THE USE OF LINEAR VOIDS WITHIN
A STRUCTURAL FLOOR SYSTEM TO DISTRIBUTE
AND RETURN MECHANICAI SERVICES
by

HERMAN B. ZINTER
B. Arch., University of Minnesota, 1961

SUBMITMTED IN PARTIAL FULFILIMENT OF
THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF ARCHITECTURE
at the
MASSACHUSETTS INSTITUTE OF TECRNOLOGY
June 1966

72 Spring Street
Medford, Massachusetts 02155

June 25, 1966

Dean Lawrence B. Anderson
School of Architecture and Planning
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, Massachusetts 02139
Dear Dean Anderson:
In partial fulfillment of the requirements for the degree of Master of Architecture, I hereby submit an investigation in the use of linear roids within a structural floor systom to distribute and return mechanical services.

Respectfully,

Herman B. Zinter

ACKNOVIEDGEMENTS

I am grateful to the following persons for their advice and assistance during the development of this thesis:

Eduardo F. Catalano - Theaia Supervisor
Waclaw Zalewski - Structural Engineer
Eliahu F. Traum - Structural Engineer
Leon B. Groisser - Structural Engineer
Sidney Greenleaf - Mechanical Ingineer

It is proposed in this thesis that linear roids within a precast concrete floor system be used as secondary ducts for the distribution and return of conditioned air. Incorporated in the geometry of this one-way system are provisions for air volune and temperature control mechanisms, water sapply and waste systems, electrical power and commanication raceways, and alternatives for room illumination, air diffusion, and acoustic control.

Post-stressed girders are incorporated within the thirty-inch structural depth of the floor system to provide a uniform four by eight-foot ceiling grid for modular space planning and partition arrangement.

Vertical mechanical services to a structural bay are contained within enlarged columns to reduce the dimensions of primary air supply ducts within girders. The columns are on thirty-two and seventy-two foot centers to provide a primary clear span of sixty-four feet.

Comparative data is presented on six planning modules; five commercial precast, cored-slab, concrete plank floor and roof systems; and on fire series of linear building cores, ranging in width from twelve to forty feet.

TABLE OF CONTENMS

Title Page Page 1
Letter of Submittal 2
Acknowledgements 3
Abstract 4
Table of Contents 5
List of Drawings and Photagraphs 6
Iist of Tables and Graphs 7
Introduction 8
Section One - Structural Bay $9-30$
Structural Grids 12
Parking 17
Planning Modules 22
Section Two - Floor System 31-64
Types of Floor Systems 33
Cored-Slab Floor Systens 36
Floor System Using Dynacore Section 40
Development of Floor Systern Using Triangular Section 43
Section Three - Linear Cores Pages 65-75
Geometry of Linear Cores 67
Core Elements 70
Appendices Pages 76-86
Bibliography Pages 87-88
Structural Grid, M.I.T. Buildings 12
Structural Grid, University of Buenos Aires 13
Structural Grid, Free Unirersity of Berlin 14
Structural Grid, Two-Way System, M.I.T. (Torsuwan) 15
Structural Grid, One-Way System, M.I.T. (Brunon) 16
Parking Clearances 17-18
Structural Grids: Coordination of Structure, Cores, Parking 19-21
Planning Modules: Room Sizes and Illumination Patterns 23-30
Types of Floor Systems 33-34
Standard Tee Sections 35
Cored-Slab Floor and Roof Systems 36
Service Modules, Floor Systems with Linear Voids 40
Development of Floor Section 41
Floor System Using Variation of Dynacore Section 42-43
Floor System Using Mriangular Section 52-64
Elements of Floor System 52
Diaphragm Types 53
Diaphragm Patterns 54
Sections Through Floor System 55
Axonometric of System 56
Seryices within Structural Bay 57
Column Detail: Structure and Air Distribution 58
Photograph: Reflected Ceiling Plan 59
Photograph: Column Connection to Girder 60
Photograph: Column Connection to Girder 61
Building Sections 62
Structural Grid, 32x64 Bay 63
Room Planning, Comparison of 32×56 and 32×64 Bays 64
Maximun Distances to Exit Stairway 67
Comparative Dimensions of Linear Cores 68
Locations of Core Elements with Structural Bay 69
Core Elements 70-75

LIST OF TABLES AND GRAPHS

TABLE: Comparative areas and roon sizes of planning modules. Page . 22
GRAPH: Load characteristics of cored slab floor systems 37
TABLE: Comparative data of cored slab floor systems 38
GRAPH: Structural span-depth ratios 39

As outlined in Appendix One, it was the aim of this project to design a building system, valid for many configurations, in which the elements of structure, mechanical services, and vertical circulation were integrated.

Collective preparatory work by class nembers was limited to the list of assignments included in Appendix Two.

A program for an educational facility, specifically for a School of Architecture, Planning, and the Visual Arta, was offered as a basis for study. The space requirements have been tabulated in Appendix Three. It was intended that the direction of study be toward an alternative to the typical suspended ceiling system and that the atructure, preferably of concrete, be exposed to visually contribute to the architectural expression. In addition, the following aspects were selected for initial atudy:

1. Investigations were to begin with analysis of linear, structural systems, presuming that more flexibility in deleting secondary elements of the structure was possible than with two-way construction.
2. Clearance requirements for automobile parking were to be included in determining the dimensions of a typical structural bay and the placement of cores.
3. The possibility of organizing the various elements of building cores into structurally-independent modular components which could be added or deleted without major adjustment of the core geometry were to be studied as a concept of 'linear cores'.
4. The possibility of using the roids within linear structures as secondary ducts for the distribution and return of mechanical services was to be investigated.

SECTION ONE - STRUCTURAL BAY

The following factors influenced the dimensions of a typical bay:

1. It was considered a requirement, for an efficient linear system in which the depth of the girder and beam were equal, that the ratio of the length of girder and beam be approximately $1: 2$, It then would become possible to incorporate the girder within the minimal structural depth of the floor syatem and thereby provide a flush and uniform ceiling grid for room planning. Bay dimensions of twenty by forty-feet, twenty-fire by fifty-feet, and thirty by sixty feet were indicated.
2. It was assumed that the depth of the floor system would be three to four feet and that with this depth, if it were structurally effective, spans up to sixty and serenty feet would be reasonable using precast, prestressed concrete construction.
3. It was considered essential for most flexible planning to have vertical static forces concentrated at as few points as possible. This would become particularly important if columns were enlarged to contain air-conditioning ducts and other services. Proportionately, a minimal ratio of column area to useable floor area would require that enlarged columns be spaced at maximum distances.
4. Spans of forty-eight feet or more would be required for lecture halls and auditoriums. However, it was not indicated that the entire structural system be designed to accommodate the larger spaces without special conditions.
5. Recommended criteria for automobile storage and circulation within independent parking structures include the use of long-span construction and angle-parking (70-75 degrees) to permit ease of maneuvering, particularly in customer-parking facilities.
6. Dimensional refinement of the structural bay depended upon the selection of the planning module.

The primary span and perimeter dimensions of the structural bays of seven existing or proposed building systems for educational or research facilities were compared to the two bays of this project (see pages 54, 64, and 69) which have primary spans of 56 and 64 feet and perimeters of 178 and 194 feet. The following data is summarized from the drawings on pages 12 to 16:

Building	Span	Perimeter	Floors
Materisls Sciences Building	23°	65°	4
Typical M. I.T. Academic Building	24°	78°	4
Free University of Berlin	25°	102°	4
Earth Sciences Building	48°	114°	19
Prototype Building (Torsuwan)	40°	160°	10
Unirersity of Buenos Aires	52°	182°	5
Prototype Building (Brunon)	60°	190°	4

Fire preliminary bays which were studied for coordination of structure, core location, and parking are presented on page 19.

1. These studies were made with the assumption that mechanical services would be located within the cores and that columns would
therefore be dimensioned only from structural considerations; It was later found that if the depth of the floor system were to be minimal the length of the primary ducts within the girders had to be limited to approximately 60 feat.
2. The drawings include two framing systems per bay. Cores have been limited in gize and location by the dimension of openings between structural members which occur over parking storage aisles, Only framing syatems which place the girder parallel with the variable dimension of the linear core (see page 68) satisfy the requirements of structure, core system, and parking.
3. Cores which support adjacent floor structure, as preseated on pages 57 and 69, may be used with the alternate framing system of the first bay.

In the structural grids presented on pages 20 and 21 , the space between girders is enlarged from 4 to 28 feet or to the approximate limit of flat-slab or typical precast concrete plank construction. This approach has the limitation which requires that the atypical bay be appropriately used only for specialized core elements, which would include lobbies, lounges, and other public or service spaces.

barth Sciences Building - M.I.T. - 1964
I.M. Pei and Associates, Architects

Materials Sciences Building - M.I.T. - 1965
Skidmore, Owings, and Merrill, Architects

Typical academic-Laboratory Building - M.I.T. - 1916 Welles Bosworth, Architeet

Candilis, Woods, und Josic, Architects
Scale

Prototype Building for Research and Development - 1965 M.I.T. Department of irchitecture, Graduate Class (Torsuwan)

Prototype Building System - 1965
id.I.T. Department of Architecture, Graduate Class (Brunon)
Scale
… feet

$40^{\prime} \times 64^{\prime}$ bay

$40^{\circ} \times 64^{\prime}$ bay with $40^{\circ} \times 40^{\circ}$ bay
 $40^{\prime} \times 40^{\prime}$ bay with $40^{\prime} \times 20^{\prime}$ bay

Comparative Areas and Room Sizes of Six Planning inodules

$3^{\prime} \times 6^{\prime}$	$3^{\prime}-4^{\prime \prime} x$ $6^{\prime}-8^{\prime \prime}$	$4^{\prime} \times 8^{\prime}$	$4^{\prime}-4^{\prime \prime} x$ $8^{\prime}-8^{\prime \prime}$	$5^{\prime} \times 10^{\prime}$	$6^{\prime} \times 12^{\prime}$	
Area of Module	18	21.8	32	37	50	72
Light Hixture	4^{\prime} tube	4^{\prime} tube	4^{\prime} tube	8^{\prime} tube	8^{\prime} tube	8^{\prime} tube

Koom Sizes: $4^{\prime} x 8^{\prime}$ Planning wodule (Showing Illumination Patterns)

Roon Sizes: $4^{\prime} x 8^{\prime}$ Planning vodule (continued)

Room Sizes: $4^{\prime} \times 8^{\prime}$ Planning wodule (continued)

Room Sizes: $5^{\circ} x 10^{\prime}$ Planning inodule (Showing Iilumination Pattern)

Comparative drawings were prepared of existing floor systems to examine the use of the effective structural depth and the means for integrating mechanical services. Ten systems have been presented on pages 33 and 34. These have been organized into twomay systems in which services have been placed above the main structural elements (School of Electrical Engineering and Consolidated Gas Companyl, within structural elements (Cummins Engine Company), and between the chords of truss elements for two-way distribution (Richards Memorial Reaearch Laboratory and the School Construction Systeml. The latter example, a steel system used primarily for single floor buildings, is contrasted with the concrete systema and multi-floor construction.

Three one-way systems are included in which the space between structural elements has been predominantly used for linear service distribution (IBM, Norton, and American Republic Office Buildings). A recent suspended ceiling system (CBS Building) and a non-structural approach to integration of services (Environmental Control Grid) complete the examples.

The span-depth ratios of these systems were compared to the characteristics of standard structural elements in which depth is completely a function of static requirements (page 35). There are several floor and roof systems which have linear voids suitable for the passage of air and other services. The cored slab systems (page 36) are for use with relatively short spans (table on page 37) except for one system which became the starting point for further
investigation into more complete use of the structural depth of the floor system. The Dynacore plank, besides having the capacity for long-span construction, contains voids of sufficient size to more realistically accommodate the services required.

All of the precast, cored-slab systens have several disadvantages. Visually, the finished underside (ceiling) has no more interest than a cast-in-place slab. Acoustic material is required and the final effect is not significantly different from a typical suspended ceiling, without the advantage of complete flexibility which the suspended ceiling offers. Further, except for water supply lines and waste pipes of very short runs, the cored slabs do not offer space for pipes. If pipes were installed within a void, there is no possibility of access for changes or repair.

Analysis of the modules required for various services lairconditioning, power-telephone, pipes) began, however, with variations of the Dynacore eection, with individual beams separated along the girder to provide space for pipes (access from the floor below) and a visual break to conceal any variations in camber which these members require for long span application.

A preliminary structural system was developed using the Dynacore section of three linear voids for a service module of 8 feet. The girders have 2 depth of 3 feet and are not flush with the beans, Primary ductwork and pipes would be installed between the girders, and vertical services would be contained within cores. In this scheme, three linear voids at the column may not be useable because of the concentration of static forces at the girder connection.

Moore School of Electrical Bngineering - University of Pennsylvania - 1959

Geddes, Brecher, and Cunningham, irchitects
span: 50 feet ratio: 1 : 15

Michigan Consolidated Gas Company Building - Detroit, Michigan - 1963 Minoru Yamasaki and Associates, Architects span: 30 feot

Cammins Ingine Company, Inc., Columbue, Indiana-1964 span: 36 feet Harry Weese and associates, Architects ratio: 1 : 11

Hichards ..emorial Research Laboratory - University of Pennsylvania - 1960
Louis I. Kahn, Architect
span: 45 feet
ratio: 1 : 13

School Construction Systems Development - 1964
Ezra Ehrenkrantz, Project Architect

$$
\begin{array}{ll}
\text { spans: } & \text { ro-110 feet } \\
\text { ratios: } & 1: 10-1: 36
\end{array}
$$

Sections Phrough Existing Floor Systems

Anvironmental Control Grid Ceiling System
Grnest Kump, Architect

Sections Firougin Axisting Floor Systems

Bapidex-Doxplank

Spancrete

Dynacore
Dimensions of Standard Cored-Slab Floor and Roof Systems

Comparative Structural Characteristice of Standard Cored-Slab Systems
*Loads shown are for nembers without composite topping

	depth of plank in.	width of plank in.	$\begin{gathered} \text { ares } \\ \text { cone./ } \\ \text { section } \\ \text { in. } 2 \end{gathered}$	area single void in. ${ }^{2}$	ult. str. conc. psi	$\begin{gathered} \text { weight } \\ \text { of } \\ \text { plank* } \\ \text { pef } \end{gathered}$	span ft.
$\begin{aligned} & \text { Flexicore } \\ & \text { (cast) } \end{aligned}$	$\begin{array}{r} 6 \\ 8 \\ 9 \\ 10 \end{array}$	16	70	29	5000		23.2
Doxplank (precast)	$\begin{array}{r} 6 \\ 8 \\ 10 \end{array}$	16	85.5	32.5	3000		19.5
Spancrete (extruded)	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \end{array}$	40	218	11	4000	60	30.6
Corecrete (extruded)	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \end{array}$	48	219	25.5		57	30.9
Dynacore (cust)	$\begin{array}{r} 8 \\ 12 \\ 18 \\ 20 \end{array}$	96	299	110	5000	26.0	26.0
	24	96	499	440	5000	42.4	62.0

* without composite topping
** superimposed load of 100 psf

Comparative Data for Precast, Cored-Slab, Concrete rioor Systems

Katios of Structural Depth to Span

Section Through Beams

Plan (floor slab not shown)

Development of floor Section

The possibility of modifying the rectilinear geometry of the Dynacore beam was then analyzed. It was noted that a triangular geometry would permit lateral transfer of forces with the possibility of limited twoway action, and that the horizontal solid ceiling condition was aroided.

It is the development of this geometry which is presented as the thesis. The basic elements of the system, which are illustrated on page 52, include precast beams of triangular section with one side of the section used as a horizontal upper flange, precast diaphragms of two baaic types, and cast-in-place columns and capitals. Detailed development of these members has been graphically presented on pages 55 and 56.

A. Beams:

It is proposed that the beams be precast with typical mesh reinforcement and approximately five cables of high-tensile steel in the lower chord, In this system, wich proposes structural bays of 64-feet clearspan, the beams would be cagt 68-feet in length, 4-feet wide, and 27-inches deep,

The technique of extruding the section, applicable to cored-siab planks such as Spancrete and Corecrete (see pages 36 and 38) which hare small voids, is not adaptable to the proposed geometry. It is therefore proposed that voids be formed with either re-useable, collapsable metal tubes which would be withdrawn from the ends of the beam 1 similar to the technique used in casting the Dynacore beams which are fabricated in lengths up to 100 -feet), or with rigid tabes of foamed plastic or fiberglass which would be left in place to provide thermal insulation and acoustic absorption within the bearn when the roids are used as secondary ducts in the air diatribution system, The former technique requires that the section of the beam remain constant along the length
to permit extraction of the formwork.
The upper flange of the beam is 2-inches thick (a 5-inch floor slab is provided by combining the flange with a 3-inch cast-in-place topping) and the webs are $2 \frac{1}{2}$-inches thick. The lateral connection to adjacent beams along the top flange is reinforced by orerlapping of protruding mesh.

An alternate method of forming the interior void of a beam may be more economical; Using this technique, only the lower two webs and the chard would be precast as a unit (the resultant section would approximate a Y-beam or a folded plate) with the top flange separately precast for installation at the site. While being transported from factory to site, the sloping webs of the beam will require restraint by a temporary yoke to prevent failure.

B. Diaphragms:

It is proposed that diaphragms and girder elements (which are widened diaphragms) be precast separately from the beams and reinforced with typical mesh. Diaphragms are required to provide lateral bracing at points along the span and limited lateral transfer of forces near the column (see page 54). These elements are separately precast to provide sufficient tolerance for alignment. It was advised that the proposal for diaphragms cast integrally with the beams (diagramed on page 53) would be visually and structurally (for girders) unsatisfactory since it is not possible to insure proper alignment of long members.

Diaphragms which are required for bracing are placed normal to the lower chords of adjacent beams and secured by post-tensioned calles. Mortar is applied to each ond during the sequence of construction when
beams and diaphragms are alternately placed (steps 4 and 5, page 48). A rod is drawn through the tube in the diaphragm to remore unwanted mortar.
C. Girders

Girders consiat of diaphragms which have a greater width to receive the required number of post-tensioned cables. These diaphragms hare upper chords which form a carity between the sloping webs of adjacent beams, accessible from above the slab, for the placement of additional reinforcement and grout. This additional material, effectively increasing the structural section of the beam webs along the girder, is required to resist the compression force which increases near the column. The volume of the cavity can be varied as required.

The diaphragms have been laterally perforated to permit the passage of pipes and conduit. The shape of this perforation was studied with respect to the feasibility of filling the cavity with grout from abore the slab and the amount of material required to resist static forces (see pages 53 and 55).

Girder diaphragms with cavity reinforcement and beams arc alternately placed during construction. To preserve a continuous tube in the lower chord for the subsequent threading of cables, it is proposed that rods be inserted through beams and diaphragms before the placing of grout and withdrawn before bond is achieved, thereby 'extruding' the tubes. The alternate method would be the installation of typical cable sheaths.

Lateral continuity between girders is achieved by connecting the lower chords of opposite beams with a solid precast compression chord, 8 -inches wide, 4 to 6 -inches high, and 4-feet long. Tensile forces
across the top of the girders are resiated within the floor slab.

D. Columns and Capitale

Columns and capitals are to be cast-in-place to provide vertical continuity. The effective structural section required to support half a bay per floor is divided between members of a paired column lsee pages 54 and 55) to permit the use of all linear voids within beams along the girder. With this detail, vertical forces bypass the voids, Two paired-columns, spaced 4-feet apart and joined at the floor alabs, form a service column which encloses a shaft for the air distribution ducts, return air plenum, and pipes. Removable, non-structural panels complete the enclosure.

CONSTRUCTION SEGUENCE:

Some of the following phases of construction occur simultaneously. This list serves to outline the separate steps.

A. Preparation:

1. Precast beams, diaphragms, girder compression chords and slabs
2. Excavate, prepare footings and foundations
3. Erect scaffolding for first floor
B. Floor System:
4. Place first precast beam on scaffolding
5. Place precast diaphragms and cavity reinforcement
6. Place next precast beam
7. Place form rods for post-stressing cable tubes
8. Grout diaphragm carities and progressively witharaw rods
9. Continue sequence of placing precast diaphragms and beams
10. Place precast giràer compression chords
C. Column:
11. Erect column formwork, place column and capital reinforcement
12. Cast columns and capitals
13. Grout channels of girder compression chords
14. Place precast girder slabs
D. Post-atressing:
15. Thread cables
16. Install power and communication raceways, pipe sleeres
17. Adjust diaphragm reinforcement and set slab reinforcement mesh
18. Post-stress cables, grout tubes
19. Pour 3-inch finish glab

DISCLAIMER

Page has been ommitted due to a pagination error by the author.

Section: Diaphragme, Type Two

Elements of Floor System

Diaphragm integral with beams (jointe on struetural module)

Diaphragm separately precast
Weight of single diaphragn ($6^{\prime \prime}$ thick) is 126 pounds

Diaphragm separately precast
Weight of single diaphragm ($6^{\prime \prime}$ thick) is 108.5 pounds

Diaphragm atterns (Reflected Ceiling Plan) - Comparison of Pwo Bays

second Ploor

SECTION THREE - LINEAR CORES

The typical elements of cores within buildings which form the permanent vertical service columns require shafts (stairs, escalators, elevators, freight elevators, and pipe and duct spaces) or slabs (toilets, cleaning closets, power and commanication equipment closets or rooms). These elements are generally organized into clusters and less frequently into chains-or linear cores. Examples of the latter system are found in a newspaper shop for the Greensburg, Pennsylvania, "Tribune-Review" (Louis I. Kahn, architect), which has a core 14-feet by 120-feet, and in the IBM Office Building, Milwaukee, Wisconsin. (Harry Weese and Associatea, architects), which has a core l2-feet by l53-feet, The adrantage of this system of core organization is that componenta may be added or deleted without revision of the basic core geometry or internal circulation.

Minimal dimensions of individual elements were studied for coordination with planning modules. The examples presented on pages 70 to 75 hare been planned for a 4 -foot by 8-foot module, and developed for five increments of width: $12,26,24,32$, and 40 -feet. The resultant lengths of core assemblies which correspond to these widths hare been compared on page 68. It was intended that assemblies such as those illustrated, and incluâing lobbies, lounges, and other public spaces, would form a service and circulation spine within the structural grids presented on pages 20 and 21. However, except for the 12 and

16-foot wide core systems, the length of the chain of elements did not fully utilize the space of, and thereforejustify a separate, atypical bay within the grid.

No research was found which offered criteria on the density of core elements by type over a given area. That is, within a structural gria, which in theory has no limits, what patterns would be formed by core elements placed by criteria at desirable distances from similar type core elements? Building codes define maximum distances to emergency exits for rarious type occupancies and construction. The geometry of this criteria, which is not a radius when room arrangements are superimposed, is presented on page 67.

The density and pattern of toilet facilitiea of uniform size is suggested in the diagram of the structural grid for the Free University of Berlin on page 14. It was considered more realistic, however, to provide within a system of core elements a geometry which permitted several sizes. In the examples presented on pages 70 to 75 , the number of fixtures may be increased or decreased within limits without modifying Basic circulation or utility patterns. At the limit where it becomes necessary to modify the geometry, it will be found that to maintain convenient distances from points within the grid, another facility will be required.

The geometry of linear cores lends itself to bearing wall construction which is directly incorporated into the structural system proposed in Section two of this report. The reletionship of core elements to columns and girders within structural bays of 56 and 64 -feet clearspan is diagrammed on page 69. In some of these examples, the girder has been replaced with a bearing wall.

Positions of Core Elements within Bay

Core Elements

Core slenents

Core Elements

Core Elements

Graduate Class
February 1966
Professor Catalano

Buildings as Systems

Aim of the Project:

To design a footprint of structural, vertical circulation and mechanical components from which different sizes of buildings, with different spatial qualities and character can be defined.

The system to be created can be approached as an orderly organization of components to achieve "a finished product" for each case, or as a system of growth, for which it is required to establish the geometrical, structural and mechanical self-sufficiency of each unit. It is advisable to design a structural and mechanical system where the vital components become permanent elements of the systems lcolumns, girders, main mechanical service branches) while the secondary components can change or be removed to achieve flexibility in use or spatial changes, (beams, joists, secondary mechanical service branchesl, thus becoming temporary elements of the system,

An initial step of work could be the simultancous study of a typical structural and mechanical bay, with such behavior and geometry as to allow aeveral organization patterns to form a system of growth.

Study of different one and two way structural systems is necessary to see which one offers more freedom in the relation between the structural and mechanical permanent and temporary elements of the system.

Graduate Class
February 1966
Professor Catalano

Buildings as Systems

The following work will be presented on Friday, February 11.

1. Study of uses of columns for mechanical services. Draw showing in a simplified way the connection between slabs, beams, and columns and how the duct work and pipes are distributed in vertical and horizontal runs, See thesis reports, available in my office, of following students:

Witcomb, Hook, Soetrisno, Huber, Hoskins, Hoover, Bonar, Brunon, Vitols, Hershdorfer, Torsuwan.

Draw columns, in plan and elevation, slabs, and plan of complete duct work (supply and return) within a bay.
2. Same for shafts in cores, used for mechanical services.
3. Same for cores used as mechanical rooms: Frazer, Preiss.
4. Draw in sheets $81 / 2 \times 11$ basic construction systems of the following thesis reports: Burns, Kulpritz, Rudquist, Vitols, Torsuwan, Brunon, Frazer, Hershdorfer, Hook, Hoskins, Swanney, Zellmer, describing units, plan, section, elevation, and erection procedure, plus connection of units to columns -- shape of columns.
5. Draw different poststressing anchorage systems and hydraulic jacks, indicating minimum dimensions available related to stresses. Consult: Prestress Concrete, by T. C. Lin, and Prestress Concrete for Architects and Engineers. Draw cranes, types, reach and loading capacity: MicGraw Hill "Construction Techniques." See information on European cranes.
6. Study of module dimensions considering: uses of rooms (especially the very small onesl; width of main and secondary horizontal circulation; stair openings (single and double flight); dimensions of lighting fixtures taken in consideration a width of ribs no less than $6^{6 \prime}$; width of doors; relationship of area - number of lighting fixtures to obtain 60 FC at working level; study of location of fixtures to achieve even illumination per room (any aize) in an economical manner; location of diffusers, and return grills to achieve flexibility to move partitions without moving diffusers. Combination of lighting fixtures and diffusers. In all cases, fluorescent lighting should be considered. Although there are $2,3,4$, and 8 feet tubes, the larger the tube is the more economical the system becomes. Modules could be square, rectangular or combined, for two and one way construction.
7. Draw plan and section of 4 passenger elevators 5×7, indicating car dimensions, clearances, width of doors, walls, pit, overhead run and machine room for $350 \mathrm{~F} / \mathrm{M} 500 \mathrm{~F} / \mathrm{M}, 700 \mathrm{~F} / \mathrm{M}$. Same for service elevator with front and back door. Car dimensions $6 \times 8-$ speed $250 \mathrm{~F} / \mathrm{M}$.
8. Draw different ways to build single and double set of fire stairs, based on minimum width of $66^{\circ \prime}$, for a minimum height (floor to floor) of 14 feet, paying attention to construction and comfort.
9. Draw sheet metal work, indicating transition of duct work for variable sections; connection of vertical and horizontal ducts; connection of ducts and diffusers -- systems of diffusers available in the market.
10. Draw in accepted standard dimensions toilets with netal partitions, lavatories, urinals, and vertical plenum necessary for plumbing for each type of fixture. Design not less than 5 solutions of well arranged toilet rooms for each sex, with fixtures distributed in such a way as to allow increase of number of fixtures without change in design concept, and providing privacy from outside view. Study location of entrance door to provide flexibility in the use of any solation for a given core condition. Use 5 foot module increments for each solution.

All the drawings will be drawn on a translucent sheet $81 / 2 \times 11^{\prime \prime}$, in pencil, with very strong lines or ink, and with clear lettering about $1 / 8^{n}$ high. Indicate source where information was obtained. All drawings will be done in scale, and each group will keep same scale for comparison of dimensions.

Graduate class 1965-66
Starts 5 January 1966
Due 30 March 1966

Building as a System
M.I.T. is planning the construction of a common building for the School of Architecture and Planning and for the Visual Arts Center. The building to be located on the East Campus will have to be designed to achieve the maximum flexibility of use and growth, and building in reinforced concrete with the most advanced technological means available.

Program:

Total space allocation:
School of Architecture and Plenning:

architectural design	17,400 s.f.
visual design	10,240 s.f.
other arch. teaching space	5,760
administration	6,430
building construction	15,000
city planning	15,500
common space	10,400
library	25,000
net area	105,730
s.f.	

Visual Arts Center:

Museum	29,000 a.f.
administration	2,250
support areas	10,500
educational program	16,700
studio and activity areas	22,400
net area	$80,850 \mathrm{s.f}$.
Total net area	$186,580 \mathrm{s.f}$.
Total gross area inclading lo\%	
of net area for mechanical rooms	$280,000 \mathrm{s.f}$.

Program Breakdown
ARCHITECTURAL DESIGN

Proposed Use	Comments	Area	Dimensions
2nd Jr. Drafting Room	050 students	2880	40×72 or 60×48
2nd Seminar \& Storage	class room (1)	600	20×30 or 40×15
3rd yr. Drafting Room	30 students 96 sq ft	2880	40×72 or 60×48
3rd yr. Seminar \& Storage	class room (2)	600	20×30 or 40×15
4th yr. Drafting Room	30 students 96 sq ft	2880	40×72 or 60×48
4th yr. Seminar \& Storage	class room (3)	600	20×30 or 40×15
5th yr. Drafting Room	30 students 096 sq ft	2880	40×72 or 60×48
5th yr. Seminar \& Storage	class room (4)	600	20×50 or 40×15
Grad. Drafting Room	30 students 096 sq ft	2880	40×72 or 60×48
Grad. Seminar \& Storage	class room (5) TOTAL	$\frac{600}{7,400}$	20×30 or 40×15

VISUAL DESIGN

Proposed Use	Comments	Area	Dimensions
Form \& Design (Filipowski)	15 students 2100 sq ft	1500	30×50
Photography Total	dark rooms - studio	1500	30×50
Light and Color	atudio	2080	30×36
Painting Studio	studio	1080	30×36
Drawing Studio	studio	1080	30×36
Resident Artists	5 studios ©800	4000	$\begin{aligned} & 30 \times 134 \\ & (020 \times 40) \end{aligned}$
	TOTAL	10,240	

APPENDIX THREE (continued)

OTHER TEACHING SPACES
Proposed Use
History \& Criticism
Structures
Structures
Student Lounge
Shop \& Lab.

Comments	Area	Dimensions
class room (6) (H.M.)	720	24×30
class room (7) (LeM.)	720	24×30
storage	360	24×15
student coffee	360	24×15
wood-plaster-metal	3600	30×120
		5760

ADMINISTRATION AND STAFF

Proposed Use	Comments	Area	Dimensions
Head of Department	office \& meetings	500	15×34
Professor Arch.	office \& meetings	320	$15 \times 21-6$
Professor Arch.	office \& meetings	320	$15 \times 21-6$
Professor Arch.	office \& meetings	320	$15 \times 21-6$
Professor V.D.	office \& meetings	320	$15 \times 21-6$
Professor (Structures)	office \& meetings	180	12×15
Professor (Structures)	office \& meetings	180	12×15
Professor (V.D.)	office \& display	320	$15 \times 21-6$
Professor (V.D.)	office \& display	320	$15 \times 21-6$
Professor Arch.	office	180	12×15
Professor Arch.	180	12×15	
Professor Arch.	180	12×15	
Professor Illumination	office	18×15	

APPENDIX THREF (continued)

Proposed Use	Comments	Area	Dimensions
Professor Landscaping	office	180	12×15
Professor Acoustics	desk 100		10×12
Professor Arch.	office	120	10×12
Professor Arch.	office	120	10×12
Professor Arch.	office	120	10×12
Assistant	desk \& storage	120	10×12
Assistants	two desks total	160	$15 \times 10-6$
4 Visiting Critics	desk space 0100	400	$15 \times 26-9$
1 Chairman secretary	counter-desk-storage	200	10×20
1 Department secretary	desk-storage	150	15×10
1 Visual Design secretary	desk-storage	120	10×12
1 Faculty secretary	desk-storage	100	10×10
4 Reaearchers	©80	320	$15 \times 21-6$
Departmental Conf.	faculty grade meetings	300	15×20
	TORAL	6030	

DEPARTMENT OF BUILDING CONSTRUCTION

Proposed	Comments	Area	Dimensions
1 Class Room	lectures (11)	720	24×30
Professor	office \& meetings	320	$15 \times 21-6$
Professor-Testing	office (in Lab.?)	180	12×15
Professor-Materials	office	180	12×15
Professor	office	120	10×12
Professor	office	120	10×12
Models Laboratory	structures testing	5000	50×100

APPENDIX THREE (continued)

Proposed	Comments	Area	Dimensions
Illumination Laboratory		2000	50×40
Lab. Storage		320	$15 \times 21-6$
4 Researchers	desks 680	320	$15 \times 21-6$
2 Technical people	desks 980	160	10×16
2 Secretaries	desks $@ 80$		160
		10×16	

CITY PLANNING DEPARTMENT

Proposed	Comments	Area	Dimensions
lst yr. drafting room	25 students 96 sq ft	2400	30×80
lst yr. seminar	class room (8)	600	30×20
2nd yr. drafting room	29 students 96 sq ft	2400	30×80
2nd yr. seminar	class room (9)	600	30×20
Student Lounge		360	20×18
1 class room	lecture-slides (10)	720	30×24
Administration office \& staff	Total	3200	30×107
Joint Center for Urban			
	TOTAL	5,500	

COMMON SPACE FOR ALI DEPARTIIENTS

Proposed	Comments	Area	Dimensions
Exhibition Room-Jury	student work	1440	30×48
Jury Room	student discussions	1080	24×45

	APPENDIX THREE (cont	inued)	
Proposed	Comrnents	Area	Dimensions
Lecture Room	large-public	2400	$240 \times 10 \mathrm{sq} \mathrm{ft}$
Drawing Storage		2160	30×72
Kuseum Exhibition	public exhibitions	1440	30×48 (might be circulation space)
Museum Storage	library-arch-inst	720	
2 Secretaries		200	10×20
Library (Including 1 librarian \& 2 assoc librarians)	Total	12000	50×240 or 40×300
Dean's Office	includes 1 secretary	960	30×32

VISUAL ARTS CENTER
I. MUSEUM
Net Footage Dimensions

Exhibitions and Public Areas

1) Permanent Exhibitions - Interior	4,000	100×40
2) Permanent Exhibitions - Exterior	2,000	100×20
3) Changing Exhibitions	14,000	100×140
4) Combination Studio-Gallery	3,000	
5) Visual Library	3,500	
6) Study Exhibitions		2,500

Administrative Areas

1) Director's Office

250
2) Director's Conference Room 250
3) Curator's Office

150

4) Exhibition Manager's Office	150	10×15
5) Administrative Assistant's Offices (2)	200	10×20
6) Visual Library Office	150	10×15
7) Registrar's Office	150	10×15
8) Secretarial Office	400	20×20
9) Curatorial Conference Room	200	10×20
10) Miscellaneous Office Storage	150	10×15

Support Areas

1) Lobby	1,800	45×40
2) Guard's Room	150	10×15
3) Coat Room	200	10×20
4) Maintenance Office and Store Room	300	10×30
5) Shipping and Receiving	2,000	40×50
6) Storage of Art Objects	2,000	40×50
7) Small Object Vault	150	10×15
8) Examination and Conservation	1,000	40×25
9) Installation Equipment Storage	1,000	40×25
10) Electrical Shop	150	10×15
11) Carpenter Shop	800	20×40
12) Paint Shop	200	10×20
13) Kitchen	100	10×10
14) Public Lounge and Toilets	650	20×32

APPENDIX THREE (continued)

II. EDUCATION PROGRAM

Studio and Activity Areas

1) Visual Design, Painting, Sculpture, Graphic Arts Stuaios

10,000
100×100
2) Photography Studios

5,000
100×50
3) Dark Rooms

1,000
100×10
4) Faculty Studios, 6 (3) 400

2,400
$20 \times 20 \times 6$
5) Carpentry, ilectrical, and Metals Workshops

1,800
20×90
6) Equipment and Supply Rooms
7) Sink Rooms and Toilets

TOTAL $\frac{400}{22,800}$

Baker, Geoffrey, and Bruno Funaro, Parking, New York, Reinhold, 1958
"C.B.S. Building," Architectural Record, July 1965, 138 no 1:111-118
"Cleaning up the Ceiling," The Architectural Forum, May 1963, 118 no 5:146-147
"Ernest Kump's Environmental Control Grid," The Architectural Forum, August 1962, 117 no 2:110-111
"Evolution of High Rise Office Buildings," Progressive Architecture, September 1963, 146-157

Ferguson, Phil M., Reinforced Concrete Fundamentals, New York, John Wiley \& Sons, Inc., 1963
"Four Office Buildings: Four Different Schemes," Architectural Record, April 1959, 125 no 4:163-174

Gay, Charles Merrick, and Charles DeVan Fawcett, Mechanical \& Electrical Equipment for Buildings, and ed., New York, John Wiley \& Sons, Inc: 1945

Horizontal and Vertical Circulation in University Instructional and Research Buildings, Hadison, Visconsin, University Facilities Rescarch Center, 1962
"Tine Importance of Good Connections," The Architectural Forum, March 1959, 110 no 3:94-99
"Kahn Newspaper Shop," The Architectural Forum, April 1962, 116 no 4:83-85

Klose, Dietrich, Metropolitan Parking Structures, New York, Wash, Frederick A. Praeger Publishers, 1965

Lin, T. Y., Design of Prestressed Concrete Structures, 2nd ed., New York, John Wiley and Sons, Inc., 1963

Making Precast Concrete Do Hore For Less," The Architectural Forum, November 1965, 123 no 4:52-55

Mechanical Services: A Slice of Structure," Architectural Record, August 1960, 129 no 2:204-206

Mokk, Laszlo, Prefabricated Concrete, 8th ed., Budapest, AKADBMIAI KIADO, Pub., House of the Hungarian Academy of Sciences, 1964
"Precast Concrete Joinery," Architectural Record, June 1961, 129 no 7:166-171

BIBLIOGRAPHY (continued)

Rich, Richard C., "Planning a Downtown Parking Deck," Architectural Record, May 1965, 137:5
"School Costs Cut by New Components," The Architectural Forum, February 1964, 120 no 2:112-117
"Schools by the Carload," The Architectural Forum, April 1965, 122 no 1:80-85
"Structure Delivers Air and Controls Light," Architectural Record, July 1964, 136 no 1:180-184

