forces introduced during folding

when the vehicle rolls on its wheels, while pivoting around those two main axes.
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[3.6.2] Steering

Figure 3-29: The 2GHS robot wheel steering mechanism

Previous designs of the robot wheel incorporated gear trains, timing belts, and

direct non-back-drivable motor assemblies. However, all of these methods

required external position encoding, which complicated both the mechanical

assembly as well as the circuitry and control code required to adequately manage

steering all four corners. In addition, none of the above strategies had a form of

absolute positioning, nor were they easily tuned, adjusted or serviced.

To remedy these problems, a servo-based solution was chosen for its simple

interfacing to the control infrastructure built on the vehicle, as well as its intrinsic

absolute positioning. This means that the system always knows where the wheel is,
and in the event of a power failure, will not reinitialize the current position as dead

ahead, a problem regularly encountered with the above mentioned strategies.
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Figure 3-30: CAD - Details of the robot wheel architecture and the steering mechanism

The servo used is a HiTec HS-7955TG digital servo meshed with a metal gear for a

5:1 speed reduction. Operating at 6V supplied by a Battery Eliminator Circuit

(BEC) built into each of the motor controllers discussed in Section 3.6.5, this

combination has a maximum rotational speed of 600 in o.65s (92 deg/s or 1.6

rad/s) and a maximum holding torque of 11.8Nm. At stall, each draws a maximum

of 4.2A. Attached to the larger output gear is an arm that can be rotationally

adjusted and tuned to either correct steering misalignment, or add toe-in/out to

the vehicle. Connecting the steering C-bracket to the servo and servo arm is a

threaded rod with ball joint linkages at both ends. The angular difference between

the top plane of the C-bracket, which is parallel to the ground, and that of the servo

arm necessitates using the linkage end types. The steering angle and response can

thus be tuned by adjusting the threading into each linkage end, or by moving the

position of the linkage end that mounts to the slot in the servo arm. The C-bracket

rotates about a bushing-lined tube, held to the robot wheel arm with a 7075-T651

Al upright.
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[3.6.31 Steering Control

The control of the steering servo is done directly from the nearest primary Arduino

microcontroller, front or rear. The servos take a Pulse Position Modulation (PPM)

signal, directly writing an angle (0) in the range of o s 0: 1800 through the built

in Arduino Servo library.29 Due to the geometric relation of the linkages between

the axis of rotation of the servo and that of the actual steering bracket, a change in

angle of 10 of the servo does not correlate to an equal change for the steering

bracket. Hence, an attempt to find mathematical relationship between the two

angles was made, but was found to be massively complex.

In order to create a steering algorithm, the CAD file was used to manually rotate

the steering servo in increments of 10, starting at a steering angle of -150, and

continuing through to the 0-turn angle of +52.40. The results of this study can be

found in Appendix 9-C. What was immediately observed was that between ±150,

the relationship between the servo angle change and steering bracket change was

relatively linear with a corresponding servo range of ±110 centered on its 900

position.

The steering algorithm could then be greatly simplified, as continuous control

between +150 and +52.40 was not needed for any normal steering operation. Thus,

it was possible to create a linear control equation, and a separate discrete 0-turn

function that hard writes the necessary angle to the four corner units. The

equations take into consideration a virtual application of the Ackermann steering

geometric principle of slightly different steering angle between the left and right

sides of the vehicle as they trace circles of different radii.

29 There is significant debate amongst users whether or not the terminology Pulse Width Modulation (PWM)
or PPM should be used to describe the control signal a servo receives. However, for the purposes of this thesis,
the term PPM will be used as PWM is 'less correct' and not what the R/C industry uses, which will be
important Section 3.6.5 describing the drive controller. Further information on this discussion can be found
here http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1253149521/all
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Centre of turning circle

Figure 3-31: Diagrammatic representation of the Ackermann steering geometry3o

Figure 3-31 above demonstrates this principle. However, this only demonstrates 2-

wheel steering. Because the 2GHS has 4-wheel steering, it can achieve a sharper

(smaller) turning radius, and given that it is a virtual Ackermann implantation, the

amount around the true Ackermann angle can be tuned without any physical

modification to the vehicle. The equations governing the total steering control are

as follows:

Normal Steering

When turning left:

A = 0.15(adjSteering) Eq
(3-1)

(wheelBase 10 EB -s wheel a tan -0.26(adjSteering) + tack 3-2)
/( 2e~ae 100 )*10 E

C = -0.15(adjSteering) Eq
(3-3)

(wheelBase10 
E

D tan-1 2 wheelase /tn '-0.26(adjSteering) + track 3-4)

30 Wikimedia. (November 28, 2006). illustration of Ackermann Steering Geometry. Retrieved June 2 2 nd, 2012
from Wikimedia: http://commons.wikimedia.org/wiki/File:Ackermann.svg
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When turning right:

wheelBas 
180 EqA = tan-1 wheelBase tan 0.26(adiSteering) + track (3-5)2 k 100

B = 0.15(adjSteering) Eq
(3-6)

(wheelBase 180 EqC = -tan-1 2 wheelBase /tan (0.26(adjSteering) + track (3-7)

D = -0.15(adjSteering) Eq

(3-8)

When dead ahead:

A=B=C=D=0 Eq
(3-9)

Servo angles:

leftFrontSteer = (0.75 * A) + 90 Eq
(3-10)

rightFrontSteer = (0.75 * B) + 90 Eq
(3-11)

leftRearSteer =(0.75 *QC + 90 Eq
(3-12)

rightRearSteer = (0.75 * D) + 90 Eq
(3-13)

0-turn Steering

Servo angles:
leftFrontSteer = rightRearSteer = 117 Eq

(3-14)

rightFrontSteer = leftRearSteer = 63 Eq
(3-15)

where wheelBase is the distance between the axes of the front and rear wheels,

track is the distance between the symmetric centers of the wheels as viewed head-

on to the vehicle, and adjSteering is the -100 to +100 steering output of the

handheld vehicle controller. It should be noted that all steering calculations from

the controller input are done in C# program running on the PC, and writes the

desired servo angles directly to the microcontrollers.
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[3.6.4] Drive

Figure 3-32: The 2GHS robot wheel drive motor and motor mount

When deciding on a drive motor, it was debated whether or not to use a direct

drive hub motor, or some other arrangement using more conventional gear-motor

combinations. Due to the lack of availability of suitable off-the-shelf hub motors at

this scale, and avoiding a custom built and wound motor, the decision was made to

use a small and light brushless DC (BLDC) outrunner motor, with as low a kv value

as possible interfacing with the wheel through a gear reduction. The kv value of a

BLDC motor tells how many RPMs the motor will spin at per Volt applied. The

lower the kv, the lower the rotational speed, but the higher the torque. This is

primarily due to the internal winding being able to handle more current, and the

current draw of a motor is directly related to its torque output. A BLDC outrunner

motor was also chosen for its lower possible kv value as opposed to a brushed
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motor or an inrunner type. Considering packaging constraints and a drive power

bus of 24V, the motor chosen was the 3-phase Hacker A50-14L 30okv. To its shaft,

a steel 20T pinion gear was affixed. The motor assembly mounts to a plate that is

fastened to the steering assembly's C-bracket. In this arrangement, the outside

casing housing the magnets of the motor (purple casing in Figure 3-32 and

Appendix 9-E) spins, thus reducing the rotational mass and inertia that needs to

be overcome.

Figure 3-32 also shows two bearings mounted on a shoulder bolt. This constitutes

part of the drive hub to which the wheel and tire assembly mounts. The hub

assembly is a machined 6o61-T6 cylinder with housings for the two bearings,

counter-bored holes to affix lug bolts, as well as mounting holes to attach the main

drive gear. The drive gear is a steel 120T internal gear, which when attached to the

hub assembly and mounted to the C-bracket via the shoulder bolt, interfaces with

the drive pinion for a 6:1 speed reduction and torque increase.

Figure 3-33: The 2GHS robot wheel hub assemblies, without lug bolts or bearings
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Figure 3-34: The 2GHS robot wheel hub assembly, mounted to the drive/steer assembly
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[3.6.5] Drive Control

The motors being used to drive the 2GHS platform are purpose built model aircraft

engines. Their low kv value and consequently, high turn count per tooth (i.e. for

every laminated tooth inside the motor, there are a high number of turns of high

current wire), means that these motors have a naturally high inductance. Typical

scale aircraft motor electronic speed controllers (ESCs) are built to handle this,

and so have no problem starting and maintaining rotation of the motor. However,

aircraft ESCs can only rotate a motor in one direction for a given range of throttle

inputs. To that end, a 1/ 10 th scale radio-controlled car ESC was chosen to drive

each robot wheel's drive motor, specifically the Castle Creation Mamba Max Pro

(MMP) controller, as they are able to drive, brake, and reverse a motor over a

single throttle input range. The 24V power bus supplies each MMP.

Figure 3-35: The 2GHS robot wheel assembly, Castle MMP ESC at bottom left
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This controller was attractive for several reasons. Firstly, its small size and built in

heat management meant that the ESC could be mounted on the lead/trail arm of

each robot wheel, close to the motor. Secondly, and most importantly, was its high

level of programmability. All Castle ESCs are USB programmable, allowing the

fine-tuning of a motor response to throttle inputs. This controller was not meant to

handle the high inductance of an outrunner motor, as they are usually coupled

with very high kv inrunner motors for model radio controlled cars. However, by

adjusting the throttle curve, setting the instantaneous starting power to 'high' and

experimenting with different timings, a suitable ESC profile was built up to be able

to control the chosen motors, with much greater than expected performance. A

detailed printout of the final ESC settings can be found in Appendix 9-E. Lastly,

the controller is able to run in both sensored and sensorless modes, meaning it

could operate whether or not the motor has built in Hall Effect sensors used to

measure internal magnetic phase switching and improve motor timing and

smoothness. The BLDC motors here are not sensored, and though there is some

cogging, or jerkiness, at initial motor spin up because the ESC is 'blindly guessing'

which phases to fire, within -1 second, the motors smooth out.

These ESCs are normally controlled via a wireless receiver built into the model

vehicle, which takes throttle commands from a handheld transmitter. What was

discovered was that the signal sent from the receiver to the ESC was a PPM signal:

the same kind of output that an Arduino is capable of producing in order to control

a servo. In order to verify this, a servo tester was hooked up to one of the ESCs,
with external power connections, and the signal and power grounds tied. It was

found that by setting the servo tester to 900, the ESC would not drive the motors,
setting it o drove the motors to full throttle in one direction, and 1800, full

throttle in the opposite direction.

What this meant was that these ESCs, regardless of make, were fully controllable

via Arduino and required only 1 pin to do so. By setting that pin to behave as a

servo and writing an angle command to that pin, it was possible to intelligently

control all four wheels throttles by writing values in the above stated ranges. In
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normal drive operation, all four wheels drive in the same direction: 1800 full

forward, oc full reverse, and 900 neutral. For an O-turn, where only diagonally

paired corners drive in the same direction, it is simply a matter of reversing the

throttle input (18o minus the throttle value) written to the applicable corners. The

equation that manage the throttle values on the PC is written is,

90
throttle = 90 + * (RightTrigger - LeftTrigger) Eq

(3-16)

where throttle is the servo value written to the Arduino network, RightTrigger is a

0-255 value for forward drive, and LeftTrigger is a 0-255 value for reverse drive.

In 0-turn mode, RightTrigger is activated to rotate clockwise, and LeftTrigger,

counter-clockwise. Each trigger is potentiometer switch that outputs a value of o

when untouched, and 255 when fully depressed. As the equation shows, a value of

900 will be written to the ESCs when neither trigger is depressed, and balances the

throttle input based on how much of each trigger is contributing to the input. As a

safety lockout and dead man's switch, drive control cannot be activated unless

another input from the handheld controller is constantly present.
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[3.6.6] Wheel And Tire

Figure 3-36: CAD - The 2GHS rim and tire

The wheels of the vehicle are built as a 2-piece unit. The wheel's face is 3D printed

glass-filled Nylon-12. It is FEA optimized to handle the weight of the vehicle, and

because it is produced by Selective Laser Sintering (SLS), has a very solid interior

structure capable of bearing loads as a functional part. The face also possesses fin-

like vane structures between the load bearing arm elements. These act as light

reflectors and diffusers for the responsive ambient wheel lights, described in detail

in Section 4.4.1.

The second part of the wheel was machined out of a 1oi.6mm thick block of black

ABS plastic, with a diameter of 254mm. The piece has 14 22m deep notches that

align with the 14 positioning pegs in pairs on the 7 arms of the face. The ABS piece

also has 7 exterior semicircular divots that run the depth of the entire part. These

were included to provide extra gripping points for the rubber tire that is to be

molded around it. Figure 3-37 shows the two pieces before they are combined. To

securely fasten the 2 pieces together, a high strength epoxy specifically made to
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bond differing plastics together without chemical or mechanical surface

preparation was used in each of the 14 notches.

Figure 3-37: The two parts of the 2GHS wheel, before epoxying

The tire is a two part urethane rubber compound with a Shore hardness of 8oA,

which slightly harder than the 70A rating of automotive tires. It is mixed to the

appropriate ratio, dyed black, and poured into a mold around the completed 2-part

wheel. A tread was decided against, as the 'slick' was easier to manufacture, and

while aesthetically less pleasing, provides greater traction by having a larger

contact patch with the ground.

Figure 3-38: The 2GHS rim and tire mounted to the hubs
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Figure 3-39: /EVITA, the complete platform
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[4.0] AVITA System Development

[4.1] Design Overview

---

Figure 4-1: IEVITA system data/signal network
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The /EVITA system, as designed, takes extensive advantage of the advanced

electromechanical platform that it is built on. The three main subsystems,

recognition, announcement, and body language, have both software and hardware

components to them. Figure 4-1 above shows the primary data pathways and

interconnects present in the overall /EVITA system. In the diagram, any bubbles

with the same background color are tied together in some fundamental way. For

example, the wireless Xbox 360 Controller for Windows allows the operator of the

vehicle to manually control the drive and steering actuators, as well as the

headlights and folding mechanism. This however does not mean that they can only

be controlled in this manner. The network of microcontrollers, sensors and

actuators can be very easily connected in ways not described in the following

sections, by adding or adjusting various blocks of code.

Figure 4-2: Arduino Uno and Mega 2560 microcontroller boards31

31 Arduino (2012), Hardware. Retrieved June 24, 2012, from Arduino: http://arduino.cc/hu/Main/Hardware
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The system relies on two main hardware environments, and by extension, two

software environments. The brain of the entire operation is a Windows 7 micro-

PC, running a custom written C# stack of code (YEVITA Tracker Program, ETP),

built to tie together the computer vision capabilities of the Microsoft Kinect,

manual control via a Xbox 360 wireless controller, displays and audio output with

the network of microcontrollers distributed on the 2GHS as a part of the EVITA

system. The PC and the microcontrollers communicate with each other over a

hardwired serial connection to the primary front micro, which then parses the data

package, retains the data it requires, and forwards the remaining data to the

appropriate boards over their connection protocol. On that end, there are currently

3 main Atmega-based microcontrollers in the system, all a part of the Arduino

family of rapid prototyping microcontrollers. The power of this system lays in its

ability to quickly upload new code through its IDE, easy access to pin 10, and its

expandability through the addition of various 'shields' - daughter boards that can

add functionality ranging from wireless communication to DC motor driving, and

beyond.

As proof of this, the /EVITA system's microcontroller network talks to each other

over 3 main protocols simultaneously: Inter-Integrated Circuit (12C or I2C), wired

serial connections, and Xbee 802.15.4 low rate wireless personal network. The

three main subsystems - recognition, announcement, and body language - take

full advantage of the simultaneous interconnection between the various sensors

and actuators.
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[4.2] Recognition Subsystem

Figure 4-3: Microsoft Kinect sensor mounted on /EVITA

The recognition system's component technologies are the most vital of the entire

EVITA system. It is the viewport through which it is able to understand its

surroundings, and identify those with which she wants to communicate - people.

By using computer vision and person of interest (POI) decision algorithms, AVITA

is able to pick out humans, or rather anthropomorphic figures, in her field of view,

and based on her current state, and the perceived state of the POI, initiate

communication in as intuitive, natural ways as possible.

[4.2.1] Computer Vision: Kinect Integration

The core of the recognition system is the Microsoft Kinect sensor bar. Originally

designed to enable users to control the Xbox 360 gaming system via gestural

commands and play games using their entire bodies as the controller, many in the

DIY space quickly realized its potential as a highly accurate computing interface,

and were able to reverse engineer the sensor for use on a traditional computer.

Usually, most technology companies do their best to thwart those trying to'hack'
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their hardware, but to their credit, Microsoft embraced the movement so much so

that they released their own driver package for the sensor, released a version just

for PCs, and oversaw a startup fund for companies looking to integrate the Kinect

into commercially viable products.

Figure 4-4: Microsoft Kinect32

The Kinect uses a combination of a RGB camera, an infrared (IR) dot-pattern

blaster, and IR camera in order to accurately see its surroundings. By detecting

movement of the IR pattern as people move through the space, the Kinect's

hardware and software are able to differentiate between static surrounds and

human-like shapes. Its current iteration is accurate enough to discretely identify

up to two humans' limbs and joints (their skeletons), constantly tracking their

motion as long as they are within the specified range of the sensor. Figure 4-5

shows how the program written for /EVITA identifies a human in her field of view

(FOV). The Kinect currently has a functional range of 8oo-4000mm, with a

vertical and horizontal viewing angle of 430 and 570, respectively. The ATP

utilizes the official Kinect for Windows SDK vi.o and its tools.

32 Microsoft (2010). Microsoft Kinect Sensor. Retrieved June 25, 2012, from Microsoft MSDN:
http://msdn.microsoft.com/en-us/library/hh438998.aspx
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Figure 4-5: ./EVITA's human and skeleton tracking, early version of the ATP

The primary function of the Kinect, as stated, is to track people in the vehicle's

FOV. It is then possible to extract relative position data for all joints of the

person/s in the FOV, and use the data to enable the first, and most basic of

communications.

One of the most immediate ways we know someone is speaking to us, or at the very

least attempting to communicate with us in some manner, is to make eye contact.

By directing our most visible and movable sensors, we express recognition of the

other party, and it is understood intrinsically that we are aware of their presence,

and to some varying degree, analyzing their position and actions in our space. This

connection is not broken once the other party is the driver of a vehicle. Eye contact

between the driver of an automobile and a pedestrian is the first, and sometimes

only, layer of communication between the two. Considering the cases

propositioned on p.12 of Section 1.0, when there is no driver, who does one make

eye contact with?

With IEVITA's eyes.
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[4.2.2] Eye Assemblies

In vehicle design, the headlights have long been analogous to the eyes of the

vehicle. They have been used to position a vehicle towards a certain demographic.

More aggressive headlights are taken to be the angry eyes of a sports car targeted

towards the 24-40 male demographic (Lamborghini). More rounded, curvy

headlights evoke sensuality in the vehicle's fagade (60's Ferrari's), or they could be

bright and happy-go-lucky for the first time car owners and college students on a

pragmatic budget (Mazda 3, VW Beetle).IEVITA takes advantage of this, by

combining human identification with headlights, or eyes, that move with person. It

makes eye contact with them.

Figure 4-6: AVITA's left eye
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Each eye has 4 main components: the high beam headlight, electroluminescent

wire pupils, a pan servo, and a tilt servo. These various elements work in tandem

to bring the first layer of life, and thus communication to the AVITA system.

The high beam is a Luxeon Rebel Cool White Triple Play LED breakout board,

assembled with a large heat sink, driver board, and wide diffuser lens. The pupil

controller board manages each high beam, and their brightness can be regulated

via a PWM function sent through a NPN transistor to the driver board's adjust pin.

Attempts to directly control the adjust pin would result in damaging the board,

and the solution used above came from suggestions by other users of the board, as

well as the driver chip's datasheet.

Figure 4-7: Sparkfun original El Escudo Arduino shield33

The electroluminescent (EL) pupils are 8 EL wires, 4 per eye, which are

concentrically arranged around the high beam LED assembly. EL wire emits

fluorescent light when supplied with an AC source, and all are attached to the pupil

micro through the El Escudo Arduino shield, shown in Figure 4-7. It can switch on

33 Sparkfun (2012), El Escudo. Retrieved June 24, 2012, from Sparkfun:
http://www.sparkfun.com/products/9259
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up to two wires at a time, connecting them to an inverter supplying AC to the

board. Its flexible nature made it an attractive and simple solution to creating

dilating pupils for IEVITA, rather than creating a mechanical solution. By

switching the EL wire on and off in concentric sequence, the appearance of pupil

dilatation can be achieved. EVITA's pupils dilate once the Kinect sensor has

notified the microcontroller network that a new skeleton has been identified in its

FOV. This is done by sending a pupil status update over the 12C connection

between the master primary front and the slave pupil micro.

This action plays on the notion that we as humans experience a similar pupil

reaction when we see someone and their emotional state. A study done by the

National Institute of Health titled Positive Gaze Preferences in Older Adults:

Assessing the Role of Cognitive Effort with Pupil Dilation found that their results

"[...] suggests that gaze acts as a rather effortless and economical regulatory tool

for individuals to shape their affective experience."34 This added layer of

electromechanical personality and subconscious human communication is

intended to increase the familiarity of /EVITA's communication attempts with

humans. While additive, it is not the main feature of the recognition system. The

pan and tilt servos are the elements most important to the actuation side of this

subsystem.

34 Allard E. S., Wadlinger, H. A., Isaacowitz, D. M. (2010) Positive Gaze Preferences in Older Adults: Assessing
the Role of Cognitive Effort with Pupil Dilation, Aging, Neuropsychology, and Cognition Vol. 17, Iss. 3, 2010
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Figure 4-8: IEVITA's pan and tilt servos, right eye, without pupils

The pan and tilt servos allow each eye to independently point at any object in

AVITA's FOV, with movability beyond the viewing angle limitations of the Kinect

sensor. Each eye has its own pan and tilt combination of high-speed servos, all

directly connected to the primary front microcontroller. The /ETP is designed to

track the torso joint, realistically the chest, of any human it identifies in its FOV.

The X/Y/Z coordinates of this joint is actively tracked, and independent combined

pan and tilt servo angles are sent to the left and right eye assemblies. It is

important that they are independent because in a 3D space, two elements laterally

offset from a central view point will describe two lines of differing angle that

converge on that same point. Figure 4-9 below demonstrates this principle. This is

more natural, as our eyes do this when we focus on a single point, and the

resultant angles (01 and 92) are directly related to where the object is in 3D space.

The smaller the offset (servo dist) between the two moving elements, the smaller

the relative difference in the angles is. This is why it is difficult to notice with a

human's eyes.
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Figure 4-9: Difference in angle needed for two rotating elements to converge on a single

point

Using polar coordinates, and taking into account the distance each servo is from

the center of the Kinect sensor, the below equations define the pan and tilt angles

sent to the primary front micro from the ETP:

Polar Tracking Coordinates:

XrelLeft = x - servodist Eq
(4-1)

XrelRight = x + servodist Eq
(4-2)

= 2 
Eq

rrelLeft XrelLeft Z23)

rrelRight r elRight + Z2Eq
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Servo Angles:

leftPan = _'tan~1 (Z 180 Eq+ pcf
Xreitert - f(4-5)

leftTilt = 90 + ltcf + _7tan- 1( ) * 1-80 Eq
rrelLeft n (4-6)

rightPan= -itan-1(_ _ 180 +rpcfEq)n-rp (4-7)xrelRight 4-7

rightTilt = 90 + rtcf + _'tan-1 ( * 180 Eq
7 relRight 7(4-8)

where x, in relation to the video frame captured by the RGB camera of the Kinect

sensor, is the horizontal coordinate of the tracked point, y is the vertical

coordinate, and z is the depth away from the senor the point is. The left pan

correction factor (ipcf) and left tilt correction factor (ltcf) are additive angles that

level out and straighten the eye assemblies based on the non-centered fastening of

the servos to each other and to the 2GHS platform. The constants rpcfand rtcf

perform the same function for the right eye assembly. leftPan, leftTilt, rightPan

and rightTilt are the resultant angles that are sent over the serial connection to the

primary front micro.

The /ETP has a built in decision algorithm that currently can tell the eyes how long

to follow the tracked person (A) for. After that time has elapsed, the eyes go back to

straight ahead, 'ignoring' the person. This is possible because the Kinect backend

software is intelligent enough to give the skeleton an ID, so it knows who that

person is. If a second skeleton (B) enters the FOV, whether or not it be before the

timer for A has run out, /EVITA will switch her gaze over to the newly identified

skeleton. The timer will then reset and follow B for the specified amount of time.

This ensures that all in the FOV are communicated with, /EVITA expressing her

recognition of as many people she can (currently limited to 2 by the Kinect).
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Figure 4-10: NVITA's eyes and Kinect sensor, IETP running on screen in background
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[4-3] Announcement System

The main ways drivers announce their intentions, if they are at least vigilant

drivers, are by honking the vehicle's horn, shouting out the window, and activating

turning signals. Larger vehicles also usually have audible warnings when reversing.

While these can be effective, they are generic. Part of the goal of AVITA is to

improve the current level of communication quality. By leveraging the tracking

system used by the recognition system, she is able to direct messages specifically

towards POIs, and can tailor those messages based on context. For example, if the

vehicle knows that it is about to move off as the traffic light has turned green, and a

pedestrian walks in front of the vehicle not realizing this, rather than blaring a

horn to the entire environment, AVITA can point a natural language or

engineered sound signal to that person to get their attention and notify them she is

about to drive and it is not safe.

Figure 4-11: CAD - EVITA's announcement system
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The announcement system, as built, utilizes a pair of small speakers that are

mounted on a servo. This servo is controlled through the primary front micro, and

like the eye servos, receives angle information from the ./ETP on where a

pedestrian is in relation to the vehicle and its FOV. This allows the vehicle to point

the message at the POI being communicated with, and relays a message to them.

The servo being used for the announcement system is slightly different, however,
as it cannot take a simple angle input. As a multiple rotation servo, a microsecond

value has to be written to it to tell it which angular position to move to. The servo

used here has a 14000 of total rotation, where a value of 1500ps puts it in a neutral

position, and values of 11oos and 1900 ps puts it 7000 in either direction. This

means that for every ips incremented, the servo moves 1.750. The equation of

motion that handles the panning of the announcement servo is:

aa (tan- z + 2.0) 18
announcePan = (1. 75 )+1500

Figure 4-12: EVITA's announcement system
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Just as the recognition system is able to handle when more than one person has

entered the FOV of the Kinect sensor, so does the announcement system

understand which identified skeleton it is speaking to. As a demonstration of this,

if person A enters the FOV, /EVITA will say:

"It is safe for you to walk"

If person B then enters, she will point the speakers to them and announce:

"It is also safe for you to walk"

AVITA will also finish a message in progress to person A before moving on to

announcing a message to person B. It is evidently possible to make her polite. The

announcement system can thus be programmed to convey an arbitray number of

messages in various audio formats. It is also feasible to introduce more advanced

real-time natural language - artificial intelligence (AI) - to the system, rather than

simply relying on a standardized database of sounds. However, this does raise the

ethical issues underlying AI, and where to draw the line on how anthropomorphic

to make a machine. In addition, natural language may not be the most effective not

only because streets can be very noisy environments, but also because it cannot be

assumed that those around the vehicle will speak the same language as she does.
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[4.4] Body Language System

[4.4.1] Basic Subsystem

Much of what is communicated is not just what is said verbally, but how it is said.

Kinesics35 is the study and analysis of non-verbal communication, including

posture and movement of body parts. The current state of a person, in many cases,

can be more accurately measured by paying attention to semi-conscious or

unconscious displays. Even in the animal kingdom, many creatures use semi-

passive displays to alert another entity of, for example, its discomfort and its

preparation to trigger a fight or flight reaction. The best examples of this are from

cephalopods, and their use of chromatophores in their skin to rapidly change color

to either camouflage themselves, send messages to others of their kind, or to warn

and disorient a potential attacker36.

Figure 4-13: Parallax Ping! sonar sensor

35 Givens, B. D. (2010). Kinesics. Retried on June 25, 2012, from Center for Non-Verbal Studies:
http://center-for-nonverbal-studies.org/kinesics.htm
36 Nixon, M., & Young, J. Z. (2003). The brains and lives of cephalopods. New York: Oxford University Press.
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IEVITA takes inspiration from both of these sources of non-verbal, or more

specifically, non-auditory communication in order to add a third layer to the

protocols described in the previous two sections. The 2GHS is outfitted with

several sonar proximity sensors that interact directly with an array of lights built

into the wheels of the platform. The Responsive Ambient Wheel Lights (RAWLs)

are a distributed set of BlinkM 'smart' RGB LEDs, grouped into 4 groups of 7, one

set for each wheel. The LEDs are mounted on the same stationary bracket to which

the drive motor is mounted inside a robot wheel module, as seen in Figure 4-14.
The light from the set is diffused and reflected by the non-structural vanes of the

wheels. Each LED is addressable, and all communicate on the same 12C line used

by the other microcontrollers in the system. Each group of 7 has a single address

tied to it, from 1 to 4, such that each group responds as one light unit. It is however

possible to expand their functionality with individual addressing and sensor

inputs.

As built, each corner of the vehicle has one sonar sensor that actively measures the

distance an object within its sonar cone is away from it. Each sonar sensor is tied

to affect one group of the RAWLs. Depending on the distance measured by its

sonar sensor, the corresponding RAWL group will receive an RGB value over the

12C line, fading from bright green, through yellows and oranges, to bright red.

When an object is beyond the predefined 'safe' threshold, all lights will glow green.

As an object approaches a corner, the RAWL group will gradually reduce the green

value in the light mix and increase the red value. The lighting response is not

limited to a RAWL style system, and can be transposed to various lighting or

mechanical systems.

Common conventions have taught us that largely, green is indicative of a good, 'go'

state, and red is a bad, 'stop' state. Similar to the cephalopods mentioned earlier,

the vehicle will express its discomfort by a person or object coming too close to it.

Its responsiveness can be tuned based on whether or not the vehicle intends to

remain stationary, fold, or is inoperable/unsafe. It is also possible to use this

system during full speed driving, by reducing the 'safe' threshold actively as the
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speed of the vehicle increases. An object that is 2m away from a stationary vehicle

is much less a potential threat than one that is 2m away when traveling at 50km/h.

The RAWL system can also be used as ambient displays of the vehicle's state of

charge while parked, so that potential users of the vehicle and maintenance

personnel can quickly see how energetic the vehicle is without having to directly

interact with it. Current work is being done to integrate a smart charging platform

to the vehicle, which will have access to IEVITA's entire microcontroller network,

and thus the ability to actuate her various subsystems based on charging

conditions.

Figure 4-14: One group of RAWLs, attached to the stationary motor mount

Figure 4-15: Diffused and reflected light responding to changes in object proximity
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[4.4.2] Vehicle Login and Personalization

The body language system is also used to give feedback to users as they attempt to

log in to, and unlock the vehicle for use. This is particularly for the case of an

autonomous vehicle that still has a driver inside of it. For the scale at which this

system is built, it serves as a lockout from EVITA, preventing those unfamiliar

with the system from using it in a possibly damaging way.

A RFID reader attached to the primary front micro is used to read one of several

RFID cards that are preprogrammed as valid in a database on the microcontroller.

The login process involves the RAWLs, the announcement system, and the

activation of the ETP. Upon system boot up, the RAWLs default to a white color

blend, and the ATP automatically runs on the PC. She announces that the vision

system has been successfully loaded, and asks the user to login to the vehicle.

Figure 4-16: AVITA RFID login reader and cards

If an unregistered card is tapped on the reader, a harsh alarm will sound alerting

the user that their card is invalid, and all RAWLs flash red on and off. Using a

preregistered card causes the system to play a softer sound that moves up through

a melodic scale. Each user of the system has previously defined their favorite color,

and all RAWLs will briefly change to that defined color, as feedback that the
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system knows who they are. Although not implemented here, it is possible to use

this system to also define certain vehicle personality. For example, some may

prefer a much more docile IEVITA personality, while others prefer for she, to be a

he instead.

This personalization could be extended further on a full-scale version of the system

to include the automatic adjustment of ergonomics, preset language and radio

settings, as well as in-vehicle ambient lighting. A full discussion of the potential

uses and extensions of the system to a Near Field Communication (NFC) based

login system can be found in Appendix 9-B.

Figure 4-17: AVITA login RAWL personalization
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[4-4-3] Combined Subsystem Behaviors

Aggression mode Submissive Mode

Vehicle folds up to an imposing angle Vehicle preps by being semi folded

(~30") (~15*)

Eyes flick up and down Vehicle fully unfolds

Wheels toe in and out quickly Eyes point down and in

RAWLs flicker red Front wheels toe-in slowly

Table 4-1: Summary of two examples of body language system combinations

The IEVITA body language system also takes advantage of the dynamic nature of

the chassis and robot wheel modules of the 2GHS platform. Continuing the theme

of non-verbal communication through the use of posture, IEVITA is able to

combine various emotive features of its dynamics to create more complex body

language expressions. In the case where person A has once again entered the FOV

of the vehicle, without resorting to the announcement system, EVITA can

communicate its intention to drive by becoming visibly, but harmlessly, aggressive.

Likewise, she can become very submissive to the POI, bowing out of the way. Table

4-1 summarizes these two examples.

Once a skeleton has been found to be in the designated 'danger-zone', i.e. a limited

set of x coordinates regarded as a non-avoidable path of collision should the POI

remain there, then /EVITA can initiate a sequence of short folding bursts - in

essence hunching forward in a deliberate manner. The primary front micro has a

3-axis accelerometer that tells the system where in the folding process the chassis

is. EVITA will continue to fold in short bursts until the accelerometer reads that

the chassis has reached the desired maximum angle. Simultaneously, the eye

assemblies flick up and down quickly at the person, sizing them up. The two front

robot wheels also continuously toe in, and straighten out, flexing her mechanical

muscles to the POI. The RAWLs also abruptly flash red as an added layer to her

aggression profile. These behaviors continue until the POI has left the danger-

zone.
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Figure 4-18: /EVITA aggression sequence

When /EVITA has determined she needs to be submissive, she prepares by

hunching up to an angle not deemed as high and aggressive as in the previous

scenario. Once the POI is in the danger-zone, she unfolds slowly and smoothly,

both eyes droop down, and the front wheels slowly toe in. The RAWLs also become

a neutral, stable color. As before, she will remain in this bowed down state until

the POI leaves.
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Figure 4-19: /EVITA submission sequence
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[4-5] Wireless Controller

Figure 4-20: Microsoft Xbox 360 Wireless Controller for Windows (Microsoft.com)

The Xbox 360 Wireless controller for Windows was chosen to control the system

once it was determined that interfacing low latency commands from the /ETP to

the Arduino network was possible. As a ready built solution, it was a matter of

integrating the necessary libraries and callouts in the C# code to read the various

buttons, joysticks, and triggers. Not all buttons are used, so there is room to grow

and add further functionality. The controller is currently used to manual drive and

steer EVITA and the 2GHS platform, with button presses for [function (button)]:

- High beam on/off (Y)

Linking/unlinking sonar sensors

to their RAWL group (press-hold

B)

- Throttle dead man switch

(R-Stick Up)

Forward throttle (R-Trigger)

* Reverse throttle (L-Trigger)

" Steer (L-Stick left/right)

- 0-turn/Normal steering (A+X)

- Fold/unfold (R-bumper/L-

Bumper)

- Behavior mode switch

(START/BACK)
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[4.6] IEVITA Summary

The three main subsystems of EVITA's overall communication, namely

recognition, announcement and body language, can be actively turned on and off

as needed. Significant research into the proper implementations of these

subsystems with the intent of filling out the very large communication space must

be conducted. Nevertheless, the framework of interconnected sensors and

actuators allow for the rapid experimentation of various strategies, requiring little

mechanical intervention, other than adding further functionalities. The ATP code

was written in a modular fashion, and the formatting of the data package that is

sent to the microcontroller network is very simple, as is parsing it on the receiving

end. The entire C# and Arduino code base used to control and define EVITA and

her behavior can be found in the extensive Appendices 9-G, 9-H and 9-I.
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[5.o] Technical Evaluation

[5.1] 2GHS Platform & Control

[5-1.1] Folding Mechanism Failure Mode

The first folding test of the platform was a complete failure. Before integrating the

Xbox wireless controller, two momentary switches were hardwired to the primary

rear micro to control the folding. A few seconds into the first folding test, the

platform began to groan in an unpleasant manner, and within an instant, the

CFRP and high density foam members of one of the primary linkages

catastrophically snapped. Images of the event were unfortunately not recorded.

Post-event analysis found that only one of the two folding actuators was extending,

due to a faulty 24V+ connection to the right actuator. This caused the folding

chassis to warp in an unanticipated manner. The failure occurred on the primary

linkage because it not only housed one of the actuators mounting pivots, but also

had the most vulnerable construction in that loading situation. The linkage design

did not account for such warping forces, and so snapped within seconds of starting

the folding operation.

The failed pieces had to be remade, but the event was not a complete disaster.

What was realized was that even though the event destroyed one section of one of

the primary linkages, no other component on the chassis was remotely damaged or

compromised. Given the architecture of the CityCar platform, this could have

implications for designing crumple zones into the vehicle in a non-traditional

manner. By creating linkages than would fail first upon sudden external (rear-

impact) forces, the rest of the chassis infrastructure could be spared costly damage

by absorbing the majority of the impact force. Coupled with the platforms

capability to take advantage of the folding system as a whole to minimize crash

forces on the front cabin, and thus the occupants, the small CityCar vehicle can be

made that much more safe. Given the above realization and potential, it was
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decided to recreate the piece without modification to the design, in case of another

folding failure event. Further study has to be conducted to understand the real

value of this design choice, but because the 2GHS platform is a one of a kind

prototype, such testing could not be risked.

[5-1.2] Folding Mechanism Loading & Speed

Each of the configured Linak LA23 actuators is rated at 9.4 and 8.2 mm/s when at

zero and full load, respectively. As built, actuating the chassis from fully unfolded

to fully folded takes on average 10.76s. A complete unfold from fully folded takes

on average 10.5s. This is expected, as the actuator has to work slightly harder to lift

the chassis, rather than controlling its descent. It also is very close to the designed-

for ios folding time. Given that the unfold time is only 2.4% slower than a fold, it

reveals a fairly even force distribution exerted by the folding actuators in both

cases. This may be due to the strength of the actuators greatly exceeding any points

of low mechanical advantage requiring a large moment arm to overcome. As table

5-1 below shows, given the actuation time, and estimating a linear relationship

between loading and actuation speed, the folding mechanism only exerts 4% of the

actuators maximum loading potential, averaged over the duration of the fold.

Further analysis on the instantaneous loading forces experience at each point

during the folding sequence would have to be conducted to detect any transient

large peaks or dips.

Condition Loading/N Speed/mms1 Travel/mm Actuation Time/s

No Load 0 9.4 100 10.63

Fully Loaded 1200 8.2 100 12.1

As Built 48 9.35 100 10.7
Table 5-1: Folding actuator loading and speeds
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[5.1-3] Folding Mechanism Geometry

Figure 5-1: Rear 4-bar linkage and front 4-bar linkage droop

The geometric profile that defines the kinematics was completely developed in

CAD. In the design, the primary linkages, and the main bars were designed to rest

directly on the low back wall of their respective powertrain modules. However,
once the 2GHS platform was taken off its development stand and allowed to bear

its own weight on its wheels, it was immediately apparent that there was a

noticeable difference between the intended unfolded resting places of the primary

linkages and the main bars than the designed prescribed. There was approximately

a 15mm droop of the powertrain modules from where they should be. While

unnerving and unexpected, the droop did not affect vehicle performance or folding

sequence in any way other than a slightly reduced ground clearance.

Going back to the kinematic diagram of the folding chassis, it was noted that

pulling the powertrain modules, rotating them around their respective interfaces

with the primary linkages and the main bars showed some change in their angular

relation, before any significant wheelbase reduction occurred. What this means is

that the CAD did not initially reveal the slack in the system, which when

unsupported and acted upon by gravity, extends to its maximum. This was verified

by placing a hand underneath a powertrain module and being able lift it to its

intended position without resistance from the rest of the chassis, however attempts

to increase the gap further was not possible.
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[5.1.4] Throttle Input Testing

During throttle response testing of the platform, it was found that forward throttle

input was much more sensitive than the reverse throttle input. Both forward and

reverse throttle inputs where scaled equally as shown by Equation 3-16, however,

the LeftTrigger input of the controller had to be depressed significantly more

before reverse engaged. Appendix 9-E documents the full ESC settings

programmed to each MMP, including the identical throttle curves programmed to

forward and reverse throttles. This was necessary to ensure even vehicle operation

during 0-turn maneuvers. The last three settings under the 'Basic' heading shows

the PPM timings read from the calibration of the Arduino servo pin out.

Arduino Input Angle (0) Calibration Timing (ms)

Full Reverse 0 0.552

Neutral 90 1.490

Full Throttle 18o 1.988

Table 5-2: Calibration data from ESC setting printout

Table 5-2 above shows the timing ranges measured by the ESC. What was then

realized was that the Arduino pin out during PPM functions had a larger range

between o0 and 900, versus between 9Q0 and 1800. Between full reverse and

neutral, a timing range of o.938ms was read, while a range of only 0.498ms was

found up to full throttle.

What this means is that for any linear input to the two throttle bands of an ESC

controlled by an Arduino, there will be a 53% lag in position of the expected

throttle output for equal inputs, i.e. the forward throttling curve has a virtually

compressed scaling, simulated in Figure 5-2 below where x is input and y is output.

For example, assuming a linear throttle curve, writing 450 (50% throttle) about

neutral writes approximately twice the throttle output value on the forward curve

(o.249ms along the range), as it would on the reverse throttle curve (0.469 along

the curve).
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Figure 5-2: Scaled forward and reverse throttle example

To rectify this, a throttle input range-expanding factor has to be introduced to the

forward throttle, or a range-reducing factor applied to the reverse throttle.

Final throttle curve shapes are still being investigated, and until the full driving

behavior can be properly managed, each MMP ESC electronically limits the power

output of each motor to 40% of its maximum potential.

1o8



[5.2] Recognition

[5.2.1] Kinect Sensor Feasibility

Using the Kinect sensor was attractive for various reasons, but is not without its

limitations.

Pros:

- Official Microsoft SDK with well a well documented API

- Open source solutions for rapid testing across various OS environments

" Inexpensive

- Highly accurate (<iocm resolution)

- Small form factor

Cons:

- Currently cannot be used outdoors

- Only able to track 2 skeletons

- If multiple Kinect sensors are running on the same PC, only one can track

skeletons at all

- No built in false positive management

The cons listed above limit the computer vision system integrated into AVITA to

indoor prototyping and testing. Because the Kinect relies on its IR camera for its

tracking, in an outdoor environment polluted with ambient IR from sunlight, it

would be nonfunctional, or semi-functional intermittently at best. For this reason

alone, where /EVITA is primarily a safety and rapid communication system, a

Kinect based solution would not be feasible to implement on a full -scale vehicle

operating outdoors. Another commercially available computer vision sensor

package will have to found and reintegrated.
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[5-2-3] Kinect Tracking Program Selection

Before settling on the final Kinect SDK provided by Microsoft, several other open

source solutions were experimented with. The first was a project written in the

Processing language using the libfreekinect and openkinect libraries to connect

with the Kinect. The original sample program was modified to remove extraneous

features, and was initially attractive due to its compatibility across different

operating systems.37 However, the openkinect backend did not integrate skeletal

tracking at the time of testing, and used depth maps to simply detect any object

that was closer than a preset threshold. Figure 5-3 below demonstrates the

viewport of the program. By setting the depth threshold to approximately im in

front of the sensor, using only a hand would initiate tracking (the green dot). This

was problematic as the program could not distinguish people from random

objects, and so was useless from a tracking solution point of view.

Figure 5-3: Original tracking program based on depth thresholds

However, where it did prove very useful was in being the first program written for

the /EVITA system that successfully packaged and sent data from the Kinect

sensor, over serial to an Arduino microcontroller through the PC, and have servos

react in real-time. The methodology developed evolved through the rest of the

3 7 Shiffman, D. (January 3, 2011), Getting Started with Kinect and Processing. Retrieved on November, 201

from Daniel Shiffman Blog: http://www.shiffman.net/p5/kinect/
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system's development. Other advantages were a very high speed of actuator

position in response to changes in the tracked object's position. Lag was not

perceivable, creating quick and fluid motions for the eye assemblies, which at the

time only had pan functionality.

The current system runs as managed code, deployed as a *.exe executable,

meaning it can only run on Windows based machines. As many in vehicle

computing systems move towards embedded computing solutions on lightweight

proprietary OS environments, this limits the transportability of the AVITA system.

[5-2.4]ETP Human Identification

The SDK and tool chain provided does have a robust skeleton identification

system, with skeletal recognition happening quickly, given enough of the POI's

body is in the FOV. However, as outlined in the cons above, the Kinect has little, if

not completely devoid of built-in false positive mitigation technology. As Figure 5-

4 and 5-5 show, the program will sometimes believe a static object in the space is a

person, and will fixate on it until the object is removed or occluded. This bug has

been dubbed "The Infamous Small Man".

Figure 5-4: Example 1 of The Infamous Small Man
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Figure 5-5: Example 2 of The Infamous Small Man

Again, for a safety critical system, it will be vital that false positive mitigation is

built into the system so that time is not wasted attempting to communicate with a

signpost. At the time of this writing, no method has been deployed to test

mitigation strategies. Interestingly, it was noted that false positives only ever

manifested themselves as Small Men, and so a strategy involving body proportion

estimation and exclusion may be developed to dump and virtually occlude the

guilty shape or pattern. However, care must be taken with this strategy so as to not

make /EVITA blind to toddlers or persons of short stature. The system has not

been built to handle pets or other animals that may come into /EVITA's FOV
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[5.2-5] Eye Assembly Tracking Speed

The current data packet being received by the primary front micro hovers around

49bytes, and contains 18 discrete data values. As previously stated, testing with the

initial Kinect code framework saw the eye assemblies moving at a speed with

imperceptible lag. However, due to the increased demand on the primary front

micro in parsing this data, processing its own elements, and sending out the rest

over the Xbee radio and the 12C line, a computing lag was introduced, initially

measured at about o.6s per loop cycle. This caused the eye assemblies to slow

down significantly, them following the point in space the POI was, approximately

o.6s prior to their current position. The first solution was to move the

mathematical processing of the servo angles from the Arduino over to the IETP.

This alone dropped the tracking motion lag by 50%, down to 0.3s.

It was also discovered that a part of this problem was because the IETP was

sending oversized data values, with tens of decimal places, where the Arduino

program only stored 2 decimal places for each element. By managing the size of

the data values sent, the Arduino spent much less time dumping extraneous

decimal values. Tracking delay has been measured to be about o.is. While small, it

is still noticeable, and creates a non-fluid eye motion when the POI moves quickly.

Upgrading the microcontroller system used to a more powerful processor and

larger available ram would be the first step towards fixing this issue. Currently, the

code running on the primary front micro takes up 64.3% of the 8Kb of available

SRAM as Figure 5-6 below shows.
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Figure 5-6: Diagnostic print out via serial monitor of primary front micro

[5.2.6] Continuous Eye Tracking Perceptions

Initially, the system was built so that the eyes would continuously track the POI as

long as they were in /EVITA's FOV. However, reactions from persons interacting

with the vehicle immediately deemed it "creepy". Respondents commented

further, saying it reminded them of the robots from the TerminatorT" movie series,

a series that involved the rebellion against and eventual dominion over humans by

hyper-sentient machines. As this connotation was less than desirable, the system

was reprogrammed so that the eyes will only track for a predetermined amount of

time, after which the eyes stopped visibly following the POI, but the system

continued to track their position internally. This significantly reduced the number

of creepy comments received, however some still found it unnerving that a

machine was performing a very life-like action.
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[5-3] Announcement

The announcement servo suffers from the same motion lag as the eye servos, and

can be rectified by the same measures outlined above. There is also an issue where

the tracking equation for the servo only ever writes three positions: 1500±50ps.

The system does currently point to the left or right, given the POIs position relative

to /EVITA, but it is not continuously moving with the POI. The tracking equation

will be rewritten to rectify this.

[5.3.1] Non-directional speakers

The speakers used on the EVITA platform are not directional in the sense that

they do not use technology similar to that found in the Audio Spotlight built by

Holosonic Research Labs, Inc.38, originally developed in the MIT Media Lab by Dr.

F. Joseph Pompei. While actuating them using the ETP's tracking and the servo to

which they are mounted, the speakers still spread a wide sound cone. By

integrating a truly directional speaker array, pinpointing messages to POIs

becomes much more effective. Possibly a combination of both a highly directional

and less directional speaker system on an actuated platform would be a viable real-

world solution, as at times groups of people will need to be communicated with, as

well as needing to replicate the general messaging capabilities of an automotive

horn.

38 Pompei, F. J. (2011) Audio Spotlight Technology. Retrieved on June 20th, 2012 from Holosonics:
http://www.holosonics.com/technology.html
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[5-4] Body Language

[5-4.1] RAWL Light Blending

Revisiting Figure 4-15, the coloration sequence of one RAWL can be seen.

However, the light blending is uneven and may even appear to be one color

dominant depending on the angle the wheel is viewed from. This is because each

BlinkM LED does not have any localized diffusion to blend the light into a

homogenous hue. This does affect color perception, and so added diffusion to

assist the wheel vanes is needed.

[5.4.2] RAWL Reaction Time

Each RAWL group is affected by the same microcontroller lag introduced in

Section 5.2.5. This manifests itself in a delay between a change in object proximity

and the corresponding RAWL group changing to an appropriate color. Even

though the primary rear micro is not required to handle as many systems as the

primary front micro, all lighting commands must still be sent over Xbee to the

primary front micro, processed and commands sent over the 12C line to the

addressed lights. Given this, the same solution of using a much more capable

chipset will solve this problem. Alternatively, the 12C line can be split into two,

directly routing the two rear RAWL groups to the primary rear micro, instead of all

through the front. This would however only solve the lag issue for those two rear

groups.
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[5.4-31 Combined Body Language System Performance

The aggression and submission combined system behaviors rely entirely on the

performance of the constituent components. POI acquisition time in the danger-

zone is quick, and when either is activated, the system responds in the manner it

was programmed to. Interestingly, an unintended action by the eyes adds to the

combined system's personality. The combined system behaviors only occur when

the POI is within the danger-zone range of the FOV. Once the POI has left that

zone, but has not yet left the boundary of the total /EVITA FOV, the eyes of the

system return to a normal tracking profile. In the case of aggression, it has been

perceived as /EVITA giving once last 'dirty look' before the POI leaves. In the case

of submission, it is interpreted as a look of longing. It was decided to not prevent

this surprising personality trait from occurring, as it adds another subtle layer to

the communication profile of /EVITA.

Aggression is the better defined of the two behaviors, as after the POI leaves the

frame, the system fully resets to a passive unfolded state. The submissive behavior

is perceived as more contrived, as /EVITA has to hunch up before the POI enters

the frame. The question then becomes whether or not she should be always be in a

semi-folded state to then hunch up or down, as the situation requires. The

alternative and currently implemented strategy, where she hunches up slightly and

then proceeds to bow down, may be confusing to those EVITA is attempting to

communicate with. Further refinement and expansion of these types of combined

system behaviors will need to be assessed.
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[5-5] System-wide Performance

The driving performance of the vehicle has surpassed initial expectations and

calculations. It was estimated that the vehicle would have a maximum speed of

5m/s, however signs show that it may be able to drive at significantly higher

speeds. Such a top end test will not be carried out, and power output from the

ESCs will remain electronically capped to ensure the safety of the system itself, as

well as persons who may be around the vehicle.

It has been found that if a person is in the FOV of the Kinect sensor while the login

process occurs, the primary front micro receives data in a disjointed manner and

locks up, requiring a microcontroller reset, and on occasion, resetting the ETP.

Also, while the primary front micro is resetting, erroneous angle data is written to

both the announcement servo, as well as the steering servo of the front left robot

wheel. The source of this error has not yet been identified, and is intermittent. It is

problematic however, since there is no way to stop the wheel from steering itself

into the lead/trail arm, only correcting itself once the reset procedure has been

completed.

However, the system has performed better than expected in its current iterations,

running smoothly without crashes for up to 4 hours. It is believed the system could

continue running for much longer, but it would have been too risky had anything

gone wrong to leave it running overnight. Overall, the /EVITA system and the

2GHS platform is a stable platform on which to continue developing novel

communication protocols for vehicle to pedestrian applications.
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[6.o] Conclusion

[6.i] Findings

In a world dominated by the private automobile, traffic, pollution and the scarcity

of space are ever increasing problems plaguing urban areas experience rapid

densification. In order to tackle these problems, one attractive solution is the

implementation of shared use mobility utilizing an ecosystem of electric vehicles.

Further, these platforms are viable hosts to autonomous vehicle technology,

currently under development by many different stakeholders. There has to be,

however, a way for these vehicles to communicate with pedestrians, given the

safety critical nature of driving, and in order to increase the adoption rate and

comfort around these technologies.

The goal of EVITA was to design biomimetic communication protocols for

autonomous electric vehicles to be able to express recognition of humans,

announce its intentions to them, and express its state through body language. The

system described and built above achieves these goals by operating at a minimum,
to the designed specifications and requirements laid out.

In fact, as a complete system /EVITA surpassed initial expectations, both in the

robustness of the design given the prototype and hobby-grade electronic

components used, but also in the types of behaviors that were allowed by the

system. The combined systems behaviors, for example, were never a part of the

original design specification. However, due to astute observations by those

interacting with /EVITA, and the flexibility allowed by the 2GHS platform, its

dynamic folding chassis, and independently controllable robot wheels, much more

was possible than originally anticipated. She has some drawbacks and some

limitations that prevent an immediate application to a real-world scenario, but the
suggested improvements to the system presented at the point of discussion should

lead to their immediate resolution. Otherwise, those who have interacted with her,
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almost without exception, smile when they realize /EVITA is able to communicate

with them, and have so far understood what she is trying to accomplish.

The 2GHS platform has proven thus far to be a robust base on which to build up

and test various possible solutions, before porting to a much larger and more

expensive platform. The chassis has only shown minimal signs of not meeting the

designed specification, none of which affect the viability of the platform as a test

bed for /EVITA's systems.

As discussed in Section 7.1 regarding user studies, significant work must be

conducted to tune the communication protocols suggested in this work into

meaningful, and rapid transfers of information. There is some concern that the

scale of the 2GHS platform will affect user perception of the communications, but

this in itself can be another comparison explored, as it may be the case that 1/2

scale is enough, saving on development cost and reducing development time.

[6.2] Implications and Implementation

A discovery was made at the first Driverless Car Summit held in June 2012 hosted

by the Association for Unmanned Vehicle Systems International (AUVSI),

attended by some of the most important stakeholders in this space: no one is

actively (or openly) discussing the issues and solutions presented here in the

capacity of one of the important building blocks required for driverless cars to

work. Most are highly concerned with the communication between an autonomous

vehicle, and the human sitting in its driver seat. While very valid, and a problem

that has to be addressed as a first step towards autonomous vehicle deployment,

/EVITA assumes their success, and begins to think outwardly. After this work was

presented, many of those important stakeholders became believers in this missing

piece of the puzzle. It is the author's belief that /EVITA is just the beginning of a

large wave of human-machine interaction on automotive platforms, with

autonomous electric vehicles being the best and most important candidates for
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application. There are significant blockades on the way, however. Legislation, fault

liability, culture and technology are all obstacles that must be dealt with on the

road to deploying cars that truly drive themselves. It is the hope that this work will

inspire those working towards this goal to be imaginative with possible solutions,

and to consider how important communication is to all of these obstacles.

As a reiteration, and the driving ethos behind this work, the author would like to

conclude with Bill's powerful words:

"It's important to get the technology and the policy right, but in the end, the way

you break a logjam is by engaging people's imagination, people's desire, by

creating things that they never thought of before."

- William J. Mitchell
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[7.0] Future Work

[7.1] User Evaluation

The first and most important next step for /EVITA is perform user testing of the

system. As a development in the realm of human-machine interaction, significant

work must be done to truly understand what kinds of communications are

appropriate and intuitive in the extremely noise-filled and complex outdoor street

environment. Firstly, a study using EVITA as is, should be conducted, and once a

baseline for the communication space has been set, port the technology to a full-

scale vehicle and commence an in-depth development and testing program in

controlled, but real world environments. Talks are currently underway to apply

this technology to the Hiriko Fold vehicle as a logical and visible platform.

Appendix 9-A outlines exactly what such a user study for IEVITA should look like.

[7.2] Gestural Commands and Pedestrian-to Vehicle

Communication

EVITA in her current state can only respond to a person's presence, but nothing

else. In future work, there should be an effort to consider gestural or verbal

commands, enabling two-way communication between the vehicle and

pedestrians. The action of holding up one's hand, or waving a vehicle along, is

equally important in the communication process between a driver and a

pedestrian, and so this missing factor should be integrated as well. The Kinect

sensor is able to identify these types of inputs already, and because of the tight

sensor-actuator network existing within IEVITA, it should not be difficult to begin

experimenting with several gestural inputs and actuated outputs.
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[7-3] Development of a Communication Standard

Following the developments suggested in Sections 7.1 and 7.2 above, all

stakeholders in the autonomous vehicle research and deployment space should

convene to develop a true standard for the various communication protocols

suggested in this thesis, and beyond. The aim of this work is to make the

interaction between autonomous vehicles and pedestrians rapid and intuitive,

though it does draw on some learned conventions permeated throughout our auto-

centric society. By creating a set of standards there is a chance to ratify the proven

intuitive protocols into a learned behavior of its own, so that those who in 20 years

will be born into a world of prolific self-driving vehicles can be conditioned from

an early age, the proper ways to interact with these machines. This thesis suggests

the primary categories of this definition as the 3 main subsystems of AVITA:

Recognition, Announcement, and Body Language.

[7.4] Possible Applications Today

As mentioned in the introduction, it is possible to integrate the /EVITA system on

to a vehicle today that falls somewhere on the original gradient of autonomy. By

integrating technology able to measure driver awareness and vigilance, /EVITA can

take over communication procedures to possible POIs when she detects that the

driver is not paying attention. Adding this to a vehicle that already attempts to

warn the driver of a possible problem may lead to a much safer driving

environment for all interested parties, today.
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[7-5] Integration of Good Driver Habits

By using data of how a good driver behaves and communicates, both the

effectiveness of /EVITA, and that of autonomous vehicles as a whole may be greatly

improved. In 2002, Healy and Picard39 carried out studies to determine driver

stress levels in different situations such as at a cross walk .If this data is collected

and analyzed for different types of drivers, possibly based on their professions,

profiles of how a good driver reacts can then be factored into the algorithms that

define autonomous vehicle operation. In a sense, it is truly giving a driving

personality to the self-driving car, with IEVITA as the face and direct

communication conduit between this personality and the outside world. For

example, the driving behavior of a taxi is very different from that of a waste

disposal truck driver, or from a regular commuter. Attempting to extract

meaningful response patterns to groups of situations given the task the

autonomous vehicle is to perform may aid in the communication realm as well, as

we are conditioned to expect certain behaviors from certain types of vehicles, and

so can preprocess what the vehicle might do next.

39 Jennifer Healey and Rosalind W. Picard (2002), Driver Stress Data. Retrieved June 26th from MIT Affective
Computing Group: http://affect.media.mit.edu.
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[9.0] Appendix

[9-A] User Study

Instructions to The Participant

Participants must be over the age of 18, and must have walked through a cityscape

and had to have interacted with a driver controlled vehicle at an intersection or in

a parking lot. The following instructions should be given to participants of the

study, and the questionnaire referred to may be found at the end of this

subsection.

Participants will be introduced to the prototype vehicle platform, see it drive into

its starting position, and will be told some contextual information around

autonomous vehicle research, if none is known. They will then be told that they

will be walking across the crosswalk laid out on the ground, directly crossing the

possible driving path of the vehicle.

Participants will be asked to stand in the starting zone, and once the conductor

gives the go ahead, pick up the bag next to the starting zone, and carry it across

the crosswalk to the designated receptacle.

The vehicle will respond to the participant's presence in one of 10 ways.

Participants will then be told to return to the starting zone with the bag, and told

when to complete the task again. Participants are free to notify the conductor if

they do not feel safe completing the task, and return to the starting zone.

After two successful or failed attempts, the participant will be asked to use a

questionnaire form to chose which of the last two vehicle interactions was more

effective at communicating the vehicle's recognition of the participant and its

intentions. This will be repeated for the remaining 4 pairs, until all 10
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interactions have been completed. Each interaction should take less than 1 minute

to complete.

Once all interactions are complete, participants will be asked tofill out a

questionnaire, ranking the 3 best, and 3 worst interactions overall. Space for

comments will also be provided. Total time to complete the 10 interactions, and

answer the questionnaire is expected to be less than 10 minutes.

Instructions to The Conductor

Video will be recorded from two perspectives: from what the vehicle sees, and from

a vantage point that sees both the vehicle and the subject in frame. For each study,

there will then be two videos associated with each subject.

1. Have vehicle sit in place, with all drive functions disabled. Participants will

not be informed of this disabling.

2. Set up speakers with sound simulating outdoor intersection environment

3. Mark ground with tape to simulate street corner/crosswalk and set up

building corner to create a blind

4. Instruct participant to stand in the starting zone, and that they will be

completing the "heavy bag task". The subject will pickup a weighted trash

bag, and asked to carry it across the simulated crosswalk, and put it down in

the designated receptacle.

5. Tell participants that they should only move when they feel it safe to do so,

as the vehicle is capable of driving by itself. They will not be told what the

vehicle is going to do or will be trying to say, nor should they be told the

vehicle's drive systems have been disabled for safety purposes.

129



6. Conductor will then use a wireless controller to enable one of 10 randomly

ordered combinations of preprogrammed communication protocols

7. Once a combination is loaded, instruct the participant to walk with a heavy

bag across the field of view of the vehicle and drop it off in the designated

area, simulating the completion of a task

8. The vehicle will then carry out its programmed recognition and

announcement, or lack thereof, while a program on the on-board computer

records video footage what the vehicle sees. A secondary camera will record

the interactions from another angle.

9. Once the participant has completed the task, or indicated that they are not

sure the vehicle will begin moving, they will be asked to return to the

starting zone, and the next test activated

10. Participants will then experience a second interaction (steps 8 through 10

will then be repeated)

11. After two random interactions are completed, participants will be asked to

indicate which of the two was more effective/clear

12. Steps 8 through 12 will be repeated in pairs until all of the preprogrammed

interactions have been completed

13. Participants will then be asked to rank their overall 3 most effective

combinations, as well as the 3 least effective. They will also comment on the

interactions through various questions.
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Interaction Modes

The ETP is currently configured to run a random sequence of 10 interactions,

outlined below. To conduct an interaction, the START button on the Xbox

controller should be pressed. The START button also advances to the next

interaction, and so care should be taken to not advance if a problem occurs. The

system does not currently allow redoing an interaction already deemed complete,

but this should be introduced in the next version of the ETP. The BACK button

will return the system to full manual control, built in as a safe guard if any errant

behaviors occur.

1: Nothing activated

2: Eyes only

-simply move and track for allotted time

3: Sound safe/unsafe

-sound safe/unsafe once tracked

4: Eyes and pupils

-move, track, and dilate

5: Eyes, pupils, sound

-"normal" current operation

6: Aggression mode, activate once user has been in Danger Zone for 2secs

-Vehicle begins to fold up

-Eyes flick up and down

-Wheels toe in and out quickly

7: Submissive mode

-Vehicle starts semi-folded

-Vehicle folds fully down

-Eyes droop down

-Front wheels toe-in

8: Aggression plus

-add sound and pupils
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-play alarm

-pupil dilation wildly

9: Submissive plus

-add sound and pupils

-sound alert that its safe

-pupils fade in and out softly

10: Annoyance

-vehicle begins with one alarm

-continues to sound it if person still standing in same place

-vehicle then starts to turn red, front wheels toe in

-vehicle then flashes headlights
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Questionnaire

/EVITA Interaction Comparator

PARTICIPANT #: DATE:

For each pair of completed interactions, please choose which of the last two was more
effective in communicating the vehicle's recognition of you, as well as understanding its
intentions?

INTERACTION PAIR 1

A[ ] or B[ ]

INTERACTION PAIR 2

C[] or D[ ]

INTERACTION PAIR 3

E[] or

INTERACTION PAIR 4

G[E] or

INTERACTION PAIR 5

1[ ] or

The space below this line is for the study conductor's use only.

A B C D E F G H I J
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VITA Post-Study Questionnaire

PARTICIPANT #: AGE: DATE:

Answer the following questions to the best of your ability.

[No systems] [Eyes only] [Sound only] [Eyes + Pupils] [Eyes + Pupils + Sound]

[Aggression] [Submission] [Aggression + Sound] [Submission + sound] [Annoyance]

Of the 10 Interactions you experienced, please rank the 3 most effective in
allowing you to understand what the vehicle was attempting to tell you:

1.
2.

3.
Please comment on your selection above (e.g. time taken to understand/hesitation
or subsequently alleviated fears):

Of the 10 Interactions you experienced, please rank the 3 least effective in
allowing you to understand what the vehicle was attempting to tell you:

1.
2.

3.

Please comment on your selection above (e.g. time taken to understand/hesitation
or subsequently alleviated fears):
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[9-B] Vehicle Personalization via NFC Devices

As it is designed, the CityCar fits best into fleet managed, one-way shared use

vehicles. Logistics thus require users of the system to be able to lock and unlock

their designated vehicle at the point of rental. Systems like ZipCar use simple RFID

cards to achieve this. However, instead of simply unlocking the vehicle, we can

rethink of it as 'logging into'the vehicle, in a similar manner to how we log on to

our computers. Using this act of logging on can enable the car to immediately

personalize the vehicle to the user's preferences. Using a Near Field

Communication (NFC) enabled smartphone such as the Samsung Nexus can

achieve all this, and provide even deeper levels of integration.

Vehicle personalization via NFC devices

Personal settings move with users regardless of physical vehicle being driven

Settings are automatically pushed to
the on-board tablet

Complete ergonomic settings
Preferred temperature settings
Customized radio stations
Interior ambient light
Body/driver control UI customization

Take advantage of cloud access for universal personalization setting storage
Focus on what the user does not see happening (no docking necessary)

We can explore ways for the vehicle to tie into to-do lists and calendar

appointments to make for more efficient trip planning. If tied in with a Samsung

Galaxy Tab 10.1, which can replace the entire infotainment and navigation console

of a vehicle, scenarios such as the following could unfold:

- The user logs into the vehicle using his/her Galaxy Nexus
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- The vehicle immediately opens, greets them, and all lighting/ergonomics

automatically configure to their preferences

- Sitting in the vehicle, the center consoled tablet displays infotainment

options in the user's native language, including options to review current to-

do list items, and a calendar widget informing them of their next obligation

- After clicking on the navigation option and selecting their intended

destination, the vehicle informs the user that they will be able to pick up

items from the pharmacy (as identified as an important item on their to-do

list) en-route to the destination

- The vehicle then tells them this will add approximately 15 minutes to their

trip time, given current traffic conditions pulled from the cloud - but then

reassuring the user that they will still be 20 minutes early for their next

appointment (setting geo-location tag on calendar item, the tablet can infer

time/location relationships)

Mobility personalization via NFC devices

Next generation handsets are poised to incorporate Near Field
Communication transceivers

Opportunity to utilize these devices as a
tool to customize/personalize shared
vehicles & optimize trips

Integrating to-do list/calendar into
navigation system

- Vehicle can help driver's save time based
on their intended route cross-checked
with lists/events pulled from phone

AGPS +This information can be further
augmented by traffic data pulled from the
cloud

image courtesy of http:/techiser corni
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[9-C] Geometric Steering Angle - Servo Relationship

Servo Angle
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

RAW Steering Angle
-165.77
-167.04
-168.32

-169.6
-170.89
-172.18
-173.47
-174.78
-176.08

-177.4
-178.71
179.96
178.63
177.29
175.94
174.59
173.23
171.86
170.49
169.11
167.73
166.33
164.94
163.53
162.12
160.71
159.29
157.87
156.45
155.02

153.6
152.17
150.75
149.32

147.9
146.48
145.07
143.67
142.28

Traditional Steering Range
xxxxxxxx

I
I

I

Xxxxxxxx

Ixxxx

-15*

Dead-Ahead

+15*

'O-Turn'
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[9-D] 10 Box Pin Schematics

Note: All pins 1,2,6, and 7 were unused for power transmission and left open for

expansion of signal lines coming into IO Boxes.

FPONTPIGHTMALE

APn;U+ - 2 -C 6 R[1(,9+
PTGHT TTI-TSFAun 3 1 7 Apn5URNn
FpnNT PTAHT nP5lf 8 F~nNT PTGHT ATFFP

OTAT PNA~tn 9 FQnNT PIGHT PTNA

FPONTCENTEPRMALE
RilArUr.Nn i!Z 1
ApnqU+ 2 -c 6 R11q,91+
prTn FNARI F 3 -c 7 APn9UGNn
PrTn snil 4 - 8 ACMF Y
APn13-,U+ 5 -c 9 ANNnilNCF SFPUn

FPONT-LEFT.MALE
RiiUmNO I
AnBnU+ 2C 6Risi+
I FFTTI TI 7A
FMnNT I FFTn nTU!'F c Fa N FTATF
I FFT PANqFPUn 5 - F 9 NT IFFT PTNA,

1 - BLACK
2 - GREY
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4 - YELLOW
5 - PED
6 - WHITE
7 - PUPLE
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9 - ORANGE

VIN
51)08
5V91
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3.3V

AREF
RESET

ACCELY A0
Al
A2
A3
A4
AS
A6
A7
AS
AS

A10
All
A12
A13
All
AIS

6
1

PFI-ENA LEF 2
FPONTLEF IN 3
FRONTRPIGHLSIEER±Q
FRONTPIGH TN 5
FRONTRPIGHnPU 6
FRONTLEFL..SIE.E2.L
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RIGHTPANSEU 9
LEFT-PANSFDIUn 16
RIGHT-TILTSFPQfl 11
LEFT-ILTFLIO 12

GND86
GND8I
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FRONTMICRO

UIN 13
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A2 22
A3 23
A4 24
AS 25
A6 26
A7 27
A8 28
AS 29
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All 31
A12 32
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All 34
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0<X8> 36
l(TX8) 3?
2 38
3 38
1 40
5 41
6 12
7 13
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9 15
10 16
11 17
12 48
GND 19
GND 50
GND 51
GND 52
GND 53

ARDUINO-MEGAFULL
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15
16
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18
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21
22
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24
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27
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KO
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RESET
CHARGING A8
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At2
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6
A7
A8-

A10
Ail
A12
A13
A14
Ai5

0

3
4

REARLEFT PING 5
REAPRIGHT PINA 6
REARLEFT STEER 7
REARIGHT DOTUE 8
REARRIGHT STFEE 9
PEARLEFT OPTUF 10
FOLDINGRE AYLA 11

12
GNDe0
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GND@3
GND@4
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A5 25
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[9-E] Castle Mamba Max Pro ESC Settings

castle
Title:
Date:

Castle-Link Program Settings Report

AEVITA MMP ESC Settings
6/26/2012 4:17:50 PM

|Basic
Cutoff Voltage Auto Li-Po (Default)
Auto-Lipo Volts/Cell 3.2 Volts/Cell (Default)
Reverse Type Crawler Reverse
Motor Direction Normal (Default)
Power-On Warning Beep Beep Disabled
Brake Amount 25%
Drag Brake 0%, Disabled (Default)
Full Reverse 0.552 ms
Neutral 1.490 ms
Full Forward 1.988 ms

Power
Max Forward Power 40%
Max Reverse Power 40%
Punch Control 60%
Torque Control Value 0
Torque Control Electrical Motor kV Not Determined

Advanced
BEC Voltage 6.0V
Arming Time is
Throttle Dead Band Average (0.1000 ms) (Default)
Start Power High
Sensorless Motor Timing Highest (20)
Motor Type Smart Sense TM Brushless (Default)

|Throttle Curve

Brake Curve
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[9-F] Additional Design Images

10 Box

CFRP Top Member
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2GHS Exoskeleton

K2 Energy K2B24V1oEB 24V1OAh Lithium Iron Phosphate Battery
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Robot Wheel Rendered

Hacker A5o-14L V2.o BLDC Outrunner Motor
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HUD Display w/ Translucent Reflective Panel and laser projector by Microvision

AVITA - Early stages
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EVITA - Early Stages

EVITA - Current
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[9-G] IETP C# Code

MainWindow.xaml

<Window x:Class="AEVITA.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="AEVITA Tracker" Height="573" Width="728" Loaded="WindowLoaded"
Closing="WindowClosing" xmlns:my="clr-
namespace:Microsoft.Samples.Kinect.WpfViewers;assembly=Microsoft.Samples.Kinect.W
pfViewers" ResizeMode="NoResize" Background="#DlOOOO00">

<Grid Height="515" Width="698">

<my:KinectSensorChooser HorizontalAlignment="Left" Margin="185,43,0,0"
Name="kinectSensorChooserl" VerticalAlignment="Top" Width="328" />

<my:KinectColorViewer HorizontalAlignment="Left"
Name="kinectColorViewerl" VerticalAlignment="Top" Height="240" Width="320"
Kinect="{Binding ElementName=kinectSensorChooserl, Path=Kinect}"
Margin="O,13,O,O" Loaded="kinectColorViewerlLoaded" />

<my:KinectSkeletonViewer HorizontalAlignment="Left" Margin="379,13,0,0"
Name="kinectSkeletonViewerl" VerticalAlignment="Top" Height="240" Width="320"
Kinect="{Binding ElementName=kinectSensorChooserl, Path=Kinect}" />

<TextBlock Height="36" HorizontalAlignment="Left" Margin="41,260,0,0"
Name="textBlockl" Text="" VerticalAlignment="Top" Width="614" FontFamily="Arial"
FontSize="12" TextAlignment="Left" FontWeight="Normal" FontStyle="Normal"
Foreground="White" />

<TextBlock Height="36" HorizontalAlignment="Left" Margin="41,310,0,0"
Name="textBlock2" Text="" VerticalAlignment="Top" Width="614" FontFamily="Arial"
FontSize="12" TextAlignment="Left" FontWeight="Normal" FontStyle="Normal"
Foreground="White" />

<TextBlock Height="36" HorizontalAlignment="Left" Margin="41,360E,,O"
Name="textBlock3" Text="" VerticalAlignment="Top" Width="614" FontFamily="Arial"
FontSize="12" TextAlignment="Left" FontWeight="Normal" FontStyle="Normal"
Foreground="White" />

<TextBlock Height="36" HorizontalAlignment="Left" Margin="168,410,0,0"
Name="textBlock4" Text="" VerticalAlignment="Top" Width="487" FontFamily="Arial"
FontSize="30" TextAlignment="Left" FontWeight="Normal" FontStyle="Normal"
Foreground="White" />

<TextBlock Height="36" HorizontalAlignment="Left" Margin="168,460,0,0"
Name="textBlock5" Text="" VerticalAlignment="Top" Width="487" FontFamily="Arial"
FontSize="30" TextAlignment="Left" FontWeight="Normal" FontStyle="Normal"
Foreground="White" />

<TextBlock Height="60" HorizontalAlignment="Left" Margin="41,423,0,0"
Name="textBlock6" Text="" VerticalAlignment="Top" Width="101" FontFamily="Arial"
FontSize="50" TextAlignment="Left" FontWeight="Normal" FontStyle="Normal"
Foreground="White" />

</Grid>
</Window>
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MainWindow.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls:
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using Microsoft.Kinect;
using System.IO.Ports;
using System.Diagnostics;
using Coding4Fun.Kinect.Wpf;
using System.Media;
using SlimDX;
using SlimDX.XInput;

namespace AEVITA
{

// <summary>
// Interaction logic for MainWindow.xaml
// </summary>
public partial class MainWindow Window
{

public MainWindow()
{

InitializeComponent(;
}

char err = 'e';
int blinkError = 0;
char read;
SoundPlayer player-safe:
SoundPlayer player alsosafe;
SoundPlayer player-welcome:
SoundPlayer player alarm;
SoundPlayer player driveOff;
SoundPlayer player invalid_ID;
SoundPlayer player-confirm;

bool startEnable = false;
bool closing = false;
Skeleton watch;
const int skeletonCount = 6;
Skeleton[] allSkeletons = new Skeleton[skeletonCount];
float headPosX, headPosY, headPosZ;
float xrelleft, x_ rel right, r_relleft, rrelright;
float servodist = 0.24F; //distance from kinect center in meters
float leftTilt, leftPan, rightTilt, rightPan, announcePan;
float prevLeftTilt, prevLeftPan, prevRightTilt, prevRightPan;
SerialPort serial;
Stopwatch sw = new Stopwatch();
int maxID = 0;
int max;
Skeleton current;
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Skeleton maxSkeleton;
DateTime timeNow;
TimeSpan trackTime = new TimeSpan(0, 0, 20); //track a single skeleton

for 6 seconds
TimeSpan announceTime = new TimeSpan(0, 0, 3); //allow a 3 second window

for an announcement
Dictionary<int, DateTime> skeletonTimes = new Dictionary<int,

DateTime>();
int userID:
int tracking;
int maxAnnounceID = 0;
int people = 0;
Stopwatch announce:

String toWrite;
int bytes:
int byteOverflowCounter = 0:
System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncodingo;

int newPerson = 0;
Controller c;
State state;
Vibration vibe;

int fold = 0;
int throttle = 90;
int adjSteering = 0;
double leftFrontSteer,rightFrontSteer,leftRearSteer,rightRearSteer;
double A, B, C, D; //These are raw wheel angles - A front left, B front

right, C rear left, D rear right
int driveModeSelector = 0:
int headlights = 0;
Stopwatch debounce;
bool BButtonAlreadyPressed;
bool blinkMSelectorAlreadyChanged;
int blinkMSelector = 0;
Stopwatch BButtonTimer;
Stopwatch ModeTimer;
Stopwatch SkeletonInWayTimer;
bool alreadySubmitted;
int annoyanceSequence;
Stopwatch AnnoyanceTimer;
Stopwatch AnnoyanceWheelTimer;

int wheelBase = 944;
int track = 800;

//correction factors for the servos
int lpcf = 7;
int ltcf = -10;
int rpcf = 2;
int rtcf = -20;

List<int> order = new List<int>();
int numCases = 10; //these cases will be numbered 1 through numCases
int temp, exchange;
int currentTestIndex = -1;
int previousMode -1;
int currentMode = 0; //start in free control mode
string finishedModes = "";
bool allOtherOn, eyesOn, talk0n;
int pupilEnable = 0;
int specialMode; //O for none, 1 for aggression, 2 for submission, 3 for

annoyance
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int aggressionState = 0;
double pathWidth = 0.5;
bool skeletonInWay = false;

private void WindowLoaded(object sender, RoutedEventArgs e)
{

kinectSensorChooserl.KinectSensorChanged += new
DependencyPropertyChangedEventHandler(kinectSensorChooserlKinectSensorChanged);

userTest();
serial = new SerialPort("COM4", 19200);
serial. Open ();
player safe = new SoundPlayer(@"C:\Users\AEVITA\Documents\Kinect

Support Files\sounds\safe.wav");
player alsosafe = new SoundPlayer(@"C:\Users\AEVITA\Documents\Kinect

Support Files\sounds\alsosafe.wav");
player welcome = new SoundPlayer(@"C:\Users\AEVITA\Documents\Kinect

Support Files\sounds\system-loaded.wav");
player alarm = new SoundPlayer(@"C:\Users\AEVITA\Documents\Kinect

Support Files\sounds\alarm.wav");
player driveOff = new SoundPlayer(@"C:\Users\AEVITA\Documents\Kinect

Support Files\sounds\driveoff.wav");
player invalidID = new

SoundPlayer(@"C:\Users\AEVITA\Documents\Kinect Support Files\sounds\beep-
10.wav");

player-confirm = new SoundPlayer(@"C:\Users\AEVITA\Documents\Kinect
Support Files\sounds\confirm.wav");

announce = new Stopwatcho:
announce.Start();
c = new Controller(UserIndex.One);
vibe = new Vibration();
debounce = new Stopwatcho;
debounce.Start();
BButtonTimer = new Stopwatch();
BButtonTimer.Start();
ModeTimer = new Stopwatch()
ModeTimer.Start();
SkeletonInWayTimer = new Stopwatch();
AnnoyanceTimer = new Stopwatch(;
AnnoyanceWheelTimer = new Stopwatch(;

}

void userTest()
{

for (nt i = 1; i <= numCases; i++)
{

order.Add(i)
}

//implementation of Fisher-Yates shuffle
Random random = new Randomo;
for (int i = numCases-1: i >= 0; i--) {

exchange = random.Next(i+1);
temp = order[exchange];
order[exchange] = order[i];
order[i] = temp;

}

string orderString =
foreach (int test in order)

orderString += (test + "
textBlock4.Text = orderString;
textBlock6.Text = currentMode.ToString(;

}
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void kinectSensorChooserlKinectSensorChanged(object sender,
DependencyPropertyChangedEventArgs e)

{
KinectSensor oldSensor = (KinectSensor)e.OldValue;
StopKinect(oldSensor);

{

are faster to

KinectSensor sensor = (KinectSensor)e.NewValue;

if (sensor == null)
{

return;
}

var parameters =new TransformSmoothParameters

};

Smoothing = 0.0f, //changed from 0.3f
Correction = 1.0f. //changed from O.Of: note that higher values

correct to the raw data (ranges from 0 to 1)
Prediction = 0.Of, //don't know exactly what this does
JitterRadius = 3.0f, //changed from 1.0f
MaxDeviationRadius = 0.Of //changed from 0.5f

sensor.SkeletonStream.Enable(parameters);
sensor.AllFramesReady += new

EventHandler<AllFramesReadyEventArgs>(sensorAllFramesReady);
sensor.ColorStream.Enable();
sensor.DepthStream.Enable();

try

{
sensor.Start();
kinectSensorChooserl.Kinect.ElevationAngle = 5;
playerwelcome.Play(;

}
catch (System.IO.IOException)
{

ki nectSensorChooser1 .AppConflictOccurred ();
}

}

void sensorAllFramesReady(object sender,
getSerialInfo();
getControllerBasicInfo()
if (currentMode != previousMode)
{

fold = 0;
headlights = 0;
getSystemBooleans(currentMode);
previousMode = currentMode;

}

AllFramesReadyEventArgs e){

//r = Convert.ToChar(serial.ReadChar();
I/if (r == 'R')

// Process.Start(Application.ResourceAssembly.Location);
// Application.Current.Shutdown(:
//}

(closing)

return;
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//if (true)
if (startEnable)
{

watch = GetSkeletonToTrack(e);
if (watch != null) {

tracking = 1;
headPosX = watch.Joints[JointType.ShoulderCenter].Position.X;
headPosY = watch.Joints[JointType.ShoulderCenter).Position.Y;
headPosZ = watch.Joints[JointType.ShoulderCenter].Position.Z;

}
skeletonInWay = IsThereASkeletonInWay();
switch (specialMode)
{

case 0:
getControllerAllOtherInfo();
if (watch != null && eyes0n)
{

CalculateEyeAngles(headPosX, headPosY, headPosZ);

else
{

CalculateEyeAnglesNoFollow();
}
if (watch != null && talk0n)
{

CalculateTalk(headPosX, headPosY, headPosZ);
}
else
{

CalculateTalkNoFollow();
}
break;

case 1:
CalculateTalkNoFollow();
if (SkeletonInWayTimer.ElapsedMilliseconds > 1000)
{

fold = 1; I/if the person has stood in the danger
zone for 2 seconds, haunch up

}
else
{

fold = 2; I/if the person has moved out of the
danger zone, return to flat state

}
if (skeletonInWay)
{ //there is a skeleton in the danger zone

CalculateAggressionMode();
}
else if (watch != null)
{ //there is no skeleton in the danger zone, but there

is one being tracked
CalculateEyeAngles(headPosX, headPosY, headPosZ);
AllOtherOff();

}
else
{ //no skeleton is being tracked

CalculateEyeAnglesNoFollow();
AllOtherOff();

}
break;

case 2:
AllOtherOff();
CalculateTalkNoFollow()
if (SkeletonInWayTimer.ElapsedMilliseconds > 1000)
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{
fold = 2; //if skeleton has been in danger zone for

more than 2 seconds, unfold
alreadySubmitted = true; //once the car has

submitted once, do not repeat the setup phase
}
else if (!alreadySubmitted)
{

fold = 1; //setup by having the car haunch up
}
else
{

fold = 0: //if the car has already submitted once,
don't have it setup again

}
if (skeletonInWay)
{

CalculateSubmissionMode();
}
else if (watch != null)
{

CalculateEyeAngles(headPosX, headPosY, headPosZ);
}
else
{

CalculateEyeAnglesNoFollow()
}
break;

case 3:
CalculateTalkNoFollow();
CalculateEyeAnglesNoFollow();
if (skeletonInWay)
{

CalculateAnnoyanceMode();
}
else
{

AllOtherOff();
}
break;

}
}
else
{

AllOtherOff();

toWrite = "W" + Convert.ToString(tracking) + "," +
Convert.ToString(Convert.ToInt32(leftPan)) + "," +
Convert.ToString(Convert.ToInt32(leftTilt)) + "," +
Convert.ToString(Convert.ToInt32(rightPan)) + "," +
Convert.ToString(Convert.ToInt32(rightTilt)) + "," +
Convert.ToString(Convert.ToInt32(announcePan)) + "," +
Convert.ToString(newPerson) + "," + Convert.ToString(fold) +

+ Convert.ToString(Convert.ToInt32(leftFrontSteer)) +
+ Convert.ToString(Convert.ToInt32(rightFrontSteer)) + "," +

Convert.ToString(Convert.ToInt32(leftRearSteer)) + "," +
Convert.ToStri ng(Convert.ToInt32 (rightRearSteer)) + "," +
Convert.ToString(throttle) + "," + Convert.ToString(driveModeSelector) + "," +
Convert.ToString(headlights) + ","

+ Convert.ToString(blinkMSelector) + "," +
Convert.ToString(pupilEnable) + "," + Convert.ToString(specialMode) +

serial.WriteLine(toWrite);
bytes = encoding.GetBytes(toWrite).Length:
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textBlock1.Text = "Enabled: " + Convert.ToString(startEnable) +
Bytes: " + Convert.ToString(bytes) + "Byte Errors: " +
Convert.ToString(byteOverflowCounter) + " Announce: +
Convert.ToString(announcePan) + " X: " + Convert.ToString(headPosX) + " Y: " +
Convert.ToString(headPosY) + Z: " + Convert.ToString(headPosZ) + " ID: " +
Convert.ToString(userID);

textBlock2.Text = "New Person?: " + Convert.ToString(newPerson) +
Fold: " + Convert.ToString(fold) + " Throttle: " + Convert.ToString(throttle) +
SteeringRaw: " + Convert.ToString(LeftThumbX) + " AdjustedSteering: " +
Convert.ToString(adjSteering) + " Headlights: " + Convert.ToString(headlights) +
" BlinkM: " + Convert.ToString(blinkMSelector) + " InWayTimer: " +
Convert.ToString(SkeletonInWayTimer.ElapsedMilliseconds);

textBlock3.Text = "A: " + Convert.ToString(A) + " B: " +
Convert.ToString(B) + " C: " + Convert.ToString(C) + " D: " + Convert.ToString(D)
+ " Blink Error Count: " + Convert.ToString(blinkError) + " Drive: " +
Convert.ToString(allOtherOn) + " Eyes: " + Convert.ToString(eyesOn) + " Talk: " +
Convert.ToString(talkOn) + " Pupil: " + Convert.ToString(pupilEnable) + " SM: " +
Convert.ToString(specialMode) + " DZ: " +
Convert.ToString(Convert.ToInt32(skeletonInWay));

}

void serialDataReceived(object sender, SerialDataReceivedEventArgs e)
{

}

void StopKinect(KinectSensor sensor)
{

if (sensor != null)
{

sensor.Stop();
}

}

bool IsThereASkeletonInWay()
{

for (nt index = 0; index < skeletonCount; index++)
{

current = allSkeletons[index];
if (current.TrackingState == SkeletonTrackingState.Tracked &&

Math.Abs(current.Joints[JointType.ShoulderCenter].Position.X) < pathWidth)
{

pupilEnable = 0; //don't want to be recognizing additional
people who come into the FOV if there is a skeleton in the path currently

if (!SkeletonInWayTimer.IsRunning) {
SkeletonInWayTimer.Start();

}
return true:

}
}
SkeletonInWayTimer.Reset();
return false;

}

Skeleton GetSkeletonToTrack(AllFramesReadyEventArgs e)
{

using (SkeletonFrame skeletonFrameData = e.OpenSkeletonFrame()
{

if (skeletonFrameData == null)
{

return null;
}
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being tracked

frame

//can assume from here on that there are at least some skeletons

skeletonFrameData.CopySkeletonDataTo(allSkeletons);
timeNow = DateTime.Now;
max = 0;
maxSkeleton = null;

people = 0;

//find the maximum ID among the skeletons in the current skeleton

for (nt index = 0; index < skeletonCount; index++)
{

current = allSkeletons[index];
if (current != null)
{

if (current.Trackingld > 0)
{

}
if
{

}
try
{

}
}

people++;

(current.TrackingId > max)

max = current.TrackingId;
maxSkeleton = current;

if (maxSkeleton == null)
{

return null;
}
else if (max >maxID) I/someone has just moved into the view

frame
{

newPerson = 1;
maxID = max;
skeletonTimes.Add(maxID, timeNow.Add(trackTime));
return maxSkeleton;

}
else if (timeNow.CompareTo(skeletonTimes[max]) < 0) //the

corresponding skeleton has been tracked for less than 3 seconds
{

return maxSkeleton;
}
else
{

return null;
}

}

catch (KeyNotFoundException ex)
{

throw new KeyNotFoundException(max.ToString() + was not
found in the dictionary");

//Console.WriteLine(ex);
}

}
}

void AllOtherOff()
{
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throttle = 90:
leftFrontSteer = 90;
rightFrontSteer = 90;
leftRearSteer = 90;
rightRearSteer = 90;

}

void CalculateAggressionMode()
{

leftPan = 90 + lpcf;
rightPan = 90 + rpcf;
if (ModeTimer.ElapsedMilliseconds > 500)
{

switch (aggressionState)
{

case 0: //wheels inward and eyes down
leftTilt = 90 + ltcf - 20;
rightTilt = 90 + rtcf + 20;
leftFrontSteer = 105;
leftRearSteer = 90;
rightFrontSteer = 75;
rightRearSteer = 90;
aggressionState = 1;
ModeTimer. Restart()
break;

case 1: //wheels outward and eyes up
leftTilt = 90 + ltcf + 20;
rightTilt = 90 + rtcf - 20;
leftFrontSteer = 75;
leftRearSteer = 90;
rightFrontSteer = 105;
rightRearSteer = 90;
aggressionState = 0;
ModeTimer.Restart();
break;

}
}

}

void CalculateSubmissionMode()
{

leftTilt = 90 + ltcf - 20;
rightTilt = 90 + rtcf + 20;
leftPan = 90 + lpcf + 20;
rightPan = 90 + rpcf - 20;
leftFrontSteer = 105;
leftRearSteer = 90;
rightFrontSteer = 75;
rightRearSteer = 90;

}

void CalculateAnnoyanceMode()
{

if (SkeletonInWayTimer.ElapsedMilliseconds > 2000 &&
annoyanceSequence == 0)

{
playeralarm.Play();
annoyanceSequence++;

}
else if (SkeletonInWayTimer.ElapsedMilliseconds > 4000 &&

annoyanceSequence == 1) {
playeralarm.Play();
AnnoyanceTiner.Start();
headlights = 1;
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annoyanceSequence++;
}
else if (SkeletonInWayTimer.ElapsedMilliseconds > 6000 &&

annoyanceSequence == 2)
{

playeralarm.Playo;
AnnoyanceWheelTimer.Start();
throttle = 120;
annoyanceSequence++;

}

if (SkeletonInWayTimer.ElapsedMilliseconds > 6000 &&
AnnoyanceTimer.ElapsedMilliseconds > 500)

{
AnnoyanceTimer.Restart();
if (throttle == 90)
{

throttle = 120;
}
else
{

throttle = 90;
}
headlights = 1 - headlights;

}
else if (SkeletonInWayTimer.ElapsedMilliseconds > 4000 &&

AnnoyanceTimer.ElapsedMilliseconds > 500)
{

AnnoyanceTimer.Restart();
headlights = 1 - headlights;

}
}

//headlights should point straight ahead
void CalculateTalkNoFollow()
{

announcePan = 1500;
}

void CalculateEyeAnglesNoFollow()
{

leftPan = 90 + lpcf;
leftTilt 90 + ltcf;
rightPan 90 + rpcf;
rightTilt 90 + rtcf;

}

//calculate angle for speaker
void CalculateTalk(double x. double y, double z)
{

announcePan = (float)(Math.Atan((z + 2.0) / x) * 180 / Math.PI / 1.75
+ 1500) ;

userID = watch.TrackingId; //Get the tracking ID

//Determine which soundtrack to play, if any
//More than three seconds must have passed since the start of the

last announcement
//There should not have already been an announcement for this user
if ((announce.Elapsed).CompareTo(announceTime) > 0 && userID >

maxAnnounceID)
{

if (people >= 2)

{
player also_safe.Play();
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announce.Restart();
}
else
{

player safe.Play();
announce.Restart();

}
maxAnnounceID = userID;

}
}

//calculate angles for eyes
void CalculateEyeAngles(double x, double y, double z)
{

x_rel_left = (float)(x - servo_dist);
x_rel_right = (float)(x + servo_dist);
r_relleft = (float)(Math.Sqrt(Math.Pow(xrel_left 2) + Math.Pow(z,

2)));
r_relright = (float)(Math.Sqrt(Math.Pow(xrelright, 2) +

Math.Pow(z, 2)));

Math. PI)

rpcf);

Math. PI)

leftPan = (float)(Math.Atan2(z, xrelleft) * 180 / Math.PI + lpcf);
leftTilt = (float)(90 + ltcf + Math.Atan2(y, rrelleft) * 180 /

rightPan = (float)(Math.Atan2(z, x-rel_right) * 180 / Math.PI +

rightTilt = (float)(90 + rtcf - Math.Atan2(y, rrelleft) * 180 I

//prevent the eyes from staring
impossible possible

if (Math.Abs(leftPan - (90 + lpc
ltcf)) > 40 |1 Math.Abs(rightPan - (90 + rpc
+ rtcf)) > 40)

{
leftPan = prevLeftPan;
leftTilt = prevLeftTilt;
rightPan = prevRightPan;
rightTilt = prevRightTilt;

}

}

at each other or taking on some other

f)) > 40 | Math.Abs(leftTilt - (90 +
f)) > 40 || Math.Abs(rightTilt - (90

prevLeftPan = leftPan;
prevLeftTilt = leftTilt;
prevRightPan = rightPan;
prevRightTilt = rightTilt;

private void getControllerAllOtherInfo()
{

if (c.IsConnected)
{

debounce.E

state = c.GetState(;
if (AButton && XButton && driveModeSelector == 0 &&

lapsedMilliseconds >= 500)
{

}

debounce.Restart();
driveModeSelector = 1; //enter o-turn mode

else if (AButton && XButton && driveModeSelector == 1 &&
debounce.ElapsedMilliseconds >= 500)

{
debounce.Restart();
driveModeSelector = 0; //exit o-turn mode

}
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if (BButton)
{

if (!BButtonAlreadyPressed)
{

BButtonTimer.Restart()
BButtonAlreadyPressed = true;
blinkMSelectorAlreadyChanged = false;

}
else if (BButtonAlreadyPressed &&

BButtonTimer.ElapsedMilliseconds >= 2000 && !blinkMSelectorAlreadyChanged)
{

blinkMSelector = Math.Abs(1 - blinkMSelector);
blinkMSelectorAlreadyChanged = true;

}
}
else
{

BButtonAlreadyPressed = false;
}
//headlight control
if (YButton && headlights == 0 && debounce.ElapsedMilliseconds >=

500)
{

debounce.Restart()
headlights = 1;

}
else if (YButton && headlights == 1 &&

debounce.ElapsedMilliseconds >= 500)
{

debounce.Restart();
headlights = 0;

}

if ((RightShoulderButton && LeftShoulderButton) ||
(!RightShoulderButton && !LeftShoulderButton)) //if both or neither shoulder
buttons pressed, do nothing

{
fold = 0;
vibe.LeftMotorSpeed = 0;
vibe.RightMotorSpeed = 0;
c.SetVibration(vibe);

}
else if (RightShoulderButton && !LeftShoulderButton) //fold if

only the right shoulder button pressed
{

fold = 1;
vibe.LeftMotorSpeed = 0:
vibe.RightMotorSpeed = 20000;
c.SetVibration(vibe);

}
else if (!RightShoulderButton && LeftShoulderButton) //unfold if

only the left shoulder button pressed
{

fold = 2;
vibe.LeftMotorSpeed = 20000;
vibe.RightMotorSpeed = 0;
c.SetVibration(vibe);

}
//vibration for throttle and brake
if (LeftTrigger > 0)
{

vibe.RightMotorSpeed = Convert.ToUIntl6(LeftTrigger * 235);
c.SetVibration(vibe);
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}
if (RightTrigger > 0)
{

vibe.RightMotorSpeed = Convert.ToUIntl6(RightTrigger * 235);
c.SetVibration(vibe);

}

throttle = 90 + Convert.ToIntl6(RightTrigger) * 90 / 255 -

Convert.ToIntl6(LeftTrigger) * 90 / 255;

//if (tracking == 1 && throttle > 90)
// {

// sw.Starto;
// while (sw.IsRunning)
// {
// playeralarm.Playo;

// if (sw.ElapsedMilliseconds >= 500)
// {
// player driveOff.Play(;
// sw.Reset(;
// break;

//}
//}

ignoring small
if (LeftThumbX <= 7000 && LeftThumbX >= -7000) //deadzone -

wiggle in the thumbstick

{

}
adjSteering = 0;

else
{

}
adjSteering = LeftThumbX * 100 / 32768;

switch (driveModeSelector)
{

case 0:
if (adjSteering < 0)

Math.Tan(-0.26 *

Math.Tan(-0.26 *

Math.Tan(0.26 *

Math.Tan(0.26 *

A = 15 * adjSteering / 100;
B = -Math.Atan((wheelBase / 2) / ((wheelBase / 2) /

adjSteering / 100) + track)) * 180 / Math.PI;
C = -15 * adjSteering / 100;
D = Math.Atan((wheelBase / 2) / ((wheelBase / 2) /

adjSteering / 100) + track)) * 180 / Math.PI:
I
else if (adjSteering > 0)
{

A = Math.Atan((wheelBase / 2) / ((wheelBase / 2) /
adjSteering / 100) + track)) * 180 / Math.PI;

B = 15 * adjSteering / 100;
C = -Math.Atan((wheelBase / 2) / ((wheelBase / 2) /

adjSteering / 100) + track)) * 180 / Math.PI;
D -15 * adjSteering / 100;

else

A = B = C = D = 0;
}
leftFrontSteer = 0.75 * (A) + 90;
rightFrontSteer = 0.75 * (B) + 90;
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}

private
{

if
{

leftRearSteer = 0.75 * (C) + 90:
rightRearSteer = 0.75 * (D) + 90;
break:

case 1:
leftFrontSteer = rightRearSteer = 117;
rightFrontSteer = leftRearSteer = 63;
break;

}

void getControllerBasicInfo()

(c.IsConnected)

state = c.GetStateo;
if (StartButton && debounce.ElapsedMilliseconds >= 500)
{

debounce.Restart();
currentTestIndex++;
if (currentTestIndex < numCases)
{

currentMode = order[currentTestIndex];
textBlock6.Text = currentMode.ToString();
finishedModes += (currentMode + " );

textBlock5.Text = finishedModes;
}
else
{

currentMode = 0;
textBlock6.Text = currentMode.ToStringo;

}
}

if
{

(BackButton && debounce.ElapsedMilliseconds >= 500)

debounce.Restart();
currentMode = 0;
textBlock6.Text = currentMode.ToString();

}
}

}
private void getSystemBooleans(int mode)
{

switch (mode)
{

case 0: eyesOn = true; talkOn = true; pupilEnable = 1;
specialMode = 0; break;

case 1: eyes0n = false; talkOn = false; pupilEnable = 0;
specialMode = 0: break;

case 2: eyesOn = true; talkOn = false; pupilEnable = 0;
specialMode = 0; break;

case 3: eyesOn = false; talkOn = true; pupilEnable = 0;
specialMode = 0; break;

case 4: eyesOn = true; talkOn = false; pupilEnable = 1;
specialMode = 0; break;

case 5: eyesOn = true; talkOn = true; pupilEnable = 1;
specialMode = 0; break;

case 6: eyesOn = false; talkOn = false; pupilEnable = 0;
specialMode = 1; break;

case 7: eyesOn = false; talkOn = false; pupilEnable = 0;
specialMode = 2; alreadySubmitted = false; break;

case 8: eyesOn = false; talkOn = false; pupilEnable = 1;
specialMode = 1: break;
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case 9: eyes0n = false; talkOn = false; pupilEnable = 1;
specialMode = 2: alreadySubmitted = false: break;

case 10: eyesOn = false: talkOn = false: pupilEnable = 0;
specialMode = 3; annoyanceSequence = 0; break;

}
}
private void getSerialInfo()
{

if (serial.BytesToRead > 0)
{

read = Convert.ToChar(serial.ReadChar();
if (read == 'B')
{

player invalid_ID.Play(;
}
if (read == 'C')
{

player confirm.Play();
startEnable = true;

}
if (read == 'R')
{

newPerson = 0; //Arduino received the newPerson
notification, so no longer need to send newPerson = 1

}
}

private void WindowClosing(object sender,
System.ComponentModel.CancelEventArgs e)

{
closing = true;
StopKinect(kinectSensorChooserl.Kinect);

I

private void kinectColorViewerlLoaded(object sender, RoutedEventArgs e)
{

#region Controller State
public bool AButton { get { return

state.Gamepad.Buttons.HasFlag(GamepadButtonFlags.A); } }
public bool BButton { get { return

state.Gamepad.Buttons.HasFlag(GamepadButtonFlags.B); } }
public bool XButton { get { return

state.Gamepad.Buttons.HasFlag(GamepadButtonFlags.X); } }
public bool YButton { get { return

state.Gamepad.Buttons.HasFlag(GamepadButtonFlags.Y); } }
public bool StartButton { get { return

state.Gamepad.Buttons.HasFlag(GamepadButtonFlags.Start); } }
public bool BackButton { get { return

state.Gamepad.Buttons.HasFlag(GamepadButtonFlags.Back); } }
//public static GamepadButtons Buttons { get{ return

state.Gamepad.Buttons; } }
public bool LeftShoulderButton { get { return

state.Gamepad.Buttons.HasFlag(GamepadButtonFlags.LeftShoulder); } }
public byte LeftTrigger { get { return state.Gamepad.LeftTrigger; } I
public bool RightShoulderButton { get { return

state.Gamepad.Buttons. HasFlag(GamepadButtonFlags.RightShoulder); } }
public byte RightTrigger { get { return state.Gamepad.RightTrigger; } }
public short LeftThumbX { get { return state.Gamepad.LeftThumbX; } }
#endregion

}
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[9-H] Arduino Code

Primary Front Micro

// Written by: Nicholas Pennycooke | Katharine Daly | Aron Dreyfoos
// Arduino 1.0

// SERIAL Java + Debug
// SERIAL1 RFID
// SERIAL2 PC Code Interface
// SERIAL3 xBee

#include <12C.h>
#include <BlinkM funcs_12C.h>
#include <Ping.h>
#include <Servo.h>
#include <MemoryFree.h>
#define BUFSIZ 100

int tracking;
Ping ping1 = Ping(3);
Ping ping3 = Ping(5);
int sonarCount = 4;
double proxValues[4];
int i2cStat;
double reading, reading2, reading4;
int dplace;
boolean inDecimal:

int colOffset = 0;
double r = 0;
double g = 0;

unsigned long currenttime = 0;
unsigned long previoustimeidle = 0;
unsigned long previous_timesonars = 0;

int index;
char* parse;
char* p;
double valStore;
const int packageLengthKinect = 18;
double kinectInfo[packageLengthKinect]
const int packageLengthBackSonars = 2;
double backSonarsInfo[packageLengthBackSonars]

int modeSelect = 0; //starts in freeDrive for now, will start at 0 in future

Servo leftPan, leftTilt, rightPan, rightTilt, announceServo;
double leftPanvalue, leftTiltvalue, rightPan value, rightTiltvalue;
double lpcf = 7;
double ltcf = -10;
double rpcf = 2;
double rtcf = -20;
double annVal = 1500;
int newPerson = 0;
int fold = 0;
int lf_angle,lbangle,rf_angle,rb_angle,throttle,drivemode;
int headlight = 0;
int previousHeadlight = 0;

int defaultScript = 16;
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int enableCuttle = 0;
int lastCuttle = 0;
int enablePupil = 1;

Servo leftFrontSteer, leftFrontThrottle, rightFrontSteer, rightFrontThrottle;

int accelY;
fully folded
/nt submissionPrep = 0;
//int dangerZone = 0;

//
//1
//

/ -315 is fully unfolded, -300 is 'haunched up;, -285 is

S E T U P

void setup() {

12c.pullup(0):
12c.timeOut(250);
12c.setSpeed(0);
BlinkMbeginWithPower); //the command for powering up the

connected to Arduino
delay(100); // wait a bit for things to stabilize
BlinkM_stopScript(0X00);
BlinkMsetFadeSpeed(0x00, 8); //fade speed can range from

numbers are faster)
BlinkM fadeToRGB(0x00,255,255,255); //white

BlinkM's when

0 to 255 (higher

pupilStart()

// set headlights straight ahea
leftPan.attach(10);
leftTilt.attach(12);
rightPan.attach(9);
rightTilt.attach(11);
announceServo.attach(13);

leftPan.write(90 + lpcf);
leftTilt.write(90 + ltcf);
rightPan.write(90 + rpcf);
rightTilt.write(90 + rtcf);
announceServo.write(annVal);

leftFrontSteer.attach(7);
leftFrontThrottle.attach(8);
rightFrontSteer.attach(4);
rightFrontThrottle.attach(6);

leftFrontSteer.write(90);
leftFrontThrottle.write(90);
rightFrontSteer.write(90);
rightFrontThrottle.write(90);

Serial.begin(19200);
delay(100);
Serial.println("Beginning setup

d initially

.");

Serial.println("Entering readRFIDO");
Serial.print("Free Memory: ");
Serial.println(freeMemory();

Serial2.begin(19200);
//Serial2.print("R");
readRFID();
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Serial3.begin(38400); //use this serial for the XBee
delay (1000);

pupilIdle();
}

//
/ EN D S E T U P
//

//I**************************************************************************
/ / *********** * ** ** ** ** ** ** * *****0*** * ** * * ** ** ** * ** ** *** * ** ** *** * *** * *** * **

//I**************************************************************************

void loop() {
driveMode()

}

/ /******************************************************
/ /***************************** END -L*0P***** **************************** ****

/ /**************************************************************************

//
// LOGIN: RFID
//

void readRFID() {
int val;
int bytesread=0;
int ID;
char code[11] //where the RFID code will be stored
char aron[11] = "27000E69CE";
char nick[11] = "27000E3EDE";
char katharine[11] = "3F001E96AD";
char kat[11] = "3F0O1EC5CC";

Seriall.begin(2400); // RFID reader SOUT pin connected to Seriall RX pin at
2400bps

pinMode(2,OUTPUT); // Set digital pin 2 as OUTPUT to connect it to the RFID
/ENABLE pin
digitalWrite(2, LOW); // Activate the RFID reader

//RFID code below adapted from http://www.gumbolabs.org/2009/10/17/parallax-
rfid-reader-arduino/
while(Seriall.available() <= 0) {} //wait here until RFID card data is

available
if((val = Seriall.read() == 10) { //check for start byte
while(bytesread<10) {

if(Seriall.available() > 0) {
if((val=Seriall.reado) == 13) { //13 is the stop byte

break;
}
code[bytesread++] = val;

}

code[10]='\0'; //null terminate the code string

digitalWrite(2, HIGH); // Deactivate the RFID reader
Seriall.endo; // close Seriall communication

//print out the results of the RFID card read
if (bytesread == 10) {
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Serial.println("Succesfully read the RFID card code.");

if (strcmp(code,aron) == 0){
ID = 1;

}else if (strcmp(code,katharine) == E){
ID = 2;

}else if (strcmp(code,kat) ==){

ID = 3;
}else if (strcmp(code,nick) ==){
ID = 4;
}else{
ID = 0;
}

//print user and color
if (ID != 0){

Serial.print('G');
}

if (ID == 1){
Serial.println("Aron");
BlinkMfadeToRGB(OxOO,255,255,255);

}
else if (ID == 2){

Serial. println ("Katharine");
BlinkMfadeToRGB(OxO0,255,0,0); /

}
else if (ID == 3){

Serial. println("Kat")
BlinkMfadeToRGB(0x00,0,255,E0);/

else if (ID == 4){
Serial. println("Nick");
BlinkMfadeToRGB(OxOO,0,O,255); //

//white

red

/green

blue
}
else {

Serial.println("INVALID ID. VEHICLE WILL REMAIN LOCKED.");
Serial2.print('B'); //Tell PC RFID was rejected - play invalid.wav
//Flash all wheel lights
for(int i = 0: i < 4; i++){
BlinkMsetRGB(OxO0,255,0,O);
delay (167);
BlinkMsetRGB(OxO0,0,0,0);
delay (167);
}
BlinkMfadeToRGB(Ox00,255,255,255);
Serial.print('X');
readRFID() ; //restart login process - RECURSION! - I have no idea what this

will do to the arduino's memory \_()_/
}

if (ID != 0){
Serial.print('J');
Serial2.print('C'); //Tell

}
}
else {

Serial.println("Did not read
}

PC RFID read was successful (ID recognized)

the RFID code successfully");
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//
// DRIVE: MAIN DRIVE / KINECT
//

void driveMode() {
Serial.println("Entering Drive Mode");
delay(1000);
rightPan.write(90);
leftPan.write (90);

// BlinkMstopScript(0x00);
// delay(100):
// BlinkMplayScript(0x00, defaultScript, 0, 0);
// delay(100)
BlinkMsetRGB(0x00,255,255,0):
while(true) {

//read from the kinect and update the eye servos as often as possible
Serial2.flush();
while(Serial2.available(<200) { //should have twice the number of bytes

in a message to ensure there is a complete message in the buffer
}
Serial.println("received 200 bytes");
while(Serial2.available() and Serial2.read)!='W') { //one complete

message from C# is about 48 bytes long - this was without announcePan
}
if (Serial2.available(>75) { //a 'W' has just been read and there is a

complete message on Serial2
receiveCSharp();
readAccel();
Serial.print("Accel Y-Axis: ");
Serial.println(accelY);
switch(modeSelect){

case 0: //free driving - all systems enabled
freeControl();
break;

case 1: //aggression
freeControl();
enableAggression();
break;

case 2: //submission
freeControl();
enableSubmission()
break;

case 3:
freeControl();
break:

}
// Serial.print(DangerZone?: ");
// Serial.println(dangerZone);

sendRearPacket();

//only update sonar values/blinkMs and send to java every 0.3 seconds
currenttime = millis(;
if ((currenttime - previoustimesonars) > 300) {

firePings();
writeToHUD();
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if(enableCuttle == 1){
if(enableCuttle != lastCuttle){
BlinkMstopScript(0x0);
delay(100);
BlinkMsetFadeSpeed(0x00, 1); //changed from (0x00,20)
delay(10);

}
Serial.println("Pings set blinks");
pingSetBlinks();

}else{
if(enableCuttle != lastCuttle){

BlinkMsetRGB(OxOO,O,EO);
delay(100);

}
BlinkMplayScript(Ox00, defaultScript, 0, 0):

delay(100);
BlinkMsetRGB(0x00,255,255,0);

lastCuttle = enableCuttle;

//1
//1
//
//-
//
//

previoustimesonars = currenttime;
called and how long it takes to complete

//keep track of when this method is

DRIVE: PACKAGE REAR DATA

void sendRearPacket({
//send information to back arduino

Serial3.print("I");
Serial3.print(fold);
Serial3.print(",");
Serial3.print(lb_angle);
Serial3.print(",");
Serial3.print(rb_angle);
Serial3.print(",");
Serial3.print(throttle);
Serial3.print(",");
Serial3.print(drive_mode);
Serial3.print("E");

DRIVE: DRIVE/STEER FRONT

void driveSteer({
leftFrontSteer.write(lf-angle);
rightFrontSteer.write(rf_angle);

if (drivemode==0) { //normal drive
leftFrontThrottle.write(throttle);
rightFrontThrottle.write(throttle);

}
else { //o-turn

leftFrontThrottle.write(throttle);
rightFrontThrottle.write(180-throttle);

}
}
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// DRIVE: FREE DRIVE CONTROL
//

void freeControl(){
enableEyes();
enableAnnounce();
driveSteer()
pupilOpen();
headlightControl();

}

//
// PC: RECEIVE C# PACKET
//

void receiveCSharp() {
Serial.println("Everything normal"):
char buffer[BUFSIZ]="";
buffer[0] = Serial2.read()
buffer[1] = Serial2.read(;
index = 2;
while (buffer[index-2] != '\r' && buffer[index-1] '\n' && index<BUFSIZ) {

//the data terminates with a windows newline, which is \r\n
buffer[index] = Serial2.reado;
index++;
//Serial.print(*")

}
if (index<BUFSIZ) {

buffer[index-2]='\O'; //don't allow the \r or \n to be written into the
buffer

p = buffer;
for(int i=O; i<packageLengthKinect; i++) {

parse = strsep(&p,",");
valStore = atof(parse);
kinectInfo[i] = valStore;

}
//Serial.println("Parsed");
tracking = kinectInfo[O];
leftPanvalue = kinectInfo[l];
leftTiltvalue = kinectInfo[2];
rightPan value kinectInfo[3];
rightTiltvalue = kinectInfo[4];
annVal = kinectInfo[5];
newPerson = kinectInfo[6];
fold = kinectInfo[7]: //O for nomove, 1 for fold, 2 for unfold
lfangle = kinectInfo[81;
rfangle = kinectInfo[9];
lbangle = kinectInfo[10];
rbangle = kinectInfo[11];
throttle = kinectInfo[12];
drive-mode = kinectInfo[13];
headlight = kinectInfo[14];
enableCuttle = kinectInfo[15];
enablePupil = kinectInfo[16];
modeSelect = kinectInfo[17];
//dangerZone = kinectInfo[18];

//Serial.println("Array assigned");
if (newPerson == 1) {

Serial2.print('R'); //tell the PC that the newPerson notification was
received and pupilOpen will be called

}
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Serial.println("Kinect Cycle Complete"):
}else{

Serial.println("Buffer Overflow");
}

PING: FIRE FRONT PINGS + READ REAR PINGS

void firePings(){
//get all ping sensor values
pingl.fire();
delay(2);
proxValues[O] = pingl.centimeterso*10;
ping3.fire();
delay(2);
proxValues[2] = ping3.centimeterso*10;
Serial.println("Front pings read");

reading = 0;
inDecimal = false;
dplace = 0;

while (Serial3.available(>0 and Serial3.read(!='A') {
}
if (Serial3.availableo>0) {
delay(2);
while (Serial3.available(>0) {

int x = int(Serial3.read() -
if (x == 18) { //received the

reading2 = reading;
reading = 0:
inDecimal = false;

}
else if (x == 19) { //received

reading4 = reading;
Serial3.flush();

int value for 'B'

the int value for

break;
}
else if (x == -2) { //received the int

inDecimal = true;
dplace = 1;

}
else if (!inDecimal) {

reading = reading*10 + x;
}
else {

reading =

dplace++;
}
delay (1);

'C'

value for a decimal point

reading + x/pow(10,dplace);

}
proxValues[1] = reading2;
proxValues[3] = reading4;

Serial.println("Rear pings read");
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//
// BEHAVIOR: AGGRESSION
//

void enableAggressiono{
if (fold == 1) { //person has been standing in danger zone for 2 seconds and we

are in aggression mode; car should haunch up
if (accelY >= 310) {

fold = 1;
}
else {

fold = 0;
}

}
else { //person is not standing in danger; car should unfold (C# is sending

fold=2 in this case)
if (accelY <= 315) {

fold = 2;
}
else {

fold = 0;
}

}
I/ if(accelY >= 310 && dangerZone ==1)

// fold = 1;
// }else if(accelY <= 300){
// fold = 0;
// }
}

//
// BEHAVIOR: SUBMISSION
//

void enableSubmissiono{
if (fold == 1) { //this is for setup

if (accelY >= 310) {
fold = 1;

}
else {

fold = 0:
}

}
else if (fold == 2) {

if (accelY <= 315) {
fold = 2:

}
else {

fold = 0;
}

}
// if (submissionPrep = 0){
// if(accelY >= 310){ //if flat or close to flat, start to fold
// fold = 1;

I/ else if(accelY <= 300){ //if past hunching position, stop folding
// fold = 0;
// submissionPrep = 1;
// delay(1000);
// }
// }else{
// if(accelY <=300 && dangerZone == 1){ //if person in the way and car in
hunching position, fold down
// fold = 2;
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}
else if(accelY >= 310){ //if has reached flat position, stop unfolding

fold = 0;
//submissionPrep = 0;

I

BEHAVIOR: ANNOYANCE

void enableAnnoyance({

}

ANNOUNCE: MOVE ANNOUNCE SERVO

void enableAnnounceo{
announceServo.writeMicroseconds(annVal);

}

EYES: MOVE EYE SERVOS

void enableEyes({
leftPan.write(leftPan_value);
leftTilt.write(leftTilt_value);
rightPan.write(rightPanvalue);
rightTilt.write(rightTilt value);

PUPIL CONTROLLER: PUPIL STARTUP

void pupilStarto{
12c.write(42,'S'); //S

}

PUPIL CONTROLLER: PUPIL IDLE

void pupilIdle({
12c.write(42,'I'); //I

}

PUPIL CONTROLLER: PUPIL OPEN

void pupilOpen({
if (enablePupil == 1){
currenttime = millis(;
if (newPerson == 1 && (current_time - previoustimeidle) > 700) {

//should be able to take out the time check with the notification of newPerson
receipt added in

previous time idle = currenttime;
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}
}

12c.write(42,'0'); //0

PUPIL CONTROLLER: HEADLIGHT CONTROL

void headlightControl(){
if (previousHeadlight != headlight){
if (headlight == 1) {

12c.write(42,'H'); //H
Serial.println("Headights on");

}
else{

12c.write(42,'h'); //h
Serial.println("Headights off");
i

previousHeadlight = headlight;
}

}

BLINKMS: PING SET BLINKS

void pingSetBlinks({
//update the blinkMs

for(int i=O; i < sonarCount; i++){

if (proxValuesli] > 0) { //only
estimates were reasonable

if (proxValues[i] > 510) {
r = 0;

I

update the blinkMs if the two ping

g = 255;
} else {

r = min(510 - proxValues[i],255);
g = min(proxValues[i],255);

}
i2cStat = BlinkMsetRGB(i+1,r,g,0): //blue should always be 0

}
//Serial.print("...Set .... ".
Serial.print("Status: ");
Serial.println(i2cStat);

HUD: PACKAGE JAVA DATA

void writeToHUD(){
//send the ping sensor values and

java
//Serial. begin(19200)
Serial.print('X');
Serial.print(tracking);
Serial.print('A');
for (int i=0; i<4; i++)
{

}

whether or not a person is being tracked to

Serial.print(proxValues[i],4);
Serial.print('A');
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Serial.print(throttle);
Serial.print('A');
Serial.print(drive_mode);
Serial.print('A');
Serial.println('Z');

}

//
// ACCELEROMETER: READ ACCEL OUTPUT
//

void readAccel(){
accelY = analogRead(O);

}
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Primary Rear Micro

// Written by: Nicholas Pennycooke | Katharine Daly
// Arduino 1.0

#include "Servo.h"
#include <Ping.h>
#include <Wire.h>

Servo myServo:
int servoPin = 11;
int nomove = 1500;
int retract = 2000;
int extend = 1000:

unsigned long currenttime = 0;
unsigned long previous time sonars = 0;

Ping ping2 = Ping(5);
Ping ping4 = Ping(6);
double back4;
double back2;
int fold;
int lbangle = 90;
int rb-angle = 90;
int throttle = 90;
int drivemode;

const int packageLength = 5:
int backInfo[packageLength];
int index:
char* parse;
char* p;
int valStore;

Servo leftBackSteer, leftBackThrottle, rightBackSteer, rightBackThrottle;

byte charge = 0;

void setup() {
Wire.begin(2);
Wire.onRequest(sendState);
pinMode(A0, INPUT);
pinMode(13, OUTPUT):

myServo.attach(servoPin);
Seriall.begin(38400); //this serial is for the xbee
leftBackSteer.attach(7);
leftBackThrottle.attach(10);
rightBackSteer.attach(9);
rightBackThrottle.attach(8);

leftBackSteer.write(90);
leftBackThrottle.write(90);
rightBackSteer.write(90);
rightBackThrottle.write(90);

}

void loop() {
//send the back sonar information to the front arduino every 150 milliseconds
currenttime = milliso:
if ((currenttime - previous timesonars) > 150) {

ping4.fire();
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delay (2);
back4 = ping4.centimeterso*1O;
ping2.fire();
delay(2);
back2 = ping2.centimeterso*10;
Seriall.print("A");
Seriall.print(back2,4);
Seriall.print("B");
Seriall.print(back4,4);
Seriall.print("C");
previoustimesonars = currenttime;

}

//read the information sent via the front arduino from the kinect and act upon
it

if (Seriall.availableo>O and Seriall.read(=='I') {
delay(10);
char buffer[40] =
buffer[0] = Seriall.read(;
index = 1;
while (buffer[index-1] != 'E') {

if (index<40) {
buffer[index] = Seriall.read(;
index++;

}
}
buffer[index-1]='\0';
p = buffer;
for (nt i=0; i<packageLength; i++) {
parse = strsep(&p,",");
valStore = atoi(parse);
backInfo[i] = valStore;

}
fold = backInfo[0];
lb angle = backInfo[1];
rb angle = backInfo[2];
throttle = backInfo[3];
drivemode = backInfo[4];

if (fold == 0) {
myServo.writeMicroseconds(nomove);

}
else if (fold == 1) {

myServo.writeMicroseconds(retract):
}
else if (fold == 2) {

myServo.writeMicroseconds(extend);
}
leftBackSteer.write(lbangle);
rightBackSteer.write(rb angle);

if (drive mode==0) { //normal drive
leftBackThrottle.write(throttle);
rightBackThrottle.write(throttle);

}
else { //o-turn

leftBackThrottle.write(throttle);
rightBackThrottle.write(180-throttle);

}

int c = analogRead(AO):
c = map(c, 0, 1023, 0, 100):
charge = c/20;
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}

void sendState({
Wire.write(charge);
digitalWrite(13, HIGH); //set LED on
delay(10);
digitalWrite(13, LOW);

}
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Pupil Micro

// Written by: Nicholas Pennycooke
// Arduino 1.0

#include <ELEscudo.h>
#include <Wire.h>

int leftHeadlight = 10;
int rightHeadlight = 11;
int state = 0;
int beamState = 0;

void setup()
{
Serial.begin(9600);
delay (1000);
EL.alloff();
Serial.println("EL wire turned off");
Wire.begin(42); // join i2c bus with address #5
Wire.onReceive(receiveEvent); // register event
headlights (0);

}

void loop()

{
Serial.print("state is: ");
Serial. println (state);
if(state == 1){

startupPupils();
Serial.println("pupils should have entered startup");

}else if(state ==2){
idlePupils();

}else if(state ==3){
openPupils();

}
headlights(beamState);
delay(10);

}

// function that executes whenever data is received from master
// this function is registered as an event, see setup()
void receiveEvent(int howMany)
{

char c = Wire.read(; // receive byte as
if(c == 'S'){ // on startup

state = 1;
}else if(c == 'I'){ // idle pupils

state = 2;
}else if(c == 'O'){ // open pupil

state = 3;
}else if(c == 'H'){

beamState = 1;
Serial.println("headlights should have

}else if(c == 'h'){
beamState = 0;
Serial.println("headlights should have

}

a character

turned on");

turned off");

void startupPupils({
// for(int i = 0; i<2;i++){
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//-
//
//
//

Ill

// }

for(int i
Serial.p

EL .c
dela
EL .c

EL .o
the letter

dela
EL.o

for(int i =248; i>1 ; i-
analogWrite(leftHeadlight
analogWrite(rightHeadlig-
delay(1);

) {
t,1)
ht,i);

}
for(int i = 2; i<248 ; i++){
analogWrite(leftHeadlight,i);
analogWrite(rightHeadlight,i);
delay(1);
}

= 0; i<4; i++){
rintln("We're really in startuppupils");
n(A); EL.on(E);
y(100);
ff(A); EL.off(E);

n(B); EL.Fon(); //custom library code, because arduino freaked out over
F for some reason

y(10 0 );
ff(B); EL.Foff(;

EL.on(C); EL.on(G);
delay(100);
EL.off(C); EL.off(G);

EL.on(D): EL.on(H);
delay(100);
EL.off(D); EL.off(H):

}
state = 2:

}

void idlePupils({
//analogWrite(leftHeadlight,230);
//analogWrite(rightHeadlight,230);

}

EL.fade_in(A);EL.fadein(E);
delay(1000);
EL.fade_out(A);EL.fade_out(sE);
delay(1000);
EL.all_offO;
EL.on(A);EL.on(E);
delay(400);
EL.off(A);EL.off(E);
EL.on(B);EL.Fon();
delay(400);
EL.off(B);EL.Foff()

void openPupils({
//analogWrite(leftHeadlight,100);
//analogWrite(rightHeadlight,100);
for(int i = 0; i < 3; i++){
EL.on(B); EL.Fon();
delay(60);
EL.off(B); EL.Foff(;

EL.on(C): EL.on(G);
delay(60);
EL.off(C); EL.off(G);

EL.on(D); EL.on(H);
delay(60);
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EL.off(D); EL.off(H);
}
state = 2;

}

void headlights(int s){
if (s == E){
analogWrite(leftHeadlight,255);
analogWrite(rightHeadlight,255);
}else if (s ==1) {

Serial.println("headlights should have turned on");
analogWrite(leftHeadlight,230);
analogWrite(rightHeadlight,230);

}
}
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[9-I] Custom/Modified Arduino Libraries

BLINKMFUNCS_12C.h

/*
* BlinkM_funcs_I2C.h -- Arduino 'library' to control BlinkM
*

* 2012, Updated by Nicholas Pennycooke to work with the 12C.h library, a custom
library rewrite of the

* built-in Wire.h library
*

*--------------
*

*

* Note: original version of this file lives with the BlinkMTester sketch

* Note: all the functions are declared 'static' because
* it saves about 1.5 kbyte in code space in final compiled sketch.
* A C++ library of this costs a 1kB more.
*

* 2007-11, Tod E. Kurt, ThingM, http://thingm.com/

* version: 20111201
*

* history:
* 20080101 - initial release
* 20080203 - added setStartupParam(, bugfix receiveBytes() from Dan Julio
* 20081101 - fixed to work with Arduino-0012, added MaxM commands,
* added test script read/write functions, cleaned up some functions
* 20090121 - added 12C bus scan functions, has dependencies on private
* functions inside Wire library, so might break in the future
* 20100420 - added BlinkMstartPower and _stopPower
* 20111201 - updated to work with Arduino 1.0 (breaks compatibility with

Arduino <= 0023)
*

*/

#include <Arduino.h>

#include "12C.h" // from Wire library, so we can do bus scanning

// Call this first (when powering BlinkM from
static void BlinkM-begino
{

}
12c.begin();

a power supply)

// join i2c bus (address optional for master)

/*
* actually can't do this either, because twi

static void BlinkM reset()
{

init() has THREE callocs in it too

twi_init(): / can't just call Wire.begin() again because of calloc(s there
}
*/

//
// each call to twi writeTo() should return 0 if device is there
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// or other value (usually 2) if nothing is at that address
//

// FIXME: make this more Arduino-like
static void BlinkMstartPowerWithPins(byte pwrpin, byte gndpin)
{
pinMode( pwrpin, OUTPUT);
pinMode( gndpin, OUTPUT);

digitalWrite( pwrpin, HIGH );
digitalWrite( gndpin, LOW );
/*

DDRC 1= _BV(pwrpin) I _BV(gndpin); // make outputs
PORTC &= _BV(gndpin);
PORTC = _BV(pwrpin);
*/

}

// FIXME: make this more Arduino-like
static void BlinkM_stopPowerWithPins(byte pwrpin, byte gndpin)
{
//DDRC &=- (_BV(pwrpin) I _BV(gndpin));
digitalWrite( pwrpin, LOW );
digitalWrite( gndpin, LOW );

}

//
static void BlinkMstartPower()
{
BlinkMstartPowerWithPins( A3, A2 );

}

//
static void BlinkM_stopPower()
{
BlinkMstopPowerWithPins( A3, A2 );

}

// General version of BlinkMbeginWithPowero.
// Call this first when BlinkM is plugged directly into Arduino
static void BlinkM_beginWithPowerPins(byte pwrpin, byte gndpin)
{
BlinkMstartPowerWithPins(pwrpin,gndpin):
delay(100): // wait for things to stabilize
I2c.begin();

}

// Call this first when BlinkM is plugged directly into Arduino
// FIXME: make this more Arduino-like
static void BlinkM_beginWithPower()
{
BlinkMbeginWithPowerPins( A3, A2 );

}

// Sets the speed of fading between colors.
// Higher numbers means faster fading, 255 == instantaneous fading
static int BlinkMsetFadeSpeed(int addr, int fadespeed)
{

12c.write(addr,'f',fadespeed);
}

// Fades to an RGB color
static void BlinkMfadeToRGB(byte addr, byte red, byte grn, byte blu)
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{
byte c[] = {red,grnblu};
12c.write(addr,'c',c,3):

}

// Sets an RGB color immediately
static int BlinkMsetRGB(byte addr, byte red, byte grn, byte blu)
{

byte n[] = {red,grn,blu};
return 12c.write(addr,'n',n,3);

}

static void BlinkMstopScript(int addr)
{
12c.write(addr,'o');

}

static void BlinkM off(uint8 t addr)
{
BlinkM-stopScript( addr );
BlinkMsetFadeSpeed(addr,10);
BlinkMsetRGB(addr, 0,0,0);

}
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ELESCUDO.h

/*
ELEscudo.h - EL Escudo library
Written by Ryan Owens for SparkFun Electronics

This library is released under the 'Beer Me' license, so use it however you
with. Just buy me a beer if we ever meet!

Edits by Nicholas Pennycooke to fix a bug with the firing of the F wire

*/

#ifndef ELEscudo_h
#define ELEscuod h

#include <inttypes.h>

#define A 2
#define B 3
#define C 4
#define D 5
#define E 6
#define F 7
#define G 8
#define H 9
#define STATUS 10
#define pulse_width 10

class ELEscudoClass

public:
void on(char);
void off(char);

void Fono;
void Foffo;
void allon(void);
void alloff(void);
void fadein(char);
void fadeout(char);
void pulse(char);

};

extern ELEscudoClass EL;

#endif
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ELESCUDO.cpp

/*
ELEscudo.cpp - EL Escudo library
Written by Ryan Owens for SparkFun Electronics

This library is released under the 'Beer Me' license, so use it however you
with. Just buy me a beer if we ever meet!

Edits by Paul Krakow to make this library work with the Arduino 1.0 IDE
And to get the "on" API call to work

Edits by Nicholas Pennycooke to fix a bug with the firing of the F wire

*/

/ ******,**************************I**********************************************
* Includes

#include "Arduino.h"
#include "ELEscudo.h"

/ ******************************************************************************

* Definitions

/******************************************************************************/

* Constructors

/******************************************************************************/

* User API

void ELEscudoClass::on(char channel)

{
pinMode(channel, OUTPUT);
digitalWrite(channel, HIGH);

}

void ELEscudoClass::off(char channel)
{

pinMode(channel, OUTPUT);
digitalWrite(channel, LOW);

}

void ELEscudoClass::Fon({
pinMode(7, OUTPUT);
digitalWrite(7, HIGH);

void ELEscudoClass::Foffo{
pinMode(7, OUTPUT);
digitalWrite(7, LOW);

}

void ELEscudoClass::allon(void)
{

for(int i=O; i<4; i++){
EL.on(i*2+A);

183



EL.on(i*2+1+A);
delayMicroseconds(20);
EL.off(i*2+A):
EL.off(i*2+1+A);

}
}

void ELEscudoClass::all off(void)
{

for(int i=A; i<10; i++)EL.off(i);
}

void ELEscudoClass::fade_in(char channel)
{

for(int brightness=0; brightness<=pulse_width; brightness++){
for(int duration=0; duration<5; duration++){

EL.on(channel);
delay(brightness);
EL.off(channel);
delay(pulse_width-brightness);

}
}
EL.on(channel);

}

void ELEscudoClass::fadeout(char channel)
{

for(int brightness=pulse_width; brightness>=0; brightness--){
for(int duration=0; duration<5; duration++){

EL.on(channel);
delay(brightness):
EL.off(channel);
delay(pulse_width-brightness);

}
}

}

void ELEscudoClass::pulse(char channel)
{

EL.fadein(channel);
ELfadeout(channel)

EL_EscudoClass EL;

184


