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In this dissertation, I argue that a variety of probabilistic patterns in natural language phonology
derive from communicative efficiency. I present evidence from phonetically transcribed
dictionaries of 60 languages from 25 major language families showing that both probability
distributions over phonological structures licensed by the categorical grammar, and the global
organization of the phonological lexicon as a whole facilitate the efficient communication of
intended messages from speaker to listener.

Specifically, I show that the occurrence probabilities of different grammatical structures render
natural language phonology an efficient code for communication given the effort involved in
producing different categories and the specific kinds of noise introduced by the human language
channel. I also present evidence that co-occurrence restrictions on consonants sharing place
features serve a communicative purpose in that they facilitate the identification of words with
respect to each other. Furthermore, I show that the organization of the phonological lexicon as a
whole is subject to communicative efficiency. Concretely, I show that words in human language
preferentially rely on highly perceptible contrasts for distinctness, beyond what is expected from
the probabilistic patterning of the individual sounds that distinguish them. This shows that
redundancy in the phonological code is not randomly distributed, but exists to supplement
imperceptibile distinctions between larger units as needed.

I argue that cross-linguistic biases in the distributions of individual sounds arise from humans
using their language in ways that accommodate anticipated mistransmission (Jurafsky et al.
2001, van Son and Pols 2003, Aylett and Turk 2004) thus presenting a serious challenge to
theories relegating the emergence of communicative efficiency in phonology to properties of the
human language channel only (Ohala 1981, Blevins 2004, 2006). Furthermore, I present
preliminary computational and experimental evidence that the optimization of the lexicon as a
whole could have arisen from the aggregate effects of speakers' biases to use globally distinct
word forms over the course of a language's history (cf Martin, 2007).
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p. 18, lines 6 - 8 

I show that this holds for oppositions between English phonemes in particular, but also 
more generally for broad classes of phonological contrasts in context across a variety of 
different languages . 

... should read ... 

I show that this holds for broad classes of phonological contrasts in context across a 
variety of different languages. 

p. 24, lines 14 -19 

Chapter 5 elaborates on the notion of word-distinctness and presents a study of the 
minimal pairs of English. The results show that English words preferentially rely on 
perceptible contrasts for distinctness. Chapter 6 generalizes these findings to languages 
other than English and shows that the extent to which the words of other languages rely 
on different place contrasts for distinctness follows from the perceptibility of those 
contrasts in context. 

... should read ... 

Chapter 5 elaborates on the notion of word-distinctness and presents a study of the 
minimal pairs of English. The results show no effect of perceptibility on the number of 
minimal pairs for 120 word-initial contrasts in English. In Chapter 6, however, I show that 
the extent to which the words of other languages rely on different place contrasts for 
distinctness does indeed follow from the perceptibility of those contrasts in context. 
These results hold across 60 different languages. 

p. 84, lines 6 -13 

Building on the results for strictly identity presented in Section 4.4, which show that the 
probabilistic attestation of a particular class of words (Le., words with identical 
consonants) is dependent on the underattestation of a class of globally similar words 
(Le., words with consonants sharing place features), I show that communicative 
efficiency in natural language phonology goes further: not only the distributions of 
individual sounds in local and non-local context are subject to communicative efficiency, 
but also the particular contrasts distinguishing among words. I present evidence for this 
hypothesis from the probabilistic patterning of the minimal pairs of English . 

.. . should read ... 

Building on the results for strictly identity presented in Section 4.4, which show that the 
probabilistic attestation of a particular class of words (Le., words with identical 
consonants) is dependent on the underattestation of a class of globally similar words 
(Le., words with consonants sharing place features), I hypothesize that communicative 
efficiency in natural language phonology goes further: not only the distributions of 
individual sounds in local and non-local context are subject to communicative efficiency, 
but also the particular contrasts distinguishing among words. I present evidence bearing 
on this hypothesis from the probabilistic patterning of the minimal pairs of English. 
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p. 91, lines 14 - 20 

As expected, the number of minimal pairs for each contrast increases significantly with 
the number of lemmas featuring the less frequent sound (J3=0.61 , z=36.7, p<.00001, 
X2(1 )=1885.23, p<.00001) as well as with the number of lemmas featuring the more 
frequent sound (J3=0.25, z=7.43, p<.00001, X2(1 )=56.36, p<.00001). Critically, we 
observe the predicted effect of perceptual distinctness, such that the number of minimal 
pairs for each contrast increases significantly with their perceptual distinctness beyond 
what is expected from the individual frequencies of sounds (J3=0.06, z=3.58, p<.0005, 
X2(1 )=13.09, p<.0005) . 

... should read ... 

As expected, the number of minimal pairs for each contrast increases significantly with 
the number of lemmas featuring the less frequent sound (J3=0.67, z=41.37, p<.00001, 
X2(1 )=2896.9, p<.00001) as well as with the number of lemmas featuring the more 
frequent sound «(3=0.33, z=8.03, p<.00001, X2(1 )=68.42, p<.00001). However, we find no 
effect of perceptual distinctness on the number of minimal pairs beyond what is 
expected from the individual frequencies of sounds «(3=0.02, z=0.99, p=.32, X2(1 )=0.98, 
p=.32). 

p. 92, line 2 - p. 93, line 9 

These results establish a direct link between the distinctness of words in the lexicon and 
the perceptual distinctness of the sounds that compose them, as indicated by the 
significant effect of perceptibility on the number of attested minimal pairs, after 
controlling for base frequencies of the relevant sounds. This finding provides support for 
the hypothesis that the global organization of the lexicon of English is optimized for the 
recoverability of individual words, beyond what is expected from the distributional 
properties of individual sounds. These results add to the growing body of recent 
evidence suggesting that the lexicon is globally optimized to allow language to fulfill its 
communicative function (e.g., Piantadosi et al. 2009, 2011). The result presented above 
is subject to four important qualifications. First, the current study only assesses the effect 
of perceptibility on lexical contrast in a single phonological environment and for a single 
language. In Chapter 6, I show that the observed effect also generalizes to phonological 
environments other than word-initial pre-vocalic context and languages other than 
English . 

... should read ... 

These results fail to establish a direct link between the distinctness of words in the 
lexicon and the perceptual distinctness of the sounds that compose them. This is 
because the number of attested minimal pairs in English follows directly from the base 
frequencies of the relevant sounds. The null-result presented above is subject to four 
important qualifications. First, the current study only assesses the effect of perceptibility 
on lexical contrast in a single phonological environment and for a single language. In 
Chapter 6, I show that the cross-linguistic patterning of minimal pairs differs crucially 
from what we observed in the current study. The number of minimal pairs for a given 
contrast in 60 different languages does indeed go beyond what is expected from the 
frequencies of the contrasting sounds: perceptually distinct contrasts distinguish more 
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words than expected from the relative occurrence of the contrasting categories. 

p. 126, lines 3 - 7 

Minimal pairs for If I and ITI, however, occur less often than implied by the occurrence 
frequencies of those two sounds . 

... should read ... 

While minimal pairs for If I and ITI occur exactly as often as implied by the frequencies of 
those two sounds in English, this is not the case for the cross-linguistic studies of 
minimal pairs presented in Chapter 6. 
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Chapter 1 Introduction

In this dissertation, I argue that a variety of probabilistic patterns in natural language phonology

derive from communicative efficiency. I present a series of studies showing that both probability

distributions over phonological structures licensed by the categorical grammar, and the global

organization of the phonological lexicon facilitate the efficient communication of intended

messages from speaker to listener.

Communicative efficiency in general, and perceptual distinctiveness in particular have

been shown to constitute fundamental driving forces in categorical grammar (Lijencrants and

Lindblom 1972, Lindblom 1986, 1990, Flemming 1995, Steriade 1997, 1999, 2001, Flemming

2004). Here, I present data from the probabilistic phonologies of 60 languages from 25 major

language families (Graff et al. 2011) evidencing that the effects of communicative efficiency go

further. First, I show that the occurrence probabilities of different grammatical structures render

natural language phonology an efficient code for communication given the effort involved in

producing different categories and the specific kinds of noise introduced by the human language

channel. Furthermore, building on perceptual accounts of the categorical typology of co-

occurrence restrictions on marked laryngeal features (Gallagher, 2010), I show that gradient

restrictions on multiple occurrences of phonological features within words facilitate the

identification of those words by the listener: controlling for the occurrence probability of

individual sounds, the features that are least likely to co-occur are also the features whose co-

occurrence is most likely to cause words to be misperceived (Woods et al. 2010). Next, I show

that the cross-linguistic preference for the co-occurrence of strictly identical consonants is

probabilistically dependent on the dispreference for similar consonants to co-occur. I

hypothesize that this pattern may be understood as maximizing the featural distance between

words in the lexicon, thus facilitating their identification with respect to each other. Building on

the notion of contrast among words, I next show that the organization of the phonological

lexicon as a whole is also subject to communicative efficiency. That is, communicative
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optimization in natural language phonology does not only affect individual phones, but also

phonological units of greater complexity, namely, words. Concretely, I show that words in human

language preferentially rely on highly perceptible contrasts for distinctness, beyond what is

expected from the probabilistic patterning of the individual sounds that distinguish them. This

shows that redundancy in the phonological code is not randomly distributed, but exists to

supplement imperceptibile distinctions between larger units as needed.

I argue that cross-linguistic biases in the distributions of individual sounds arise from

humans using their language in ways that accommodate anticipated mistransmission (Jurafsky

et al. 2001, van Son and Pols 2003, Aylett and Turk 2004) thus presenting a serious challenge

to theories relegating the emergence of communicative efficiency in phonology to properties of

the human language channel only (Ohala 1981, Blevins 2004, 2006). Furthermore, I present

preliminary computational and experimental evidence that the optimization of the lexicon as a

whole could have arisen from the aggregate effects of speakers' biases to use globally distinct

word forms over the course of a language's history (cf Martin, 2007).

The idea that phonology is subject to communicative pressures is by no means new. A

large body of research has already identified such effects within and across categorical

grammars. 1, therefore, begin by introducing previous work on the effects of communicative

efficiency on categorical phonology.

1.1 Communicative efficiency in categorical phonology

A variety of studies have shown that the categorical attestation of phonological structures is

subject to communicative pressures. One such pressure, which is also the focus of this

dissertation, is perceptual distinctness. Efficient communication requires, among other things,

that the symbols or categories produced by the speaker are sufficiently distinct to be accurately

perceived as distinct by the listener. Indeed, both inventories of sounds (Hockett 1955, Martinet

1955, Lijencrants and Lindblom 1972, Lindblom and Maddieson 1988, Flemming 2002) and

inventories of sounds in context (Kingston 1985, Ohala 1990, Steriade 1997, 2001, Flemming
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2002, Padgett 2003, Jun 2004) have been shown to be biased in favor of perceptual

distinctness.

A well-known example of the context-dependent effects of perceptibility on the typology

of contrast is the categorical distribution of obstruent voicing contrasts in context (e.g., [pa] vs.

[ba], [sa] vs. [za]). Steriade (1997) shows that the cross-linguistic attestation of these contrasts

follows an implicational hierarchy according to perceptibility: if a language features a voicing

contrast in context A then it will necessarily also feature that contrast in all contexts B where

voicing distinctions are more perceptible than in A. The relative perceptibility of voicing in

context is derived from the availability of perceptual cues to voicing in those contexts. Consider,

for example, the following three phonological contexts: [+son]_[+son] (inter-sonorant), #_[+son]

(pre-sonorant), and [+son]_# (post-sonorant; where "#" is the word-boundary).1 In inter-sonorant

position the voicing feature of an obstruent is cued in a wealth of ways. Perceptual studies have

shown that listeners' perception of voicing in obstruents is sensitive to the duration of the

preceding (Chen 1970, Raphael 1972, Raphael et al. 1980) and the following (Summerfield and

Haggard, 1974) sonorant, the value of the first formant of both preceding and following

sonorants (Stevens and Klatt 1974, Summerfield and Haggard 1977), Voice Onset Time (VOT;

Lisker and Abramson 1970, Lisker et al. 1977, Keating 1984), F at the onset of voicing of the

following sonorant (Haggard et al., 1970), and for stops in particular, burst duration and

amplitude (Malecot 1958, Dorman et al. 1977, Repp 1979, Kewley-Port et al. 1983).

The absence of sonorous material on either side of an obstruent necessarily implies the

absence of cues to voicing otherwise apparent in said sonorant. From this, Steriade (1997)

generalizes that voicing contrasts in inter-sonorant context should be more perceptible than in

word-initial pre-sonorant or word-final post-sonorant contexts. Additional evidence from studies

comparing the perceptibility of voicing in pre-sonorant and post-sonorant context finding that

1 Steriade (1997) identifies two more contexts, {#,[-son]}_{#,[-son]} and [+son]_[-son], in which the
categorical attestation of voicing contrasts patterns in accordance with the implicational universal
described above. However, since none of the 60 languages studied in this dissertation allow obstruents to
contrast for voicing in those contexts, they are omitted from the discussion here.
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voicing contrasts are more perceptible in the former (e.g., Raphael, 1981), lead Steriade to

hypothesize a hierarchy of perceptibility for voicing contrasts in context such that inter-sonorant

> pre-sonorant > post-sonorant. Steriade then goes on to show that the categorical typology of

voicing contrasts obeys an implicational hierarchy according to the hypothesized hierarchy of

perceptibility.

For example, Totontepec Mixe (Mixe-Zoque; Crawford, 1963) permits voicing contrasts

in inter-sonorant context only, but not in pre- or post-sonorant context. Lithuanian (Indo-

European; Senn, 1966) allows for voicing contrast only in inter- and pre-sonorant context, thus

exhibiting word-final devoicing, a pattern common to a variety of languages. Finally, English

permits voicing contrasts in all three contexts listed above. To date, no language has been

found that violates this implicational universal.

Several researchers studying the effects of perceptibility on phonological contrast have

proposed that generalizations like Steriade's universal derive from communicative efficiency

(Liljencrants and Lindblom 1972, Lindblom 1986, 1990, Flemming 1995, 2004). Flemming

(1995) hypothesizes that categorical phonology presents a compromise between the conflicting

communicative pressures in (1).

(1) Communicative goals instantiated in the categorical typology of contrast

(Flemming, 1995)

a. Maximize the distinctiveness of contrasts

b. Minimize articulatory effort

c. Maximize the number of contrasts

The pressures in (1) derive from a need to on increase the rate of information

transmission between speaker and listener over time (Shannon, 1948). A communicative code,

or language, that distinguishes a large number of symbols will allow for more information to be

transmitted given the same amount of time, than a code constituted by a smaller number of
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symbols. However, a larger number of symbols also entails greater mistransmission among the

individual symbols used. In natural language, this increase in mistransmission results from the

fact that the acoustic space in which phonological categories are distributed is finite. The more

categories populate this space, the more likely it is that individual instances of different

categories will be mistransmitted due to misperception by the listener. However, if speakers

were to produce every single category with exceptional care misperception may nonetheless be

unlikely. Such hyperarticulation is, however, in turn selected against by the communicative

pressure of effort, which Flemming (2004) hypothesizes to derive from "a general principle of

human motor behavior not specific to language."

Flemming's Dispersion Theory of Contrast (1995) proposes that the organization of

natural language phoneme inventories as well as the categorical attestation of phonological

contrasts in context follow from different prioritizations of these three pressures for categories

contrasting along a given acoustic dimension. Consider, for example all logically possible high-

vowel inventories constituted by subsets of the vowels {/i/, //, /u/} (Flemming 1995, 2002, 2004).

In terms of perceptual distinctness, the categories li/ and /u/ are most distinct along the F2

acoustic dimension, which constitutes a major cue for the perception of the backness contrast

distinguishing among those vowels. Minimization of articulatory effort is achieved in case high

vowels do not contrast for backness, but simply instantiate a smooth articulatory transition

between the places of articulation of the consonants that flank them. Regarding the number of

contrasts, the subset containing all three categories clearly instantiates the most contrasting

categories.

Depending on the varying prioritizations of these pressures, different high vowel

inventories are predicted to occur, while others are not. In case the maximization of contrasting

categories is prioritized, systems like Amharic and Romanian are generated, instantiating all

three high vowel categories. In cases where articulatory effort is prioritized over number and

distinctness, languages like Marshallese and Kabardian result, where short vowels do not

contrast for backness. Such systems exhibit peripheral vowels only as a result of co-articulation
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with neighboring consonants. That is, vowels like [i] and [u] only surface in cases where they

constitute the least effortful articulatory target. Consequently vowel backness never

independently distiguishes among words, but only behaves as a function of consonantal

distinctions. Crucially, single-member high vowel inventories with vowels such as /i/, // or /u/

surfacing faithfully independent of phonological context are unattested in typology.

In cases where perceptual distinctness and number of contrasts are prioritized over

effort, systems like Italian and Arabic are generated, which contrast only two categories along

the F2 dimension. Importantly, these languages feature an opposition between the two most

distinct categories /i/ and /u/, rather than other logically possible oppositions like /i/:/i/ or /u/:/i/,

which would be less acoustically distinct. Table 1 summarizes how different inventories fare

according to the three pressures identified by Flemming (1995) and which languages instantiate

them.

i}N/A ( nattested

{u} N/A ( KUnattested

{} N/A ( K Jnattested
No contrast N/A / K.g., Marshallese, Kabardian
i, i} U ( K nattested
i, u} ( K Unattested
i, u} / _( K e.g., Arabic, Italian

i, i, u} K .g., Amharic, Romanian

Table 1: Typology of logically possible high-vowel inventories composed of {/i/, /I/ /u/}, and

languages that instantiate them. A checkmark indicates that a given inventory satisfies a given

communicative pressure, while an "X" indicates that it does not.

Given the three pressures described above (maximize distinctness, minimize effort, maximize

number of contrasting categories; Flemming, 1995), we may characterize the typological

patterning of voicing contrast in obstruents discussed above in the following way: systems like

13



Totontepec Mixe, which only allow obstruents in inter-sonorant context to contrast for voicing,

are optimized for communication because perceptually indistinct contrasts that would be hard

for the listener to accurately recover, are categorically avoided (maximizing distinctness).

Lithuanian, which allows both pre- and inter-sonorant obstruents to contrast, presents a

compromise between the pressure to allow for a high number of contrasts, and the pressure to

maintain a degree perceptual distinctness for obstruent voicing greater than it would be in word-

final context. Finally, systems like English permit voicing contrasts in all three contexts (inter-,

pre- and post-sonorant) regardless of differences in perceptibility and in turn exhibit the largest

number of contrasts licensed by the categorical grammar.

In the next section, I show that the predictions of communicative efficiency are not

limited to the categorical grammar and that different probabilistic grammars, just like different

categorical grammars, may also allow for more or less efficient communication.

1.2 Communicative efficiency beyond categorical phonology

The categorical grammar places bounds on rate of information transmission that can be

achieved given the perceptual confusability of different categories and the articulatory effort

made by the speaker. For example, a categorical grammar allowing two contrasting categories

in a given context will on average allow for more information to be transmitted in a given amount

of time than a grammar permitting only one category in that context. However, whether this

greater potential of information transmission is actually achieved depends on how possible

symbols are deployed in constructing messages. It could, for example, be the case that one of

two categories licensed by the grammar only occurs in a single word in the lexicon. Such a

severely skewed frequency distribution over possible symbols would cause the average amount

of information transmitted by the categorically licensed contrast to be low. The question is

therefore whether the relative attestation of different phonological catgories in natural language

is such that the bounds induced by the categorical grammar are maximally exploited.
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In 1948, Claude Shannon introduced his "Mathematical Theory of Communication,"

which presents ways to assess the efficiency of different frequency distributions in

communicating intended messages given the channel through which communication takes

place. One of the major contributions of his work is the finding that, for any specific channel,

there exists a distribution over symbols in the input to the channel that maximizes the average

amount of information transmitted over time (i.e., achieves "channel capacity").2 In a noiseless

channel (i.e., a channel where every symbol is accurately transmitted from speaker to listener),

Shannon (1948) shows that capacity is reached when all input symbols are equally likely. This is

because information presents a trade-off between probability of a symbol (p) and its surprisal

(-log(p)). A highly likely symbol is unsurprising and thus communicates little information. For

example, if all but one stop in a given language were voiced, then knowing that a given word

contains a voiced stop does not help much in determining which word was uttered (i.e. it only

ever eliminates one possibility). The exact inverse holds for low probability symbols. Extremely

unlikely symbols are highly surprising. If only one word in a given language contains a voiced

stop, then knowing that a given word contains such a stop is highly informative, in fact, it

uniquely identifies the word in question. However, the overall infrequency of voiced stops still

results in the average amount of information communicated to be low. This is because voiced

stops are so infrequent, that knowing about their presence will only rarely help identify words.

The optimal trade-off between these competing pressures is for voiced stops to occur exactly

50% of the time. This way, knowing about their presence helps eliminate the maximal amount of

possibilities on average. However, this is only the case if communication takes place through a

noiseless channel. That is, if every symbol communicated through the channel is always

accurately transmitted.

2 The reason the average amount of information must be maximized is provided by Shannon (1948): "The
significant aspect is that the actual message is one selected from a set of possible messages. The
system must be designed to operate for each possible selection, not just the one which will actually be
chosen since this is unknown at the time of design."
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This, however, is clearly not the case in human language. The phonological categories

communicated from speaker to listener are often subject to mistransmission, due to

misperception by the listener or lack of articulatory effort on the part of the speaker. In this

dissertation, I show that the specific type frequencies of phonological categories in context

follow from the specific kinds of noise introduced by the human language channel through which

linguistic communication takes place, assuming throughout that these type frequencies present

a reasonable approximation of the occurrence frequencies of different categories in language

usage.

Shannon's theory of communication has been shown to predict a variety of linguistic

behaviors (see Jaeger 2010 for discussion). In phonology in particular, Cohen Priva (Submitted)

hypothesizes that the segments that undergo deletion processes in different languages (e.g., t/d

in English, /q/ in Arabic) are on average more predictable from their phonological context than

other sounds of comparable cross-linguistic markedness. Hume et al. (To appear) propose that

the cross-linguistic markedness of French epenthetic vowels may be explained by information

theoretic considerations: French does not epenthesize phonetically unmarked vowels, but rather

vowels that are of little importance in distinguishing words in the lexicon. However, no studies

have shown effects of communicative efficiency on the synchronic state of the probabilistic

phonological grammar itself. Here, I show that the synchronic probability distributions over

different sounds in context licensed by the categorical grammar, exhibit properties of efficient

codes. That is, the particular probabilistic patterning of different categories such as voiced and

voiceless obstruents in systems like English and Lithuanian (i.e., systems in which the

categorical grammar licenses perceptually suboptimal contrasts) are also geared towards

achieving communicative efficiency.

Given the fact that acoustic similarity induces very specific kinds of noise that

asymmetrically affects different groups of categories in context in their transmission from

speaker to listener, information theory leads us to expect specific trade-offs in the relative

attestation of categories: if a set of categories is subject to mutual misperception to a greater
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extent than another set of categories, then the relative attestation of the two sets of categories

should be a direct function of within-set mistransmission (Shannon, 1948). That is, if categories

A and B have a high probability of being mistransmitted as each other, while category C is much

less likely to be mistransmitted as either A or B, then the probability of C should be much greater

than the probability of A or B to achieve channel capacity.3 In this dissertation, I show that

information theoretic predictions for groups of categories subject to different rates of within-

group mistransmission are borne out in the probabilistic phonologies of natural language. The

relative probabilities of attested structures render human phonology an efficient code for

communication in a channel with noise due to the ways in which humans perceive speech.

Furthermore, I show that probabilistic phonology is also subject to the communicative

pressure of effort. The relative attestation of effortful categories mirrors the expected rate of

information transmission in a given phonological context. In contexts where symbols are

expected to be transmitted faithfully, effortful categories occur as frequently as needed to

achieve channel capacity. In contexts where effortful categories would be subject to frequent

mistransmission, however, these categories are probabilistically underattested. That is, human

languages only feature effortful categories to the extent that their attestation is expected to

achieve greater rates of information transmission.

Finally, this dissertation also presents new results evidencing communicative

optimization of the phonological lexicon as a whole. Human language does not only rely on

individual sounds to convey messages, but also phonological units of greater complexity. Here I

show that the effects of communicative efficiency also generalize to the level of the word. Past

research on the effects of communicative efficiency in the lexicon has focused on the global

patterning of word length (Zipf 1939, 1949, Piantadosi et al. 2011). In this dissertation I show

that the probabilistic patterning of the lexicon as a whole according to communicative efficiency

3 Shannon (1948) only shows this to hold for cases where there is no across-set mistransmission (i.e.
where the symbol C is never mistransmitted as A or B and vice-versa). This is of course not the case in
natural language where any phonological category may in principle be mistransmitted as any other.
However, in this dissertation, I assume that what holds for the complete absence of mistransmission also
holds for cases where mistransmission is extremely unlikely, albeit to a lesser extent. This is certainly true
in cases where two symbols are subject to mutual mistransmission to different extents (Silverman, 1955).
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goes further. Natural language lexica are probabilistically composed such that the number of

words relying on a given contrast follows from that contrasts perceptual distinctness beyond

what is expected from the distributions of individual sounds. That is, perceptually confusable

contrasts are likely to be disambiguated by additional phonological material, as expected if the

lexicon as a whole is optimized for the accurate transmission of intended meanings under noise.

I show that this holds for oppositions between English phonemes in particular, but also more

generally for broad classes of phonological contrasts in context across a variety of different

languages.

1.3 General methods

The studies presented in this dissertation are based on the World Lexicon Corpus (Graff et al.

2011), encompassing phonetically transcribed dictionaries of 60 languages from 25 major

language families. The languages in the WOLEX corpus, the major language families they

belong to, and the number of words in each sub-corpus are given in Table 2. Corpora range

between 846 (Benabena) and 142,474 (French) words in size. Throughout this dissertation

"word" means primary non-bound dictionary entry (i.e., a phonological form listed independently

in the dictionary, that may be uttered in isolation).
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-anguage Le' ~ od anguage #aMy wrds
choli ilo-Saharan 43uKewa frans-New Guinea 4806

lekano rans-New Guinea 224 Khmer ustro-Asiatic 17162
Amharic Afro-Asiatic 4245 Lake Miwok Penutian 1989

Arabic (Moroccan) Afro-Asiatic 12671 thuanian Indo-European 4118

Armenian (Eastern) Indo-European 4409 Maisin Austronesian 2597

Arrernte ustralian 3144 nauwake Trans-New Guinea 3693

Ata ustronesian 3020 uende Sepik 3551

Bargam T rans-New Guinea 2342 iengen Austronesian 1475

Benabena frans-New Guinea 846 Mianmin Trans-New Guinea 2319

Bunama Austronesian 2228 Mountain Koiali Trans-New Guinea 1477

Chickasaw iluskogean 13947 Muna Austronesian 5734

hinese (Mandarin) ino-Tibetian 30156 uyuw Austronesian 4603

Dadibi eberan-Pawaian 1442 Polish Indo-European 15192

Daga Dagan 4840 Quechua (Ayacucho) Quechuan 4894

Delaware Agic 3915 Romanian Indo-European 7216

Dobu ustronesian 3307 Rotokas West Bougainville 5547

Dutch Indo-European 102045 Siroi Trans-New Guinea 1365
English (Southern British) Indo-European 52370 Sudest Austronesian 1520
French Indo-European 142474 Suena Trans-New Guinea 3887

Georgian Kartvelian 4581 Tatar Altaic 5561

erman Indo-European 51473 Thompson Salish Salishan 4721

reek Indo-European 35304 Turkish Altaic 29412

uarani Tupian 4332 ffa Trans-New Guinea 2721

Haitian Creole Haitian Creole 38641 ntoat Trans-New Guinea 2239

Hausa Afro-Asiatic 9621 ris Border 1640

Hebrew Afro-Asiatic 48312 Wskia Trans-New Guinea 2028

Hindi Indo-European 32932 leaian Austronesian 5919

lamalele Austronesian 2980 ana Hokan 1764

Iduna ustronesian 3662 u'pik Eskimo-Aleut 240

Javanese ustronesian 14050 ulu Niger-Congo 3505

Table 2: Languages in the WOLEX corpus.

Every dictionary in the corpus included a broad phonetic transcription in the International

Phonetic Alphabet (IPA) or a comparable system. If the transcription was not in IPA, dictionaries

contained a detailed guide to the pronunciation of all phonemes. In rare cases of ambiguity the

exact nature of each category was decided with the help of the electronic version of the UPSID

database (Maddieson, 1984) hosted by the University of Frankfurt4 or other resources on the

language in question.

Every category was translated into an alphanumeric IPA-based transcription system,

which I call ANIPA (alphanumeric IPA). In ANIPA, any sound is represented by a phonetic

4 http://web.phonetik.uni-frankfurt.de/upsid.html
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feature vector of length 8. Feature 1 (syllabic) specified whether the sound in question was a

consonant or a vowel. Features 2-5 were differed for consonants and vowels. For consonants,

those features were primary place, secondary place, manner, and lateral. For vowels they were

height, backness, rounding and suprasegmental (stress, tone). Both consonants and vowels

were also specified for their laryngeal articulation, nasality and length. All values for these

features were inferred from the IPA. The full ANIPA system is given in Table 3.
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1 oth Sllabic nonant
1 Oth Syllabic roe

Consonant PrimaryPlace B___labial

2 onsonant PrimaryPlace Labiodental _______

Consonant PrimaryPlace De___nta

onsonant PrmaryPlace Alvolar T

onsonant nmaryPlace ostalveolar
onsonant PnimaryPlace RetlR

onsonant rimaryPlace PaltalJ

onsonant rimaryPlace velarK

onsonant rimaryPlace U _ _ __vlar_

onsonant rimaryPlace haryngeal P

onsonant rimaryPlace PlotalH

onsonant econdaryPlace one
onsonant SecaryPlace abialized
onsonant econdaryPlace Paatalized

onsonant cndaryPlace Velaized
3 onsonant econdaryPlace Pharyngealized A

4 onsonant Manner So
onsonant annerasa

4 onsonant MannerFrctv3
4 onsonant MannerAfrct
4 onsonant Manner Approximant _______

4 onsonant Mannerril
4 onsonant Mannerra
4 onsonant Manner lc

5 Consonant Lateral e
onsonant ateralte

osoelt eh Nasd

3 owe____ ackness __ _ __ _

3__ ___we ___ Backness n___ ____ _ __ ___

aness

3 Vowel B~acknessBalRhti
4 Vowe__ _ ackness lick



Table 3: Alphanumeric IPA (ANIPA) transcription system of the WOLEX corpus.

In this system IPA /t/ would thus be represented as "CTXtNfo1" (alveolar central oral voiceless

stop consonant of regular length) and IPA /u/ would be represented as "VEUrNvo1" (high back

round stressless voiced oral vowel of regular length). Depending on the phenomenon studied,

these features were further aggregated into higher level categories as necessary.

All frequencies and probabilities reported in this dissertation were computed over

phonological types only (i.e., every form in the dictionary is assumed to have frequency 1). The

reasons for this is that token frequency estimates for different words were only available for a

fraction of the languages in WOLEX. To ensure methodological uniformity and to be able to

generalize across languages I use type frequency as a proxy for the occurrence frequency of

different categories in running speech throughout this dissertation. I leave the question of

whether the observed results generalize to actual usage frequencies of different phonological

categories for future research.
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owel Rounding Round
owel Rounding Jnround
owel Suprasegmental PrimaryStress

__ owel uprasegmental SecondaryStress
5__ owet uprasegmental ermaryStress T

owel uprasegmental NoStressTone/Neutral
5 owel Suprasegmental NighTone
5 owel Suprasegmental towTone
5 owel Suprasegmental MidTonie
5 owel Suprasegmnental iallTone
5 owel Suprasegmental RiseTone R
5 owel S~uprasegmental SuperHighI
5 owel Suprasegmnental SuperL-ow0
3 oth Larynx oiced
3 oth Larynx Voiceless/Neutral

3 Both Larynx Ejective
3 Both Larynx Implosive

oth Larynx Aspirated h
oth Larynx reathy
oth Larynx reaky
oth Nasal asal

7 Both Nasal ral
8 oth ength Superlong 3
8 Both ength Long 2
P oth ength Regular 1



One additional important methodological decision was that all dependent measures

reported in this dissertation were computed over attested structures only. That is, for example if

the frequency of word-final voiced stops (Chapter 2) was calculated, data points from languages

where voiced stops do not occur word-finally were completely omitted from the data set. It is

thus unlikely for any of the results reported to be driven by the categorical absence of any

structure in a given language, which is important given the fact that past research has already

identified effects of communicative pressures on the absence of categories and categories in

context. However, it should also be noted that some of the results reported (specifically, the

results presented in Chapters 2, 4, and 6) rely on aggregate measures inferred over groups of

individual contrasts in contexts (e.g., all place contrasts between stops in word-initial pre-

sonorant context). In these cases, it possible that partial neutralization in any specific context

(e.g., */tl/ in English) could have contributed to the results.

It should also be explicitly noted here that some of the studies reported in this

dissertation (specifically studies reported in Chapters 2, 3, and 6) investigate the extent to which

probabilistic generalizations hold across, rather than within different languages. The hypothesis

tested in those studies is that human languages in general tend to exhibit communicatively

efficient sound patterns. What the statistical analyses reported as part of those studies assess is

the chance of the observed patterns generalizing to previously unseen languages. The

statistical significance of the probabilistic patterning of different phonological structures

observed implies that communicative efficiency is a sufficiently strong pressure on the sound

patterns of the observed languages for us to expect that many more languages for which we do

not have primary linguistic data will also pattern in accordance with communicative efficiency.

Another methodological question relates to differences in the phonetic implementation of

different contrasts among the languages studied. Since a substantial number of the studies

reported in this dissertation rely on the notion of perceptibility and since this notion depends on

the particular phonetic instantiation of different categories in any given language, we may ask

whether the results reported here could be influenced by biases in the sample of languages
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modeled. While this is certainly possible (mainly because the specific phonetic implementation

of different phonological categories is not known for the majority of the languages studied), it is

nonetheless extremely unlikely to affect the results reported here for two reasons.

The first reason is that the particular contrasts compared in this dissertation have been

chosen based on the fact that they are expected to affect different phonological structures in the

same way for a variety of language-specific phonetic implementations. For example,

asymmetries in the similarity of VC-transitions perceptually cueing /p/, /t/, and /k/ in the context

of /i/ and /u/ (Chapter 3) apply regardless of whether stops are audibly released in word-final

context or not. While the fact that stop bursts are generally present in the signal in some

languages (e.g., French), and sometimes absent in other languages (e.g, English) is expected

to modulate the extent to which transitional similarity affects the chance of the listener to recover

a given place feature from the signal, stop-burst presence does not interact with transitional

similarity in any way (Marty, To appear). This means, that no relative ordering of transitional cue

similarity is expected to be reversed by the presence of a stop burst. It is therefore possible to

generalize across languages with different burst cues when studying the effects of transitional

similarity on the relative attestation of different structures relying on them for distinctness

(Chapter 3). In cases where the particular perceptual properties of the categories compared was

indeed expected to cause reversals the relevant languages have been omitted from the results

reported.

Second, phonetically conditioned differences in the extent to which universal effects of

perceptibility apply in any given language are at least partially accounted for by the fact that all

analyses reported are based on generalized linear mixed effects models with the maximal

random effects structure grouped by both language and language family. This methodology

controls for language specific differences in effect size, while also controlling for the non-

independence arising from the relatedness of different languages in the sample (Jaeger et al.

2011).
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1.4 Organization of the dissertation

The dissertation is organized as follows. Chapter 2 presents a study of the relative distributions

of modal voicing features in labial and velar stops in context. The results show that the

probability of observing the effortful feature [+voice] in stops follows from the extent to which

that feature value may be mistransmitted, as predicted by the communicative efficiency

hypothesis (see Section 1.1). Chapter 3 shows that the relative distributions of labial, coronal

and dorsal stops in word-final postvocalic context follows from the relative confusability of the

three categories given the preceding vowel in ways predicted by information theory. Chapter 4

presents a communicative account of co-occurrence restrictions on consonants. The results

show that both similarity avoidance and identity preference conspire to make words more

recoverable. Feature matches which reduce the chance of the listener accurately perceiving a

particular word are shown to be most reliably avoided cross-linguistically. Additionally, the

identity preference is shown to be probabilistically dependent on similarity avoidance. This

pattern is argued to increase distinctness of words in terms of overall featural distance. Chapter

5 elaborates on the notion of word-distinctness and presents a study of the minimal pairs of

English. The results show that English words preferentially rely on perceptible contrasts for

distinctness. Chapter 6 generalizes these findings to languages other than English and shows

that the extent to which the words of other languages rely on different place contrasts for

distinctness follows from the perceptibility of those contrasts in context. Chapter 7 discusses

possible causes for communicative efficiency in probabilistic phonology and concludes.
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Chapter 2 Efficient codes for voicing

2.1 Introduction

In this Chapter, I present a study of the occurrence probabilities of voiced and voiceless labial

(e.g., /b/, /p/) and dorsal (e.g., /k/, /g/) stops in context. These four categories differ in terms of

the effort involved in their articulation. Voiced stops (i.e., /b/, /g/) are generally harder to produce

than voiceless stops. Furthermore, labial stops are easier to voice than dorsal stops (Ohala and

Riordan, 1979). Communicative efficiency predicts that the occurrence of effortful symbols

should be a function of the information they transmit (Flemming 1995, 2004). That is, in contexts

where voicing features are faithfully transmitted, the articulatory effort involved in their

articulation is justified and they should occur frequently. However in contexts where voicing

contrasts are imperceptible, it is more efficient to dispense of such categories as the additional

effort invested would not necessarily result in a greater rate of information transmission. Here, I

present a study of the languages in the WOLEX corpus showing that not just the categorical

typology of voicing contrasts (Steriade, 1997), but also the relative frequencies of voiced and

voiceless stops in in languages that feature both categories indeed conform to this desideratum.

2.1.1 Articulatory asymmetries for voicing in stops

Voiced stops are more difficult to articulate than voiceless stops (Garrett and Johnson To

appear, a.o.). This asymmetry is due to the way in which voicing of speech sounds is achieved

articulatorily. The voicing of any speech sound requires subglottal pressure to exceed oral

pressure throughout the articulation of said sound (Ohala, 1983). To maintain voicing throughout

the articulation of a stop, is particularly effortful. This is because the articulation of stops involves

complete closure of the oral cavity. This closure of the vocal tract causes a build up of oral

pressure, making the pressure asymmetry required for voicing more difficult to maintain.
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Crucially, the effort involved in articulating voiced stops is further modulated by the size

of the oral cavity behind the place of constriction (Ohala and Riordan, 1979). For stops with

labial place of articulation, this constriction is between the lower and the upper lip, resulting in a

relatively large oral cavity behind the constriction. This larger oral cavity causes oral pressure to

build more slowly making it easier to maintain the pressure asymmetry necessary for voicing. It

is therefore relatively easy to articulate voiced stops with a labial constriction. However, if the

constriction is at the back of the mouth, as is the case for dorsal stops, the situation changes.

The oral cavity behind a constriction articulated with the tongue dorsum and the roof of the

mouth behind the hard palate is particularly small, causing oral pressure to build up quickly.

Voiced dorsal stops are therefore particularly effortful to produce. Pape et al., (2006) present a

production study substantiating this asymmetry for word-initial labial and dorsal stops in

German. German speakers are much more likely to devoice word-initial dorsals (46.3%

devoiced) than labials (26.4% devoiced). Furthermore, Hayes and Steriade (2004) show that

this asymmetry in articulatory effort is reflected as an implicational universal in the categorical

attestation of voiced and voiceless stops at different places of articulation. If a language has a

voiced dorsal stop (e.g., /g/) then it will necessarily also feature all less articulatorily difficult

voiced stops (e.g., /b/) as part of its phoneme inventory.5

Given the articulatory asymmetry described above the communicative pressure to

minimize effort alone would predict that voiced stops should simply not occur in natural

language. On the other hand, the existence of voiced stops in a language's inventory increases

the number of symbols available to encode intended messages, which in turn means that more

information can be transmitted per unit of time. However, the extent to which the existence of

voiced stops actually results in a greater rate of information transmission also depends on

whether the listener will be able to recover them accurately from the signal. As outlined in

Chapter 1, the perceptibility of voicing distinctions largely depends on the local phonological

5 Coronal stops fall in between labial and dorsal stops in terms of this asymmetry. In this study I focus on
the more extreme asymmetry between labials and dorsals only.
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context in which the obstruent hosting the voicing feature in question occurs. In particular, the

perceptibility of intended voicing values is dependent on the presence of stop-adjacent

sonorous material (vowels, sonorants). Cues to recover the intended voicing value of a stop are

most available when said stop is between sonorous material (inter-sonorant). Next, voicing is

less perceptible when stops are only followed and not preceded by sonorous material (pre-

sonorant). Finally, voicing in stops is least recoverable in post-sonorant context (i.e., when the

stop is only preceded but not followed by sonorous material; Steriade, 1997).

Crucially, these differences in the perceptibility of voicing contrasts in context imply

differences in the information transmitted by the contrasting categories. In contexts where

voicing contrasts are perceptible, any effort involved in producing voiced categories will more

directly translate into a greater rate of information transmission than in contexts where voicing

distinctions are less perceptible. For example, in inter-sonorant context where a wealth of cues

is available to the listener to recover the intended voicing value of a stop, the articulatory effort

involved in producing voiced stops translates almost directly into an increased rate of

information transmission per unit of time. This is because intended voicing values occurring in

this context have a high probability of being accurately perceived by the listener. However, in

word final context where important cues to voicing are generally not present in the signal, the

increase in information rate due to the occurrence of voiced stops is offset by greater rates of

misperception. Consequently, the effort involved in producing them translates into a relatively

smaller increase in information rate.

If the probability distributions over voiced and voiceless features in stops are optimized

for communication, we therefore expect that the occurrence frequency of effortful voiced stops

will correlate with the expected increase in rate of information transmission their occurrence

achieves in a given context. This is because efficient languages should only require increased

effort when it results in a greater rate of information transmission (cf Flemming, 1995, 2002,

2004). Crucially, the context dependent effects of perceptibility on the attestation of effortful

categories should affect dorsal stops more strongly than labial stops. This is because labial
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voiced stops are much more easily articulated than dorsal voiced stops (Ohala and Riordan,

1979).

We thus derive the following specific predictions for the relative probabilities of voiced

and voiceless stops in languages where the categorical grammar-licenses both categories: if the

occurrence of effortful categories is dependent on the amount of information they convey, the

probability of observing a voiced stop should decrease according to the availability of perceptual

cues to voicing such that [+son]_[+son] > #_[+son] > [+son]_#. The steepness of this decrease

should be much greater for dorsal stops than for labial stops, because the articulatory effort

involved in voicing dorsals is greater than the effort involved in voicing labials, due to differences

in the size of the oral cavity behind the constriction. I show next that these predictions are borne

out for the languages in the WOLEX corpus.

2.2 Methods

The logit probability of observing a voiceless feature in a dorsal or labial stop in context (log(P

(T)/1-P(T))) was calculated for all languages in the WOLEX corpus, that i) have a modal voicing

distinction for at least one place of articulation in at least 2 of the three compared contexts, and

ii) have no more than 2 possible values for laryngeal features in stops (i.e. only voiced and

voiceless). For the purposes of this investigation I considered bilabial stops (active articulator is

the lower lip) as labial and palatals, velars and uvulars (active articulator is the tongue dorsum)

as dorsal. This left data from Acholi, Ayacucho Quechua, Bargam, Bunama, Chickasaw, Dadibi,

Daga, Delaware, Dobu, Dutch, French, German, Greek, Haitian Creole, Hausa, Hebrew, Iduna,

Javanese, Kewa, Khmer, Lithuanian, Maisin, Mauwake, Mengen, Mianmin, Moroccan Arabic,

Mountain Koiali, Muna, Muyuw, Polish, Romanian, Rotokas, Siroi, Southern British English,6

Sudest, Suena, Tatar, Turkish, and Waskia for analysis. Data from contexts with categorical

neutralization (i.e., P(T)=1) were excluded from the analysis.

6 Word-initially, voiced and voiceless stops in English contrast for aspiration rather than modal voicing.
The results reported below, however, still hold if data from word-initial pre-sonorant context in English is
omitted from the analysis.
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2.3 Results

Data were analyzed in terms of a linear mixed effects model predicting logit(P(T)) from place

(sum-coded) and context (forward-difference-coded; Venables and Ripley, 2002). The model

included random intercepts for language and language family as well as random slopes for

context (grouped by language and language family) and place (grouped by language). We find

no main effect of place feature (X2(1)=0, p>.99), evidencing that voiceless dorsals are overall no

more likely that voiceless labials. Further, we find the predicted main effect of context, such that

the overall probability of observing a voiceless feature increases as the availability of cues to

voicing contrasts decreases (X2(1)=7.75, p<.05). Finally, we observe the predicted interaction of

context and place such that the probability of observing a voiceless dorsal increases more

dramatically, compared to voiceless labials, as the availability of perceptual cues to voicing

decreases. Table 4 summarizes the results of the analysis.

Place 1 >.99
Context 7.75 2 <0.05
,1ace:Context 19.57 2 0.01

Table 4: Results (model comparison)

Figure 1 depicts the logit probability of voiceless dorsal and labial stops depending on the

phonological context in which they occur.
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Figure 1: Average logit probability of a voiceless stop (y-axis) by phonological context (x-axis).

Color indicates the place of articulation of said stop (dorsal in red, labial in blue).

2.4 Discussion

The results show that the occurrence probabilities of voiced and voiceless stops in languages

where the categorical grammar licenses a modal voicing contrast pattern as expected from

communicative efficiency. The relative distributions of voiced and voiceless features in labial and

dorsal stops pattern as expected if articulatorily effortful categories preferentially occur in

contexts where they are expected to be transmitted faithfully. In inter-sonorant context voiced

and voiceless values are equally likely for both labials and dorsals (as evidenced by the lack of

a main effect for place) and very close to .5 (logit(.5)=O), which is the optimal input probability for

a noiseless channel. In this context, where a wealth of cues to voicing is available, the

articulatory effort involved in producing voiced stops is justified in terms of the greater rate of

information transmission achieved. However, in contexts where the rate of information

transmission is predicted to be low due to the absence of cues to voicing distinctions, languages

tend to feature effortful categories less frequently, mirroring Steriade's (1997) observation for

categorical typology. The probability of observing a voiceless stop increases as the availability of
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cues to voicing decreases. This increase is aggravated for dorsal stops because voiced dorsal

stops are more difficult to articulate than voiced labial stops due to differences in the locus of

constriction.

We may now ask why some languages instantiate this trade-off as a categorical

constraint, while others choose to dispense of effortful symbols probabilistically. While the final

answer to this question will depend on the patterning of other contrasts in any given language, it

should be noted here that both patterns instantiate the same communicative trade-off.

Categorical neutralization of stop voicing simply implies that the need to avoid articulatory effort

outweighs the communicative benefit obtained by maintaining voicing distinctions

probabilistically in a given language.

Furthermore, there remains the question why languages would ever "give up" on

information transmitted by skewing the probability distribution over possible symbols in a given

context, rather than maintaining equiprobability and simply featuring that context less frequently.

Such an overall decrease in context frequency would, however, necessarily imply the loss of

other contrasts the sounds in question enter into, which might still be fairly distinct in perception

(e.g., place contrasts between different word-final stops; /at#/:/ak#/:/ap#/).

Finally, I would like to suggest here that both categorical and gradient dispreferences for

articulatorily effortful symbols could be made possible by redundancy inherent in natural

language and not considered in the calculations presented above. If voicing contrasts in

positions where cues to voicing are less available are usually disambiguated by other contrasts,

then it may not be necessary to keep their distributions as uniform as it would be if they were

the only bits of information communicated. If imperceptible contrasts are usually disambiguated

by more phonological material then it may be more efficient to dispense of articulatorily effortful

symbols such as voiced stops at a greater rate or altogether. In Chapters 5 and 6, I show that

natural language does indeed tend to disambiguate imperceptible contrasts with further

phonological material, which could supplement the information lost due to the gradient and

categorical underattestation of voiced stops in natural language.

31



Chapter 3 Efficient codes for place

3.1 Introduction

In Chapter 2, I showed that probability distributions over voicing features in languages with

modal voicing contrasts behave as predicted by communicative efficiency. However,

communicative efficiency also makes predictions for the behavior of n-ary contrasts in natural

language. In this Chapter, I show that the probability distributions over ternary place contrasts

between labial, coronal (specifically, dental/alveolar), and velar stops in context behaves as

expected from the information theoretic considerations outlined by Shannon (1948). I begin by

describing the perceptual asymmetries the human language channel introduces for those

categories in different contexts.

3.1.1 Channel-induced asymmetries for place

Ohala and Ohala (2001) conducted a comprehensive investigation, of the place contrasts

distinguishing Hindi stops in word-final post-vocalic (V_#) context. In this context, the perception

of place contrasts in stops is particularly disadvantaged because it relies at least partially and-

in cases where the stop is not audibly released-exclusively on perceptually weak VC-

transitions (e.g., Fujimura et al. 1978).

Ohala and Ohala (2001) analyzed productions from ten native speakers of Hindi and

found that the acoustic similarity of the different VC-transitions cueing place depended strongly

on the quality of the vowel preceding the stop. When the vowel preceding the stop was /i/, the

transitions of /p/ and /t/ (dental) were acoustically similar, while the transitions of /k/ were more

distinct. In the context of /u/, the transitions of /k/ and /p/ were similar, while the transitions of /t/

were acoustically distinct. These acoustic asymmetries were mirrored by their perceptual

results. Ohala and Ohala (2001) compared the perceptibility of stop-place in natural productions

of five different Hindi stops (/p/, /V, /t/, /tf/, /k/) with and without release burst in varying vocalic
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contexts in an open response identification task. Ohala and Ohala found that categories whose

VC-transitions were acoustically similar, such as /p/:/4 after /i/ and /p/:/k/ after /u/, were more

perceptually confusable with each other than with other categories that had more dissimilar

transitions in a given vocalic context. While the presence of a release burst increased accuracy

in all vocalic contexts, confusion in accordance with transitional similarity was still observed.

Marty (To appear) presents analogous results for stops in post-vocalic context in French.

In natural productions of a native speaker of French, formant transitions of /p/ and /t/ were

similar after /i/, while formant transitions of /p/ and /k/ were similar after /u/. While stop

identification rates were uniformly high in all vowel contexts if a stop burst was present, the

removal of the burst caused an increase in confusability dependent on transition similarity, such

that /p/ and /k/ were confusable after /u/, while /p/ and /t/ were confusable after /i/.

Crucially, neither Ohala and Ohala (2001) nor Marty (To appear) observe an interaction

of burst presence and transitional similarity. While the presence of an audibly released stop

burst generally improves stop-place identification, this improvement applies across the board in

any vocalic context. This means that the effects of transitional similarity outlined above are

expected to affect stop identification even in languages where word-final stops are audibly

released, albeit to a lesser extent. Consequently, the perceptual asymmetries outlined above

are expected to generalize to a wide variety of different languages, regardless of whether word-

final stops in those languages are generally released or not.

The human language channel is thus expected to universally affect the transmission of

intended stop place feature values in word-final context after /u/ and /i/ in the following way: in

word-final context after lu/ the channel introduces greater mutual mistransmission rates for

intended labial and dorsal features in stops. Coronal (dental/alveolar) feature values, however,

are less affected by the channel in this context. Conversely, in word final context after /i/,

coronals and labials are more likely to be mistransmitted as each other, while velars are more

likely to be accurately transmitted. In both cases, we thus have a channel where noise causes

mutual mistransmission of two symbols, and less mistransmission of a third. Shannon (1948)
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shows explicitly what would constitute the optimal channel input distribution for three different

symbols given such a channel.

3.1.2 Shannon's example of a discrete channel with noise

Shannon (1948) lays the mathematical foundations for determining the optimal frequency

distribution over the different symbols available to encode messages given a variety of channels

defined in terms of the mistransmissions they induce. The particular example of interest here, is

Shannon's example of a discrete channel with noise. The channel he assumes is a channel with

three possible input symbols, A, B, and C. One of the input symbols (A) is always accurately

transmitted (i.e. transmitted as itself), while the other two symbols are subject to mutual

mistransmission. B is mistransmitted as C with probability q and accurately transmitted as B

with probability p. Furthermore, C is mistransmitted as B with the same probability q, and

accurately transmitted with the same probability p. This channel is thus a hybrid between the Z-

Channel, where one symbol is asymmetrically mistransmitted as another, and a binary

symmetric channel, where two symbols are subject to mutual mistransmission (Moser, 2012).

This channel is depicted in Figure 2.
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Figure 2: Shannon's example of a discrete channel with noise. A is always accurately

transmitted. B and C are mutually mistransmitted with probability q.

Shannon (1948) shows that the optimal distribution over input symbols in this channel is a

function of the probability of the accurate transmission of either of the two mutually confusable

symbols B and C (p): in case p is 1 the channel is noiseless. In this case, A, B, and C should be

exactly equally likely (i.e. have probability 1/3) to achieve channel capacity. However, as p

decreases towards .5 (the case where B and C are no longer distinguishable),7 the probability of

using B or C should decrease. Shannon (1948) provides the following intuitive characterization

of the optimal input distribution for this channel: "The distinction between the second and third

symbols conveys some information but not as much as in the noiseless case. The first symbol is

used somewhat more frequently than the other two because of its freedom from noise." In the

case where they are always mistransmitted (i.e., when p=.5), B and C "cannot be distinguished

at all and act together like one symbol" (Shannon, 1948). In intermediate cases, the

mistransmitted symbols convey more information than a single symbol, but less information than

7 The reason the lower bound of p is .5 rather than zero deserves a brief clarification. In case p is smaller
than .5, symbols B and C would be mutually mistransmitted more than half of the time. In this case, we
could simply decide to interpret received B as intended C and received C as intended B. This would then
make mistransmission rates smaller than .5.

35



two accurately transmitted symbols would. Their occurrence probability relative to the stable

symbol should thus decrease as a function of the information they convey. The formula for the

optimal input probability for A (P*(A); relative to B and C), as a function of p is given below

(adapted from Shannon 1948).

1
P*(A)=

1+ 2p

Figure 3 depicts the relationship between p and P*(A). The relationship here is monotonically

decreasing. The greater p is, the lower P*(A) should be.
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Probability of accurate transmission of B and C

Figure 3: Optimal input probability of the stable symbol (A; y-axis) as a function of the correct

transmission rate of B and C (p; x-axis).
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Shannon's (1948) example thus applies approximately to the communication of labial, coronal

and velar place features in different vocalic contexts. After /i/, labial and coronal transitions are

similar to each other while velar transitions are more distinct. After /u/, however, labial and velar

transitions are similar to each other while coronal transitions are more distinct. There thus exists

exactly one stable symbol that is likely to be accurately transmitted and two unstable symbols

that are likely to be mutually mistransmitted in each context. Therefore, if the relative distribution

of the three place features (labial, coronal, and velar) in languages where the categorical

grammar licenses all and only these three values is optimized to achieve capacity in the human

language channel then we should find the following two probabilistic patterns: i) in the word-final

post-/i/ context, the probability of /k/ should be greater than probabilities of /p/ or /t/ and ii) in the

word-final post-/u/ context the probability of /t/ should be greater than the probability of /k/ or /p/.

I now go on to test this prediction for the languages in the WOLEX corpus.

3.2 Methods

I extracted the probabilities of labial, coronal (dental/alveolar), and velar stops for all languages

in the WOLEX corpus that have exactly three contrasting feature values for stops (i.e., bilabial-

dental-velar or bilabial-alveolar-velar) in two phonological contexts: word-final post-[+high,-

back,-round] (/i_#/), and word-final post-[+high,+back,+round] (/u_#/). This left data from 23

languages (Acholi, Armenian, Daga, Delaware, Dutch, English, French, German, Greek, Haitian

Creole, Hausa, Hebrew, Lake Miwok, Lithuanian, Mauwake, Mianmin, Muyuw, Polish,

Romanian, Siroi, Tatar, Wantoat, Waskia) for analysis.

3.3 Results

The results show that the relative place feature distributions in the two contexts do indeed

pattern as predicted by communicative efficiency. The probability of velars is not significantly

different from .5 (logit(.5)=O) in i_# context, which means that the probability of observing either

a labial or an coronal in this context is also roughly equal to .5. However, we also observe that
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labials are much less likely than coronals (see Section 3.4 for discussion). An analogous pattern

is presented after /u/. Here, the probability of observing an coronal is roughly equal to .5, while

the probabilities of labials and velars are much lower. Again, we observe that labials are much

more unlikely than the category they're confusable with. Figure 4 depicts the logit probabilities of

labials, coronals and dorsals in the two contexts studied.

0.0

-0.5

01

-1.5
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-2.5
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K

II

Figure 4: Average logit probability of an coronal (red), velar (green) and labial (blue) stop (y-

axis) by phonological context (i#, left; u_#, right).

To test whether the differences in the distributions of the stable symbols in each context (i.e. /t/

after /u/, /k/ after /i/) are significant, I extracted all data points for coronals and velars in the two

contexts. Next, I analyzed them in terms of a linear mixed effect model predicting logit(P(Place))

from place (2 levels; coronal vs. velar; sum-coded) and vowel (2 levels; /i/ vs. /u/; sum-coded).

The model included random intercepts for language and language family as well as random

slopes for place and vowel (grouped by language and language family). As predicted by

communicative efficiency, we find an interaction of vowel and place (X2(1)=9.12, p<.005) such
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that coronals are significantly more likely than velars after /u/, while dorsals are significantly

more likely than coronals after li/. No additional fixed effects reached significance indicating that

neither velars nor coronals are more likely across the board. The results are summarized in

Table 5.

Place I >.99
/owel "2.36 1 >.1

Place:Vowel 9.12 1 <0.005

Table 5: Results (model comparison)

3.4 Discussion

The results show that the relative distribution of the three major place features in stops studied

pattern as expected from communicative efficiency. The stable categories in each context are

more likely than either of the confusable ones. What is indeed surprising is how closely the

observed probabilities for the stable symbols match the probabilities predicted by Shannon

(1948) for the case where the unstable symbols are indistinguishable (i.e., where the probability

of mistransmission is .5). It seems as if the confusable categories in each context act as if they

were one single symbol, being together as likely as the relatively stable symbol. However,

since /p/ and /k/ in /u/ context, and /t/ and /p/ in /i/ context are of course not completely

indistinguishable in human communication, it seems that natural language exhibits more

extreme asymmetries than predicted by information theory for realistic rates of mistransmission.

More research is required to determine why the specific probabilistic patterning of these

categories goes beyond what is expected from information theoretic considerations given

realistic rates of mistransmission.

Furthermore, the natural language results differ clearly from the probabilities predicted

by Shannon (1948) with respect to the relative attestation of the confusable categories. Rather

than being equally affected by shifts in probability mass towards the stable symbol, labials are

39



affected to a much greater extent. The probability of observing a labial in either of the two

contexts is considerably lower than the probability of observing the other category labial is

confusable with (i.e., /t/ in /i/ context, /k/ in lu/ context). However, Shannon's example of a

discrete channel outlined above assumes symmetric mistransmission rates for the two

confusable symbols. That is, he assumes that the mistransmitted symbols are mistransmitted as

each other at exactly the same rate. If the mistransmission rates were asymmetric, such that

labials are mistransmitted more as the other confusable category in context than vice-versa, this

would explain the greater improbability of labial place for word-final stops after high vowel (cf

Silverman 1955).

However, no conclusive evidence for or against such an asymmetry exists. While the

fact that labial stop bursts are generally lower in amplitude than corresponding coronal or dorsal

bursts (Ohala 1996) could make them more likely to be mistransmitted, this would only explain

the observed asymmetry in languages where word final stops are generally produced with an

audible release burst. However, this is not the case in some of the languages included in our

sample. In English, for example, where word-final stops are variably released, /p/ is still the least

probable place for word-final stops after high vowels (probability .1, and .07 after /u/ and /i/

respectively). Additionally, both Ohala and Ohala (2001) and Marty (To appear) respectively

found higher accuracy for labials than for their confusable counterparts, when stop bursts were

excised from the stimuli subjects were presented with, contrary to what is expected given the

infrequency of labials observed above. Marty (To appear), however, attributes these higher

accuracies for labial stimuli to perceptual similarity: in French, word-final stops are generally

produced with an audible release burst. The burstless stimuli utilized in Marty's study thus

violate the expectations of French listeners. Marty hypothesizes that French listeners

predominantly perceive labial stops when bursts have been excised from the signal, because

the absence of a burst is most acoustically similar to the low amplitude of a labial burst. It

remains to be seen whether Marty's hypothesis about the underlying cause of the greater
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frequency of labial responses to burstless stimuli is sufficient to explain the higher accuracy

observed for labials in perceptual experiments.

However, it is also possible, that labials are infrequent word-finally for reasons other than

transition similarity. In Chapter 4, for example, I show that labials are subject to severe co-

occurrence restrictions. It would therefore, be possible for the infrequency of word-final labials to

result from a dispreference for labials to co-occur with other labials earlier in the word. More

research is required to determine the cause of the cross-linguistic infrequency of labials in word-

final post-high-vowel context.
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Chapter 4 A communicative account of consonant

co-occurrence restrictions8

4.1 Introduction

This Chapter presents a communicative account of similarity avoidance and identity preference

for consonants co-occurring within words in natural language phonology. I show that feature-

based co-occurrence restrictions (e.g., /b/ and /p/ are less likely to co-occur within words

because they share labial place of articulation), just like the other probabilistic phonotactics

studied in this dissertation, facilitate the efficient communication of intended messages. The

focus of this Chapter is on the perceptibility aspect of communicative efficiency. I show that, co-

occurrence restrictions on consonants increase the chance of the listener to accurately perceive

the words intended by the speaker.

Specifically, I argue that the effect of similarity avoidance stems from the need to

increase the perceptibility of words: the effect is stronger for precisely those features whose co-

occurrence within words is more likely to cause misperception (Woods et al. 2010). I show that

the specific error patterns observed in Woods et al.'s (2010) study support an account of co-

occurrence restrictions on consonants as avoiding multiple instances of features that the listener

would be likely to misperceive as single instances of those features (Ohala 1981, Gallagher

2010). Additionally, I show that identical consonants are not exempt from the perceptual effect

driving the avoidance of similar consonants and that the often-observed relative over-attestation

of identical consonants given their similarity therefore cannot be derived from their independent

perceptual properties. I show instead, that the phonotactic exemption of identity is

probabilistically dependent on similarity avoidance: identical consonants sharing a given place

8 This Chapter grew out of joint work with T Florian Jaeger. All errors, however, are my own. I would also
like to thank David Woods, William Yund, Timothy J. Herron, and Matthew Ua Cruadhlaoich for sharing
their experimental data with me.
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feature are over-attested relative to the under-attestation of similar consonants sharing that

place feature. That is, the degree to which /p/ and /p/ are overattested given their similarity is

correlated with the degree to which non-identical labials (e.g., /b/ and /p/) are underattested. I

argue that this pattern presents a communicative advantage by increasing the average featural

distance between words in the lexicon, thus facilitating their identification with respect to each

other.

4.1.1 Previous work on consonant co-occurrence

It has long been noted that consonants within phonological units such as roots and words are

subject to co-occurrence restrictions. In one version of this effect consonants are prohibited if

adjacent and identical, or highly similar ("antigemination": McCarthy, 1986). In a distinct version,

identical or similar consonants are avoided even when separated by vowels (McCarthy 1986,

Mester 1986, Yip 1989, Berent and Shimron 1997, MacEachern 1997, Frisch et al. 2004,

Coetzee and Pater 2008, Gallagher and Coon 2009, Graff and Jaeger To appear, a. o.). This

second version is broadly identified with the Obligatory Contour Principle (OCP; Goldsmith

1976, Leben 1973). The empirical findings of the studies of consonantal OCP effects can be

summarized as follows: consonants sharing certain features co-occur less than expected from

their independent occurrence probabilities and, in a subset of languages, identical consonants

co-occur more than expected given the features they share.

For example, in Arabic, consonant pairs such as /b/ and /f/, sharing the labial place of

articulation, are less likely to co-occur in tri-consonantal roots than expected from the

independent occurrence probabilities of /b/ and /f/ in the relevant contexts (Frisch et al. 2004).

However, pairs of strictly identical consonants (e.g. /b/ and /b/) are allowed to co-occur as the

second and third consonant of a tri-consonantal root in spite of sharing place features
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(McCarthy 1986).9 Similarly, in Muna, pairs of identical consonants are slightly over-attested

given their independent occurrence probabilities in different positions, while non-identical

consonants sharing place features are dispreferred from co-occurring within Muna words

(Coetzee and Pater, 2008). For example, the observed-over-expected ratio for non-identical

labials in Muna is 0.33, indicating underattestation, while the observed-over-expected ratio for

identical labials is 1.72 indicating overattestation (Coetzee and Pater, 2008).

The extent to which consonants are underattested is strongly dependent on the features

they share. Frisch et al. (2004) show that, in Arabic, labials are much less likely to co-occur

within roots than dorsals or coronals are. They hypothesize that these asymmetries in co-

occurrence result from differing inventory sizes at different places of articulation. Labials in

Arabic are argued to be least likely to co-occur because the Arabic phoneme inventory contains

only three labials. Dorsals, on the other hand, are much more likely to co-occur because Arabic

distinguishes 10 dorsal consonants (according to Frisch et al.'s 2004 classification of Arabic

consonants). Frisch et al. (2004) derive these asymmetries by proposing a segmental similarity

metric based on natural classes. Their similarity metric derives this from the fact that there exist

fewer distinct natural classes consisting entirely of labial consonants than natural classes

consisting entirely of coronal consonants. Therefore labials necessarily share more natural

classes and become more similar according to their metric. However, Coetzee and Pater (2008)

show that Muna also exhibits the strongest co-occurrence restrictions against labials in spite of

the fact that Muna has 8 labials and 6 dorsal phonemes. It is therefore unlikely that these

feature-based asymmetries in consonant co-occurrence relate to the size of the relevant class

of consonants (Graff and Jaeger, To appear).

Feature-based co-occurrence restrictions are also observed for marked laryngeal

features (e.g., ejection, aspiration, or implosion). Consonants sharing those features are

9 There is independent evidence that the Semitic tri-consonantal roots with identical second and third
consonant derive from underlying bi-consonantal roots, through rightward spreading (McCarthy, 1985) or
copying (Gafos, 1995) of consonant features. However, in Muna, Chol and many other languages with
consonantal identity patterns there is no evidence that non-adjacent instances of identical consonants
derive from the spreading or copying of single consonants.
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categorically prohibited from co-occurring in a variety of languages (MacEachern 1997,

Gallagher 2010). In Chol, for example, only one stop in a given bi-consonantal root may be an

ejective. Thus, while /p'itj/ and /patj/ are possible roots in Chol, /p'itj'/ is not (Gallagher and

Coon, 2009). Chol thus exhibits dissimilatory co-occurrence restrictions for laryngeal features, in

that potential hosts for marked laryngeal features must differ for their specification for a given

marked laryngeal feature, analogous to what is observed probabilistically for labial place in

Muna and Arabic. Interestingly, however, laryngeal co-occurrence restrictions may also pattern

very differently depending on the language. In languages such as, for example, Amharic,

potential hosts for laryngeal features (i.e. sounds occurring with that feature at least once in the

language) must always agree for their laryngeal specification. Thus while /t'ik':a/ and /tik:a/ are

possible roots in Amharic, /t'ik:a/ is not (Rose and King, 2007). Amharic thus exhibits

assimilatory co-occurrence restrictions for marked laryngeal features (Gallagher, 2010). All

potential hosts for a given laryngeal feature within a word must agree for their laryngeal

specification.

Gallagher (2010) presents an account of categorical co-occurrence restrictions on

marked laryngeal features explaining both assimilatory (Amharic) and dissimilatory (Chol)

patterns in terms of perceptual distinctness. In a series of perceptual studies, Gallagher (2010)

shows that the presence of a marked laryngeal feature on a potential host is harder to detect

when there is another such feature in the word. For example, it is more difficult to perceptually

distinguish T'VT' (2 ejectives; where T is a stop of any place) sequences from T'VT and TVT' (1

ejective) sequences, than T'VT and TVT' (1 ejective) sequences from TVT (no ejective)

sequences. Both assimilatory and dissimilatory co-occurrence restrictions on laryngeal features

may thus stem from the same perceptual effect. A consonant may not bear a contrastive value

for a marked laryngeal feature in the presence of another consonant with the same marked

laryngeal feature. Assimilatory languages like Amharic satisfy this constraint by forcing all

potential hosts of laryngeal features to agree, while dissimilatory languages like Chol satisfy it

by only allowing a single instance of such a feature per word. The crucial generalization is that
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the marked laryngeal values of additional consonants must always be predictable from the non-

local context. Thus, strings like /k'api/ and /kapi/ may contrast (Chol), strings like /k'ap'i/ and /

kapi/ may contrast (Amharic), but strings like /k'api/ and /k'ap'i/ may never contrast within the

same language. In this Chapter, I show that a similar account may be extended to co-

occurrence restrictions on place features. Additional instances of place features are perceptually

disadvantaged in the same way that additional instances of marked laryngeal features are.

The current account builds on Ohala's (1981) diachronic account of featural dissimilation

(e.g., Latin /kwinkwe/ with two instances of labialization becomes Italian /tfinkwe/ with one such

instance). He hypothesizes that additional instances of certain features disappear because

listeners misperceive multiple instances of those features as stemming from a single source.

Crucially, Ohala ties the probability of this kind of misinterpretation occurring to the way in which

the presence of the feature in question is cued in the signal. He hypothesizes that features that

strongly affect the same intervening vowel are most likely to dissimilate because cues to those

features are ambiguous with respect to the consonant that triggered their presence in the signal:

"the shared feature of the two sounds spreads onto the intervening segments and the listener

erroneously attributed it to one but not both of the sounds" (Ohala, 1981).

In this Chapter I argue that the perceptual pressure Ohala (1981) hypothesized to drive

dissimilation also drives synchronic co-occurrence restrictions of multiple instances of place

features within words. A large-scale study of CVC-confusability has shown that words in which

consonants share place features are more likely to be misperceived than words in which

consonants share manner or modal voicing features (Woods et al. 2010). I show that cross-

linguistic consonant co-occurrence patterns mirror this likelihood of misperception, in that place

features are also less likely to co-occur than manner or modal voicing features within words in

the 33 languages in the WOLEX corpus that exhibit feature-based co-occurrence restrictions. I

show further that almost all languages with co-occurrence restrictions on place features exhibit

the strongest dispreference for multiple labials to co-occur. In a reanalysis of Woods et al.'s

primary data, I show that multiple labials also have the strongest negative effect on CVC-
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identification in their study: CVCs with two labials are more likely to be misperceived than CVCs

where consonants share any other feature. Furthermore, I show that the particular error patterns

observed in Woods et al.'s study support Ohala's (1981) account of co-occurrence restrictions in

terms of dissimilatory misperception of multiple instances of place features as single instances

of those features. The vast majority of misperceived CVC's where C1 and C2 share place, are

perceived as CVC's with single instances of that place.

What all accounts presented so far (including the one advanced here) have in common

is that they predict identical pairs of consonants to be as dispreferred as similar ones. This is

because identity constitutes the most extreme form of similarity and constraints penalizing

similarity will necessarily generalize to identity. Furthermore, strictly identical consonants will

necessarily share values for all phonological features, thus making it impossible to exempt them

in a non-ad-hoc way from constraints on similar but non-identical consonants. In fact, Gallagher

(2010) finds that the perception of marked laryngeal features in the context of other marked

laryngeal features is not dependent on whether the two consonants on which those features

occur are identical to each other or not. That is, [k'aki] and [k'ak'i] are as difficult to discriminate

as [k'api] and [k'ap'i] are. This means that similar and identical pairs of consonants interfere with

the perception of the words containing them to the same extent.

In this Chapter, I present more evidence that pairs of identical consonants are subject to

the same kind of misperception as consonants sharing features (Woods et al.'s, 2010;

reanalysis), mirroring Gallagher's (2010) results for identity. I further show that, in typology, pairs

of identical consonants are not exempt from restrictions on consonants sharing features

suggested in previous accounts of co-occurrence restrictions on consonants but that the

preference for identical consonants to co-occur is probabilistically tied to the dispreference for

similar consonants to co-occur within words. For example, the less likely non-identical labials

are to co-occur, the more likely identical labials are to co-occur within words. I hypothesize that

this results from a pressure to increase the overall featural distance between words in the

lexicon.
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I begin by summarizing experimental results obtained by Woods et al. (2010) in their

large-scale study of CVC-confusability. Their results support a hierarchy for place, manner and

modal voicing feature matches in terms of their effect on the accurate identification of words.

4.2 Place, manner and voicing feature matches

4.2.1 Woods et al.'s (2010) study of CVC-identification

Woods et al. (2010) present results from the largest study of CVC-confusability conducted to

date. Sixteen subjects with normal hearing (between 18 and 30 years old) were asked to identify

a list of English CVCs under specific noise conditions described below. Subjects came in for

three separate 1h testing sessions in which they provided spoken responses. Responses were

then phonetically transcribed and coded for correctness. Consonants were drawn from the 21-

member set {/b/, /d/, /g/, /r/, /l/, /0/, /n/, /m/, /v/, /6/, /z/, /d3/, /tf/, /f/, /s/, /E/, ff1, /p/, /t/, /k/, /h/} with

the additional constraint that /N/ could only occur in C2 while /h/ could only occur in C1, in

accordance with English phonotactics. Vowels were drawn from the set {/a/, /i/, /u/}, resulting in

1200 CVCs. Each CVC was recorded twice by four talkers resulting in a total of 9600 CVC

stimuli, from which actual stimuli were sampled semi-randomly. This sampling in turn resulted in

an average of 28.2 observations per CVC overall.

The stimuli presented were subject to an additional unusual manipulation of signal-to-

noise ratios. In a series of preliminary experiments, Woods et al. (2010) determined a specific

baseline signal-to-noise ratio (SNR) for every consonants in its specific environment (i.e.

syllabic position and particular adjacent vowel), such that the discriminability of each consonant

in its local context relative to all other consonant in that context resulted in an average d' of 2.2

(i.e., roughly 65% correct). In the actual experiment this baseline SNR was independently

adjusted for both C1 and C2 such that each of them appeared with its specific baseline SNR, its

baseline SNR+6dB and its baseline SNR-6dB. Baseline SNRs varied quite strongly between

consonants and positions, ranging from -8.4 for /s/ in syllable final position to +38.6 for /6/ in
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syllable final position. The adjustment of baseline SNRs performed by Woods et al. may then be

seen as one way of controlling for those consonant specific effects. Since confusable

consonants are generally played at higher SNRs than non-confusable ones the playing field is

leveled to allow us to observe the effect of feature matches on CVC identification independent

of a priori asymmetries arising from the consonants that host them.

As Woods et al.'s preliminary studies and many studies before (e.g., Miller and Nicely

1955) have shown, consonant differ widely in their confusability with other consonants. These

consonant-specific asymmetries could potentially confound the cross-linguistic significance of

results from a CVC identification study performed with stimuli from a single language. If a

language features certain particularly confusable sounds this could affect the probability of

correctly identifying stimuli that contain them, which would in turn possibly confound the

accurate assessment of the effects that feature matches have on CVC-identification. In English,

for example, CVCs with consonants matching for coronal place may be particularly likely to be

confused because some of those CVCs will contain interdental fricatives like /G/ and /6/ which

are particularly likely to be misperceived independent of other consonants in the word.

In their paper, Woods et al. (2010) observe that, given their manipulation, CVC's where

C1 and C2 match for place are particularly likely to be misperceived. They report a highly

significant negative effect of place matches on CVC-identification (F(1,15)=41.70, p=0.0001),

but no corresponding effects of manner or voicing matches (F(1,15)=1.58 and F(1,15)=3.99,

p=0.07, respectively).

Above, I have hypothesized that co-occurrence restrictions on consonants derive from

communicative efficiency. Specifically, I have proposed that they increase the chance of the

listener to accurately identify words. From this hypothesis and Woods et al.'s (2010) results, we

may derive the following prediction for feature matches in linguistic typology. If co-occurrence

restrictions on consonants result from a perceptual pressure to increase word identification, then

consonants sharing place of articulation should be highly unlikely to co-occur within words while

consonants sharing manner or voicing features should not be subject to such restrictions. This
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is because, multiple instances of a given place feature decrease the recoverability of words,

while multiple instances of manner and voicing do not. This typological prediction is assessed in

the next section.

4.2.2 Methods

For every language in the WOLEX corpus, I extracted every word with exactly two consonants

separated by at least one vowel (i.e., conforming to a VoCViCVo template). The resulting sub-

corpora are summarized in Table 6. Depending on the language, between 1.44% (Thompson

Salish) and 60% (Acholi) of words conform to a VoCV1CVo-template. As noted in Chapter 1, the

words considered here are words in the sense of primary dictionary entries that may be uttered

in isolation. 10

choli ilo-Saharan 030 418 0

lekano rans-New Guinea 224 53 1.38

Amharic Aro-Asiatic 45 51 12.27

rmenian Indo-European 409 33 9.82

Arrernte Australian 3144 393 12.5

Ata ustronesian 020 51 28.18

AyacuchoQuechua Quechuan 4894 716 14.63

Bargam rans-New Guinea 342 432 18.45

Benabena rans-New Guinea 6 108 12.77

uunama stronesian 2228 96 2.26

hickasaw uskogean 13947 8 .08

hinese (Mandarin) ino-Tibetan 30156 840 2.63

Dadibi eberan-Pawaian 1442 268 18.59

Daga Dagan 4840 584 12.07

Delaware Al1"g ic 3915 128 1.85

Dobu Austronesian 3307 767 3.19

Dutch Indo-European 123816 3852 .11

English Indo-European 52370 5062 .67

French Indo-European 142474 19416 13.63

Georgian Kartvelian 4581 436 .52

erman Indo-European 51473 1728 .36

reek Indo-European 5304 1788 5.06

Guarani R upian 4332 1278 29.5

10 This means that the forms studied here are not necessarily monomorphemic. The fact that we
nonetheless observe significant dispreferences for consonants sharing features to co-occur indicates that
co-occurrence restrictions on consonants do not only apply to roots or stems investigated in previous
studies (e.g., Frisch et al. 2004), but also to phonological forms in the way they appear in natural speech.
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Haitian Creole Haitian Creole 38641 )146 23.67

Hausa fro-Asiatic 9621 2518 !6.17

Hebrew Afro-Asiatic 48312 5011 10.37
Hindi Indo-European 32932 6805 20.66
lamalele Austronesian 2980 670 2.48
Iduna Austronesian 662 504 7.57
Javanese Austronesian 14050 2355 16.76
Kewa rans-New Guinea 806 1221 5.41
Khmer Austro-Asiatic 17162 1882 10.97
Lake Miwok Penutian 1989 632 31.77
Lithuanian Indo-European 4118 !98 7.24
Maisin Austronesian 2597 778 9.96
Mauwake rrans-New Guinea 3693 694 18.79
Mengen Austronesian 1475 582 39.46
Mianmin rrans-New Guinea 2319 433 18.67
Moroccan Arabic Afro-Asiatic 12671 )87 7.79
Aountain Koiali rrans-New Guinea 1477 05 0.96
Muna Austronesian 5734 13155 55.02
Muyuw Austronesian 4603 02 13.08
Polish Indo-European 15192 47 5.58
Romanian Indo-European 7216 1042 14.44
Rotokas Nest Bougainville 5547 1407 5.37
Sepik Mende Sepik 3551 '38 0.78
Siroi rrans-New Guinea 1365 334 4.47

Sudest Austronesian 1520 542 35.66
Suena rrans-New Guinea 3887 1509 38.82
Tatar Altaic 5561 697 12.53
Thompson Salish Salishan 4721 68 1.44
Turkish Altaic 29412 !941 10
Naffa rrans-New Guinea 2721 685 5.17
Nantoat rrans-New Guinea 2239 47 19.96
Naris Border 1640 !62 15.98
Naskia rrans-New Guinea 2028 399 19.67
Noleaian Austronesian 5919 1572 26.56
Yana Hokan 1764 130 7.37
fup'ik Eskimo-Aleut 4240 636 15
Vulu Niger-Congo 23505 3374 14.35

Table 6: VoCViCVo-word sub-corpora extracted from WOLEX.

Next, I computed the type frequency of each ordered pair of consonants in this set of bi-

consonantal words. Then, every pair was annotated for whether the two consonants match for

place, manner or modal voicing. Place matches were defined as the two consonants sharing the

same place of articulation according to the IPA classification of speech sounds into labial,

coronal and dorsal. This classification is summarized in Table 7. Radical and glottal consonants

were ignored for the purposes of this investigation.
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|Labial |Labial ICoronal |Coronal IC

Table 7: Classification of place of articulation.

oronal ICoronal IDorsal IDorsal IDorsal I

Manner matches were defined as consonants matching for both continuancy and obstruency,

dividing sounds into four broad manner classes (approximants, i.e., glides and liquids, e.g. =

[+sonorant; +continuant], /1/, /wI; nasals = [+sonorant; -continuant], e.g., /m/, /n/; fricatives =

sonorant; +continuant], e.g., /s/, /ff; stops = [-sonorant; -continuant], e.g. /p/, /t/; affricates such

as /tS/ and /pf/ were treated as both stops and fricatives). Voicing matches were defined as the

two consonants matching for their modal voicing specification (i.e. [+voice], e.g., /b/, /z/; [-voice],

e.g., /p/, /s/). Laryngeal features indicating non-modal voicing distinctions (e.g., ejective,

implosive, aspirated), which are subject to categorical co-occurrence restrictions in some of the

languages studied (Gallagher, 2010), were ignored in this annotation. For Rotokas (West

Bougainville), manner matches were not annotated because the language lacks phonemic

manner distinctions (i.e., all consonants are stops).

To control for the independent occurrence frequency of different consonants in their

respective positions, I utilize the same method as Graff and Jaeger (To appear): every

consonant pair was annotated for the summed log-type-frequency of the VoCV1CVo-words with

the first consonant equal to the first consonant of the pair. That is, all pairs with /t/ in C1 were

annotated for the sum over the type frequencies of words with It/ in C1. Analogously, every pair

was also annotated for the summed type-frequency over pairs with its C2 in C2. Finally, to

control for the effect of total identity, all templates were annotated for whether the two

consonants were strictly identical. Results for identity are omitted here and instead discussed in

Section 4.4.
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4.2.3 Results

For each language, I fit a maximum likelihood fitted log-linear model predicting the type-

frequency of each pair of consonants in a given language's bi-consonantal words, from the

independent occurrence frequencies of C1 and C2, strict identity, and place, manner and modal

voicing matches. Because predictors utilized in these models are not orthogonal, it is necessary

to test for model multicollinearity to see if estimates for different predictors are likely to be

biased. A highly conservative cut-off for reliable estimates is a Variance Inflation Factor (VIF) of

5 or greater (Menard, 1995). Table 8 shows the maximal VIF's for each of the models fitted. As

can be seen all maximal VIF's are well below this threshold, indicating that multicollinearity was

not an issue for any of the analyses reported and that the estimates reported below are reliable.

AchliI.27 serman 1.34 un .34
Aleknol.54 ree 1.32 Auyuw 1.89

1.09 uarani 1.49 .15
1.37 aitianCreole 1.48 Romanian 1.35

________ 2.17 iausa 1.37 Rotokas .59
_.32 -lebrew 1.51 SepikMende 1.25

yacuchoQuechua 1.64 mdi 1.21 Siroi 1.62
1.76 lamalele 1.79 Sudest 2.02

Benabena.2 duna 1.79 Suena 2.07
lunama 1.46 Javanese 1.31 Tatar 1.22
hickasaw ewa 1.49 ChompsonSalish 1.45
hineseMandarin 1.59 (hmer 1.41 Turkish 1.26

Dadibi 1.49 LakeMiwok 1.62 affa 1.95
Daga 2.04 Lithuanian 1.39 ntoat 1.57
Delaware.49 aisin 2.48 ris 1.92
Dobu 1.68 tauwake 2.1 askia 1.72
Dutch1.45 engen 2.58 oleaian 1.8
English 1.33 ianmin 1.85 __ 1.39
French 1.37 oroccanArabic 1.22 upik 1.37

eorgian 1.44 AountainKoiali .55 ulu 1.34

Table 8: Maximum variance inflation factor for each model.
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The results show that 33 of the 60 languages studied exhibit some effect of place, manner, or

modal voicing feature matches on consonant pair type frequency.11

All but four (Mandarin Chinese, Guarani, Tatar, and Waris) of these 33 languages exhibit

the predicted significant negative effect of place feature matches on consonant pair frequency: if

the two consonants in a pair match for place, it is less likely for that pair to be instantiated in the

VoCViCVo-words of the language than expected from the independent occurrence frequencies

of individual sounds. Furthermore, this negative effect is significantly larger than the effect of

any other kind of feature match in all but three of those languages (Daga, German, and Hindi).

In those three languages the effect of place feature matches is, however, falls within the 95%

confidence interval of the second largest negative effect.

Manner matches on the other hand do not exhibit a consistent pattern across languages.

Chinese Mandarin 12, Guarani, Mauwake and Zulu exhibit a positive effect of manner match such

that consonant pairs matching for manner are over-attested in bi-consonantal words. In Daga,

French, German, Hindi, and Tatar manner matches negatively affect consonant pair frequency.

However, this effect is significantly smaller (French) or as large as the place match effect (Daga,

German, Hindi) in all but one of those languages (Tatar). While co-occurrence restrictions on

consonants sharing place do not occur in every language, there is a strong probabilistic

tendency for languages to exhibit them, and to exhibit them more strongly than co-occurrence

restrictions on consonants sharing other features.

11There could be a variety of reasons for why co-occurrence restrictions do not manifest themselves in all
of the languages studied. One possibility would be that some of the corpora of bi-consonantal words
analyzed here are too small and that we therefore lack the statistical power to detect significant effects of
feature co-occurrence on consonant pair frequency. Indeed, only 20% of the languages with the 20
smallest corpora exhibit significant effects of feature matches on consonant co-occurrence. Of the
languages with the 20 mid-size corpora, 40% exhibit featural co-occurrence restriction. Finally, 95% of the
20 languages for which we have the largest corpora exhibit signficiant effects of feature matches on
consonant pair frequency. It is therefore possible that we would find effects of featural co-occurrence
restrictions in many more languages if larger corpora of the relevant languages were available.

12 Given the fact that Mandarin Chinese has a limited coda inventory in monomorphemes, it may come as
a surprise that Mandarin exhibits an effect of manner matches on consonant co-occurrence. However, it
should be noted here that the native speaker who transcribed the Mandarin dictionary considered
polymorphemic words whose meaning was not predictable from the meanings of the morphemes that
compose them as single words. Therefore, a greater wealth of consonant co-occurrence is observed than
if only monomorphemes had been considered.
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Interestingly, we also observe a consistent albeit less frequent patterning of modal

voicing matches. In 11 out of 33 languages modal voicing matches have a significant positive

effect on consonant pair attestation. In one language (Hebrew), modal voicing matches have a

small negative effect on consonant pair frequency.

Figure 5 depicts the significant coefficients for place, manner, and modal voicing feature

matches in the 33 languages that exhibit at least one significant effect of feature match on

consonant pair type-frequency in bi-consonantal words. The full results for these predictors in all

60 languages studied are provided in Table 9.

55



Dutch English French Genan Greek Guarani Haian Hausa

0.4

0,2

0.0

-0.2

-04

-0.6

-0.8

Hebrew HIndi lameiete Javanes Kewe M.Kolail Maisin Mauwake Mengen Mune

1 1 1- I--
Rotokas Sudest Suene Tatar Turkish Wantoat Warls Waskla Woloalan Yupik

Figure 5: Coefficients (predicted decrease in consonant pair frequency given feature shared;

log-scale; y-axis) of place, manner and modal voicing match predictors in languages that exhibit

at least one significant effect of feature matches on consonant pair type frequency. Place

matches are plotted in red, manner matches in green, and voicing matches in blue.
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IIUn U.ziz .V40 U.UO .U4 .UO .U44

lekano 0.286 .179 .159 .151 .1 ).131
mharic ).073 .091 .037 .103 0.012 5.089
rmenian 0.025 .112 0.031 .115 0.017 ).106
rrernte 0.052 .108 .162 .153 0.052 ).149
ta -0.124 .099 0.165 .115 0.007 ).082

\yacuchoQuechua 0.069 .083 .2 .106 .064 ).09
Bargam 0.125 .117 .015 .126 .116 ).106
Benabena 0.507 .397 0.225 .244 .202 ).203
Bunama 0.166 .116 .112 .106 .036 ).097
Chickasaw 0.1 .08 0.034 .089 .063 ).075
ChineseMandarin 0.004 .021 .068 .028 .086 ).025
Dadibi 0.244 .152 0.079 .144 .111 ).128
Daga 0.226 .102 0.246 .103 0.039 ).09
Delaware ).146 .199 0.044 .265 0.036 ).205
Dobu 0.043 .087 ).129 .088 0.008 ).078
Dutch 0.255 .04 0.079 .041 .055 ).034

English 0.204 .031 0.059 .035 ).087 .029
French 0.217 .017 0.122 .018 5.054 .015

eorgian 0.046 .112 0.052 .127 5.025 ).103
erman 0.2 .057 0.148 .064 5.042 .049
reek 0.227 .053 0.046 .06 5.025 .049
uarani 0.08 .066 ).169 ).062 5.167 .059

HaitianCreole 0.246 .025 0.002 .025 ).191 .022
Hausa 0.176 .045 0.029 .05 ).072 .041
Hebrew 0.223 .036 .017 .033 -0.07 .029
-indi 0.15 .028 0.115 .03 ).05 .025
lamalele 0.373 .102 0.022 .097 -0.092 .082
Iduna 0.186 .117 0.115 .114 ).058 .094
Javanese 0.141 .047 0.091 .051 .1 .042

Kewa -0.363 .072 0.13 .067 ).126 .061
Khmer -0.057 .057 .061 .06 ).033 .052
LakeMiwok -0.16 .101 ).013 .117 0.113 .099
Lithuanian -0.08 .134 0.025 .144 ).131 .125
Aaisin .0.327 .095 0.006 .098 0.017 .079
Aauwake -0.317 .096 ).258 .112 0.05 .093
engen -0.352 .121 0.084 .117 0.039 .097
ianmin .0.196 .121 0.07 .137 ).027 .103
oroccanArabic ).011 .068 .062 .079 0.015 .065
ountainKoiali -0.738 .13 .055 .103 0.02 .089
una -0.41 .043 0.013 .04 0.061 .037
uyuw -0.176 .103 0.053 .103 0.031 .088

Polish -0.024 .072 0.009 .085 .091 .07
Romanian .0.186 .07 0.014 .08 .06 .064
Rotokas .0.456 .095 /A N/A .027 .066
SepikMende .0.123 .085 .049 .095 0.097 .081

Siroi .0.101 .127 0.136 .146 0.075 .124
Sudest .0.253 .11 .057 .11 .064 .1
Suena 0.295 .064 .026 .069 .129 .056
Tatar 0.148 .081 0.265 .107 0.043 .079
ThompsonSalish 0.073 .31 0.079 .333 0.043 .263

57



rkish 0.256 .041 0.073 .047 .123 .038

affa 0.114 .094 0.199 .107 .052 .084
antoat .096 .11 ).094 .106 .21 .101
aris 0.332 .153 0.166 .164 -0.143 .133
askia 0.298 .123 .159 .127 0.021 .11
oleaan -0.413 .063 .09 .066 .0.052 .058

ana 0.102 .203 0.177 .232 0.04 .202
upik 0.205 .094 ).101 .097 0.011 .091
ulu 0.188 .037 ).26 ).038 ).036 ).04

Table 9: Coefficients and their standard errors for place, manner and modal voicing feature

matches in all 60 languages studied.

4.2.4 Discussion

The main result is that place feature matches have strong negative effects on consonant pair

attestation in bi-consonantal words in 29 out of 33 languages that exhibit some effect of feature

matches on consonant pair frequency. The consistency and strength of this pattern is not

mirrored by that of manner and modal voicing feature matches across those 33 languages.

We can now comment on the convergence between Woods et al.'s (2010) perceptual

results and the typological patterning of consonants within words. In Woods et al's experiment

CVCs with consonants matching for place were most likely to be misperceived. In typology, on

the other hand, those pairs of consonants are least likely to co-occur in bi-consonantal words.

Interestingly, we observe that voicing matches actually have a positive effect on consonant pair

attestation. No significant effect of voicing matches is observed in Woods et al. (2010) although

there is a negative trend in that direction (p=.07). I leave speculations as to the origin of this

pattern for Section 4.5.

The results so far have shown that the probability of observing place, manner and modal

voicing matches in bi-consonantal words in linguistic typology mirror misperception rates

induced by those feature matches in Woods et al.'s (2010) study. In the next section consider

specific place features in both typology and Woods et al.'s primary data. The results show that

labial matches are most likely to induce CVC-misperception in Woods et al.'s (2010) study and
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that consonants sharing labial place are also least likely to co-occur in languages exhibiting co-

occurrence restrictions on multiple occurrences of place features.

4.3 Labial, coronal, and dorsal place matches

While the results obtained thus far constitute strong evidence in favor of the hypothesis that co-

occurrence restrictions on consonants increase the chance that the listener will accurately

recover words, there are still many other hypotheses in play for the special status of place in

consonant co-occurrence. Walter (2007), for example, hypothesizes that OCP effects

predominantly affect place features because they "involve the grossest motor movements and

manipulation of the largest masses (albeit to a lesser extent for coronal than the

others)." (Walter, 2007). Walter hypothesizes that co-occurrence restrictions on place result from

the greater articulatory effort involved in executing the same gross motor movements multiple

times in close proximity. She shows that vowels separating consonants sharing place are

generally articulated with longer durations indicating that speakers take more time produce such

sequences. The current results are thus still consistent with Walter's articulatory hypothesis

about an articulatory pressure causing consonant co-occurrence restrictions.

In order to conclusively show that the observed asymmetries in feature match typology

indeed derive from a perceptual pressure to keep words recoverable we need to show that

correlations between Woods et al.'s (2010) result and linguistic typology hold up when we have

more detailed view of the particular feature matches that trigger misperception. To achieve this, I

reanalyzed Woods et al.'s primary data zooming in on different place features. I find that labiality

matches negatively affect CVC-identification more than other place feature matches and show

that this pattern is again mirrored in the cross-linguistic typology of feature matches.

Furthermore, I find that coronals exhibit stronger co-occurrence restrictions than dorsals in

typology, which is inconsistent with Walter's (2007) hypothesis that co-occurrence restrictions

result from articulatory pressures.
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4.3.1 Reanalyzing Woods et al. (2010)

I reanalyzed the primary data of Woods et al. in (2010) in terms of a mixed logit model

predicting correctness of CVC-identification from the following fixed effects: whether the

consonants match for labial, coronal or dorsal place, whether they match for manner or voicing

and whether the two consonants are strictly identical. As controls, I included the absolute SNR

for C1, the absolute SNR for C2, and whether the CVC corresponded to an actual word of

English. The model additionally included random intercepts for the particular first consonant, the

particular second consonant, the particular CVC, and the subject who provided the response.

Models with random slopes for fixed effects did not converge. Multicollinearity was again not an

issue (all VIF's <1.5) indicating that the estimates reported below are trustworthy.

The results show that all control predictors have highly significant effects on CVC

identification in the expected direction. Perception is more accurate when the CVC

corresponded to an actual English word (P=0.14, z=5.64, p<.00001). The probability of

accurately perceiving a CVC also increases with the absolute SNR of C1 (P=0.2, z=21.8, p<.

00001) and C2 (p=0.03, z=3.12, p<.005) as expected. Of the theoretically motivated feature

match predictors only one showed a significant effect on CVC perception, namely labiality.

When C1 and C2 match for labial place, CVCs are significantly less likely to be accurately

identified (P=-0.47, z=-3.63, p<.0005). Crucially, strict identity of C1 and C2 had no effect on

CVC perception (P=0.14, z=1.18, p=.24).

This reanalysis of Woods et al.'s data has shown that shared labial place in consonants

is most detrimental to CVC-identification. The fact that no other place feature match predictor

reached significance does not necessarily mean that other place feature matches have no effect

on the identification of CVCs. The effects of coronal and dorsal feature matches could simply be

too weak for us to observe them when individual place feature matches are considered

independently. As we will see below, the errors observed for CVC's where C1 and C2 match for

coronal or dorsal place still pattern in accordance with Ohala's (1981) hypothesis that multiple

instances of place features are likely to be misperceived as single instances of those features.
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Additionally, CVCs where C1 and C2 are identical are not misperceived to a lesser

extent. This mirrors Gallagher's (2010) results that strict identity (as opposed to an individual

feature match) does not interact with marked laryngeal feature perception. Given these results,

and the hypothesis that consonant co-occurrence restrictions increase the chance of the listener

to accurately perceive intended words, we derive the following prediction for linguistic typology:

if co-occurrence restrictions are driven by a pressure to decrease the chance of words being

misperceived, then consonants sharing labial place of articulation should be least likely to co-

occur within natural language words.

4.3.2 Methods

The methods for this study were identical to the methods for the study comparing place,

manner, and modal voicing matches save for two modifications. First only the 29 languages that

exhibited a significant effect of place match in the previous study (Acholi, Daga, Dutch, English,

French, German, Greek, Haitian Creole, Hausa, Hebrew, Hindi, lamalele, Javanese, Kewa,

Mountain Koiali, Maisin, Mauwake, Mengen, Muna, Romanian, Rotokas, Sudest, Suena,

Turkish, Waris, Waskia, Woleaian, Yup'ik, Zulu) were studied here. Second, the general place

match predictor was replaced with specific predictors for labial, coronal, and dorsal matches, all

defined in terms of the specific active articulator shared (see Section 4.2.2). Manner match,

voicing match, occurrence frequencies of C1 and C2 as well as strict identity were again

included in the analysis as controls.

4.3.3 Results

Since the predictors utilized in this study are even less orthogonal, we need to again assess if

model multicollinearity is an issue for the analyses reported here. A quick look at the maximal

VIFs for the models fit shows that all of them are below 5 (Table 10). The estimates reported

below are therefore trustworthy.
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Acholi 1.29 Maisin 249

Daga 2.05 Mauwake 212

Dutch 1.47 Mengen 2.74

English 1.35 Muna 1.36
French 1.39 Romanian 1.41

German 1.37 Rotokas 3.65

Greek 1.36 Sudest 2.08
Haitian 1.5 Suena 2.09
Hausa 1.41 rurkish 1.31
Hebrew 1.53 Waris 1.92
Hindi 1.23 Waskia 1.73
lamatele 1.8 Woleaian 1.86
Javanese 1.32 Yup'ik 1.38
Kewa 1.52 Ulu 1.38
Mountain Koiali 2.62

Table 10: Maximum variance inflation factor for each model.

In Waris, no individual place match predictor reached significance. Therefore, results from Waris

are omitted in here. 13

The results show that multiple occurrences of labial place are by far the most

underattested in the bi-consonantal words of languages that exhibit co-occurrence restrictions

on place. 25 out of 28 languages exhibit a negative effect of labial matches on the frequency of

CVC strings. Only Mengen, Yup'ik and Waskia show no such effect. Additionally, in all 25

languages that have co-occurrence restrictions on labials, the negative effect of a labial match is

greater than or as great as the effect of other feature matches on the frequency of CVCs. In 13

(Daga, Dutch, French, Haitian Creole, Hausa, Hebrew, Hindi, Javanese, Mauwake, Muna,

Suena, Turkish, Zulu) of those 25 languages, the effect of labial matches is significantly greater

than the effect of any other place match.

Pairs where consonants match for coronality are significantly underattested in all

languages except Daga, Waskia and Mauwake. However, the effect of matching for coronal is

13 The fact that no place-specific place match predictor reached significance in Waris is likely to be due to
the issue of statistical power. The Waris corpus is particularly small (i.e., only 262) bi-consonantal words.
Thus while there may be sufficient evidence for the general underattestation of place feature matches,
there may simply be too little words where consonants share any particular place feature for us to
observe significance at this higher resolution.
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always significantly smaller or as large as the effect of labial matches, except in Mengen and

Yup'ik, where only multiple occurrences of coronals are underattested.

Dorsal place matches exhibit the least consistent pattern of the three major place

features defined in terms of active articulator. 14 out of 28 languages exhibit co-occurrence

restrictions on dorsals. These restrictions are always as strong as restrictions on coronals,

except in Waskia, where only pairs sharing dorsal place of articulation are underattested.

Furthermore, it should be noted that no individual place match predictor ever returned a

significant positive effect on consonant pair type frequency. None of the languages analyzed in

this study exhibit a preference for consonants within bi-consonantal words to share any specific

place of articulation.

Figure 6 depicts the significant coefficients for labial, coronal, and dorsal feature

matches in the 28 languages that exhibit at least one significant effect of a specific place feature

match on consonant pair type-frequency (Waris omitted) in bi-consonantal words. The full

results for these predictors in all 29 languages studied are provided in Table 11.
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Figure 6: Coefficients (predicted decrease in consonant pair frequency given feature shared;

log-scale; y-axis) of labial, coronal and dorsal place match predictors in languages that exhibit at

least one significant effect of such feature matches on consonant pair type frequency. Labial

matches are plotted in red, coronal matches in orange, and dorsal matches in yellow
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Uul U.300 . 100 U. IU1 .U04 .U.Zl( .Ql

Daga 0.33 .139 -0.184 .132 0.143 .165
Dutch 0.54 .079 .0.183 .048 0.171 .069
English 0.491 .069 0.145 .033 0.267 .104
French 0.552 .04 0.164 .019 -0.137 .034

erman 0.484 .15 0.146 .063 0.247 .117
3reek 0.548 .135 0.184 .056 -0.127 .228
Haitian 0.423 .047 0.207 .028 -0.168 .05
Hausa 0.786 .149 0.131 .048 -0.151 .092
Hebrew 0.732 .1 0.175 .041 -0.151 .059
Hindi 0.528 .095 0.123 .031 -0.118 .056
lamalele 0.328 .143 0.414 .137 -0.368 .192

avaese0.649 ).155 0.12 3.05 3.041 ).115
Cewa 0.534 .118 0.386 .088 .0.021 .131

ountain Koali -0.848 .19 0.677 .147 -0.785 .233
aisin 0.522 .148 0.233 .114 0.334 .153
auwake 0.608 .149 0.185 .116 0.248 .15
engen .0.415 .242 0.342 .127 0.362 .259
una -0.703 .098 0.359 .049 0.313 .096

Romanian -0.562 .199 0.142 .072 0.468 .35
Rotokas -0.482 .124 0.473 .103 0.28 .155
Sudest .0.368 .175 0.416 .166 0.107 .132
Suena -0.729 .111 0.192 .075 0.131 .105
Turkish .1.049 .141 -0.189 .042 0.185 .132
Naris -0.371 .206 -0.276 .19 0.428 .354
Naskia .0.496 .396 -0.205 .136 0.536 .222
Woleaian 0.517 .134 -0.389 .076 0.417 .089
(up'ik 0.688 .418 -0.378 .151 0.096 .108
ulu 0.588 .092 -0.134 ).044 0.144 1.057

Table 11: Coefficients and their standard errors for labial, coronal and dorsal place feature

matches in all 29 languages that exhibit a significant overall effect of place feature match.

4.3.4 Discussion

The typological results presented above once again mirror the perceptual results obtained from

the reanalysis of Woods et al.'s (2010) data. Labial feature matches have the most detrimental

effect on CVC-identification in Woods et al.'s experiment, and are also the most consistently and

most strongly underattested place feature matches in linguistic typology. Coronal and dorsal

feature matches are also underattested albeit to a lesser extent. The reanalysis of Woods et

al.'s results has not shown an effect of those feature matches on CVC perception when different

place feature matches are considered independently. However, as we will see shortly, the
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specific error patterns observed in Woods et al.'s study nonetheless support the hypothesis that

multiple instances of those features are likely to be misperceived as single instances of those

features. Jointly the results obtained thus far present evidence in favor of the hypothesis that

consonant co-occurrence restrictions increase the chance of the listener to accurately perceive

words. The fact, that dorsals are less likely to exhibit co-occurrence restrictions than coronals, is

evidence against Walter's (2007) hypothesis that co-occurrence restrictions are caused by a

constraint against repeated gross articulatory movements in close proximity. As Walter (2007)

notes, the articulation of coronals involves less effort than the articulation of dorsals in terms of

muscle mass that must be manipulated to create a constriction. Nonetheless coronals exhibit

stronger and more consistent co-occurrence restrictions than dorsals in linguistic typology.

However, it is important to note here that the current methodology does not allow us to assess

the statistical signficiance of the difference between co-occurrence restrictions on coronals and

dorsals. To do this, we would have to fit a single model to data from all the languages studied.

While I leave such an analysis for future work, the tendencies observed nonetheless constitute

preliminary evidence againt an articulatory account of co-occurrence restrictions.

Turning now to the reason for why multiple instances of place features should be

detrimental to CVC perception, recall that both Ohala (1981) and Gallagher (2010) propose that

multiple occurrences of phonological features are prone to be misperceived as single instances

of those feature. Ohala (1981) specifically hypothesizes that this effect will be stronger for place

features than for manner or modal voicing features. He states that "only those consonantal

features should participate in dissimilation which have important perceptual cues spreading onto

adjacent segments, especially vowels" (Ohala, 1981). Features like place are hypothesized to

be more likely to undergo this kind of dissimilatory misperception because they interfere with the

formants of the vowels they flank. Labials, for example, lower the F2 of adjacent vowels. Ohala

hypothesizes that the lowering of F2 apparent in the vowel intervening between two labials is

ambiguous between stemming from only one or both of the labials flanking it and that this

ambiguity causes the listener to erroneously perceive only one labial consonant.
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He hypothesizes that such an ambiguity would, for example, not straightforwardly extend

to manner features. Manner cues are however predominantly apparent in the frequency

spectrum of consonants themselves (although consonant manner does affect the realization of

transitional cues, Edward Flemming, p.c.). There is therefore no cue to manner apparent in the

vowel separating two consonants that could easily be misinterpreted as stemming from a single

source. Ohala (1981) further hypothesizes that voicing would also not trigger such dissimilatory

misperception. However, as noted in previous Chapters, essential cues to consonant voicing do

manifest themselves in consonant adjacent vowels. While Ohala does not explicitly address

this, it would be possible that voicing is less likely to undergo dissimilatory misperception

because cues to voicing for pre- and postvocalic consonants manifest themselves in very

distinct ways and would therefore not necessarily be ambiguous in terms of the consonant they

stem from. VOT, on a stop preceding a vowel (cueing voiceless), for example, is very different in

nature from the shorter vowel duration induced by voiceless consonants following vowels.

Nonetheless, Gallagher (2010) observes effects similar to dissimilatory misperception for

marked laryngeal features (e.g., /k'ap'i/ is confusable with /k'api/) even when the different

syllables composing a given stimulus (i.e., /k'a/ and /p'i/) were spliced together, such that no

ambiguous cues to the second instance of a given marked laryngeal feature could have been

apparent in the intervening vowel. Unless laryngeal co-occurrence restrictions result from a

completely distinct perceptual pressure, Gallagher's results are also hard to reconcile with

Ohala's (1981) account based feature-source ambiguity. More research is required to pinpoint

the exact mechanism involved in Ohala's account of dissimilation.

However, irrespective of the precise mechanism that derives the difference between

place, manner and voicing features, Ohala's (1981) hypothesis does make a crucial prediction

for the particular distribution of perception errors we should observe in Woods et al.'s (2010)

study. If the misperception of CVC-sequences where C1 and C2 share place is driven by the

misperception of multiple instances of place features as single instances of those features, then

errors where two instances of a given place feature are perceived as single instances of that
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feature should be very frequent. Crucially, such effects should not be observed for manner or

voicing features. It should not be the case that two instances of a given voicing or manner

feature are frequently misperceived as single instances of those features.

A look at the error patterns for CVCs in Woods et al.'s (2010) data reveals that the

empirical predictions of Ohala's (1981) hypothesis are in fact borne out. Figure 7 presents the

frequencies of different error types for misperceived CVCs where C1 and C2 share labial,

coronal or dorsal place as well as error patterns for CVCs where C1 and C2 share specifications

for manner or voicing. The errors for each of the CVCs where consonants match for a given

feature are broken down as follows: the red bar (leftmost in all facets) indicates the proportion of

errors where both instances of a shared feature were misperceived (e.g, [pam] > /tan/, /nak/, /

das/). The green bar (medial in all facets) indicates the proportion of errors involving

dissimilation. That is, it indicates the errors where one of the shared features was perceived

accurately, while the other one was not (e.g., [pam] > /tam/, /ban/, /mat/). Finally, the blue bar

(rightmost in all facets) indicates the percentage of errors where the shared feature was

perceived accurately for both consonants (e.g. [bap] > /bap/, /bam/, /map/). It becomes

immediately apparent that multiple instances of a given place feature tend to be perceived as

single instances of that feature (as indicated by the significantly higher green bars in the three

facets on the left), while multiple instances of manner and voice trigger much less dissimilatory

misperception (as indicated by the significantly higher blue bars in the two facets on the right).
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Figure 7: Errors for misperceived CVCs where C1 and C2 share a given feature (from left to

right: labial, coronal, dorsal, manner, voicing), broken down by the number of input features that

were accurately perceived by the listener (none, red; one, green; two, blue).

The error patterns observed thus constitute evidence in favor of Ohala's hypothesis that multiple

instances of place features are more prone to undergo dissimilatory misperception than multiple

instances of manner of voicing features. While pinpointing the exact mechanism causing this

asymmetry requires more research, the results are also consistent with the typological

asymmetries observed between place, manner and voicing features in the study of co-

occurrence typology presented in Section 4.2. Multiple instances of place features are least

likely to occur in typology, because they are most prone to be perceived as single instances of
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those features. The same does not hold for manner or voicing features and multiple instance of

those features are also considerably less likely to be avoided within natural language words.

However, it should be noted here that the observed error patterns for voicing and place

features could also be mirroring consonant co-occurrence probabilities of English. This is

because English does exhibit a dispreference for consonants matching for place to and for

consonants differing in voicing to co-occur. However, no significant effect of manner match on

consonant co-occurrence is observed, and Woods et al.'s (2010) subjects nonetheless perceive

the manner features of two consonants sharing a given manner specification faithfully. In

addition to potential effects of lexical statistics on the perceptual results presented here, there

also remains the question to what extent the current results may be specific to the particular

phonetic implementation of place, manner and voicing contrasts in English. Additional

perceptual studies with speakers of a different language, or stimuli involving place features that

do not contrast in English are required to conclusively show that this effect is independent of the

co-occurrence probabilities observed in the English lexicon and the phonetic implementation of

different categories and contrasts in the English language.

Additionally, the results reported here do not show whether the differences in the error

patterns observed are indeed signficant. While the non-overlapping confidence intervals of the

different error types are generally encouraging, they do not take into account other factors that

may have contributed to any specific error in Woods et al.'s (2010) data. A more restrictive

analysis of this data focusing only on CVCs where multiple instances of features were indeed

misperceived as single instances of those features would be able to fully assess the statistical

significance of the patterns reported. I leave such an analysis for future work.

Furthermore, there still remains the question of why multiple instances of labial place are

most likely to be misperceived. If Ohala's (1981) hypothesis about dissimilation resulting from

the misinterpretation of cues apparent in the vowel intervening between the two dissimilating

consonants is correct, then the source of multiple instances of labial should in some way be

more ambiguous that the source of other place features. While I do not have a concrete
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hypothesis about the exaggerated susceptibility of labials to dissimilatory misperception, I would

nonetheless like to briefly speculate as to the origins of this pattern. Ohala (1996) notes that

labials have generally lower amplitude that coronal or dorsal consonants. This is because

labials are articulated at the very front of the oral cavity and therefore lack what Ohala refers to

as "a downstream resonator". That is, there is little or no oral cavity in front of the constriction

that would amplify the noise of the consonant. This means that the consonant noise signaling

the presence of two rather than one sources of labiality might be particularly weak in the case of

labials, which could in turn make cues to labiality, such as lowered F2, more likely to be

attributed to a single source.14 If the larger susceptibility of labial place to dissimilatory

misperception is indeed due to their lower amplitude, we predict that other quiet sounds at

different places of articulation, such as voiceless stops or interdental fricatives, should also be

particularly prone to exhibit place-based co-occurrence restrictions. I leave the exact origin of

the increased dispreference for co-occurring labials for future research.

In the last Section of this Chapter, I turn to the question of strict identity in consonant co-

occurrence. As noted previously, pairs of identical consonants are not exempt from this

perceptual effect, which the reanalysis of Woods et al.'s (2010) data revealed. The next

question is why identical segments sometimes escape co-occurrence restrictions predicted by

their behavior in perception. In the next section, I suggest that the seemingly privileged status of

identity is in fact a language-specific lexical effect. Due to the absence of words with non-

identical consonants sharing features, words with identical consonants become highly distinct

from the rest of the lexicon and thus desirable. The prediction of this account is that the absence

of similar pairs sharing a given feature predicts the relative over-attestation of identical

consonants sharing that feature. Below I show that this prediction is borne out for the languages

in the WOLEX corpus.

14 However, the low amplitude of consonantal noise itself could also present a cue to the presence of
labial place in languages where sounds at other places of articulation are generally louder (cf Marty, To
appear). Whether this account can explain the observed dispreference for the co-occurrence of labials will
therefore crucially depend on whether the lower amplitude of labials identifies them uniquely with respect
to the other sounds in a language's inventory.
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4.4 Strict identity

As we have seen, pairs of identical consonants and pairs of non-identical consonants sharing

features do not behave differently in perception (Gallagher 2010, Woods et al. 2010 reanalysis).

Nonetheless, pairs of identical consonants are overattested given the features they share (see

below). In this section, I suggest that identity preference is in fact probabilistically licensed by

similarity avoidance. The absence of words with non-identical consonants sharing features

(e.g., /pib/), renders words with identical consonants (e.g., /pip/) more distinct from the rest of

the lexicon. This makes words with identical consonants more recoverable relative to other

words in the lexicon, than expected from their independent perceptual properties.

In Chapters 5 and 6, I show that the lexicon is globally optimized for the perceptual

distinctiveness of words. That is, words in the lexicon preferentially rely on perceptible contrasts

for distinctiveness. Here I suggest that the preference for words with identical consonants

results from a similar pressure: the underattestation of words with consonants sharing place

makes words with identical consonants dissimilar from the rest of the lexicon in terms of overall

featural distance. To illustrate this proposal, consider three distinct sets of words beginning

with /p/: words where both consonants are identical labials (pVp-words; e.g., "pup"), words

where both consonants are labial but not identical (pVb-words; e.g., "pub") and words where

only one consonant is labial (pVg-words; e.g., "pug").

On average, pVp-words will have more features in common with pVb-words than with

pVg-words. This is because in both pVp-words and pVb-words, both consonants are labial and

the consonants in pVp and pVb words are thus guaranteed to share at least two feature

specifications. While there are pVg-words like "pat" and "pick" which also differ from pVp-words

like "pup" in terms of a single feature change, the entire set of pVg-words is much more varied

than the set of pVb-words. Many pVg-words will feature pairs of fairly dissimilar consonants and

will therefore, on average, have less in common with pVp-words than with pVb-words. If we

assume that pairs of words where corresponding consonants share many features (e.g., "pub"

vs. "pup") are generally more confusable with each other than words where corresponding
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consonants differ in terms of a lot of features (e.g., "pup" vs. "nut") then we predict that pVp-

words will on average be more confusable with pVb-words than with pVg-words independent of

the fact that pVp- and pVb-words are subject to dissimilatory misperception. While this

hypothesis also predicts that certain pVg-words (e.g., "pick", "pit") will be more confusable with

pVp-words than others (e.g., "pin", "pill"), I focus here on the average differences between these

three broad classes of words only and leave the question of how the occurrence frequency of

any particular word relate to its featural distance from other words in the lexicon for future

research.

Given the fact that words with non-identical consonants sharing place features are

disadvantaged for independent reasons and the hypothesis that those words are on average

more similar to words with identical consonants than to other words in the lexicon we can derive

the following hypothesis for the global organization of the lexicon with respect to pVp- and pVb-

words: if lexica with words that have a high average featural distance from other words are

preferred because they are generally less confusable with each other, then pVp-words should

be relatively more preferred if globally similar pVb-words are absent from the lexicon.

To illustrate, consider the following hypothetical lexicon consisting only of the words {I

pap/, /pab/, /paf/, /pad/, /pat/, /pag/}. This lexicon contains one pVp-word (i.e., /pap/), two pVb-

words (i.e., /pab/ and /paf/) and three pVg-words (i.e., /pad/, /pat/, and /pag/). As I have shown

above, /pap/, /pab/, and /paf/ are all subject to dissimilatory misperception, while /pas/, /pat/,

and /pag/ are not. Additionally, /pap/, /pab/, and /paf/ are likely to be confusable with each other,

because they share a large number of featural specifications. However, if /pab/ and /puf/ are

absent from the lexicon (resulting in {/pap/, /pad/, /pat/, /pag/}), then /pap/ may still be subject to

dissimilatory misperception, but it is less likely to be confused with other words through the

misperception of features other than the place feature the identical consonants share. The

word /pap/ is still globally similar to specific other words like /pat/, but a large number of globally

similar words have been eliminated from the lexicon. The relative increase in the global

distinctness of /pap/ is, however, crucially dependent on the number of pVb-words that have
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been eliminated. If only /paf/ were unattested, globally similar /pub/ would still be present in the

lexicon and the relative advantage of /pap/ would be less pronounced.

In this study I assess one crucial prediction of this account of the relative preference for

identical consonants within words: for any given place feature, the underattestation of words

with consonants sharing that feature (e.g. the underattestation of words with two labial

consonants; pVb-words) should predict the overattestation of words with identical consonants

sharing that feature (e.g., words with identical labials; pVp-words). In other words, the extent to

which pVb-words have been eliminated, should predicts the overattestation of pVp-words.

Crucially, pVp-words should still be underattested compared to pVg-words, which are dissimilar

from pVp-words and each other, and do not trigger dissimilatory misperception.

Before I show that this prediction is indeed borne out for the 29 languages in the

WOLEX corpus that exhibit probabilistic co-occurrence restrictions on place, I show that the

hypothesized average featural distance between pVg, pVb, and pVb words actually behaves as

described above for the logically possible bi-consonantal words of English.

4.4.1 Average featural distance between word classes in English

To show that the average featural distance between pVg, pVb, and pVp words indeed behaves

as hypothesized, I computed the average featural distance between the words in those three

classes conditional on each place of articulation for the logically possible bi-consonantal words

of English. For this purpose, I assume the simple 4-valued feature system in Table 12. I assume

four places of articulation (labial, coronal, dorsal, and glottal; only /h/ is glottal), five possible

manner features (approximant=glides and liquids, affricate, fricative, stop, nasal), and two binary

features (voice, strident) for which all English consonants are specified. It should be noted that

the result does not in any way depend on the inclusion of the feature strident, which was not

considered in any of the analyses presented above. This was simply done to ensure that most

consonants are uniquely identifiable in terms of these features.
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Table 12: Assumed features for English consonants.

The average featural distance between the three word classes was computed as follows. First, I

generated all possible consonant pairs C1, C2, with the constraint that /N/ could not be in C1

and /h/, /w/, and /y/ could not be in C2. Next, I separated the resulting pairs into 3 classes for

each place feature (9 total). One class was defined as all words with identical consonants

sharing a given place feature (pVp-words), one class was defined as all words with non-identical

consonants sharing that place feature (pVb-words), and one class was defined as all words

where one consonant was specified for that place feature, while the other one was not (pVg-

words). Next, I computed the average featural distance (AFD) between the pVp-class and the

pVb-class for each place of articulation, as well as the average featural distance between the

pVp-class and the pVg-class in the following way: for every pair of words, such that one of them

is in one of the classes compared with respect to a given place of articulation and the other is in

the other, I compute the featural distance by subtracting the number of feature matches
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between the first consonants and the number of feature matches between the second

consonants of the two words from the total number of feature matches possible. For example,

the featural distance of /fVb/ and /pVp/ would be computed as follows: 8 (total number of

matches possible given the feature system above) minus 3 (the Cis /p/ and /f/ match for place,

voice and stridency) minus 3 (the C2s b and p match for place, manner and stridency) equals 2

(featural distance). I then sum across the featural distances for all between-class pairs of words

and divide by the total number of word pairs.

Comparing the results across classes for the possible CVCs of English shows the

predicted effect. For any given place feature, words with identical consonants sharing that place

feature (pVp-words) are more similar to words with non-identical consonants sharing that place

feature (pVb-words) than to words where only one consonant is specified for that place feature

(pVg-words) in terms of average featural distance. Figure 8 depicts the average featural

distance between these classes of words for labials, coronals and dorsals in English, assuming

the feature system in Table 12.
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Figure 8: Average featural distance (AFD; y-axis) between pVp and pVb classes, as well as pVp

and pVg classes for each place of articulation computed over all logically possible English CVCs

abiding by categorical phonotactics.

If the results of this case study generalize to other languages, then we can derive the following

prediction for the patterning of identity and place matches in the lexicon: if the preference for

words with identical consonants is driven by the fact that globally similar words sharing place

features are absent from the lexicon, then the absence of pVb-words should predict the

overattestation of pVp-words given the place feature they share. This prediction is assessed in

the next Sections.

4.4.2 Methods

In this study, I again analyzed the 29 languages that exhibit co-occurrence restrictions on place

features (Acholi, Daga, Dutch, English, French, German, Greek, Haitian Creole, Hausa,

Hebrew, Hindi, lamalele, Javanese, Kewa, Mountain Koiali, Maisin, Mauwake, Mengen, Muna,

Romanian, Rotokas, Sudest, Suena, Turkish, Waris, Waskia, Woleaian, Yup'ik, Zulu). The
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models fit were identical to the models described in 4.3.2 save for one modification. Instead of a

single predictor of specifying strict identity, three place-specific identity predictors were fitted.

One predictor estimated the attestation of identical labials (e.g., /b/-/bi) given the fact that they

share labial place, one predictor estimated the attestation of identical coronals (e.g., /d/-/d/)

given the fact that they share the feature coronal and one predictor estimated the attestation of

identical dorsals (e.g., /g/-/g/), given the fact that they share dorsal place.

4.4.3 Results

Once again, predictors included in the models described above were not orthogonal. A look at

the maximum VIFs for each model (Table 13) reveals that multicollinearity was indeed high for

two of the models fitted (Rotokas and Mengen). Results from these models were therefore

omitted from the results reported below.

Table 13: Maximal Variance Inflation Factor for each model.

The coefficients (estimates) for the place specific identity predictors and the place specific

feature match predictors were extracted from the remaining 27 models and another mixed linear

model was fit predicting the estimate for place-specific identity from the estimate for place-
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specific similarity (feature match predictor). This model included random intercepts and slopes

for the effect of similarity grouped by both language and language family. This was done to

control for language specific effects as well as the non-independence introduced by the family

relations between the languages studied. As predicted, we observe a significant main effect of

pVb-word underattestation on pVp-word overattestation for the specific place feature in question

(P=-1.13, t(43)=-8.28, p<.00001, X2(1)=11. 7 8 , p<.0006). The relationship between these

estimates is depicted in Figure 9.
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Figure 9: Overattestation of pVp-words given feature match (y-axis) as a function of the

underattestation of pVb-words (x-axis). Colors indicate the particular place feature in question

(red=labial, orange=coronal, yellow=dorsal). The solid black line indicates a linear fit to the data.
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It is important to note here that the estimates analyzed in terms of this cross-linguistic mixed

effects are associated with different errors in the models they were extracted from. As we have

seen in Section 4.3, not all languages exhibit significant underattestation of consonants sharing

place features for all three places of articulation. This also holds for place specific identity

predictors. Not all estimates for the relative overattestation of identical pairs of consonants are

significantly different from zero in the models they were extracted from. The results presented

here, however, also hold if we only consider data points where both the place-specific identity

predictor and the place-specific similarity predictor for a given place feature reached

significance in a given language specific model. This was the case for 20 data points from 15

languages (Greek, Kewa, Romanian, Acholi, Dutch, English, French, German, Haitian, Hausa,

Hindi, Muna, Turkish, Yup'ik, Waskia). A linear mixed effects model with random intercepts and

slopes for language and language family fitted to those 20 data points only, gives an analogous

result (P=-1.03, t(1)=-5.39, p<.00001, X2(1)=6 .79 , p<.01). This shows that the results are robust

to the error inherent in the estimates obtained for individual languages.

4.4.4 Discussion

The results show that the overattestation of words with identical consonant is probabilistically

dependent on the underattestation of words with non-identical consonants sharing that place

feature. Pairs of identical consonants are overattested given the features they share, only if

pairs of non-identical consonants are sufficiently underattested. This result constitutes evidence

for the hypothesis that words with identical consonants exist because of the absence of globally

similar words with similar consonants from the lexicon.

However, as previously noted, more work is required to pinpoint the exact effects of the

average featural distance between words on the occurrence frequencies of any individual word.

For example, the current account predicts that words like "putt", differing from words like "pup"

only in terms of a single feature change, should also be probabilistically underattested
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dependent on the attestation of "pup" words. However, it could also be the case that "putt" is in

fact preferred because it is globally distinct from a variety of other frequent words in the lexicon

in terms of its feature specifications. More research is required to extend the current account to

account for the occurrence frequencies of individual words.

The results presented here also show that pairs of strictly identical consonants are not

across-the-board exempt from constraints on non-identical sounds sharing features.

Restrictions on pairs of identical consonants are not independent of restrictions on non-identical

consonants sharing features, but rather depend on them probabilistically in different languages.

Words with identical consonants are not exempt from dissimilatory misperception and still

underattested given the occurrence probabilities of individual consonants. However, they are

globally more distinct from the rest of the lexicon than because their non-identical place sharing

counterparts are underattested, which licenses their relative over-attestation.

4.5 General Discussion

The results presented in this Chapter support the following theory of co-occurrence restrictions

on consonants: pairs of consonants sharing features are underattested because multiple

instances of those features are likely to be misperceived as single instances of those features

(Ohala, 1981). The extent to which this misperception occurs is dependent on the particular

feature shared. Ohala (1986) hypothesizes that place features are more susceptible to such

dissimilatory misperception than manner or voicing features because of the way that they

manifest themselves acoustically. The specific errors observed in Woods et al.'s (2010) study

pattern in accordance with the empirical predictions of Ohala's hypothesis.

In typology, multiple instances of the same place feature are also more strongly (within

languages) and more consistently (across languages) avoided than multiple instances of

manner or voicing, mirroring their susceptibility to dissimilatory misperception. Furthermore,

multiple instances of labiality have been shown to be particularly detrimental to CVC
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identification. Linguistic typology again mirrors this result in that multiple instances of labial

place are also least likely to occur in languages that exhibit co-occurrence restrictions on place.

Finally, the results presented above suggest that identity preference does not result from

a perceptual pressure analogous to the one disfavoring feature co-occurrence, but rather from a

pressure on the lexicon to increase the average featural distance between words. The

underattestation of consonants sharing features predicts the relative overattestation of identical

consonants matching for those features. Words with identical consonants sharing a given place

feature are globally similar to words with non-identical consonants sharing the same place

feature in terms of average featural distance. The average featural distance between words with

identical consonants and other words the lexicon is thus decreased in case words with non-

identical consonants sharing place of articulation are underattested. This allows for the

occurrence of words with identical consonants in spite of their being subject to dissimilatory

misperception. Together these results present strong evidence for the communicative function of

co-occurrence restrictions on consonants. The probabilistic patterning of feature co-occurrence

and strict identity facilitate the perception of words both independently and with respect to other

words in the lexicon.

However, the studies presented above have also shown that modal voicing in

consonants is probabilistically dependent on the voicing value of other consonants in the word

in about half of the languages that exhibit featural co-occurrence restrictions. Surprisingly, the

effect of voicing feature matches is positive: consonants in bi-consonantal words are in fact

more likely to share the same voicing value. I conclude by speculate as to the origin of this

pattern. In languages like English, two of the most important cues to voicing are Voice Onset

Time (VOT) and vowel duration (Lisker and Abramson, 1970). VOT (i.e. partial devoicing of a

vowel following a voiceless stop) is an important cue for the voicing feature of consonants

preceding vowels, while vowel duration is an important cue for the voicing value of consonants

following vowels. One could imagine that VOT and vowel duration interact in a way that would

cause post-vocalic obstruents to be likely to take on the voicing value of pre-vocalic obstruents
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in perception. If a positive VOT causes the voiced portion of the vowel following it to appear

shorter in perception, a voiced word final obstruent would be more likely to be perceived as

voiceless. Conversely, a voiceless stop would be more likely to be perceived as voiced in cases

where VOT is absent. This could explain why voicing tends to harmonize rather than dissimilate

in the languages studies. However, no perceptual effect of voicing matches was observed in the

reanalysis of Woods et al.'s (2010) study, so it remains to be seen whether a perceptual account

along these lines can explain the probabilistic voicing harmony apparent in the lexica of some of

the languages studied.
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Chapter 5 Minimal pairs in English

The previous three Chapters have presented case studies of probability distributions over

sounds in local (Chapters 2 and 3) and non-local (Sections 4.2, 4.3) context. I have argued that

the specific patterning of these categories follows from considerations of communicative

efficiency. Given the specific noise introduced by the way humans articulate and perceive

speech, the probabilistic phonologies of different languages present an efficient code for

achieving capacity in the human language channel. Building on the results for strictly identity

presented in Section 4.4, which show that the probabilistic attestation of a particular class of

words (i.e., words with identical consonants) is dependent on the underattestation of a class of

globally similar words (i.e., words with consonants sharing place features), I show that

communicative efficiency in natural language phonology goes further: not only the distributions

of individual sounds in local and non-local context are subject to communicative efficiency, but

also the particular contrasts distinguishing among words. I present evidence for this hypothesis

from the probabilistic patterning of the minimal pairs of English.

5.1 Introduction

Communicative efficiency has repeatedly been shown to shape linguistic structure as well as

drive linguistic behavior (see e.g., Jaeger 2010, and references therein). One particularly

striking instance of this phenomenon is the global organization of the lexicon (i.e., the set of

words encoding the meanings of a language): frequent words are generally shorter than

infrequent ones (Zipf 1939, 1949). Recently, Piantadosi et al. (2011) have shown that word

length is even more strongly correlated with a word's average predictability in context. This

property of the lexicon achieves a more optimal code for communication by i) minimizing effort

by keeping predictable and thus easily recoverable words short, and ii) allowing for the accurate

identification of unpredictable words through added phonological material, thus keeping the
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average amount of information communicated uniform over time (cf. Shannon 1948, Aylett and

Turk 2004, Levy and Jaeger 2007).

However, an increase in word length does not necessarily entail an increase in

recoverability. Words may also be more difficult to recover because of their similarity to other

words in the lexicon. For example, words with more phonological neighbors (i.e., other words in

the lexicon with edit distance equal to 1; e.g., cap is a neighbor of clap) have been shown to be

more slowly and less accurately accessed in word identification (Luce 1986, Luce and Pisoni

1998), lexical decision (Luce, 1986) and word repetition (Vitevitch and Luce, 1998) tasks. In this

Chapter, I ask whether and how the perceptual confusability of words affects the global

organization of the English lexicon.

The recoverability of a word crucially depends on its phonological composition relative to

other words in the language. The phonological contrasts distinguishing words should therefore

be highly perceptible to allow for the accurate recovery of any particular word from the signal.

For example, a word like bought, is unlikely to be confused with a word like taught, because

these words are distinguished by the highly perceptible /b/:/t/ contrast, which is unlikely to be

misperceived by the listener (Miller and Nicely, 1955). In contrast, fought is likely to be confused

with thought, because the /f/:/e/ contrast distinguishing them is much less perceptible (Miller and

Nicely, 1955). In a communicatively efficient language, minimal pairs like fought:thought should

therefore be less likely, while minimal pairs like bought:taught should be more likely to occur. In

other words, for any given language, the phonological composition of words should render them

minimally confusable with each other. The current study evaluates this prediction for the minimal

pairs of English.

Preliminary evidence for the avoidance of perceptually confusable linguistic units in

human language comes from a variety of studies of the typology of contrasts in phonological

grammars. Both, inventories of sounds (Trubetzkoy 1939, Hockett 1955, Martinet 1955,

Liljencrants and Lindblom 1972, Lindblom and Maddieson 1988, Flemming 2002, Campos-

Astorkiza 2007, Ni Chiosain and Padgett 2009) and inventories of sounds in context (Ohala
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1990, Steriade 1999, Flemming 1995, 2002, Padgett 2003, Jun 2004) are biased in favor of

perceptual distinctness.

However, relatively little work has so far investigated the perceptual distinctness of

words as a property of the lexicon. One recent study showed that stressed syllables are more

informative of the identity of a word than the unstressed syllables in English, German, Dutch,

Spanish and Hawaiian (Piantadosi et al., 2009). Piantadosi and colleagues hypothesize that this

property of the lexicon facilitates communication given the assumption that stress increases the

perceptibility of the sounds. If stressed syllables are more accurately perceived, and on average

more diagnostic of the particular word being uttered, then words become more perceptually

distinct and thus more recoverable than if diagnostic properties clustered in stressless syllables

or were evenly distributed between stressed and stressless syllables.

Piantadosi et al.'s (2009) finding, however, is expected given the phonetic properties of

stress. Giavazzi (2010) shows that increase in duration, loudness, and subglottal pressure due

to stress enhances perceptibility for particular properties of speech sounds such as vowel

duration and quality, causing the preservation of phonological contrasts otherwise neutralized in

stressless contexts (e.g., stress-conditioned neutralization of vowel contrasts; Beckman 1997,

Crosswhite 2001, a.o.). This in turn results in larger segmental inventories for stressed syllables,

making them more varied and raising their information content. Stressed syllables are thus

expected to be more informative of the particular word uttered than unstressed syllables, solely

by virtue of the distributional properties of individual sounds (Altman and Carter, 1989).

In order to conclusively demonstrate that the lexicon as a whole is optimized for the

recoverability of words relative to each other, it is therefore necessary to show that contrast

enhancement for words goes beyond what is expected from the well-established effects of

contrast enhancement for sounds. Such a demonstration would constitute evidence for the

effects of communicative efficiency on the lexicon analogous to the patterning of word length

identified by Piantadosi et al. (2011).
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5.2 Methods

In the current study I use the minimal pairs (i.e., words relying on a single contrast for

distinctness; e.g., bought:taught) of English, a language for which confusability data on

individual sounds are readily accessible (Miller and Nicely, 1955). I use a log-linear model to

predict the number of minimal pairs in word-initial pre-vocalic context (#_V) for the 120 binary

contrasts among the 16-member subset of English consonants that were compared in Miller and

Nicely's (1955) seminal study of consonant confusability. If the lexicon is globally organized for

communicative efficiency, then English words should preferentially rely on more perceptible

contrasts for distinctness. I first outline how the perceptual distinctness of phonological contrasts

in word-initial pre-vocalic context (#_V) was estimated from Miller and Nicely's (1955) data.

5.2.1 Estimating Symmetrical Confusability from Miller and Nicely's Data

Miller and Nicely (1955) asked subjects to identify 16 English consonants (/p/, /t/, /k/, /ff, /E/, /s/,/

f/, /b/, /d/, /g/, /v/, /6/, /z/, /3/, /m/, /n/) in word-initial pre-vocalic context (i.e., CV-syllables with the

vowel /a/, as in English father). Frequency spectra were filtered with various high-pass filters

(200Hz-4500Hz) and low-pass filters (300Hz-6500Hz). For trials played at the full frequency

spectrum (200Hz-6500Hz), signal-to-noise ratios (SNRs) ranged from -18db to +12db (in 6db

increments), resulting in 6 conditions at the full frequency spectrum and 17 conditions total. Five

subjects each took turns as talkers and listeners. Listeners were asked to identify the particular

consonant uttered from the 16 consonants compared. Each talker uttered 200 syllables to four

listeners resulting in a total of 800 responses for each talker and 4000 responses for each

condition.

The resulting confusability matrices (Miller and Nicely 1955: 340-345) were extracted

and aggregated into a single matrix by summing over all SNRs, considering only responses

given to stimuli at the full frequency spectrum (200-6500Hz). A maximum-likelihood fitted biased

choice model (Luce 1963, Smith 1982) was used to calculate a symmetrical confusability
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estimate for each combination of sounds while controlling for subjects' inherent response biases

for different categories. The biased choice model (Luce, 1963) is given below:

P(R |Si ) =
Zk lkrik

The probability that a stimulus Si will trigger response Rj, P(RjSi), is defined as the

response bias si times the symmetric similarity of Si and Rj, gij, normalized by a constant equal

to the sum over all response biases times the similarities between Si and all possible responses.

These parameters may be estimated using a maximum-likelihood-fitted log-linear model

(Poisson regression) predicting the log-number of responses of one sound given another (log

(RilSi)) from one dummy-coded parameter for each stimulus (Si), one dummy-coded parameter

for each response (Rj) and one dummy-coded parameter for each unique unordered stimulus-

response pair (fij).

The resulting confusability measures log(ij) are given in Table 14. Here, small numbers

correspond to high confusability or low perceptual distinctness (e.g., the distinctness of /f/:/e/

equals 0.85), while large numbers correspond to low confusability or high perceptual

distinctness (e.g., the distinctness of /b/:/t/ equals 4.37).
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Table 14: Symmetric confusability

likelihood fitted biased choice mo

of 16 English consonants

del of the aggregated dat

estimated using a maximum-

a in Miller and Nicely (1955).

Numbers closer to zero indicate higher confusability. Values in the upper half are identical to

values in the lower half of the table.

I now outline how minimal pairs and control predictors were calculated based on the CELEX2

corpus of English (Baayen et al. 1996).

5.2.2 Computing Minimal Pairs and Controls

Minimal pairs for a contrast x:y in word-initial pre-vocalic context (#_V) were computed by taking

the number of phonologically unique lemma types in the CELEX2 English Phonology Lemma

corpus (Baayen et al. 1996) and subtracting the number of unique lemma types remaining if x

and y were no longer distinct in word-initial pre-vocalic context (#_V).

To illustrate how I control for the expected probability of observing a minimal pair for x:y

given the distributional properties of x and y, consider the examples of bought:taught and

fought:thought from above. Recall that communicative efficiency predicts that pairs like

bought:taught should be likely, while pairs like foughtthought should be less likely. This is in fact
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the case in English. There are 127 lemmas relying on /b/:/t/ in word-initial pre-vocalic context

(#_V; e.g. boughttaught, bow:toe, etc.), while there are only 12 lemmas relying on /f/:// in this

context. However, this finding does not yet imply that there is global optimization of the lexicon

for the recoverability of words. In particular, this difference could simply result from differences in

the number of lemmas featuring these particular sounds in the relevant context. Indeed,

although many unique lemmas have /b/, /t/ and /f/ in word-initial pre-vocalic context (2928, 2273

and 2866 words respectively; Baayen et al. 1996), only 335 lemmas have /E/ in this position. 15

Consequently, it is important to control for base frequencies of different sounds in order to draw

inferences about differences in the extent to which minimal pairs rely on particular contrasts.

Under the null hypothesis that the number of minimal pairs is only dependent on the

number of the words featuring the individual contrasting sounds, the probability of a minimal pair

for x:y, P(MPx:y), will be proportional to the probability of a word featuring x (P(Wx)) times the

probability of a word featuring y (P(Wy)) in context:

P(MPx:y) Oc P(Wx)P(Wy)

This assumes for simplicity that the probability of words matching on all other properties (thus

creating a minimal pair) is some constant (see Discussion). With this equation, the log-count of

minimal pairs is then proportional to the log-count of words featuring x plus the log-count of

words featuring y plus some constant, giving the following regression:

log(MPX:y) = /0+/1(log(P(WX))+log(P(Wy)))

where Po and Pi are the intercept and the coefficient for the sum of the log-counts respectively.

However, to be maximally conservative, I allow the contributions of words with sound x and

words with sound y to vary independently by including one control predictor specified for the log-

frequency of unique lemma types featuring the more frequent sound x (e.g., /f/, the less frequent

member of the pair /f/://) and another control predictor specified for the log-frequency of unique

15 It is also very likely that these frequencies derive themselves from communicative efficiency. On
average, /T/ is one of the most confusable sounds of English (see Table 14) and its relative infrequency in
the English lexicon may very well be due to that fact that /T/ is frequently misperceived.
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lemma types featuring the less frequent sound y (e.g., /6/, the more frequent of the pair /f/://)

as in:

log(MPx:y) = #+ 1 i log(P(WX))+,3 2 1og(P(Wy))

which can fit a wider range of relationships. This means that the influence of frequency is fit as

generally as possible, meaning that a further effect of confusability must be robust in order to

show up as a significant predictor in the regression.

5.3 Results

I fit a maximum-likelihood fitted log-linear model, predicting the log-count of minimal pairs in the

CELEX2 English Phonology Lemma corpus for each of the 120 unique binary contrasts

between 16 consonants compared in Miller and Nicely's (1955) study in word-initial pre-vocalic

context from perceptual similarity and controls. All predictors were centered. Model

multicollinearity was not an issue. Because only two lemmas in CELEX2 feature /3/ in word-

initial pre-vocalic context and because there exist no minimal pairs for 14 out of the 15 contrasts

involving /3/, I report results for the 105 contrasts without /3/ below (results still hold when the 15

contrasts involving /3/ are included in the analysis).

As expected, the number of minimal pairs for each contrast increases significantly with

the number of lemmas featuring the less frequent sound (P=0.61, z=36.7, p<.00001, X2(1)

=1885.23, p<.00001) as well as with the number of lemmas featuring the more frequent sound

(P=0.25, z=7.43, p<.00001, X2(1)=56.36 , p<.00001). Critically, we observe the predicted effect of

perceptual distinctness, such that the number of minimal pairs for each contrast increases

significantly with their perceptual distinctness beyond what is expected from the individual

frequencies of sounds (P=0.06, z=3.58, p<.0005, X2(1)=1 3 .09, p<.0005). Figure 10 shows the

relationship between the log-count of minimal pairs and perceptual distinctness for 105 binary

contrasts, excluding those involving /3/.
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Figure 10: Log-count of minimal pairs (y-axis) plotted against perceptual distinctness inferred

using a maximum-likelihood fitted Biased Choice Model of Miller and Nicely's (1955) data (x-

axis; numbers closer to zero indicate higher confusability). The black line indicates linear fit of

perceptual distinctness to log-count of minimal pairs.

5.4 Discussion

These results establish a direct link between the distinctness of words in the lexicon and the

perceptual distinctness of the sounds that compose them, as indicated by the significant effect

of perceptibility on the number of attested minimal pairs, after controlling for base frequencies of

the relevant sounds. This finding provides support for the hypothesis that the global organization
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of the lexicon of English is optimized for the recoverability of individual words, beyond what is

expected from the distributional properties of individual sounds. These results add to the

growing body of recent evidence suggesting that the lexicon is globally optimized to allow

language to fulfill its communicative function (e.g., Piantadosi et al. 2009, 2011).

The result presented above is subject to four important qualifications. First, the current

study only assesses the effect of perceptibility on lexical contrast in a single phonological

environment and for a single language. In Chapter 6, I show that the observed effect also

generalizes to phonological environments other than word-initial pre-vocalic context and

languages other than English.

Second, the number of minimal pairs for a given contrast can only serve as a first

approximation for the real-life confusability of different words in language usage. The number of

minimal pairs estimated on lemma types does not take into account the probability of the two

minimally distinguished words to actually be confused by the listener, which is dependent on

contextual information and the usage frequency of the individual words. Future work will

investigate how the probability of different words and the probability of different word pairs

occurring in the same linguistic context relates to the perceptual confusability of the sounds that

distinguish them.

Third, the independent occurrence frequencies of the two contrasting sounds only

present approximate controls for the different factors that may affect the probability of observing

a minimal pair. Specifically, probabilistic co-occurrence restrictions between consonants in word-

initial pre-vocalic context and the vowels that follow them, as well as long-distance phonotactics

(Chapter 4) between them and other sounds in the word may limit the a priori ability of different

pairs of consonants to solely distinguish among words. Future work will attempt to devise more

precise estimates for the expected number of minimal pairs given the distribution of different

sounds by employing a full generative model of phonotactics.

Fourth and finally, one may ask why a communicatively efficient language would have

minimal pairs at all. Word-confusability would be even lower if minimally distinct word pairs were
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completely avoided. However, it should be noted that avoiding minimal pairs completely will

severely conflict with other communicative pressures such as having short words, which are

preferred because they allow for a greater rate of information transmission per unit of time.

Assume, for example a language with 10 consonants and 5 vowels. In such a language, there

exist 500 possible CVCs (10 consonants times 5 vowels times 10 consonants; assuming no

phonotactic restrictions on the occurrence of sounds). However, in case none of them were

allowed to constitute a minimal pair with any other word, there could at most be 44 CVCs (8.8%

of logically possible words) in the language. The existence of minimal pairs is therefore

necessary to allow for a sufficient number short words in any given language.
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Chapter 6 Word contrast across languages

6.1 Introduction

In the last Chapter, I showed that the effects of communicative efficiency on phonology go

beyond the relative distributions of individual sounds in context. The global composition of the

English lexicon is organized such that words preferentially rely on perceptible contrasts for

distinctness. That is, perceptible contrasts such as /b/:/t/ are much more likely to distinguish

solely among words than imperceptible contrasts such as /f/:/e/, which tend to be further

disambiguated by additional phonological material. In this Chapter, I show that analogous

effects also hold for the other languages in the WOLEX corpus. Because primary confusability

data is not available for most of the languages in the corpus, I infer perceptibility hierarchies for

different phonological oppositions in context from perceptual studies and categorical phonology.

I show that the number of words relying on these oppositions increases with their perceptibility,

beyond what is expected from the distributional properties of individual sounds. That is, words

rely more on phonological contrasts in phonological contexts where those contrasts are readily

perceived by the listener beyond what is expected from the frequency of the relevant contexts

and probability distributions over individual sounds in those contexts. I argue that these findings

support the hypothesis that the phonological lexica of natural languages are globally optimized

for the recoverability of words as expected from communicative efficiency.

The particular studies presented in this Chapter focus on major place contrast in

obstruents in different phonological environments. 16 The general finding is that word contrast in

the languages in the WOLEX corpus patterns as expected given the hypothesis that the lexicon

is globally organized to increase the chance of the listener to accurately recover words intended

by the speaker relative to other words in the lexicon. The perceptibility of a contrast in context

16 Other place contrasts, such as, e.g., contrasts between retroflex and dental/alveolar coronals are cued
in ways that differ crucially from the ways in which different major place features are cued. Only two
languages in the WOLEX corpus exhibit such contrasts (Arrernte and Hindi). These languages were not
analyzed in any of the studies reported here.
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predicts the probability that that contrast will exclusively distinguish among words. In the first

study, I compare the extent to which words rely on place contrasts in fricatives to the extent to

which they rely on place contrasts in stops for distinctness, in both word-initial prevocalic (#_V)

and word-final postvocalic (#_V) context. The ways in which place in stops and fricatives is cued

differs crucially. The place of articulation of fricatives is perceptually cued by the frequency

spectrum of frication noise for the entire duration of the fricative as well as formant transitions

apparent in fricative adjacent vowels. The place of stops on the other hand is cued by a

relatively short release burst, making formant transitions in stop-adjacent vowels essential for

the perception of place in stops (Wright, 1996). I find that minimal pairs for place in fricatives

pattern uniformly in word-initial and word-final position, while minimal pairs for place in stops

exhibit an asymmetry. Place in word-initial stops distinguishes more words than place in word

final ones. I argue that this difference is due to the fact that CV transitions are more perceptually

salient than VC transitions (Fujimura et al. 1978) and that this difference affects stops more than

fricatives due to the greater reliance of stops on transitional cues (Hume 1998, Steriade 2001).

In the second study, I generalize this result to stops in four broadly defined word-medial

contexts. Studies of the perception of place contrast in stops support a four-tiered hierarchy for

the perceptibility of place in word-medial context, such that place is most perceptible

intervocalically (VV), followed by prevocalic postconsonantal context (CV), followed by

postvocalic preconsonantal context (VC), followed by interconsonantal context (CC). Again,

minimal pairs cluster in accordance with perceptibility instantiating the same four-tiered

hierarchy for the extent to which words in the lexicon rely on place contrast in stops in the four

contexts.

While this general result is encouraging, it is well-known that the effects of different stop

adjacent consonants and vowels differ strongly in terms of their effects on the perceptibility of

place (Jun, 2004). High vowels render formant transitions cueing different places of articulation

more similar to each other than low vowels do (Marty, To appear). Furthermore, while stop-

adjacent obstruents do not allow for transitional cues, approximants (glides and liquids) do (e.g.,
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Kawasaki 1982, Flemming 1995, 2007). The third and fourth studies address these questions in

turn. I show that minimal pairs preferentially rely on place contrast in stops adjacent to low

vowels (e.g. /pa/:/ta/) rather than high vowels (e.g., /pi/:/ti/). I also show that minimal pairs

preferentially rely on place contrast in word-initial stops before approximants (e.g., /pra/:/tra/)

than before obstruents (e.g., /psa/:/tsal), in the languages that contrast stops in both contexts.

Together, these results support the hypothesis that the global organization of the lexicon is such

that words are more likely to rely on highly perceptible contrasts for distinctness.

As previously outlined in Chapter 5, is it important to control for the independent effects

of the distributions of individual sounds when studying word contrast. This is because frequency

asymmetries in the attestation of individual sounds in context may make it a priori more or less

likely for words to exclusively rely on them for distinctness. Recall from Chapter 5, that we

expect more words to rely on contrasts like /b/:/t/ involving two frequent sounds, than contrasts

like /f/:/e/ involving the infrequent sound /0/. As Chapters 2, 3 and 4 have shown, the probability

distributions over individual sounds in context are also geared towards achieving communicative

efficiency. Perceptible structures are thus a priori more likely to occur than imperceptible ones.

We therefore need to control for the frequency distributions of individual sounds before drawing

conclusions about contrast between words in the lexicon. How this was done, and how the

extent to which words rely on a given contrast for distinctness was measured, is outlined in the

next subsection.

6.1.1 Computing word-loss and controls

The specific measure compared throughout this Chapter is the measure of word types lost. This

measure quantifies the extent to which words in the lexicon rely on a given contrast for

distinctness, as the number of distinct word types lost given the obliteration of some contrast

from the lexicon. This measure is different from, and simultaneously related to traditional

measures of the functional load of different contrasts (Hockett 1995, Surendran and Niyogi

2003). These other measures, however, require an actual corpus of connected speech to be
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computed (Surendran and Niyogi, 2003). Lacking such corpora for the vast majority of

languages in the WOLEX corpus, I focus on word types lost as an approximation of said

measures, which can be computed from a list of unique types only.

I now briefly exemplify how the measure of word types lost was calculated: take the

number of unique phonological word types in the lexicon where some contrast C exists and

subtract the number of distinct word types remaining in a lexicon where C has been eliminated.

For example, the hypothetical lexicon {/pat/, /pat/, /kat/, /sat/} has 4 words but only 3 distinct

word types /pat/, /kat/ and /sat/ (/pat/ is the phonological exponent of two meanings in this

lexicon). The merger of word initial place contrast results in the lexicon {/Tat/, /Tat/, /Tat/, /sat/},

where /TI is again a voiceless stop that is not specified for place. The number of distinct word

types in this new lexicon is now 2. Subtracting 3 from 2 we get 1, which is the number of word

types lost due to the obliteration of word-initial place contrast in this hypothetical lexicon. Next, I

show how I controlled for the expected number of word types lost given the independent

distributions of different sounds in context.

Recall from Chapter 5 that the probability of a minimal pair for some contrast is

dependent on the frequencies of the different sounds involved in that contrast. For example, the

greater the number of /t/'s in word-initial context is, the greater the chance of observing a

minimal pair for a contrast involving /t/ will be. However, the probability of observing a minimal

pair also depends on the frequency of the other consonant involved in the contrast. In cases

where all oppositions compared are binary, it is simple to model both the frequency of the more

frequent sound and the frequency of the less frequent sound as I have done in Chapter 5.

However, when the number of categories compared differs depending on the language this is no

longer possible. Instead, I choose two computationally simple aggregate measures that return a

single value for every context compared, to control for the effect of the distributional properties

of individual sounds on the number of word types lost. It should be noted here that both of these

measures always show highly significant effects on the measure of word types lost in the

studies reported below. This shows that the two control measures utilized are indeed
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successfully capturing a large and significant amount of the context dependent variance in word

types lost.

The first control measure utilized is simply the frequency of the context in which the

feature values in question contrast. For example, in a hypothetical language consisting only of

the words {/sat/, /hat/, /pat/, /kat/} the frequency of word initial stops is 2, which would be the

value for context frequency if, for example, place contrast in word initial stops were compared.

The potential number of word types lost due to merger of some contrast in context directly

depends on how often that context occurs in the lexicon. Every instance of a context in which a

contrast is merged is a chance for losing a word type. For example, if a languages has 10

distinct word types with stops in word-initial context, 5 of which begin with /p/ and 5 of which

begin with /t/, then the maximal number of word types lost due to merger of place in word-initial

stops 5. In that case, every word beginning with /p/ would have a minimally distinct counterpart

beginning in /t/. However, if there exist 100 distinct word types that begin with stops, half of

which begin with /p/, and half of which begin with /t/, then the maximal number of word types

lost due to merger of word-initial place would be 50. The maximal number of word types lost is

thus a direct function of the number of words that feature the contrasting sounds in the relevant

context. I therefore include context frequency as a control predictor in all models reported below.

However, context frequency is not the only factor involved in losing a word type. Assume

again that there are 10 distinct word types beginning with either /p/, or /t/. If only one of these

word types exhibits /p/ then the potential for word type loss is smaller than implied by the

frequency of the context. The reason for this is that /p/ is so infrequent that merging it with /t/

has relatively little effect on the lexicon, irrespective of how frequently stops occur in word initial

context. The potential number of word types lost is greatest if /p/ and /t/ are exactly equally

frequent. This would potentially allow for every single word with /p/ to form a minimal pair with

another word with /t/. We thus need a measure that is high given equiprobability of contrasting

categories in context and low in cases where some categories are more frequent than others.

The measure I use for this purpose is the Shannon entropy (Shannon, 1948) over the probability
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distribution of possible feature values in context. The formula for Shannon entropy is given

below:

n

- ZP(xi) 1og 2 P(Xi)
i=1

This measure will be high in cases where contrasting categories are equally likely and low in

cases where some feature values are more frequent than others. For example, if there are three

contrasting categories in a given context, and all of those categories are equally likely (i.e., have

probability 1/3), the Shannon entropy of the probability distribution over categories will be 1.58.

However, if one category is much more likely than the others the Shannon entropy over the

probability distribution of categories will be low. For example, if one category occurs with

probability .8 in a given context, while the other two categories occur with probability .1, the

Shannon entropy of the resulting probability distribution would only be 0.92.

Additionally, this measure also constitutes a partial control for categorical constraints on

possible feature values in a given context. In word-initial pre-/l/ context, for example, English

only contrasts /p/ and /k/, and not /t/, which is expected to negatively affect the number of word

types lost due to obliteration of place contrast before Il/. Such effects are partially accounted for

by the Shannon entropy, because this measure also behaves as a function of the number of

possible values a random variable can assume. For example, the Shannon entropy of a

uniformly distributed random variable with two possible values (each probability .5) is 1, while

the entropy of a uniformly distributed random variable with three possible values (each

probability 1/3) is 1.58. Differences in the number of categories in context licensed by the

categorical grammar are therefore partially accounted for by the measure of contrast entropy.

However, it is important to note here that the measure of contrast entropy equates the effects of

categorical and gradient restrictions on feature distributions. That is, the lack of a given category

in context, may have the same effect on contrast entropy as a certain skewing of the distribution

of possible feature values. It therefore remains an open question whether the measure of
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contrast entropy is sufficient to fully account for the expected word loss due to both partial

categorical and gradient constraints on possible feature values in context.

All models presented below include context frequency and contrast entropy as predictors

in models of word types lost. In all models, these two measures have highly significant positive

effects on the number of word types lost. As the frequency of the context and the entropy of the

contrast increases, the number of word types lost for any given contrast also increases. These

results are reassuring given that the number of word types lost probably depends on a wide

variety of phonotactic factors. The fact that the control measures have highly significant effects

in the predicted direction shows that these measures capture a significant portion of the

phonotactic variance associated with word type loss in each of the studies reported. However, it

is of course possible, if not likely that many other phonotactic factors affect the measure of word

type loss in any given language. Rather than including individual controls for these factors in a

parametric model of word type loss, one could, for example, resample entire lexica according to

a generative model of phonotactics to see whether the actual word loss observed is greater or

smaller than expected given this model. Currently lacking such a model, I here pursue the

parametric approach outlined above and leave pinpointing the potential effects of other

phonotactic factors on word loss due to merger of a given contrast in context for future research.

The fundamental question posed by each of the studies reported below is whether

asymmetries between the contexts investigated go beyond what would be expected from

context frequency and contrast entropy. We thus ask: is the lexicon globally organized in a way

such that words are more likely to rely on perceptible contrast for distinctness? Another way of

putting this question is: are imperceptible contrasts between words generally further

differentiated by additional phonological material, or, in other words, is the redundancy in the

phonological code sensitive to perceptibility?

I begin by comparing the number of word types lost due to the elimination of place

contrast in stops and fricatives at the word edges.
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6.2 Stops and fricatives at the words edge

Fricatives and stops differ in terms of how their place of articulation is cued. Stops (e.g., /p/, /t/, /

k/) by themselves have few and ineffective internal cues to their place of articulation: only the

duration of the closure and the frequency composition, amplitude, and duration of the stop's

burst, cue the place feature of a stop in isolation or when adjacent to word boundaries (Malecot

1958, Winitz et al. 1972, Dorman et al. 1977). Additionally, burst cues are only available in

cases where stops are audibly released and whether or not stops are released varies greatly

depending on phonological context and the language in question. However, when stops are

adjacent to vowels, additional cues to place become available. In particular, formant-transitions

apparent in adjacent vowels constitute important cues to a consonant's place feature (Delattre

et al. 1955). Cues to fricative place, however, are apparent in the noise frequency spectrum

throughout their articulation (Wright, 1996). This makes place in stops rely more on transitional

cues apparent in adjacent vowels than fricatives do.

Evidence for phonological effects of these acoustic asymmetries comes from the study

of metathesis (Hume 1998, Steriade 2001). S/IT-clusters (where "I' indicates either order of

stop and fricative; e.g. /st/ or /ts/) tend to metathesize in ways predicted by perceptibility. In

Dutch child speech, for example, words like, "psychologe" /psyXoloye/, meaning "psychologist,"

surface as [spyXoloye] with word initial stops before fricatives metathesizing to become vowel-

adjacent. The same pattern is observed for S//T-clusters in word-final position. The word

"weps" [vesp], meaning "wasp", is pronounced as [veps] by Dutch children, with the stop at the

word-edge metathesizing again to become vowel-adjacent. A similar pattern is observed in

colloquial English where "ask" surface as [eks]. Hume (1998) and Steriade (2001) attribute this

to the greater reliance of stops on vowel transitions to cue their place. While the place of the
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metathesizing fricative is well cued in terms of frication noise, whether it's vowel adjacent or

not, the place of a stop is much more perceptible, when said stop is located next to a vowel. 17

A particularly interesting case is presented by metathesis in intervocalic clusters. In

Modern Herbrew, for example, underlying /it-saper/, surfaces as [istaper] meaning "he got a

haircut" (Kenstowicz and Kisseberth, 1979). While the stop in intervocalic S//T-clusters is

already vowel adjacent metathesis is still observed. However, intervocalic S//T metathesis is a

one way street: stops only ever metathesize to become prevocalic, rather than postvocalic.18

Hume (1998) and Steriade (2001) attribute this to the greater perceptual salience of CV

transitions apparent in vowels following stops compared to VC transitions apparent in preceding

ones.

Perceptual studies have shown that the importance of transitional cues for the

identification of place differs depending on whether they follow or precede the stop in question.

Outgoing CV transitions apparent in the frequency spectrum of following vowels are more

accurately identified than incoming VC transitions in the frequency spectrum of preceding

vowels (Repp 1978, Ohala 1990, Wright 1996, Redford and Diehl 1999, Kochetov 2004). This

is particularly apparent in cases where incoming and outgoing transitions have been made to

differ through cross-splicing: in cases where incoming and outgoing transitional cues to place

conflict, listeners overwhelmingly perceive place in accordance with the outgoing transitions

(Fujimura et al., 1978).

Intervocalic S//T-clusters thus also metathesize to put stops in positions where cues to

their place are most perceptible. Postvocalic stops are placed in prevocalic position, where

perceptually salient CV transitions cue their place. Fricatives, however, are less sensitive to

17 Furthermore, there also exists an implicational universal such that the categorical attestation of word-
initial stop-fricative (e.g., /#tsa/) and word-final fricative-stop (e.g., /ast#/) clusters implies the attestation of
word-initial fricative-stop (e.g., /#sta/) and word final stop-fricative (e.g., /ats#/) clusters respectively,
constituting further evidence for the phonological effects of the differences between stops and fricatives in
terms of their reliance on adjacent vowels (Donca Steriade, p.c.).

18 Except in Old English, where intervocalic S//T clusters have metathesized to become stop-initial. This
exception may, however, be explained due to the location of stress in Old English words (Blevins and
Garrett, 2004).
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whether they occur in pre- or postvocalic position because cues to their place are apparent

throughout their articulation regardless of position.

Given these asymmetries, we may derive the following prediction from the hypothesis

that words should preferentially rely on perceptual contrasts for distinctness. Since stop-place is

more perceptible in prevocalic than in postvocalic context, we should find that words

preferentially rely on stop place in prevocalic rather than postvocalic context for distinctness.

Overall fricatives, however, exhibit less of an asymmetry in this respect (Redford and Diehl,

1999), although individual fricatives may depend more (e.g., /v/) or less (e.g., /s/) on transitional

cues in adjacent vowels. Since fricative place perception is less dependent on the particular

environment in which the fricative in question occurs, word contrast for place in pre- and

postvocalic fricatives should pattern more uniformly in pre- and postvocalic context. Crucially,

these asymmetries should hold while controlling for the distributional asymmetries between

different stops and fricatives in the relevant contexts.

6.2.1 Methods

I computed word types lost given the elimination of major place feature distinctions (bilabial,

dental/alveolar, palatal, velar, uvular) in stops and fricatives in word-initial prevocalic and word-

final postvocalic context for all languages in the WOLEX corpus. Data from languages

contrasting retroflex and dental/alveolar coronals (Hindi and Arrernte) were omitted from the

analysis because the perception of such distinctions does not preferentially rely on prevocalic

formant transitions (Steriade, 2001). Furthermore, only observations from contexts in which

there exists at least one minimal pair for place (i.e., where contrast entropy, context frequency,

and word types lost are all greater than zero) were included in the analysis. Finally, all

languages in which no more than one of the four contrasts compared feature a minimal pair

were also excluded from the analysis.19 This left data from 49 languages (Acholi, Alekano,

19 Some languages included in the analysis do not feature obstruents in word-final context (e.g., Mandarin
Chinese). However, differences in the number of word types lost due to merger of place contrast in
fricatives and stops in word initial context in those languages are still informative of the general cross-
linguistic pattern.
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Amharic, Armenian, Ata, Ayacucho Quechua, Bargam, Chickasaw, Dadibi, Daga, Delaware,

Dutch, English, French, Georgian, German, Greek, Guarani, Haitian Creole, Hausa, Hebrew,

lamalele, Javanese, Khmer, Lake Miwok, Lithuanian, Maisin, Mandarin Chinese, Mauwake,

Mianmin, Moroccan Arabic, Mountain Koiali, Muna, Muyuw, Polish, Romanian, Sepik Mende,

Siroi, Sudest, Tatar, Thompson Salish, Turkish, Waffa, Wantoat, Waris, Waskia, Woleaian,

Yup'ik, Zulu) for analysis.

6.2.2 Results

I fit a maximum likelihood fitted log-linear mixed effects model (Poisson regression) predicting

word types lost from log-context frequency, contrast entropy, as well as phonological context

(#_V, V_#), obstruent manner (stop, fricative) and their interaction. Both binary predictors were

sum-coded and centered. Both numerical predictors were centered. To control for language-

relatedness and language-specific effects, I include random intercepts for language and major

language family as well as random slopes for all fixed effects grouped by language and random

slopes for log-frequency, context, manner, and their interaction grouped by language family.20 As

expected we find significant effects of the control variables. The number of word types lost

increases both with the log-frequency of the context (P=1.02, z=13.52, p<.00001) and the

entropy of the contrast in context (P=1.55, z=9.15, p<.00001). Additionally, we find no overall

effect of phonological context (P=-0.12, z=-1.32, p=.19), such that word loss in word-initial

position is overall as likely as word loss in word loss in word-final position. Further, we find an

effect of obstruent manner (P=0.21, z=2.13, p<.05) such that word loss due to merger of place

in stops is greater than for word loss due to merger of place in fricatives overall. Finally, we find

the predicted interaction of manner and phonological context (P=0.26, z=2.09, p<.05), such that

the difference between the numbers of word types lost in word-initial and word-final contexts

20 A model with an additional random slope for contrast entropy grouped by language family did not
converge.
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was greater for place contrasts in stops. Figure 11 depicts the log-number of word types lost for

the different contexts compared across all 49 languages included in the analysis.
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Figure 11: Log-number of word types lost for place contrasts in stops (right) and fricatives (left)

depending on phonological context (word-initial prevocalic in red; word-final postvocalic in blue).

Error bars indicate 95% confidence intervals.

6.2.3 Discussion

The results show that word contrast dependent on place in stops preferentially relies on place in

stops in word-initial prevocalic position. This mirrors asymmetries for the perceptibility of place

in stops in those contexts (e.g., Redford and Diehl, 1999). Fricatives, however, pattern more

uniformly in the two contexts. This can be explained by the fact that the perception of fricative

place relies on formant transitions to a lesser extent. Consequently, the perception of place in

fricatives is less dependent on the particular context in which the fricative occurs.
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Additionally, we do not find an overall effect of context on word types lost for stops and

fricatives. While the number of word types lost due to merger of place in fricatives is greater

word-initially than word-finally, this difference is not significant. This is unexpected given that a

lexicon in which words rely on word initial contrasts for distinctness would allow listeners to

recognize the meanings intended by the speaker more quickly. However, the lack of this effect

could simply be due to a general dispreference for words to rely on fricative place for

distinctness (see below). In order to determine the effects of context independently of

perceptibility more fully, we would need to compare a variety of contrasts in word-initial and

word-final context. I leave such an investigation for future research.

Finally, we also find an overall effect of manner, such that word distinctions depending

on place in stops are generally more likely than word distinctions depending on place in

fricatives. This could be explained if place is generally more perceptible in stops than in

fricatives. Whether this is indeed the case depends on the particular fricative contrasts stop

place contrasts are compared with. While strident fricatives (e.g., /s/, /f/) are very distinct from

non-strident ones (e.g., /f/, /6/), within-strident, and within-non-strident confusion is much greater

(Miller and Nicely, 1955; see Table 14 in Chapter 5). Future work will determine whether certain

place contrasts among fricatives are in fact more likely to distinguish among words than place

contrasts stops.

Having shown that word contrast depending on place in stops exhibits more sensitivity to

phonological context than word contrast in fricatives, I now go on to show that this sensitivity

generalizes to word-medial contexts. Studies of the perceptibility of transitional cues to place

imply a more fine-grained hierarchy for the perceptibility of place in stops flanked by other

sounds on either side.

6.3 Stops in word medial context

Perceptual experiments substantiate a hierarchy of word-medial contexts for the availability and

strength of cues to the place of articulation of stops. As previously noted, outgoing CV
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transitions are more conducive to the perception of place in stops than incoming VC transitions.

This is reflected in the extent to which words rely on place in stops at the word edges for

distinctness. The place features of word-initial stops (cued by salient CV transitions), are more

likely to exclusively distinguish among words than the place features of word-final stops (cued

by less perceptible VC transitions). In word-medial contexts (i.e., contexts in which the stop is

not adjacent to a word boundary), however, additional cue structures become possible. First,

stops in word medial context may be flanked by vowels on either side (e.g., /ata/). In case a stop

occurs intervocalically, both CV and VC transitions are available to the listener to perceive its

place. Second, a stop could be adjacent other consonants on either or both sides (e.g., /aps/, /

spa/, /sps/). While the extent to which different neighboring consonants allow for a stop's

transitional cues to manifest themselves in the signal differs greatly, any adjacent consonant will

have a severe influence on the perceptibility of the place feature of a stop.

Adjacent obstruents, such as other stops and fricatives do not generally carry

information about the place of neighboring stops (although strident fricatives such as /s/ may

reflect cues to place in their frequency spectra; Engstrand and Ericsdotter, 1999). Glides (e.g., /

w/, /j/) and liquids (/r/, /l/) allow for the expression of transitional cues but interfere with them to a

greater extent than vowels. For example, in languages such as English a three way place

contrast between /p/, /t/, and /k/ is neutralized to a two way contrast between /p/ and /k/ in word-

initial pre-/l/ position (i.e., [pl]:[kl], *[tl]). This may be explained by the fact that the bursts and

formant transitions of /k/ and /t/ are acoustically similar when they precede /1/, probably due to

the anticipation of lateral constriction for sounds with place of articulation equal to or further

back than /I/ (Flemming 2007). However, in English, no corresponding neutralization is observed

before of after high vowels such as /i/ and /ul, even though these vowels also affect transition

similarity (Ohala and Ohala 2001, Marty To appear; Section 6.4). While both neutralization of

stop place in consonantal context and vocalic context occur, I am not aware of any language

where place contrast in stops is neutralized in some vocalic context (e.g., #_V), and maintained

in a corresponding consonantal context (e.g., #_C).
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Given differences in the extent to which consonants and vowels allow for the expression

of transitional cues to stop place and the importance of transitional cues for the perception of

place in stops, we may hypothesize the following four-tiered hierarchy for stop place

perceptibility in word-medial context: place in stops is predicted to be most perceptible when

stops occur in intervocalic context (VV), where both weak VC and strong CV transitional cues

are available to the listener to recover the place of the stop. Next, place in stops occurring in

prevocalic postconsonantal context (CV) is predicted to be less perceptible due to another

consonant interfering with the VC transitions of the stop. Next, stop place in postvocalic

preconsonatal context (VC) is predicted to be even less perceptible. While weak VC vowel

transitions are available to cue the stop's place, a following consonant interferes with the more

perceptually salient outgoing CV transitions in this context. Finally, stop place is predicted to be

least perceptible in interconsonantal context (CC), where both weak incoming VC and strong

outgoing CV transitions are subject to interference from stop-adjacent consonants.

Given this hierarchy and the hypothesis that the lexicon is globally optimized for the

recovery of words by the listener we predict the following for word loss due to merger of place

contrast in stops in word medial contexts: if words preferentially rely on perceptible contrasts for

distinctness, then the number of word types lost due to the elimination of place contrast in stops

should be greatest for stops in intervocalic context (e.g., /ata/), followed by prevocalic

postconsonantal context (CV), followed by postvocalic preconsonantal context (VC), followed

by interconsonantal context (CC). The study presented in the next subsections assesses these

predictions for the languages in the WOLEX corpus.

6.3.1 Methods

I computed the number word types lost given the elimination of major place feature distinctions

(bilabial, dental/alveolar, palatal, velar, uvular) in stops in four word-medial contexts (VV, CV,

V_C, CC) for all languages in the WOLEX corpus. Data from languages with apical contrasts

among coronals (Hindi and Arrernte) were again omitted from the analysis. Furthermore, only
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observations from contexts (where context is again defined in terms of adjacent Cs and Vs) in

which there exists at least one minimal pair for place (i.e., where contrast entropy, context

frequency, and word types lost are all greater than zero) were included in the analysis. This left

data from 34 languages (Acholi, Armenian, Ayacucho Quechua, Bargam, Chickasaw, Chinese

(Mandarin), English, Daga, Delaware, Dutch, French, Georgian, German, Greek, Haitian Creole,

Hausa, Hebrew, Javanese, Khmer, Lithuanian, Maisin, Mianmin, Moroccan Arabic, Muyuw,

Polish, Romanian, SepikMende, Siroi, Tatar, Turkish, Wantoat, Waris, Yup'ik, Zulu) for analysis.

6.3.2 Results

I fit a maximum likelihood fitted log-linear mixed effects model (Poisson regression) predicting

word types lost from log-context frequency, contrast entropy, as well as preceding sound (C, V),

following sound (C, V) and their interaction. Both binary predictors were sum-coded and

centered. Both numerical predictors were centered. To control for language-relatedness and

language-specific effects, I include random intercepts for language and major language family

as well as random slopes for all fixed effects grouped by language and random slopes for

contrast frequency grouped by language family.21 As expected we find significant effects of the

control variables. The number of word types lost increases both with the log-frequency of the

context (P=1.17, z=11.7, p<.00001) and the entropy of the contrast in context (P=1.69, z=6.22,

p<.00001). Additionally, we find an effect of following sound (P=0.47, z=3.33, p=.001), such that

word loss was greater when the stop is followed by a vowel rather than a consonant. We also

find an effect of preceding sound (P=0.5, z=4.11, p<.00001) such that words are more likely to

rely on place in stops following a vowel than place in stops following a consonant. We find no

significant interaction (P=-0.41, z=-1.8, p=.07), indicating that word loss for place contrast in

intervocalic and interconsonantal context follows directly from the partial effects of following and

preceding sound. Figure 12 depicts the log-number of minimal pairs for the different contexts

compared across all 34 languages included in the analysis.

21 Models with additional random slopes grouped by language family did not converge.
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Figure 12: Log-number of word types lost for place contrasts in stops depending on

phonological context (interconsonantal in red, postvocalic preconsonantal in green, prevocalic

postconsonantal in blue, intervocalic in purple). Error bars indicate 95% confidence intervals.

6.3.3 Discussion

The results show that place contrasts in stops in word-medial contexts pattern analogously to

place contrasts in stops in word-initial and word-final contexts with respect to word loss. If a stop

occurs in a position where cues to its place value are available then words will preferentially rely

on its place features for distinctness. This effect crucially goes beyond what is expected from

the frequency of the contexts in question and the entropy of the probability distribution over

features in those contexts.

The contexts compared in this study were very broadly defined. While no consonant

ever allows for better transitional cues to place in stops adjacent to it than any vowel, the extent

to which different consonants and different vowels interfere with the perception of place differs

greatly. To see if word contrast is sensitive to these more fine-grained distinctions, the next two

studies compare varying consonantal and vocalic contexts to each other.
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6.4 Effects of vocalic context

Several acoustic and perceptual studies have shown that high-vowels interfere with place

contrasts in stops to an extent that low vowels do not (Kawasaki 1982, Flemming 1995, Ohala

and Ohala 2001, Marty To appear). In French, high front vowels such as /i/, render transitions of

labials and coronals similar to each other. Similarly, high back vowels such as /u/, render

transitions of labials and velars similar to each other (Marty, To appear). Ohala and Ohala

(2001) show that analogous effects generalize to other major place features in Hindi. Perceptual

confusion of word-final labials, dentals, post-alveolars, retroflexes, and velars is higher across-

the-board in high vowel context than in low vowel contexts (Ohala and Ohala, 2001: 275). Even

when stop bursts are present to cue stop-place in addition to VC transitions, mean accuracy for

the perception of place in stops after /i/ and /u/ is 88.48% and 84.13% respectively, while mean

accuracy for place in stops after /a/ is 93.65%. While different specific place contrasts fare

better or worse in any specific high vowel context, low vowels are overall much less likely to

interfere with place perception. This is in all likelihood due to the fact that transitional cues

apparent in low vowels are generally more acoustically distinct than those in high vowel context.

Given these asymmetries between low and high vowels the hypothesis that words

preferentially rely on perceptible contrasts for distinctness predicts that word loss due to merger

of place in stops adjacent to low vowels should be greater than word loss due to merger of

place in stops adjacent to high vowels. The study presented in the next subsection evaluates

this prediction for both stops in prevocalic and postvocalic contexts. I compare word loss for

place in stops in word-initial or post-obstruent context (no VC transitions) before high vowels

(i.e., {[-son],#}_[+high]) and before low vowels ({[-son],#}[+low]). Furthermore, I also compare

place in word-final or pre-obstruent context (no CV transitions) after high ([+high]_{[-son],#}) and

low vowels ([+low]_{[-son],#}).

112



6.4.1 Methods

I computed word types lost given the elimination of major place feature distinctions (bilabial,

dental/alveolar, palatal, velar, uvular) in stops in the four contexts compared ({[-son],#}_[+high],

[+high]_{[-son],#}, {[-son],#}_[+1ow], [+low]_{[-son],#}) for all languages in the WOLEX corpus.

Hindi and Arrernte were excluded because coronal stops in those languages contrast for

retroflexion. Alekano, Amharic and Benabena were excluded because they did not have minimal

pairs in more than one of the contexts compared. This left 55 languages (Acholi, Armenian, Ata,

Ayacucho Quechua, Bargam, Bunama, Chickasaw, Chinese (Mandarin), Dadibi, Daga,

Delaware, Dobu, Dutch, English, French, Georgian, German, Greek, Guarani, Haitian Creole,

Hausa, Hebrew, lamalele, Iduna, Javanese, Kewa, Khmer, Lake Miwok, Lithuanian, Maisin,

Mauwake, Mengen, Mianmin, Moroccan Arabic, Mountain Koiali, Muna, Muyuw, Polish,

Romanian, Rotokas, Sepik Mende, Siroi, Sudest, Suena, Tatar, Thompson Salish, Turkish,

Waffa, Wantoat, Waris, Waskia, Woleaian, Yana, Yup'ik, and Zulu) for analysis.

6.4.2 Results

I fit a maximum likelihood fitted log-linear mixed effects model (Poisson regression) predicting

word types lost from log-context frequency, contrast entropy, as well as phonological context ({#,

[-son]}_V, V_{#,[-son]}), vowel feature ([+high], [+low]) and their interaction. Both binary

predictors were sum-coded and centered. Both numerical predictors were centered. To control

for language-relatedness and language-specific effects, I include random intercepts for

language and major language family as well as random slopes for all fixed effects grouped by

language and random slopes for context frequency grouped by language family.22 As expected

we find significant effects of the control variables. The number of minimal pairs increases both

with the log-frequency of the context (p=0.92, z=19.44, p<.00001) and the entropy of the

contrast in context (P=1.07, z=7.11, p<.00001). Additionally, we find the expected effect of

phonological context (P=0.29, z=3.34, p<.001) such that word loss is more likely for prevocalic

22 Models with additional random slopes grouped by language family did not converge.
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than postvocalic place contrasts irrespective of vowel. We also find the predicted effect of vowel

feature (0=0.08, z=2.48, p<.02) such that minimal pairs are more likely for place contrasts

adjacent to low vowels than for place contrasts adjacent to high vowels. Furthermore, we find a

significant interaction of vowel feature and phonological context (P=0.28, z=2.84, p<.005), such

that the difference between the numbers of minimal pairs in high and low vowel contexts was

greater for place contrasts in prevocalic context. Figure 13 depicts the log-number of minimal

pairs for the different contexts compared across all 55 languages included in the analysis.
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Figure 13: Log-number of word types lost for place contrasts in stops depending on

phonological context (pre-vocalic, left; post-vocalic, right) and vowel feature (low, red; high,

blue). Error bars indicate 95% confidence intervals.

6.4.3 Discussion

The results show that word contrast preferentially relies on place contrasts adjacent to low

vowels compared to high vowels. This may be explained from the different degrees to which

these two classes of vowels interfere with the distinctness of transitional cues. While low vowels

do not generally interfere with transitional cues, high vowels do, which in turn renders stop place

more confusable in high vowel context (e.g., Ohala and Ohala 2001, Marty To appear).
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We again find the expected asymmetry between pre- and postvocalic stops. This may

again be explained by the greater perceptual salience of CV transitions. Furthermore, we find a

significant interaction of phonological context and vowel features, such that place in pre-low-

vowel stops is more likely to distinguish among words than expected from the partial effects of

vowel feature and phonological context. We thus find something like a best-of-the-best effect for

word contrast in the lexicon. Where transitional similarity and transition salience conspire

towards making place in stops particularly perceptible, word loss due to merger of place

contrast is particularly large. However, this is only one of the many possible interpretations of

this interaction. There could, for example, also be a floor effect for the worst contrast of more

generally a non-linear relationship between perceptual distinctiveness or word types lost. More

research is required to pinpoint the exact source of this interaction. In summary, however, it is

clear that these results show that word contrast dependent on stop place is sensitive to the

effects of particular vowels on perceptibility, which is expected given the hypothesis that words

preferentially rely on perceptible contrasts for distinctness.

It should be noted that the contexts compared here are still relatively coarse grained, as

the effects of particular high vowels on transitional similarity differ (see Chapter 3). While

perceptual studies of the effects of different low vowels on place perception do not exist, it is

conceivable, if not likely that, for example, the backness of different low vowels will also have an

effect on the recoverability of different place contrasts adjacent to these low vowels. Future work

will assess how the effects of specific vowels on specific place contrasts relate to word contrast

in different languages.

Having shown that vowel height shows the predicted effect on word contrast, we now

turn to the effects of different consonants on place contrast in stops they're adjacent to. I show

that differences in the extent to which stop-adjacent consonants allow for the acoustic

realization of transitional cues to place affects the extent to which the lexicon globally relies on

place in stops in different consonantal contexts for word distinctness.
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6.5 Effects of consonantal context

As previously noted, consonants differ in the extent to which they allow for transitional cues to

different stops to surface. While approximants such as liquids and glides render transitional

cues of certain stops more similar to each other, they generally allow for transitional cues to

manifest themselves acoustically. The liquids /1/, and to a lesser extent also approximant-/r/, for

example, render transitions of /t/ and /k/, and transitions of /p/ and /t/ more similar to each other

respectively (Flemming, 2007). This explains, for example, why languages like. English

neutralize a three-way contrast between /p/, /t/ and /k/ to a two-way contrast between /p/ and /k/

before /I/. The glides /w/ and /j/, behave similar to their vocalic counterparts /u/ and /i/ in terms of

their effect on transition similarity. In /w/-context, /p/ and /k/ transitions are rendered more

similar, while in /j/-context, /t/ and /p/ transitions are less acoustically distinct (Kawasaki, 1982).

Obstruents, such as stops and fricatives, on the other hand, do not allow for the expression of

transitional cues to the place of adjacent stops, making stop place in contexts adjacent to them

less perceptible.

If the lexicon is globally organized such that words are more likely to rely on perceptible

place contrasts in stops for distinctness, then we should find that place features in stops

adjacent to approximants (e.g., /pl/:/kl/, /tw/:/kw/) distinguish more words than place features in

stops adjacent to obstruents (e.g. /pt/:/kt/, /ts/:/ks/). As before, this effect should go beyond what

is expected from distributional asymmetries between sounds in those contexts and differences

in the frequencies of the contexts themselves.

I evaluate this prediction for different consonantal contexts at the beginning of words. In

the study below, I compare the extent to which word distinctions rely on place contrast in stops

in word-initial pre-obstruent context (i.e., #_[-son]) to the extent to which word distinctions rely

on place contrasts in stops before approximants at the beginning of words (i.e., #_[+son,+cont]).
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6.5.1 Methods

Eight languages in the WOLEX corpus exhibit at least one minimal pair for place contrast in

stops before obstruents and approximants at the beginning of words (French, Greek, Haitian

Creole, Hebrew, Khmer, Moroccan Arabic, Polish, Turkish). For those languages, I calculated

the number of word types lost due to merger of place contrast in stops in word-initial pre-

obstruent (i.e., #_[-son]) and word-initial pre-sonorant (i.e., #_[+son,+cont]) context.

6.5.2 Results

I fit a maximum likelihood fitted log-linear mixed effects model (Poisson regression) predicting

word types lost from log-context frequency, contrast entropy, as well as following consonant

(obstruent, approximant). The binary predictor was sum-coded and centered. Both numerical

predictors were centered. To control for language-relatedness and language-specific effects, I

include random intercepts for language and major language family as well as random slopes for

all fixed effects grouped by language and random slopes for following consonant and contrast

entropy grouped by language family.23 As expected we find significant effects of the control

variables. The number of minimal pairs increases both with the log-frequency of the context

(P=1.02, z=9.56, p<.00001) and the entropy of the contrast in context (p=3.24, z=2.73, p<.007).

Additionally, we find the predicted effects of following consonant (P=0.84, z=4.07, p<.00001)

such that minimal pairs are more likely for place in stops before approximants than before

obstruents. Figure 14 depicts the log-number of minimal pairs for the different contexts

compared across the 8 languages included in the analysis.

23A model which included an additional random slope for frequency grouped by family did not converge.
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Figure 14: Log-number of word types lost for place contrasts in stops depending on

phonological context (pre-obstruent in red, left; pre-approximant in blue, right). Error bars

indicate 95% confidence intervals.

6.5.3 Discussion

As predicted by the hypothesis that word distinctions preferentially rely on perceptible contrasts

for distinctness, we find that word loss is greater when place distinctions in stops before

approximants are eliminated from the lexicon, than when corresponding place distinctions

before obstruents are neutralized. The results show that word contrast depending on place in

stops in specific consonantal contexts, also pattern as expected from communicative efficiency.

The more perceptible stop place is in a given consonantal context, the more likely it is for words

to rely on said place contrast for distinctness. These results crucially obtain while controlling for

differences in both the probabilistic attestation of different categories in those contexts

(controlled for by the measure of contrast entropy) and differences in the frequency of the

contexts themselves (controlled for by the measure of context frequency). While contrast

entropy also partially controls for the categorical absence of certain categories in context (e.g.,

the absence of /t/ in the /#_l/-context) it could potentially equate the lack of a cetegory with its

probabilistic underattestation. More work is required to see whether this control is sufficient to
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capture differences in expected word loss due to partial categorical restrictions on feature

distributions in the contexts compared.

Again, different consonantal contexts are defined in a rather coarse way. Certain

obstruents, such as strident fricatives, for example, do allow for place cues of adjacent stops to

manifest themselves as part of their frication noise (Engstrand and Ericsdotter, 1999).

Additionally, the effects of approximants on transition similarity differ depending on the particular

place features contrasting in contexts adjacent to them. Future work will compare word loss

according to more fine-grained hierarchies of consonantal contexts.

6.6 General discussion

In summary, the results presented in this Chapter present strong evidence for the hypothesis

that words preferentially rely on perceptible contrasts for distinctness. The effects observed for

binary oppositions in English generalize straightforwardly to the other languages in the WOLEX

corpus. At the word edges, the extent to which word distinctions rely on place contrasts among

stops and fricatives follow from differences in the extent to which the perception of place

features in those sounds relies on transitional cues apparent in neighboring vowels. These

results mirror observations about biases in the directionality of metathesis for stop-fricative

clusters in varying phonological contexts. Word distinctions relying on stop place in word medial

contexts also follow from hypothesized perceptibility hierarchies for stop place in different

contexts. Word distinctions preferentially rely on place in stops in intervocalic contexts where a

wealth of transitional cues are available for the perception of a stop's place. The number of word

types lost due to merger of place contrasts decreases from intervocalic context, according to the

availability and salience of place cues in the relevant contexts, such that VV>CV>VC>CC.

Zooming in on specific vocalic and consonantal environments, we find analogous effects for

more fine-grained hierarchies. Words preferentially rely on stop place before low vowels

compared to high vowels, and before approximants compared to obstruents.
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Throughout this Chapter, I have focused on major place distinctions only. This is

because certain minor place distinctions exhibit different perceptual properties. Apical contrasts

between retroflex and dental/alveolar coronals, for example, rely more on VC transitions than

CV transitions in perception (e.g., Ladefoged and Maddieson, 1986). Two of the languages in

the WOLEX corpus exhibit such contrasts in stops (Hindi) or for consonants of any manner

(Arrernte). Throughout, data from these languages has been omitted from the analyses reported

above. However, looking at those two languages more closely, we actually find expected

asymmetries in terms of word types lost. The observed counts for word types lost due to merger

of place in Hindi stops, and place in any consonant in Arrernte go in the direction predicted by

the organization of place contrast in these languages. While word distinctions relying on

intervocalic stops/consonants are most frequent in both languages, we see a reversal between

contrast in CV and VC context. Word distinctions relying on place in Hindi stops and Arrernte

consonants preferentially rely on sound in postvocalic rather than prevocalic context. Figure 15

depicts word types lost due to merger of place contrast in Hindi stops and Arrernte consonants.
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Figure 15: Log-number of minimal pairs for place contrasts in any consonant in Arrernte (left),

and stops in Hindi (right) depending on phonological context (interconsonantal in red,

postvocalic preconsonantal in green, prevocalic postconsonantal in blue, intervocalic in purple).

Error bars indicate 95% confidence intervals.

Of course the preliminary results reported here require much more detailed scrutiny. Hindi stops

and Arrernte consonants also contrast for major place which is not expected to exhibit such

reversals. Future work will distinguish the reliance of words on particular place contrasts in

context, once a large enough sample of languages featuring such contrasts has been obtained.

Furthermore, these results are subject to an important statistical caveat. Because there are only

two languages with apical contrasts for coronals in the corpus, significance of these orderings

cannot be assessed. For the same reason, it is not possible to assess the partial effects of

context frequency and contrast entropy on the word loss measures reported below. However,

these preliminary results are nonetheless encouraging for future work. If data from a critical

mass of languages exhibiting such contrasts is collected, we might find that these reversals hold

i) for apical contrasts only and ii) are in fact significant beyond what is expected from context

frequency and contrast entropy.
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In conclusion, these results present strong evidence for the effects of communicative

efficiency in the lexicon. Together with the results reported in Chapters 2, 3, and 4, they show

that the probabilistic phonologies of natural language are subject to communicative pressures in

the same way that the categorical phonological grammar is. Both the probabilistic patterning of

individual sounds and the probabilistic patterning of words in the lexicon are geared towards

efficient communication. Implications of these findings, possible causes and preliminary

experimental evidence in favor of these patterns resulting from speaker-driven word choice

effects are presented in Chapter 7, which also concludes the dissertation.
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Chapter 7 Causes of Efficiency

In the final and concluding Chapter of the dissertation, I summarize the evidence for the effects

of communicative efficiency on natural language phonology presented in Chapters 1 through 6.

Next, I explore possible causes of communicative efficiency in probabilistic phonology and the

lexicon. I propose that Martin's (2007) evolving lexicon theory, relegating the emergence of

phonological patterns to the aggregated effects of speaker-driven word choice over time, can

explain the prevalence of communicative efficiency in the lexicon. I propose a simple and

independently motivated extension of Martin's model to account for the observed patterning of

word contrast and present preliminary experimental and computational evidence in favor of this

account. Furthermore, I argue that probabilistic word-specific sound change (lexical diffusion;

Bybee, 2002) induced by speakers that are biased to use language in a communicatively

efficient way can account for the cross-linguistic patterning of individual sounds in accordance

with communicative efficiency. Finally, I conclude by outlining perspectives for future work.

7.1 Summary of the dissertation

In this dissertation, I presented several studies evidencing the effects of communicative

efficiency on the probabilistic phonologies and lexica of natural language. Chapter 2 explored

the effects of articulatory effort on probabilistic phonology. I showed that the probabilistic

attestation of effortful voiced stops depends on the perceptibility of voicing contrast in context in

ways predicted by communicative efficiency. In Chapters 3, I showed that given a certain

number of categories and specific mistransmission rates induced by the the human language

channel, information theory (Shannon 1948, Silverman 1955) lets us derive optimal input

distributions for those categories to achieve channel capacity. The relative distributions of word

final /p/, /t/, and /k/ in different contexts were shown to mirror these optimal distributions.

In Chapter 4, I presented a communicative account of co-occurrence restrictions on

consonants. I showed that the features whose co-occurrence within words is most likely to
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cause those words to be misperceived (place of articulation, and specifically labial place; Woods

et al. 2010), are also the features that are least likely to co-occur within the bi-consonantal

words of natural language. I showed that co-occurrence restrictions on place, just like co-

occurrence restrictions on marked laryngeal features, conspire to avoid dissimilatory

misperception of multiple instances of features as single instances of those features (Ohala

1981, Gallagher 2010). I further presented a novel account of identity preference in terms of

word contrast. I hypothesized that the absence of words with consonants sharing place features

(e.g., /pVb/) probabilistically licenses the presence of words with identical consonants sharing

those features (e.g., /pVp/), by rendering them more globally distinct from the other words in the

lexicon (e.g., /pVg/) in terms of average featural distance. The key prediction of this account,

namely that the dispreference for non-identical consonants sharing place features (e.g., /b/ and /

p/) to co-occur should be correlated with the preference for identical consonants sharing those

place features (e.g., /p/ and /p/) to co-occur was borne out for the languages in the WOLEX

corpus.

In Chapter 5, I built on the notion of word contrast and found that English minimal pairs

are more likely to rely on perceptible oppositions between sounds for distinctness. I showed that

this effect crucially goes beyond what is expected from asymmetries in the frequencies of those

sounds in context. Chapter 6 showed that this effect also generalizes to other languages.

Because primary confusability data is not available for those languages, I inferred perceptibility

hierarchies for different contrasts in context from perceptual experiments and categorical

phonological typology. I showed that word distinctions pattern in accordance with perceptibility

hierarchies such that words preferentially rely on distinctions in contexts where those

distinctions are perceptible beyond what is expected from the frequencies of those contexts and

the distribution of individual sounds in those contexts.

Together these results present strong evidence for the effects of communicative

efficiency on the probabilistic phonologies of natural language. The next section is concerned

with identifying possible causes for the patterns observed.
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7.2 Causes of Efficiency

Given the prevalence and explanatory power of communicative efficiency in natural language

phonology, we must ask what synchronic or diachronic pressures could cause so many different

human languages to synchronically exhibit communicatively efficient patterns. Crucially, we

must find or develop theories that can explain the manifestation of communicative efficiency in

both the probabilistic phonologies and the phonological lexica of different languages. I begin by

proposing a simple and independently motivated mechanism to derive the communicatively

efficient patterning of the lexicon as a whole. Concretely, I show that Martin's (2007)

connectionist model of lexicon evolution can derive both biased distributions of sounds and

increased dissimilarity between words within a given language, if extended with an anti-similarity

bias for words implemented as lateral inhibition (Bard, 1990).

7.2.1 Lexicon evolution24

To account for effects of communicative efficiency on the organization of the lexicon, we require

a model of the evolution of the lexicon over time. This is because communicative optimization

must at least partially operate at the level of the word to derive this pattern. Any mechanism that

derives communicative efficiency from effects on individual sounds in phonological context only,

will necessarily predict that distinctions between words will follow directly from the distributions

of individual sounds, contrary to what I have shown in Chapters 5 and 6. To illustrate, consider

the minimal pair fought:thought, relying on the highly confusable opposition between /f/ and /T/

for distinctness. As I have shown in Chapter 5, there exist relatively few minimal pairs relying on

this distinction in the English language. One could, for example, imagine that this lower number

of minimal pairs is due to lexically diffuse sound changes (Bybee, 2002; see Section 7.2.3)

affecting individual instances of /f/ and /T/ over time, such that minimal pairs for this opposition

become less likely. However, changes affecting individual instances of /f/ and /T/, will by

24 I would like to thank Allen Park for help with the implementation of the models presented here.
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definition also alter the individual occurrence frequencies of the two sounds. Therefore, any

divergence in the number of minimal pairs for a given opposition derived from changes to /f/

and /T/, will necessarily be a direct function of changes to their occurrence frequencies. Minimal

pairs for /f/ and /T/, however, occur less often than implied by the occurrence frequencies of

those two sounds. The process that causes this effect must therefore operate on contrast

between phonological units of greater complexity. Here, I propose that this phonological unit is

in fact the word itself.

The model presented here is an extension of Martin's (2007) model of lexicon evolution.

Martin (2007) proposes this model to explain how biases in the probability distributions over

different phonemes may arise diachronically (e.g., in English, /t/ is much more frequent than /

T/). The core of Martin's proposal is that words that are composed of less frequent phonemes

and phoneme sequences are more likely to fall out of usage than words composed of more

frequent ones, creating a snowball-effect that results in gradually increasing biases in the

frequency distribution of individual sounds in a given language. Martin hypothesizes that these

differences in word-survival cause the asymmetries in the relative frequencies of different

phonemes and phoneme sequences observed in natural language.

Evidence for this claim comes, for example, from the survival-rates of different Old

English words into modern English. Consider for example, the Old English clusters /kr/, /sn/, /

kn/, /gn/, and /wr/. Only /kr/ and /sn/ have remained phonologically intact at the beginning of

words in present day English (word-initial /kn/, /gn/ and /wr/ have since simplified to /n/, /n/ and /

r/). However, the historical presence of /kn/, /gn/ and /wr/ is still apparent in present day English

orthography. Berg (1998) shows that words which originally featured /kn/, /gn/, and /wr/ in word-

initial context are less likely to have survived into present day English than words that featured

and continue to feature /kr/, or /sn/. That is, it is not only the case that /kn/, /gn/, and /wr/ have

simplified through sound change, but also that many words that originally featured them, are no

longer used by speakers of English. There are less words like gnarl, wren, and knight, currently

still in use than words like snatch and crow. Martin attributes this to the overall greater
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markedness and resulting lower frequency of /kn/, /gn/ and /wr/ in Old English. Words

composed of infrequent sounds or sequences of sounds such as /kn/ are hypothesized to be

more likely to fall out of use over the course of time.

The model Martin (2007) proposes to account for these asymmetries in word-death and

the resulting asymmetries in phoneme frequency is a familiar and often employed spreading

activation model of language production (e.g., Stemberger 1985, Dell 1986, Levelt et al. 1999).

In this model, there exist three layers of representation: a concept level representing the

intended meanings of the speaker, a word level representing the particular words in a

language's lexicon and a phoneme level, representing the individual sounds of the language.

Each concept, word and phoneme is represented by a single node in a network. Concepts

nodes are connected to the nodes representing the words that signify them, and word nodes are

in turn connected to the nodes representing the phonemes that compose them. Once a concept

becomes activated (i.e., once a speaker intends to utter it), activation spreads from that concept

to the word nodes connected to it (e.g., the concept SOFA/COUCH activates the synonyms

"couch" and "sofa" that signify it). From those word nodes, activation spreads all the way down

to the nodes representing the phonemes that compose them (e.g., /k/, /au/, /tS, but also /s/, /

ou/, /f/ and /@/). Crucially, Martin (2007) also assumes that activation spreads backwards from

the phoneme level to the word level creating a feedback loop that causes words connected to

the same phonemes to become activated as well. This assumption is by no means uncommon

and taken to explain lexical effects in speech errors. Speakers are, for example, likely to

erroneously produce words like "butter" as "button", a competitor that has many phonemes in

common with the intended target (Fromkin, 1971). More processing evidence in favor of this

model of interconnected representations comes from naming studies. Peterson and Savoy

(1998) find that presenting subjects with an image of a couch decreases naming latencies for

both the word "couch" and it's synonym "sofa". Crucially, words that are phonologically similar to

both words, such as "count" and "soda" also exhibit reduced latencies. Assuming that naming

latencies reflect activation at the word level, this finding lends empirical support for the
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spreading activation model assumed by Martin.25 The different nodes spreading activation to the

word level in Martin's model are illustrated in Figure 16.

<couch> <sofa>

k au tf S ou f a

Figure 16: Spreading activation model of language production assumed by Martin (2007).

Martin (2007) proposes that the survival rates of different words over time result from the effects

of activation spreading backward from the phoneme level to the word level in language

production. A word composed of frequent sounds will be more likely to become activated and

thus uttered as activation spreads backwards from frequently activated phoneme nodes,

creating a snowball effect.

Consider, for example, the two synonyms "couch" and "sofa." When a speaker chooses

to utter their meaning (i.e., activates the concept SOFA/COUCH) activation spreads to both

word nodes <couch> and <sofa>. Furthermore, the resting activation of the phonemes that

compose each word spreads to the respective word nodes their connected to as well. Since the

activation of a node is a direct function of the activation of the nodes it is connected to, a word

node connected to phonemes with high activation will be more activated than a word node

25 However, it would also be possible that these effects arise entirely through greater activation of the
phones that compose those words. Whether it is possible to derive the observed effects in this way will
depend on how and whether reduction in naming latencies behaves as a function of the specific number
of phonemes shared between the target and the prime.
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connected to phonemes with low activation. The word that receives the higher overall activation

will then be the word that the speaker chooses to utter.

Martin (2007) proposes that this difference in utterance probability is what causes words

with infrequent phonemes to be more likely to fall out of use. As evidence, Martin presents a

simulation involving a toy language with 10 concepts, 10 words and five phonemes {a,b,c,d,e}.

On every generation (i.e. time step) new words synonymous to existing ones26 are introduced.

New words are connected to the relevant concepts and phonemes (repeatedly, if they feature

repeated instances of those phonemes; e.g., "aaabc" is connected to the "a"-node three times)

and activation is allowed to spread. At the end of each iteration the synonym with less activation

is discarded (i.e. assumed to have been selected against and to have fallen out of use). This is

illustrated in Figure 17.

C1 C1 C1

abcd abcde bcdee bcdee

Qb c a b c d 0000

Figure 17: Word competition on each time step in Martin's (2007) model of lexicon evolution.

The thicker arrow connecting "e" and "bcdee" indicates two connections between the two nodes.

26 Given the synchronic rarity of synonyms, it may seem unrealistic to assume that the entirety of the
lexicon would have been in repeated competition with newly introduced synonyms over the course of a
language's history. However, as Martin (2007) notes the words of a given language are, in fact, often and
frequently replaced by other newly coined or borrowed synonyms. For example, 85% of the Old English
vocabulary have been replaced in present day English (Martin, 2007). If Old English was as expressive
as present day English is, it necessarily follows that the vast majority of these words were replaced by
synonyms.
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After 1000 generations the model converges on a peaked distribution over phonemes. In the

resulting toy language, some phonemes are much more likely than others, similar to what is

observed in natural language.

However, as Martin (2007) notes, this model has one important limitation: given the

feedback loop of activation between phonemes and words, speakers will eventually converge

on a single phoneme for every word in the language. If words with infrequent sounds fall out of

use, then these sounds will eventually cease to occur and only enter the language through

newly added synonyms. To counterbalance this pressure Martin assumes priors over the

goodness of different words, motivated by factors external to phonotactics. This means that

specific words will be used more because of properties other than the phonemes that compose

them. In further simulations, Martin shows that such priors result in more realistic and stable

asymmetries in the frequencies of different sounds. Here, I re-implemented Martin's

(2007:33-43) original model as well as a slightly altered version in which words laterally inhibit

each other. I show that this addition voids the need for Martin's word prior, resulting in a

language with more realistic phoneme distributions and more globally distinct words.

Let us first consider the results of the re-implementation of Martin's (2007) original model

without priors on the usage probability of different words. As expected, we observe a severe

bias in frequency distributions over possible phonemes. After 1000 generations, a single

phoneme ("c") comes to dominate the language and occurs with a probability of approximately

85% (Figure 18, left). Together with the greater frequency of the dominant phoneme also comes

greater similarity among words. Figure 19 (red line) depicts the average similarity of different

words in the re-implementation of Martin's (2007) model over time. Similarity here is simply

calculated as the average proportion of phonemes for which any two words in the language

match (for example "aabcd" and "aabee" share 60% of their phonemes). As can be seen, the

average similarity of different words in the language the model converges on is extremely high,

contrary to what we found for English in particular and the languages in the WOLEX corpus in
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general. To rectify this, I propose a simple and independently motivated addition to Martin's

model and show that this addition achieves both a more realistic probability distribution over

phonemes and greater dissimilarity among different words in the lexicon over time, without

assuming extra-phonotactic priors over the usage probabilities of words.

The addition to Martin's (2007) model I propose is commonly known as lateral inhibition.

Lateral inhibition allows for nodes on the same layer of a network to inhibit each other (e.g.,

phonemes can inhibit phonemes, words can inhibit words; Bard, 1990). Independent evidence

for lateral inhibition comes from speech errors (Berg and Schade, 1992). Berg and Schade

(1992), for example, argue that place harmony in child speech (e.g., [gAk] for "duck") is better

explained in terms of failure of phonemes to inhibit each other than in terms of increased

activation of intruding phonemes. This is because individual words may harmonize in distinct

ways for a given child. For example, "boat" may variably harmonize to either [boup] or [dout].

Both, [b] and [t] in "boat" can thus independently achieve sufficient activation to be uttered

faithfully, however, they each fail to inhibit their phonologically similar counterparts [p] and [d]

within the same word (Berg and Schade, 1992). Furthermore, simulations evidence that lateral

inhibition solves computational problems of neural networks such as "heat death" (i.e., when the

activation of a single node becomes too great; similar to what is observed in Martin's original

model, where one phoneme comes to dominate the language) and the selection problem (i.e.,

when too many nodes exhibit equal amounts of activation; Schade and Berg, 1992). Finally,

Stemberger's (1985) spreading activation model of language production also makes use of

lateral inhibition between nodes on the same level.

In the second simulation I simply extended Martin's (2007) model by allowing for words

to inhibit each other. In Martin's original model, competition between words is solely driven by

activation spreading back up from the phoneme level. Words that have more connections to

phonemes that have more connections are more likely to survive a given time step. In the new

network every word node is now also connected to every other word node in the network, in

addition to the concept it signifies and the phonemes that compose it. The connection between
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each pair of words is exactly equal to the weight of all other connections, save for the fact that it

is negative. This addition can be seen as a concrete implementation of an anti-similarity bias for

words. The bias is instantiated as the negative weights for connections between words. If those

connections were positive, the effects observed in Martin's (2007) original model would be

severely amplified (i.e., the toy language would even more quickly converge on a single

phoneme for all utterances). The fact that words inhibit each other according to their similarity

emerges naturally from the structure of the network. Activation spreading back up through the

phoneme level will necessarily cause similar words to receive more activation (causing, e.g.,

single-phoneme convergence in Martin's original model). However, the negative connections

between words, simultaneously cause this activation to work against words that are overall

similar to other words in the lexicon. The desired trade-off emerges because increased

activation through shared phonemes is only beneficial in case words are otherwise sufficiently

distinct.

Martin's model extended by lateral inhibition was again run for 1000 generations. Two

welcome differences between the model with lateral inhibition and Martin's (2007) original model

were observed. First, the average similarity of different words decreases strongly over time

(Figure 19, blue line). Words become more dissimilar as time goes on, because words that are

similar to existing words in the lexicon receive less activation and are thus less likely to replace

more globally distinct synonyms on a given time step. Second, we find that the resulting

frequency distribution over different phonemes in the language is much more realistic (Figure

18, right). While some phonemes are more frequent than others, the overall distribution is much

more uniform than in Martin's original model (Figure 18, left). Lateral inhibition achieves this

more uniform but nonetheless peaked distribution without resorting to Martin's (2007) word prior.

Even if all words are equally likely to be used a priori, the model does not converge on a single

phoneme for all utterances.
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Figure 18: Phoneme probabilities (y-axis) over generations (x-axis)

(left) and in the same model amended with lateral inhibition (right).
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Figure 19: Average word similarity (shared over unshared phonemes averaged for all word

pairs; y-axis) over time (x-axis) in Martin's original model (red line) and the extended model with

lateral inhibition.

133

0.8 -

C
.o 0.6 -

1 0.4 -

C

0.2-

0.0-

Martin.2007

J-1-j



The computational results presented here have shown that the word-choice effects

hypothesized by Martin (2007) can generate languages in which words become more distinct

over time. All that was needed was the addition of lateral inhibition to Martin's model, for which

there exists independent evidence in the language processing literature.

Returning to the question we initially set out to solve, namely, why different words in a

language are more distinct than expected from the independent distributions of different sounds,

this model presents a simple solution. If frequency asymmetries between sounds are caused by

activation spreading from the phoneme level to the word level, as Martin (2007) suggests, then

words can end up more distinct words than implied by these effects, as long as different words

are allowed to laterally inhibit each other. Word-choice driven lexicon evolution thus presents a

likely candidate for the word contrast patterns observed in Chapters 4 through 6. How and

whether the mechanism proposed here can actually derive the specific effects observed in other

Chapters is left for future research. However, it is clear that the structure of a network that could

potentially derive those specific effects will have to differ substantially from the toy example

presented above. Among other things, such a model will have to incorporate phonological

features as well as acoustic confusability either through priors on connection weight or in terms

of additional layers of nodes.

What is furthermore still lacking is empirical support for the general word-choice

mechanism proposed. The underlying mechanism assumed by the current account predicts that

speakers will exhibit a bias against using words that are similar to other words in the lexicon

when their communicative intentions permit it. In other words, given a choice among synonyms,

speakers should preferentially choose the synonym that is more distinct from other words in the

language. In the next subsection I present preliminary experimental evidence for such word-

choice effects.
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7.2.2 Preliminary evidence for similarity-driven word-choice

Recently, Mahowald et al. (Submitted) showed that speakers choose words in communicatively

efficient ways. Recall that Piantadosi et al. (2011) show that word length is correlated with the

average predictability of a word in context in a variety of languages. More predictable words are

generally shorter than less predictable ones as predicted by communicative efficiency. Just like

Martin (2007) and the current account, Mahowald et al. hypothesize that this global patterning of

the lexicon arises from speaker-driven word-choice effects. In a forced choice sentence

completion task, Mahowald and colleagues show that speakers are more likely to choose the

phonologically shorter of two synonyms in a context where the intended meaning is predictable.

Consider, for example, the synonyms "math" and "mathematics". In the context "Susan was very

bad at algebra, so she hated ", where the upcoming word math/mathematics is

predictable subjects were significantly more likely to choose the short variant "math".

Conversely, in contexts such as "Susan introduced herself to me as someone who loved

", where the upcoming word was not predictable, participants were much more likely

to choose the long variant "mathematics". Analogous results obtain for a corpus study of those

variants in spontaneous speech (Mahowald et al., Submitted). Word-choice is thus shown to be

subject to communicative efficiency in ways expected if was the diachronic cause of the

communicatively efficient patterning of word length observed by Piantadosi et al. (2011). Next, I

present preliminary experimental evidence that word choice among synonyms is also subject to

phonological similarity, in ways predicted by the model proposed in the preceding section.

Graff and Forrester (In prep.) conducted a forced choice sentence completion

experiment analogous to Mahowald et al. (Submitted), in which participants were told that they

work for a phone company that encodes messages for its clients. Each participant was

presented with 25 forced-choice sentence completions in which they chose among pairs of

monosyllabic synonyms (e.g., dock and pier). Sentences each contained one monosyllabic

distractor which differed from one of those synonyms only in terms of its vowel (e.g., duck for

dock, and pear for pier). Underneath each sentence there was a bar which subjects clicked to
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indicate their relative preference for each synonym. Sentences each appeared once in two

separate surveys. In one survey the sentence appeared with a distractor similar to the synonym

on the left of the bar, and in the other with the distractor similar to the synonym to the right of the

bar. The order in which synonyms appeared was chosen randomly for each pair. Figure 20

presents a sample trial from the experiment. All stimuli and sentences are provided in Table 15.

Ten self-identified native speakers of English completed each survey (20 total) through

Amazon's Mechanical Turk.

Given the model presented above, we expect phonologically similar distractors to have

the following effect on word choice: if the exposure to a given word causes that word to become

activated, and if words inhibit each other according to their similarity, then similar words will

become inhibited by this activation. If the choice among synonyms in this experiment is a

function of the activation each synonym receives (as the model suggests), then synonyms that

are more distinct from the distractor should be more likely to be chosen. Crucially, this is only

expected given a model that incorporates an anti-similarity bias in the form of lateral inhibition.

Martin's (2007) original model would in fact predict that synonyms that have more phonemes in

common with the distractor should be more likely to be selected.

How should this message be encoded?
Sm*nce I out of 25

Louis gave me a jab to make me finish the

job task

Figure 20: Sample trial from Graff and Forrester's (In prep.) experiment.
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JWtrctor I synonym 1 J- 4actor 22 synonym 2 Seeme erame
hard hild ;od id Because he was bored, I gave the <distractor> to the <synonym>.

hip hop tar tore There's a <distractor> on the logo of the <synonym>.
hat hut heikh hack The <distractor> is in the <synonym>.
in un reel roll I looked on the <distractor> with the <synonym> on it.
rick rook rook reek There's a <distractor> in the <synonym>.
owl ell hot hout I heard a <distractor> and a <synonym> from upstairs.

duck dock ear ier Someone left a <distractor> on the <synonym>.
hoop heap lail ile Mary put the <distractor> on the <synonym> by the door.
tip tap pot iat I gave him a <distractor> and a <synonym> before leaving.
sole soil dot irt There's a large <distractor> imprinted in the <synonym>.
bike beak all bill The <distractor> fell near the bird's <synonym>.
bowl bell harm hime She bought a new <distractor> and a small <synonym> at the sale.
lodge edge hef helf The <distractor> needs a new <synonym>.
patch ouch ock ack I put the <distractor> in your <synonym>.
rack ock tain tone We saw a big <distractor> on a <synonym>.
stars tairs toops teps here's a picture of <distractor> next to the <synonym>.
food fad cruise :raze ane is following the new <distractor> for <synonym>.
brooms brim rams rim he box was filled with <distractor> to its <synonym>.
tusk task lab ob Louis gave me a <distractor> to make me finish the <synonym>
not net mush mesh Steve is trying to get the <distractor> out of the <synonym>

old ield Ian lain He asked for the <distractor> while we were on the <synonym>.
row rew ong ang The <distractor> belongs to a member of the <synonym>.

mist oist ump amp I didn't realize the <distractor> would be <synonym>.
bock ack roar rear I heard a <distractor> coming from the <synonym> of the car.
rain rin smell mile I noticed a <distractor> and it made me <synonym>.

Table 15: Stimuli utilized in Graff and Forrester's (In prep.) sentence completion experiment.

We analyzed the results in terms of a linear mixed effects model predicting the extent to which

subjects preferred the synonym displayed to the right of the bar (z-score; means and st. dev.'s

estimated within subjects) depending on the distractor (2 levels; similar to synonym on the left

vs. similar to synonym on the right; sum-coded). Random intercepts and random slopes for

distractor grouped by subject, item and survey were also included in the model. We found the

predicted effect of distractor (0=-0.28, t(367)=-2.68, p<.02), such that subjects were more likely

to choose the synonym on the right if the distractor was similar to the synonym on the left and

vice-versa. The results are depicted in Figure 21.
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Figure 21: Z-transformed responses in favor of the synonym on the right of the bar (y-axis) for

sentences where the distractor was similar to the synonym on the left (red; left) or the synonym

on the right (blue; right). Error bars indicate 95% confidence intervals.

The results show that subjects preferentially choose words that are less similar to other words

the context they occur in, as predicted by the model presented in Section 7.2.1. The results thus

lend preliminary support the hypothesis that communicative efficiency in lexicon results from

speakers' biases to use dissimilar word forms.

While this result is encouraging it is subject to an important qualification. The contexts

used by Graff and Forrester (In prep.) were much shorter than the contexts used by Mahowald

et al. (Submitted), and it is therefore possible that subjects took notice of the similarity between

the distractor and one of the synonyms. This could mean that the current result is due to a

conscious decision rather than biases in linguistic behavior. Current work is investigating to what

extent awareness to purposes of the experiment influenced the results obtained.
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7.2.3 Discussion

The computational and experimental results presented here constitute evidence in favor of the

hypothesis that communicative efficiency in the lexicon emerges from speaker driven word-

choice effects over the course of time. However, it is also clear that the cross-linguistic

distributions of individual sounds according to communicative efficiency cannot have solely

emerged from frequency induced effects on word-choice. Recall that Martin (2007) shows that

words featuring frequent sounds are more likely to be used than words featuring infrequent ones

creating a snowball effect, which causes phoneme distributions to become more peaked over

the course of time. As Martin notes himself, this effect can explain the fact that phoneme

distributions within languages become more peaked over time, but it cannot explain why

different unrelated languages converge on similarly peaked distributions.

For example, in Chapter 3, I have shown that /t/ is more frequent than /p/ or /k/ after /u/.

This is communicatively efficient because /u/ renders the transitional cues distinguishing /p/

and /k/ more similar to each other while leaving the distinctness of transitional cues to /t/

relatively unaffected. Had we only observed this distributional asymmetries between /p/, /t/ and /

k/ in the context of /u/ in a single language, it would have been possible for the increased

frequency of /t/ to have arisen only from the fact that /t/ was coincidentally more frequent in this

context at some earlier stage of that language's lexicon. However, we in fact observed that

languages in general exhibit a significant preference for /t/ in this context, which shows that

cross-linguistic biases in the distribution of /t/ are not due to chance. The same holds for the

distributions of modal voicing features in context observed in Chapter 2, as well as the cross-

linguistic patterning of co-occurrence restrictions on consonants observed in Chapter 4. The

cross-linguistic convergence of the distributions of sounds in context in ways predicted by

communicative efficiency can only be explained if the distributions of individual sounds are also

subject to forces other than frequency driven lexicon evolution. Otherwise, we would expect the

particular phonemes individual languages preferentially feature in a given phonological context

to be much more varied. This is because, any particular sound in context could have
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accidentally become more frequent over the course of a language's history. The rest of this

section is therefore dedicated to exploring competing theories of how communicative efficiency

in probabilistic and categorical phonology could have arisen in a wide variety of different

languages.

One such candidate theory for the underlying cause of communicative efficiency in

phonology, is the theory of innocent misapprehension (Ohala 1981, Ohala 1990, Blevins 2004,

2006). This theory is based on the hypothesis that communicatively efficient patterns in

categorical grammar result from neogrammarian sound change caused by biases in

transmission of phonological structures from one generation of unbiased agents to another.

Ohala (1990) presents a theory of place assimilation in word medial consonant clusters (VCCV)

to explain the fact that clusters where C1 and C2 differ in place at some stage of a given

language (e.g., Latin /skriptu/) correspond to clusters where C1 has assimilated its place to C2

at a later stage of the language (e.g., Italian /skrit:o/). He proposes that these changes result

from misperception induced by the differences in the availability of transitional cues to C1 and

C2. C1 crucially lacks salient CV-transitions to cue its place feature, and its place therefore likely

to be misperceived. Ohala states that this convergence of asymmetries in perceptibility and

sound change "reinforce a non-teleological view of sound change, ... neither the speaker nor

hearer chooses - consciously or not - to change pronunciation. Rather variation occurs due to

'innocent' misapprehensions about the interpretation of the speech signal." (Ohala, 1990).

To illustrate further, recall the cross-linguistic distribution of voicing contrasts in

obstruents in word initial (e.g., /pa/:/ba/) and word final context (e.g., /ap/:/ab/). Word-final

voicing contrasts in obstruents imply word-initial ones in phonological typology. That is, if a

language allows for obstruents to contrast for voicing word-finally, it will necessarily also allow

for them to contrast for voicing word-initially (Steriade, 1997). Recall further that the human

language channel makes it more likely for word-final voicing values to be mistransmitted that for

word-initial ones (Chapter 2).
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Innocent misapprehension essentially states that the typological patterning of voicing

contrasts may be explained from the biases introduced by the human language channel alone

(cf "channel bias"; Moreton 2008). As Moreton (2008) puts it, "phonological typology is

[hypothesized to be] caused principally by systematic errors occurring in the transmission of

phonological representations between the mind of a speaker and that of a learner (who induces

a grammar from the erroneously received forms)." In the diachronic transmission of

phonological structures from one generation to the next, the learner will be exposed to a biased

set of data, resulting from the noise introduced by the channel. Word-initial voicing values, for

example, will be more faithfully transmitted than word-final ones. Innocent misapprehension

hypothesizes that, once the frequency of mistransmission for a given feature value reaches a

critical threshold, the learner will acquire a grammar in which the frequently mistransmitted

contrast is no longer attributed to an underlying phonological distinction, resulting in

neutralization. Reaching this mistransmission threshold will be much more likely for distinctions

subject to frequent mistransmission, such as word-final voicing contrasts in obstruents, resulting

in the relative infrequency of these contrasts in linguistic typology. The learner is, however,

crucially not biased to acquire one system over another and instead simply infers her grammar

from the statistical properties of the data she is presented with. On this theory, the effects that

we have attributed to communicative efficiency emerge from channel biases and are not the

result of acquisition or usage biases of the communicator.

While this theory may explain the fact that certain contrasts are rare cross linguistically

there are two typological facts that are beyond its explanatory reach. The first data point comes

from the specific patterning of the categorical typology of contrast. Innocent misapprehension

cannot explain the fact that implications hold between different contrasts along a given acoustic

dimension. Recall, that it is not simply the case that word-final voicing contrasts are typologically

infrequent, but rather that their presence categorically implies the presence of more perceptible

contrasts in a given language. If a language features an hard to perceive word-final voicing

distinction, then it will necessarily also feature a more perceptible word-initial voicing contrast.
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Innocent misapprehension does not predict that learners will never acquire a voicing contrast in

a less perceptible context in absence of acquiring it in a more perceptible one. In fact, its

proponents argue that typological exceptions of this sort are predicted to occur (e.g., Blevins,

2006). This is because the probabilistic nature of mistransmission of phonological structures in

any context implies that it is possible, albeit less likely, for a learner to become exposed to

sufficiently biased learning data to infer a perceptually suboptimal contrast in absence of

inferring a more perceptible one. Nonetheless, languages that, for example, feature a voicing

contrast for obstruents in word-final position in absence of featuring such a contrast for

obstruents in word-initial context, are unattested in phonological typology (Steriade, 1997).

Furthermore, innocent misapprehension is not equipped to explain communicatively

efficient differences in the distributions of attested phonological categories in context observed

in Chapters 2, 3 and 4. This is because the notion of sound change appealed to is

neogrammarian. Neogrammarian sound change is defined as phonetically gradual, but lexically

abrupt (Labov, 1994). This means that while a sound change may be anticipated phonetically

(e.g., word-final voiced obstruents may be more likely to partially devoice than word-initial ones),

it will affect the relevant categories in a given context across-the board (i.e., in all words in the

language). This in turn means, however, that we should not find synchronic asymmetries in the

probability distributions over different categories predicted by communicative efficiency. While

asymmetries in the distributions of particular values in context may exist for whatever reason,

these asymmetries should be simply due to chance and not biased in the way that I have

shown. For example, we would not expect to find different languages to pattern consistently with

respect to the distributions of voicing features in context in the way predicted by communicative

efficiency (Chapter 2). If communicative efficiency manifests itself in the relative distributions of

different feature values in context then any theory relegating the emergence of communicative

efficiency entirely to neogrammarian sound change must fail.

The theory of sound change required to account for the effects presented in Chapters 2

through 4 is therefore a probabilistic one. Words would have to individually be subject to change
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for a given feature value in context such that the lexicon globally converges on communicatively

optimal distributions for different features (e.g., a certain percentage of word-final /bi's must

change to /p/). This type of sound change is attested, and commonly referred to as lexical

diffusion (e.g., Wang 1969, Bybee 2002). Lexically diffuse sound change is not lexically abrupt

in the sense that all words are simultaneously affected by it, but rather affects specific lexical

items independently. De Schryver et al. (2008), for example, show that Dutch fricative devoicing

(e.g., /aza/>[asa]) is a lexically diffuse sound change currently in progress. They provided

speakers of Dutch and Flemish with two different variants of verbal infinitives ending in /z/, /s/, /

v/, or /f/ in the standard language (e.g., pluizen (standard), pluisen (non-standard); styven

(standard), stijfen (non-standard)). In each case, they asked participants to choose which

variant of a given word they preferred. De Schryvers and colleagues did not investigate voicing

in velar fricatives because "these fricatives have merged more or less completely [to voiceless]

in Netherlandic Dutch." (De Schryver et al. 2008). Different factors that contributed to the extent

to which participants selected non-standard variants exhibiting devoicing of the fricative in

question include its place of articulation (coronal > labial), the speaker's dialect (Dutch >

Flemish), whether or not words with phonologically similar rhymes tend to exhibit devoicing

(similar > dissimilar), as well as the frequency of the word that hosts the fricative (low > high).

Zooming in on the effects of place of articulation reported by de Schryver and colleagues, we

find that Dutch fricative devoicing patterns similarly to the voicing asymmetries observed for

labial and dorsal stops in Chapter 2. The likelihood of Dutch fricatives to devoice also depends

on the backness of the place of constriction involved in their articulation: the more back the

constriction is, the more likely the fricative is to devoice (cf Ohala and Riordan, 1979). In the

case of velar voiced fricatives, which are articulated with the most back constriction, devoicing

applies almost categorically. Furthermore, devoicing of voiced coronal fricatives is observed to

be less likely than devoicing of labial fricatives, which also mirrors differences in constriction

backness.
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If ongoing changes like the one observed by de Schryver and colleagues can become

stable for individual lexical items as has, for example, been suggested by Wang (1969), lexically

diffuse sound change becomes a possible explanation for the differences in type frequency

observed in Chapter 2. The crucial question is now whether the fact that communicative

efficiency in probabilistic phonology can be explained through a diachronic process necessarily

lends support to the broader claim of the proponents of innocent misapprehension, namely, that

communicative efficiency arises in a population of unbiased agents. That is, is any diachronic

explanation necessarily evidence for the fact that sound patterns arise from biases in the

channel only, or does the way in which humans use and learn language cause distributions over

sounds patterns to exhibit communicative efficiency?

The answer to this question lies in the way that speakers use their language

synchronically. We must ask whether speakers modulate the probabilistic properties of their

language to achieve communicative efficiency or whether communicative efficiency simply

emerges from the mistransmission rates induced by the channel. A substantial amount of recent

work in psycholinguistics shows that the correct answer to this question must be the former,

since speakers have repeatedly been shown to synchronically use language in communicatively

efficient ways (see Jaeger 2010 for discussion). Take, for example, the general phenomenon of

phonological reduction. Many, if not all, phonological processes that eliminate contrasts may be

taken as instances of reduction. It is a well-known fact that, for example, frequent words are

subject to greater reduction than infrequent ones (Bybee, 2002). English t/d-deletion (e.g., [west]

"west" > [wes]), for example, applies more to /t/'s and /d/'s in frequent words than in infrequent

ones. Early accounts of such patterns assume that greater reduction in frequent forms results

from articulatory training (Bybee, 2002): t/d delete more frequently in frequent words because

speakers articulate the sequences composing those words more frequently and because "with

repetition, neuromotor routines become more compressed and more reduced" (Bybee,

2001:78). This is in essence a channel-only explanation for reduction. Through repeated
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articulation, neuromotor processes become more simple, thus modifying the extent to which the

human language channel interferes with their faithful transmission.

Such channel-only accounts of t/d-deletion, however, are unable to explain the

asymmetries observed by Gahl (2008). Gahl shows that homophones such as 'time' and

'thyme' involving the exact same articulatory gestures, exhibit different durations in accordance

with the frequency of the lemma that host them. "Time" is more frequent than "thyme" and

generally shorter, in spite of the fact that the two words are articulated with exactly the same

motor movements. While Gahl (2008) still attributes the observed differences in reduction to

frequency, other studies have shown that differences in reduction previously attributed to

frequency are better explained in terms of a correlated, yet fundamentally different property of

the forms undergoing reduction: namely their predictability from the linguistic context.

Van Son and Pols (2003), for example, show that more predictable phones are more

likely to undergo reduction in terms of their duration. Aylett and Turk (2004) present similar

results for the prosodic prominence and duration of syllables. Furthermore, Jurafsky et. al.

(2001) show that English function words are shorter in duration and exhibit more reduced

vowels in contexts where they are predictable. They also show that word final t/d are more likely

to delete in content words that are predictable from the linguistic context. In summary, reduction

is most likely to apply to predictable forms. Conversely, less predictable structures are more

likely to exhibit longer durations and more dispersed vowels (Jurafsky et al. 2001), thus

exhibiting probabilistic enhancement. Findings of this nature have also been shown to

generalize to static properties of languages such as the distribution of word-lengths in the

phonological lexicon. Piantadosi et al. (2011) show that predictability supersedes frequency in

predicting the length of different words in the lexicon. The more predictable a word is, the more

likely it is to be phonologically short. Lindblom (1990) hypothesizes that the dependence of

phonological reduction on the predictability of linguistic forms derives from the fact that speakers

anticipate the relative difficulty experienced by the listener in recognizing intended linguistic

forms. Predictable forms are more easily recognized by the listener and therefore subject to
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greater reduction decreasing the effort invested by the speaker while still achieving her

communicative goal. Unpredictable forms, however, are enhanced to ensure their accurate

transmission.

Crucially, and most relevantly for our purposes, predictability is not a property of the

channel but a property of the communicative code. Speakers do not reduce elements that are

easy to articulate or that they are likely to have misperceived, but they reduce elements that are

likely to be disambiguated by other information present in the signal. The way in which speakers

reduce and enhance the different symbols constituting their message does thus not mirror

actual mistransmission rates, but rather anticipated mistransmission rates. In other words,

speakers modulate the probabilistic properties of their language to accommodate the

mistransmission induced by the channel. Importantly, this means that speakers must on some

level have access to knowledge of what constitutes a communicatively efficient form in terms of

articulation, perception or both (Lindblom 1990, Flemming 1995, Hayes and Steriade 2004).

The hypothesis of the unbiased agent stipulated by innocent misapprehension therefore

cannot explain the synchronic way in which speakers use their language and since it is the

particular usage properties of different linguistic forms that determine to what extent lexically

diffuse sound changes apply to them, it becomes exceedingly unlikely that the particular

synchronic patterns observed in Chapters 2, 3, and 4 have arisen in a population of unbiased

agents. It is much more likely that communicative efficiency in probabilistic phonology arose

through lexically diffuse sound change motivated by reduction and enhancement induced by

agents biased towards achieving communicative efficiency.

7.3 Perspectives for future work

In conclusion, the current Chapter has surveyed possible causes for communicative efficiency in

natural language phonology. I have shown that Martin's (2007) model of lexicon evolution can

account for biases in the distribution of contrast between words. I have also presented

preliminary experimental results evidencing that the similarity of words to other words in the
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syntactic context figures into speakers' decision to use one synonym over another: given a

choice among synonyms, speakers prefer to use words that are more distinct from other words

in the context, as predicted by a spreading activation model of word choice incorporating an

anti-similarity bias in the form of lateral inhibition. While, the natural language effects of word

similarity on the lexicon observed in Chapters 4, 5, and 6 apply independent of linguistic

context, this result is nonetheless encouraging in that it shows that word choice is at least in

certain situations subject to phonological similarity in the predicted direction. Furthermore, I

have discussed theories of how communicative efficiency arises in probabilistic and categorical

phonology. I have proposed that the fact that speakers use their language in communicatively

efficient ways presents a likely cause for the cross-linguistic convergence of distributions of

sounds in context on communicatively efficient states.

One potential manifestation of communicative efficiency that was not addressed in this

dissertation, is the question of trade-off between the phonological properties of a given

language. Nettle (1995), for example, shows that the number of phonemes a languages has,

correlates with the average length of its words in ways expected from communicative

efficiency.27 Languages that have a small number of phonemes tend to have longer words, while

languages with a large number of phonemic contrasts tend to feature shorter words in their

lexicon. Why, this trade-off is optimal is most apparent when we consider the hypothetical case

where those two properties would be anti-correlated. A language with few phonemes and short

words will necessarily feature many phonologically similar or identical words, which will make it

more difficult for the listener to identify the meanings intended by the speaker. Conversely, a

language with long words and many phonemes will feature many highly distinct words.

However, those words will presumably feature many more properties distinguishing them from

other words than necessary to recover them accurately from the signal. Such a language would

27 While Nettle only shows this to hold for a small number of African languages, Nettle's study has since
been replicated by Wichmann et al. (2011) for a sample of 3000 languages, evidencing a strong
correlation between these two properties of languages in typology.
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therefore overshoot distinctness targets in ways selected against by the communicative

pressure of effort, in addition to exhibiting a lower rate of information transmission over time.

Given this result and the pervasiveness of communicative efficiency in natural language

phonology, we might expect that similar trade-offs would also manifest themselves between the

individual contrasts featured in a given language. Why this should be the case, is best illustrated

in terms of different hypothetical prioritizations of Flemming's (1995) communicative pressures.

For example, if a language were to minimize articulatory effort or maximize perceptual

distinctness for every single phonetic dimension along which its phonological categories

contrast, there may be too little distinctions to communicate efficiently in a given amount of time.

Conversely, if number of contrasts were prioritized for every single contrast in a given language,

there may be too many categories for the listener to distinguish articulatory noise from intended

phonemic distinctions.

Returning to the example of categorical restrictions on voicing in contrast in obstruents

presented in Chapter 1, we might thus imagine that a language like Totontepec Mixe, which only

allows for obstruents in inter-sonorant context to contrast for voicing, will exhibit less perceptible

distinctions for other phonological contrasts like those involving place or manner. Conversely, a

language like English, which features voicing distinctions for obstruents in pre-, post-, and inter-

sonorant context might be less lenient in terms of the perceptual distinctness it requires for other

phonological distinctions. This way, the extent to which listeners would need to attend to

perceptual cues to different features in perception to accurately recover intended sounds would

on average be equal in both languages, which is expected given the fact that they both present

adequate solutions to the problem of human communication. Furthermore, the number of

possible words generated by both categorical grammars would also be more equal. Additionally,

such correlations among contrasts would also present potential explanations for the divergence

of individual languages from patterns predicted by communicative efficiency.

Recall, for example, that 27 of the 60 languages studied in Chapter 4 do not exhibit

probabilistic co-occurrence restrictions on consonants in bi-consonantal words. This is in spite
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of the fact that consonants sharing certain features such as place are subject to dissimilatory

misperception. It would, for example, be possible that the safeguarding of the lexicon against

this kind of misperception is only required for particular words that stand in direct competition

with other words exhibiting single instances of a given feature. Alternatively, it could be the case

that place contrasts in general carry a lower functional load in those languages, making it less

necessary to protect them from dissimilatory misperception. Future work will attempt to identify

the effects of communicative efficiency not only for individual phonological distinctions but also

for the joint patterning of several distinctions within a given language, to see if individual

languages, in their entirety, present optimal solutions to the problem of human communication in

a noisy channel.
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