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Abstract

In this thesis, we study the problem of asymptotic spectral flow for a family of coupled

Dirac operators. We prove that the leading order term in the spectral flow on an n

dimensional manifold is of order r 2 followed by a remainder of O(ri). We perform

computations of spectral flow on the sphere which show that O(r ) is the best

possible estimate on the remainder.

To obtain the sharp remainder we study a semiclassical Dirac operator and show

that its odd functional trace exhibits cancellations in its first "+ terms. A normal

form result for this Dirac operator and a bound on its counting function are also

obtained.
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Chapter 1

Introduction

1.1 Motivation from the Weinstein conjecture

The motivation for the main problem of this thesis has come from the recent proof of

the Weinstein conjecture in dimension three by Taubes [40]. A contact three manifold

Y is one that is equipped with a one form a such that a Ada is nowhere vanishing. The

associated Reed vector field R to the one form a is defined by the equations iRda = 0

and a(R) = 1. The Weinstein conjecture says that the Reeb vector field R always

has a closed orbit. In [40] the following perturbed version of the three dimensional

Seiberg Witten equations is considered

1
cl(*FA) = r(@D -- --|@|2 - a) (1.1)

2
DA = 0. (1.2)

Here A denotes a connection on the determinant line bundle of a Spin' structure with

associated Dirac operator DA , D is a spinor and cl : T*Y -+ End(S) denotes Clifford

multiplication map. A Reeb orbit arises from solutions to (1.1)-(1.2) with a uniform

bound on their energy as r -4 oc. Solutions to (1.1)-(1.2) are given by a non-vanishing

theorem in Monopole Floer homology of Kronheimer and Mrowka [26]. The bound

on the energy follows if one considers solutions which represent a generator in Floer
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homology of a fixed grading. The relative grading in Floer homology is given by the

spectral flow function for the Hessian of the Chern-Simons-Dirac functional. It is

hence important to investigate the asmptotics of the spectral flow function for large

r.

1.2 The problem of spectral flow

The Seiberg Witten equations are the variational equations associated with the Chern

Simons Dirac functional. The Dirac operator appears as a component in the Hessian

of the Chern Simons Dirac functional. One then has to give an estimate on the

asymptotics of the spectral flow function sf {DAo+sa}, 0 < s < r, as r -+ oo. Here A0

is a fixed connection on the determinant line bundle and a is a purely imaginary one

form. The spectral flow function is defined to be the number of eigenvalues of DAo+sa

which go from being negative to positive as s goes from 0 to r. The following result

appears as proposition 5.5 in [40]

Theorem 1.2.1. The spectral flow function satisfies the asymptotics

r 2
sf{DA+sa} = - 2 a A da + 0(r8(lnr)) (1.3)

32ir2 J

on a three manifold, as r -+ oo.

Another subsequent paper of Taubes [39] proves a similar result on higher dimen-

sional manifolds with a leading term of order r ' and a remainder of O(rP) with

p = i ±+n-) + e, Vc > 0. The result above leads us to ask what the sharpest

asymptotics are for the second order term in the spectral flow estimate (1.3). This is

the main question of this thesis and we prove the following result in this regard.

Theorem 1.2.2. On a manifold of odd dimension n the spectral flow function for

the family of Dirac operators DAo+sa, 0 < S < r coupled to the connections A 0 + sa

satisfies the asymptotics

n+1

sf{DAo+sa} = r + a A (da)±+(r2) (1.4)
4r ( 2 l)! y

14



as r -+ oo.

To describe the main arguments in the proof of theorem (1.2.2), we first associate

to the family of Dirac operators DAO+Sa the operator on Y x [0, r], given by

D + DAo+sa. (1.5)as

One has from [1] that the spectral flow for the family DAo+sa, 0 <_ s < r is given by

the index of the operator D subject to the Atiyah-Patodi-Singer boundary condition

on the boundary Y x {0, r}. The index of D is now given by Atiyah-Patodi-Singer

index theorem as

sf{DAo+sa} = ind(D) (1.6)
n+1

2r 2 r-_ Ia0a2±(71)±+ (rn2). (1.7)= r 2a A (da) V+ (r /7 7 ) 17
\2/ (-l)!J 2

Here the integral term, and the O(r iA) term appear from the usual Atiyah-Singer

integral. The terms r/ and rf denote the eta invariants of DA0 and DAo+ra respec-

tively, where the eta invariant r/A of an operator A is defined to be the value at zero

of the meromorphic continuation of the function

7A(Z) = dim ker(A) + Y sign(A) IzA (1.8)

AESpec(A)

The problem now reduces to finding the optimal asymtotics for the eta invariant

r as r -+ oc. Letting A = Ao+ra denote an r dependent connection, we next express

the eta invariant in terms of the traces

1r =tr(DAe tDA)dt + trf(vfTDA). (1.9)

Here the second term denotes the functional trace corresponding to the function f =

sign(x)erfc(x) with erfc(x) = -- dy being the complementary error function.

15



The main work involved in proving theorem (1.2.2) is in deriving the heat trace

estimates

|t~-D 2c2rt |t(a-tD 2 c3 1 ec4 rtItr(e-D A)l C1  Itr(DAe A ) I < +12
tn'2

for uniform constants ci, 0 < i < 4. These are proved using the maximum principle

and small time expansions for the heat trace. Since erfc(x) < e, 2 , VX, the desired

estimate qr = O(ri) on the eta invariant follows using these trace estimates and

substituting T = in (1.9), hence proving theorem (1.2.2).

The theorem (1.2.2) however does not say anything about the sharpness of the

estimate (1.4), and we do not believe this to be the case. To study the question of

sharpness we shall perform some computations for spectral flow. In particular we

shall compute the spectral flow function for the odd dimensional sphere S2m+1 with

its unique spin structure. The result we have is the following.

Theorem 1.2.3. Let S be the unique spin bundle on S 2m+l. Consider the trivial

Hermitian line bundle C with connection d - ira where a is the standard contact

form. The eigenvalues with multiplicities for the coupled Dirac operator Dra acting

on sections of S 0 C are given by

i. A = r - (a + m + 1), for a E No with multiplicity (" a

ii. A = (-1)m(r + a + m + -1), for a E No with multiplicity ( a

iii.

A 2 i (ai - a2 + 2j- m + r + 1)2 + 4(j + ai + 1)(m - j + a2),

(1.11)

for ai, a2 E No, j = 0, . . . , m - 1, each with multiplicity

(m + ai)!(m + a2)!(a1 + a2 + 1 + m) (1.12)
m!j!(m - j - 1)!a!a2! (ai + j + 1)(a2 + M - j)

Hence its spectral flow function is given by

16



[r-m- 1

sf (D, Dra) = 2 a (1.13)

This computation shows that the optimal possible asymptotic formula for the

spectral flow function is as given by the following conjecture.

Conjecture 1.2.1. On a manifold of odd dimension n the spectral flow function for

the family of Dirac operators DA+Sa, 0 < s < r coupled to the connections A + sa

satisfies the asymptotics

sf{DAo+sa} = r 2 ( ) n+1 a A (da)nWl + O(r ) (1.14)
4r ( 2 )! r

as r -+ 0c.

The above result has been proved by C. J. Tsai for certain specific three manifolds

in [41].

The line of argument in the previous section can potentially be improved if one

uses the substitution T = -1 in (1.9) instead. With this substitution one is reduced

to finding the sharpest asymptotics for the functional trace trE(IDA + cl(a)), where

the function E = sign(x)erfc(x). If one thinks of = h as a semiclassical parameter,

this problem appears to be one of semiclassical analysis as in [13], [21], [29] and [44].

These techniques provide a full trace expansion for trf (Dh), where Dh = hDAO + a,

in powers of h under the assumption that f is smooth. Although a general expansion

begins with the power h-", in the case of the semiclassical Dirac operator we are able

to show that this trace exhibits cancellations in its first "-3 terms when the function

f is odd.

Theorem 1.2.4. Let f E S be an odd Schwartz function. There is a trace expansion

trf(Dh) ~ h~2c+3 + h--2 cn+ ± ... (1.15)
2 2

for some constants ci, n+ <i

17



In the semiclassical terminology, conjecture (1.2.1) is reduced to the statement

trE(Dh) = O(h-"). Theorem (1.2.4) still does not prove this since the function E

has a discontinuity at the origin and is not Schwartz.

Spectral asymptotics for counting functions of eigenvalues have been well studied

in the literature. Namely, given a positive elliptic operator P of order m on a manifold

X, consider N(R) to be the number of eigenvalues of P less than R. The famous

Weyl asymptotic formula gives the following asymptotics for the counting function

N(R)

N(R) = R2-vol({(x, () E T*Xlp(x,() < 1}) + O(Rn+), (1.16)

as R -+ oo. Here p(x,() denotes the symbol of the operator P. Weaker estimates

on the remainder had earlier been obtained using heat trace methods in [4] and [28].

The optimal estimate of O(R ') for the remainder was first proved by Hormander in

[23] using wave trace methods and Fourier integral operators. The counting function

N(R) can be expressed as the spectral flow function of the family P - s, 0 < s < R.

The problem of considering general asymptotics for the spectral flow function of a

family appears to be new.

In the semiclassical context one is interested in the asymptotics for the counting

function Nh(a, b). This equals the number of eigenvalues of a semiclassical operator

Ph in the interval [a, b]. Sharp asymptotics for these counting functions are known for

scalar operators or non-scalar operators with a smoothly diagonalizable symbol [13],

[25]. These formulas also require that a and b not be critical values of the symbol

of Ph. In the case of the Dirac operator D' we are able to estimate such a counting

function near the critical value 0 of its symbol.

Theorem 1.2.5. For c > 0 be any positive real, the counting function

Nh(-chA, chl) = O(h-2) (1.17)

near h = 0.
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1.3 Outline

In Chapters 2 and 3 we provide some technical background required to prove the

results of the thesis. In Chapter 2 we derive the asymttotic expansion for the heat

kernel and its trace. A proof of Weyl's law for Dirac operators is included. In

Chapter 3 we prove the Atiyah-Patodi-Singer index theorem and certain results on

the eta invariants of Dirac operators. Here we also define spectral flow and give its

relation to the APS index.

In Chapter 4 we prove theorem (1.2.2) following some bounds on the heat trace.

In Chapter 5 we consider the semiclassical Dirac operator. Here we prove the

results (1.2.4) and (1.2.5).

In Chapter 6 we perform computations for spectral flow. We shall prove (1.2.3)

giving the spectrum of the Dirac operator on S" and showing that the result (1.2.1)

is the best possible.

Finally, in appendices A and B we develop the necessary techniques from semi-

classical analysis required in Chapter 5.
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Chapter 2

The Heat kernel expansion

2.1 Dirac operators

We begin with the notion of a generalized Dirac operator. Such an operator exists

on any Clifford bundle. A Clifford bundle S is a complex vector bundle with a

connection V, a hermitian inner product (,) and a 'Clifford multiplication' map which

is a morphism of vector bundles cl : T*M 0 S -+ S. This morphism has the property

that cl(v) 2s = -(v, v)s for every cotangent vector v and s E S. In addition there are

compatibility conditions between any two of these structures given by:

1. (V and (,)) d(si, s2 ) = (Vsi, s 2) + (si, Vs 2 ) for any pair of sections si and s 2 -

2. (V and cl) Vx(w.s) = (V-Cjw).s + W.(Vxs), for any vector field X. Here

VL-C denotes the Levi Civita connection on T*M and Clifford multiplication

is denoted by the shorthand w.s = cl(w 0 s).

3. (cl and (, )) (W.si, s 2) + (si, w.s 2 ) for any w E T*M and s 1 , s 2 E S.

Given such a Clifford bundle, we can define a corresponding first order operator

D : C (S) -+ C (S). This is defined via D = cl o V and called the Dirac operator.

2.2 Asymptotic expansion of the kernel

Next we shall be concerned with finding the asymptotics of the trace of the evolution

operator e-tD2 . It is well known that this operator is smoothing. This means that it
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has a smooth kernel kt(x, y) E C (M x M; 7r*S (97S*) for all time t > 0 and that the

trace is Tr(e~D 2 ) = fM tr(kt(x, x))dvol. This integral expression says that to find the

asymptotics of the trace it will suffice to find the asymptotics of the kernel. In fact it

is possible to get a complete asymptotic expansion for the kernel near t = 0. Before

we give the expansion of the kernel we define what is meant by a full asymptotic

expansion below.

Definition 2.2.1. Let f : R+ - B be a function on the positive real line with values

in a Banach space B. We say that f has the asymptotic expansion

00

f (t ~ fi(t) (2.1)
i=O

near t = 0 if fi : R+ - B is a set of functions such that the remainders of RN(t) =

f(t) - EiN fi(t) are eventually of an arbitrarily small order. That is, for every r

there is an Nr such that N > N, => ||RN(t) = =(tr).

Knowing the heat kernel on Euclidean space to be (47>/2 e- 4 we guess that

the kernel kt(x, y) ought to be related to

ht(x, y) = (47rt)n/2e (2.2)

where p(x, y) denotes the geodesic distance between points x and y. In practice we

would like h to be smooth. Hence, we will let p(x, y) be the geodesic distance when

x is within the injectivity radius of y and continue p smoothly outside as long as it

is bounded below p(x, y) > a > 0 in this region. The asymptotic expansion that we

look for will be of the type kt(x, y) ~ ht(x, y)(so(x, y) + ts1(x, y) + t 2s 2 (x, y) + - - - ),

where si are smooth sections of 7r*S 0 7rS*. Before we prove this expansion and find

the coefficients si we will need a lemma to help us with our computations.

Lemma 2.2.2. 1. Let D be a Dirac operator on a Clifford bundle S. Then for
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every section s of S and every smooth function f on M

D 2 (f s) = fD 2s - 2 Vvfs + (Af)s (2.3)

2. Let h1(x, y) = e where p = p(x,y) denotes the function defined ear-

lier. Let ig be the injectivity radius of (M, g) and let g = det(gij) be the

determinant of the metric. Then the identity

_ph og
Oth + Axh = phog(2.4)

4gt Op

holds in a neighbourhood Uj, of distance ig of the diagonal in M x M.

Proof. 1. We compute in geodesic coordinates centered at a point. We use the

compatibility rules for a Clifford bundle to get

D 2fs = Z se)es + f E eejVe, Vets.

(2.5)

The first term only contributes when i = j and gives (Af)s, the second also has

cancellations for i 7 j to give -2Vvf s and the last equals fD 2 s.

2. We fix the point y and compute in geodesic coordinates centered at y. The

Laplacian in coordinates is given by Ah = - B&(Fg'h = -gghBig

(B9ig') (O h) - g'j(09h). Now we use p2 = EZ x? in geodesic coordinates to get 9ih =

- f. This gives2t

1. 1 1 ~ 1.
Ah = 4gtgxjh(Big)+ xjh(aigJ)+ I gh 49 - ixixh (2.6)

4gt 2t 2t 4t2

1. 1 1.
- gxjh(Big) + -hO(g'Ixj) -4tgzxxh (2.7)

where we have combined the middle two terms. Now it is a consequence of the

Gauss's lemma that gxj = xi and g'xixj = p2 in geodesic coordinates. Using this

23



we get Ah = 2-h-22 + -- . Here' = xioi is the radial vector field in geodesic

coordinates. The time derivative is easily calculated to be Oth = -a + 2 h. Adding

the two gives us the result.

Having this lemma in hand we are now ready to derive the full asymptotic expan-

sion of the kernel.

Theorem 2.2.3. There is an asymptotic expansion for the kernel kt(x, y) of the type

kt (x, y) ~ ht (x, y) s80(X, Y) + ts1 (X, Y) + t2 S2(X, Y) + - -- )(2.8)

which is valid in the Banach space Ck(M x M) for every k. Here si are smooth

sections of 7*S 9 7*S*.

Proof. We first show that it is possible to find si such that for each partial sum

k h(EN tisi) we have (at + D 2 )kN = eN, where etN is a smooth section whose

Ck norm satisfies the bound

||eNliCk t ~N-k-2
letfc < CN 2k (2.9)

for t < 1. To this end we apply the heat operator to the expansion term by term

while trying to get rid of lower order terms. Using the lemma we get (Ot + D 2 )ht s =

hti-1(pVasi + isi + - si) + hti(D2si). Now comparing coefficients of ti- gives us

the equations

p ag 0 if i = 0
(pV , ± i + -- )si = (2.10)

4 g op - D 2s,_1  if i > 1

These are a set of linear first order equations which can be solved with the help the

integrating factor pi-IgI/4 to give

0 if i = 0
V9,(pig /4si) = (2.11)

-p gif(Df >1.
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We can first solve for so uniquely given so(y, y). We set so(y, y) = 1. The reason for

this choice is because we will need the expansion to tend to 6(x - y) as t -+ 0 for it

to approximate the kernel. For i > 1 the equation (2.11) gives si in terms of si_1 up

to a constant multiple of term which is of order r-i near r = 0. Smoothness near 0

requires this constant of integration to vanish and hence we have solved for all si's.

Notice that since the formula (2.4) is only valid in Ui,, the si's are only determined in

this neighborhood. However since the heat kernel is concentrated near the diagonal

for small time we may set the si's arbitrarily outside this neighbourhood. To prove

the bound (2.9) on e N , we first prove it inside Uj . Here eN = htN(D 2 sN) and it's

Ck norm will involve terms of order atmost tN-k- near t = 0. Outside Ui9 we have

that p(x, y) > a > 0 and the fact that e-'/t is of order t' near t = 0 gives us the

estimate in this region.

Elementary estimates show that kN -+ 6(x - y) as t -4 0. Now if rN is the unique

solution to the equation

(19 + D 2)rN N (2.12)

with the initial condition ro = 0, this initial condition clearly implies that

k + r± -+ 6(x - y) as t -+ 0. (2.13)

Also k[ + r' satisfies

(D 2)(kN ±r) =0. (2.14)

The heat kernel is the unique time-dependent section which satisfies (2.13) and (2.14).

Hence we have that kt = kN+ rN and thus r[ is the remainder to the expansion whose

order we have to determine. To do this, apply Duhamel's formula to (2.12) to write

r= ft e(g')D 2 eN dt'. The fact that e-tD2 is bounded on every Sobolev space gives

|r|Ilk < t sup Iet Ilk < Kot sup Ie'lick < K 1tNk-+1. (2.15)
ost'st ost'st
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Here the second inequality is from the fact that, on a compact manifold, the kth

Sobolev norm is bounded by a multiple of the C' norm and the third inequality is

the bound given by (2.9). Finally Sobolev's inequality gives ||rflci -< K2||rfl|I

K 3 tN-k-1+1 for 1 + n < k. Thus we have that the order of the remainder, in any

Banach space C1 , becomes arbitrarily small as N -+ oc.

2.3 Weyl asymptotics

As a consequence of the asmptotic expansion for the heat kernel we now derive the

well known Weyl asmptotic formula. The operator D 2 is an elliptic, positive, formally

self adjoint operator of second order. Standard elliptic theory for self adjoint elliptic

operators tells us that such operators have a discrete spectrum of eigenvalues

0 < A, < A2 < A3 ---

tending to infinity. The object of interest here is the counting function (with multi-

plicity) for the number of eigenvalues of D 2 less than a certain magnitude N(R) =

max{ilAi < R}. The following theorem gives the asymptotics for the function N(R)

for large R.

Theorem 2.3.1. (Weyl's law) The counting function for the eigenvalues of D 2 sat-

isfies
vol( M)

N(R) = (4 Vo2 (n/ + R n/ 2 + o(R/ 2) (2.16)
(47)n/21-'(n/2 + 1)

near R = oo.

What allows us then to go from the asymptotics of the heat kernel to the asymp-

totics of the counting function N(R) is the so called 'Tauberian theorem' from real

analysis. Since this is motivating for the rest of the proof, we give this part of the

argument here.

Theorem 2.3.2. (Karamata) Let p be a positive measure on R+ such that
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lim tof e- dp(A) = C. (2.17)
t-+o fo

Then

lim X- dp(A) = . (2.18)
x-4 o F(a+1)

Proof. First we show that for any continuous function f on the interval [0, 1]

lim to f(e-tA)e-tAdp(A) C f(e- t)t-1e-t dt. (2.19)
t-+o IF (a) J

To see this we approximate f by a Weirstrass polynomial p such that If x) - p W)I <e

for x E [0, 1]. The positivity of the measure is used here to see that the difference of

the corresponding intergrals is small. Following this, it suffices to prove the claim for

polynomials and hence for monomials f (x) = x k. The claim is true for monomials

since

limt" e(k+)tAd/p(A) = C(k ± 1)~ = ekt"-le-tdt, (2.20)
t- o J F(a) 0

where the first equality follows by (2.17) and the second defines the Gamma function.

Now we apply the lemma of the previous paragraph to the function g which equals

0 on [0, 1/e) and x- 1 on [1/e, 1]. This gives

lim tao dp(a) = f t- 1dt = (2.21)
t-+o Jo F(a) J F(a + 1)

as required. Although g isn't continous we can still apply the lemma to it since g can

be approximated by continuous functions.

The general idea behind Tauberian theorems is to relate the behaviour near in-

finity of the function to behaviour near zero of its (Laplace) transform. Deriving the

behaviour of the transform from that of the function is usually easy and known as

an 'Abelian Theorem'. Conversely, deriving the behavior of the function from that of
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its transform is more subtle and requires and additional Tauberian condition on the

function. In this context the fact that the counting function N(R) is non-decreasing

(or its derivative N'(R), the spectral measure, is positive) is the Tauberian condition.

Now we are ready to finish the proof of Weyl's law. Firstly, given a bounded linear

operator between two Banach spaces A : B -+ B' we can compose an asymptotic

expansion with values in B with A to get an asymptotic expansion with values in B'.

The trace is a bounded linear operator from Ck(M x M) to R. Thus applying the

trace gives us the asymptotic expansion of the trace from that of the kernel and we

get

Tr(etD 2 ) (ao + alt +.. (2.22)
(47t)n/ 2

where

ai= JM tr(si(y, y))dvol (2.23)

Since we had so(y, y) = 1, we have ao = rank(S)vol(M). Finally applying the

Tauberian theorem to the spectral measure Ej o\ gives us

N(R) = rak(S)vol(M) R n/2+o(Rn/2 ). (2.24)
(47r)n/2 F(n/2 + 1)
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Chapter 3

Spectral flow and the APS index

In this section we will recall the Atiyah-Patodi-Singer index theorem and its relation

with spectral flow. The results of this chapter will be important to prove the estimate

on spectral flow in chapter 4. We shall begin with the statement of the index theorem.

Let X be a compact manifold with boundary OX = Y. Let E and F be vector

bundles over X and let D : CO (X, E) -+ C" (X, F) be a first order elliptic operator.

Now assume that there exists a collar neighbourhood of the boundary Y x I 4 X

and a vector bundle EO on Y such that there are identifications iE : E ~+ 7r*Eo and

F : F ~r*Eo. Further assume that there exists a self-adjoint (with respect to density

dy), elliptic operator A : C (Y, EO) -+ C' (Y, EO) such that in a neighbourhood of

the boundary D corresponds via the identifications to

D = ( +A 0 2 E- (3.1)

Here u denotes the coordinate on the interval and the operator -L + A needs to

be defined in these special coordinates on the product. We also assume that the

Hermitian inner products on EO, E and F agree under the identifications and the

density dx agrees with the density dydu on the collar. Consider now the operator

P or :H(X, E) -+ HB-(Y, Eo), (s > -) which is the composition of the restriction

map r : H"(X, E) -+ H-i (Y, EO) with the projection P onto the nonnegative part

of the spectrum of A. Let Hs(X, E, P) denote the kernel of this composition, which
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is itself a Hilbert space. The aim is to prove the following theorem

Theorem 3.0.3. (Atiyah-Patodi-Singer) Consider the operator D: Hs(X, E, P) -

HS- 1 (X, F) for s > 1.

a. D is Fredholm.

b. The index of D is given by

ind(D) = J ch(o-(D))Td(X) - (h±+2A(0) (3.2)

where

(a) fX ch(-(D))Td(X) is the usual Atiyah-Singer integral.

(b) h = dim ker(A).

(c) the eta invariant is formally defined via

r/A(s) = Y signAl| A s E C (3.3)

where the sum runs over the eigenvalues of A. This formal series con-

verges for Re(s) large and has an analytic continuation to the whole

s-plane with a finite value at 0 which appears in (3.2).

The proof of the above theorem requires some preparation. First we do some

computations on an analogous situation on the cylinder in the next section.

3.1 Computations on the cylinder

Let Y be a compact manifold with a vector bundle EO -+ Y. Let A : C (Y, E) -

C (Y, E) be a first order, self-adjoint, elliptic differential operator. Consider the

product Y x R+ of Y with the nonnegative real line and let E = r*Eo be the pullback

of E under the projection onto Y. Consider the differential operator

D = a±+ A: C(Y x R+; E) -* C(Y x R+; E) (3.4)
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The Sobolev space 8s(Y x R+, E) denotes the space of restrictions to Y x Ryo of

elements in Hs(Y x R, E). Let r : CO(X, E) -+ C"(Y, EO) denote the restriction

map and let P : C"(Y, EO) -+ C(Y, EO) be the projection onto the nonnegative

eigenspace of A. Define

C"(X, E, P) = {u E C*(X, E)jP o r(u) = 0}. (3.5)

One can analogously define H'(X, E, P) for s > }. We prove the following lemma

Lemma 3.1.1. There exists a linear operator Q C*(X, E) -4 C*(X, E, P) such

that

i. DQg = g, Vg E C"(X, E).

ii. QDf = f, Vf E C (X, E, P).

iii. The kernel of Q, KQ(y, u; z, v) is C* for u 4 v.

iv. Q extends to a map Q : f8-1(X, E) -+ Hs(X, E, P) fors> 1.

Proof. First we prove iv. We need the following descriptions for the relevant Sobolev

spaces involved.

Hs(X, E) = {f = f,(u)#Jf,\ E 17(R+) ,| < oo} (3.6)
i+j<s

Hic(X, E) = {f = f\(u)#O\|V4 E C"(X), #f E "s} (3.7)

Now to define Qg we must solve Df = g with boundary conditions. If f = Z fxbA

this amounts to solving (0 + A)f\ = gx, with f.(0) = 0 for A > 0. We do this in three

cases.

(a) First let A > 0. Let gi be an extension of g\ such that

JA + -0 (3.8)

and g' E Ht. To show that such an extension exists first start with an arbitrary

extension gi with f c. Now consider g' = g' + ca where a E C"(R<o)
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such that f eAoa = -1. Clearly g' is still an extension. Now a = (au + A)# where

# = e eUl'a(u')du'. Hence & = (if + A)/ and we have c f g = cf # =

cO(0) = -c which implies (3.8). Now define

fA = rF-1 (,+J) for A > 0. (3.9)

This restriction can be shown to be independent of the extension g'. This is because

for E £ Ce (R>o) we have fA( ) = -F- 1 ( +,) ( ) = #it (#) 0 g^ ) = g()

where (A - &2)' = 4. Hence A = e~u fe'e-Au',du' + (f e-A"u'du')e,\u and we

may further compute g'(V) = g(X+O) + ge(X-, ) = g(X+b) + gi(el") g(X+) +

g = g(X+P) which proves the independence of the extension. Now

||fAI|s+1 IIF1 (|A| ) 1 8+1 (3.10)

jA k12 2 (3.11)

< C ( )02s"|gel (3.12)

= C Ig 1. (3.13)

We may also estimate

IgIll ||gil, + c|la|| (3.14)

< ClgillS (3.15)

which finally gives

IfAlls+1 C||gI|| (3.16)

for some uniform constant C in A. A similar argument gives
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IAfxIls+1 < C11gAl, (

and f\(0) = 0 clearly follows from (3.8).

(b) Now consider A < 0. Here let g' be an arbitrary extension of g\ and define

fA = rF 1 (A ± i, (3.18)

Similar arguments to case (a) show that this restriction is independent of g' and that

we have the estimates

IIf>Is"i - C11g,1 8

IIAJAIls+l < CIgAjj8

(3.19)

(3.20)

(c) Finally consider A = 0. Let go E H8 for s > 0. Let go be a extension of go and

define

fo=rF-1 . (3.21)

Here is the distribution defined via

Jod = J pde (3.22)

where #b is the unique test function satisfying 4 = #(0) + ig#. Here the convergence

of (3.22) follows as 0 ~ ) as & - oo. Again the restriction is independent of go as

if 5 E C (R>o) then we may comp-ute
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F- ( 4) (3.23)

= go (3.24)

= gje (3.25)

where # = f_ r - (f q)H. Now we see sup(o) c R>o and hence (3.25) is indpendent

of the extension g'. Now clearly 0fo = go and hence fo E 5f9+cl by local elliptic

regularity. Also since s > 0 we have fo E Co and sup(fo) C R>o can be shown by

an argument similar to that showing the indepence of extension. Hence we have that

fo(0) = 0.

Now to show Z fdA& E it suffices to show EZA# E+j 8 +1 (A 2IIfAII! < 00

But this follows from (3.16), (3.17), (3.19) and (3.20).

Parts (i) and (ii) of the proposition are easily checked. For part (iii) let AI =

AP - A(1 - P) and define

Kt = x>oe-tlAP - X<oetlA(1 - P). (3.26)

It is clear that Kt is smoothing for I # 0 with smooth kernel K(y, z, t). The kernel

of Q is seen to be Q(y, u; z, v) = K(y, z, u - v) and is hence smooth for u # v. E

Our next task is to construct kernels for the operators e-D*D an -DD* on the

cylinder Y x R+. Let 4, be the eigenfunctions for A on Y with eigenvalue A. Let

r: (Y x R+) x (Y x R+) -+ Y x Y denote the projection given by r(y, u; z, v) = (y, z).

Define sN = wr*(iri4 07r;4) which is a smooth section of E Z E* = gr*(iriEo ® ir&Eo).

Now we define functions onR+ x R+ for each A via
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e_ 2 ex -(u -v) 2 )-n+ )
fx= e x p t -exp , _ (3.27)4 7t4 t 4 t

e 2 (UV) 2  (U+V)2
9exp 4t + exp 4t

+ Aex(U+v)erfc U + ( - AVi) , (3.28)

2v t

where erfc is the complementary error function erfc(x) = f e-' dr. Now we

define the kernels K1, K2 of e-tD*D, e-tDD* respectively via

K1 = E fxs, + E gAsA (3.29)
)J>O A<O

K2 = I g-sA + fAs. (3.30)
A>O A<0

Here the series (3.29) and (3.30) converge in the C' topology on [6, Oo]t x (Y x R+) x

(Y x R+) for any 6 > 0. This can be seen from the fact the e -t^ 2 is smoothing on

Y and the inequalities erfc(x) < eX 2 < 1. The next proposition shows that our

construction does infact give the kernels of the fundamental solutions of the relevant

boundary value problems.

Proposition 3.1.2. The kernels KI, K2 defined in (3.29) and (3.30) satisfy

i. DeK1 + (D*D)pK1 = 0 and OtK2 + (DD*),K 2 = 0

ii. PorK(.,q) = 0, (1- P) or(DK1(.,q)) = 0 and (1- P) orK2(.,q) = 0,

P o r(D*K2 (., q)) = 0

iii. If K = K1-K2 and K(t) = f fy trK(y,u; y,u)dydu then we have an asymp-

totic expansion

K(t) ~ E aktIk as : t -+ 0. (3.31)
k>-n

Moreover ao = - ^(0)+h where h = dimkerA and 77A(0) is a finite value at

zero for the analytic continuation of the eta function (3.3).

Proof. (i) Since the convergence in (3.29) and (3.30) is uniform one may check this
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by differentiating each term. This now follows from the fact that fX and g,\ are in the

kernel of at - a,, + A2 for each A.

(ii) This follows by checking f\(0, v) = 0 if A > 0 and (Bug\ + AgA)(0, v) = 0 if A < 0

for all v.

(iii) Absolute convergence of the integral K(t) = f f, trK(y, u; y, u)dydu again

follows from the fact that e-tA2 is smoothing on Y, erfc(x) < e_,2 and that e-X2 is

absolutely integrable on [0, oo). We may then compute

K(t) = j j trK(y, u; y, u)dydu (3.32)

= sin(A) eu 2 t + AIe2 |AIuerfc - - ± |A l ) du (3.33)

sign(A)- (le2|AIuerfc ( + |Al /) du (3.34)

2 - ignIerfc(IAlv) (3.35)
A

where we have adopted the convention that sign(0) = 1. Uniform convergence of

(3.35) in the C' topology on [6, oo)t allows us to differentiate

1 \K'(t) = Z Ae 2 . (3.36)

Now K(t) may be identified with the trace of the trace class operator B = I lerfc( A Vlt),2A

given by BoA = -sig"(Alerfc(|Ald)#x. We assume that such an operator has a trace

expansion

K(t) = trB ~ 3 akt k as t -+ 0. (3.37)
k>-n

Now K(t) + h -+ 0 exponentially as t -+ 0 and IK(t)| < Ct as t -+ 0. Hence

we see that fj0 (K(t) + lh)t'ldt converges for Re(s) > 2. Integrating by parts and

using (3.36) gives
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j (K(t) + Ih)ts~ldt = w K'(t)t'dt (3.38)

_ (s +) sign(A)

2s.F~ IA (3.39)

where the convergence of the series (3.39) follows from the uniform convergence of

(3.36) and absolute convergence of the respective integrals. Hence we see that the

,q(2s) function is a well defined holomorphic function for Re(s) > E given by

2s 1
7(2s) = - ] (K(t) + -h)ts-ldt. (3.40)

P(s-+1 ) 2

Now we may use the trace expansion (3.37) to define an analytic continuation for this

eta function via

q(2s) = - 2 s E + ONs) (3.41)
F(s + }) kk=_l k+ s

where ak = ak,Vk except do = ao + h. Also the function ON(s) is defined via

ON (S) = K(t) + h- x( Ekt-2 t-dt (3.42)

where X is the characteristic function on the interval [0, 1]. This integral (3.42) now

converges and defines a holomorphic function for Re(s) > - N+- by the asymptotic

expansion (3.37). The fact that (3.41) analytically continues (3.40) follows simply

from f1 
- kt+S1 - ak Finally substituting s = 0 in (3.41) gives

7(0) = -2do = -(2ao + h). (3.43)

5
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3.2 The index formula

Before we proceed to prove the index theorem it will be useful to prove a uniqueness

theorem for the heat kernels of the relevant boundary value problems. We assume

below that we are in the situation described in the introduction, which means that

X is now a compact manifold with boundary. The following proposition establishes

some unique properties satisfied by the relevant heat kernels.

Proposition 3.2.1. There exists a unique time dependent section Kt E C 1 (R>O; C 2 (X x

X; irE 0 ?r*E*)) which satisfies

i. 5hKt + (D*D)pKt = 0

ii. Kts -+ s as t -+ 0 for every s E C'(X, E)
C2

iii. P o r(Kt(., q)) = 0 and (1 - P) o r(DK(., q)) = 0 for every q E X.

Proof. Let Kt and Kt be two such time dependent sections. Their difference Ht =

Kt - Kt then satisfies hypotheses i and iii as well as Hts -+ 0 as t -+ 0. Hence
C2

st = Hts satisfies tst + (D*D)st =0, st -+ 0 and P o rs = 0 and (1 - P) o rDs = 0.
L2

We can then compute

8tIstII2 I (-D*Dst, s)dx (3.44)

f (Dst, Dst)dx + j(rDst, rstdy) (3.45)
JX JY

- IDst 112 < 0. (3.46)

Here the boundary term fy (rDst, rst) in (3.45) comes from Stokes theorem assuming

D has the special form (3.1) in the collar neighbourhood of Y and the fact that

the density dx on X agrees with the density dudy on the collar. This boundary

term vanishes as the restrictions rDst and rst are orthogonal under the assumptions

P o rs = 0 and (1 - P) o rDs = 0. Hence (3.46) gives |IsII Ise| for E < t. Taking

the limit c -* 0 gives |lsEII -4 0 and we see that st = 0 for t > 0. This means that

HIts = 0 for each s and we must have Ht = 0 and Kt = Kt.

We are now ready to prove the index theorem. We first prove part (a) of theorem
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(3.0.3) which claims that D is Fredholm with the relevent boundary condition.

Proof of theorem (3.0.3) (a). The proof that D is Fredholm employs the construction

of a parametrix for D as follows. Let p(a, b) denote a smooth function of the real

variable u which satisfies

p=O for u<a and p=1 for u>b. (3.47)

Now define the four functions

42 =2 p P4 2I 2' 4) (3.48)

41 = 1 -P p3 1 1 = 01=-02. (3.49)

Now we define a paramatrix R for D via

R = 41Q1@1 + q 2 Q2 2. (3.50)

Here Qi = iE o Q o iF is the operator defined in lemma (3.1.1) after identifications.

And Q2 is a parametrix for D on the double X of X. We claim that R is a parametrix

for D in the sense that RD - I and DR - I are both compact operators. First consider

RD - I : Hs(X, E, P) -+ Hs(X, E, P) for s > 1 and compute

RD - I = 4b1Q19 1D + 42Q20 2 D - I (3.51)

= (41Q1D @1 + 41Q1[01, D]) + (42Q2DO2 + 02Q2[?b2, D]) - I (3.52)

= (41V)1 + 4iQ1[@1, D]) + (42@2 + 0 2SO2 + 402Q2[ 2 , D]) - I (3.53)

= 41 Q1[#1, D] + 0 2 Q2 [02 , D] + 0 2 S$ 2. (3.54)

Here (3.53) follows from the construction of Q1 and the fact that Q2 is a left parametrix

in the interior for D with smooth error S. Line (3.54) follows from j4V#j = #i and

1+02 = 1. Finally observe that the commutators [01, D], [/2, D] are of zeroth order
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and #2S'02 is smoothing. Hence RD - I: H'(X, E, P) -+ Hs+1(X, E, P) increases

regularity by 1 and hence by Rellich lemma is a compact operator on Hs (X, E, P). A

similar argument shows that DR - I is compact and proves that D is Fredholm. El

Before we prove the index formula we will need a proposition identifying the

cokernel of D with the kernel of its adjoint D*. This is a non trivial matter on a

manifold with boundary and is proved next.

Proposition 3.2.2. Let D* be the formal L2 adjoint of D. The orthogonal comple-

ment of the range of D : H1 (X, E, P) -* L2 (X, E) is isomorphic to the kernel of

D* : H 1(X, E, 1 - P) -+ L 2 (X, E)

Proof. Under the assumptions we must have that D* = -Q + A on the collar Y x I.

Let v E L 2(X, E) be such that

(Du,v) Vu E H 1(X,E,P). (3.55)

First we show that the restriction of v to X = X\(Y x [0, }}) is smooth. To this end

consider #2 v and observe that we must have (Du, #2v) = 0 Vsup(u) C X. Hence

(u, D*(4 2 v))(l,-1 ) Vsup(u) c X where ((1,1) denotes the L 2 pairing between H1

and H 1 . Hence D*(#2v)|g = 0 and we must have that vlk is smooth by elliptic

regularity for D* in the interior. Moreover (D*v)|t = 0 as #2 = 1 on X. Now we

show v is smooth on Y x [0, {] and (1 - P) o r(u) = 0. By (3.55) we have that

3
(Du, # 1v) = 0 Vu E H1 (X, E, P) with sup(u) C [0, 3]. (3.56)

Let #1v = E f . Consider u = Q(#fA$)) where sup(#) C [0, 3]. Now in the case

where A < 0 we have sup(u) c [0, ] and we may apply (3.56) to get

0 = (Du, #1v) = (DQ(#fq5A), #1v) (3.57)

= #||fA~A|| 2 . (3.58)
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This implies that

f\ (,) = 0 forA < 0. (3.59)

Now consider v+ = Z o fAdA. By (3.55) and (3.59) we now have that

(Du, v+) = 0 Vu E H1(X, E, P) with sup(u) C [0, ]. (3.60)
4

Hence (u, D*v+)(,-1) = 0 where there is no boundary term due to the fact that

Por(u) = 0. Hence D*v+|[o2 = 0 and combining this with (3.59) gives D*vI(og. = 0.

We may hence solve f\(u) = eA-Acfx(c) for c E (), {). This formula along with the

fact that v is smooth on Y x (), ) gives that v is smooth on Y x [0, 1]. Hence v

is smooth on Y and in the kernel of D* : H 1(X, E, 1 - P) -+ L 2 (X, E). Conversely

elements in this kernel are easily seen to be in the orthogonal complement of the

range of D.

Having established the isomorphism of the cokernel of D and the kernel of D* we

can now finish the proof of the index formula.

Proof of theorem (3.0.3) (b). By proposition (3.2.2) we may write ind(D) = dimker(D)-

dimker(D*). By an argument similar to part (a) we see that the operator D*D

H 2(X, E; 1 - P, P) -4 L 2 (X, E) is Fredholm where

H 2 (X, E; 1 - P, P) = {u E H 2 (X, E)|P o ru = 0, (1 - P) o rDu = 0} (3.61)

Its generalized inverse (D*D)- 1 is a self-adjoint compact operator on L 2 (X, E) and

hence has a complete orthonormal basis of eigenvectors {sA}. These are also eigen-

vectors of D*D with a discrete set of eigenvalues A -+ oo. A similar parametrix for

D*D also shows that s\ E C (X, E) for each A. Now we define an operator e-D*D

on L 2 (X, E) via etD*D = etAsA. This operator maps L 2 (X, E) into
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H 2,(X,E; 1- P,P,n) = {u E H 2
n(X, E)IP o (D*D)iu = 0,

(1 - P) o rD(D*D)iu = 0 Vi < n} (3.62)

Hence the operator e-'D*D is a smoothing operator with kernel Kt (p, q) c C' (X x

X, 7rE 0 7*E*). It is hence trace class with trace Tr(e-tD*D) = Z e-tA. Similar

statements hold for e-tDD*. The nonzero eigenvalues of D*D and DD* coincide as

s,\ -+ DsA defines an isomorphism between the A-eigenspaces of D*D and DD* with

inverse t + !D*tA. Also the nullspace of D*D coincides with the nullspace of D

while the nullspace of DD* coincides with that of D*. Hence we have that

ind(D) = Tre~-"'D - Tre-DD*. (3.63)

Now we define a time evolution operator to approximate e-tD*D via

et = 1e1 b1  2+ 02e 2O2  (3.64)

where ei is the corresponding evolution operator on the cylinder whose kernel is (3.29)

and e2 is the evolution operator for (Ot + D*D) on the double of X. If Et is the kernel

of et then elementary estimates show that Rt = ((9 + D*D)Et is exponentially small,

as t -- 0, in C' norm for any k. Now Duhamel's principle shows that

Ht = Et - je-(t-t)D*DRtdt' (3.65)

satisfies (at + (D*D)p)Ht = 0. Also proposition (3.1.2) shows that P o rEt(., q) = 0

and (1 - P) o rDEt(., q) = 0 for each q. Further Ets -* s as t - 0 is clear from
C2

the definitions of ei and e2 . Hence by proposition (3.2.1) H1 is the unique heat

kernel for e-tD*D. A similar construction relates the heat kernel H2 for e -tDD* to the

approximate kernel Ft constructed from evolution operators fi and f2 for (at + DD*)

on the cylinder and the double respectively. Now since Rt is exponentially small as

t -+ 0 and e-tD*D is bounded on any Sobolev space, (3.65) implies that Ht and Et
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have the same asymptotics as t -+ 0. Hence

ind(D) = Tre-tD*D -TretDD* (3.66)

= lim(TrHt - TrH2) (3.67)
t-40

= lim(TrE1 - TrFt) (3.68)
t-+0

= lim ( 1 (y) trKt(y, u; y, u)dydu + j i 2(x)trkt(x)dx) (3.69)

where Kt is defined as in proposition (3.1.2) and 14 denotes the kernel of e-tD*D _

e-tDD* on the double of X. The last equality follows from the definitions of Et and Ft

and the fact that <pij/ = #i. Now proposition (3.1.2) gives the asymptotic expansion

(1 f 1(y) trKt (y, u; y, u) dydu ~>- 2ai (3.70)

while we have an asymptotic expansion

trkt(x)dx _ yk(x)dX) t k (3.71)
X k;>-nX

for the trace Tr(e--D*D -e-tDD*) on the double X of X. Here ak(x) are local functions

of the operators D*D and DD*. Under the assumptions these two operators are

isomorphic on the collar Y x I and since 02 = 1 outside the collar we may replace

the expansion (3.71) with

JX 2(x)trkt(x)dx ~Z (jak(x)dx) t2k. (3.72)
X k;>-nX

Now substituting (3.70) and (3.72) into (3.69) gives

ind(D) = lim at+ ak(x)dx t2 (3.73)

Since the limit exists we must have ak = - f ak(x)dx for k < 0 and
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ind(D) = Jao(x)dx + ao (3.74)

= J ch(-(D))Td(X) - h±7A(0) (3.75)

where the last line follows from proposition (3.1.2) and the local index theorem on

the double of X.

3.3 Eta invariants of Dirac operators

In this section we consider the eta invariants of Dirac operators. The main result

which appears below says that the eta function of a generalized Dirac operator is

holomorphic in the part of the complex plane where Re(s) > - j. Following equations

(3.31), (3.36) and (3.41) this is equivalent to the fact that the trace Tr(De-D2 ) E

t2C ([O, oo)) and exhibits cancellations. This fact will be used in deriving estimates

on the heat trace and spectral flow. The result appearing below was originally proved

in [1], [2] and using a different technique in [9]. The proof we give below follows

proposition 8.35 in [32].

Theorem 3.3.1. Let D : C (Y, S) -+ C (Y, S) be a generalized Dirac operator on

an n dimensional manifold Y. Then rqD(s) is a holomorphic function for Re(s) > -{.

Proof. Define yo = Y x S with the product metric jO = d9 2 +g. Let (S, p, V, h) be the

Clifford bundle on Y corresponding to D, and define a Clifford bundle (5O, p, 5o, h0)

on k' via 50 = 7r*S D 7r*S. Clifford multiplication p on 5o is defined by

[ =, (O(a)) = [ ( (3.76)

and the connection t 0 and metric h0 on 50 are simply pulled back from S. The Dirac
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operator D 0 corresponding to this Clifford bundle on f can be computed to be

D= [ + D. (3.77)
I 70 I

Now we wish to consider the manifold f = Y x S' with the warped metric

j= d02 + e240 g, (3.78)

where # E C (S') is a smooth real valued function on S'. One can first calculate how

the Levi-Civita connection on Y x S1 changes under the warping. If Vo L.C. denotes

the Levi-Civita connection for the product metric and Vt.c- denotes the Levi-Civita

connection for the warped metric (3.78) then we have that the two differ by a one

form @L.C. - 70 L.C = w where

w(&o)dO = 0, w(Bo)a = - a, (3.79)
0o$op

w(X)dO = wetxg, W(X)c a -- a(X)dO (3.80)

for all a, X denote a one form and a vector field on Y respectively. Now we define

a Clifford bundle for the warped metric with S = 50. One must change Clifford

multiplication appropriately so that unit elements square to -1. Hence we set

i(dO) = [(a) = e- P(y . (3.81)

L j Lp(aey) J

The connection must also be changed appropriately to keep it compatible with Clifford

multiplication. Hence we set V 90 + Q where

Q(0o)s = 0, £(X)s - 2- el0 (ixg)p~(dO). (3.82)
20

The metric h = Iz on the Clifford bundle is left unchanged. It is now an excercise

to show that (5, ,, t, h) is a Clifford bundle on f for the warped metric j. The
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corresponding Dirac operator b can be computed to be

D-+ F(O)) + e~O D, (3.83)

where F(O) is the function of 0 given by

F(O) = 2 80 (3.84)
2&9O

The motivation for the above construction comes from the corresponding formulas in

the case where Y is an odd spin manifold. The spin structure on Y and the trivial

spin structure on S1 combine to give a spin structure on Y x S'. Choosing the warped

metric on the product one can compute and verify the spin Dirac operator on the

product to be given by (3.83).

Now to prove that r/D(s) is holomorphic for Re(s) > -1 it is enough by (3.41) to2

prove that ak = 0 for k < 0. Hence via (3.31) and (3.36) it is enough to prove that

the asymptotic expansion for the trace satisfies Tr(De-D2 ) E t!C ([0, oo)). Now

let kt denote the kernel of De -D 2 on Y and let k denote the kernel of De-0) 2 on

Y. We will infact prove that tr(kt) E t"C ([0, oo) x Y) where tr is the trace taken

pointwise on the diagonal in Y. First let i1 ,02 : Y x Y -+ f x f denote the inclusion

given by 401, 02 (Y1 , Y2) = (Y1, 0 1;Y2, 62) for any pair (01, 02) E S' x S1. Equation (3.77)

may be squared to give (D0 )2 = D +D 2 where Do = .1' Since Do and D commute

it now follows that

iko = E(t; 01 - 62){kt D kt} (3.85)

where E(t; 01 - 92) denotes the heat kernel for etD0 written in terms of the Jacobi

theta function

E(t; 0) = 2rE2t e"e (3.86)

Since d02 is a flat metric on S' with no curvature by (3.85) one has the following
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asymptotic expansion in a neighbourhood of the diagonal

i* ,o 1
0~1,02 k t 1,;7= e7vt

1l-o2I1
- 4 {kt D kt}.

Hence we must have that

(3.88)

for any 9 E S'.

Consider now the square of the warped Dirac operator (3.83) which is

D 2 = -(0 + F) 2 + e~2+D2 + [ I ~.11 (3.89)e-OD.0
0

We now let the function # depend on a smooth parameter s. The variation of (3.89)

with respect to s can then be computed to be

-f2 -(ao + F) - (ao + F)F - 2de~2+D2 + e-(k' - q#')as E l

DI (3.90)

where we have used and 4' to denote derivatives with respect to s and 0 respectively.

We further choose the family 4,(0) such that #0(0) = 0 for all 0. Using (3.84) this

reduces (3.90) to

as2(0)as
= ( 'Oo + Ooq') - 24D 2 ± ' [

2
D. (3.91)

Now Duhamel's principle says that the derivative of the heat kernel may be written

as

as

=- f e(-r)D 2 o 2 e-rJ5dr

Jo Os
(3.92)

which on setting s = 0 gives
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et2(0) = - e-(t-r)(DO) 2  ( e-r(b"dr (3.93)
&s as

Following (3.90) and (3.93) we may relate the trace trDe tD 2 with the variation of

the supertrace _e~ (0). The theorem now follows from the local index theorem.

3.4 Relation with spectral flow

Here we breifly recall the notion of spectral flow and its relation with the index. We

refer to [2] for the proofs of several assertions made here with [10] giving a more

detailed account. Consider a continuous one parameter family of elliptic self-adjoint

operators At, for 0 < t < 1, of order m acting on sections of a vector bundle E on a

manifold Y. Spectral flow counts the net number of eigenvalues which which change

sign from negative to positive as t varies. To elaborate, first replace the family by

Ft = (1 + A2) -At to obtain a continuous family of self-adjoint Fredholm operators

on L2(Y, E). Let J denote the space of Fredholm self-adjoint operators on a Hilbert

space. It consists of three connected components .T = J+ U ), U F-, with F±

consisting of the operators with essential spectrum contained in R±. Since the Dirac

operator has spectrum going to ±oo we have {1, -1} c o-ess(Ft) for all t. Hence it

suffices to define spectral flow for a continuous path of operators in F. To this end

we note that the space J, weakly retracts onto the smaller space

= B E J, I||IBI = 1, aess(B) C {1, -1}, u(B) is finite}. (3.94)

Now, given a continuous path of operators Bt in F we have that the spectrum of the

family is given by a finite sequence of continuous functions -(Bt) = { O(t), A (t), .. , Am(t)}.

Set the number of positive and negative crossings crossings to be

n+ = {ilA(0) < 0 < Ai(1)), n- = {ilAi(1) < 0 < Aj(0)} (3.95)
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repectively. The spectral flow of the family is defined to be the integer sf{At} =

n+ - n-

In the case that we have a family of first order differential operators At acting on

the space of sections CO (Y; E) the spectral flow function can be related to the index

of a Fredholm operator. First consider the product X = Y x [0,1] with the bundle

E pulled back from Y (still denoted by E). Define a subspace of H1 (X; E) via

H 1 (X; E, -x>) = {u E H1(X; E)j Ix>ou(., 0) = 0, w<ou(., 1) = 0} (3.96)

where 7r>o and w<o denote the projections onto the eigenspaces of AO and A1 spanned

by the nonnegative and negative eigenvalues repectively. Consider the operator D =

+ At : H 1(X; E, 7r>) -+ L 2 (X; E). If one perturbs the family to assume that it is

constant near the ends of the cylinder then it is proved in [1] that this operator is

Fredholm. Furthermore the index of this operator is the spectral flow of this family

sf{At} = ind(D). (3.97)

The index of D is in turn given by the Atiyah-Patodi-Singer index theorem [1] as

ind(D) = ch(o-(D))Td(X) + (7^7 - ^0). (3.98)
fX 2

Here the first term is the usual Atiyah-Singer integral. The term A - #^(0) is the

reduced eta invariant which is the value at zero of the reduced eta function A (s)

formally defined via

A^(S) = dim kerA + E3signAJAl-~, s E C. (3.99)
A

The sum above runs over the eigenvalues of A. This formal series converges and

defines a holomorphic function for Re(s) > n. It has a meromorphic continuation to

the whole s-plane with a finite value at 0 which appears in (3.98).

In order to prove (3.97) one first proves it to be true in the case where At is a
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periodic family. In this case the family gives a continuous path Ft : S' -+ f.. In [3] it

is shown that the the space F, is a classifying space for K'. Hence the homotopy class

[Ft] E K 1 (S 1 ) = Z gives an element in K theory which is the index of the family. We

claim that this index equals the spectral flow of the family. This follows on showing

that both the index and spectral flow are invariant under homotopy and checking

them to be equal on the generator of ri(.,) (the family with spectrum n + t, n E Z).

Finally it remains to show that the index of the family ind(At) coincides with ind(D).

Here ind(D) can be written using (3.98) where the two boundary contributions from

AO and A 1 now cancel. The integral term now equals ind(At) by an application of

the index theorem.

Finally having proved (3.97) for a periodic family it suffices to prove it for a single

path of operators connecting AO and A 1 .
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Chapter 4

Spectral flow for the Dirac

operator

We now come to one of our main results. This is an estimate on spectral flow for a fam-

ily of coupled Dirac operators. To state the result, consider an oriented Riemannian

spin manifold Y of odd dimension n. Let S be the spin bundle on Y corresponding

to a given spin structure. Let L be another Hermitian line bundle on Y. Let AO be a

fixed unitary connection on L and let a E Q1 (Y; iR) be an imaginary one form on Y.

Then we have a family Ao + sa of unitary connections on L. Each such connection

gives rise to a coupled Dirac operator DAo+S : C (Y; S 9 L) -+ C (Y; S 9 L).

The Dirac operator being elliptic and self-adjoint has a discrete set of eigenvalues.

The object of interest in these notes is the spectral flow function sf{DAo+sa} , for

0 < s < r, and its asymptotics for large r. In particular we shall prove the following

Theorem 4.0.1. The spectral flow function for the family of Dirac operators DAo+sa

satisfies

sf{DAo+sa-= (+1(J) a A (da)n + O(ri) (4.1)

as r -4 oo.
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4.1 Estimating spectral flow

Now we return to the problem of estimating the spectral flow of the family DAo+sa,

for 0 < s < r. As noted in the previous section the spectral flow function sf{DAo+ra}

equals the index of the operator D = -+ DAo+ta : H'(X; E, 7r>) -+ L 2 (X; E) where

X = Y x [0, r]. The index is again given by index formula (3.2). The integral term

can now be simplified according to 4.3 in [1] to give

sf{DAo+sa} = ind(D) (4.2)

= ch(L)A(X) + 1(W - ri). (4.3)

Here the terms appearing in the integral are the Chern character form of L, computed

using the connection Ao + sa, and A genus of X. The terms e7 and 1 r denote the

reduced eta invariants of DA0 and DAO+ra respectively. The leading order term in s

in the integrand can now be computed from the definitions to be

ch(L)A(X) = 2 1 n + s ds A a A (da) ~ + O(s 72). (4.4)

Which on integration simplifies (4.3) to

n+1.

sf{DAo+,} = r n+1) j a A (da) + i(4r - i) + O(r w'). (4.5)
(x 2 2!

Hence to prove (4.1) it remains to prove that

i =O(r ) (4.6)

as r -+ oc. In order to prove (4.6) we first note, following section 2 of [1], that the

eta invariant appears as the zeroth order term in a trace expansion
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= -a (4.7)

where

Ktr := trBi~ akt 2 (4.8)
k>-n

The operator B' is given by functional calculus

= - signA erfc (I|Alv)# (4.9)

acting on the eigenvectors #,\ of DAo+ra with eigenvalue A and erfc denotes the com-

plementary error function

erfc(x) = 2 j e- d. (4.10)

Next we use a theorem, see [9], asserting that on odd manifolds the reduced eta

function for Dirac operators is holomorphic in the region of the complex plane given

by Re(s) > -j. The poles of the eta function are given by -jk with corresponding

residues being the coefficients ak in the trace expansion (4.8). Hence this theorem

is equivalent to the fact that the trace Kt is a smooth function of t near zero. The

time derivative of this trace is the trace K'= 7 Tr(DetD A), where A = Ao + ra.

Hence this theorem also follows from theorem 8.35 in [32]. In fact [32] proves that

the same is true for the pointwise trace tr(DAetDA) along the diagonal.

Using the smoothness of Kt near zero we may now rewrite (4.7) and (4.8) as

1 _
- = -a= -KO. (4.11)

The fundamental theorem of calculus gives

- = -K[ + j K' ,dt'. (4.12)

Hence to bound ir it suffices to bound the right hand side of (4.12) and the traces
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K[ and K' uniformly in r. Here the trace Kt may be estimated by

|Kt < ITr(e-tD (4.13)

which simply follows from the inequality erfc(x) < eX 2. Hence it now suffices to get

uniform bounds in r on the the heat trace tr(e-tD) and the trace tr(DAetD ) which

we do next.

4.1.1 Bound on the heat trace

Let Ht (x, y) denote the kernel of the evolution operator e-tDi. In this section we

derive a bound on this heat kernel following [40]. First consider the function ht(x, y)

defined by

ht(x, y) = (47rt)/2 (414)

where p(x, y) is the distance function on Y when x is within the injectivity radius of

y. Outside of this region p(x, y) is set arbitrarily as long as is uniformly bounded from

below there p(x, y) > c > 0. The heat kernel bound is now given by the following

proposition

Proposition 4.1.1. The heat kernel Ht(x, y) satisfies

IHt(x,y)I < Ciht(x,y)ec2rt, (4.15)

where C1, C2 are some positive constants independent of r.

Proof. First observe that for fixed y the section st(.) = H,(., y) satisfies the heat

equation Btst = -D2st. The Weitzenbock formula

= V* VA + + (4.16)
n g 2 4

now gives that the function ft = Istj obeys the inequality
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&ft < -d*dft + c1(r + 1)ft

for some constant ci independent of r. Hence the function f' = e-c(r+l)tft satisfies

the inequality

89f' < -d*dft. (4.18)

Now standard asymptotics for the heat kernel Ht as in chapter 7 of [37] give

f' ~ IHt(x, y)| ~ ht(x, y) - <t(x, y) as t -+ 0 (4.19)

where <tb(x, y) denotes the heat kernel e-d*d for the Laplace operator acting on func-

tions on Y. Now using (4.18) and (4.19) an application of the maximum principle for

the heat equation gives that

f' 5 c2<bt(x, y) c3 ht(x, y) (4.20)

holds for t < 1 and some constants c2 , c3. Hence

ft 5 c3ht(x, y)ec(r+)t (4.21)

for t < l and the proposition follows. 0

We note that the above proposition immedietly gives the bound

rl(e~D) < ec 2 rt (4.22)
tn/ 2

on the heat trace for constants c1, c2 uniform in r.

In order to obtain a better estimate on spectral flow, we will need another bound

comparing the heat kernel to Mehler's kernel. To recall the definition of Mehler's

kernel first define the function

1I rtda1
mt(exp(y), y) = 1 det2 . _ exp - g(, rtda coth(rtda)v) (4.23)

(4-rt)12 smh rtda 4
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in a geodesic neighborhood of the diagonal in Y x Y. Here v E TyY and the two

from da is considered as an element of C*(End(TyY)) using the metric. Next let ri

and r2 denote the projections onto the two factors of Y x Y and define the section

e- of r*S 0 wr;S* in a geodesic neighborhood of the diagonal. This restricts to

- F I -tcl(FA )
e 2 = 2 at the diagonal A and is parallel along geodesics (exptv(y), y). If

ig denotes the injectivity radius of Y consider the cutoff

1 if Xz< i-

x(x) 2'

0 if X > iZ, .

and define Mehler's kernel as

Mt(x, y) = x(p(z, y))mt(x, y)e~. (4.24)

Theorem 4.1.2. There exist positive constants C1 and C 2 independent of r such that

|Ht(x, y) - Mt(x, y)| <; Cih2t(X, y)teC2rt. (4.25)

Proof. First fix a set of geodesic coordinates centered at y. Now choose a basis s0 for

S. and a basis 1 for L.. Parallel transport this basis along geodesics to obtain trivial-

izations sa(x) and 1(x) of S and L respectively near y. Now define local orthonormal

sections of (S 0 L) 0 (S 0 L)* via

top = sa(x) 0 1(x) 0 s* 0 *. (4.26)

The connection VA can be expressed in this frame and these coordinates via

S= i + Ai +]i (4.27)

where each Ai is a Christoffel symbol of A (or dim(S 0 L), copies of it) and each Fi

is a Christoffel symbol of the Spin connection on S. Since the section I(x) is obtained

via parallel transport along geodesics the connection coefficient Ai maybe written in

terms of the curvature Fi of A via
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Ai(x) = dp(pxj F (px)). (4.28)

The dependence of the curvature coefficients Fij on the parameter r is seen to be linear

Fg -= Fj!+r(da)9 despite the fact that they are expressed in the r dependent frame 1.

This is because a change of frame into 1 is conjugation by a function which leaves the

coefficient unchanged. Further using the Taylor expansion (da)ij = (da)ij (0) +xkaij,k,

we see that the connection VA has the form

1
Vi = a, + -rxi(da) g (0) + xi±A + rxixk Aij,k + Fi, (4.29)

2

where A= f dp(pFjo(px)), Aijk = dp(paij,k(px)) and Fi are all independent of

r. Now it follows from the Weitzenbock formula that the operator D' may be written

as

D =A E, with (4.30)

r2
A = -af - r(da)ij(0)xI& - x x (da)k(O)(da)jk(O)

+cl ( F) and (4.31)

E = Piiklxx lij +Qijkrxixki+ Ri8+ Sikrr2xixiik x + U, (4.32)

and where P, Q, R, S, T and U are each smooth endomorphisms of S 0 L independent

of r. Since (Ot + D 2)Ht = 0 we now have

(at + DA)(Hi - MI) = -(at + A)Mt - EMt. (4.33)

By Mehler's formula, see section 4.2 in [81, we have (at + A)Mt = 0 for p(x, y) < .

Hence using (4.24) and (4.32) we may write the right hand side of (4.33) as a sum

-(at + A)Mt - EMt = ( tkrdxlfk,d,I(x)f(rt)M, (4.34)
(k,d,I)
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where each (k, d, I) E Z x No x N' and satisfies the inequality

d 2 k + + . (4.35)

Also the function f appearing in (4.34) satisfies an exponential bound f (x) I < ciec2 x.

Now since the kernels Ht and Mt both have the same asymptotics as t -+ 0 Duhamel's

principle gives via (4.33) that

t Je(t-s)D2{-(8s+A)Ms
e0

- EM} ds.

Now we substitute (4.34) into (4.36). Following this we use the bound (4.15) for the

heat kernel, the bound

|Mt(x, y) I < c3ecrtht(x, y) (4.37)

for uniform constants c3 and c4 and the bound If(x) ciec2x. These bounds along

with the inequalities

Xzht(x, 0)

(j dyht_,(x, y)h 2,(y, 0) )

< Ct-lh2t(X,0),

" Cth2t(X, 0)

(4.38)

(4.39)

and (4.35) can be used to estimate the right hand side of (4.36) to give (4.25).

0

4.1.2 Bound on the trace of DAe-tDA

We now turn to bound the pointwise tr(DAetDA). To this end first consider the

expansion for the heat kernel Ht(x, y) given by

(4.40)

58

(4.36)

tsds

Ht (x, y) ~ ht (x, y) (bo (x, y) + bi (x, y) t + b2 (X, y)t2 + . . .) .



Such a kernel expansion is not unique and only the restriction to the diagonal of the

coefficients bk are defined uniquely. In (4.40) we refer to the coefficients bk generated

by solving a recursive system of transport equations along geodesics as in chapter

7 of [37]. The kernel Lt(x, y) of DAe- A is simply Lt = DAHt and hence has an

expansion given by

Lt(x,y) ~ht(x,y)cl - (bo(x, y) + bi(x, y)t + b2 (x, y)t 2 +(4.41
(- 2t(4.41)

+ ht(x, y) (DAbO(x, y) + DAbi(x, y)t + DAb2 (x, y)t 2 ±...).

As noted earlier the pointwise trace tr(DAe-DS) along the diagonal has an expansion

starting with a leading term of order t . Since the restriction to the diagonal of the

term cl (- ) in (4.41) is zero this implies that DAbk(x,x) = 0 for k < '-1 at each

point on the diagonal. To bound the trace of Lt we will need the following lemma

giving a schematic expression for the coefficients bk(x, y).

Lemma 4.1.3. For each k > 0 and each y E Y consider i*bk E C'(Y; (S 0 L) 0

(Se L)*), the pullback of the heat kernel coefficient under the inclusion iy(x) = (x,y).

There exists a local orthonormal basis of sections top E C'(Y; (S 0 L) ® (S o L)*)

in which the heat kernel coefficient maybe be written as i*b = Z fptp Moreover,

in geodesic coordinates centered at y, the functions fa, have the form

fa = ( rdx'faI,1 (4.42)
(d,I)

where each (d, I) E No x N' and satisfies the inequality d < k + | Moreover, the

functions fd,I appearing in (4.42) are indpendent of r.

Proof. We again work in the geodesic coordinate system centered at y and the trivi-

alizations of S and L used in the proof of (4.1.2). The heat kernel coefficients bk(x, y)

are given, see chapter 7 of [371, by the recursion
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bo(x,y) = g/ 4(x)taa, (4.43)
a

bI(x,y) -J1 pk-lgl/4 (px)D 2bk_1(px)dp, for k> 1, (4.44)

where g denotes the determinant of the metric on Y. Hence bo is clearly seen to be

of the form (4.42). Equations (4.30) and (4.44) imply that bk has the form (4.42)

assuming it to be true for bkl and hence the lemma follows by induction on k. El

Following this we are ready to bound the pointwise trace tr(DAetDA). The above

lemma will play an important role in the proposition below.

Proposition 4.1.4. The pointwise trace tr(DAetD2 ) satisfies the estimate

Itr(DAe-tDI CO < CireCt (4.45)

for constants C1 and C 2 independent of r.

Proof. Consider the remainder in the kernel expansion (4.41) given by

Lt = Lt - DA(ht(bo(x, y) +...+t-2 bnA)). (4.46)
2

n-1 n-i n-1

This is seen to equal Lt 2 = DAHt 2 with Ht 2 being the analogous remainder in

the kernel expansion for the heat trace

n-1 n-i

Ht 2 = Ht - ht(bo(x, y) +... +t 2bn-). (4.47)
2

Hence applying the heat operator we see that

(at +D D)(L = (at + D2)(DAH7) (4.48)

= ht {D 3 bn-I +cl ( dp) D bn1. (4.49)
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n-i

Now since Lt 2 -+ 0 as t --+ 0 we have by Duhamel's principle that

n2 1(y, y) -f'dt fd 21 Xh 8 XY)~ D 3bn-I(X, Y)Lt (y ) ds (fy dx Ht,,(y, x) h, (x, y)sn A-ib (2 y

+C1 (Pd) D 2bg- (x, y) . (4.50)

n-i n-i

We denote by U, 2 and Vt the kernels obtained by replacing Ht-, in (4.50) by
n-i n-i n-1

(Ht_, - M,) and Mt-, respectively. It is clear that L, 2 2 +V 2 To bound
n-I

Ut 2 we work in geodesic coordinates and the frame introduced in theorem (4.1.2).

The Dirac operator, by (4.29), is seen to be of the form

DA = Aj; + rxiBi + C (4.51)

where Aj, Bi and C are endomorphisms of S 0 L independent of r. Using (4.42) and

(4.51) we may write

bn = Z f.to, D b.-1 = Z f"t., (4.52)

where

-a E.. X I rdd,I,
(d,I)ESi

(d,I)ES 2

with d i - + lI V(d, ) E Si

with d< -"'+}II+1 V(d, I) E S 2.

Now a combination of (4.25), (4.38), (4.53) and (4.54) gives the estimate

n-(

Next to estimate Vt 2 we first use a Taylor expansion to write

fdI = gdj + z hr,i and fr = ±

61

and(4.53)

(4.54)

(4.55)

(4.56)



where each of g 1 and gi 1 is an even function in these coordinates. Also we let

(d,I)eS 1Z: xlr dgd2 F
f~I3 = xrgdI,

(d,I)ES 2

with d = n + |

with d = n + 1

and (4.57)

(4.58)

Now the terms which correspond to 1,3 and 12 under (4.52) are seen to contribute
n-1

0 to V 2 (y, y). This is because their contribution corresponds to the integral of an
n-1

odd function in these coordinates. The rest of the terms contributing to V 2 (y, y)

can again be estimated using (4.37), (4.38), (4.53) and (4.54) to give

IV (y, y)I c3r 2e (4.59)

Following (4.55) and (4.59) we obtain the estimate

|Lt (y,y)| < c 5r2e', (4.60)

for constants c5 and c6 independent of r. Finally theorem 8.35 in [32] is equivalent

to the fact that the pointwise trace tr(DAe-tD) = tr(Lt) = tr(L7 ) and hence the

proposition follows from (4.60).

The above proposition is similar to lemma 2.6 in [39] although we have arrived at

it a little differently. We can now finish the proof of theorem (4.0.1). The relevant

observations were made in the beginning of this section and we summarize them

below.

Proof of theorem (4.0.1). The spectral flow function is given by (4.5) to be

sf{DAo+sa} = r 2 ) j a / (da)n + i(4r - O) + O(r ). (4.61)
( 2 )!2
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The reduced eta invariant

(4.62)

is the zeroth order term in the trace expansion

Kt := trB[ atk 

k>-n

(4.63)

Here B' is given by functional calculus

#= - signA erfc(|AIvft)# 0 (4.64)

acting on the eigenvectors #,\ of DAo+ra with eigenvalue A. By theorem 8.35 in [32]

K[ is a smooth function of t near 0 and we have

2 7 = -aO=-K =-K+ SK' ,dt' (4.65)

Next we bound

(4.66)|Kt| < Tr(et C1 cl r 
- -\F - tn/2

which follows from the inequality erfc(x) < e~X 2 and (4.22).

K',l < c 3 rit'-2e4't and hence

K',dt'

Now (4.65), (4.66) and (4.67) give

< c 3rltie 4 .

Also (4.45) implies

(4.67)

(I
n'-2

(4.68)

Substituting t = gives r = O(r") and hence the theorem follows from (4.61).

The main theorem (4.0.1) of this chapter does not say anything about the sharp-
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ness of the estimate (4.1), and it is not believed to be to be the optimal result. The

conjectured sharp result is as stated by the proposition below.

Conjecture 4.1.1. On a manifold of odd dimension n the spectral flow function for

the family of Dirac operators DA+sa,0 < s < r coupled to the connections A + sa

satisfies the asymptotics

n+, n+1

sf{DAo+sa ~=r +12 a A (da) + O(r2) (4.69)sf f D ,,+ s T - 4 7(- 7 ) ! y

as r -+ oo.

Hence the conjectured optimal result is O(r2) sharper than theorem (4.0.1). In

the next chapter we give some partial results towards proving (4.1.1). In chapter 6

we shall perform some explicit computations of spectral flow which show that this is

the best possible result.
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Chapter 5

A semiclassical Dirac operator

In this chapter we give some partial results towards proving (4.1.1) stated at the

end of the last chapter. To begin with, by (4.61) and (4.62) the estimate (4.69) is

equivalent to

S= O(r ). (5.1)

Following this equations (4.64) and (4.65) give

2 = j K' dt' + trE(v/tDA) (5.2)

with E(x) = -" 'ferfc(lzlv/t). Following the bound (4.66) and the substitution

=, it now suffices to prove trE(1 DA + cl(a)) = O(r ). Substituting h = to

be a semiclassical parameter conjecture (4.1.1) reduces to proving

trE(hDA, + cl(a)) = O(h~ 2). (5.3)

5.1 The odd functional trace

In an attempt to prove (5.3) we shall consider the traces trf (Dh) where Dh is the

semiclassical Dirac operator
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Dh = hDAO + cl(a).

The semiclassical symbol of this operator is

o-,(Dh) = cl(( + a) (5.5)

and it is hence elliptic and self adjoint. On fixing a nowhere vanishing !-density on

X we may also think of Dh as an operator on S 0 L valued -- densities. The methods

of [13] and [44], reviewed in the appendix, give a trace expansion for trf (Dh) when

f is a Schwartz function. Our main result is that this expansion shows cancellations

in its first 3 terms when the function f is odd. This is the proposition below.

Proposition 5.1.1. Let f E S be an odd Schwartz function. There is a trace expan-

sion

trf(Dh) h- c +3+ h- c n+5  ... (5.6)
2 2

for some constants ci, <i.

Proof. By proposition (A.5.5) we have a trace expansion

trf (Dh) ~ co(f)h-" + c1(f)h-n+1  ... (5.7)

for each funetion f E S. Also setting r = and t = Th 2 in proposition (4.1.4) givesh

the trace bound

|trDhe-6TD < Ch e2rh (5.8)

for some constants C1, C 2 independent of h and T. This implies that the coefficients

in (5.7) must satisfy ci(f) = 0, i < for f = fT = xe-x 2 . This is a smooth

family of Schwartz functions f, : RfD -+ S. Hence using proposition (A.5.6) we

may differentiate the trace expansion (5.7) for f, to obtain the expansion for k =

(-1)X2k+1e-rx 2 . This gives that the coefficients in (5.7) must satisfy ci(f) = 0,
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i < "-1 for f = x2k+1e-rx2 . Now set r = 1 and note that the span of the functions2

X2k+1e-x2 is dense in the space of odd Schwartz functions. Hence we must have

ci(f) = 0, i < "+ for any odd Schwartz function f. O

5.2 A normal form result for D2

Proposition (5.1.1) still does not prove the estimate (5.3) since the function E(x)

has a discontinuity at the origin. In order to get an understanding of the functional

trace trE(Dh) an analysis of the kernel of the wave operator f(Dh)e h appears

necessary. The wave kernel has been analyzed in [18] for operators whose symbols

are smoothly diagonalizable over the cotangent bundle. The symbol o-(Dh) however

is not smoothly diagonalizable on T*X since its eigevalues ± + a| E C (T*X) are
%tDh

not smooth along the locus E = {(x, () | = -a}. The kernel for f(Dh)e h being

related to the solution operator of (h2,2 + D2), we attempt to find a normal form for

o-(D2) along E.

In order to obtain the normal form result of this section we first review some

facts about Hamiltonian linear transformations following [20]. Given a symplectic

vector space (V, w) its space of Hamiltonian transformations is simply the Lie algebra

sp(V, w) of its symplectic group

sp (V, w) = {A: V -+ Vjw(vi, Av 2 ) + w(Avi, v 2 ) = 0}. (5.9)

We now have the following lemma.

Lemma 5.2.1. Let A E sp(V, w) be a Hamiltonian transformation. If A is an eigen-

value of A then so are -A, A and -A.

Proof. First we extend A and w to Vc = V @ C by complex linearity and bilinearity

respectively. Now we show that -A is an eigenvalue. Consider the map p : Vc -+ V'

given by p(v) = i4w. Since A E sp(V, w) we have p o A = -A* o p. Thus the A

eigenspace of A is mapped to the -A eigenspace of A*. However if A has the Jordan

blocks

67



A

IlA 
(5.10)

1 A

with respect to some basis, then A* has the blocks

A 1

A.
(5.11)

A

with respect to the dual basis. Hence the eigenvalues of A and A* are the same and

hence -A is an eigenvalue of A. The fact that tX are eigenvalues follows from the fact

that A is a real linear trasformation and its eigenvalues come in complex conjugate

pairs. 0

An easy consequence of the above proposition is that the generalized nullspace of

a Hamiltonian transformation is of even dimension. Next we show that on a 4 dime-

sional symplectic vector space a symmetric, positive semi-definite inner product and

the symplectic form maybe simultaneously put in standard form. The result follows

from the general canonical form result for Hamiltonian transformations appearing in

[27]. However we shall be content with the 4 dimensional case below.

Lemma 5.2.2. Let H be a symmetric, positive semi-definite inner product of rank

3 on a symplectic vector space (V, w) of dimension 4. There exists a basis for V in

which we simultaneously have

p1 1

y -1
H= and w= (5.12)

1 1

0 -1

for some p > 0.
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Proof. Consider the linear transformation A : V -+ V defined via

H(vi, v2) = w(v1, Av2 ), v1, v2 E V. (5.13)

Since H is symmetric and w antisymmetric we have A E sp(V, w). Being of rank 3, H

and hence A have one dimensional kernels. The generalized nullspace of A is hence

of even dimension 2 or 4. In the latter case we have a basis for V in which A has the

Jordan block form

0

1 0
A =(5.14)

1 0

1 0

The condition A E sp (V, w) gives that w is of the form

0 -a 0 c -a 0 -c 0

a 0 c 0 0 c 0 0
and hence H = wA (5.15)

0 -c 0 0 -c 0 0

c 0 0 0 0 0 0 0

in this basis. If c = 0, H has rank less than 3 and if c # 0 H is seen not to be positive

semi-definite. Hence the generalized nullspace of A is of dimension 2. Following

Lemma (5.2.1) the remaining 2 dimensions are accounted for by a pair of eigenspaces

V±, with A real or purely imaginary. Since A E sp(V, w) it follows that the generalized

nullspace is w-orthogonal to V±\. If A is real we have a basis for V in which
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A -1 A
A = 7 and hence H=

0 1

1 0 -1 0
(5.16)

which is not positive semi-definite. Hence the eigenvalues are purely imaginary A =

is, p E R. This gives a basis for V, as a real vector space, in which

-p 1 yt

A= , - 1and hence H =

0 1 1

1 0 -1 0
(5.17)

as required. O

We now come to the normal form result for o-(D'). In the proposition below we

assume that the manifold X is of dimension 3.

Proposition 5.2.3. Let cr=o-i(D2) be the semiclassical symbol of the square of

Dh = hDAo + cl(a) with a being a contact one form. For every point p E =

{(x, )| = -a(x)}, one has a germ of a symplectomorphism x : (T*R3 ,0) -+ (T*X, p)

near p such that

X*o- = t(x2 X2 3, 3)(x 1 + ) ± ( ± (xf + )2 f (x2 + 0, x 2 , X3 , 3) + ro. (5.18)

Here t is positive function on = {x1 = = = 0} and rx, is a function on T* R 3

vanishing to infinite order along E0 .

Proof. If r : E -+ X denotes the projection onto the base one clearly has -7r*a = aZr

with a being the tautological one form. Hence aol is contact and Darboux's theorem
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gives coordinates (y1, Y2, Y3 ) on E such that

a|E = dy1 + y2dy3 . (5.19)

Consider the map X : Eo - E given by X(X2, 3 , 3 ) = (Y1,Y2, y3). One clearly

has X*(wI) = wolro where wo and w are the symplectic forms on T*R 3 and T*X

respectively. An application of Moser's trick, Lemma 3.14 in [30], gives an extension

to a symplectomorphism germ X : (T*R 3, 0) -+ (T*X, p). Since o- vanishes to second

order along E, the pullback oo = X*o- vanishes to second order along E 0 . The second

order term in the Taylor expansion of oo at p maybe thought of as a quadratic form

in the variables x 1 , x 2 , (1, 2 of rank 3. By lemma (5.2.2) we have a linear symplectic

change of these coordinates which diagonalizes this quadratic form to p(x1 +2)+ ?

for some positive constant p > 0. Since Eo is still the critical locus of the new

quadratic form it is mapped to itself under this change of coordinates. Hence we may

now assume that o- has a Taylor expansion in the x 1, 1,(2 variables of the form

o = p1 (x! + ) + p2+ P3( - X2) + [p4 X11 + p15X1 2 + p6s12 (mod 03). (5.20)

Here pi are functions on E0 such that p 1(p) = p > Op 2 (p) = 1 and pi(p) = 0 for

3 < i < 6. Also ON denotes the space of functions vanishing to order N on Eo. Next

we note

{OM, ON} C OM+N-2 (5.21)

and the commutation relations

{x1(, x, + (j} = 2( j - ), {x 1 1 ,x 1(2 } = Xi6 (5.22)

{X1(1,( - }= 2(X + ), {11, 12}=12 (5.23)

Letting a denote a function on Eo, let X, 1 l 1 be the Hamiltonian vector field of ax 1 (1 .
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We also define

&t= (p cosh(2at) + p3 sinh(2at))(x1 + (2) + p12(

+(p1 sinh(2at) + p3 cosh(2at)) (( - x2) ± p4 x 1 1

+p 5e-"X1 i 2 + yt6e* t i 2 . (5.24)

The commutation relations (5.21), (5.22) and (5.23) now allow us to compute t&t =

{ax1(1, &t} (mod 03). Since &o = o-o (mod 03), Duhamel's principle gives

&t = (etxaz141)* oo (mod 03), (5.25)

with the right hand side being defined by Hamiltonian flow. Hence the symplectomor-

phism exle14i with a chosen such that tanh(2a) = -3 is seen to cancel the ((2 - X2)

coefficient of the Taylor expansion. Hence we now assume p3 = 0 in (5.20). Similarly

considering the symplectomorphism e ( ?-) with tanh(4a) = - gets rid of the

x1 (1 coefficient. Hence we may also set p4 = 0 in (5.20). The symplectomorphism

eX-a4i 2 with a = 5 cancels the X1 2 coefficient and we may set p = 0 in (5.20). And

the symplectomorphism eJ-xI42 with a = cancels the 1 2 coefficient and we may

also set P6 = 0 in (5.20). Finally a change of coordinates in the variables X2, X3 , 2, 3

sending Vpid2 to a coordinate function allows us to set P2 = 1. It is important to

carry out the computations in the order mentioned to ensure that terms once elimi-

nated do not reappear later. Hence we are now reduced to a Taylor expansion for o-o

of the form

0o-o = P(X 1 + () + ( (mod 03). (5.26)

Next we wish to improve the above equation to mod 04. To this end, denoting

Ho = p(x + (2) + (2, we further Taylor expand
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o-o = Ho + g3 (mod 04), where

93 = > r ax
a+b+c-3

for some functions rabc on Eo. We claim that there exists a function f E 03 such that

{f, Ho} + g3 = ri(x! +F)2 + r2 (mod 04).

Introducing the complex coordinates (1 = xi + idi and (I = x1 - i(1 we rewrite

g3 = 3 fabc(iN5 2c
a+b+c=3

Ho = p(15 + (.

Observing the commutation relations { ( 1(1,(b} = 2i(a - b)(4dC and setting

f = 2i f>abc (Ja b c

a7Ab2i( - p 2

{f,H} +g 3 = fin (x1 +( ')(2 + f00 3 (

Hence f = Re(f) solves (5.29). Now considering the symplectomorphism X1 = eXf

gives

X1Oo = e f(Ho+g 3 ) (mod 04)

= Ho+g 3 +{f,H} (mod0 4 )

=Ho+ri(x1 +(2)(2 + r2(3 (mod 04).

(5.34)

(5.35)

(5.36)

In order to get rid of the remaining terms first consider the symplectomorphism e "2

73

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

gives

(mod 04).
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where a is a function on Eo satisfying 29.2 a + r 2 = 0. The pullback of o under

this symplectomorphism cancels the r 2(i term allowing us to set r 2 = 0. Finally the

term ri(x2+ 2) is cancelled by the symplectomorphism e ?+@ with a satisfying

2&22a + ri = 0. Hence we are now reduced to a Taylor expansion for co of the form

o = p(X1 + () + (2 (mod 04). (5.37)

Following this we inductively prove that for each N there exists a symplectomorphism

XN such that

X*o = HO + fN(X2 + 1 2, 3 y3) (mod ON), (5.38)

for some function fN E 04. The case N = 4 is equation (5.37) and we now construct

XN+1, assuming the existence of XN, for each N > 4. Hence we assume that o Taylor

expansion

eo = Ho + fN(X ± (1 x2 x 3 , 3 ± gN (mod ON+1) (5.39)

with gN E ON. Again we claim that we have a function hN E ON such that

{hN,Ho} + gN rab(X2 + ±2)a(b (mod ON+1). (5.40)
2a+b=N

As before if gN has the Taylor expansion

gN = abc aiQ( (5.41)
a+b+c=N

in complex coordinates, then hN= Re(hN) with

IhN ab Jcid (5.42)
ab2i-(a - b)p-

is seen to solve (5.40). The symplectomorphism eXhN now reduces the Taylor expan-

sion of o to the form
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o-o = HO + fN + rab(x2 + 2)agb (mod ON+1). (5.43)
2a+b=N

Finally we get rid of the terms rb(x2 + 2)a( with b > 1. This is done using

the symplectomorphism e ab("I 1 - where 2
aX 2 0ab + rab = 0. This completes

the induction step giving (5.38) for all N. The proposition now follows from an

application of Borel's lemma.

The above normal form maybe extended to a slightly more general setting. Namely

let p(x, ) E C (T*X) be a symbol, on a 3 manifold X, with a Morse Bott critical

locus of dimension 3. If additionally the symplectic form is maximally non-degenerate

of rank 2 along the critical locus then the normal form result (5.2.3) holds, with the

same proof, for such a symbol. Following this normal form result one hopes to be able

to apply a Hermite transform, as appearing in [31], in the x 1 , 1 variables to (5.18).

However we have not completed this line of argument at present.

5.3 A bound on the counting function

In this section we attempt to control the dimension of the nullspace dim ker(Dh)

of the Dirac operator as h -+ 0. To do this we analyze the number of eigenvalues

of Dh in an 0(hi) interval around 0. This is the same as finding the number of

eigenvalues of D2 in an O(h) interval around 0. The usual semiclassical method gives

O(h) information for eigenvalues around c assuming c is not a critical value of the

symbol. However this is violated for the operator D whose symbol does have 0 as a

critical value. Counting functions near critical values were analyzed in [11] for scalar

semiclassical operators. Here we modify their arguments to the non-scalar D .

The estimate on the counting function follows from a trace expansion. This ex-

pansion is derived by applying a stationary phase expansion to an oscillatory integral

representation for the wave kernel. Below we give the required stationary phase for-

mula.
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Proposition 5.3.1. For a E C( (Rt x R") there exists an asymptotic expansion for

the oscillatory integral

I(a) = ae dtdx (5.44)

h'n/ 2 (Z ahi) (5.45)
j>0

in powers of h.

Proof. Let & denote the partial Fourier transform of a in t

&(r, x) = Jeitra(t, x)dt. (5.46)

The oscillatory integral (5.44) can be written as

I(a) = a(X, x dx (5.47)

= hn/ 2 f (y2, yv h)dy. (5.48)

The Taylor expansion for &(T, x) in x now gives the expansion I(a) ~ hn/ 2 (Z by hi/2 )

with

by= ( J &)(y2, O)dy. (5.49)
IaI=j

The coefficients by, for j odd, correspond to odd integrals in (5.49) and must vanish,

giving (5.45) with aj = b2j. 0

The above proposition differs from the usual stationary phase formula since the

phase function tx 2 is not Morse-Bott nondegenerate. Next we derive the required

trace expansion.

Proposition 5.3.2. There exists T > 0 sufficiently small such that for every Schwartz

function V) with i E C (-T, T) one has the trace expansion

tr' ( ) f (D2) h-n/2(ao + ha + ---). (5.50)
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Proof. Let A be the Lagrangian given by proposition (B.4.1) with

p = o-(D2) = -|(+ a12. (5.51)

Let x E X and K C R' be compact. Following proposition (B.4.3), one can find

a coordinate neighbourhood U2 of x, Tx > 0 sufficiently small and a function S E

C*([-Tx, Tx ] x U, x K) satisfying

tS +p(x,0xS) = 0

SIt=o = x. .

(5.52)

(5.53)

Proposition (B.4.3) further implies that the corresponding phase functions

p E C"([-Tx, Tx] x Ux x Uy x K)

'P(X, y, t, ) = S(t, x, ) - y.(

give a collection of generating functions for A near t = 0. Combining this with

proposition (B.4.2) we get that for T > 0 sufficiently small such that for every V) E S

with E C"(-T, T)

$(t)kt(x, y) = h ahe d
j=1

(5.55)

it2

mod O(h"). Here kt denotes the kernel of f(D')e- hand each pj is of the form

(5.54). Now for any phase function of the form (5.54) the initial condition (5.53) gives

that

S(t, x, ) - x.( = tF(t, x, ()

for some smooth function F. The Hamilton-Jacobi equation (5.52) also gives

Fjt=0 = Stot=0 = -p(x, ) = |( + a|2 .

(5.56)

(5.57)
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Introduce the new coordinates (t, x, r/) = (t, x, + a). For r7 = 0, ( = -a which gives

Hp = 0 and hence et" (x,() = (x, () by (5.51). Thus (B.54) and (5.56) give

dF|1=0 = 0. (5.58)

Moreover the Hessian of F

d'F(n,t)=(,o) = gj(x) (5.59)

equals the metric and is hence nondegenerate. Following (5.58) and (5.59), we may

apply the Morse lemma with parameters (Lemma 1.2.2 in [14]) to get a further change

of variables (t, x, ((t, x, r7)) such that ((t, x, 0) = 0 and

F(t, x, r7) = F(t, x, 0) + (2. (5.60)

Also the formula (B.56) for S implies F(t, x, 0) = 0. Now the trace

tr , (h) f(Dh) = (2r)-1 J (t) tr (f(Dh)e~ h dt (5.61)

= (27r)- J (t)kt(xx)dtdx. (5.62)

Following (5.54), (5.55) and (5.60) this integral is a finite sum of integrals of the kind

h-" (tt)ja(t,x,()e dtd~dx (5.63)

modulo O(h'). Finally the stationary phase lemma in proposition (5.3.1) gives the

trace expansion (5.50).

The above trace expansion now allows us to estimate the counting function of the

Dirac operator in a small interval around 0. Namely for any R > 0 define Nh(R) to

be the maximum number of linearly independent eigenvectors of Dh with eigenvalues

in [-R, R]. The following proposition gives a bound on this number.
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Proposition 5.3.3. For c > 0 be any positive real, the counting function

Nh(ch-) = O(h~'2) (5.64)

near h = 0.

Proof. Let T > 0 be suffiently small as given by proposition (5.3.2). Choose @ E S

such that 4 E Ce (-T,T) and 0 > 1 on [-c 2 , c 2 ]. Let f be any Schwartz function

such that f > 1 near 0. Then one can estimate

Nh(ch") < S ( h)f(A2) (5.65)
AESpec(Dh)

= O(h-a) (5.66)

by the trace expansion (5.50). 0
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Chapter 6

Computations of Spectral flow

In this chapter we perform some computations of spectral flow for coupled Dirac op-

erators. The spectrum of spin Dirac operators has been computed in several cases, a

survery of known computations can be found in chapter 2 of [17]. We show how to

modify some of these computations in the presence of a coupling. In particular we

compute spectral flow for certain coupled Dirac operators on spheres and homoge-

neous Lens spaces. A consequence of these computations is the proof that conjecture

(1.2.1) is the best possible estimate on spectral flow.

6.1 Spectral flow on S3

Here we consider the spectral flow for a family of Dirac operators on S 3 . Since

S 3 = SU(2) = Z -f 2 1 |zil 2 + Jz2 12 = 1 is a Lie group it is parallelized by
Z2 fli

elements of the Lie algebra ei =oi E su(2) which we take to be the Pauli matrices

0 i 0 -1 i 0
1 =-2 =, 3 = .(6.1)

i 0 1 0 0 -i

We think of ei, e2 and e3 as three left invariant vector fields and hence first order

differential operators on functions. They satisfy the standard commutation relations
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[ei, ej] = 2 igjkek, (6.2)

where Cik is the Levi-Civita symbol which equals ±I if (i, j, k) is an even/odd permu-

tation of (1, 2, 3) and zero otherwise. Since H 2 (S3 ) = 0, there exists only the trivial

Spin' structure on S3 (which comes from the only Spin structure). The corresponding

Spin bundle S in trivial with Clifford multiplication being given by the Pauli matrices

p(ej) = og in some basis for S. The Christoffel symbols for the Levi-Civita connection

of the standard metric can be computed in the frame ei, e 2 , e 3 to be I, = Ejik. The

3corresponding Dirac operator can be computed to be D = o 1ei o 2e 2 + c-3e 3 - 2*

We now consider the Spinc Dirac operator coupled to a unitary connection on

det(S). Since the determinant line bundle is trivial such a connection is given by an

imaginary one form a E Q 1 (S 3 , iR). We shall choose a to be the contact one form

a = -ie* and consider the one parameter family of Dirac operators Dra for r E R. The

object of interest here is the spectrum of this family and its corresponding spectral

flow function sf(Do, Dra). The coupled Dirac operator can be written as

ir 3 ir
Dra = D - -o- 3 = ciei + -2e2 + 0-3e 3 -- 2 3. (6.3)

2~ 2 2

We can also compute de*(e 2 ,e 3 ) = e2(e*(e 3 )) - e3(e*(e2)) - e*([e2, e3) = -2. And

hence we have de* = -2e* A e*, de* = -2e* A e* and de* = - 2 e* A e*. Using these we

also have the following expression for the Laplacian on functions

=d*d = -e - e - e . (6.4)

The Laplacian can be considered to be acting componentwise on the sections of S =

C2 as if s = then As f. Using the expressions (6.3), (6.4) and the
9 Ag

commutation relations (6.2) we have that [Dra, A] = 0 and hence the Dirac operator

preserves the eigenspaces of the Laplacian acting on spinors. The eigenfunctions of A

are the spherical harmonics and next we review their description in terms of harmonic

polynomials.
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6.1.1 Spherical harmonics

Here we describe the spectrum and the eigenfunctions of the Laplacian on the sphere

Sn~1 with the standard metric. First consider the fomula for the Laplacian on R in

polar coordinates given by

ARn = + - As.,-1 (6.5)
Br2  r Or r

where Asn-1 is the Laplacian on the sphere. This formula implies that if p is a

homogeneous harmonic polynomial on R" of degree k then its restriction to S4- 1 is

an eigenfunction of ASn-1 with eigenvalue k(k + n - 2). Now we show that all the

eigenfunctions of Asn-1 are obtained in this way.

Let k denote the space of homogeneous harmonic polynomials of degree k on

R". Let Pk denote the space of all homogeneous polynomials of degree k on R". We

prove the following

Theorem 6.1.1.

Pk = Hk Pk-2 (6.6)

Proof. Define a positive definite inner product on Pk via (x' ... xkn,x' ...Xx1 ) =

ki!... kn!4 1 1, ... . . a. Define M : Pk-2 -* Pk via M(p) = (X2 + - - - xr)p. Clearly

M is injective and an easy computation shows that M* = A with the defined inner

products. Now (6.6) is simply the fact that Pk = ImM G KerM*. O

Now let Pk and Hk denote the restrictions of #k and Elk to the sphere S"~'.

Theorem 6.1.2. The Spectrum of the Laplacian on S"-1 is given by

Spec(A) ={k(n + k - 2)|k = 0, 1,...} (6.7)

with the eigenvalue A = k(n + k - 1) ocurring with multiplicity (n 1~{k) - (n-3+k

Proof. Let f be any eigenfunction of A with eigenvalue A. The set of all polynomials

is L 2 dense in C'(S"-1) so we have a sequence of polynomials pi -a f. If A is not
L2

of the form k(k + n - 2) then f is orthogonal to Hk for all k. Hence by (6.6) f
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is orthogonal to Pk for all k and pi _ f which is a contradiction. If on the other

hand A = k(n + k - 2) for some k and q1,..., q, is a basis for Hk then consider

f = f - E(f, qj)qj. Now f' is orthogonal to each Hk and a similar argument applied

to f' gives that we cannot have a sequence of polynomials converging to f'. Hence

f = 0 and f E Hk. Hence we have (6.7) and the multiplicity of each eigenvalue is

easily found using (6.6).

6.1.2 The Spectrum of Da

Now we have the decompositions L 2 (S 3 ) = $Hk and L 2 (S) = EHk into eigenspaces

of the Laplacian. Now since [Dra, A] = 0 the Dirac operator preserves this de-

composition and it suffices to find the eigenvalues of the finite dimensional operator

Dra : Hk -+ Hk.

Now Hk is an su(2) module since each ej commutes with A. We wish to find the

decomposition of Hk into irreducible submodules. First we define

H = -ie 3  (6.8)
1

X = I-(e2 + ie)and (6.9)
2

Y = (e2 - ie1). (6.10)

Now if we use zi = x1 + iy1 and z2 = X 2 + iy 2 then we have that

H = -+ 2(z1-9 + z2  ) (6.11)
ar 19zi az2

X = z2 _ - z1 - (6.12)
&zi &z2

= a- a
Y = - f2 + i(6.13)

z1 + z2

AR4 = -4( _ + ). (6.14)
0Zi 0Z 0zZ2 12

This means that (6.8), (6.9) and (6.10) are the restrictions of (6.11), (6.12) and (6.13)
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to S 3 . Now consider the k + 1 homogeneous polynomials

pa = z 2  a = 0, ... . k. (6.15)

Each Pa is clearly in Hk by (6.14). Also (6.11) and (6.12) can be used to compute

Hpa = kPa and XPa = 0. Hence we have that the su(2) submodule generated by Pa

is a copy of SymkC 2 and is irreducible (see [15] chapter 11). These k + 1 polynomials

give k + 1 irreducible su(2) submodules isomorphic to SymkC 2 in Hk and since this

accounts for all the (k + 1)2 dimensions of Hk we have that the decomposition of Hk

into irreducible su(2) modules is given by

HIk = D=0[pa]. (6.16)

Now the Dirac operator (6.3) can be written as

-H -2Y 3 r
Dr = - - + 2 .(6.17)

-2X H 2 _

Hence it is clear that it preserves the decomposition Hk2 = T[pa]2 . Now since each

Hk is a copy of SymkC 2 it suffices to find the eigenvalues of Dra : (SymkC 2 )2 
-+

(SymkC 2 )2 . Since SymkC2 is identified with the set of homogeneous polynomials of

degree k in two variables x, y it has an obvious basis ha = xayk-a with the action

Hha = (2a - k)ha (6.18)

Xha = (k - a)ha+1 (6.19)

Yha = aha-1. (6.20)

The vectors

0 and hk (6.21)
ho 0
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are eigenvectors of Dr with eigenvalue -k - 1 - L and -k - ' + 1 respectively. To2 22 2

find the remaining eigenvalues we note that Dra leaves invariant the spaces

V = C haD C , a = 0, ... , k -1. (6.22)
0 ha+1

and its restriction to each V is the matrix

k - 2a - 2 + L -2(a + 1)[2 2 (6.23)
2a -2k 2a- k+ 2-3 -. r

Hence it remains to find the eigenvalues of these 2 x 2 matrices which can be done

easily. Finally noting that each Hk consists of k + 1 copies of SymkC 2 we have the

following conclusion.

Theorem 6.1.3. The eigenvalues and multiplicites of the Dirac operator Dra on S3

are

-k--3k± -
A - 2 2

- i (k - 2a- -1)+4(+1)( for a = 0, ... , k - 1.

where each occurs with multiplicity k + 1 and k = 0,1,.

From (6.1.3) it is possible to find the spectral flow for the family Dra. First note

that for a =0,...,k - 1,

+ (k -2a 2 ri)2+ 4(a + 1)(k -a) ;> 3 and (6.24)
2 r25

2 k-2a 2 r i)2 + 4(a + 1)(k -a) < - . (6.25)

Hence for r > 0 only the eigenvalues of the type A = -k - 3 + , contribute to2 2

the spectral flow. Since each of these occurs with multiplicity k + 1 we see that the

spectral flow function is given by
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sf (D, Dra) = S k, (6.26)
k=1

where l denotes the greatest integer function. The asymptotics of this function for

large r are hence seen to be

12
sf (D, Dra) = -r2 + 0(r). (6.27)

8

The O(r) remainder term is seen to be optimal in this case since that it the size of

the jump discontinuity near r.

6.2 Spectral flow on S 2 m+1

The computation for the spectrum on the three sphere of last section uses the group

structure on S 3 and does readily extend to higher dimensions. In this section we

compute the spectrum, and the corresponding spectral flow function, for a family of

coupled Dirac operators on the odd dimensional sphere. The computation is similar to

the computation in [6] for the spectrum of the spin Dirac operator on Berger spheres.

The only difference here is in the presence of a coupling. Since the odd dimensional

sphere will be written as a homogeneous space, we will first begin with studying the

Dirac operator on homogeneous spaces.

6.2.1 The Dirac operator on a homogeneous space

Consider an oriented Riemannian homogeneous space (M, g). This is an oriented

Riemannian manifold possessing a smooth transitive action of a Lie group G by

isometries. We shall assume G to be connected. Pick a point p E M and let H =

Stab(p) be its stabilizer. This a closed subgroup of G and we may identify the M =

G/H with the coset space of H. Let -r : G -> M denote the natural projection map

given by wr(g) = gp. Choose an AdH invariant complement p to the Lie subalgebra

j c g. Hence we have g = (D p and that 7r, : p -+ TM is an isomorphism.
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The Riemannian metric gives an Ad,, invariant inner product (,) on p. Since G

is connected its action is orientation preserving. Hence the image of the isotropy

representation

a : H -+ SO(TM) (6.28)

is contained in the special orthogonal group. Choose a positively oriented basis

X 1,..., X, for p and denote the left invariant extensions of these to G by the same

letters Xi. Let Xi = rXi be the corresponding basis for TM.

Proposition 6.2.1. The principal bundle of special orthogonal frames SO(TM) and

the tangent bundle TM maybe identified with

SO(TM) = G x, SO(TM) (6.29)

TM = G x, TM. (6.30)

Here (6.29) and (6.30) are the quotients of the respective products by the equivalence

relations [g, A] - [gh, ah-1 )A] and [g, v] ~ [gh, a(h-1 )v] with g E G, h E H, v E

TM and A E SO(TpM).

Proof. The first identification is induced by the map

m: G x SO(TM) -+ SO(TM), m(g,A) = (Lg),(AXi) (6.31)

while the second is induced by

m:GxTM-+ TM, m(g,v) = (Lg),v. (6.32)

Now let a' : H -+ Spin(TM) be a lift of the isotropy representation so that the

following diagram commutes
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Spin(TpM)

H >SO(TM)

where 0 : Spin(TpM) -+ SO(TpM) is the usual double covering map. Define a spin

structure on M by Spina,(M) = G xa, Spin(TM). The covering map Spin&,(M) -+

SO(TM) is defined using the identification (6.29) and the usual double covering 0.

In the case where G is simply connected all spin structures on M arise via such a lift

of the isotropy representation (cf Lemma 3 in [5]).

Let Sa denote the spin bundle corresponding to the spin structure Spina,(M).

Let cl : Spin(TpM) -+ U(S) be the spin representation.

Proposition 6.2.2. The spin bundle Sa' maybe identified with

sa' = G xdoat S. (6.33)

Under the identifications (6.30) and (6.33), Clifford multiplication is given by [g, v] -

[g, s] = [g,v - s] with s c S.

Proof. The spin bundle is defined as Sa, = Spin,(M) x S. The identification (6.33)

is now induced by the map

m : G x S -+ S,, m(g, s) = [[g, 1], s]. (6.34)

The formula for Clifford multiplication now follows from the definition. O

Now for X, Y E g, denote by [X, Y], the p component of the Lie bracket [X, Y].

Define the constants

1
o'ijk = ([Xi,X]p,Xk) ± ([Xj,Xk]pXi) + ([XkX]P,Xy)) (6.35)4

fA = $2 ([X, Xi]p,Xj). (6.36)
j=1
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From the identification (6.33) it follows that sections of S", correspond to cl o a'

equivariant maps I : G -+ S. The section : M -+ Se, corresponding to XI is given

via V@(gp) = [g, P(g)]. The proposition below gives a formula for the Dirac operator.

Proposition 6.2.3. Let D be the spin Dirac operator on Sr and T : G -+ S be

a cl o a' equivariant map corresponding to a section V) of S,. The equivariant map

Dq : G -+ S corresponding to D$) is given by

DT(go) = X -Xi'(T)| 90 + ±i0a + Cijkik - IF (go). (6.37)
i=1 i=1 i<j<k/

Proof. Let po = gop. Let o- : M -+ G be a local section of 7r near po such that

7r o o = Id with

a-(po) = go and (6.38)

Tg0oo = (Lgo)*p. (6.39)

This gives a local trivialization of the principal bundle Spina (M) via A(m) = [o(m), 1].

The induced trivialization of the frame bundle SO(TM) is given by the local orthonor-

mal frame ej = [o-(m), Xi]. The section V) of S,, is now given in the induced local

trivialization via [o(m), s(m)] where s(m) = (o-(m)). The Dirac operator in this

trivialization is given by

DVb(po) = [o-(po), e -e (po) + 2 lj(eiejek) s(po)] (6.40)
i j<k

(see page 41 in [34]). Here F. denote the Christoffel symbols for the Levi-Civita

connection defined via Ve-e = %kek. These can be computed to be

_ = (aijk + akij - aiki) (6.41)
ie 2

in terms of the Lie brackets in the orthonormal frame
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aijk = ([ei, ej),e). (6.

It follows from 7r,(Xip) = ei and (6.39) that

r,([Xi, X]|1g) = [ei, ej]|,. (6.43)

Hence we have that

aijk(po) = ([Xi, Xj]p, X). (6.44)

The formula (6.37) now follows from (6.40), (6.41) and (6.44).

The group G acts on the space of cl o a' equivariant maps T : G -+ S via

(gI)(go) = F(g 1 go). (6.45)

This defines a representation of the group G on the Hilbert space L2 (M, S,) of

square integrable sections of Ser. We let O denote the set of all equivalence classes

of irreducible representations p: G -+ U(V). Given V, E O, let HomH(V, S) denote

the space of all H-module homomorphisms from V to S. The space V0HomH(V, S)

admits a representation of G via g(v 0 A) = gv 0 A for g E G, A e HomH(Vp, S)-

This representation can be embedded into L2(M, Sy) where v 0 A corresponds to

the cl o a' equivariant map sending g -+ A(p(g-')v). The next proposition gives the

decomposition of L2(M, S,,) into irreducible components. This is theorem 5.3.6 in

[42].

Theorem 6.2.4. (Frobenius Reciprocity) The unitary representation L2 (M, S",) of

G is the unitary direct sum

L2 (M, S,) = (DVp 0 HomH(Vp, S) (6.46)
pEO

over all irreducible representations p E G.
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It is straightforward to observe from proposition (6.2.3) the Dirac operator com-

mutes with the action of G. Hence the p-isotypical parts V, 0 HomH(V, S) of (6.46)

are invariant under the action of G. Proposition (6.2.3) can now be used to determine

the restriction of D to each isotypical part below.

Proposition 6.2.5. The restriction of the Dirac operator D to each isotypical part

V 09 HomH(Vp, S) is given by id 0 D, where

Dp(A) = - -Xi. A(,cp),(Xj) + Bik + ( aigkXiXXk -A. (6.47)
1 i<j<k/

Here (rp), is the derived action of g on V.

Proof. Let J(g) = A(p(g-1 )v) denote the cl o a' equivariant map corresponding to

v 0 A E V 0 HomH(1,, S). Following proposition (6.2.3) we have

DIf( go) X S -Xi (T)}|go + Bii+ E aikijki k -F (go ). (6.48)
i=1 i=1 i<j<k

We may also compute

Xi( R)|g0 = 1F(goexi)|t=o (6.49)

dt= +A(p(e-tigo-1)v)|to (6.50)

= -A(,r),(Xj)p(go 1)v (6.51)

The proposition now follows from (6.48) and (6.51).

6.2.2 The group U(m) and its representations

Our eventual goal is to compute the spectrum of the coupled Dirac operator on the

odd dimensional sphere
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s 2m+l = {(z 0,... ,Zm) E Cm+I zol 2 + ... +I zm| 2 = 1}.

In order to do this we shall need to understand the double cover of the unitary group

and its representations in this section. The sphere maybe written as the homogeneous

space S2m+l = U(m + 1)/U(m), with U(m) denoting the unitary group. However

the corresponding isotropy representation of U(m) does not admit any lift to the spin

group. For this reason we write S 2m+1 = U(m + 1)/U(m). Here U(m) denotes the

double cover of U(m) defined as

U(m) = {(A, o) E U(m) x U(1)1det(A) = a2}. (6.53)

It is clear that the natural projection of U(m) onto U(m) is a double cover. This

projection also defines an action of 0(m + 1) on S 2m+l via the natural action of

U(m + 1) on Cm+1. Choosing p = (1, 0, ... ,0) gives Stab(p) = U(m). The tangent

space TpS 2m+l is the span of By, a2,, 8, with yt > 1. The isotropy representation acts

trivially on Bye and corresponds to the natural map 1 : (m) -+ SO(2m) in the basis

2,, o,, with p > 1. We now construct a lift of the isotropy representation below.

Proposition 6.2.6. There exists a unique group homomorphismj : (m) -* Spin(2m)

such that

Spin(2m)

U(m) > SO(2m)

is a commutative diagram.

Proof. The case m = 1 is easily verifiable. For m > 2, r1 (U(m)) is an order 2

subgroup of w1(U(m)) = Z. Its generator is mapped under 1 to twice the generator

of 7r1 (SO(2m)) = Z2 and is hence killed. Thus there must exist a unique lift of i to

a group homomorphism j : (m) -+ Spin(2m). To give an explicit formula for j, let

(A, a) E O(m). Choose a unitary basis of eigenvectors e1 , .. . , em E Cm for A such
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that Aek = e'Okek. Considering ek, Jek(= iek) as vectors in R2m we claim that

m
j(A, a) = 11 (cos(5k) + sin(5k)ekJek) E Spin(2m). (6.54)

k=1

Here 4k are chosen such that e i2
j- eiOk, Vk and H~ eid = a. It is easy to check that

the right hand side of (6.54) is well-defined and gives a continuous map sending the

identity in U(m) to the identity in Spin(2m). A direct computation also shows that

this is a lift of the map i and hence must equal to the unique group homomorphism

To find all the irreducible representations of U(m) we first recall all the irreducible

representations of the unitary group U(m). In the case of U(m), its irreducible rep-

resentations are characterized by their highest weights which are m-tuples of integers

k = (ki, . . . , km) E Z m satisfyig

k1 > k2> ... > km (6.55)

(cf. Theorem 4 page 133 of [43]). We denote this representation by V. The standard

representation A' of U(m) corresponds to the weight (1, 0,... , 0), while its exterior

powers Aj correspond to the the weight (1, ... ,1,0,..., 0). The dimension of the

j times

representation Vk is given by Weyl's dimension formula (cf. page 214 in [43])

_ 15 = p<vsmr(kit - k, + v - p5dim V =!!.(- . (6.56)
1!2!. .. (m -1)

It is clear that each Vk induces an irreducible representation of U(m). From the

definition (6.53) we have another one dimensional representation of U(m), which we

denote by Eo, given by the projection onto U(1). Since -1 = (I, -1) E O(m) acts by

-Id on Eo, it is not induced from a representation of U(m). It is also easy to note

that Eo 9 EO = Am . Now given any irreducible representation V, of U(m), we have

p(-1) 2 = I. Since -1 is in the center of 0(m), the ±1 eigenspaces of p(-l) are U(m)

invariant and we must have that p(-1) = ±1 on V,. In the case where p(-1) = I,
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V, is induced by a representation of U(m). While in the case where p(-1) = -I

we have that V 0 EO is induced from U(m). Hence in conclusion, the irreducible

representations of U(m) are of two types. The first consists of the representations Vk

induced from U(m). While the second consists of those not induced from U(m) and

can be written in the form Vk 0 Eo or Vk @ E01

We shall also need to know how the irreducible representations Vk, Vk 0 E* of

U(m + 1) decompose when restricted to U(m). The branching rules for U(m) (cf.

page 186 of [43]) state that we have the decomposition

Vk= QVi (6.57)

where the direct sum is over the 1 = (1, .. , lm) satisfying

ki > li > k2 > 1 2> --. > 1m > km+1. (6.58)

Tensoring with E* now gives the analogous braching rules for Vk 0 E*.

Let o,, denote the matrix containing a 1 in the pth row and vth column and O's

otherwise. The Lie algebra u(m) of 0(m) is spanned by HI, = 2i6,,, X,, = 2(6vj,-6,v)

for y < v and Y,, = 2i(6,l +6,). The Casimir element

C = H, o H,+ ( X o X,4 + Y o Y,) (6.59)
11 I'<V

commutes with the action of the lie algebra and hence acts by a constant ck on any

irreducible 0(m) module Vk. Now if

Z, =X, 'Y = -461,1 (6.60)

2,, = X,, - iY = 46v, (6.61)

then [4 Z,,j] = 8i(H, - H,) and we may write
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C = E H, o Hy, + ( Zy oz,±Zy +,Zy o ) (6.62)

= ZH, oH,+± ( Zyt o Zv± + 2i(H, - Hv). (6.63)
y p<v(

If v is the highest weight vector of Vk we have HyLv = 2ikyv while Zve = 0. Hence

the constant ck is computed to be

Ck= - 4 ( k 2+ (ky -k) . (6.64)
a pL<v/

Similarly the action of the Casimir element on (v 0 1) E Vk 0 E* and hence this

irreducible module is by the constant

k = - 4 ( k - ) 2 + E(ky - k) . (6.65)
a 2 '/I<U

The highest weight vector v, of the summand V in(6.57) is a weight vector of U(m+ 1)

with weight

(Zk - lli, ., lm) (6.66)

(cf. page 187 in [43]). Hence the action of (rk),(Ho) on vi 0 1 is given by

(7k)*(Ho)(V1 @ 1) = 2 ( k - l - (vil 1). (6.67)

The spin representation S is a representation of U(m) via the composition with

j. To construct the spin representation S let V be the 2m dimensional subspace

of T S2 m+1 spanned by ,,, for I > 1. Let V 0 C = V 1'0 D V0 '1 with the two

summands being the subspaces spanned by

1 1
OzA =- (x, - ia,) and z, = -( + (6.68)

respectively. Define an inner product on V 0 C which extends the metric on V by
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complex bilinearity. The spin module can be defined as

m

S = (AVI'0 E*), (6.69)
r=o

with

cl((9 1) = A W - t1W) 01, (6.70)

cl(yj)(W 0 1) = z(az, A W + ta& W) 0 1 for p > 1, while (6.71)

cl(a9.)(wo l) = i(-I)j(w(&i) forwEAj. (6.72)

There is a natural action of U(m), and hence of U(m), on V 1'0 in the complex basis

z,. This induces a representation of U(m) on S = A*VI 0 E. It is a straight-

forward computation using (6.54) to check that this representation agrees with the

representation cl o j : U(m) -+ U(S). Hence (6.69) gives the decomposition of the

spin representation into irreducible representations of U(m).

6.2.3 The spectrum of the Dirac operator

Now we come to the computation of the Dirac spectrum on the sphere. Recall that

sphere was written as the homogeneous space S2m+1 = U(m + 1)/U(m). The lift j

of the isotropy representation gives rise to the unique spin structure on the sphere

and a corresponding Dirac operator on the spin bundle S. Now let R denote the

vector field which the infinitesimal generator for the diagonal S' action on S2m+1 via

ei(zo,. .. , Zm) = (e 0zo,.. .,eiozn). The dual to R is a contact one form on S2,+1

which we denote by a. We now twist the spin bundle by the trivial Hermitian line

bundle C equipped with the connection d - ira for a parameter r > 0. We shall

compute the spectrum of the corresponding coupled Dirac operator Dra. The space

of sections of the spin bundle S can again be decomposed

L2(M, S) = , v o Homoi(.)(VP, s) (6.73)

P
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with the direct sum being taken over the irreducible representations p of U(m + 1).

Following the decomposition (6.69) of S into irreducible representations we see that

the p-isotypical part of (6.73) is nontrivial if and only if the restriction of V to 0(m)

contains an irreducible representation of the form Ai D Eo. Using the branching rule

(6.57) we see that the V, must be of one of the following types

I. V, = Vk E with k = (0,..., 0, b), b 0 which contains AO 9 E*

II. V = Vk 0 E* with k = (a + 1, 1,..., 1), a > 0 which contains A'm®Z

III. V = V@E* with k = (a +1, 1,.. ., 1 0, ... ,0, b), a;> 0, b 0, 0 <j < m -1,
j times

which contains A' 0 E* and Ai+1 0 E*

Under the projection 7r : U(m) S Sm+1, r(A, c) = Ap we have

r, H) = Bye, r xo0 ) = a2, lr* Yo, = Y. (6.74)

Since the diagonal S' action commutes with the U(m) action on the sphere, following

proposition (6.2.5) the coupled Dirac operator preserves the decomposition (6.73) and

its action on the p-isotypical part is by id 0 D,. In this case we may compute that

each #3 = 0 while the only non-zero constants aijk are

4 _Ho, Xo"] , YoI Xo1, YoA , 1 H. + Yo,, 'Ho], IX.,) =-1

(6.75)

Under the observation that the vector field R corresponds to [g, ,(] in (6.30), D is

given by the formula

D,(A) = -y. - A (r,),(Ho) - {8x, - A (7r,)(Xo.) + Bv, -A(7r,),(Yo)}22 
A

- E O8 x, x , - A - irayo - A. (6.76)
IL

It now suffices to compute the spectrum of D. under the three types 1, 11 and III.
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Type I

In this case D, acts on the one dimensional space End&,(m) (A0 0 E0). Since Clifford

multiplication by i2, and B9, switch the Ad/e'en 0 E0 parts we see that the middle

term in (6.76) acts trivially. Following (6.67), (6.70) and (6.72) we see that the first

term acts by b- j the third acts by -m and the last by r. Hence D, has the eigenvalue

1
A = b - m- +r. (6.77)

2

The multiplicity of this eigenvalue is the dimension of the representation Vk and is

computed via (6.56) to be the binomial coefficient (m-b

Type II

In this case D, acts on the one dimensional space EndC(m)(A" @ E0). Again the

middle term in (6.76) acts trivially. The first term now acts by (-1)"n(a + .) the

third acts via (-1)'m and the last by (-1)"r. Hence D, has the eigenvalue

1
A = (-1)'(a + m + - + r). (6.78)

2

whose multiplicity is again calculated via (6.56) to be ("M

Type III

In this case D, acts on the two dimensional space EndU(rm)(Aj 0E*)e Enld(m) (Aj+l0

E*). Let A1, A 2 denote the identity endomorphisms in the respective summands and

let D, = (i ") in the basis given by the A's. Again since cl(82) and cl(Oy,) switch

the Aodd/even parts we have that the off diagonal terms u and v come from the second

term in (6.76). Similarly the diagonal terms x and y come from the first, third and

last summands in (6.76). The terms x and y can be easily computed after noting that

Clifford multiplication by w = E acts via i(2j - m) on Ai 0 E0. Hence using

(6.67) and (6.72) we may compute
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x = (-1) (a+b+2j-

y = (-1)i± (a+b+2j

m+r+ )
-m+r+ 3.

12
(6.79)

(6.80)

Next we compute

= - A o {(r),(X ) o (Xo,)

4Ao (7r),(Ho) o (7),(Ho) + w - A4~ 2

+ -2 -A + m(m + 1)A.
4

Here we have used the commutation relations

[Xog,, Yo,] = 2Yt

[Xo,, Yo,] = 4(H, - Ho)[Ho,aXo,] = -2Yo

as well as the formulas

(lrdo 3 )* (Hi)

(Taos),I(XtV)

(7rCoj),(Yi-v)

= X, ay/& (6.84)

(6.85)

(6.86)

= O2, - 8, + aY, -y,

= OX2, -B - Byl, -O2,

for the derived action on the spin representation. Now we simplify (6.81) to give
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(D, +
I YW + iray) 2 A + (7), (Yoz) o (7r,),(Yop)

0 (7r,),*(Ho)

(6.81)

[Xot, Xo0 ] = [You, You] = 2Xm,,

[HO, Yo,] = 2Xol,

(6.82)

(6.83)



D + I8 0 + iray2 A = -A o (7rp),(CO(m) - CU(m+l))

1 1
+ -A o (-r), (Ho) o (7r),(Ho) + 2 - A o (r,), (Ho)

3

(6.87)+ -W2 - A +rn(m + 1)A,4

where CU(mn) and CU(m+1) denote the Casimir elements corresponding to U(m + 1)

and 0(m) respectively. Now following (6.65) the action of the Casimir element C&(m)

on Ai 0 E* is given by the constant

(6.88)

while the action of C0L(m+1) on V, is given by

+ 4 + m(a - b) +

(6.89)

Using (6.67) the action of (7r,),(Ho) on the highest weight vectors v5, vj+1  of the

Ai 0 E*, Aj+ 1 0 E* parts of V, is given by

1
(7r),(Ho)vy = 2i(a + b + I)vj

2

respectively. Using these formulas we may compute

(D +
1yes + ir±9e A1 = aA1, (D +

1yes
2

with
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and (7rp),(Ho)vj+1 2i(a + b -
1

)v+1 (6.90)

+ iry2 A 2 = aA 2 (6.91)

E(1,..,1,7 0, ... , 0) = -4 + j(m

1)' + (b - )2E(a+l, 11 ... 1110, ... 101b) = -4 a+ -
I ( 2 2

(mn - j)(j +1)



a = a(a, b, j, m) = (a + b+ j

being the same constant for both A1 and A2 . This now gives

x 

V y 2
-[m - 2j - 2r 0

0 2j+2 - m + 2r

-1
J)

2

0

0

a]
(6.93)

which in turn is equivalent to the four equations

( (-1)i
± m

+ 2 (2j + 2

\2
- 2j - 2r)) + UV

- m + 2r) + UV

(xy± (-1))u

(x + y + (-1)3 )v

= a

= a

=0

=0.

It hence gives

Uv = -4(j + a + 1)(b - m + j).

Now if A1, A2 denote the eigenvalues of D, we have

A1 + A2 = trD, = x + y = (- 1)+,

A1 A2 = detD, = xy - uv

b+2j -m+r +
2)

+ 4(j + a + 1)(b - m + j).

Hence we may compute
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( Y
(6.94)

(6.95)

(6.96)

(6.97)

(6.98)

(6.99)

(6.100)

(a + b + 2j - 3 r

(6.101)

= - (a+

+ 2m )
- 4(j + a + 1)(b - m + j) (6.92)



A1,2 = 2 ± /(a+b+2j- m+r +1) 2 +4(j+a+ 1)(m - j - b). (6.102)
2

The multiplicity of each of these eigenvalues is the dimension of the representation

Vk and is again computed via (6.56) to be

(m + a)!(m - b)!(a - b + + m) . (6.103)
m!j!(m - j - 1)!a!(-b)!(a + j + 1)(m - j - b)

We now summarize the computation of the spectrum in the theorem below.

Theorem 6.2.7. The eigenvalues with multiplicities for the coupled Dirac operator

Dra on the odd sphere S 2 m+1 are given by

i. A = r - (a + m + {), for a E No with multiplicity ( a)

ii. A = (-1)"(r + a + m + -1), for a E No with multiplicity (""

A= 2 i /(1 - a 2 + 2j - m + r + 1)2+ 4(j + ai + 1)(m - j + a 2 ),2
(6.104)

for ai, a2 E No, j = 0, ... , m - 1, each with multiplicity

(m + ai)!(m + a2 )!(ai + a2 + 1 + m) (6.105)
m!j!(m - j - 1)!a 1 !a2!(ai +j + 1)(a 2 + m -j)

We now compute the spectral flow function. It is easy to see that the eigenvalues

of type ii are never zero. It is also easy to verify that the square root in (6.104)

is atleast 2 and hence the eigenvalues of type iii are never zero. Hence the only

eigenvalues which contribute to the spectral flow function are those of type i. The

spectral flow function is now easily computed to be

[r-m-] a)

sf(D, Dra) = m + a. (6.106)
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Using the binomial identity ma () = (m ) the spectral flow function is seen

to satisfy

rm+1
sf (D, Dra) m + 1 (r"m ). (6.107)

(M + 1)! +0('

This is seen to be the sharp remainder since 0(rm) is the size of the jump discontinuity

in this example.

6.3 Spectral flow for L(p, 1)

In this section we compute the spectrum of coupled Dirac operators on homogeneous

three dimensional Lens spaces. Let SU(2) = 3 be the three sphere with the round

metric. The three dimensional Lens space L(p, 1) is the quotient of S 3 under the

identification A ~ A _ 0 with A E SU(2), C = e2yp. Left multiplication gives

a SU(2) action on L(p, 1). The stabilizer of [I] E L(p, 1) is the subgroup generated

by _ which maybe identified with Z, c U(1) consisting of the pth roots of

unity. Let Xi = o-i be the basis for the Lie algebra su(2) given by the Pauli matrices.

Let lr,(o-) = Xi denote the corresponding pushforwards under the natural projection

7r: 3 - L(p, 1). We may compute

eut 0 0 Zi e-it 0 0 ie2eit
Adeito- = [ e-" i 0 0 e ie-2J 0 (6.108)

= cos(2t)o-1 + sin(2t)o-2, (6.109)

eut 0 0 -1 e~"t 0 0 -e 2i
Adeit O2  = 0 e-t 1  0 0 e e-2e1  0 [e.110)

= - sin(2t)o-1 + cos(2t)U2  and (6.111)

Adeio-3 = -3 . (6.112)
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Hence we see that the isotropy representation a : Z -+ SO(3) is the restriction to

Z, of the map a: U(1) -+ SO(3)

cos(2t) sin(2t) 0

a(e") = - sin(2t) cos(2t) 0 (6.113)

0 0 1

in the basis given by the Xi's.

First consider the case where p is odd. In this case H 1 (L(p, 1), Z 2) = 0 and there

is a unique spin structure. It corresponds to the lift of the isotropy representation

given by the restriction to Z, of the map

a' U(1) -+ SU(2), a'(et ) = . (6.114)
0 eut

We twist the corresponding spin bundle by the trivial Hermitian line bundle C

equipped with the connection d - ira. Here a is the unique one form on L(p, q) whose

pullback r*(a) = X* on S3 . We wish to compute the spectrum of the corresponding

coupled Dirac operator Dra.

The irreducible representations of Z are parametrized by elements of Z. The

representation W corresponding to 1 E Z, is the one dimensional representation

given by w1 : Z -+ U(1) with 7ri( () = (1. The irreducible representations of SU(2)

are V = Symk(C 2 ) and are spanned by the k + 1 monomials va = xayk-4a, 0 < a <

k. The spin representation is the standard representation S = C2 of SU(2) with

Clifford multiplication by X being given by the Pauli matrices o-i in the standard

basis s 1 , s 2 E C2. The space of L 2 sections of the spin bundle decomposes as

L 2 (S) = e Vk 0 Homz,(Vk, S) (6.115)
k

and the restriction of the Dirac operator to the k-isotypical part is of the form id 0 Dk

by proposition (6.2.5). It is easy to compute #1 = 32 = #3 = 0 and a 12 3 = 1. Hence

Dk can be computed to be
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Dk(A) =i -- (0(i - - A -iru- 32 (6.116)

for A E Homz,(V, S). Following (6.114) we compute the action of Z, on a monomial

k 0&( (Va) = k-2aVa. Hence the restriction to Z, of Vk decomposes as

k

Vk = Wk-2a. (6.117)
a=O

The restriction to Z, of the spin representation similarly decomposes as S = W_1±W 1 .

Using these decompositions we may write

Homz(Vk, S) = Homz,(Wk, W- 1) e Homz,(W-k, W1) ( (6.118)
k-1

O (Homz,(Wk-2a, W 1) D Homz,(Wk-2a-2, W- 1)) (6.119)
a=O

By Schur's lemma the first two summands are nonzero when k =-1 (mod p) while

index a part of the third summand is nonzero when k - 2a =1 (mod p). When

nonzero, these summands are preserved by the operator Dk using (6.116) and the

relations (6.18). The restriction of Dk to the first two is then given by the scalars

-k - 1 + r and -k - 1 - r respectively. While its restriction to the index a part of

the third is the matrix

k - 2a - ' + r
Dk =[ 2+

2(k - a)

2(a + 1)

2a - k + 1 - r2 J

The eigenvalues and multiplicities are now computed to be

(1
-bp - I k r

2
A = -i (r + bp)2 + (k + 1)2 - (bp)2

for b E N

for b,k+1 EN, k+bpodd,

-[L-] < b < [k-1].P - - --
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Here the first eigenvalue has multiplicity bp while the second has multiplicity k + 1.

In the case where p = 2po is even H 1 (L(p, 1), Z2) = Z2 and there are two spin

structures. The first corresponds to the lift of the isotropy representation given by

(6.114) and gives the same spectrum as the odd p case. The second spin structure

comes from the lift given by the restriction to Z, of

a' : U(1) -+ SU(2), a'(e"t) =
e-i(1+Po)t

0
(6.121)

0

eig1+Po~t

The rest of the computation is now the same as the p odd case, the answer is as

summarized below.

Theorem 6.3.1. Let L(p, 1) be the Lens space. The spectrum of the coupled Dirac

operator Dra corresponding to the trivial spin structure is given by

1
-bp - -± r

2

SV(r + bp)2 + (k + 1)2 - (bp)2
2

for b E N

for b, k + 1 E N, k + bp odd,

where the first eigenvalue has multiplicity bp while the second has multiplicity k + 1.

For p = 2po even the spectrum of the coupled Dirac operator Dra corresponding to

the non-trivial spin structure is given by

1
(po + bp) - - ± r

2

1 i (r + po + bp) 2 + (k + 1)2 (pobp)2
2

for b E N

for b,k+ 1 E N, k+p 0 odd,

_[k+po+1] < b < [k--1].
P -- -- P

where the first eigenvalue has multiplicity po + bp while the second has multiplicity

k +1.

The proposition again allows us to compute the spectral flow function in each case.

Considering the trivial spin structure it is clear that the only eigenvalues crossing the

origin are of the type -bp - 1 + r. Hence the spectral flow function is
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sf (D, Dra) = E bp. (6.122)
b=1

This is now seen to satisfy the asymptotics

T 2
sf(D, Dra) =- + O(r). (6.123)

2 p
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Appendix A

The semiclassical resolvent

expansion

In this section we collect some facts from semiclassical analysis. The primary goal is

proposition (A.5.5) where we prove the existence of a trace expansion for any function

of an elliptic semiclassical operator. To do so we will first review some fact about

the semiclassical pseudodifferential algebra. The main references here are [13] and

[44]. We use this section to supplement these references and to modify some of their

arguments to fit our purpose.

A.1 The Semiclassical Pseudodifferential Algebra

Here we shall recall the definition of a semiclassical pseudodifferential operator. We

shall assume familiarity with the usual pseudodifferential algebra as in chapter 18 of

[24] or chapter 2 of [33]. Although a semiclassical pseudodifferential operator is really

a family of pseudodifferential operators it is still referred to as 'an' operator by abuse

of language. The precise definition appears below.

Definition A.1.1. A semiclassical pseudodifferential operator of order (m, 0) on R'

is a 1-parameter family of psedodifferential operators Ah E T'I' C C ((0, 1]h; 'm (Rn; R!))

of the form
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Ah = a(x, hD, h) = (27rh)" J ei(x-y). /ha(x, (, h)ddy, (A.1)

such that a E C*([0, 1]h; Sm(R 2 n ;R)).

We recall that the space of symbols S,"(R2n; R1) is defined to be the space of

smooth maps a: R 2n -+ Mat, (C) for which each seminorm

supx' ( )~'"n11|824afla(x,() (A.2)

is finite. This space is a Frechet space with these semi-norms and the smoothness

in definition (A.1.1) means smoothness with respect to each of these seminorms.

Following this definition on Euclidean space we define semiclassical operators on a

compact manifold.

Definition A.1.2. Let E be a vector bundle of rank 1 a compact manifold X of dimen-

sion n. A semiclassical pseudodifferential operator of order (m, 0) is a 1-parameter

family of pseudodifferential operators Ah E X'T '((X; E) C C ((0, 1]h; q'"(X)) such

that

i. there exists an atlas {(U , a)} of coordinate charts a : U -+ V, c R" with

respect to which E is locally trivial. Furthermore for each $, V c C (V,,)

(a~1)*Aha*p = ac.(x, hD) E 'F'(R"; Rk) (A.3)

and

ii. for each $, #2 E C' (X) satisfying supp($1) n supp($ 2 ) = Owe have that the

kernel K of $ 1Ahp 2 is in C (X x X) and is O(h') in each Ck norm on the

product.

A semiclassical pseudodifferential operator of order (m, k) is a 1-parameter family

of pseudodifferential operators of the form h-kF, . The coordinate independence of

pseudodifferential operators proves that if an operator has the form (A.3) with respect

to one atlas it would have to the same with resect to any other (cf. theorem 9.10 in
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[44]). These also form an algebra with respect to composition h-1i " o h-k2pm2 C

h-(ki+k2) I(M1+m2)

A.2 Symbol maps, quantization and ellipticity

Next we define the symbol of a semiclassical operator. First define the semiclassical

spaces of symbols on the cotangent bundle to be S, (T*X; E) = C ([0, 1]; Srn(T*X; E))

where again smoothness is understood to be with respect to the Frechet space norms

on S'(T*X; E). In the semiclassical setting there are two versions of the symbol.

The first is the usual symbol of each operator in the family

om(Ah) E C ([0, 11, Sm(T*X; E)/Sm-1(T*X; E)) = S3/S- 1. (A.4)

The next is the semiclassical symbol o-s(Ah) E S /hSm, = S"n(T*X; E). For

a semiclassical operator a(x, hD, h) on Euclidean space this is simply defined as

a(x,(,0) E gm. This definition is now extended to manifolds using an appropriate

partition of unity (cf. theorem 14.1 in [44]). The two symbols satisfy the compatibility

relation

omlh=O = [o-s] E S"m/S"-1. (A.5)

Both symbols are multiplicative in the sense o-s(AB) = o-s(A)o-(B) and om(AB) =

-rn(A)orn(B) (cf. theorem 14.1 in [44]). They also fit into the short exact sequences

0 h- -- h k -+ Co([0, 1]; Sm/Sm-1) -± 0 (A.6)

0 - -k+1 j - h-kgrn -"4 h-kS"n -+ 0. (A.7)

The semiclassical notion of ellipticity is defined as
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Ah E T"s is semi-classically elliptic , (A.8)

3 constants C1, C2 > 0 such that or,(A)(x,() > Ci(m for |( > $4..9)

We comment here that unlike the classical symbol the semiclassical symbol is not a

homogeneous function on the cotangent bundle. There also exist a quatization map

Op : S(T*X) -+ 'IF(X) (cf. theorem 14.1 in [44]). This is a right inverse to the

symbols in the sense that

o-m(Op(a)) = [a] E 32/32-1 (A.10)

o9,(Op(a)) = alh=o E Sm . (A.11)

It follows from the short exact sequences (A.6) and (A.7) and multiplicativity of the

symbols that if either A or B has a scalar symbol (i.e. the symbol has a scalar rep-

resentative in the case of om) then their commutator has lower order. More precisely

let A E h-ki gn and B E h-k2P X2 then one has the following two implications

0-mi(A) or oM2 (A) is scalar - [A, B] E h-kj-k2m1+m2-1 (A.12)

U 1(A) or u.-s(A) is scalar -> [A, B] E h-ki-k2+1lI M1+m2. (A.13)

A.3 Semiclassical Sobolev Spaces

The semiclassical Sobolev spaces Hk(X; E) are the defined as spaces whose elements

are the same as the classical Sobolev spaces Hk. However their norms are rescaled

as follows. Choose a set of vector fields V1, -.- , Vi that span the tangent space T2M

at every point x E M. Let V be a fixed connection on E. Then u c H

VV ... Vvu E L 2 (X), V(ii,- ,ik) E {1,- ,J}' with 0 < 1 < k. Moreover the
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norm is defined as

k

|IUlIak = Z Z h21||Vv ... VVUIIL2. (A.14)
l=0 aEN1

1<ai<J

A semiclassical differential operator Ah E h-kW,j is bounded on these Sobolev spaces

in the sense

IAhlIH;-+.,gH = O(h-k), as h -+ 0. (A.15)

Using the fact that semiclassical operators form an algebra this reduces to the L2

boundedness of TO which is theorem 14.2 of [44]. Finally we mention that semi-

classical operators satisfy asymptotic summation. This means that for any set of

semiclassical operators Aj E " A, j E No there exists A E IF' such that

N

A~ Aj or A - Aj E Tm-N-1 VN. (A.16)
j>0 j=0

A.4 Semiclassical Elliptic regularity

Here we prove a semiclassical analogue of Gardings inequality or elliptic regularity.

This will follow after the construction of a parametrix for an elliptic semiclassical

operator.

Proposition A.4.1. Let A E ''(X) be an elliptic semiclassical pseudodifferential

operator. Then there exists a semiclassical operator Bh E T1-"'(X) such that

AB - I z 'I-'(X) and BA - I E P-00(X). (A.17)

Proof. Since A is elliptic there exist constants C1, C2 such that 1os1(A)(x,()| >

CilI"' for |(1 > C2. Using the compatibility of the symbols (A.5) we may assume

Io-m(A)(x, , h) > Cilj m for |(| > C2 for uniform constants C1, C2 on some interval

h E [0, ho]. Choose a function # E C (R) such that # = 0 on [-2C, 2C] and # = 1

outside [-3C, 3C]. Consider
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B-m = Op (#(1(|1)(om(A))~ 1). 

Using the multiplicativity of the symbol one has

ao(ABm - I) = 1 - 4) = 0 E SZ/Sf 1 . (A.19)

Hence AB_, - I = R_1 E T-I1 from the symbol exact sequence for uo. Now choose

(A.20)

We then have

i-(A(B.m+B-m-1)-I) = a--(AB-m-I)-a-1(R_1)#(l(|) = 0 E S- 1 /Sj 2 . (A.21)

Continuing iteratively we obtain B-m-j E ,m-, j 0 such that A(B-m ± - ±

B-m-N) - I E I-N - 1,,(X). Using the asymptotic summation property we now

pick B ~ Z o B to be the required right parametrix for A. The construction of the

left parametrix is similar. E

We now state the elliptic regularity lemma.

Proposition A.4.2. Let A E T,(X) be a semiclassical elliptic operator of order

m > 0. Then one has the estimate

IIUIIHs+m HAuIHS + 1UH-) (A.22)

for some constant C uniform in h.

Proof. This follows easily from the parametrix construction, namely let B be the left

parametrix such that BA - I = S E q,~ . Then
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IuIIH,+m = I(BA + S)UIIH-+m (A.23)

| |IBAu||ii:,+m + ||Su||Hs..+m (A.24)

< |IB|| IAu||H:1 +| |S||||u||H. (A.25)

C(||Aull- + IuUII.) (A.26)

using the boundedness of semiclassical operators.

A.5 Semiclassical Beals lemma and Resolvent es-

timates

In this section we state a characterization for semiclassical pseudodifferential opera-

tors knwon as Beals' lemma. This characterization will be useful in showing that the

resolvent of an self-adjoint elliptic pseudodifferential operator is pseudodifferential.

The proof we present below is a semiclassical modification of the one appearing in

Beals' original paper [7].

Theorem A.5.1. (Semiclassical Beals' Lemma) A family of operators Ah : Ce(X) -

C- (X) is in I'(X; E) if and only if

||adA, ... adANadB, ... adBMAjIHn+,-+H,+N = O(hN+M

for all M, N, s and for all Ai E T0, Bi E T1, with scalar symbols. Moreover if

IadA, . . . adANadBl .1 adBMAIIH-+,H,+N = O(6-N-Mh N+M) (A.28)

for some 6 > 0 then each amplitude aa of Ah in (A.3) can be taken to satisfy the

estimates

|a,"a| C< 6|\\ig"|\ (A.29)
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Proof. The only if part follows since the equations (A.12) and (A.13) imply that

||ad . adANadB1 -. adBmAiIHT+-+,"+N hM+N 4qM+N (A.30)ad,. .. adA I4 R+N

and we then apply the boundedness of pseudodifferential operators on Sobolev spaces.

Now we prove the if part. Since the definition (A.1.2) for a pseudodifferential

operator is local, we may reduce to the case where X = R' is Euclidean space and we

have a smooth family of operators Ah : S -4 S'. Choose g E S(R) such that g(O) = 1,

E E C ((-1, 1)) and g(x) = g(-x). Let g2(y) = g(y - x). We then have

u(x) = u(x)gx(x) = (27rh)-J ei(x-)/h gx(y)u(y)dyd (A.31)

= (2irh)-" e-iy/he(x)gy(x)u(y)dyd (A.32)

where e(x) = e ix/h. Now assume that we have a smooth family of operators

A: S' -+ S (A.33)

so that each Ah has kernel in S(R" x R"). We may then compute

Au(x) = (27rh)-" e-il/hA(e (x)gy (x))u(y)dyd (A.34)

= (27rh)-J ei(x-") /hao(x, y, ()u(y)dyd (A.35)

where ao(x, y,() = e(x)A(eggy)(x) and the integral converges for u E S as kernel

in A has kernel in S(R" x R"). We now estimate

|Iao(.,y,()|JL2 = ||A(eggy)|2 < Cj|eggy||H (A.36)

for some constant C uniform in y, and h. We also compute
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Dxiao = e-g[D,,, A](eg) + eA((eA.Dx7gy))

where D2, = 12,. Hence we have

|IDxaoIIL2 C(<Ieggyll g7 + Ie DxjgyIIH) (A.38)

where C is again uniform in y, ( and h. The identity Desao = e-e [A, xj](eggy) gives

the estimate

IID ,ao|IL2 CIIeggy|1Hm-1- (A'39)

Continuing in this way we get the estimate

ID"DD-'aoI| < Cap, (A.40)

for constants CpO uniform in y, ( and h. Next for any fixed g' with g' compactly

supported in (-1, 1) we may estimate

||egg'|12 =-n J(72s IT

= (27rh)-" J(7)2s 1
(-

) 2 dr

(A.41)

(A.42)

(A.43)

(A.44)

= (27r) -" + ah)2 , 2da

< Cm( )2s,

where Fhu() = f e-ix. /hu(x)dx stands for the semiclassical Fourier transform. Hence

(A.40) and (A.44) give

||De"DOD'yaoll I 2< C'a)"*|7 (A.45)

for constants C', uniform in y, ( and h. Combining this with Sobolev's inequality

gives
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IDaDjDjYao l C",(()m- (

for constants C, uniform in y, ( and h. Hence (A.35) and (A.46) show that Ah E jm

as required. Finally to do away with assumption (A.33) we approximate a more

general operator Ah by operators of this type. Namely we choose X E Cce(R) such

that X = 1 in a neighbourhood around 0, and define

p'(x, X) = X(ex) , q'(x, X) = X(e<) (A.47)

P= pE(x, hD) , Q' = q'(x, hD) (A.48)

Ae = PEAQe. (A.49)

Each Ae maps S' to S and satisfies norm bounds (A.27) independent of e. Thus we

have A' = ae(x, hD) with bounds on the amplitudes ae. The amplitudes converge in

C (R x R) to an amplitude a E S m and Ah = a(x, hD). The second part of the

theorem, namely the bounds (A.29), follow after replacing the bounds (A.38)-(A.40),

(A.45) and (A.46) by their analogues involving 6.

The above theorem and the pseudodifferential calculus can be used to obtain a

resolvent expansion for an elliptic pseododifferential operator. This is the proposition

below.

Proposition A.5.2. Let Ah E IF' be a self-adjoint elliptic pseudodifferential opera-

tor. Then for each z E C with Imz $ 0 we have (A - z)- 1 e T-'. This resolvent

has an expansion in the sense that there exists a sequence of symbols az, af,... E S-

such that for each k

hk+1Bz = (A - z)- - Op(az + ha- + ... + hkaz) E hk+ -m. (A.50)

Moreover each ai and the amplitudes of each Bi satisfy the estimates (A.29) with

6 = (Imz)ki for some ki > 0.

118

(A.46)



Proof. First we note that the elliptic regularity estimate and self-adjointness of A

imply that

(Imz)||ull~s,, < CII(A - z)U||,,-m. (A.51)

Hence we have

||(A - Z) 1IIH-m+_4,1,- O (Imdz- 1). (A.52)

Next the computation adA,(A - z)- = -(A - z)-'adAA(A - z)~1 gives

||adA, (A - z)-IH-m+,,H,,+1 = O((Imz)-2h). (A.53)

Computing further in this fashion we obtain

||adA,... adANadB-... adBM(A-z)IIHm+",HN+. =O((Imz)-N-M-h N+M) VM, N, s.

(A.54)

Hence we see that the resolvent satisfies the criterion of Beals' lemma with 6 =

Imz and we have (A - z)- 1 E T-1 with the corresponding estimates (A.29) on its

amplitudes. To derive the resolvent expansion first set

ao = (-s, (A) - z)1. (A.55)

The self-adjointness of A, and hence its symbol, gaurantees that this inverse exists.

We then compute

o-,(A - z)Op(a') - I) = 0 in So. (A.56)

Hence from the symbol exact sequence for -, we have (A - z)Op(a') = I + hR' for

some Rz E TO'. We then set

al = -(o-, 8 (A) - z)- 1 o-.1 (Ro). (A.57)
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Again we compute

os ((A - z)Op(a' + ha') - I) = 0 in hS0  (A.58)

and hence we must have (A - z)Op(az + ha') = I + h2 Rz for some Rz E TO'. This

inductive procedure constructs the sequence of symbols af with the property that

(A - z)Op(az + haz + + h kaz) = I + hk+1Rz for R' E IF. Hence we see that this

sequence of symbols ai along with Bz = (A - z)-h+ 1 Rf E hi+19-In satisfies (A.50).

The claimed estimates on the amplitudes follow from local computations. E

Next we show how this resolvent expansion implies an expansion for any function

of the operator. Namely we show that given any Schwartz function f E S(R) we have

f (Ah) E qf-" and that there exists an expansion for its trace trf(Ah) ~ a0 h~" +

aih-n+1 ... in powers of h. This will be done by expressing such a function of

the operator in terms of its resolvent. To do this we will first prove the existence of

almost analytic extensions of a Schwartz function in the proposition below.

Proposition A.5.3. If f E S(R) then there exists a function on the complex plane

f E S(C) such that

i. |= f

ii. supp(f) C {zIImz| 5 1}

iii. For each M, N > 0 we have

| f(z)| I CM,N(Rez)-M(Imz)N (A.59)

for some constant CM,N-

Proof. Pick a cutoff X E C"(-1, 1) such that x = 1 on ( and set

~2 1

f (z) = -x(y) x(y()f ()eI(x+dY). (A.60)
27r fR

The Fourier inversion formula checks property iwhile iifollows because of the X(y)

term. We compute
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x" My-N6 ~ XMy-NW ) x X ig(x"iy)<
27r f

+X y f-N X(Y XY)(y)f (x(i)d(xy)6
27r L

Next we write xMei~x = (i~Mei'x and integrate by parts in . The first summand

on the right hand side of (A.61) now gives a sum of terms of the type

-k f X(y()/(()e-COe'd (A.62)

each of which can be bound in absolute value by a constant multiple of

||y~kX'(y)ItcoIlX(y)e ylco llfl41. The first summand gives a sum of terms of the type

X y) YkiZh'(y M S M - Yei'd ( A.63)
27 La

each of which can be bound in absolute value by ||(k+lflLl ljy-kX,(y)e-yjCO.

Now we write the function of an operator in terms of its resolvent. The corre-

sponding formula (cf. theorem 14.8 in [441) appears in the proposition below.

Proposition A.5.4. Given any function f E S(R) we have

f (Ah) = - f 01(z) (A, - z)~ 1dxdy, (A.64)
7r C

where dxdy stands for the Lebesgue measure on C.

In the proposition above both sides are defined using functional calculus. The

right hand side makes sense because 1/z is locally integrable on C. Equation (A.64)

reduces to the fact that 1 is the fundamental solution of 6. We are now ready to prove

the existence of a functional trace expansion for an elliptic semiclassical operator.

Proposition A.5.5. Let Ah be an elliptic self-adjoint semiclassical operator on a

compact manifold X. For any function f E S(R) one has that f(Ah) E 'I'(X).
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Moreover the trace of f(Ah) has a trace expansion

trf (Ah) ~ coh~" + cih-n+1 + ... (A.65)

for some constants ci.

Proof. By proposition (A.5.2) the resolvent (A - z)- 1 E IF- for Imz 0. Using

this and the formula (A.64) we see that f(Ah) has the form (A.3) with amplitudes

given by

j(Z)azdxdy. (A.66)

Here a' are the corresponding amplitudes of the resolvent. From proposition (A.5.2)

we know that the amplitudes az satisfy the bounds (A.29) with 6 = Imz. Combining

this with (A.59) we have that each amplitude f, satisfies uniform bounds I& IfI <

Cp(Q"7-|aI and hence f(Ah) E I-". To see that f(Ah) E 1'W note that f(Ah) =

(1+A2)-kg(Ah) where g(x) = (1+X 2)kf(x) and hence f (Ah) E T from the algebra

property of pseudodifferential operators. To derive the trace expansion set

F = - jf(z)Op(ai)dxdy (A.67)
7F C

where a are the coefficients in the resolvent expansion (A.5.2). Again we have that

Fj E ' and the trace expansion (A.65) now follows fron the resolvent expansion

(A.5.2) with ci = trFi. E

The coefficients in the trace expansion (A.65) ci(f) all depend on the function f

and so do the remainders Ri(f) defined via

hi+1Ri+1(f) = trf (Ah) - (co(f)h-" + ... + ci(f)h-n+'). (A.68)

We shall need the fact that each coefficient cj(f) defines a tempered distribution and

a similar statement about the remainders. This is done in the proposition below.
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Proposition A.5.6. For a fixed operator Ah the trace coefficients ci(f) in the expan-

sion (A.65) define tempered distributions. Further each remainder Ri(f) defined via

(A.68) satisfies the estimate

|Rj(f)| < C E ||x&&Of lco (A.69)
a,#3<N

for some N and C independent of h.

Proof. Following proposition (A.5.5) we have that each ci(f) = trGi with

1I-
Gi = - f g(z)(1 + A 2)-kOp(a)dxdy, (A.70)

7i C

g = (1 ± x 2 )kf and af denote the coefficients of the resolvent expansion. Combining

this with proposition (A.5.3) we have that the amplitudes g, of Gi are bounded by

Iga l < C(O)m- B9xcy . (A.71)

Here the constant C is independent of g while N may depend on i and k. Letting k

be large we get a bound

Icj(f)| = ItrGil C (ZBL|) (A.72)

for some N. The right hand side of (A.72) can now be bound by some multiple of a

Schwartz norm of f. The proof of the bounds (A.69) is similar. l
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Appendix B

The semiclassical wave kernel

In this section we review some facts about the semiclassical wave equation. The main

goal is proposition (B.4.2) which shows that a certain wave evolution operator admits

a representation as an oscillatory integral. The main references here are [13] and [21].

We shall first define the required notion of an oscillatory density in the next section.

B. 1 Oscillatory densities

Before defining oscillatory densities we shall need some relevent notions from symplec-

tic geometry. We first review some functorial properties of Lagrangian submanifolds.

Given a symplectic manifold (M, w) denote by M- the symplectic manifold (M, -W).

A Lagrangian I12 C M- x M 2 is called a canonical relation between Mi and M 2.

Given two canonical relations 1712 C M- x M 2 and F23 C M27 x M 3 the subset

F12 0 F23 = i13(F12 * 1F23) C Mi x M3  (B.1)

with 1712* F23 = (1712 x 1F23) n (M1 x AM 2 x M 3 ) (B.2)

is an immersed Lagrangian assuming the intersection in (B.2) to be transversal. Under

the additional assumption that -r13 : 112 * IF23 -+ F12 o 0123 is proper with connected

and simply connected fibers, (B.1) gives a submanifold (cf. chapter 4 in [21]). In
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this case we say that 1F12 and 1F23 are composible and call IF12 o 123 their composition.

An exact Lagrangian (A, V)) c T*X of the cotangent bundle is one equipped with

a phase function ip satisfying ajA = d4', with a being the tautological one form on

T*X. An exact canonical relation (IF, V@) is an exact Lagrangian of (T*X)- x (T*Y).

The composition of exact canonical relations (1712 o r23, '12 0'23) is defined as in (B.1)

with the phase function being defined via

W*3 (12 0 023) = 7* 2 012 + 7 23 23. (B.3)

Given a smooth map f : X -+ Y define the canonical relation

r = (g x id)(N*(graphf)) C (T*X)- x (T*Y), (B.4)

where N*(graphf) is the conormal bundle to the graph of f and

g :T*X - T*X, g(X,() = (x, -i). (B.5)

Using these constructions we may now define the pushforward of a Lagrangian A C

T*X under a smooth map f : X -+ Y via

fA = A o F1 . (B.6)

Here we think of F C pt x T*X as a canonical relation and again assume that

the composition in (B.6) is well defined. We shall be particularly interested in the

case when f = r : Z -+ X is a fibration and A = do C T*Z is a horizontal

Lagrangian. In this case the trasversality hypothesis is the same as requiring that

dp and H*Z = dr*(T*X) intersect transversally inside T*Z. Now we have an exact

sequence

0 -+ H*Z - T*Z -+ V*Z - 0, where (B.7)

V*Z = TZ*(7r-(x)), x = Wr(z) (B.8)
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denotes the cotangent space to the fiber through z. The section deo gives a section

do of V*Z via (B.7) and dp rh H*Z if an only if dop intersects the zero section of

V*Z transversally. In this case

C, = {z E ZldW = 0} (B.9)

is a submanifold of Z. Moreover for each z E C, we have dW(z) = d7*77 for a unique

7 E T*(z)X and hence we have an embedding

A: C , -4 T*X, AV(z) = (7r(z), 77). (B.10)

We shall denote the image of this embedding A. by A, c T*X. Each point z E C, is

a critical point of the restriction of p to 7r-'(z). Let sgnO(z) : C, -+ Z be the function

where sgn (z) denotes the signature of the Hessian at z of (pji-1(z). We may carry

over this function to A, via

sgn , : A , -+ Z, sgn, = sgno1~ 1 . (B.11)

To define oscillatory density we shall need the notion of a generating function for

an exact Lagrangian via the definition below.

Definition B.1.1. Let (A, $) be an exact Lagrangian submanifold of T*X. Let p =

(x, ) c T*X be a point on the Lagrangian and Ux an open neighbourhood of x. Let

Z + Ux be a fibration whose fibers are identified with some open subset of Rd. We

say that the function p : Z -+ R is a generating function for A with respect to the

fibration w if

i. dW rt1 H*Z and A , gives an open neighbourhood of p in A

ii. A*$ on C , .

Part (i) of the definition already implies that dW = d(A*O@) and hence it is enough

to check (ii) at some point on C , . Proposition 35 in [21] shows that one can find a gen-

erating function near any point of a given exact Lagrangian. Now given a generating

function p : Z -+ R as in the above definition we define the class Ik(U, A , , sp; C') of
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oscillatory densities to be the space of all C' valued compactly supported j-densities
p E Ce (Ux; C' 9 1TUx|) which are of the form

= hk-d/2re ). (B.12)

Here a = a(z, h) E Cce(Z x R; C'), T is a nowhere vanishing !-density on Z and r,,

denotes the pushforward of a j-density as defined in section 6.6 of [21]. The space of

oscillatory -densities associated to a Lagrangian is now defined below.

Definition B.1.2. Let E -+ X be a complex vector bundle and (A, 0) be an exact

Lagrangian in T*X. Let <p: Zi -+ R be a collection of generating functions for A,

with respect to fibrations 7i Zi -+ Uj, such that the An's all cover A and each EI u

is trivial. The space Ik(X, A, t; E) consists of all smooth sections y E C (X; E 0

|TXI'21) such that for each p E Ce (X) we can write pp as a finite sum

N

p, = yp with pi E Ik(U, A, pI; CI), (B.13)

modulo O(h').

In section 8.1 of [21] it is shown that the class of functions Ik(X, A, 4; E) de-

fined above is independent of the choice of the generating functions <pi. Oscillatory

densities form an algebra over the ring of semiclassical pseudodifferential operators

h S1t"i(X; E) o Ik2(X, A, V; E) C Ikl+k2(X, A,*; E) (cf. chapter 8 in [21]). We shall

often drop parts of the notation Ik (X, A, *; E) when they are understood.

B.2 Maslov line bundle and the symbol map

Here we will define the symbol of an oscillatory density. First we shall need the

definition of the Maslov line bundle. Given an exact Lagrangian (A, @)) we first cover

it with open sets of the form Al corresponding to all generating functions <p for A.

The Maslov line bundle LMasloj -+ A over the Lagrangian is now defined via the

transition functions
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e AO~"' : AO n A, -+ C.

The intrinsic line bundle over A is defined as L = Luaslov @|TA l. FRom section 8.3

of [21] we have a symbol map k : Ik(X, ) -+ C' (X; L). We may now extend

this symbol to a symbol map

Ok k (X, A, 7p; E) -> C' (A; L @ rE), (B.15)

where 7 : T*X -+ X is the projection onto the cotangent fibers, via the isomorphism

Ik(X, A, V); E) = Ik(XA, ) 0 C (X; E). This definition is now extended to all

oscillatory densities as in chapter 8 of [21]. This symbol is multiplicative in the sense

that

Uk 1+k 2(At) = os(I A)-IJk 2 (P) for A E h 1(X;E 0|TX), y Ik2(X, A; E).

(B.16)

Here we have taken the operator A to act on E valued }-densities and we shall use

this convention for the rest of this appendix. The symbol fits into the short exact

sequence

0 -+ Ik+1(X, A) -+ Ik(X, A) "4 Cf (A, L) -+ 0, (B.17)

where we have now dropped E from the notation assuming it is understood. The

symbol also posesses a right inverse quantization Op : Cc (A, L) + Ik (X, A, V') satis-

fying

0k (Op(s)) = s E Cf (A, L) (B.18)

(cf. chapter 8 in [21]). Here the space Cg7 denotes the space of all smooth sections

compactly supported in the fibre directions
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Clf(A,L) = {s E C (A,L)supp(s) nT*X is compact for each x E X}. (B.19)

B.3 Product with vanishing symbol

Here we describe another important part of the calculus that we shall need to con-

struct the wave expansion. Consider a operator A E ' with scalar semiclassical

symbol such that us1(A)IA = 0. The multiplicativity of the symbol (B.16) gives that

for p E Ik(X, A) we have

Uk(Ap) = us,(A) A -Uk(A) = 0 (B.20)

and hence we have Ap E Ik+1(X, A). Now if p' is another element of Ik(X, A) with

crk(p) = (7k(p'), so that IL - p' E Ik+1(X, A), then multiplicativity of the symbol again

implies A(p - p') E Ik+2 (X, A). Hence Lrk+1(AL) = Ok+1(Api') depends only on Uk (P)

We have thus defined an operator

LA : Coo (A, L) -+ C 0 (A, L) (B.21)

satisfying

p E Ik(X, A), A E T m with o-s (A)|A = 0 ==* 0k+1(Ap) = LAo-k(p). (B.22)

We call LA the semiclassical transport operator and shall now describe it more closely.

Let f E C (A) and O-k(p) = s. Pick B E IF' with scalar symbol such that o,,(B) A =

f. We then have
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LA(fs) = LA(Jk(By))

= O-k+l(ABy)

= ek+1(BApz) + Ok+1([A, B]p)

= f LAS+ o i([A, B])|A.Ak( p)
1

= f LAS ± -{o-s8 (A), uSI(B)}|As.

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

However since -(A) A = 0 we have that the Hamilton vector field Ha of o-s(A) is

tangent to A. Hence

1
LA(fs) = f LAS + -(Haf)S.

z
(B.28)

Now if we fix a connection V on L 0 r*E, (B.28) along with the Leibniz rule for V

implies

(B.29)LA - 7VHa (f s) = f LA - 7 VHa)

Hence (LA - "VHa) represents multiplication by a function

LA - VHa S = -sub(A, V)s (B.30)

which we call the sub-principal symbol of A. Finally, we have that the transport

operator can be written as

1
LA = --VH + o-9 Ub(A, V). (B.31)

B.4 The wave kernel

We are now ready to describe the kernel of the wave operator and show that it is an

oscillatory density. We first construct the corresponding exact Lagrangian below.
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Proposition B.4.1. For each p E C (T*X), the embedding iA : T*X x R '- T*X x

T*X x T*R

iA(X, (, t) = ((x, -1), etH(x, ), t, -p(x, )) (B.32)

gives an exact Lagrangian with phase function 4 E C (T*X x R) given by

V) = j (esH )* (iHpa)ds - tp. (B.33)

Proof. The tautological one form on T*X x T*X x T*R is 5 = a +7ria + rdt. We

can compute

i*7ir*a

i*s (*Tt

iA (rdt)

= -a,

= (e tHp* a+ (etHp )* (iHpa)dt,

= -pdt

(B.34)

(B.35)

(B.36)

and hence

i*6 = -a + (etHP)a + (etHp * (iHya)dt - pdt. (B.37)

Next we compute the differential of the phase function to be

d4$ = j (esHp) * (diHya)ds + (etHp) * (iHya)dt - tdp - pdt (B.38)

= - (esHp )* (iHyda)ds +

= tdp + (esHP) * (LH ya)d

= (esHP)* (LHya)ds + (et

= -a + (etHp* a (etHp)*

(esHp)* (LHya)ds + (etHp* (iHa) dt

-tdp - pdt (B.39)

3 + (etHp * (iHya)dt - tdp - pdt (B.40)

HP)* (iH a) dt - pdt (B.41)

iHp a)dt - pdt. (B.42)
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Hence (B.37) and (B.42) imply that i* = dO and thus A is an exact Lagrangian

with phase function 0.

The next proposition now describes the wave kernel.

Proposition B.4.2. Let Ph E T'"(X; E 0 |TX~I ) be elliptic and self-adjoint with

scalar semiclassical symbol p(x, 6). Let f E Ce0 (R) be any compactly supported func-

tion. The kernel of the operator f(P)e- lies in I-2(X x X x R, A, 7; 7*E o 7r*E)

where (A, $) is the exact Lagrangian given by proposition (B.4.1).

Proof. Begin with the expansion given by proposition (A.5.5)

f(Ph) h-P 0 + h- 1 P1 ±... (B.43)

where each Pi = Op(pi). Let supp(f) C [-C, C] and K C T*X be a compact subset

of cotangent space such that the elliptic symbol

-sl(Ph)(x,() > C for (x,() E T*X\K. (B.44)

Following the proof of proposition (A.5.5) we may assume supp(pi) E K for each i.

Now we pick so E C*(A, L) such that

1 1
-. Vatso + -VHpso +osub(P)so = 0, so t=o =po (B.45)

Here P = -iho91 + P and V is a fixed connection on L 0 r*E with respect to which

the sub-principal symbol in (B.45) is computed. Since po is compactly supported,

SO E C,2/ and can be quantized to yo = Op(so) E I-. By construction the symbol

o-S1(P) = o-s(-iht + P) = T + p vanishes on A. Hence by (B.22), (B.31) and (B.45)

we have

= 0 (B.46)

and Ppo E [+2. Similarly we choose si E Cg(A, L) such that
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1 1
1Vsi + 7VHps1 + Usub(P)sl = -0~-2+2(pO), s1t=O = Pi (B.47)
2 %2

and set t1 = Op(si) E I-i+1. Again we may compute

0--±+2(P(90 + 1)) = 0 (B.48)

and hence P(to + p1 ) E 1-2+3. By induction we construct si E Cf(A, L) such that

silt=0 = pi and pi = Op(si) E j~+2 satisfy P(po + --- + pi) E 2 Vi. Next we

choose, as in chapter 2 of [13], p E I- such that

N

y~ j or L - j EIN+1  VN. (B.49)
j>0 j=0

If we let k(x, y, t) denote the kernel of f (P)e h, we then have

(-iht + P)(p - k) = P1p = r E I*0. (B.50)

The initial conditions silt=0 = pi and (B.43) imply that

(p - k)|t=0 = O(h'). (B.51)

Finally (B.50) and (B.51) imply via Duhamel's principle that p - k = O(h') and

hence k E I-2.

We shall use the result above to derive trace expansions. For this purpose we shall

require explicit generating functions for the Lagrangian in the above proposition near

time t = 0. The result below will be useful in this regard and appears as proposition

(IV-14) in [36].

Proposition B.4.3. Given p(x, () E S'(R" x R'), there exists T > 0 sufficiently

small such that the Hamilton-Jacobi equation
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&tS + p(x, a2S) = 0 (B.52)

(B.53)S~t=o = x..

admits a unique solution S E C ([-T, T] x Rn" x Rn). Moreover S satisfies

(x, &2S) = e tH,(oS,(). (B.54)

Proof. Define the Hamiltonian trajectory

(B.55)

Clearly x(O) is the identity and hence x(t) is a diffeomorphism for t < T sufficiently

small. Define S via

S(x(t),t) = x(O).( + - p(x(r), (r))}dr. (B.56)

Now let (x,(t), ( 8 (t)) be another Hamiltonian trajectory with initial condition (x,(0), ()

chosen such that x 8 (t) = x(t)+sa. We may then compute the variation -ysS(xs (t))|S=o

in two ways to get

S 8 (0)az. S.,(X(t), t) = as
ax, (0)+( a.((t).

Hence we get

S2(X(t), t)= ()

which proves (B.54). Next differentiate (B.56) with respect to t to get

wtS + cS2 = be(td) - p(xi(tv),st5,

which combined with (B.58) gives (B.52).
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(B.58)

(B.59)

(X (t), ((0) = e tP (X0, 0) -
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