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Abstract

Laser interferometry is being developed as a method for the detection of gravi-
tational radiation. A Michelson interferometer is intrinsically sensitive to the differ-
ential optical path length changes produced in its two orthogonal arms by a passing
gravitational wave. The path length changes due to expected astronomical sources of
gravitational radiation are, however, extremely small. Their detection requires that
new forms of interferometers, and new methods of fringe detection, be developed
and tested.

A small prototype interferometer built to study some of these techniques is
described. This Michelson interferometer employs Fabry-Perot cavities in the arms
as a means of increasing the conversion of arm length variations to optical phase
variations. One of the experiments uses internal phase modulation as a method
for generating the error signals necessary to hold the cavities on resonance and to
maintain the dark fringe condition. Internal modulation also provides a potentially
shot-noise limited signal proportional to the interferometer path length difference.
The advantages and limitations of this technique are discussed.

Another experiment investigates the technique of light recycling. This is a method
for increasing the effective light power in the interferometer by a resonant build-up of
the input light. This is the first experimental demonstration of light recycling with a
Fabry-Perot arm interferometer. An increase in the circulating power by a factor of 18
is observed, in good agreement with the expected gain given the losses of the system.
The experiment also addresses several phenomena associated with the configuration
of coupled optical cavities found in a recycled Fabry-Perot interferometer.

The recycling experiment uses a different phase modulation geometry for detect-
ing the output signal. This is the external modulation technique, where a fraction of
the circulating light is split off to form a reference beam. This beam is phase modu-
lated and interfered with the interferometer output field. By removing the modulators
from the arms of the interferometer, external modulation avoids limitations due to
losses and distortions in the modulators.

Throughout the thesis, the application of these techniques to a full-scale gravity
wave detector is discussed.
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"At the MIT they are currently working on the Laser
Interferometer Gravitational-Wave Observatory, known
by the mellifluous acronym 'LIGO'. It is, put simply, a
pair of 2.5 mile underground tunnels for trapping and
observing lasers. Why you ask, would you make such
tunnels, why not see the laser show at the planetarium
and study the phenomenon there!"

Otto Sternenkrausen
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1 Introduction

1.1 Introduction and history
The modern physicist often does not have a thorough understanding of what

appears to be the correct classical theory of gravity - general relativity -. Yet

it is not surprising to such a physicist that the theory predicts the existence of
gravitational radiation - for a gravitational field cannot change instantaneously
without violating causality - nor that gravity waves should travel at the speed of
light - for that is the only Lorentz invariant velocity. The existence of gravitational
radiation is generally accepted without the supporting evidence of a direct detection
of gravity waves, for there is convincing indirect evidence (see the last paragraph
in this section). The detection of gravity waves would at the very least prove their
existence and measure their propagation properties. The possible rewards are much
higher. Since any detected radiation would originate from astrophysical sources (see
section 1.2), a measurement of gravity waves would provide new information about
the physics of these sources. It would provide much-needed data on the physics
in the poorly understood regime of relativistically strong gravity. A gravity wave
detector would be a new kind of observatory on the universe, providing information
that would further - and maybe change - our understanding of the universe.

The prediction of gravitational radiation by Einstein (Einstein 1916) did not
exactly open the floodgates of experimental research in this field. The effort to
detect gravitational radiation did not start until the early 1960's with J. Weber's
experiments with resonant acoustic bar antennas (Weber 1960). These detectors are
solid elastic bodies, whose fundamental mode is excited by a passing gravity wave
of appropriate frequency. The field expanded considerably after 1969 in response to
Weber's claimed detection of gravity waves (Weber 1969), as over a dozen groups
tried to construct similar bar detectors to see if Weber's results could be reproduced.
Unfortunately, no one was able to confirm the alleged detection.

The sensitivity of bar detectors has increased greatly since the initial experiments
due to improvements in transducers and seismic isolation, and operation of the bars
at cryogenic temperatures. Today these detectors have attained strain sensitivities
of hrms 10-18, generally operating at about 1 kHz with a bandwidth of a few
hertz. For a review of bar technology see Michelson, Price and Taber (1987) and
Thorne (1987).

The idea of detecting gravity waves using a laser interferometer was first sug-
gested by Gertsenshtein and Pustovoit (1962). This idea of interferometrically moni-
toring the relative positions of test masses - masses free to move under the influence
of a passing gravity wave - was independently conceived of by Weiss (1972), who
performed a detailed design study for such an experiment. R. Forward, a former
student of J. Weber's, built the world's first prototype gravity wave interferome-
ter in the 1970's at Hughes Research Laboratories (Forward 1978). This early work
was followed by efforts at Munich, Glasgow, MIT, Caltech, Orsay, and more recently
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ISAS in Japan. As with the resonant bar detectors, the sensitivities of the prototype
interferometers have improved by several orders of magnitude over the first detectors.
Unlike bar detectors, the interferometers will require an increase in scale of about
two orders of magnitude (arm lengths of several kilometers are needed) before they
will be able to reach a sensitivity thought to be sufficient to detect gravity waves. At
the moment there are four groups worldwide planning to build large baseline inter-
ferometers, so that at last the adjective 'prototype' can be dropped: a Caltech/MIT
collaboration (LIGO) planning to build two interferometers in the United States
(Vogt 1989); a Max Planck/Glasgow collaboration planning a detector in Germany
(Hough et al. 1989); a French/Italian antenna planned for northern Italy (Brillet
1989); and an Australian proposal for a site in western Australia (Blair 1989).

While it is true that gravity waves have not yet been directly detected, a
discussion of the history of gravity waves would be severely lacking if it did not
mention that the existence of gravitational radiation has been all but proven by
the observations of the binary pulsar system PSR 1913+16 initiated by J. Taylor
(Taylor and Weisberg 1982). The measured rate of decay of the orbital period of the
two neutron stars agrees with the theoretical prediction - using general relativity
- which takes into account the energy the system is expected to radiate in the form
of gravitational radiation.

1.2 Physics of gravitational radiation
The wave solution to Einstein's equations. Much of the physics of general

relativity is contained in the metric, gpy. The inherent nonlinearity of general
relativity in general makes the computation of the metric very difficult if not
impossible, but here on earth the gravitational fields are always weak enough so
that they can be described by the so-called linearized theory. In this weak field
limit, the metric can be approximated as

914V P: 77,v + h1,, , |hy,| < 1, 1

where qyy is the Minkowski metric. The weak-field Einstein equations in vacuum
then take the form (with a suitable choice of gauge)

( N_ +V h, = 0. (2)

This is clearly a wave equation and the solution can be written in terms of a traveling
plane wave

hi, = hoepve ik,**, (3)

provided that kp satisfies kykP = 0. With a further choice of gauge known as the
transverse-traceless gauge, the components of the (polarization) tensor are much
constrained. For a frame in which the wave is traveling in the z direction, the origin
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of the adjectives 'transverse-traceless' becomes clear, as the tensor ey, takes the
form

/0 0 0 0

e,,= 0Ezz exyt 01
"" 0 EzXj -Y 0) (4)0 ezy -ezz 0

0 0 0 0J

Since the strength of the wave can be contained in the parameter ho, the elements
of the polarization tensor can be restricted to the values ejj= 0,1. Just as for an
electromagnetic wave propagating in free space, the fields are transverse to the
direction of propagation.

Effect on free masses. This analogy between electromagnetic waves and gravita-
tional waves is a useful one; applying it further, we expect a gravity wave to produce
a force on a massive particle. In general relativity, the geodesic equation corresponds
to the equation of motion in non-relativistic physics. Using the transverse-traceless
gauge, the geodesic equation shows that the coordinate position of a free particle
in fact does not change in the presence of a gravity wave. The proper distance
ds 2 = g,,dxtdx" between two particles, however, one located at the origin and the
other at z=zo, y=z=0, is affected by a gravity wave (assuming Ez2=1):

As = Jg|9zli/ 2dx z [1 + tho]xo. (5)

0

The gravity wave produces a relative 'displacement' of two particles, in the sense of
the proper distance between them, that is proportional to their initial separation.
Furthermore, since hyy=-hx, the proper distance between the particle at the origin
and a particle at y=yo, x=z=0 is As - [1 - Iho]yo. The assignment Iezxl = 1, eyl =

0 corresponds to the linear polarization state labeled '+' (plus). The other choice

lEzzI = 0, |czy| = 1 is denoted by the term 'x' (cross) polarization. The effect of
gravity waves with these two polarization states on a ring of free particles is shown
in Figure 1.1 in terms of the proper distance relative to a particle at the center.

The effects of gravity waves can also be analyzed in a 'rigid' coordinate system
whose coordinate lengths are unaffected by the wave. Using this picture, a '+'
polarized wave traveling in the z direction will produce a force on a particle at z=xo,
y=z=0, of magnitude F = lmhoxo in the z direction. The resulting displacement,
in the familiar sense of the word, is thus 6x = thoxo; that is, the gravity wave
produces a tidal force.

9



Plus polarization

cOt = 0 ot = x/2 cot = 7 t = 3/2

Cross polarization

Fig. 1.1 Effect of the two linear polarization states of a gravity wave on a ring of free particles.

In either picture the induced 'displacement' between two particles is proportional
to the separation of the particles. It is thus common to regard h as a strain, i.e. a
gravity wave of field amplitude h produces a strain of magnitude h.

Generation and strength of gravity waves. The expected strength and frequencies
of gravity waves impinging upon the earth will obviously dictate the detector
sensitivity required for a reasonable chance of detection. The required sensitivity will
drive the choice of technologies, and so it is important to examine source strength
estimates in order to arrive at a sensitivity goal.

An estimate of the field strength can be made based upon the linearized theory.
Gravitational radiation is produced by the oscillating multipole moments of the
mass distribution of a system. Mass conservation rules out monopole radiation (just
as charge conservation does so in E&M), and momentum conservation (linear and
angular) rules out gravitational dipole radiation. Quadrupole radiation is the lowest
order allowed form, and thus usually the dominant form. In this case the wave field
is proportional to 4, the second time derivative of the quadrupole moment of the
source, and if it is to carry away energy it must decay as (1/r), where r is the distance
to the source. Dimensional analysis using the constants of general relativity then
gives the field strength to be h ~ (G/c 4 )Q/r, where G is the gravitational constant
and c is the speed of light. The quadrupole moment is of order Q ~ MR 2, where
M is the mass and R the size of the source. Therefore Q is roughly that fraction
of the kinetic energy associated with the quadrupolar, or non-spherical, motion of
the source, Eki":

h ~ 1o0 10 (6)
c4 r
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It is clear that a source in the Virgo Cluster, 10 Mpc distant, could not be expected
to radiate gravitational radiation having a strength larger than h ~ 10-20 at the
earth. It is also clear that terrestrial sources produce hopelessly small strains.

More detailed estimates of wave strengths can be made and applied to specific
types of sources; Thorne (1987) gives a review of such calculations. Sources of gravity
waves can be classified in three ways: burst, periodic, and stochastic sources.

Burst sources produce waves lasting only a few cycles and include coalescing com-
pact binaries (neutron-stars and black-holes), supernovae and other stellar collapses,
and the infall of massive objects to a black hole. For the collapse accompanying a
supernova, for example, the field strength at a distance r from the source in terms
of the total energy AEw emitted in gravitational radiation and the characteristic
frequency f of the collapse, is estimated to be (Thorne 1987):

-20 AEGW 1/2 1kHz 1/2 10 Mpch ~3 x 10~ .~2 )k (7)
(MGec2 ) (f )r

A supernova in the Virgo cluster might produce an h ~ 2 x 10-22 if the gravitational
wave output is 10-4 solar masses and is radiated at 1 kHz.

Periodic sources produce sinusoids (or combinations of sinusoids) that last for
long times and include rotating neutron stars and binary stars. A non-axisymmetric
neutron star of ellipticity e, rotating with a frequency f at a distance r will produce
a gravity wave amplitude of (Thorne 1987):

h ~ 8 x 10-20 ( H10kpc. (8)

Ignorance of the ellipticities of known pulsars prevents the accurate prediction of
their radiation field strength, but as an example, a pulsar with a not unreasonable
ellipticity of e=10-6 at a distance of 10 kpc (the distance to the center of our galaxy)
and rotation frequency of 500 Hz would produce a strain of h ~ 2 x 10-26. This is
very small but the fact that the signal is periodic would enable the experimenter to
use a long integration time and optimal filtering.

Finally, stochastic radiation is a random noise of gravity waves as might have
been produced by some cosmological event in the early evolution of the universe.
The existence and strength of these sources are very uncertain; see Thorne (1987)
for a review.

The frequencies of gravity waves emitted by some of the strongest sources have
already been alluded to. The highest frequency waves would come from stellar
collapses to neutron stars or black holes, emitting radiation in a burst containing
frequencies up to about 10 kHz. The low frequency limit will come not from the
sources, which emit waves down to very low (sub-millihertz) frequencies, but from the
ability to isolate the detectors from the earth's vibrations, and ultimately from the
unshieldable gravitational gradients arising from density fluctuations in the earth
and atmosphere (Saulson 1984).
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1.3 Physics of interferometers
Effect of a gravity wave on an interferometer. Fig. 1.1 reveals the basic idea

of using an interferometer to detect gravity waves. Consider the diagram for the
'+' polarization wave. The test mass at the origin is the beamsplitter and the
test masses lying on the positive x and y axes are mirrors forming the arms of a
Michelson interferometer. All masses are hung from pendula so that they are free to
move at frequencies above their pendulum resonance. The light measures the proper
distance as shown in Fig 1.1. If a gravity wave passes in the z direction, one arm
will lengthen and the other will shorten. The light beams in the two arms will then
accrue a relative phase shift as they travel from the beamsplitter to the arm end
mirrors and back to the beamsplitter. When the beams recombine this phase shift
will produce a shift in the interference fringe, and the resulting intensity change is
a measure of the gravity wave strength.

If each arm is of length I (the distance from the beamsplitter to an arm end
mirror) then for one phase of the gravity wave the changes in the x and y arm
lengths will be Al. = 1 hl and Al -1hl. The optical path length change in each
arm is thus hl, and so the relative phase change between the two interfering beams

is A~g = 41rhl/A. (This is correct only for gravity wave periods much greater than
the arm transit time; the frequency response of interferometric detectors is treated
below.)

Laser F Lse
(a) (b)

Fig. 1.2 The two light storage methods used in prototypes: (a) Delay line, (b) Fabry-Perot cavity.

For a given wave amplitude h, the arm length change (dl) can be made larger by
increasing the arm length (dl=hl/2). The phase shift per arm for a given arm length
change (d4/dl) can be made larger by arranging for the light to be stored in the
arms of the interferometer, so that the light samples the mirror displacement more
than once. (For the simple one-pass arrangement, (d4/dl)=47r/A). Two such storage
schemes have been used in prototypes. Figure 1.2a shows a delay-line interferometer,
where each beam makes 2b distinct passes (only four are shown) in an arm before it
interferes at the beamsplitter. This arrangement has a length-to-phase conversion
of d4/dl = 47rb/A, where b is also the number of spots on each end mirror. The
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other scheme, Fig. 1.2b, uses a resonant Fabry-Perot cavity as the storage element
in each arm. Here the end mirrors are of maximum reflectivity and the near mirrors
have some transmission, T1. For small deviations from resonance, the Fabry-Perot
has a length-to-phase conversion of d4/dl = 8F/A - 16ir/T1A, where F is the finesse
of the cavity (see Appendix A).

Frequency and angular response. The optical phase shift is increased by
increasing the arm storage time only up to a point: if the storage time is longer
than half the gravity wave period, then the phase shift built up during one half-
cycle of the wave will be removed during the next half-cycle. Clearly for the
delay line (or single arm mirror) case, if the arm storage time is equal to an
integral number of gravity wave periods there is no net phase shift. The frequency
response of such an interferometer is computed as follows. Consider a gravity wave
of amplitude h = hoeiwt, optimum polarization and normally incident upon the
detector, whose arms lay on the z and y axes. The space-time interval for a photon,
ds 2 = g,,dxidx" = 0, to first order in h takes the form, cdt = (1 ± hoeiw')dx. The
+ sign applies to one of the axes and the - sign to the other. For each arm, this
must be integrated along the light path as the light makes the round trip from the
beamsplitter. The integral can be done over the arm storage time, r8 =2bl/c. The
differential phase shift between the two beams is then

t

6 0d = wohoeiwtdt = 2woho sin (wr,/2) eiw(t-r/2) = rwosinc(wr,/2)hoeiw(t-r./2)

(9)
where wo is the light frequency and sinc(z)=sinx/. The transfer function of the
differential phase to a gravity wave, 64(f)/h(f), thus has amplitude

645

h L- rwosinc(wr,12), (10)
hDL

and a phase factor e-'r-/2.

For the Fabry-Perot arm configuration, the transfer function is found by adding
the phase contributions generated on each of the infinite number of round trips. This
is done in Appendix A, and gives, in the limit where the length of the interferometer
is small compared to the gravitational wavelength (f < 1/c),

64 ~ (4wor,)
- = (11)h FP + (2r)

where the storage time is r, = Fl/cir ; 21/cT1. The two transfer functions are shown
in Figure 1.3; the storage times are picked so that the low frequency sensitivities
are the same. Note that for high frequencies, wr, > 1, the response becomes

13



1

0.8
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- 0.6
0

0.4
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0
0 1 2 3 4 5

C TD= O /4

Fig. 1.3 Transfer functions for the delay-line (solid curve) and Fabry-Perot (dashed line) interferom-
eters. The low frequency sensitivities are set to be equal by choosing 7rFP = rDL/4.

independent of the storage time; it saturates at a level of |64/h| = 2wo/w for both
types of detector.

If the gravity wave is not normally incident on the detector and contains both
'+' and 'x' polarizations, the relative arm length change will be reduced. If the
detector has its arms along the z and y axes, and the wave vector has polar angles
(0,0) the wave-induced relative arm length change is

Al/l = i(1 + os2 )cos 24 h+ + cos 0 sin 24 hx . (12)

The angular response is quite broad. For unpolarized gravity waves, the response
is zero only for 0=7r/2, 4=nr/4.

Noise sources: the shot-noise limit. The sensitivity of an interferometer depends
not only on the conversion of gravitational wave strain (mirror displacement) to
optical phase shift, but also on the ability to measure the optical phase. At best,
the ability to measure the phase is limited by photon counting statistics. The laser
light can be described by a coherent state, for which the counting statistics follow a
Poisson distribution. Applying the Weiner-Kinchine theorem to this random arrival
of photons at the photodetector gives the amplitude spectral density of the photon
arrival rate to be 6n(f) = V , in units of (number per unit time)/(Hz)1/2. If

the average laser power incident on the photodetector is Pdc and the photodetector

14



quantum efficiency is q, then the detected photon rate is (h) = 7Pdc/hv, where h
is Planck's constant. The amplitude spectral density of the power fluctuations is
then SP(f) = %2hvPdc/9-

The equivalent phase noise due to the shot noise depends on the specific tech-
nique used to detect the signal; two such techniques, in-line and external modulation,
are discussed later in this thesis. The simplest, though impractical, technique is to
operate the interferometer at the fringe half power point and measure directly the
power fluctuations. This is not a practical technique because in a real laser the am-
plitude is not shot-noise limited in the gravity wave frequency band, and it is difficult
to subtract out the amplitude noise to a level where shot-noise dominates. In addi-
tion, middle-of-the-fringe operation is incompatible with the technique of recycling,
discussed in section 1.6. Nevertheless, given a perfect laser, the phase sensitivity of
this theoretical interferometer represents a maximum phase sensitivity for any signal
detection technique, and so it is interesting to analyze.

In an interferometer with no loss and perfect interference between the two arm
beams, the power at the anti-symmetric output in terms of the differential arm
phase is

1
P = -Po(1 - cs 4d), (13)

2

where Po is the input power. The maximum slope occurs at 4d=7r/ 2 and is equal
to dP/dd = }Po. The sensitivity can be doubled by also detecting the light at the
symmetric output, which, since it is also at the P=(1/2)Po point, has dP/dd = iPo.
The total detected power is then Po, giving an equivalent phase sensitivity of

bd(f) = 6P(f) = (radians/vH z). (14)

In terms of the photocurrent, I=77P(e/hv), this is b4g(f) = v2e/Io, where e is the
electron charge and I is the photocurrent on a bright fringe. As an example, for
an effective laser power of 7P=1 watt, and A=0.5 pm (green) light, the shot-noise
equivalent phase fluctuations are 64d(f) = 8.9 x 10-10 rad/v/il ; this implies the
ability to measure a phase shift of 10-9 of a fringe in a one second integration
time. The shot noise limited sensitivity to a gravity wave strain is then h(f) =

|64/h['~6d(f), with I64/h as given for the two types of detectors. The sensitivity
to a signal improves with the square root of the allowed integration time, which
depends on the length and type of the signal.

Noise sources: thermal and seismic noise. The measurement of the optical
phase does not of course discriminate the source of the phase shift: it is necessary not
only to have good phase sensitivity but also to reduce the effects of any phenomena
(other than gravity waves) capable of producing a phase shift. The most important
noise sources in addition to shot noise are thermal and seismic noise. Both produce
random motions of the mirrors; the effect of these noise sources on the strain
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sensitivity, assuming they act independently at the end points, is thus inversely
proportional to the interferometer arm length.

The fluctuation-dissipation theorem states that any dissipative system will expe-
rience thermally driven fluctuations in its modes. Such thermal noise effects arise in
two places in an interferometer: through dissipation in the flexure of the suspension
systems used to make the mirrors 'free' for frequencies higher than the pendulum res-
onance; and through dissipation of the internal modes of the mirrors. In the gravity
wave frequency band, the suspension thermal noise is due to above-resonance exci-
tation of the fundamental mode, and the mirror internal thermal noise comes from
below-resonance motion. The quantitative behavior depends on the materials used

(see Saulson 1990), but in general the thermal noise contribution to the mirror mo-
tion varies as Sx(f) oc ,T/mQ, where T is the temperature, m the mass and Q the
quality factor of the oscillator.

Seismic noise is simply the motion of the ground transmitted through the
isolation and suspension system to the mirrors. The ground noise spectrum varies
from site to site. In the lab at MIT, the ground motion is roughly 6x(f) =
10- 7m/V/II from 1 Hz to 10 Hz; at 10-100 Hz the spectrum falls as (1/f) 4. At
quieter spots typical of a potential long-baseline interferometer site, the ground
motion at 1-10 Hz is 6x(f) = 10- 9 m/v/II~, falling as (1/f)2 above 10 Hz. The
ground noise is filtered above about 1 Hz by the mirror suspension, and by many
orders of magnitude near 100 Hz and above by several layers of mass-spring isolators.
Designing and building an isolation system which will provide adequate filtering is
the subject of current research. The ground noise at the points of support of the
mirrors is nearly uncorrelated, so if the mirror motion due to ground noise is &zm(f),
the equivalent strain noise is h(f) e 26xm(f)/l.

It is expected that seismic noise will dominate the noise of a long-baseline
interferometer at frequencies below about 50 Hz. The suspension thermal noise is
likely to dominate at mid-frequencies, in the 50-150 Hz region. At higher frequencies,
the noise will be dominated by photon shot noise.

Other noise sources, the standard quantum limit. There are of course other noise
sources which, though not expected to be a limiting noise source in an initial large
baseline interferometer, could become limiting if the already mentioned noise sources
are much reduced. Fluctuations in the number of gas molecules in the optical beam
path produce fluctuations in the optical phase and thus put a requirement on the
vacuum level. Phase noise from residual gas is found to scale as 1/p/4. Fluctuating
gravitational gradients due to density fluctuations in the earth and atmosphere
produce uncorrelated mirror motions above a few Hertz. The equivalent strain noise
scales as 1/1, but for realistic arm lengths of a few kilometers this unshieldable noise
source sets a lower limit of about 10 Hz on the gravity wave band of an earth-based
detector. These noise sources are shown in Figure 1.4 in section 1.5. Noise sources
associated with optical phenomena are discussed in chapter 2.

16



In chapter 2 the random forces on the mirrors due to laser intensity fluctuations
are discussed. These initially symmetric power fluctuations produce differential mir-
ror motions through imbalances in the system. There are also inherently asymmetric
radiation pressure fluctuations that are responsible for what is known as the stan-
dard quantum limit of an interferometer. The full explanation of the effect was first
given by Caves (1980, 1981). The field in each arm is a superposition of the single
mode laser field and the vacuum fluctuations in that mode, uncorrelated in the two
arms, which enter through the anti-symmetric port of the beamsplitter. That part
of the intensity due to the cross term between these two fields exerts a fluctuating
radiation pressure on the mirrors. In a cavity arm interferometer, the equivalent
strain noise due to this effect is h(f) = V/PohV/ir2cTilmf 2 , where m is the mirror
mass, Po is the power incident on the beamsplitter, and v is the optical frequency.
The radiation pressure noise is proportional to the square root of the optical power
while the shot noise is inversely proportional to the square root of the power, so
there exists a minimum in the total noise due to optical field fluctuations. With this
optimum power (which is much larger than that available with current technology),
the quantum noise limited strain sensitivity is

S h 1 3.41 kg 2 (4km 100 Hz
h ~;f) = : 3.6 x 10-2 (15)( m iXlf ( m f ) (

This is known as the standard quantum limit. It will not be a limiting noise in
initial long baseline detectors.

1.4 Overview of prototype interferometers
An interferometer built with suspended and seismically isolated masses and

operating in vacuum, but with laboratory sized arm lengths, is what I call a
prototype gravity wave interferometer. While such interferometers do not have the
length necessary for a realistic chance of gravity wave detection, they are vital for
developing many aspects of the technology and understanding the noise sources. The
major noise sources limiting the phase and position (mirror motion) sensitivity of an
interferometer do not depend on the arm length, so it is possible to investigate these
noise sources at the level they will affect a large baseline interferometer's phase and
displacement sensitivity.

In addition to studying noise behavior, a prototype interferometer is used to
develop techniques for servo-control of the detector's alignment and interferometric
length, detecting the differential phase shift at the anti-symmetric output, damping
the pendulum modes of the suspended mirrors, stabilizing the laser frequency, .....
the list goes on.

The list of current prototype interferometers consists of two with Fabry-Perot
cavities in the arms and two using delay lines. The Fabry-Perot interferometers are
being operated at Caltech, where the arm length is 40 m, and at the University of
Glasgow, where the arm length is 10 m. Both systems are not in fact Michelson
interferometers. The beams reflected from the arm cavities are not recombined and
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interfered at the beamsplitter. Instead, the laser frequency is locked to the resonance
of one of the arm cavities and the difference between the locked laser frequency and
the resonance of the other arm cavity is a measure of the differential arm length
(Spero 1986). The best position sensitivity attained at Caltech is 1 x 10-18 m/V ii
for frequencies near 800 Hz. The system at Glasgow has reached a sensitivity of
1.2 x 10-18 m/v/iiz over a 1 kHz bandwidth around 2 kHz (Ward et al. 1987).

The delay line interferometer at the Max-Planck-Institut in Garching has an
arm length of 30 m. The equivalent displacement sensitivity of this detector has
reached the 2.5 x 10-18 m/i./Ii level for nearly all frequencies above 1 kHz, limited
by photon shot noise with 0.23 W of bright fringe power (Shoemaker et al. 1988).
The delay line prototype at the Institute of Space and Astronautical Science, Tokyo
is modeled after the MPI detector and has a 10 m arm length. Kawamura et al.
(1989) report a maximum position sensitivity of 1.6 x 10-17 m/v/Il- at frequencies
near 2 kHz. A 0.5 m arm length delay line prototype was built at MIT and operated
until 1987, achieving a sensitivity of 6 x 10-17 m/VHz at frequencies above 6 kHz
(Livas et al. 1986).

1.5 Specifications of a long-baseline interferometer
Most of the gravity wave strength estimates presented in section 1.2 are very

uncertain due to ignorance of the rate of occurrence - or even the existence - of the
sources, or lack of knowledge of the efficiency of a process. The most certain source
is the coalescence of neutron star binaries in distant galaxies, so the consideration
of such a source is a one way to arrive at a sensitivity goal for a long base line
interferometer.

The coalescence will produce a gravitational wave chirp, with frequencies sweep-
ing from tens of Hertz to 1 kHz in a few minutes. The rate of such events is estimated
to be three per year if one looks out to a distance of 100 Mpc; the strength of the
waves produced at such a distance is estimated to be h ~ 10-21, nearly indepen-
dent of frequency, for a typical binary. In order for two separated interferometers
to detect such a source, the wave amplitude must be about a factor of 10 larger
than the interferometer sensitivity, hdetection ~ 10hrms. This factor of 10 ensures a
statistically significant detection of bursts, considering them to occur at a rate of
three per year, with random polarizations and arrival directions, in detectors which
are free from non-Gaussian noise bursts.

To detect a coalescence at 30 Mpc, the sensitivity would have to be h ~
h(f)V5W < 3 x 10-2 (the factor of 10 margin has been assumed though the rate
for events of this amplitude will probably be less than three times a year). With a
detection bandwidth of BW - 100 Hz, the interferometer strain sensitivity must be
h(f) :- h/ vW ~ 3 x 10-23/V/iz at frequencies around 100 Hz.

The interferometer must be long enough so that the random forces on the
mirrors do not prohibit reaching this sensitivity level. Given the level of seismic and

(suspension) thermal noise, this requires an arm length of at least a few kilometers.
The arm light storage time should be made no longer than the half-period of the
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Fig. 1.4 Spectra of noise sources that will limit the sensitivity of a LIGO interferometer. The arm
length is 4 km and the cavity storage time is r, = 0.44 msec. The shot-noise is due to a circulating
light power (i.e. power at the beamsplitter) of 45 W (resulting from an input power of 1.5W and
a recycling gain of 30, e.g.) and wavelength A = 0.51 pm. The seismic noise is due to the typical
ground noise spectrum, as given in the text, filtered by 5 stages of passive isolation and the mirror
pendulum, fo = 1 Hz. The mirror internal thermal noise is that of a 10 kg, Q=103, viscously damped
test mass. The pendulum thermal noise comes from a Q=107 , viscously damped pendulum (the

vertical resonance of the pendulum shows up at 16 Hz). The gas noise is due to 10-8 torr of N2.

frequency at which shot-noise no longer dominates. Choosing a knee frequency for
a Fabry-Perot system of fk = 1/4irr, z 200 Hz gives a strain to phase conversion,

for an optical wavelength of 0.5 pm, of |64/hlf<200Hz 4wor, = 6 x 1012 rad. The
required phase sensitivity to reach the above strain sensitivity is thus bd(f) =

|64/hI h(f) z 2 x 10-10 rad/x/ilz. At the minimum, this requires an effective optical
power of r7P = 2hvo/(64d(f))2 ~ 20 W.
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The design of the initial interferometer for the Laser Interferometer
Gravitational-wave Observatory (LIGO) uses a 4 km arm length and Fabry-Perot
cavities as the storage elements in the arms (Vogt 1989). The beams will be optically
recombined rather than separately detected as in current prototypes. An advantage
of the Fabry-Perot design is that the required mirror diameter is smaller than for
an equally long delay line; more interferometers can then be operated in the same
vacuum system. The storage time of the arms will be rs = 0.5-1 msec, giving a 3
dB frequency of fk = 100-200 Hz. Figure 1.4 shows how the noise sources discussed
in section 1.3 will limit the performance of a LIGO interferometer.

Another basic requirement of a gravity wave detector is that there be more than
one interferometer being operated at widely separated sites. Nobody will believe a
claimed gravity wave detection unless the signal appears in the output of more than
one interferometer; a separation of the order of the size of the continental United
States should ensure that any non-gravity wave effects capable of producing signals
will be uncorrelated at the two sites. A wide separation also makes it easier to get
information on the source location from the relative timing of the two signals.

1.6 Techniques for increasing strain sensitivity

The interferometer designs discussed up until know could be called first gener-
ation designs; they consist of a Michelson interferometer with either delay lines or
Fabry-Perot cavities as the storage elements. Second generation designs include one
or more proposed techniques for increasing the sensitivity to a gravity wave strain,
h(f) = |6/hI-'64g(f ), capitalizing either on an increase in the effective light power
and thus a decrease in 64(f), or on increase in the conversion of strain to phase
shift, |64!/h. Many of these techniques are discussed by Vinet et al. (1988).

The technique of standard or broadband recycling, suggested by Drever (1982),
adds another mirror to the interferometer at the input to the system, making the
entire interferometer into a resonant cavity. This increases the circulating power in
the arms by at most the reciprocal of the total interferometer loss, thereby increasing
the shot noise limited phase sensitivity by the square root of this factor, without
altering the bandwidth of the interferometer. Light recycling, as it is also called, has
been tested on a small one-bounce Michelson interferometer by Man et al. (1990).
The technique of broadband recycling, as applied to a Fabry-Perot interferometer,
is the subject of chapters 4 and 5 of this thesis.

The idea behind both resonant and dual recycling is to make the interferometer
resonant not only at the laser frequency vo (as in broadband recycling), but also
at a frequency yo + fg (or vo - fg), where fy is the gravity wave frequency. That is,
the interferometer is resonant at the carrier and at one of the gravity wave induced
sidebands of the carrier. This sideband is thus resonantly enhanced by a factor
corresponding to the finesse of the sideband resonator. The increase in the phase
shift (signal) occurs of course only at and around a single gravity wave frequency.
The bandwidth of the system is then determined by the finesse (i.e. the losses) of
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the sideband resonator, and is roughly Afg s 1/rb, where rb is the storage time
of the sideband in the interferometer.

This narrow-banding idea and a method for implementing it known as resonant
recycling were first suggested by Drever (1982). An alternate optical configuration
for producing the two resonances (at the carrier and the gravity wave sideband) due
to Meers (1988) is known as dual recycling. Narrow band operation of a detector
would be useful for the detection of periodic sources and a stochastic background of
gravitational waves. Since all types of recycling depend on the total interferometer
optical loss being low, they are useful for increasing the sensitivity to gravitational
waves only in a large baseline interferometer (see chapter 4.2). Strain and Meers
(1991) have tested dual recycling on a small one-bounce Michelson interferometer.

A suggestion for circumventing the photon shot noise limit by using light with
modified statistical properties has been made by Caves (1981). The vacuum fluctu-
ations responsible for the radiation pressure fluctuations mentioned above can also
be blamed for the shot noise. Caves has shown that by 'squeezing the vacuum'
(i.e. reducing the fluctuations in one component of the field while increasing the
fluctuations in the quadrature component), the photon shot noise can be reduced
in exchange for increasing the radiation pressure fluctuations. The technique has
the same effect has increasing the laser power. The increase in sensitivity achiev-
able depends on the optical configuration of the interferometer; see Gea-Banacloche
and Leuchs (1987) for further discussions of squeezed states applied to interferom-
eters. The many practical difficulties involved probably put this technique into the
category of third generation designs.

1.7 Purpose of this work and thesis outline

There are a number of optical and electronic techniques being planned for use
in a long baseline interferometer that had not been tested in an interferometer.
A prototype interferometer (in vacuum and with isolated, hanging masses) is not
necessary for the investigation of many of these techniques. A relatively small
interferometer with mirrors fixed to the ground (optical table) and operating in air
is useful for tests which do not require being able to achieve a gravity-wave-detector
level of shot-noise limited position sensitivity in the gravity wave band. This thesis
discusses work done on such a fixed-mirror interferometer in investigating some of
these heretofore untested techniques.

Some noise sources affect a fixed-mirror interferometer in the same way as a
gravity wave interferometer; these usually involve optical imperfections creating
phase noise. Chapter 2 discusses how the noise behavior of the laser influences
the sensitivity of an interferometer.

A long baseline Fabry-Perot interferometer requires optical recombination of the
beams if recycling techniques are to be used. Chapter 3 discusses an experiment on
optical recombination using the technique of 'in-line modulation'.
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A long baseline interferometer requires at least 30 W of effective light power

(see section 1.5). This much power in a single frequency is not available with Argon
lasers; the LIGO plans on achieving this with an input power of ~ 1.5W and a factor
of 30 enhancement gained from broadband recycling. The subject of chapters 4 and
5 is recycling: chapter 4 presents the theory of broadband recycling and chapter 5
discusses the results of experiments on a recycled Fabry-Perot arm (fixed-mirror)
interferometer.

The in-line modulation technique of chapter 3 is a convenient means of generating
a signal at the interferometer output that is proportional to the differential arm
phase. Limitations of the electro-optic phase modulators used in the interferometer
arms make this technique unsuitable for recycling. Chapter 6 presents the theory
and experimental results of a more practical method of extracting the phase shift

(or gravity wave signal) called 'external modulation'.
Throughout the thesis remarks are made about the application and scaling of the

techniques investigated in these experiments to a full-scale gravity wave detector.
Some final comments on this topic and a summation of the thesis are made in the
final chapter.

2 The laser and its noise behavior

2.1 The laser
A Michelson interferometer is designed to be sensitive to the optical phase

difference between its arms and thus in principle is insensitive to common-mode
fluctuations of the input light. This insensitivity is impossible to achieve in practice.
In general, an asymmetry between the two arms permits fluctuations in the input
light to couple to the output signal. This chapter describes the various types of
fluctuations of the laser light source and the ways in which these fluctuations can
appear in the interferometer output.

The laser used in all of the experiments is an Ar+ ion laser, specifically a Spectra-
Physics model 2020-05. A wavelength selective (narrow bandpass) output coupling
mirror allows only the 514.5 nm line to oscillate. An intra-cavity etalon performs
further wavelength selection so that only one longitudinal mode has sufficient gain
to lase. Finally, an intra-cavity aperture restricts the output spatial mode to be
TEMoo. The base laser thus emits an electromagnetic field at a single frequency.

2.2 Frequency fluctuations
This frequency is not constant in time, however, due to fluctuations in the optical

path length of the laser cavity. These frequency fluctuations can couple into the
output signal of the interferometer in the following ways: via a static storage time
difference in the two arms, and through the interference of scattered light with the
main beam. In a Fabry-Perot arm interferometer, light that is not matched to the

fundamental modes of the cavities can also serve to convert frequency noise to an

output signal.
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In each case, the fields which are compared at the beamsplitter originated from
the laser at different times, and a fluctuation of the laser field phase (or frequency)
is converted into a fluctuation of the differential arm phase. An interferometer arm
converts a frequency fluctuation, Sv, into a phase fluctuation by b4 = (d4/du),6v.
For a delay line (d4/dv) = 27rbl/c where I is the arm length and b the number of
bounces, while for a cavity (d4/dv) = 81F/c where F is the finesse of the cavity. A
storage time asymmetry in the arms then results in a differential arm phase, which
for a cavity system can be written as:

d4\\AlzAF1
(f)~ K) +- ]V(f). (16)

du) ) (F):] v

For the cavities in these experiments, (d/dv) = 2.8 x 10-6 rad/Hz. If the cavities
are matched to 1%, this gives 60(f) = 2.8 x 10-8 6v(f.

Frequency noise can also corrupt the system through the phase fluctuations
produced by the interference between the main beams and scattered light (light
that has taken a different path to get to the output). If a stationary scattering site
scatters a fraction a of the main field into the detected beam, and this scattered
light interferes with the main beam after a time different than the arm storage time
by a factor -y, it will contribute a differential arm phase of

64(f) ~ 2r(ryrt)v(f) ~ (1/4)(d4/dv)(ry)bv(f). (17)

The product (ry) for any system is probably less than the fractional imbalance in the
arms, so that the scattering contribution is less than the asymmetry contribution.
For an interferometer with cavities in the arms, light that is not coupled into the
cavities (higher order modes) contributes in a similar way; in this case o is the
fractional difference (relative to the main beam) between the unmatched light in
the two arms, and f will be nearly one since the higher order modes travel only to
the near mirrors of the cavities. In theory, both of these effects can be reduced by
detecting only the signal in the spatial mode of the main beam, through the use of
an output filter-cavity or single-mode fiber.

2.3 Frequency stabilization
This sensitivity requires that the frequency noise be sufficiently small so that it

does not compromise the sensitivity in the frequency regime where measurements
are being made: for our fixed mass prototype this is in the tens of kilohertz, for
LIGO this is the region from 100 Hz to a few kilohertz. The frequency noise of
an unstabilized Ar+ laser does not in general satisfy this requirement. In fact the
frequency fluctuations of an unstabilized Ar+ ion laser are much greater than the
fluctuations of the resonant frequency of a typical passive optical Fabry-Perot cavity,
such as used in the interferometer arms, at all but very high frequencies. It is thus
also desirable to pre-stabilize the frequency to such a cavity to reduce the frequency
fluctuations of the field incident upon subsequent optical cavities.
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Small reductions of the frequency fluctuations at low frequencies (< 100 Hz) can
be made by quieting the water flow that cools the laser tube, but for substantial
reductions the frequency must be actively stabilized. In these experiments the laser
frequency is stabilized to a reference Fabry-Perot cavity using a technique that has
become known as 'Pound-Drever reflection locking' (Drever et al. 1983). This
is a well developed technique which uses the frequency-dependent field reflected
from a cavity to derive an error signal proportional to the instantaneous frequency
fluctuation of the laser; this error signal is then used to control the laser frequency.
This technique is discussed, in addition to Drever et al., in Salomon et al. (1988) and
Hamilton (1989); the scheme has been applied to argon lasers (Kerr et al. 1985),
dye lasers (Hall and Hinsch 1984, Hough et al. 1984), He-Ne lasers (Salomon et
al. 1988) and Nd:YAG lasers (Shoemaker et al. 1989). Appendix A presents the
response of a Fabry-Perot cavity to an electric field and shows how a discriminant for
the laser frequency/cavity length is generated. The purpose of the discussion here is
to document the particular servo system used for these experiments, since, as is clear
from the numerous references, there are many ways of implementing the technique.

Figure 2.1 shows the optics and electronics used to stabilize the laser frequency.
A Pockels cell is mounted in the laser cavity to provide wideband control of the cavity
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Fig. 2.1 Laser frequency stabilization (PC is a Pockels cell and PBSs a polarizing beamsplitter)

optical path length; it is made of a Brewster angle cut pair of ADP crystals, Gsinger
Optische model PM 25, that produces a phase retardation at 514 nm of A/2 for an
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applied voltage of 900 V. The introduction of the Pockels cell into the cavity reduces
the laser output power by approximately a factor of 2. In this configuration, the
laser emits a maximum power of 0.5 W (if the plasma tube is new). The laser mirrors
have been removed from the laser frame and mounted directly on the optical table.
This allows mounting of both mirrors on piezo-electric transducers, giving further
control of the resonator length; the output coupler is mounted on a relatively large
range (3 pm motion for 1000 V), 'slow' (fr, = 4 kHz) three element Burleigh PZT,
and the rear mirror is mounted on a small (.95" diam. x .05"), 'fast' (frcs = 250
kHz) PZT disc. The 'fast' PZT is not actually used in this implementation of the
control loop, but it can be used for high frequency control if one desires to remove
the Pockels cell from the cavity.

After exiting the laser, the beam passes through a Faraday isolator and then
a half-wave plate and polarizing beamsplitter that are used to control the relative
power sent to the reference cavity and the interferometer-feeding fiber. The reference
beam is phase modulated (by another PM 25) at fmod = 12.33 MHz with a modu-
lation index of m - 0.3 before entering the cavity. A f = 50 cm lens matches the

laser beam spatial mode to the cavity's fundamental mode. A folding mirror and a
rotatable piece of glass allow angle and position alignment, though with an annoying
coupling between the two, of the beam to the optical axis of the cavity. The polar-
izing beamsplitter and quarter-wave plate in front of the cavity direct the reflected
beam onto the rf-photodetector. The photodetector output is demodulated, filtered
and amplified, and sent to the output coupler PZT and the intra-cavity Pockels cell
to complete the loop.

The reference cavity is approximately 30 cm long; the structure which holds the
cavity mirrors is made of invar and is wrapped in acoustic shielding. The finesse
of the cavity is 200, thus the linewidth (free-spectral range/finesse) of the cavity is
about 2.5 MHz. Approximately 70% of the incident light is typically coupled into the
TEMoo mode of the cavity, limited by alignment. The intensity reflection coefficient
of the cavity on resonance is Reav= 0.28.

The rf-photodetector was designed and developed in this lab by Rainer Weiss and
Joe Giaime. It uses an EG&G SGD-200 silicon photodiode reverse biased at 100 V.
The photocurrent is turned into a voltage with an inductive load which, in parallel
with the capacitance of the photodiode, is resonant at the modulation frequency,
with a Q of 3-4. Two stages of amplification follow, a cascode FET-transistor
stage and an operational amplifier stage. The input noise of the photodetector is
equivalent to the shot noise from a DC photocurrent of 35 pA. The photodetector
output is (3-pole Butterworth) low-pass filtered at 18 MHz to remove any signal at
harmonics of the modulation frequency before entering the Mini-Circuits ZAY-1B
double-balanced mixer. The IF output of the mixer is low-passed at 7 MHz to remove
any signal remaining at fmod. This error signal is then sent through a compensation
network. For the initial locking this is a single pole at 100 Hz; for normal operation,
a pole-zero pair at 100 Hz-100 kHz is added and the low frequency gain increased.
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In addition, a 1.3 MHz zero compensates for the roll-off of the cavity response. The
signal is amplified by a wideband high-voltage (±85 V) amplifier and applied to the
intra-cavity Pockels cell; it is also further filtered with a pole at 0.5 Hz, sent through
a 0-1000 V range amplifier, and applied to the PZT on the laser output coupler.
The maximum unity-gain frequency (u.g.f.) is about 700 kHz with the single-pole
compensation, and about 300 kHz with the normal compensation.

Figure 2.2 shows a closed-loop transfer function of the servo operating in the
normal state. Because of the large gain at low frequencies, it is difficult to measure
the closed-loop response below 5 kHz, but the response must decrease as 1/f 2 down
to 100 Hz. Figure 2.3 shows the spectral density of the frequency noise for the
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unstabilized and stabilized cases, as measured by separate Fabry-Perot cavity. The
servo loop suppresses the frequency noise by an amount equal to the open loop gain
up to the point where the frequency noise has reached the noise limit of the servo
system; beyond this point the frequency follows the noise in the loop. For 0.8 ma
of photocurrent through the rf-photodiode (about 3 mW of light power), this noise
is dominated by the shot noise of the light and, in terms of an equivalent frequency
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noise, is at about the 0.4Hz/vifiz level. Figure 2.3 shows that the stabilized frequency
noise has reached this level in the band from 20-40 kHz. Figure 2.3 also shows the
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Fig. 2.3 Top: Unstabilized frequency noise (upper) and stabilized frequency noise (lower), as

measured by a separate 'measurement' cavity. The data is meaningful above about 5 kHz. Bottom:

Unstabilized freq. noise (upper) and stabilized error signal (lower). In both cases, the dashed line is

the shot-noise limited level of the frequency stabilization loop.
unstabilized frequency noise and the stabilized error signal of the loop from 0-5 kHz.
In most of this band the error signal is held below the equivalent shot-noise limited

level, indicating that in these regions the difference between the laser frequency and

the resonant frequency of the reference cavity is servo-controlled to the 0.4 Hz/v iz
level. An accurate measurement of the frequency noise in this region, would require

comparison with a separate cavity, for which the effects of acoustic and seismic noise
and the shot noise are below this limit. With such a sufficiently stable reference

cavity and enough optical power, the frequency noise would just be reduced from

the unstabilized level by a factor equal to the open-loop gain in the servo.
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2.4 Laser amplitude noise
Laser amplitude noise can appear at the interferometer output through the fringe

detection system and through an imbalance in the power in the two arms. The
phase modulation-demodulation techniques used to recover the output signal are
susceptible to laser amplitude noise at and around the modulation frequency, since
signals at frequencies fm±f are mixed down to signals at f. The optical phase is thus
modulated at a frequency where the laser is shot-noise limited; for a typical argon
laser this is > 5 MHz. When the interferometer is on a dark fringe the demodulated
signal is at a null, independent of the light amplitude. Deviations from the null
point, however, allow laser power fluctuations in the measurement frequency band
to appear as a signal at the output. The demodulated output depends linearly on the
arm phase difference for small deviations about the null point, so that the apparent
phase fluctuations due to laser power fluctuations are

60(f) = Pf) , (18)
P

where oo is the static offset from zero (modulo 21r) differential arm phase. In
fact the average differential arm phase is kept to zero (up to any offsets in the servo
electronics which can be made negligible), but the root-mean-square (rms) deviation
is non-zero. Since the fluctuations contributing to the rms deviation have a much
lower frequency than the signals of interest, it is a reasonable approximation to
replace the static offset, b4o, by the rms deviation, r in the above formula.

For example, to reach the 64d(f) = 3 x 10-9 rad/ViI- level (the shot-noise due
to 100 mW of effective optical power, a few times more than ever used in these
experiments) with a fractional power fluctuation of 3 x 10-6/ vfY (Fig. 2.4), requires
an rms phase deviation of 6qrms < 10~ 3rad.

Laser power fluctuations also exert a fluctuating force on the arm mirrors through
radiation pressure, which leads, in a free-mass interferometer, to motions of the
mirrors. If the power in the two arms is not the same, these forces will be of differing
magnitude, resulting in differential arm motions. If the fractional imbalance in the
power circulating in the arm cavities (Pirc) is fl, the resulting differential mirror
motion is

6P(f) 2 Pirc( 1
Sx(f) = P2 ,(19)

P mc(2xf) 1+(2ri)

where m is the mass of a cavity mirror, and the last factor accounts for the filtering
effect of the cavity (rst is the cavity storage time).

The amplitude noise of the laser is shown in Figure 2.4. The laser is equipped
with a rudimentary power stabilization circuit. It compares a small fraction of the
emitted light with a reference, and feeds the resulting error signal back to the power
supply. The servo reduces the power fluctuations by about a factor of 10 below 100
Hz, and has a unity gain frequency of about 1 kHz. No efforts were made to further

28



10-5
N

X10-7

100 1000 104 10

Frequency (Hz)

Fig. 2.4. Power fluctuations of the laser. Shot-noise is at the 6P(J)/P = 8 x 10-9 level. The
detected power is Pdct = 20 mW.

stabilize the laser power for the experiments in this thesis. The fluctuating radiation

pressure does not bother fixed mirrors, and it was always possible to operate with a
small enough deviation from the dark fringe so that the laser amplitude sensitivity
was insignificant.

2.5 Laser beam geometry fluctuations
Spatial asymmetries in the arms leave the output susceptible to beam geometry

fluctuations. Possible geometry fluctuations are jitter in the angular or lateral
position of the beam, or changes in its mode form. The spatial asymmetry could be
due to misalignment, an arm length asymmetry, or differing wavefront distortions
in the arms.

Measurements of the beam geometry fluctuations of the laser were not made, but
the technique of delivering the laser beam to the interferometer with a single-mode
optical fiber, suggested by Weiss, was used. This greatly suppresses the intrinsic

beam jitter of the laser. Shoemaker et al. (1986) measured the angular and lateral

position noise of the output of such a fiber. The beam directly from the argon laser

showed lateral position noise of Ss(f) ; (10- 4 /f 2 ) m//ilz for f > 100 Hz. After
the fiber, an upper limit of 6s(f) < 10-11 m/Hiz for f > 200 Hz was obtained. The

upper limit for the angular position noise was ba(f) 5 3 x 10-12rad/V'ii. Shoemaker
et al. also measured the beam jitter suppression of the other passive approach to
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improve beam quality: a Fabry-Perot cavity used in transmission (Maischberger et
al. 1979 and Ridiger et al. 1981). The measured lateral fluctuations for this method
were 3-10 times higher than the upper limits for the fiber output, but were likely
limited by mechanical excitation of the 'mode-cleaning' cavity. In principle, a very
high degree of geometry fluctuation suppression can be achieved with a resonant
cavity (Rfidiger et al. 1981).

3 In-line modulation

The first experiment on an optically recombined Fabry-Perot arm interferometer
employed Pockels cell phase modulators in the arms of the interferometer, between
the beamsplitter and the two cavities; this technique has been named 'in-line

modulation'. A nearly complete description of the experiment can be found in
the paper "Prototype Michelson interferometer with Fabry-Perot cavities", by D.
Shoemaker, P.Fritschel, J. Giaime, N. Christensen, and R. Weiss, published in
Applied Optics, vol. 30, p. 3133. The discussion here is essentially the same as
in the paper.

Layout and measured properties. Figure 3.1 shows the relevant optics and signal
detection electronics of the experiment. The interferometer is constructed with

commercial mirror mounts on small optical tables bolted to the circular bottom plate
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of a 1.5 m diam vacuum tank. This bottom plate is isolated from seismic ground
motion with rubber-damped springs, giving horizontal and vertical resonances of
about 4 Hz. The vacuum tank is closed, but not pumped out, during the experiment.
The entire tank is overpressured with filtered air. The cavity mirrors and the space
between them are protected by glass tubes filled with very clean (filtered to 0.1 pm
particle size with 99.99% efficiency) boil-off from liquid N2 or with He gas. Sound
absorbing material (SONEX 1) inside the tank is used to absorb acoustic noise.

The single-mode fiber which feeds the light into the tank (see section 2.3) is
terminated in a mount with a grin lens (not shown); the output of the fiber-grin lens
assembly is a nearly collimated beam (see Christensen 1990 for a description of this
assembly). This beam is mode matched to the FP cavities with a single positive lens
and isolated by two Faraday isolators in series (see Fig. 5.1). The light falls on a disk
beamsplitter and is sent (in each arm) through a Pockels cell and into the 47 cm long
FP cavity. A fraction (3%) of the reflected light is sent to a photodetector; the rest
returns to the beamsplitter where it interferes with the light in the other arm. The
light leaving the anti-symmetric output is detected. The light leaving the symmetric
port (coincident with the incoming light) is rejected by the Faraday isolator.

The FP cavities have a plano-spherical geometry, with a 1 m radius of curvature
rear mirror. The flat input mirror has transmission T = 2.8%, the rear mirror has
maximum reflectivity (with approx. 17 ppm transmission), giving a finesse of F=220
and a linewidth of 1.4 MHz. The reflectivity of each cavity on resonance is Rcay =
97.5%. The total mirror losses are inferred to by 160 ppm. See section 5.1 for a
further discussion of the mirror properties. The matching of the input beam to the
fundamental mode of each cavity is M = 95%. To the precision of our measurements
(approx. i5%), there is no difference between the two cavities in terms of matching,
finesse, or losses.

The mirror transmissions and losses, and thus cavity finesses, are similar to those
to be used in the full scale interferometers. This means that the experiment was
not designed to have the optimum position sensitivity but instead was meant to
investigate optical characteristics such as contrast and losses, the servos and fringe
detection, and the sensitivity and its limits in a regime of interest to a full scale
system.

The far mirrors of the FPs can be blocked, leaving a simple Michelson interfer-
ometer (MI). The contrast of this interferometer, without Pockels cells in place, is

C = (Imax - Imax)/(Imax + Imax) = 0.996; with the Pockels cells (Gssnger PM-25) in
place, the contrast becomes C = 0.989. Later experiments which had remote align-
ment controls (PZT's) on the mirrors showed an even higher contrast, C=0.9995,
without Pockels cells, so the earlier sans Pockels cells contrast was probably lim-
ited by our ability to align the system. With the FP in the arms and locked on
resonance, the contrast is C = 0.986.

Servo and measurement systems. The rf-reflection technique is used to maintain
each arm cavity resonant with the laser light. For this experiment, the laser
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frequency is locked to cavity A (rather than to a separate cavity as described in
section 2.3), and cavity B is then locked to the stabilized laser light.

The laser frequency servo loop is as described in section 2.3, with an additional
Sallen-Key circuit that can be added to the loop to give extra gain in the vicinity
of 80 kHz (at the expense of a reduced gain around 40 kHz). With the Sallen-Key
circuit, the frequency noise at 80 kHz is held to the shot-noise limit of 0.3Hz/ViY-.

The servo compensation for the cavity B lock is similar to that for the laser,
except that the pole-zero pair for the normal operating condition is at 1 Hz and 3
kHz. The actuator for this servo is a PZT on the input coupling mirror of cavity B,
which has a pronounced (Q=15) resonance at 24 kHz. To allow a higher unity-gain
frequency, a passive anti-resonance circuit in the compensation network is used to
cancel this resonance. The unity-frequency is then 4.5 kHz, which is sufficient to
make the excursions from the cavity resonance acceptably small.

The Michelson path length difference is also modulated by the Pockels cells in
the arms, since they are driven out of phase. However, the level of modulation
is significantly reduced by the optical arrangement that has the light passing two
times through the modulators. In the first pass, the carrier has two sidebands at
±fm put on it (for a modulation index small enough that the higher sidebands can
be ignored). This beam is reflected from a cavity. The sidebands are outside the
resonance curve of the FP, and thus are shifted by 0 and 21r radians after reflection.
The carrier, which is resonant with the cavity, is shifted by 7r radian upon reflection.
The reflected light passes again through the modulator; new sidebands are put on
the reflected carrier, which are out of phase with the sidebands that were put on in
the first pass through. Thus, there is a cancellation of the modulation.

The quality of the cancellation is a function of several parameters. First, the
amount of light absorbed in the cavities: for these cavities, all but 2.5% of the light is
reflected. Second, the ratio of the modulation frequency to the cavity linewidth: for
the 1.4 MHz linewidth and 5.38 MHz modulation, the reflected sidebands are not at
0* and 360*, but at 13* and (360*-13*). Finally, the distance between the modulator
and the cavity input mirror: the transit time causes an additional phase between
the original and second sidebands, contributing about 3* of phase delay. When the
modulation is small enough that only the first sidebands need be considered, the
effect of the double-passing on the signal, expressed as the ratio of the Lm signal in
the double-passed case 1P to the signal for a single pass PP, is

Idp(m J 2(q) 1 cavl + [sin (2wml/c + #cav),2 , (20)
IS(M) I

where F is the modulation index for a single pass through the modulator, Reay is the
intensity reflection coefficient of the cavity on-resonance, I is the distance from the
modulator to the cavity, and qcav is the phase shift added to the Wo±wm sidebands
upon reflection from the cavity. In this case, the amplitude term, (1 - av =

(1 - .987)2 = 1.7 x 104 , is very small, and the signal comes almost entirely from the
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phase shift term, [sin 160]2 = 7.6 x 10-2. This gives a signal ratio of Idp/Isp = 1/3.7
for a typical I' of 0.16. The measurements of this reduction compare the wm signal
of the FP MI and the simple MI. In the simple MI the modulation is nearly doubled
on the second pass, so that the signal ratio should be IFPMI/1 MI = 1/7.4, which is in
fair agreement with the directly observed ratio of 1/9. The result of the cancellation
is that, in these experiments, the optimum modulation depth cannot be reached;
this will be discussed further below. Note that the cavity lock (for which the signal
is picked off before the second modulator pass) does not suffer from this cancellation.

However, there is sufficient signal to hold the Michelson to a dark fringe and to
make measurements of the signal-to-noise ratio. The demodulated signal from the
photodetector at the anti-symmetric output is put through a compensation network
similar to those above, with a pole at 160 Hz for initial locking and a pole-zero pair
at 1 Hz-3 kHz for normal operation. The filtered signal is amplified with a high-
voltage amplifier and sent to one of the Pockels cells. A unity-gain frequency of 5
kHz is attainable and sufficient. The error signal of this loop is analyzed above the
unity-gain frequency to obtain the displacement noise spectrum. It is calibrated in
displacement using a second PZT mounted on the cavity B input coupling mirror:
the signal for a given applied 35 kHz signal can be seen in both the FP MI and the
simple MI, where the absolute magnitude can be determined either from the known
sensitivity of the Pockels cell or from the calibration-signal size directly compared
with the Michelson output fringe amplitude.

Signal sensitivity, noise sources. Figure 3.2 shows the spectrum, expressed as

equivalent mirror displacement noise of a single arm mirror, of the interferometer.
The photocurrent on the Michelson bright fringe for these measurements is 7.3 ma
(about 30 mW of bright fringe power). The top fiat curve is the displacement noise
of the simple Michelson; note the lack of features at frequencies above 20 kHz. This
noise level is at (within 1 or 2 dB of) the shot-noise limit for the measurement. This
is determined by replacing the laser light on the anti-symmetric photodetector with
an incandescent light source that produces the same photocurrent.

The spectrum for the FP MI is the middle, rapidly falling, curve in Fig. 3.2.
At low frequencies (< 30 kHz) acoustic noise is dominant. This noise source
determines the servo loop characteristics that are required, as it is against these
large fluctuations that the system must be held on-resonance or on the dark fringe.
In the 30-100 kHz band, a number of resonances can be seen. These are probably
thermally driven resonances in the FP cavity mirror supports and are consistent
with masses and resonance Q's in the system. This noise source is the practical
limit to the obtainable sensitivity with this interferometer constructed of mirrors
in conventional mounts. This measurement is taken with He in the glass tubes
protecting the cavity mirrors. With N2 in the tubes, the resonances of the glass
tubes are seen in the spectrum because they produce larger fluctuations in the index
of refraction of the intra-cavity gas, due to the higher polarizability of N2.
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Fig. 3.2 Interferometer spectrum: Top curve, the simple one-bounce Michelson interferometer; middle
curve, the Fabry-Perot arm Michelson; bottom curve, the shot-noise for the FP MI measurement.

In a region between 70 and 85 kHz, the spectrum closely approaches the shot-
noise limit, as determined by the light bulb test. The light bulb noise is the bottom
trace in Fig. 3.2. The equivalent displacement noise due to the shot-noise is
2.05 x 10- 17 m/VHiY, and the displacement noise for the interferometer at 75 kHz

is 1-2 dB higher than this. 1 The increase in sensitivity obtained by adding the
cavities is roughly a factor of 25. This is reduced from the ideal factor of 4/ Ti =

143 because of the reduction in modulation depth.

By impressing a known frequency modulation on the laser, the sensitivity of the

FP MI to frequency fluctuations is measured to be 2.5 x 10-17 m/Hz. This can be
interpreted as a difference in storage times of the two cavities of one part in 2000

(eq. 16). The calculated position noise that results, given the frequency noise at 80
kHz of 0.3 Hz/v/iiM , is at a level of 7.5 x 10-18 m/vfiYz, a factor of nearly 3 below
the shot-noise limited position sensitivity.

A thorough calculation of the sensitivity of this instrument that properly takes
into account the double passing of the modulator is quite complicated. However, for
small modulation, where Ji(F) is linear with F, the double-passing is approximately
equivalent to reducing the modulation depth (see also Appendix B for a test of this

I This small difference between the light bulb shot-noise and the interferometer noise may be explained by the fact that,
because of the internal phase modulation, the light power at the anti-symmetric output of the interferometer varies in time,
and the associated shot-noise is non-stationary. The effect of this is discussed by Niebauer et al. (1991).
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approximation). The sensitivity of a single-passed FP MI is derived in Appendix B;
this formula can be used here if the single-pass modulation index is replaced with
the reduced index. For frequencies less than the pole frequency of the arm cavities,
the sensitivity to a motion of one cavity mirror is

2)(_e )1/ [1-CJo(2Fnet) + 2Idet/(Imax + Imin)11/2
8F = Imax + Imin ) 2MJo(Fnet)Ji(Fnet) )

(21)

Here Imax is the photocurrent on the bright fringe, and Ii is the photocurrent on
the dark fringe without modulation, both measured at the interferometer output;
Idet is the current that would produce a shot-noise equal to the electronic noise
contribution of the photodetector.

The first factor in the sensitivity formula is the conversion of mirror displacement
to optical phase shift; for these cavities, with a finesse of F=220, this has a value of
2.9 x 10-10 m/rad. The second factor is the equivalent phase noise due to the shot-
noise. For this measurement, Imax = 7.3 ma and Imin = 0.2 ma, so the phase noise is

qd(f) = 6.6 x 10-9 rad//iYz. The first two factors together give the ideal shot-noise
limited displacement sensitivity, which for this measurement is 1.9 x 10-18 m/Vii5.
The third factor takes in account the non-unity contrast and mode-matching, and
the electronic noise and has a value of 1 for a perfect system. For the measurement
presented, the contrast is C = .95, the mode-matching is M = .95, Iact = 0.016 ma,
and "act = .036, which has been reduced by the measured factor of 9. The third
factor has a value of 7.2 for these parameters. The calculated shot-noise limited
displacement sensitivity is then 1.37 x 10 -17 m/-vfi. This is a factor of 1.5 lower
than the measured shot-noise sensitivity.

If the detector noise is negligible and the mode-matching is perfect, the third
factor in the sensitivity depends only on the contrast and the modulation:f (C, F) =
[1 - CJo(2F)]1/2 /Jo(F)J1 (P). The function f(CP) is plotted in Figure 3.3 as a
function of F for several values of the contrast, C, which shows a mild but important
dependence of the optimum sensitivity on the contrast. For the case here of C =
.95, the optimum modulation index is F = 0.55 (much higher than 0.036), for which
f(C,F)/M = 1.2 (rather than 7.2).

The shot-noise limited displacement sensitivity for the simple MI is also derived
in Appendix B. For a motion of one arm mirror, this is

( A) ( 2e )1/2([1 - CJo(2P) + 2 Idet/(Imax + Imin )]1/2

= = 4r Im ax + Imin CJI (2r) ).

For the measurement shown in Fig. 3.2, Imax = 7.3 ma, Imin = .073 ma, C = 0.98,
F = 0.32, and Idct = .016 ma, giving a calculated sensitivity of 3.16 x 10-16 m/VIIz.
This is a factor of 1.5 lower than the measured sensitivity of 4.8 x 10-16 m/V'iiY (Fig.

3.2 top curve). The measured shot-noise limited sensitivity for both the FP MI and
the MI is a factor of 1.5 higher than the calculated sensitivity. A possible resolution
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of the discrepancy is that the calibration of the spectrum of Fig. 3.2 is off by this
factor (i.e. the calibration-PZT motion is off by a factor of 1.5).

Scaling and limitations. The in-line Pockels cells (PCs), though they provide
a differential phase modulation with a minimum of optical complexity, present the
major limitation to scaling this configuration. The limitations come mainly from
wavefront distortions produced by a non-uniform index of refraction across a cell,
and the exacerbation of this problem as the optical power is increased. Differing
wavefront distortions in the two arms, in addition to leaving the output sensitive

to beam geometry fluctuations as mentioned above, limit the overlap between the
two beams, and thus limit the contrast of the interferometer. If we take the
fractional power coming out of the beamsplitter in the best case, C=0.989 and
Iman/Imax = 5.5 X 0, as being entirely the result of wavefront distortions from
the Pockels cells, this corresponds to an average wavefront error due to the PCs of

a te 2eIxirImax = 0.15 radian, or approximately A/40. These Pockels cells are
Gsiinger PM-25's, made of ADP.

A contrast degradation such as this affects the sensitivity of the interferometer in
two ways. The shot-noise limited sensitivity gets poorer as the contrast is reduced as

shown in Fig. 3.3. In addition, a contrast degradation will limit the power build-up

36



in a recycled interferometer. Recycling, discussed in the next chapter, is a technique
for increasing the power in an interferometer. The degree to which the power is
increased (the recycling gain) is limited by the optical losses in the interferometer.
In this case, the contrast defect due to the Pockels cells corresponds to a loss of 5.5
x 10-3 of the input power.

Another problem is that these Pockels cells do not appear to be capable of passing
high light power with impunity to the spatial quality of the beam. We did not observe

any limitations with the 35 mW of light power available to us, but Maischberger et

al. (1987) report problems with powers much greater than this. They studied a

simple one-bounce Michelson interferometer with ADP Pockels cells (also Gsiinger
PM-25's) in the arms, and employed recycling to increase the light power. They saw
near shot-noise limited performance for a circulating power of P = 550 mW, but the

noise level did not reduce with a further increase in the power. They attributed this

phenomenon to contrast degradation due to increased wavefront distortion in the
Pockels cells. Though the threshold for damage to the crystal itself is much higher
than this (Gsiinger specifies the maximum optical power to be 100 W), the important
criteria here is the level at which the sensitivity of the interferometer is limited, and

this appears to be not much more than 0.5 W. These results are for the particular
crystal ADP, and it is quite possible that some other nonlinear crystal might be
able to pass more power with minimal beam distortion. The crystal Mg:LiNbO3 is
a possible candidate, and the question deserves more research.

In a full scale interferometer the beam is 5-10 cm in diameter, and since phase
modulating crystals of a sufficient size are not available (the PM-25s have a 5 mm
square aperture), beam reducing/expanding telescopes would be needed in the arms.

The complexity of such a system is not attractive.

This in-line experiment suffered greatly from the modulation cancellation effect.

In a larger system, however, this effect can be countered by making the distance
between the modulator and the cavity long enough so that the rf-frequency accrues

a phase shift of r upon propagating from the modulator to the cavity and back to

the modulator. That is, we require 2kyl =7r or equivalently I =Af/4, where I is

the distance from the modulator to the cavity in each arm. In this case, if there

is no additional phase shift on the sidebands from the cavity, the modulation will

be enhanced rather than cancelled. For example, if the modulation frequency is 10

MHz, Aq =30 m and we require 1 =7.5 m. Or, a combination of propagation and

cavity phase shifts could be used to attain a total phase shift of something close

to 7r. In short, the modulation cancellation effect is not a fundamental problem for

in-line modulation.

4 Recycling: theory

4.1 Simple theory of recycling
The basic optical arrangement of broadband recycling is shown in Figure 4.1.

The average power at the anti-symmetric output of the Michelson interferometer is
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Fig. 4.1. (a) The optical elements of a recycled Michelson interferometer with Fabry-Perot cavities in

the arms. (b) When the interferometer is operating at the dark fringe of the anti-symmetric output,

the two arms and bearnsplitter are modeled by one arm cavity, creating a three-mirror cavity. (c)

The arm cavity is then modeled by a single mirror, having reflection and transmission coefficients

of a Fabry-Perot cavity.

equal to

1
Panti = (1 - C cos (70)), (23)

2

where qd is the average phase difference between the two arms, and Po = Pmax

+ Pmin, where Pmax is the output power on the bright fringe (Od = 7r) and
Pmin the output power on the dark fringe (Od = 0). The contrast is C =
(Pmax - Pmin)/(Pmax + Pmin). The interferometer is operated about the point 43 =

0, i.e., the dark fringe. The fluctuating phase difference, 4g(f), can be measured
either by differentially phase modulating the light in the two arms and then demod-

ulating the output signal (in-line modulation), or by interfering the output field with
a phase modulated reference field ('external modulation', see chapter 6). In a well
balanced interferometer, dark fringe operation implies that nearly all the light (to
the extent that power is not lost due to imperfect optics) exits through the sym-
metric output and travels back towards the light source. From the standpoint of
the input laser beam the interferometer looks like a mirror of reflectivity somewhat
less than unity due to losses in the optics and an imperfect contrast. The power
circulating in the interferometer can be increased by making an optical cavity with

a 'recycling' mirror at the input of the interferometer as the cavity input mirror and

with the interferometer forming the rear mirror (Fig. 4.1b, c).
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The ratio of the internal power to the input power for a simple two mirror
Fabry-Perot cavity on resonance is

T1 T1
P -t/Po = 2= 2 (24)

(1 - RR2) 1- /1-A1 - T1)(1 - A2) )
where Ti, Ri, and Ai are the power transmission, reflection, and loss coefficients
respectively of the input mirror (i = 1) or the rear mirror (i = 2). Any transmission
of the rear mirror is included in the loss A2, so that 1-R 2 = A2 . Applied to a

recycled interferometer, Ti is the transmission of the recycling mirror, R2 is the
reflectivity and A2 the loss of the interferometer operating on the dark fringe. The
ratio Pi1t/Po is dubbed the recycling gain, Gr For a given R2 and input mirror
loss A1, the ratio Pint/Po is a maximum for

T1 = (1 - A1 )(1 - R2 (1 - A1 )) . (25)

With this simple Fabry-Perot model for recycling, the maximum increase in the
interferometer circulating power is then

Gma= P"/P = 1 1 (26)

A2 + A1/(1 - A1) A2 + A1

The basic result is that the maximum recycling gain is equal to 1/(total loss).

Broadband recycling thus gives an increase in the output signal by a factor of Grc
and a corresponding reduction of the equivalent phase noise by a factor of V/r' .
The signal, proportional to the phase difference between the arms, exits directly
through the anti-symmetric output and thus is not recycled and experiences only a
single arm storage time. This means that the frequency response of the output signal
to a phase difference in the arms is not affected by standard recycling: the signal-
to-noise ratio is increased by a factor of /-/ without changing the bandwidth of

the interferometer, thus the name broadband recycling. A complete discussion of
the frequency response of this and other interferometer configurations is given by
Meers (1989).

A further point is worth noting. For the case of a single mirror or a delay line in

each arm, the interferometer, as viewed from the symmetric side of the beamsplitter,
does indeed look like a simple mirror and can be (conceptually) replaced, in the limit

of perfect contrast, with a mirror of amplitude reflection coefficient requiv = (rarm)b,
where rarm is the amplitude reflection coefficient of an arm mirror and b is the

number of bounces in an arm. For the configuration with cavities in the arms,
however, the interferometer must be replaced with a 'mirror' having the more
complicated amplitude reflection coefficient of a Fabry-Perot cavity. The model

for the recycled interferometer is now a three mirror cavity (Fig. 4.1b). This leads

to some interesting mode coupling phenomena which are discussed in the following
sections.
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4.2 Length scaling

As a technique for increasing the position sensitivity of an interferometer in the
practically accessible gravity wave band (100 Hz < f < a few kilohertz), broadband
recycling only makes sense on a large-scale (several kilometer arm lengths) interfer-
ometer. The reasoning is as follows: In order to optimize the position sensitivity,
the light should be stored in each arm for a time comparable to half the period of
the lowest frequency gravity wave, fo, the interferometer is designed to detect. For
prototype-scale interferometers (arm lengths tens of meters or less), this require-
ment leads to a very large number ( ;> 104) of equivalent bounces in the arms. For a
Fabry-Perot of length 1, input mirror intensity transmission T1 and total mirror loss
A, this translates into choosing the cavity energy storage time, rt ; 21/c (TI + A)
to be rt = 1/47rfo ; 1 msec. This can be achieved by making the arm input
mirror transmission very low, but then, given the loss in current state-of-the-art
mirrors (10-100 ppm), a majority of the light would be lost (absorbed or scattered)
in the arms. In this case broadband recycling cannot give a significant increase in
power. In a full-scale interferometer (arm lengths of a few kilometers), however,
the equivalent number of bounces required is much less (on the order of 30) and
the fractional power lost in the arms is a few percent or less. In this case, a power
gain of around 30 is realistic. For fixed mirror losses, the power lost in a cavity is
inversely proportional to the input mirror transmission, and so the recycling gain
in an optimally designed interferometer scales with the arm length, Larm. Thus the
increase in position sensitivity possible with broadband recycling scales as vL ar m.

Note also that for a given strain-to-optical phase shift conversion, the arm cavity
finesse, and thus the power build-up in the arm cavities, is inversely proportional to
the arm length. If there is a restrictive limit on the optical power incident on the
mirrors, this is another argument for a long arm length.

4.3 Field expressions

This section starts a more detailed treatment of a recycled Fabry-Perot arm
interferometer. Expressions for the electric fields at various points in the interfer-
ometer are given. A somewhat simplified optical arrangement is shown in Figure
4.2. The simplifications made are that the beamsplitter is assumed to be 50-50, and
the two arm cavities have the same mirror properties and nominal length (though
not the same interferometric length). The transmission coefficient t, can be used to
account for any other common loss in the recycling cavity, such as from an extra
beamsplitter-plate or loss in the Michelson beamsplitter.

40



T
lcav2

+

-r 2 ,It

12

2
A A

-reav2, t cav2

A A

rcavl t cavi

1ca

---- - - - -- - - - - E

r ,t
r- - - 11 - 4- - cavi-DI

Fig. 4.2 Definitions for calculation of the electric fields. The ^ above frea and leav indicates that these
are complex quantities. The +/- signs for the mirrors indicate the sign convention for reflection from
the denoted side of the mirror. (The es and i's are all positive.)

The following further definitions are made:

rcavl = rc(O1)ei'(G1) rce(c+

rcav2 = rc(O2 )ei42(e2) = rc2 ei(0 d
(27)

and
(28)

That is, the phase shifts from the cavities and the beamsplitter-cavity distances are

explicitly broken up into common and differential parts. The independent parameter

O6 = 2Wlcavi/c, is a dimensionless expression for the optical frequency deviation from

the cavity resonance, where w is the optical frequency in radians per second, leavi is

the length of cavity i, and c is the speed of light.

In terms of this parameter and the individual mirror coefficients as defined in

Fig. 4.2, the amplitude reflection and transmission coefficients of a Fabry-Perot

cavity are (Appendix A):

r1 - r2(r? + te

1 - rir2e'
A t1it2e0/2

1ca - rir2e'i
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The fields at the recycling mirror can be computed by use of a transfer function
method. Let Ti be the transfer function of field Ei to field Ej; that is, T 12 is the
ratio E2 /E 1 . Then recycling cavity internal field is:

E1 = trEo - rrE2 = trEO - rrT12El1

El tr (30)
Eo 1+ rrT12

The reflected field is:

ER = rrEo + trE2 = rrEO + t2(T 12 /(1 + rrT12 ))Eo,
ER2 + r(~ t)T12 (31)ER rr +(rr+r91

E " 1+rrT12
The transfer function T 12 is:

1 t2e2ik(+c)i4ei [ 2ikdid -2ikldie-ed1
T 2 2 [r e e + rc2e e 1 (32)

The contrast is one in this model. (Note for a two mirror cavity, the transfer function

is simply T 12 = -r2ee , yielding the expression for reav above.) In the case where

the cavities are operating anti-symmetrically about resonance, qc = 7r and rei = rc2

= re, the transfer function is:

T12 = -rtpe2ik(r+lc) cos (2kld + 4d)- (33)

The recycling cavity internal field is a maximum when the field reflected from

the recycling mirror is a minimum, i.e. zero. Defining the power loss of the recycling

mirror as Ar, the condition ER, = 0 occurs for:

rr + (1 - Ar)T 12 = 0. (34)

This requires 2k(r+lc) = 0 mod 27r . Taking 4d to be a small fluctuating phase, so

that cos (qd) P:::4 1, and imposing the dark fringe condition 2kld = 0 mod 2r leads

to the choice

rr = (1 - Ar)rct2 . (35)

The internal field is then:

E ( 1 --Av U Z-l = - r 2412= VGO rc .(36)
Eo 1 - (1 - Ar)rCtP,

The field at the anti-symmetric output, with respect to the internal field Ei, is

Eanti 1  eik(lr+2lc)4c rce2iki4 - c2e-2ikl 1

E1 2 Pe e rce e ce e-(7

With the cavities operating about resonance and the output at the dark fringe, this

becomes
Eanti iretpeik(lr+24c) sin 4d- (38)

El
With respect to the input field, the output field is of course Eanti/EO=

(Eanti/E1)v/ e -;
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4.4 Mode structure of recycled interferometer
If there is no differential phase between the two arms (2kl4 + 4d = 0 mod 2r),

the beamsplitter and the two cavities can be conceptually replaced by a single cavity,
to form a three mirror cavity. It is worthwhile to examine the mode structure of
this simplified optical arrangement (Fig. 4.1b).

Expressed in terms of the individual mirror properties, the expression for the
field inside the recycling cavity for this three mirror arrangement becomes (setting
tP = 1):

E1 _ tr(1 - rir 2 eal)

Eo 1 - rir 2 esei + rr (r1 - r2(r2 + t2) ei'9 ) eiO2 '(39)

where 0i = 2wklav/c and 02 = 2w4/c. The double resonance condition of recycling

corresponds to 01 = 2nr and 02 = 2mir. The linewidth of the combined cavity,
Avrec, is defined as the full-width-at-half-maximum of the recycling cavity internal
power curve as a function of the optical frequency. Some manipulation of the above
expression gives, when the loss is dominated by the arm cavity and the optimum
recycling mirror has been chosen (Ti = loss),

Avrec ~ A vcav(1 - Rcav)/2 , (40)

where Avcay is the linewidth (FWHM) of the isolated arm cavity and Rcay = rc(0)2
is the power reflection coefficient of the arm cavity on resonance. Since for a low-loss
system, Reay is near one, this is a much narrower linewidth than that of an arm cavity.

The resonance condition in the recycling cavity is determined by requiring the
round trip phase to be an integral number of 27r radians. The round trip phase
consists of propagation phase and arm cavity reflection phase: 2 klr + cay = n2r, for
resonance in the recycling cavity. At the double resonance condition, corresponding
to an optical frequency vo, the cavity reflection phase is #cay = r. If the fsr of the
recycling cavity is smaller than the fsr of the arm cavity (lr > le), the next resonance
of the recycling cavity occurs when Ocav ; 0 rad, i.e. the light is not resonant in the
arm cavity. The nest resonance of the recycling cavity thus occurs at a frequency
V r vo ± C/41r.

The mode structure of such a three mirror cavity is shown is Figure 4.3. The
cavity lengths are those of the coupled cavity experiment described in section 5.2:
4r = 5.0 m; eay = 0.48 m. The mirror parameters also correspond to those in that
experiment: Tr = .28; Ar = .01; Ti = .028; Ai = A2 = 3x10- 4; T2 = 0; T2 =.91.

For a full-scale interferometer, the arm cavity length will be much greater than
the recycling cavity length, producing a quite different mode structure. Consider the
parameters of a long baseline interferometer: eav = 4.01 km; 4 = 10 m; Tr = .027;
Ti = .03; Ar = A1 = A 2 = 10~4. The recycling gain, given no other losses than

those listed, is theoretically Grc = 37. The bandwidth of an isolated arm cavity is
c/21F = 185 Hz, and with a recycling gain of 37 the combined cavity linewidth will
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Fig. 4.3. Mode structure of a three mirror cavity. Plotted is the field in the recycling cavity (eq.

39), for the cavity parameters of the experiment in chapter 5.2. The full width at the 3 dB points

of the central peak is 200 kHz.

be Avrec ~ 2.5 Hz. The free-spectral-range of the arm cavity is 37.5 kHz. In the

vicinity of the double resonance, the mode structure will be as in Figure 4.4, where

the recycling cavity internal power is plotted.

The next resonance of the recycling cavity will appear at a frequency shift of

c/44 = ±7.5 MHz from the double resonance. This next resonance is complicated

by the resonances of the arm cavities, which appear every 37.5 kHz, as shown in

Figure 4.5 where the amplitude and phase of the recycling cavity internal field is
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Fig. 4.4 Recycling cavity internal power around the double resonance for a long baseline interfer-
ometer. The free-spectral-range of the arm cavity is 37.5 kHz. The interferometer parameters are
given in the text.

plotted. The arm cavity length has been tuned (lcay = 4.01 km) so that the center

of the recycling cavity resonance falls halfway between two arm cavity resonances.

5 Recycling: experiments

5.1 Choice of arm mirror parameters
In order to have any chance of achieving a significant recycling power gain,

the loss in the arm cavities must be small. This requires that the transmission of

the cavity input mirrors must be much greater than the mirror loss. For these

experiments, the cavity finesse is chosen to be as high as possible within this

limitation of keeping the cavity losses low. In the limit where the input transmission

is much greater than the mirror loss, the on-resonance power reflection coefficient

for a Fabry-Perot cavity is

Rcav 4(A + A2 + T2 )Reay =1 - (41)
T1

The mirror losses (A 1 + A 2 + T2) are in effect multiplied by the factor (4/ Ti).

The mirrors in these experiments are made from Corning grade OA glass, 'super-

polished' by Optics Technology to an rms surface roughness < 1 A. The dielectric

coatings are ion-beam sputtered by PMS. The per mirror loss of ~ 100 ppm available

at the time of coating (December 1989) drove the choice of Ti = 2.8%. These

parameters would give a cavity loss of 1 - Reay ; 3%. (This does not include the

loss due to reflections from the (anti-reflection coated) first surface of the cavity

input mirror.) This is about what we observe for fresh mirrors, but they tend to get

more lossy with exposure to the atmosphere.
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Fig. 4.5 Recycling cavity internal field around the first next resonance of the recycling cavity for a

long baseline interferometer. The center of the resonance occurs at an offset of 7.5 MHz from the

double resonance. The interferometer parameters are given in the text.

5.2 Coupled cavities: 5 m recycling cavity
Purpose. The first recycling experiment performed was the recycling of a

single cavity: this is the three-mirror or coupled cavity as described above. Such
an experiment allows us to look with this simpler geometry at questions that
are in common with a complete Fabry-Perot arm interferometer, such as mode
matching and coupling, sensitivity to misalignment, and understanding the power

gain realized.
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Another issue is the generation of an error signal for holding the arm cavity on
resonance. The standard phase modulation/reflection lock method is clearly affected
by the mode structure shown in Figure 4.3. In order for a significant amount of the
modulation sidebands to enter the recycling cavity, the modulation frequency must
be chosen to be fm ~ ±(c/4lr)(2n + 1). In order to test this idea of modulating
at the next free-spectral-range, the recycling cavity length must be long enough to
bring the modulation frequency down to a reasonable value. We chose 1r ~ 5 m, so

that c/4lr ~ 15 MHz.

Experimental setup. The optical and servo system is depicted in Figure 5.1.
The 4.84 m recycling cavity length (defined as the path length from the recycling

- photodetector

fiber 0 - mixer

Comp - compensation network
-lens

f1,f2 translation PZT yrror PZTs

Pockels cell

f2 f11

Conp pd1 CompFig.arm cavity l v e
d e tbs1

L pdrC 
bs2

rm

V m1

m2

Fig. 5.1. Setup for coupled cavity experiment.

mirror to the arm cavity input mirror) is achieved by multiple traversals of a ~1 m

diameter table. The arm cavity is 47 cm long and formed of a flat T = 2.8% input
mirror and a concave 1 m radius of curvature high reflectivity rear mirror, both 1"
diam. The beam size at the arm input flat (the waist) is wo = 0.286 mm. At a
distance 4.95 m from this point, the beam has a radius W = 2.88 mm and a phase

front radius of curvature of R = 5 m. The spatial modes in the individual cavities
can then be matched by using a concave R = 5 m recycling mirror placed 4.95 m
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from the arm input mirror. We found that the best matching occurred at a distance
of 4.84 m, indicating a 2% error in the recycling mirror curvature. A series of three
lenses matches the output of the fiber-grin assembly to this coupled cavity mode.

The arm cavity mirrors and the recycling mirror (rm) are equipped with PZTs
that provide about 3 mrad of remote alignment control in each of the two pertinent
angular degrees-of-freedom. The translation PZTs each provide about 1 pm of
movement. The arm mirror translation PZTs are each made of two 1" o.d./0.5"
i.d. PZT washers, with resonant frequency ~ 30 kHz. The PZT on mirror m3 is a
small disc (fo ~ 200 kHz) of the type used on the laser high reflector (2.2). Mirror
ml is mounted on a Burleigh PZ-80 (fo 4 kHz).

The beamsplitter bsl is a 5 degree wedge, mounted so that one face is at
Brewster's angle, presenting negligible reflection loss. Photodetector pdl measures
the beam reflected from bsl (0.8% of the incident power is reflected); this gives
a measure of the power inside the recycling cavity and/or the power incident on
the arm cavity. Beamsplitter bs2 is a 3 degree wedge, again with one face at
Brewster's angle. It directs 0.5% of the light reflected from the arm cavity onto
the photodetector pd2, an rf-photodetector of the type described in chapter 2.2,
tuned for fi = 15 MHz. (A more economical arrangement would be to use one
beamsplitter plate and detect the beams reflected in opposite directions. The two
splitter arrangement used anticipated the requirements of a recycled (two arm)
interferometer, where it was thought that a splitter in each arm and a splitter
between the recycling mirror and the main beamsplitter would be needed. This
particular design was not actually implemented. A disadvantage of using wedges is
that they expand the beam in one direction.) The light reflected from the recycling
cavity is measured with pdrc, an rf-photodetector tuned for f2 = 5.38 MHz.

Generation of error signals. Error signals for the arm cavity and recy-
cling cavity lengths are generated with the rf phase-modulation/demodulation tech-
nique. In general, the signal at the modulation frequency fm is proportional to
Jo(m)Ji(m) sin 4, where 4 is the difference between the carrier phase and the av-
erage phase of the two sidebands at fo i fm (Appendix A). For small deviations
from 0=0, the sensitivity of the rf signal to a length or frequency change is then
proportional to Jo(m)Ji(m) d4/dO, where dO = 2wdl/c + 2ldw/c.

The arm cavity error signal is derived from the light reflected from the arm cavity
and works as follows: Consider a deviation from resonance of the isolated arm cavity.
This produces a change in the carrier phase, 4, of (d~c/dOc)9c=O t 4/Ti (for A
<< Ti), where 0c = 2w4l/c and Ti is the transmission of the input mirror. If the
sidebands are sufficiently outside the bandwidth of the cavity, their phase is not
changed, dOsb/dOc a 0.

In the coupled cavity configuration, the carrier phase shift is increased because
of the additional storage in the recycling cavity. In general for a two mirror cavity, if
d0c is the (incremental) round trip phase shift in a cavity operating about resonance

(Oc = 0 + d~c, 0 = n2ir), the phase shift of the cavity internal field, tit, is related
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by dit/dOc = V'R1fR2/(1 - vR1Ri2). For the coupled cavities, the phase shift of
the recycling cavity internal carrier due to an arm cavity length change is then

d~cav( dc 4 VRRe
i7 - _ .T (42)dOc Jdcav T1 1 -(RRc4

If the sidebands are sufficiently outside the arm cavity resonance, their phase is still
not significantly changed, db in/dOc - 0. In this case, d# = d4i.. Additional losses
in the recycling cavity can be included by multiplying RrRe by an effective reflectivity
Reff . 1 - A, where A is the round trip loss due to these additional elements.

Ideally the arm cavity error signal would be sensitive only to fluctuations in the
arm cavity length. In fact the signal at fm = fi derived from the recycling cavity
internal field is also sensitive to the recycling cavity length, though to a lesser degree.
The carrier phase shift due to a recycling cavity length change, dOr = 2w dir/c, is as
given above: dDint/d~r = /RArRc/(1 - /RrRc). The phase of the sidebands is also
sensitive to the recycling cavity length, since they are also resonant in the recycling
cavity. The sidebands are not resonant in the arm cavity, though, so the factor Re
must be replaced with unity, so that: dts/dbr = - f~). The signal at fm
due to a change in the recycling cavity length is then proportional to

do dltsb -dOin _ fA~ (1 - V (43dG, ~ n dA (1 - J 'A ~ (1 - W RRc) (43

It is time to put some numbers into these equations. The transmission of the
recycling mirror is Tr = 28%, and the estimated loss is Ar = 1%, so Rr = 0.71.
The on-resonance reflectivity of the arm cavity is Re = 0.92. There is an additional
8% loss in the recycling cavity (see below), giving Reff = 0.92. The transmission
of the arm cavity input mirror is T1 = 2.8%. The sensitivity to the arm cavity
length is thus

d# d~. d~n 4 vRrcnegd- =a -= (143)(3.44) 0 490 . (44)
d~e d~e d~tcas 11 RR Re

The sensitivity to the recycling cavity length is

d$ ds - d int VRRef (1 - vR~ )
dOr dOr (1 - RRegf ) (1 - VRr Re 0. (45)

Thus the signal detected by pd2 at fm=fi is about 600 times more sensitive to an
arm cavity mirror motion than to an equivalent recycling cavity mirror motion.

Consider next the field reflected from the recycling cavity. The sensitivity of the
signal at fi is again relatively small because both the carrier and the sidebands at fo ±
fi are resonant in the recycling cavity. The input beam can also be phase modulated
at a frequency f2, such that the resulting sidebands are not resonant in the recycling
cavity. The phase of these sidebands is then not dependent on the recycling or arm
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cavity length, and the full phase shift on the carrier will be detected by pdrc at
f2. The carrier phase shift depends on both the arm cavity and the recycling cavity
lengths and is more sensitive to the arm cavity length by the factor of 140 above.
But if the arm cavity is held on resonance (with the signal from pd2), fixing c,

the signal from pdrc at f2 then depends primarily on the recycling cavity length

(compromised by residual deviations of the arm cavity due to finite servo gain) and
thus can be used to control this length.

Servo loops. The important requirement of the two servos (arm cavity and
recycling cavity) is that they hold the cavities close enough to resonance that the
variations in the power coupled into the cavities is negligible. (Negligible in this
case means that the fluctuations do not compromise the measurements of the dc
optical power stored in the cavities, something like P/P < 0.01.) Given the ambient
excitation of the mirrors, this requirement is easy to achieve with simple servo loops.
The loop compensation for both servos is a simple pole, typically at 10-100 Hz, for
the initial locking. Once locked, a pole/zero combination typically at 1Hz/lkHz is
added to give more low frequency gain. The unity gain frequency of the arm cavity
loop is 3-5 kHz, limited by the PZT resonance. Though it is not actually measured,
the unity gain frequency of the recycling cavity lock can be higher than this because
the mirror m3 PZT resonance is much higher. For the recycling cavity loop, the
signal is integrated further and applied to the slow PZT on mirror ml for more
low frequency gain.

Losses and recycling gain. The recycling gain for this system is defined as
the ratio of the power measured by pdl when both cavities are resonant to the
power (in the fundamental mode) measured by pdl when the recycling mirror rm,
and the other recycling cavity optics, is absent. This factor should be the same as
the increase in the power transmitted by the (resonant) arm cavity for these two
cases. The recycling mirror is not actually removed but rather is merely misaligned
sufficiently so that there is no interference in the recycling cavity. The required
misalignment is small enough that the alignment of the arm cavity to the incoming
beam is not significantly affected. The signal detected by pdl when rm is misaligned
is corrected for the transmission of rm (Tr = 0.28) and the other optics preceding
bsl (Tothcr = 0.95), and also for the imperfect mode-matching of the input beam
to the recycling cavity (M = 0.9), to obtain a measure of the power incident on
the system.

The (corrected) measured increase in the power on pdl is a factor of 5.18. The
power transmitted through the arm cavity (measured with pd3) also increases by
this factor, but in this case no correction for mode-matching is necessary since only
the TEMoo component is measured even in the non-recycled configuration. In order

to relate the measured power increase to the expected increase, the system is modeled

as a two mirror Fabry-Perot with the recycling mirror as the input mirror and the

losses in the rest of the system lumped into the loss of the rear mirror. The ratio of
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Fig. 5.2. Recycling gain model, eq. 46, plotted as a function of the rear mirror loss (corresponding
to the arm cavity plus intra-recycling cavity (t,) loss), for a recycling mirror transmission and loss
of Tr=28% and Ar=l%.

the internal power to the incident power for such a two mirror cavity is

Pint Tr (46)

(1-/(1ArTr)(1 A2)) 2

where any transmission of the rear mirror is included into the loss, A2 . For Tr =

28% and Ar = 1% (an estimate of the loss), this expression is plotted in Figure 5.2.

The measured gain of 5.18 implies a loss of A2 = 17%. The loss on reflection
from the resonant arm cavity is measured to be 8%, corresponding to a per mirror
loss of 3x 10-4. The recycling cavity internal power gain can also be measured with
the arm cavity off-resonance (but aligned), in which case the reflection coefficient is
essentially one. In this case, the measured power gain is 7.24. Fig. 5.2 shows a gain
of 7.24 for a loss of A2 = 9%, consistent with the fact that the loss is known to be
8% less than the resonant arm case. The round trip losses of the components in the
recycling cavity are (measured and estimated):

e arm cav. input mirror AR surface (est.): 1%
* bsl (meas.): 1.6%
* bs2 (meas.): 1%
e ml & m2 (est.): 0.1%
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the lineshape of the recycling cavity.

" m3 (est.): 1%
* Total: 4.7%

The estimated total loss is less than 9%. The mirrors ml and m2 are low-loss

mirrors with a nominal loss of A = 10- 4; it is quite likely that after prolonged

exposure to the atmosphere the loss per reflection is much higher than this. Since

there are six such reflections in one round trip, it is likely that the loss for ml and

m2 is much higher than 0.1%. Mirror m3 is an ordinary laser-grade mirror, and

the two-reflection loss could be higher than 1%.

Since this experiment was intended mainly as an investigation of the error signal

generation and servo loop scheme, no further effort was made to explain all the

implied loss.

Sensitivity to the modulation frequency. Because of the resonant build-up of the

rf-sidebands in the recycling cavity, the signal produced at pd2 by an arm cavity

motion depends on the modulation frequency. This sensitivity is mapped out by

varying the modulation frequency and measuring, with pd2, the signal produced

by an 80 kHz modulation of the arm cavity length (created by applying an 80 kHz

signal to the end mirror/PZT of the arm cavity). This measurement is shown in

Figure 5.3. Also shown is the recycling cavity lineshape. This is measured by

sweeping the length of the recycling cavity with the arm cavity off-resonance, and
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recording the signal on pdl (a measure of the recycling cavity internal power).
This is calibrated in terms of frequency by reference to a free-spectral-range of the
recycling cavity. The squaxe root of the voltage measured by pdl is plotted so that
the curve represents the magnitude of the electric field versus frequency. The vertical
scale and the horizontal displacement of this curve are adjusted for best agreement
with the modulation frequency data.

Sensitivity to misalignment. The sensitivity of the arm cavity to misalignment
of the arm cavity mirrors is determined by measuring the mirror rotation needed
to reduce the power transmitted by the arm cavity by 15% from its peak value

(an arbitrary but useful criterion). In the non-recycled configuration (arm cavity
resonant, recycling mirror misaligned), the misalignment necessary is roughly the
same for both arm cavity mirrors, and equal to (1.5 ±.3) x 10-4 radians. In

the recycled configuration (both cavities aligned and resonant), the misalignment

required to reduce the transmitted power by 15% from maximum is again nearly
the same for each arm cavity mirror: the misalignment for the rear mirror being
(3.5 ±0.9) x 10-5 radians, and for the arm cavity input mirror (4.6 ±0.6) x 10-5
radians. This is roughly 4 times more sensitive than the solo arm cavity.

The misalignment sensitivity of the non-recycled cavity is straightforward to
model. The coupling of the laser beam into the cavity is determined by the overlap
of the beam's spatial mode with the fundamental mode of the cavity. The input
beam is assumed to be entirely in the fundamental mode of the perfectly aligned
cavity (i.e. the beam is perfectly mode-matched). The overlap of the input beam

and the cavity mode can be calculated anywhere along the propagation direction of

the beam, but it is simplest if done at the beam waist.

The mirror rotations can be restricted to a single plane without loss of generality,
so the problem can be considered in one dimension; I'll make it the x dimension.

In one dimension, the field distribution at the waist of the normalized lowest mode

of the cavity is

r (2)1/4 (47)

where z is the waist size. For the plano-spherical cavity geometry, a rotation of the

(rear) curved mirror leads to a displacement of the optic axis by an amount a = OR,
where 0 is the mirror rotation and R (=1 m) is the mirror radius of curvature. The

input beam mode is then described by the distribution uo(x + a). The fraction of

the input power coupled into the fundamental mode of the cavity is

oo 2

uo(x)uo(x + a)dx = e e_ 2R2/z (48)

A rotation of the (front) flat mirror produces a displacement of the optic axis

by an amount a = O(R - 1), where I is the cavity length, and a rotation of the optic
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axis by the mirror rotation angle 6. Let the cavity axis and mode be described

using the original zz coordinate system, and let the input beam propagate in the i
direction, with field amplitude in the z direction. The tilt of 1i system with respect

to the xz system produces no change to first order in the magnitude of the input

beam:Iuo(x)| = Iuo(')|(cosO)~1. The phase, however, varies to first order along x:

O(x) = kx sin 9 m kOx. The fraction of the input power coupled into the cavity
fundamental mode as a function of misalignment of flat input mirror is

oo 2

uo(x)uo(x + a)eik (z+a)dx 2 - 2 2 (49)

The data can be used to test the model at one point, when the fractional power
coupling is = 1 - 0.15 = 0.85. For the arm cavity, zo = 0.286 mm. The model

predicts a rear mirror rotation of 0.115 mrad, or a front mirror rotation of 0.158

mrad, will cause the power coupling to fall to 85% of the maximum. This is in

fair agreement with the data. The uncertainty in the data comes from the fact

that the PZT voltage increment required to reduce the power by 15% was not

reproducible to much better than ±20%; this is most likely due to nonlinearity

and/or hysteresis in the PZTs. The calibrations of the angle producing PZTs have

not been measured; the manufacturer specification is used to convert from applied
voltage to displacement, and it is possible that a correct calibration could resolve

some of the discrepancy.

A simple model for the misalignment sensitivity of the recycled cavity can be

made by considering the optic axes in the two cavities to be independent, as follows:

The mode in the arm cavity is assumed to be the fundamental mode of the isolated

arm cavity, propagating along the cavity axis defined by the arm cavity front and

rear mirrors. The mode in the recycling cavity is assumed to be the fundamental

mode of the isolated recycling cavity (i.e. the cavity made up of the recycling mirror

and the cavity input mirror), propagating along the axis defined by the recycling

mirror and the arm cavity input mirror. It is assumed that each cavity remains

resonant with the light (this condition is maintained by the servos). There are then

two effects contributing to the misalignment sensitivity of the power coupled into

the arm cavity. First, there is the effect treated above when a beam's propagation

axis is not coincident with the cavity optics axis. The fractional power coupling is

given by the above expressions, applied both to the coupling of the input beam to

the recycling cavity and to the coupling of the recycling cavity mode to the arm

cavity mode. Second, since the optic axes of the two cavities are not coincident in a

misaligned system, the arm cavity reflection will present a higher loss to the recycling
cavity. This is because that fraction of the beam incident on the arm cavity which

is reflected into the mode of the recycling cavity is reduced. The power buildup in
the recycling cavity (the recycling gain) will thus be reduced.

I
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This model neglects any effects of the optic axis in one cavity influencing the optic
axis in the other cavity. The model is correct in the limit that the arm cavity input
mirror has no transmission, for then the arm cavity has no effect on the recycling

cavity (but there is no power in the recycling cavity). It is not correct in the limit
that the arm cavity input mirror transmission is unity, for then there is only one

optic axis defined by the recycling mirror and the rear mirror.

Applying this model to the coupled cavities of Figure 5.1, a rotation of

the arm cavity rear mirror produces a displacement of the arm cavity optic
axis, but no change in the recycling cavity optic axis. The field reflected

from the arm cavity, in terms of the recycling cavity mode, is VfiPnuo(x) -

(TiVR2/(1 - x,/ R2))e-a2/2 4 uo(x + a). The first term is the (unshifted) direct

reflection from the arm input mirror and the second term is the (displaced) stored

beam. The field reflected into the o(z) mode of the recycling cavity is thus

rcav(0)uo(x) = [V ~i - (T1VfAI(1 - \/R1R2)e~2/]Uo(x). (50)

The effective recycling cavity loss due to the arm cavity reflection is Acav = 1- rcav (0)
and depends on the degree of misalignment.

The arm cavity optic axis displacement for which the arm cavity power drops to

85% of the maximum is a = 0.03 mm, as follows: The effective arm cavity reflection

coefficient, given the mirror parameters, is rcav(0) = [0.9857 - 1.9449e-a2/

-0.9379, for a = 0.04mm and xo = 0.286 mm. The arm cavity loss, as viewed by
the recycling cavity, is Acay = 1 - r ay(0) = 0.120, compared with an 8% loss when

the arm cavity is perfectly aligned. The recycling gain for Tr = 28%, Ar = 1%,
and a loss A2 = 9% + 12.0% (see Figure 5.2) is Grc, = 4.44. The power in the

recycling cavity is thus a fraction, 4.51/5.18 = 0.857, of the power when the system

is aligned. A fraction e-a2/4O = 0.989, of the recycling cavity power is coupled into

the arm cavity. The coupling of the input beam to the arm cavity is thus reduced

from the maximum (aligned case) by a factor 0.857x0.989 = 0.85. The arm cavity

rear mirror rotation which produces an optic axis displacement of a = 0.03 mm is

0 = 3 x 10-" rad. This is in good agreement with the measured sensitivity of 0 =

3.5 ±0.9 x 10-5 rad for an arm cavity power reduction of 15%.

Rotations of the arm cavity input mirror produce displacements and rotations

of the optics axes of both cavities. The optic axes are rotated by the same angle,
however, so they remain parallel. In this case the coupling of the input beam to

the recycling cavity mode changes with alignment, the coupling being given by
e-a/Xze-sk 92/4, where the displacement of the recycling cavity axis at the waist is

ar = O(Rr - lrec) = 0.050 m (Rr is the recycling mirror radius of curvature). The arm

cavity input mirror rotation which reduces the coupling into the arm cavity by 15%
is 0 = 5 x 10-5 rad, as follows: The coupling of the input beam to the recycling

cavity mode for this misalignment is 0.992. The arm cavity effective reflection

coefficient is rcav(0) = [0.9857 - 1.9449e~/z] = -0.9393, where the displacement
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is a = O(Rr + Ra - 1rec - larm) (Ra is the arm cavity rear mirror radius of curvature).
The effective cavity reflection loss is Aca, = 11.8%. The recycling gain is then Grec
= 4.48, a factor of 0.864 of the aligned recycling gain. The coupling of the recycling
cavity mode to the arm cavity mode is e-a / = 0.990. The coupling of the input

beam to the arm cavity is thus (.992)(.864)(.99) = 0.85. The calculated angle of .05
mrad required to reduce the coupling by this amount is in good agreement with the
measured angle of .046 ±.006 mrad.

The measured misalignment sensitivities are not well known because the cali-
brations of the PZTs have not been measured, but the relative sensitivities for the
non-recycled and recycled configurations should not suffer from this uncertainty. For
of the arm cavity rear mirror, the required rotation to produce the 15% reduction is
a factor of 4.3+ smaller in the recycled case. For the arm cavity input mirror, the
required rotation is a factor of 3.3+1.2 smaller in the recycled case. The model gives
a factor of 3.83 for the rear mirror, and a factor of 3.04 for the front mirror.

This model for misalignment sensitivity is applied to a (large-scale) interferom-
eter in chapter 5.4

5.3 Coupled cavities: short recycling cavity
Purpose. In order to reduce the losses in the recycling cavity, the two coupled

cavity experiment was performed with a much shorter (0.5 m) recycling cavity, so
that the folding mirrors in the 5 m cavity could be removed. This recycling cavity
length is too short to use the technique of next free-spectral-range modulation with
manageable rf electronics. An alternative technique for generating an arm cavity
error signal is a low-frequency modulation of the arm cavity length followed by
lock-in detection of the signal transmitted by the arm cavity. The purpose of this
experiment is thus to investigate the coupled cavities with a higher recycling gain
and to study this alternate scheme for error signal generation.

Setup. The setup for this more compact configuration is shown in Figure
5.4. The arm cavity is still 47 cm long; the recycling cavity is 53 cm long, and the

-------------- I

f2 fi

Comp Comp

pd1
i -- arm cavty -i

bs1

pd3
"" pd2

Fig. 5.4. Optical and electronic arrangement for the short recycling cavity experiment.

fundamental modes are matched by using a 1 m radius of curvature recycling mirror.
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The beamsplitter bsl is a flat plate, mounted at an angle such that 1.6x 10-4 of the
incident light is reflected from each face. The input optics are the same as for the 5 m
recycling cavity case, except that the mode-matching lenses are changed as required.

Generation of error signals. The length of the arm cavity is modulated at
60 kHz (fA) with the arm cavity input mirror/PZT. The light transmitted by the
arm cavity is detected by pd3 and this signal is demodulated at 60 kHz. For
modulation frequencies smaller than the cavity linewidth, the relative phase between
the transmitted carrier and first sidebands is relatively insensitive to small deviations
from resonance (see Fig. A4 in Appendix A). The relative amplitudes of the carrier

and sidebands are however first order sensitive to deviations from resonance. (This
is the opposite of what happens in the reflection-lock technique, where the relative
phases are first order and the relative amplitudes second order sensitive to deviations
from resonance.) The demodulated transmitted signal is thus zero when the carrier
is at the stationary point in the amplitude curve, i.e. when the transmitted power
is at a maximum. Hils and Hall (1987) give a complete treatment of this type of
transmission-locking technique for a two mirror Fabry-Perot.

The action of the arm cavity servo is thus to maximize the transmitted power
rather than to hold to zero the phase of the reflected field. For a solo cavity, the
two techniques give a zero error signal at the same point, when the cavity is at the
resonance length. In the coupled cavity configuration, the cavity length modulation
works somewhat differently as explained below.

The field transmitted through the coupled cavities is (refer to Fig. 4.2 for
definitions)

ET t,t1t2ei(,+8c)/2

Eo (1 - rlr2eoc) (1 + rrreaveisr) (51)
trtit2 ei(,+ec)/2

1+ rrrleser - rir2eisc - rrr2(r + t )ei(er+eC)

The arm cavity length (0c) for which the transmitted power is a maximum depends
upon the recycling cavity length (Or). For a fixed recycling cavity length, the point

of maximum transmission occurs for an arm cavity length (Oe") of

ma -i-rr t2 sin (Or)5Omc' = tan r1(1 +r(r2 + t2)) + rr 2+t)cos(9r) . (52)

In the limit where rr -+ 0 (no recycling mirror), 0 c -+ 0; that is, the maximum

transmission occurs when the arm cavity is on resonance, as it should. Figure 5.5

shows the arm cavity phase at which the transmission is a maximum versus the

recycling cavity phase for Ti = .028, A1 = 104, and various values of the recycling

mirror reflectivity. The value of Oe"'" is quite insensitive to the reflectivity of the

recycling mirror, for reflectivities not too small. The slope of these curves at small

recycling cavity phase is dOc/dOr = -1/141. The phase shift upon reflection from the
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Fig. 5.5 Arm cavity propagation phase corresponding to maximum transmission versus recycling

cavity propagation phase, for various values of the recycling mirror reflectivity. Ti = 0.028; A1 =

10~4.

arm cavity (4c) is related to the arm cavity length by dbc/dOc ~ 4/T1 = 143, and thus
dbc/dOr ~ -1. So, for a given recycling cavity length, the maximum transmission of
the coupled cavities occurs when the total round trip phase in the recycling cavity

(made up of propagation phase, Or, and arm cavity reflection phase, 0c) is very nearly
0 mod 2r. This means that the arm cavity servo, which operates by maximizing the
power transmitted through the coupled cavities, holds the recycling cavity round
trip phase to (nearly) zero, rather than keeping the arm cavity itself resonant. The
arm cavity servo thus serves to stabilize the recycling cavity phase. For a dc-motion

Axr of the recycling mirror, the servo thus induces a motion -Axr/(4/T1) of the
arm cavity rear mirror, while a dc-motion Axe of the arm cavity rear mirror is

compensated for by a motion -Axe of that mirror. So the servo is less sensitive to
changes in the recycling cavity length than to changes in the arm cavity length by a
factor of about 4/ T1 ( = 143 in this experiment). Of course, if the recycling cavity
length is constant and resonant (0r = 0), the action of the arm cavity servo is just
to hold the arm cavity on resonance.

While the arm cavity servo does stabilize both the arm cavity length and the

recycling cavity phase as described above, it cannot hold the system at the point of

overall maximum power, Or = 0c = n2r. Figure 5.6 shows the power transmitted
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Fig. 5.6 Power transmitted through coupled cavities versus recycling cavity length. For the narrow

curve, the arm cavity length is constant at 0, = 0; for the wide curve, the arm cavity length tracks

to stay at a (local) maximum of transmission, 64 = 0,". Ti = .028; A1 = 1.1x10 4; A2 = 6x10~-;

Rr = .92.

through the coupled cavities as a function of the recycling cavity length for the cases
when the arm cavity length is fixed at 0e = 0, and when the arm cavity length is
servo-controlled to keep the transmitted power at a maximum with respect to the
arm cavity length. For a fixed arm cavity length (0c = 0), Fig. 5.6 shows a finesse
of about F = 2r/A6owhm = 57, appropriate to the recycling mirror reflectivity of Rr
= .92 and arm cavity reflectivity of Re = .975. With the arm cavity servo turned
on, the 'finesse' is reduced to F = 1.7.

Servos. The length of the recycling cavity is stable enough in this experiment
that accurate measurements of the overall maximum power can be made without
actively stabilizing Or. A servo to hold Or = 0 was nonetheless demonstrated using
a lock-in detection of the recycling cavity internal power as follows. The recycling
cavity length is modulated with the rm PZT at f2 ~ 10 kHz. The signal detected by
pdl is demodulated at f2 and the resulting error signal filtered and fed back to rm.
The power in the recycling cavity is thus maximized. Note that the standard phase
modulation reflection locking technique will not work well to stabilize the recycling
cavity length. This is because the arm cavity servo holds the round trip phase in

the recycling cavity (propagation phase plus cavity reflection phase) nearly constant
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at zero, so that neither the carrier phase nor the sideband phase changes much with
the recycling cavity length.

The arm cavity error signal is compensated in the standard way: a simple pole
at 5 Hz for initial locking, and an additional 1 Hz/860 Hz pole/zero combination
for subsequent operation, the unity gain frequency being a few kilohertz. The 60
kHz modulation frequency of the arm cavity length is much lower than the 700
kHz pole frequency of the isolated arm cavity, so that when the system is not
recycled the 60 kHz sidebands have essentially zero phase shift with respect to the
carrier. With recycling, the linewidth of this system becomes roughly 54 kHz and
the pole frequency 27 kHz (see the section below on Frequency response). The
60 kHz sidebands thus acquire an additional phase shift of about 65* due to the
cavity response. The consequence is that the phase of the local oscillator must be
compensated for this when the system is recycled.

Losses and recycling gain. The on-resonance reflectivity of the arm cavity is
Rc = 0.95, corresponding to an average mirror loss of 1.75x 10-4 (somewhat cleaner
mirrors than for the previous experiment). Of the recycling mirrors then available,
the one closest to the optimum had a transmission of Tr = 8.3%, and an estimated
loss of Ar = 0.6%. The beamsplitter bsl reflects 1.6x 10-4 of the incident light from
each face, for a round trip loss of 0.065%. The loss due to reflection from the AR
surface of the arm cavity input mirror is not known, but probably less than the 1%
estimated above since these mirrors have had less exposure to the environment (the
manufacturer specified 0.2% reflection at the time of manufacture).

The recycling gain, as indicated by the increase in the arm cavity transmitted
power (pd3), is 16.2 for this configuration. The recycling cavity internal power also
increases by this factor, after correcting for the recycling cavity mode-matching of
M = 0.93. With Tr = .083, Ar = .006, and additional losses of 5% from the cavity
reflection, 0.4% from the arm input mirror AR surface, and 0.065% from bsl (for
a total loss of 6.065%), the predicted recycling gain is (eq. 46) 16.0. This is in
good agreement with the measured gain and indicates that the loss has perhaps
been slightly overestimated.

Frequency response. As mentioned, the linewidth of the coupled system is
about 54 kHz. The dependence of the transmitted power to the arm cavity length
is seen by setting 0r = 0 in eq. 51:

ET trtit 2 eiec/ 2  t'teec/ 2

-- =2 = . (53)
Eo =o 1 + rrri - r2(r1 + rr (r + t1))eiec 1 - r'r'e(

Thus for a constant recycling cavity length, Or = 0, the system looks like a two mirror

cavity, with t't' = trtit 2/(1+rrri) , and rr2 = r2(rl + rr(r + t))/( +rrr).
The finesse is thus F = rfr2/(1 - r'r'). For this system, these parameters are

r 1r 2 = 0.995, which gives a finesse F = 6000. With the free-spectral-range of the

arm cavity of 320 MHz, the equivalent linewidth due to arm cavity length changes

is (320 MHz/6000) = 54 kHz.
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The linewidth of the coupled cavity as defined by Avrec in section 4.4 corresponds
to the full-width-half-maximum of the recycling cavity internal power as a function
of the laser frequency. A numerical solution to eq. 39 gives in this case Avree
= 54 kHz. This linewidth can be seen by measuring the response of the coupled
cavities to a frequency modulation of the laser. This experiment is performed by
applying a frequency modulation to the laser using the intra-cavity Pockels cell,
and detecting the signal reflected from the coupled cavities with the 15 MHz phase
modulation/demodulation system. Above the unity gain frequency of the arm cavity
servo (~ 5 kHz), the arm cavity does not hold the recycling cavity round trip phase
to zero and the frequency response of the passive system is measured directly. The
results of this measurement are shown in Figure 5.7. The frequency response of

A: REF B: REF
40.00 0.000
[ dB ][ dea

DIV
5.000

RBW: 10

DIV START 10
10.00 STOP 500

KHz ST:1.41 sec RANGE:R=

000.000 Hz
000.000 Hz

0, T= OdBm
Fig. 5.7 Frequency response of the coupled cavities in reflection to a frequency modulation of the

input laser beam. Top: magnitude; bottom: phase.

the electronics is cancelled by dividing the response of the coupled cavities by a
reference response made by measuring the frequency response of the recycling cavity
alone (which has a pole frequency of about 2.5 MHz). The data below 15-20 kHz is
not valid because the servo transfer functions are not the same in the two cases and
the division operation does not compensate for this. The phase curve in Fig. 5.7 goes

61



through -450 at about 30 kHz, and the magnitude curve has a slope of 20 dB/decade
above 100 kHz. The phase reaches about -75* at 500 kHz, whereas the phase of a
pole at 30 kHz should be -87* at 500 kHz. This discrepancy can be explained by the
fact that the reference response contains more than just the frequency response of
the electronics; it also contains the frequency response of the recycling cavity alone,
which is not perfectly flat up to 500 kHz. With its pole frequency of 2.5 MHz, the
recycling cavity contributes about -11* at 500 kHz. Since the frequency response
of the recycling cavity is used as a reference by dividing the transfer function of
the coupled cavities by the transfer function of the recycling cavity, this means that
11* of phase shift are erroneously added to the coupled cavity transfer function at
500 kHz. This explains nearly all the difference between the measured and expected
phase shift at 500 kHz, so that the frequency response of the couple cavities is that
of a pole at 30 kHz.

5.4 Recycling of a full interferometer

Introduction. The addition of another Fabry-Perot cavity arm introduces two
new degrees-of-freedom into the system: the length of the second arm cavity, and
the position of the two arm cavities with respect to the main beamsplitter, i.e. the
Michelson phase difference. A new loss mechanism is also introduced: power can be
lost through the anti-symmetric output of the Michelson interferometer, as a result
of either an imperfect (less than unity) contrast, or a deviation from the dark fringe

(Od $ 0 mod 27r).

The interferometer can be operated in three configurations: the full system with
Fabry-Perot cavities in each arm (FP MI); the simple Michelson (MI), using only
the input mirrors of the arm cavities (the rear mirrors are physically blocked); and
the asymmetric case, with a cavity in one arm and a simple mirror (the cavity input
mirror) in the other. Each of these arrangements can be operated with or without
recycling.

These recycling experiments are performed with the short (r = 53 cm) recycling
cavity. (The cavities are positioned equidistant from the main beamsplitter, so the
recycling cavity length is still defined as the distance from the recycling mirror to
a cavity input mirror.) This means that cavity-length-modulation must be used to
generate the arm cavity error signals. (Phase modulation at the next free-spectral-
range would require modulating/demodulating at fm = c/41r = 140 MHz, which is
not practical with currently available electronics.)

Description of apparatus. The optical and servo system used is depicted in Figure
5.8. The laser is frequency stabilized as described in chapter 2.3. The optics prior to
the recycling mirror are the same as for the coupled cavity experiments (Fig. 5.1).
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Fig. 5.8. The optical and servo system for the interferometer recycling experiments.

Each of the five main interferometer mirrors (the recycling mirror and the four
arm cavity mirrors) is mounted on a PZT allowing about 1 pm of translational
control In addition, each mirror is held in a mount outfitted with two PZTs which
provide about 3 mrad of remote alignment control in each of the two pertinent
angular degrees-of-freedom.

Each arm cavity is 47 cm long and is composed of the, by now standard, Ti
= 2.8% flat input mirror and maximum reflectivity 1 m radius of curvature rear
mirror (finesse 220, linewidth 1.4 MHz). The input mirrors are placed 20 cm from
the main beamsplitter, mibs. The average loss per arm cavity mirror is about
1.2x10-4; this leads to a (on-resonance) loss on reflection of about 3.3% for each
cavity (see section 5.1). Note that this set of mirrors is less lossy than those used
in the two coupled cavity experiments; they are from the same batch of mirrors but
have had less exposure to the environment. The fraction of the input power coupled
into the TEMoo mode of each arm cavity (without recycling) is about 95%. The
mode-matching, finesse, and losses are the same in the two cavities, to within ±5%.
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The recycling mirror, rm, has a 1 m radius of curvature and is placed 53 cm
from the arm input mirrors, matching the TEMoo modes in the recycling and arm
cavities just as for the previous experiment. Ideally the transmission of the recycling
mirror should be equal to the total loss in the interferometer; the closest match
available was an ordinary commercial (CVI) laser mirror of 8.3% transmission and
0.3% estimated loss.

The main Michelson beamsplitter, mibs, is nominally 50/50 for p-polarization.
The reference beamsplitter, refbr, is a flat, uncoated plate mounted at an angle
such that it reflects 2.5x 10-4 of the incident light from each face. The polarizers at
each reflection from the reference splitter and at the anti-symmetric output ensure
that only the power in the (horizontal) polarization of the input beam is detected.

Also shown in Figure 5.8 are the components comprising the signal detection
scheme known as external modulation. This technique will be discussed in detail in
the next section. Essentially, the signal at the anti-symmetric output of the Michel-
son, 4d, interferes with a phase-modulated reference beam. With the appropriate
phase between the Michelson output beam and the reference beam, the demodulated
output of this Mach-Zehnder interferometer is proportional to 43.

Error signals and servos. Each arm cavity is held on resonance with the cavity
length-modulation and lock-in detection method described in the previous chapter.
Different length-modulation frequencies are used for the two cavities, fi = 70 kHz
for cavity A and h = 90 kHz for cavity B. The actual mirror motion at fi of h
is about 4x10-12 mpk in the recycled configuration; more will be said about this
later. Different frequencies are used in order to de-couple the two arm servos from
one another, as explained below.

Fluctuations in the length of a cavity, cavity A for example, produce fluctuations
in the amplitude and phase of the field reflected from cavity A. Because of the
recycling mirror, these fluctuations appear in the input field to cavity B, and thus
also in the reflected and transmitted fields of cavity B. The cavity-length-modulation
servos work by holding to zero the signal at fm transmitted by each cavity. If
the cavities were modulated at the same frequency and one of the cavities (A for
example) were slightly off-resonance, some of the signal at fm transmitted through
cavity B would be due to the field reflected from cavity A. The cavity B servo
would misinterpret this signal and cavity B would not necessarily be held to a local
maximum of the internal power. We thus modulate the two arm cavities at different
frequencies so that length changes of cavity A (B) will not be interpreted by the
cavity B (A) servo as length changes of cavity B (A). Note that laser amplitude
noise can corrupt the servos in the same way, but the amplitude noise of the laser
at 70 and 90 kHz is not large enough to be a problem.

The loop compensation for the arm servos (omitted from Fig. 5.8) is by now
familiar: a simple pole at 5 Hz for the initial locking, and an additional 1 Hz/860
Hz pole/zero combination for operation with more low-frequency gain. The control
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signals are applied to the rear mirrors of the arm cavities with +200 V dynamic
range amplifiers.

Because of the stabilizing effect of the arm cavity servos as described in section
5.3, the recycling mirror position is not actively stabilized. The system is also
mechanically stable enough that the Michelson phase (the positions of the arm
cavities with respect to the Michelson beamsplitter) does not need to be actively
stabilized. The fringe operating point is controlled by manually adjusting (using the
PZTs) the positions of the near mirrors of the arm cavities, anti-symmetrically with
respect to mibs (the arm servoes ensure that the rear mirrors track this motion).

While a servo for the Michelson phase is not needed to make accurate measure-
ments, we did attempt to implement a Michelson servo with limited success, making
it possible to discuss the problems associated with the scheme we tried. When the
system is operating around the dark fringe, a signal proportional to the Michelson
phase can be obtained by demodulating the output of photodetector pdmi at 70

(or 90) kHz. In our attempt this signal was applied anti-symmetrically to the arm
cavity input mirrors. For low frequencies (where the loop gain in the arm servos is
large), the arm rear mirrors track the motion of the input mirrors. For frequencies
above the unity-gain-frequency (u.g.f.) of the arm servos, the cavities do not stay on
resonance. The Michelson phase shift produced by a given input mirror motion is
thus larger at higher frequencies because the cavity contributes progressively more
phase shift. In addition, the phase shift depends on the frequency. For low fre-
quencies, the arm cavities move as a whole and as an input mirror is moved away
from the beamsplitter, the path length in that arm gets longer. At high frequen-
cies, the arm cavities do not move as a whole, and as an input mirror moves away
from the beamsplitter, the cavity gets shorter and thus the path length in that arm
gets shorter. The transfer function between differential input mirror motion and the
Michelson phase shift is a bit strange: the magnitude rises from the low frequency
value to a level 140 times higher (for these cavities) at frequencies above the u.g.f.
of the arm servos; the phase starts out at zero degrees and fall to -180 degrees at
high frequency. The fact that the phase goes negative as the magnitude increases
make this a difficult system to compensate. A better scheme would be to control the
position of each cavity as a whole (i.e. move both the input mirror and rear mirror
of each cavity), but this was not convenient (nor necessary) in this setup.

The system is brought into angular alignment and resonance in steps: First,
with the recycling mirror misaligned, the two arm cavities are aligned for maximum
coupling to the TEMoo modes. Then, with the arm cavities locked on resonance, the
Michelson phase is adjusted to the dark fringe and the arm mirrors given further
small alignments to achieve the minimum dark fringe. The recycling mirror is then
brought into rough alignment (the arm cavities do not remain resonant for this
step). With an arbitrary initial length of the recycling cavity, the two arm cavity
lengths are adjusted for resonance and held there with the servos. The recycling
cavity length is then adjusted for resonance in the recycling cavity, and each mirror
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is aligned for maximum power in the system. Note that because of the phase shift
upon reflection from an arm cavity (7r rad on resonance, ~ 0 rad off resonance) the
recycling cavity resonance length depends on the length of the arm cavities.

Losses and recycling gain. Measurements of the recycling power gain were
made for the three configurations of the Michelson interferometer mentioned in the
introduction to this section. Photodiode pdref monitors the signal reflected from
refbr and gives a measure of the input power when the recycling mirror is misaligned
and a measure of the power gain when the system is recycled.

In the simple Michelson case, the maximum power gain observed is Grc = 19.5.
In order to compare with the expected value, an accounting of the measured and
estimated loss is shown in Table 5.1.

Loss element Loss per pass; m=measured, Round trip loss
e=estimated

Cavity input mirror: 2.8% (m) 2.8%
Transmission

Cavity input mirror: Reflection 0.2% (m) 0.4%
from AR coated surface

Beamsplitter: 50-50 surface 0.3% (e) 0.6%

Beamplitter: AR surface 0.15% (e) (1/2)xO.3%

Reference beamsplitter (2)xO.015% (m) 0.06%

Recycling mirror 0.3% (e) 0.3%

Contrast defect 0.02% (m) 0.02%

Total round trip loss = 4.33%

Table 5.1. Losses for the recycled simple Michelson interferometer.

The estimated losses are based on experience with other optics having the
same kind of dielectric coating. The factor of (1/2) for the round trip loss of the
beamsplitter AR surface accounts for the fact that this loss occurs only in one arm;
the factor of 2 in the loss per pass of the reference beamsplitter accounts for the two
surfaces of the splitter. The contrast defect refers to the average fractional power
coming out the anti-symmetric port of the Michelson beamsplitter. Using the values
of Tr = 8.3%, Ar = 0.3%, and A2 = 4.03% in eq. 46 gives an expected power gain
of 20.6. The measured factor of 19.5 is the ratio of the recycling cavity internal
power to the total input power. If we correct for the fraction of the input power
that is in the TEMoo mode of the cavity, M = 0.95, the measured increase in the
TEMoo mode is GTEMOO = 19.5/0.95 = 20.5; the agreement between the expected
and measured values is better than the 5% uncertainty in the measured gain (due
mostly to uncertainty in the matching).
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For the configuration with Fabry-Perot cavities in the arms of the Michelson, the
maximum observed gain is GTEMoo = 18.0, corrected for the recycling cavity TEMoo
mode matching of M = 0.95. This is the ratio of the recycling cavity internal
power to the input power; the power in the arm cavities, as measured by the cavity
transmissions, also increases by this factor (to within t5%). In this case the loss
accounting is shown in Table 5.2.

Loss element Loss per pass Round trip loss

Cavity A reflection 3.1% (m)

Cavity B reflection 3.4% (m)

Cavity A & B input mirrors: 0.2% (m) 0.4%
Reflection from AR surface

Beamsplitter, mibs: 50-50 surface 0.3% (e) 0.6%

Beamsplitter, mibs: AR surface 0.15% (e) (1/2)xO.3%

Ref. beamsplitter, refbr (2)x0.025% (m) 0.1%

Recycling mirror 0.3% (e) 0.3%

Contrast defect 0.1% (m) 0.1%

Total round trip loss = 4.9%

Table 5.2. Losses for the recycled Fabry-Perot arm Michelson interferometer.

The effect of the slightly differing loss in the two cavities has been approximated
by using the average cavity loss for the round trip loss from the cavities. The
expected value of the recycling gain, with Tr = 8.3%, Ar = 0.3%, and A2 = 4.6%
in eq. 46, is Grectd = 18.9. With these losses the recycling gain for the optimal
recycling mirror, Tr :::: Ar + A2 = 4.8%, would be 20.6; the penalty for using a
recycling mirror with transmission somewhat higher than optimum is not high. This
is shown in Figure 5.9, where the recycling gain (eq. 46) is plotted as a function of
the recycling mirror transmission, for the losses of Ar = 0.3% and A2 = 4.55%; the
recycling gain is much more sensitive to Tr if it is smaller than the optimum.
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Fig. 5.9 Recycling gain (two mirror cavity model) as a function of the recycling mirror transmission,
with mirror losses corresponding to the experiment: Ar=0.3%, A 2=4.55%.

Contrast. The results of the asymmetric Michelson, consisting of a Fabry-Perot
in one arm and a simple mirror (the cavity input mirror) in the other, address the
question of how the interferometer contrast changes with recycling. In the non-
recycled asymmetric configuration, the contrast is poor for the following reason.
Light in the cavity arm that does not couple into the cavity does not experience
the additional cavity 7r rad phase shift, but in the simple mirror arm all the light
experiences the same phase shift at the mirror. Therefore, at the anti-symmetric
output the higher-order modes from the two arms constructively interfere at a
Michelson path length difference for which the TEMoo modes destructively interfere.

Consider a model where the beams in the two arms are described by the

same mode decomposition, and let D(x,y) be the spatial function describing the
fundamental mode and F(x,y) describe the light in all the higher order modes,

such that f (ID|2 + |F12)dxdy = 1, and f D*Fdxdy = 0. In the asymmetric

configuration, the electric field in one arm is E1 = (D + F)eo, and in the other
E2 = (D - F)e-', where we consider only a phase difference, 4, between the arms.
The intensity at the output is then IE1 - E2 |2 = 21D 2(1 - cos 24)+2FI2 (1 + cos 24).

The contrast for this model is C = f (|DI2 - |F12 ) dxdy = 1 - 2f IF12 dxdy. The

contrast we measure in the non-recycled case is C = 0.77, which corresponds to
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f IF12dxdy = 11.5% of the light contained in higher-order modes. When this system
is recycled, the recycling cavity rejects these higher-order modes to some degree.
The contrast becomes C = 0.98. If this contrast defect is still due to higher-order
modes, this implies that the mode-matching of the recycling cavity light into the
arm cavities is M = f IDI2dxdy = 0.99.

The suppression of higher-order modes can be calculated by using the expression
for the ratio of the Fabry-Perot internal power to the incident power for an arbitrary
resonance condition:

PPin T P (54)
1 + R1R2 - 2/RA2cos(

where the parameter # specifies how far the light is from resonance. For
a plano-spherical cavity of length I and mirror radius of curvature R, #k =
2(m + n) tan~1 /l(R - 1), where the integers (m,n) are the usual designations for
the modes. For the recycling cavity (I = .53 m, R = 1 m), # = 1.63(m+n). Most of

the light not in the fundamental mode of the recycling cavity is probably in (m+n)
= 1 modes. The suppression for these modes is (eq. 54) Pm.t/Pnc = 4 x 10-2. The
(m+n)=2 modes are suppressed by 2x10- 2, and the (m+n)=3 modes by 5x10-2.

The fraction of the incident light in higher-order modes, |F12, is suppressed by at
least 4x10-2, from 11.5% to less than 0.5%. The fact that the contrast is only C =
0.98 in the recycled asymmetric case (rather than 0.99 if limited by the effect men-
tioned above) implies that the fundamental modes of the recycling and arm cavities
are not perfectly matched.

For the symmetric arm configurations, the contrast also improves when the
system is recycled. In the recycled configurations, the bright fringe power is inferred
by scaling the non-recycled bright fringe power (as measured by pdml) by the
recycling gain (as measured by the increase in pdref); the dark fringe power is still
measured directly by pdmi. For a contrast near unity, the fractional power lost at
the anti-symmetric output is AC = Pmin/Pmax ~ (1 - C)/2. The measured loss in
our system for the various configurations is shown in Table 5.3. The figures refer

simple MI (Michelson) Ac = 5.6 x 104

recycled simple MI Ac = 1.5 x 10-4

FP MI (Michelson w/ cavities in arms) Ac = 1.7 x 10-3

recycled FP MI Ac = 3.4 x 10-4

Table 5.3 The contrast loss for the un-recycled and recycled symmetric configurations.

to the minimum power detected with pdmi. In the FP MI configurations, large
residual low frequency signals (f ~,., 100 Hz) make the average power (averaged over
~-.1 sec) on pdmi about 3-4 times the minimum. It is the average power loss which
appears in the loss accounting in Tables 5.1 and 5.2 as the contrast defect. For

69



both the simple MI and the FP MI the minimum fractional power lost through the
anti-symmetric output decreases by a factor of 4-5 when the system is recycled.

A CCD camera was used to obtain the spatial distribution of the dark fringe
power. The dark fringes for the FP MI and the recycled FP MI are shown in
Figures 5.10 and 5.11, respectively. These figures show that the dark fringe power is
not in the TEMoo mode, but that it is nearly all contained within a couple of radii
of the fundamental mode. The contrast defect is due to non-interfering modes of
fairly low order, though not the fundamental mode.

The mechanism(s) for this phenomenon are not so clear. In general, a less than
unity contrast is produced by some asymmetry between the two arms. This asym-
metry could be caused by a number of mechanisms: a difference in the reflectivities
or the figure of the mirrors, a difference in the path lengths, a difference in the wave-
front distortion produced in the two arms, a misalignment, etc. For the asymmetric
arm configuration, the effect, and how it changes with recycling, is clear. For the

symmetric arm configurations, why the effects of a contrast-degrading asymmetry
might depend on recycling is not so obvious. The mechanisms I have considered
fall into two classes.

The first class, which includes the mechanism for the contrast improvement in
the asymmetric interferometer, depends on the input beam containing power in the
higher-order modes of the cavities. If there is then some asymmetry which results
in a lower contrast for the light in the higher-order modes than for the light in the
fundamental mode, the contrast will improve with recycling, since the fraction of
the light interfering at the beamsplitter in the higher-order modes is much less. The
contrast improvement relies on the 'mode cleaning' of the recycling cavity; if the
input light were entirely in the fundamental mode, the contrast would not change.
Consider the following two mechanisms which fall into this category.

The input beam can be decomposed into the modes of the recycling (or arm)
cavity. The mode-matching into the fundamental mode is typically M = 95%.
Because the higher-order modes propagate differently than the fundamental, a length

asymmetry could lead to a contrast defect that would improve with recycling, since
the higher-order modes are filtered in the recycled system. In particular, a mode
of order (n,m) propagates with an extra phase factor On,m = (n + m) tan- 1 (z/zR)

relative to the (0,0) mode, where z is the distance from the waist and zR is the
Rayleigh length, ZR = irWo/A. The mode decomposition of the input beam is not
known (other than that M = 95%). The mode emerging from the fiber is not a
purely gaussian mode, but the overlap of the fiber mode with a gaussian is 99.6% (
Marcuse 1970), so the higher-order modes must be produced in the optics between
the fiber and the interferometer. The phase 0.,m changes most rapidly at z = 0,
where dOkn,m/dz = (n + m)z-1; it is possible that one or more higher-order modes

could come to a focus (i.e. have z = 0) at the photodetector. Then if the differential
arm phase for the fundamental mode is 0 rad at the photodetector, the differential
arm phase for higher-order modes will be dkn,m = (n + m)dz/zR. To estimate this
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Fig. 5.10 Contour and isometric plots of the spatial distribution of the dark fringe power for

the non-recycled Fabry-Perot arm interferometer. The images were taken with a CCD camera

using (120 pixels) 2. The calibration is 19.75 pm/pixel. The center of the TEMoo mode is at

roughly (x,y) = (60,60), determined by adjusting the Michelson path difference for a bright fringe

at the anti-symmetric output. The spatial integration of this distribution represents a fractional,

time-averaged power of 7.5x10-a.
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Fig. 5.11 Contour and isometric plots of the spatial distribution of the dark fringe power for the

recycled Fabry-Perot arm interferometer. The calibration is 19.75 pm/pixel. The center of the TEMoo

mode is at roughly (x,y) = (60,60). The spatial integration of this distribution represents a fractional,
time-averaged power of 1.5x 10-a, a factor of 5 less than the non-recycled case (fig. 5.10). The z-axis

calibration (determined by the camera electronics gain) is adjusted in Figs. 5.10 and 5.11 to give a

peak intensity close to 256 (corresponding to the full dynamic range of the camera).
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effect, take wo for the higher-order modes to be the same as for the fundamental,
zR = 0.5 m. For a (possible) path length difference of 2 cm, the extra phase is
dbn,m = 0.04(n + m) rad. Most of the higher-order light is probably in the (n+m)
= 1 mode. Then fractional dark fringe power due to this asymmetric phase is

Pmin/Pmax (1 - M)d02n,m/4 = 2 x 10-5; when the system is recycled the higher-
order modes are suppressed by a factor > 10 (see above), making the contrast defect
due to this effect negligible. The estimated contrast defect is not large enough
to explain the simple Michelson contrast; a knowledge of the mode decomposition
of the beam might bring the model prediction closer to the measurement, though
the model has been generous in assuming z = 0 for the higher-order modes at the
photodetector. In addition, this model does not explain the difference between the
unrecycled MI and FP MI contrasts.

Wavefront distortion could also have a larger effect on higher-order modes
because they have a larger spatial extent than the fundamental mode, and it is
likely that the wavefront distortion is greater on larger spatial scales. A simple
experiment was done where the TEMoo mode size was increased by a factor of 2.5

(w = .71 mm) at the arm flat mirrors. The contrast of the simple MI did not change
with this increase in beam size, indicating either that wavefront distortion on this
larger scale is not worse than on the smaller scale, or that wavefront distortion at
either scale is not the dominant source of contrast defect. The size of the larger
TEMoo beam (w = .7 mm) corresponds approximately to the size of the (n+m) = 7
modes (if there were any) of the original smaller beam.

The second class of possible effects involves what might be called 'mode healing'.
An asymmetry in the arms that leads to a contrast defect will also lead to a distortion
of the beam exiting through the symmetric output of the beamsplitter (i.e. the beam
reflected by the interferometer). That is, the mirror formed by the interferometer
appears to be distorted. The mode established in the recycling cavity will depend
on this distortion. The idea of 'mode healing' is that the mode established in the
recycling cavity will compensate for the distortion in the arms in such a way that
the contrast loss is smaller than for an un-recycled beam.

It is not clear what type of distortion could lead to a smaller contrast loss.
A misalignment of one arm of the interferometer by an angle a, for example,
corresponds to a phase gradient O(x) - 27rax/A across the beam. The symmetric
output beam will then have a phase gradient of half that, 4,y(x) ~ 7rax/A. In a
plano-spherical two mirror cavity, this corresponds to a rotation of the flat mirror
by an angle a/2. The mode in the cavity will change to a TEMoo propagating along
the new optic axis determined by this angle. In the recycled interferometer, when
this new mode propagates into the arms and back to the beamsplitter, the arm
beams still meet at an angle a at the beamsplitter, so the interference is unchanged.
It is not clear if some other type of distortion could lead to a better contrast.

The question of why the contrast is lower for the configurations with cavities in

the arms, as opposed to the simple MI (see Table 5.3), has not yet been addressed.

73



El -A

A likely explanation is that the fundamental modes of the two arm cavities are not
identical. The field distributions of the beams reflected from the cavities will then be
different. Parts of the input distribution will experience the resonant 7r phase shift in
one arm, but not in the other. This will limit the contrast just as in the asymmetric
arm configuration. If the two arm modes are expressed in terms of common and
differential parts, the (unrecycled) FP MI contrast of C = 99.7% requires the power
in the differential mode to be 1.5x 10-3 of the power in the common mode.

In all cases it is important that the contrast is not limited by the modulation.

Consider the fields in the two arms before recombination; assuming they have the

same magnitude, they are Ei = Eoe'kl and E2 = Eoe42. The phases 41 and

42 contain the phase modulations, misin(wit) and m2sin(w2t). The normalized
minimum intensity at the output (corresponding to (41 - 02) = n27r) is

Imin = |E1 - E2 1Ii,/2|EoI 2 = [1 - cos (mi sinwit - m2 sin w2t)]. (55)

This can be expanded in terms of the Bessel functions. For wi # W2, the terms

contributing to a dc intensity are - (1 -Jo(m 1)J1(m2)). For the case mi

- m2 = m, and m < 1, this is approximately iI ; m2/2. For m < 1, the
maximum output is I m 2, so that Ayc = I / L M m2 /4. The modulation
index is calculated from the expression for the slope of the Fabry-Perot reflection

phase curve, d4/dl = (167r/AT 1 ), where T1 = .028 for the arm cavities. Since it is

only the differential phase modulation which contributes to the dc intensity at the
anti-symmetric output, and the differential phase shift is not affected by recycling,
this is the appropriate expression to use. With a mirror motion of 4x10-12 mpk,

the modulation index is about m = 0.014. This gives a loss due to modulation of
Amod - m 2 /4 = 5 x 10-5, more than 3 times less than the measured A C = 1.7x10-4

for the recycled FP MI.

Misalignment sensitivity. An attempt was made to measure the misalignment
sensitivity of the full interferometer. The data was recorded with a computer: the
outputs of photodetectors pdref and pdmi (Fig. 5.8), and the photodetectors
monitoring the power transmitted by each cavity, were all recorded with A/Ds as an

angle-PZT voltage (also recorded by A/D) was varied around the optimal alignment
point. Unfortunately, for unknown reasons the quality of the data is poor; in several

instances the power transmitted by one of the arms as a function of the angle-

PZT voltage, for example, is multi-valued. It is not possible to extract quantitative
results from the data, though it is clear that the interferometer is more sensitive to

misalignment (in the sense of the fractional change in an arm cavity power) when it

is recycled. Roughly, the recycled interferometer requires an angular misalignment

a few times smaller than the non-recycled system in order to reduce the arm cavity
power by ~ 10%.

It is worthwhile to apply the misalignment model developed in chapter 5.1 to

a full interferometer, in particular to a recycled long baseline interferometer. The

model must now take into account the (misalignment dependent) power exiting the
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anti-symmetric output. The question becomes not just how the power coupled into

an arm cavity depends on misalignment, but how the signal-to-noise ratio of the

interferometer depends on misalignment. This issue has also been addressed by
Meers and Strain (1991).

In general, a misalignment will decrease the signal (by decreasing the recycling
gain and the power coupled into an arm cavity), and increase the noise (by increasing
the contrast loss). Of course, it is possible to have a symmetric misalignment in the

two arm cavities such that the dark fringe power does not change, but in general

both effects will occur. I will consider only a misalignment of the rear mirror of one

of the arm cavities. The arm cavities are taken to have a plano-spherical geometry,

so that such a misalignment leads to a displacement of the optic axis in that cavity.

Consider first the decrease in the signal. The beam returning to the recycling
mirror from the aligned cavity is entirely in the unperturbed mode: 2E 1 = rcavuo(x).
The field from the misaligned cavity contains an unperturbed beam and a displaced

beam: 2E 2 = (rcav + b)uo(x) - be-a 2 /20uo(x + a), where a is the optic axis dis-

placement, xo is the waist size, b = TiVTi2/(1 - VTRR2), and rcav = /R -- b (the
subscript 1 refers to the arm cavity input mirror and 2 to the rear mirror, as usual).
The additional recycling cavity loss, in the limit of small misalignment a2/Xz < 1, is

2 E ) (2a 2 TV' (/R2(R1 + TI) - VT1)
dA8 = rcay- (EI + E2)uo(x)dx = -V' R) 2

~r -002

X0 T1 2 T1
(56)

where A is the per mirror loss. The approximate form holds when the arm cavity

reflection coefficient is close to one (small reflection loss).

The effect this additional loss has on the recycling gain depends on the losses.

The fractional change in the recycling gain is dGec/Grc, = -GredA9. This gives

the change in the recycling cavity power. The power in the aligned arm cavity will

also decrease by this factor. The power in the misaligned arm cavity will be reduced

further due to the non-unity coupling between the recycling cavity mode and the

arm cavity mode. However, as seen in section 5.1, the decrease in the recycling

cavity power is the dominant effect; in the subsequent analysis the fractional power

decrease in the arms is assumed to be the same and equal to the fractional power

decrease in the recycling cavity.

The power at the dark fringe due to the misalignment is proportional to

[f (E1 - E2)2dx]. The fractional dark fringe power due to misalignment is

b2{ _-as2/X a2 2
dA0 b2(t: ( a 2  2T (57)

d4rav \o 1 + 7A/T1
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The approximate relation holds for small misalignment and small arm cavity loss.

The effect of the additional dark fringe power must be analyzed in the context of a

signal detection system. The next chapter describes the external modulation scheme
for signal detection, and I will use the results from there. In the external modulation

system, a small fraction R, of the circulating light is split off to form a reference field

which is than interfered with the anti-symmetric output field. The noise power is

proportional to the detected light power: N oc (Ac + Re) 112 . The fractional change
in the noise due to the increased dark fringe power is dN/N = idAefI(Ac + Re).

It is assumed that the misalignment does not change the fractional dark fringe
power, Ac, due to other effects (i.e. inherent types of wavefront distortion). There

is an optimal value for the fractional power Re used for the reference beam: Re =

(Ac(Ac + Ao)/2)1 2, where Ao is the interferometer loss not due to a contrast defect

(e.g. arm cavity loss).

It is time to put some numbers into these equations. A full-scale interferometer
will have mirror parameters of around T1 = 3%, A = 10-4 (giving Rcay = 0.974).
Assuming a (aligned) contrast of C = 99% (Ac = 0.5%), this allows a recycling

gain of Grc = 32 if there are no other losses. The beam waist size will be about

zo = 2.8 cm, resulting from a plano-spherical cavity having a rear mirror radius of

curvature R = 10 km.

The fractional change in the recycling gain, and thus signal, is dG/G ~~

-0.3(a/1mm) 2. The fractional change in the noise is dN/N ; 3 x 10-(a/1mm) 2.
The signal is reduced much faster than the noise is increased. The signal, and thus

the signal-to-noise, is reduced by 10% for a displacement of a = 0.55 mm. This dis-
placement is produced by an arm cavity rear mirror rotation of 0 = aIR = 5.5 x 10-8
radians. This is a fairly severe requirement on the stability of the mirror angle.

Scaling the interferometer. Some of the issues involved with scaling this experi-
ment to a long baseline interferometer have already been discussed. The methods of
generating the error signals and implementing the servos used here are convenient
for this type of fixed-mass prototype experiment. A more attractive technique for a
full-scale interferometer is the use of rf-phase modulation to obtain the cavity and
Michelson error signals. The coupling of the cavities in a recycled FP interferom-
eter, and the restriction against modulators in the interferometer arms, make this
method somewhat complicated to implement. This will be the subject of further
experiments with the fixed-mass interferometer.

In addition, the time constants associated with the various error signal will be
different (longer) in a full-scale interferometer. The effect of this on the acquisition
of the operating state is an important question. Experimental experience with the
problem will have to wait for the large system.

Some comments about the losses in a large system can be made. The cavity
finesse in these experiments is appropriate to a full-scale interferometer, but the

mirror coating technology has improved and (small) mirrors with a loss up to 10
times less than those used in this experiment are now available. Significant further
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reductions in the loss could be made by using a Michelson beamsplitter and recycling
mirror made with low-loss coatings, and V-coatings for all anti-reflection surfaces.
The very small contrast defect is not a significant loss in this experiment, but the

beam is small (wo - 0.3 mm) compared to a full-scale system (wo Z 3 cm); since
the phase-front distortions due to the optical elements will be different on these two

scales, no conclusions about the contrast in a large system can be made based on

this experiment. Nonetheless, if the contrast is not less than C P 0.99, a power gain

of at least 30 should be possible.

6 Signal Detection: External modulation

6.1 Theory of external modulation

E2 A

A Michelson

reference 50/50 splitter

Input splitter (r,te)

E1 +E2  E1

4Oret f

Phase E1-_E
modulator

$m

Mach-Zehnder
50/50 splitter

Output B

Output A

Fig. 6.1 Optical arrangement for external modulation

When an interferometer is operated on the dark fringe, the differential arm

phase does not show up directly in the output dc-intensity. In order to detect

the differential phase, the output must be interfered with some reference field. In

the case of in-line or internal modulation (chapter 3), the carrier in each arm is

interfered with the rf-sidebands in the other arm to give an rf signal proportional

to the differential phase. For recycling, the phase modulators are removed from the

arms and the reference field must be found elsewhere. Such a field can be derived

from the main beam, phase-modulated and interfered with the Michelson output
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through a Mach-Zehnder arrangement as shown in Figure 6.1 This technique was
used on a recycled simple one-bounce Michelson interferometer by Man et al. (1990).

This shows the reference beam being split off from the Michelson symmetric
output beam. The reference beam could also be taken from the input beam, before
it enters the interferometer. The advantage of the method shown is that the two
Mach-Zehnder (MZ) beams can be made to travel equivalent path lengths before

interfering at the MZ beamsplitter. This means that the two beams will be the

same size, important for the quality of the interference, and that the sensitivity to

frequency fluctuations can be minimized. (In practice a second phase modulator is

placed in the Michelson arm of the Mach-Zehnder to achieve symmetry.)

In the analysis of this configuration, the field amplitudes and phases in the two

arms are broken up into common and differential parts. The spatial distributions of
the fields are assumed to be identical, the imperfect contrast coming only from the

amplitude imbalance. This may not be the best model in our experimental situation,
where the Michelson anti-symmetric output is mostly comprised of light in higher-

order modes, but it would probably apply if there were a mode-cleaning cavity or

single-mode fiber at the Michelson output, since the light transmitted through the

mode cleaner would be in the fundamental mode. The fields in the two arms for

this model are

Ei = V2-Eo(1 + A)ei(e+4d)/ 2 , E2 = VEo(1 - A)e'(Oc-4)/ 2 . (58)

The differential arm phase is thus 4d. The field at the anti-symmetric side of the
Michelson beamsplitter is EAS = (E1 - E 2)/V/ and at the symmetric side it is

ESy = (E1 + E 2)/V:

EAS = 2Eoei~c/ 2 i sin + A Cos ,
1 2 2] (59)

Esy = 2Eoei4c/ 2 cos + iA sin 9]
[ 2 2

The field EAs picks up a phase Omi as it propagates to the Mach-Zehnder beam-
splitter. The Michelson symmetric output field, Esy, reflects from the reference
beamsplitter - amplitude reflection re - and accrues a phase shift of kr (including
phase modulation) in propagating to the Mach-Zehnder beamsplitter. The field at

output A is EA = [EASeMidu - reEsyei0']//2 and the intensity is |EA12:

EA = ViEoeiOc/ 2  i sin + A Cos ei~mi - re cos + iA sin L eo',
I( 2 2) 2 2 /]

IEA12 = 2|Eo 2 sin2 O (1 + r2 A 2) + cos2 (2 + r2) _

2Are cos (OMI - 0r) + re(1 - A 2) sin (#) sin (#MI - 0r)] -
(60)
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Similarly for output B:

EB = [EASe'#MI + reEsye1] I2,

|EB|2  2|Eo sin2 (1 +rA2) + cos2 2 + r2)+ (61)

2Are cos (4MI - Or) - re(1 - A 2) sin (4 d) sin (4 MI - Or)-

The reference beam phase, Or, consists of a propagation phase and a phase modu-
lation: r = 40 - m sin wmt. The difference between the propagation phases of EAs

and Esy is called the Mach-Zehnder phase: 4Mz = OMI - 4r0. The dc- and Wm-

intensities at output A are then

IEA12e = 2|EoI 2 sin2 O(1 + r.A 2) + cos2 Od (A2 + r2) -

2AreJo(m) cos 4 Mz + re (1 - A2) sin (4d)Jo(m) sin 4 Mz] , (62)

IEA1I = 4|Eo12re [2A sin 4Mz + (1 - A 2) sin (Od) cos 4MZ] Ji(m) sin wmt.

The sensitivity of the wm signal to the differential arm phase, 4 d, is greatest when the

Mach-Zehnder phase is set to 4 Mz = 0 (or wr). These expressions can be written

in terms of the individual beam photocurrents measured after the Mach-Zehnder

beamsplitter by either of the two photodetectors:

Michelson minimum: IEA| 2 = }IEAS12o = 2|E 0I2A2  Imi-

Michelson maximum: IEA| 2 = IEAS12 g = 2|Eo12 => IWj (63)

Reference beam: |EA| 2 = g rJES 12 = 2rI|Eo12

The dc currents at the operating point 4Mz = 0 are

Id = IV! + Iref - 2Jo(m) /ITIref,1 (64)
Id = IVIB + Iref + 2Jo(m)/7IIrIe.

The Wm signals are opposite in sign: SA = -SB. The signal sensitivity to a differential

arm phase (at 4 d = 0) is

dSA 4C dSB
dd - 1+CJi(m)V/Ixref sin wmt - - . (65)

The contrast C in this model is C = (1 - A 2)/(1 + A2).

The A and B photocurrents are subtracted to give twice the wm signal sensitivity.

The photocurrent is turned into a voltage by the photodetector/preamplifier. This

voltage is then demodulated by the mixer, bringing the signal down to dc. Taking

the trans-impedance gain of the preamplification/demodulation process to be R, the

signal voltage due to a differential arm phase is

(dSA = dSB 8C

V'~)= R (d4)d d~ ) d(f) =R 1T+C J () f5 ref d (f) (66)
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The noise current is due to the dc photocurrent: ie, = 2e(I!j + Id + Idet)-

The current Idct is the equivalent dc-current that would produce the photodetector

no-light noise level; this term can also account for a photocurrent due to light which

does not contribute to the signal, such as light in higher-order modes. When the

noise is demodulated, components above and below the mixer frequency wm are

mixed down to the same positive frequency and add incoherently, resulting in an

additional factor of /Z.2 The rms noise voltage which competes with the signal

current is then

vnoise(f) = 2R2e(IQ[ + Iref + Idet/2) . (67)

Equating the signal and the noise gives an equivalent rms phase noise due to the

shot noise of

1) + C 2e(I~n + Iref + Idet/2)
4d(f) = -CmJjxref (68)

The sensitivity to the Mach-Zehnder phase, at the operating point 0MZ = 0, is

dSA ( 2A 'dSA _ V1 -C2 dSA (69)
d4Mz 1 - A 2  dcd C dkd

That is, the MZ outputs are less sensitive to the MZ phase, qMZ, than to the

differential arm phase, 4, by a factor of CIV1'-C2 x 1/ 2(1 - C), where the

approximation holds for near unity contrast.

Optimum reference beam power. If the interferometer is not recycled, the

Michelson bright fringe power can be made independent of the reference beam power

by using a Faraday isolator which transmits all of the input light but directs the

Michelson symmetric output into the Mach-Zehnder reference arm. In this case, the

phase sensitivity is maximized by making the reference beam power much larger than

the Michelson dark fringe power (plus detector noise equivalent power). The phase

noise is then independent of the reference power and, in the limit of perfect contrast,
is equal to 4d(f) = 0.86V2e/Ii, using the maximum value of JI(m) ~ 0.582. Note

that IV is measured after the 50/50 Mach-Zehnder beamsplitter, and thus is half

the photocurrent produced by the full Michelson bright fringe beam.

If the interferometer is recycled, the reference beam represents a loss to the recy-

cling cavity and the Michelson bright fringe power is not independent of the reference

2 For a more explicit treatment of the demodulation process, take the pre-demodulation signal current to be I,(f,) sin wmt.
The mixer multiplies this by some waveshape of the same frequency, say a sine wave. The resulting current, averaged over
many w. cycles, is (1/2)1.. The pre-demodulation noise current density at a frequency w is I, = VeTc(sinWt + coowt).
The components at w = wm,±w are Ik = /~d(sinwmt(coswt :F sinwat) + coswmt(cosw,t i sinwat)). Demodulation

picks out the sinwxt term. Each of the noise sidebands thus contributes a noise power density of (If) = 2eIdc/4. Summing
the two noise powers gives a current noise spectral density of In = v'T". So the demodulation process is equivalent to
multiplying each pre-demodulation current by a gain I, and multiplying the noise current density by a further factor of V5
to account for the two sidebands.
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beam power. The recycling gain is related to the losses by Grec = 1/(Ao + Ac + 2R),
where Re = r2 A c is the contrast loss, and Ao is the remaining loss in the recy-
cling cavity. The various photocurrents are related to the photocurrent I due to
the input power by

I = AGrecc; I" = ACGec; Iref = ReGrec , (70)

the factors of (1/2) again due to the fact that these photocurrents are measured
after the Mach-Zehnder beamsplitter. The phase sensitivity can then be written as

Od(f) = 2 )le/o V7_(Re). The dependence on the reference splitting coefficient
has been put into the function fi

f(Re) = Ac + Re + e(Ao+ Ac + 2Re) (Ao+ Ac + 2Re). (71)

If the detector noise can be neglected, the minimum of this function occurs for
a reference-splitter reflectivity of Re = N/Ac(Ac + Ao)/2. With this optimum
reference beam power, the phase noise due to shot-noise is

1+C rer
4d(f) = ( (V2Ac+ VAo + Ac) . (72)20J1 (m) V0\

The contrast loss affects the shot-noise sensitivity differently than the arm loss (Ao)
because the loss AO only lowers the signal (by lowering the recycling gain), while the
loss Ac both lowers the signal and increases the noise.

Comparison to internal (in-line) modulation In appendix B the shot-noise
limited phase sensitivity of an in-line (or internally) modulated interferometer is
calculated. In the limit of unity contrast and a noise-less photodetector, the phase
sensitivity is

Internal mod: Od(f) = . (73)C-.1 V:max

Here Imax is the dc photocurrent on the bright fringe, so to compare with external
modulation, the substitution If = Imax/2 must be made. Then, in the limit of
unity contrast and Idct = 0, and choosing the optimum modulation index (so that
J1 (m) = 0.582), the phase sensitivity is

External mod: kd(f) = 1.2 . (74)C-1 Imax

Note that the fundamental phase sensitivity for internal modulation is the same as
for middle-of-the-fringe detection as discussed in chapter 1.3.
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6.2 Experimental results
The Michelson output signal was measured with the external modulation tech-

nique for the experiments of chapter 5. Figure 5.8 shows the optical and electronic
arrangement used for external modulation. The phase modulation is applied in
anti-phase to both arms of the Mach-Zehnder, using the standard Gsiinger PM-25
Pockels cells. The signal is demodulated at only one of the Mach-Zehnder outputs
(pdal); the photodetector at the other output (pda2) monitors the dc intensities.

When the Mach-Zehnder phase is at the operating point, 4MZ = 0, the sensitivity
to a differential arm phase, dSA,B/dpd, depends on the Mach-Zehnder phase only in
second order. The combination of this insensitivity and the mechanical stability of
the system means that accurate measurements of the signal can be made without
servo-controlling OMZ-

For the simple one-bounce Michelson interferometer, the expected signal voltage
for a motion 6x(f) of one of the arm mirrors is

4C 47r

S = C R I I AJ(m) 6x(f). (75)

The signal at pdal produced by the 70 kHz motion of the near mirror of cavity A was
measured for the one-bounce Michelson both with and without recycling. The tran-
simpedance gain R of the photodetector/mixer combination is calibrated by mea-
suring the output voltage noise for a known shot-noise producing dc-photocurrent.

In the non-recycled case, the measured signal for a mirror motion of 5 x
10-10 mpk (i10%) is smaller than the expected signal by a factor of 1.23. The
parameters for this measurement are: C = 0.999; Ji(m) = 0.386; VIreIW{ =
2.6 x 10- 6 A. With recycling, the signal increases by a factor of 236, while the
overall power increases by a factor of 218. The measured signal in this case is thus a
factor of 1.14 smaller than the calculated signal size. The dependence of the signal
amplitude on the modulation depth for the non-recycled case is shown in Figure
6.2. The maximum modulation index achievable with the Pockels cell driver used
is m = 0.831. The signal increases proportionally with J1(m) up to this maximum
modulation depth.

In the case with FP cavities in the arms, the signal should increase by a factor
of (4/ Ti) = 143 over the one-bounce Michelson. The measured signal is due to the
light in the TEMoo mode and must be corrected for the mode matching in comparing
to the one-bounce Michelson. The measured increase in the 70 kHz signal, corrected
for the mode matching of M = 0.93, is a factor of 131, a factor of 1.08 smaller than
the expected increase. For the recycled FP MI, the 70 kHz signal increases by an
additional factor of 206, while the overall power increases by a factor of 200.

The signal sensitivity to the Mach-Zehnder phase, dSAB/dMz, is smaller
than the sensitivity to the differential arm phase by a factor of C/V1 -C2 P

1 /2(1 -C), as shown above. Assuming the reference beam interferes only with the
TEMoo component of the Michelson beam, the contrast C in this expression must
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Fig. 6.2 The level of the 70 kHz signal, as detected with the external modulation technique, as a
function of the modulation index, m. The curve is Ji(m), scaled for the best fit to the data.

be that for the TEMoo component of the Michelson beam. The spatial intensity
pattern at the Michelson anti-symmetric output shows that the light at the dark
fringe is dominated by modes of higher order than the TEMoo mode. The measured
contrast can be used to obtain a lower limit for the sensitivity factor; for the recycled
one-bounce Michelson, this gives 1//2(1 F-C) > 40. By comparing the MZ output
signal generated by applying a signal to the MZ Pockels cell to the MZ output signal
generated by a Michelson path length difference signal, the sensitivity to the Mach-
Zehnder phase is measured to be 200-1000 times smaller than the sensitivity to the
Michelson phase. This is consistent with the calculated lower limit of 40.

The noise was also measured with the external modulation arrangement. No
attempt was made to optimize the reference beam power; the reference beamsplitter
power reflection coefficient of 2.5x 10-4 (per surface per pass) - determined by
its angle - was chosen to be as large as possible while still presenting a relatively
small loss to the recycling cavity. For the one-bounce Michelson, using a single
photodetector, the shot-noise equivalent single mirror motion sensitivity is

A 1+C Ve(I' + Idet)
z(f) = - V ixIref (76)

where Igc is the dc photocurrent in the detector at the Mach-Zehnder operating
point. For the recycled one-bounce Michelson, the output noise (for frequencies
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above about 30 kHz) is a factor of 1.4 greater than the shot-noise due to the effective
bright fringe dc-photocurrent of I:, = 40 ma (the light bulb test). The equivalent
displacement noise measured is 9.5 x 10-16 m/V/llz. The shot-noise contribution, as
inferred from the light bulb test, is 6.8 x 10-16 m/f/iz.

The theoretical shot-noise contribution can be calculated using the parameters
of the system: Iy = 1.6 x 10-5 A = Idet; Iref = 1.13 x 10-5 A; J1 = .386; C = .999.
The calculated shot-noise limited sensitivity is 3.6 x 10-16 m/v'iz, a factor of 1.9
lower than the measured shot-noise contribution. The reason for the discrepancy is
not completely clear. The signal size is lower than expected by the factor of 1.23
mentioned above. The measured sensitivity is accurate to about ±15%, due mostly
to uncertainty in the PZT calibration; the uncertainty in the expected sensitivity
is somewhat better than this, probably around ±5%, due to uncertainties in the
modulation index and the currents.

For the recycled Fabry-Perot Michelson, the output noise is much larger than the
contribution due to the shot-noise and limited by various unidentified mechanical
resonances. In addition, relatively large low frequency signals saturate the photode-
tector for Mach-Zehnder modulation depths in excess of about m = 0.025. It is clear
that a fixed-mass, in-air system is not suitable for detailed noise studies.

7 Final remarks

To summarize, a small, fixed-mass prototype has been used to study various
interferometric techniques being proposed for use in a large baseline gravity wave
detector. Such a prototype is a useful tool for the investigation of optical techniques,
with the limitation that detailed noise studies cannot be done, and that some of the
properties associated with the scale of the interferometer cannot be realized.

The technique of in-line modulation is the most convenient means of operating
a Fabry-Perot arm interferometer, as long as the modulation cancellation effect
is countered. However, the placement of modulators in the interferometer arms
is undesirable in a recycled system. The optical distortion and loss due to the
modulators lower the contrast and limit the recycling gain.

Light recycling appears to be a practical technique for increasing the effective
light power. In addition, for a given phase shift (i.e., a given mirror motion), the
output signal of the external modulation detection system is seen to increase linearly
with the effective light power; this is true even for mirror motion frequencies higher
than the coupled-cavity pole frequency of ~ 25 kHz, indicating that light recycling
does not alter the bandwidth of the system. The recycling gain of 18 seen in this
experiment follows from the known optical loss in an understandable way, and could
be increased by using available lower-loss optics throughout the interferometer. In
a full-scale interferometer, an arm storage time of r, = 0.8 msec (fo = 100 Hz) for
a 4 km cavity corresponds to an input mirror transmission of Ti = 3.3%. A mirror
loss of 100 ppm then gives a cavity loss of 2.4%; if mirror coating technology can
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produce large mirrors of 10 ppm loss, the arm cavity loss would drop to 0.24%. It
should be possible to make the losses in the other optics - the main beamsplitter,
the recycling mirror, and any other beamsplitter plates - much smaller than the arm
cavity loss. The contrast loss will depend on the quality of the optics on spatial scales
much larger than the 0.3 mm beam size in this experiment, making it impossible to
predict the contrast loss for a full-scale system based on these experiments. However,
a realistic goal for a large system is a contrast of C = 0.99, giving a contrast loss of

A c = 0.5%; a wavefront distortion between the two arms of roughly A/30 on spatial
scales of the beam diameter and smaller would degrade the contrast to this level.

The dependence of the contrast on recycling remains an open question. There

as yet is no convincing explanation for the observed decrease in the contrast loss
with recycling. The question deserves more experimental work, to see if the effect is
reproducible. Computer modeling of the effects of wavefront distortion in a recycled
interferometer may be the best path to gain understanding.

In short, there appears to be no fundamental limitation to achieving a recycling
factor of at least 30 (the initial LIGO goal) in a large baseline system. Coupled
with the 1-1.5 W of laser power at the input of the interferometer easily available
with current Argon ion lasers, recycling should produce the 30-40 W of effective
laser power needed to bring the shot-noise limited sensitivity of an initial LIGO to
around the h(f) ~- 3 x 10-3/V/ilz level.

The model for the misalignment sensitivity indicates that a recycled interferom-
eter is much more sensitive to misalignment of the arm mirrors than a non-recycled
interferometer. For a full-scale interferometer the alignment requirements are fairly
severe: the models predicts a 10% decrease in the power coupled into an arm cavity
(i.e. the useful power) for a mirror misalignment of 0 ~ 5 x 10-8 radians. For a
20 cm diameter mirror, this corresponds to a displacement of 5 nm at the edge of
the mirror.

Another issue not fully addressed in this thesis is the modulation and servo
topology appropriate for a recycled large baseline interferometer. The error signal
generation and servo methods used here are convenient for this type of prototype.
The cavity-length-modulation technique used is unsuitable for a full-scale interfer-
ometer for a number of reasons. Modulating at a frequency much smaller than the
cavity linewidth of ~ 200 Hz would lead to a servo with a very small bandwidth. If
the modulation were applied at a frequency above the gravity wave band, it would be
difficult to attain sufficient modulation depth, as this would require relatively large
motions of the mirrors. In addition, applying such forces to the mirrors without
introducing significant noise (random mirror motion) may be difficult to do.

For these reasons, a phase modulation system for generating the arm and
recycling cavity error signals is required for a full-scale interferometer. The signal
detection technique of external modulation used here is applicable to a large system,
though these experiments did not answer the questions of how best to generate

error signals for the Michelson and Mach-Zehnder path lengths; a phase modulation
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system for generating these error signals is also required. A mock-up of a possible
phase modulation system for a full-scale interferometer will be tested using this
prototype in the near future. Many of the practical difficulties of such a system
stem from the cavity coupling phenomena illuminated in these experiments. This
will be the topic of a future thesis (or theses), and so will not be elaborated upon
here.
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Appendix A: The Fabry-Perot cavity

Reflection and transmission coefficients. The optical Fabry-Perot cavity is ubiq-
uitous in this thesis. This appendix contains a derivation of the many formulae used
for these resonators. Specifically, this includes the response of a single and a double

(recycled) Fabry-Perot to monochromatic light, the response of a FP to a gravity
wave (a time varying length change), and the response to a frequency modulated
'monochromatic' field. Since I will treat these topics somewhat independently, the

approach will not be the most general formulation conceivable, but I believe it better

illuminates some of the physics involved.

Figure Al shows a FP cavity made of two mirrors (shown as plane mirrors, but
they could be of any figure) separated by a distance L. The following definitions
are made:

r1 = amplitude reflection coefficient of input mirror from substrate side

-ri = amplitude reflection coefficient of input mirror from cavity side

ti = amplitude transmission coefficient of input mirror
-r2 = amplitude reflection coefficient of rear mirror from cavity side

t2 = amplitude transmission coefficient of rear mirror

0e

-r r2r2 t, t Eoe 2

2r,

-r2 t t1Eoe* .* -4

r,Eo --- o 2t2Eoe'"'/

Eo

Fig. Al. Fabry-Perot cavity

Here all the ri and 4 are taken to be positive, and the sign change is explicitly
associated with those reflections impinging from the cavity side of a mirror. The
incident electric field is Eo = EOei(W-kz)and the reflected field is denoted by E,.

Considering the steady state case, the reflected field is found by adding up all fields
at the input mirror (substrate side) traveling in the negative z direction at a given
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time. Taking the phase accumulated after a cavity round trip to be negative, qrt=

-2k = -0, this gives

Er/So = ri - r2t~ti-i8 - rir2 r 2 titie-2i - rir 2rir2r2t1tie-31 -

010

= ri - t r2 E(rir2) e' 6

n=O

r1 - r2(r +t2ie
1 - rir 2e-r

The circumflex, ^ , denotes a complex quantity. Similarly, the transmitted field is

&E. = tit2e-s9/2 + tit2rir2e-iaB/2 + tit 2rir 2rir 2e-i 5s/ 2 +-
00

tt2e-i9/2 rir2e (78)
n=0

t1t2e-ie/ 2  
A

1 - rir2e-go teav

Taking ri and r2 to be real (equivalent to neglecting any additional phase shift
at the mirror surface), they are related to the mirror intensity transmission T and
absorption A by ri = /1 - Ti - Ai. The amplitude coefficient for reflection, ^cav,

can be written in complex exponential notation as rcav=A(0)e( 0 ). Defining

A2 = (1 - A1 - T1 ) ,
B2 =(1 - A2 - T2 )(1 - A1 )2 

, (79)

C2 = (1 - A1 - T1 )(1 - A2 - T2)

rcav becomes:

AA2-2ABcos0+B21/2 1 Bsino _(Csin )
rc 0) 1 - 2C cos 0+ C2 ep [a- A -Bcos6 a- 1 -C Cos60)

(80)
Similarly for the transmitted field:

T1T2  1 Csin
tcav -2C + exp i [-0/2 - tan~(1 CO 0 ) (81)

The magnitude and phase of ^cay are plotted separately in Fig. A2 for the parameters
Al=A2=10-47 T2=0, and various values of Ti. Figure A3 shows how icav behaves
as the mirror loss is increased for a fixed input mirror transmission. The reflection
coefficient is qualitatively different depending on whether the loss (AtotaI = T2 +
A2 + A1) is less than or greater than the transmission of the input mirror. The
critically matched case, icav(0) = 0, corresponds to A = B, or in the case of small
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Fig. A2 Magnitude and phase of I'ca for A 1=A 2=10~ 4, T2=0, and T1=0.3,1.0, and 3.0%.

losses (<< 1), T1 ~ T2 + A2 + A1 . When the loss is zero, |rcav(O)| = A(O) = 1 for
all values of Ti and 0.

The magnitude and phase of leav are plotted in Figure A4 for the parameters
Ai=A 2=104, T2=10 3 , and various values of Ti.

In terms of the power coefficients for reflection and transmission, Rj =
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Fig. A3 Cavity reflection coefficient for T = 0.1%, T2 = 0, a) A1=A 2 = 0.003, 0.01, and 0.045%;
b) A1=A 2 = 0.06, 0.1, and 0.3%.

IrI 2and Ti = It;i 2, the cavity reflected and transmitted intensities are

Vc 2  R1 + (R1 + T1)2R2 - 2/R1R2(Ri + TI) cos 0
Rcav + R1 R 2 - 2 v1R1R2 cos 0 (82)
Tc - 2 T1T2  _ Tmax

1 + R1 R 2 - 2v/RlR2 cos 0 1 + (2F/ir) 2 sin 2 (0/2)

where Tma is the peak transmission and the finesse is defined as

r(RIR 2 )1 /4 Afcav (83)
1 - -v/R1R2 fsr

The cavity bandwidth, Afcav, is the full-width-half-maximum of the transmission
curve, and far=c/21 is the free spectral range of the cavity.

Approzimate relations. The arm cavities of a gravity wave interferometer
usually satisfy the following conditions for the mirror properties: R 2 ~ 1, A1, A2 <
1. Also one can take T2=0, since any transmission can be included in the loss, A2
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(or vice versa). Then the following approximations can be made

I cav()1 2  4(A 1 + A2)
r T1

d4(0) 4

dO I T(1 ( j )2) (84)

d4 9_ 162
dI 10=0 AT1
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Coupled cavities. Figure A5 shows a three mirror cavity (or two coupled
cavities); this is the model for a recycled Fabry-Perot interferometer. Using the
reflection coefficient of a single cavity, ^cav, as given above, the fields at various
points in the coupled system are easily found:

rr + icav (r? + t )ei82
1 + rricaveiO2

rr (1 - rir2es*) + (r1 - r2 (r2 + t2)eiO1)(r' + t')ei02

1 - rir2eiol + (r1 - r2(r2 + t )e'9 1)(r2 + t2)eG2

1 - rir2eiOl + (ri - r2(r 2 + t2)ei )ei02

trtlt2ei(01 +02)/2

1 - rir2e i61 + rrrei92 - rrr2(r + t )e(01+02)

A A

reaV , tCav

ER

ER

E1

ET

rr A r

E cv

T4 ,t I

Fig. A5 A three mirror cavity (the model for recycling). The +/- signs indicate

for reflection from the denoted side of the mirror.

01= 2o4l., Ic

02 = 2ir Ic

the sign convention

The Fabry-Perot as a frequency discriminator. In the rf-reflection locking
technique, the laser light is phase modulated at a frequency greater than the cavity
linewidth and the light reflected from the cavity is demodulated at the modulation
frequency. The discriminant is the form of the demodulated signal as a function of
the frequency of the laser light (the carrier frequency) relative to the cavity resonance
frequency. With a phase modulated input field, the field reflected from the cavity is

Eoe = JoA(0o)e '(0*) + J1A(6+)ei(-i)eiomt - JIA(6_)e'O(G-)emismt + -- - (86)

Here 0 = 2wl/c, 0+ = 21(w ± wm)Ic, wm is the modulation frequency, and the Ji are
the Bessel functions of integer order. The reflected intensity thus contains a signal
at the modulation frequency. This demodulated signal is shown in Figure A6 as a
function of the laser/cavity relative frequency. Also plotted is the transmitted (dc)
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Fig. A6. Top: The transmitted laser intensity (arb units) as the phase modulated laser frequency

scans through the resonance of the cavity. Bottom: The demodulated reflected intensity as a function

of the laser frequency /cavity resonance detuning. The finesse of the cavity is 625, the modulation

frequency is fm/Afe. = 19, and the modulation index is m = 0.5.

intensity, showing the position of the first (Ji) sidebands. The demodulated reflected
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light is clearly a useful error signal for locking to the center of the cavity resonance.

FP response to frequency modulated light. The discriminant of Fig. A6 is true
for laser frequency fluctuations at frequencies much lower than the linewidth of the
cavity. For fluctuation frequencies high compared to the cavity linewidth, the cavity
filters the fluctuation and the resulting demodulated signal.

Consider a laser field of the form E(t) = EoeiO(t) = Eoei(wot+bsinw,5t), where 6 =

6(wb) = 6o/wb, 6o a constant. The instantaneous laser frequency is w(t) = 4(t) = wo+

So cos wot. That is, the frequency is a constant plus a small sinusoidal modulation,
whose amplitude is independent of the modulation frequency wb. Assume that the

frequency modulation is small enough that only the first sidebands, Jii(6)eiW',
need be considered.

In the reflection locking technique, this field is passed through a phase modulator.
Again consider only the first sidebands impressed by this modulation: J±1 (m)e*iw.

There are now nine frequencies: the carrier at wo and the two phase-modulation
sidebands at wo±wm, and the two frequency-modulation sidebands on each of these

frequencies: wo ±w , (Wo w,)±w. The carrier is at the cavity resonance; the cavity

reflection coefficient for the carrier is ^cay = Aoeide. The cavity reflection coefficient
for the woiwS sidebands is rcav = A(wo ± w)eik(wO*w6) = Abei'Ob. Assume that

the phase-modulation sidebands, and their frequency-modulation sidebands are
sufficiently outside the cavity resonance that cav=1 for these six frequencies. The
field reflected from the cavity is then

Eo woi =Jo(m) [Jo(6)Aoe'00 + 2iA 6 Ji(b) sin (wbt + )+ (87)

2iJ1(m)[Jo(6) - 2iJi (6) sin w6 t] sin wmt .

The intensity at the phase-modulation frequency wm is

E- 2  = 8Jo(m)Jo(6)J(m)J(6))[Ab sin (wbt + 0b) - Ao cos 40 sin w6t]sin wmt .
Eo 4

(88)
The demodulated signal contains an oscillating signal at w8 , S6 , of amplitude

|Sb I oc Jo(So/w)J1(6o/w) [(A6 cos k6 - Ao cos 40) 2 + (A6 sin 4b)2]/ (89)

and phase

06 = tan-- .sin (90)
A6 cos 46 - AO cos 0

Figure A7 shows the magnitude and phase of the demodulated signal as a function of
the frequency of the frequency-modulation, wb. The transfer function is shown for
various values of the ratio of the loss (Al+A2+ T2) to the input transmission. There
is no qualitative difference between the cases of the loss being less than or greater
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Fig. A7 Frequency response of a cavity error signal to a modulation of the laser frequency, for various

values of the cavity losses. The cavity length is 500 m, the input mirror transmission T1=1%, and

the round trip loss takes on the values of A=Ai+A 2+T 2=0, .001, .009, .011, and .04. For the no-loss

case, the cavity storage time is 0.33 msec, and the pole frequency is 1/4wr = 240 Hz.

than the input transmission (i.e. being on one side or the other of the critically

matched case). In all cases, the pole frequency is given by 1/4irrs, where the storage

time is r, = ririr 2 /(1 - rir2), and the transit time is rt = 1/c.

Response of a FP interferometer to a gravity wave. The transfer function of a

gravity wave to the differential phase shift of a Fabry-Perot interferometer is found by
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adding the contributions of each of the (infinitely many) beams that have traversed
the cavities. The phase shift produced by a gravity wave of optimal polarization
and propagation direction, and amplitude hoe-iwt, for one traversal of an arm was

found in chapter 1.3 to be 64 = (how/wo) sin (wrt)eiw(rt-). The phase shift after n
round trips is thus

60n= sin (nwrt)ein'ei"- (91)

Assuming that the laser light is resonant with the cavity, 2wol/c = 0 mod 2r, the
field reflected from one of the arms is then

E= r1 - tir2 (rir2)e (92)
n=O

For all the terms contributing significantly to the sum, the approximation 64 < 1
holds, since ho is so small. Thus the exponential phase factor can be approximated
by (1 + i64.). The series can then be summed:

= Er () - ir2t1(howo/w) sinwr0 w(t) - ro(1 + iA(w)) . (93)
Eo (1 - rir2)(1 - rir 2 easwr,)

For the other arm the reflected field is E,/Eo = ro(l - iA(w)). The differential arm
phase per gravity wave amplitude h is then

Od _ 2A(w) _ 2r 2t? {) sirTt

h h (r1 - r2(rH + Di w /1-rir2e~ar

This can be simplified for low-frequency gravity waves. For wrt < 1, only terms first
order in (wrj) are kept; this corresponds to the arm length being small compared
to the gravitational wavelength. Also assuming that r2 - 1, and A1 < 1, the
amplitude of the transfer function becomes

S k 4w, (95)
h I 1_+ _(wr,)

where the storage time is r, = rrlr2/(1 - rir2). The phase factor of the transfer

function in this approximation is

beF , I = irt + tan-1 (2wr,). (96)

The transfer function in this appraidmation is a simple pole at f = 1/47r,.
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Appendix B: In-line modulation

This appendix contains a derivation of the shot-noise limited sensitivity for an

in-line modulated interferometer with Fabry-Perot cavities in the arms, and for a

simple Michelson.

Shot-noise limited sensitivity: FP arms A derivation of the sensitivity must take

into account the non-unity contrast of the system. The model used here for the

contrast is that there are differing spatial distributions of higher order mode light
in the two arms, which do not perfectly interfere. The TEMoo component in each

arm is assumed to be the same, and the intensities in the two arms are taken to

be identical. The spatial distribution of the common fundamental mode is denoted

by D(z,y); the higher order mode distribution in one arm is denoted by F(z,y), in
the other by G(z,y). Including the in-line differential phase modulation, the fields

in the arms are

E1 = V/_Eo(D(x, y) + F(x, y))ei"sinx (g)
E2 = s,/-Eo(D(x, y) + G(x, y))e-imsin x

where x = Wmt. The spatial functions satisfy

J D ( 2 + F12) dxdy = 1 , (ID|2 + |G12)dxdy = 1 ,

D*Fdxdy = 0 = D*Gdxdy , JF*Gdxdy = G* Fdxdy .

In the following the integration notation will be omitted.

A phase shift due to a cavity length change will appear only on the carrier of

the fundamental mode. So to compute the signal, the fields are

E1 = VEo [D (Jo(m)ei4d/2 + 2iJi (m) sin x +---) + Feim sin x]

E2 = V12Eo [D(Jo(m)e-id/2 - 2iJi(m) sin x +- -) + Ge-imsin x

The intensity at the anti-symmetric output is IE1 - E212/2. The signal at the
modulation frequency is

IEi - E212  = 16|Eo12 ID 2 Jo(m)J1(m) sin (4g/ 2 ) sin x . (100)
2

For 4d = 0, the dark fringe dc intensity is

IE1 2 E21' dc = IEo12 [21D|2(1 - Jo(2m)) + F 2 + IG12 - 2F*GJo(2m)] (101)

= 2|Eo12 [1 - CJo(2m)] ,

where the contrast in this model is C = |D12 + F*G. If the intensity lEo12 produces
a photocurrent Io, then the photocurrents on the dark and bright fringes, with
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no modulation, are Imin = 2Io (|F2 - F*G), and Imax = 2Io (1 + ID12 + F*G), so
Ima + Imin = 4I. The signal current experiences the transimpedance gain R of the

photodetector/mixer. The signal voltage at the output of the mixer is thus

V8(f) = R2|D|2 (Ima + Imin)Jo(m)J1(m) d(f). (102)

The noise current is due to the shot-noise of the dc current: i2 = 2 eIdc + 2 eIdet,
where Idct is the equivalent dc-photocurrent that would produce the photodetector
no-light noise level. 3The noise current also experiences the gain R. In addition, noise
sidebands above and below the carrier frequency are both mixed incoherently down
to the same low frequency, resulting in an additional factor of v/ for the noise
voltage (see also chapter 6.1). The noise voltage at the output of the mixer is thus

V(f) = R12e(Imax + Imin)(1 - CJo(2m)) + 4 eldet - (103)

Equating the signal and the noise gives a shot-noise limited phase sensitivity of

f2e 1 - CJo(2m) + 21 1/2
Odif) =..1.i (104)

I max + Imin 2MJo(m)Ji(m) '

where the mode matching is M = |D12. In the limit of unity contrast and Idet = 0,
the phase noise is the familiar Od(f) = N2e/Ima.

This derivation assumes only a single pass through the in-line phase modulator,
whereas in the experiment each arm beam passes two times through the modulator

during the round trip from the beamsplitter. The assumption made is that the
effect of this double-passing is just to reduce the effective modulation index, so that
the shot-noise limited sensitivity is given by the above (single-pass) formula if the

(reduced) effective modulation index is used. This approximation should be valid in
the limit of a small modulation index, such that J2(m) > J12(m) and J2 is negligible.
The reduction in the modulation index is then just the reduction in the amplitude
of the ±J 1 sidebands, and, as given in chapter 3, is

-ne = jo2Ms1  )2
m = J 12(ms) 1 - 5 + [sin (2wml/c + 0ca)] . (105)

Here msp is the single-pass modulation index, Rc is the power reflection coefficient
of the cavity on-resonance, I is the modulator-cavity distance, and cay is the cavity

phase shift added to the ±Ji sidebands. Since in this approximation Ji(m) oc m,
the signal for the double-passed configuration is reduced by this factor compared to
the single-passed case.

3 This treatment of the shot noise does not include any effects arising from the modulation of the output light power, i.e.
the modulation of the dark fringe power resulting from the internal phase modulation. Niebauer et al. (1991) have analyzed
this effect, and concluded that it will increase the calculated shot-noise contribution by up to about 2 dD, depending on the
system.
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A computer program for modeling various interferometer geometries has been
developed in this lab by Rainer Weiss. The program is capable of handling large
modulation indices by keeping many orders of the modulation sidebands. The
program has been used to model in-line modulation, and it predicts that the signal
(i.e. the size of the Wm signal for a given mirror motion) is reduced by the factor
calculated with the above formula, for the small modulation index (msp = 0.16)
used in the experiment.

Erratum: The shot-noise limited phase sensitivity given in the paper contains
an erroneous extra factor of 2.

Shot-noise limited sensitivity: simple Michelson. If the same contrast model as
for the FP arm case is used, the only difference in the arm fields is that the signal
is assumed to appear on all components of the field in each arm:

E1 = VEo(D(x, y) + F(x, y))eimsin xei4d/ 2  (106)
E2 = VEo(D(x, y) + G(x, y))e-imsin xe-/ 2

The signal at the modulation frequency is in this case

IEI -E 2 12  = 4|Eo12CJI(2m) sin (4d) sin x , (107)
2 X

and the signal voltage at the mixer output is

Vs(f) = R(Imax + Imin)CJ1(2m)qd(f). (108)

The dark fringe dc intensity, and thus the noise voltage at the mixer output, is the
same as for the FP arm case. Equating the signal and the noise gives a shot-noise
limited phase sensitivity of

f2e 1 - CJo(2m) + -t- 1/2
4gdf =e .mxi (109)

Imax + In CJi(2m)

The unity contrast, noise-less detector limit for this case is also 4g(f) = v/2e/Imax.
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