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Abstract

The schema mechanism is a general learning and concept-building mechanism in-
tended to simulate aspects of Piagetian cognitive development during infancy. A
computer program that implements the schema mechanism, MARCSYST I, has repli-
cated several early milestones in the Piagetian infant's invention of the concept of per-
manent object. In Piaget's constructivist theory, an infant first represents the world
only in terms of simple sensory and motor elements; initially, there is no concept of
persistent, external objects-objects that exist even when not perceived. The infant
must construct this concept, working backward from the perceptions that manifest
external objects. This conceptual leap is first of a long series of such constructions,
extending through adult-level intelligence.

The schema mechanism connects to a simulated body in a microworld. The mecha-
nism learns from its experiences by processes of induction, abstraction, and invention.
A novel induction technique builds schemas, each of which asserts that a given action,
in certain contexts, has particular results; contexts and results are expressed in terms
of binary state elements called items. Crucially, the schema mechanism not only thus
discovers relations among existing representational elements (actions and items), but
also constructs new such elements. For any achievable result, the mechanism can
define a new, abstract action, the action of achieving that result. Most important,
the mechanism can synthesize new state elements to designate aspects of the world
that the existing repertoire of representations fails to express, thus inventing new
concepts.

The schema mechanism builds schemas, expressing the context-dependent results
of actions, by an induction technique called marginal attribution. Discovering the
results of actions is complicated by the fact that a particular action typically has
different effects on different occasions. Until the corresponding context conditions
have been identified, a result is therefore difficult to identify as such, and vice versa.
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The marginal attribution facility solves this chicken-and-egg problem by identifying
a relevant state transition-one which, even if it follows a given action only rarely,
is even more rare in the absence of the action. Then, the mechanism searches for
conditions under which the relevant result follows more reliably.

The schema mechanism can define a new state element to represent the validity
conditions of an unreliable schema. For example, suppose a given schema asserts that
moving the hand to a certain body-relative position results in a tactile sensation.
The schema mechanism defines a new state element to represent whatever unknown
condition must hold for the schema to be valid; in this case, the condition is that there
be a palpable object at that position. The concept of palpable objects is not built
in; rather, this synthetic item itself implements the mechanism's first approximation
to that concept, thus reifying the schema's validity conditions, treating the schema's
validity as a thing-in-itself. Having defined a new state element, the mechanism
begins an open-ended process of finding the element's verification conditions, which
tell about its state.

Thesis Supervisor: Seymour A. Papert
Title: Professor of Learning
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Chapter 1

Introduction and overview

This dissertation presents the schema mechanism, a general learning and concept-

building mechanism inspired by Piaget's theory of human cognitive development. The

schema mechanism is intended to simulate aspects of cognitive development during

infancy, with possible relevance to later development as well. A computer program

that implements the schema mechanism, MARCSYST I, has replicated several early

milestones in the Piagetian infant's acquisition of the concept of permanent object.

I begin with the background of this research program-the issues of cognitive sci-

ence and artificial intelligence that motivate and inform this work. I then present

a detailed description of the schema mechanism itself and of the results from ex-

periments with its implementation. I discuss the schema mechanism in relation to

cognitive science, other research programs in artificial intelligence, and philosophical

issues of meaning and epistemology.

1.1 The nature of learning

The scope of human skill and knowledge is startling. For some domains of expertise,

such as visual processing, it is clear that the human species is genetically endowed with

hardware that embodies knowledge about the domain. For other domains, such as
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language, the question of built-in knowledge is controversial. But for many domains-

physics, architecture, economics, chess, juggling, cinematography, computer program-

ming, composing symphonies-there can be no corresponding innate mental modules;

the subject matter of these domains did not even exist (or become accessible) until so

recently that evolution could not have had a chance to provide customized, built-in

support. In these domains and myriad others, dramatic advances in knowledge occur

within individual lifetimes-sometimes in mere years, days, even seconds. Uniquely,

successive generations of human beings inherit a progressive accumulation of compe-

tence arising not by the rearrangement of genes but by the creativity of minds, and

propagating not through biological reproduction but through the tutelage of culture.

We must, of course, be endowed with innate machinery that is responsible for

our ability to construct and acquire such diverse knowledge. We may term such

machinery a general learning mechanism-general in the sense that it spans a diverse,

open-ended set of domains that were not specifically "anticipated" by evolution. It is

natural to wonder what portion of human intelligence grows out of a general learning

mechanism, and what part is due to innately specialized, domain-specific processing

modules.

1.1.1 Learning in human beings

Jean Piaget and Noam Chomsky stand at two extremes of the nativism vs. learning

spectrum. Piaget's work is at the foundation of the modern empirical study of the

genesis of intelligence in individual humans. Piaget proposes a radically constructivist

account in which even the basic notion of an object-the notion that visual and tactile

sensations are related to each other, as manifestations of some external thing; that

this thing exists even when not perceived, etc-is not innate, but is abstracted from

the infant's interactions with its world. Similarly, notions of logic, classification, and

number, conceptions of people and of self, and of the rest of the world, are all gradually

constructed. Moreover, intelligence itself-seen as a gamut of strategies for pursuing
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goals or solving problems or exploring terrains, literal or figurative-is constructed,

bit by bit, with ever-increasing sophistication.

At the other extreme, Noam Chomsky champions a radically nativist theory of

cognitive development. Chomsky doubts the very intelligibility of the notion of learn-

ing (Chomsky 1988, Piattelli-Palmarini 1980), particularly with regard to cognitive

universals, that is, concepts normally acquired by all persons; virtually everyone, for

example, comes to understand the rudimentary properties of physical objects, and

gains facility with fundamental principles of language. Such knowledge may not be

functional at birth-it may not be available for use by the infant, and it may not yet

even exist in a format that permits it to be used. But what is innately present, by any

account, is a mechanism that, interacting with any normal environment, eventually

develops a functional version of such knowledge. Chomsky then poses the rhetorical

question: how is that nearly inevitable development different from, say, the nearly

inevitable development of limbs by a zygote? Limbs are not present at conception,

nor is any miniature model of limbs, nor is there even (necessarily) any local region

of the genome specifically dedicated to the control of limb development. Nonetheless,

the growth of limbs is an innately specified maturational process; it would be ab-

surd to say that each individual learns to have limbs. Why should the learnedness of

cognitive universals be judged by different standards than morphological universals?

Escaping the snare of this clever, provocative question prepares us for more sub-

stantive investigations of the human mind. Here is an easy, sensible way out. Con-

sider, for example, knowing the names and layout of the streets in one's neighborhood.

This knowledge is untendentiously learned, in that information is gained when this

knowledge is acquired. No examination of a zygote could yield a street map of its

neighborhood; the information is not present. But examining the brain of a person

with that knowledge could-in principle-reveal that information.

In contrast, the process of growing limbs yields no new information that limbs

will exist. Looking at a zygote, one could-in principle-deduce that the mature
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organism will develop limbs, if nurtured in a normal environment. Thus, that in-

formation is already present in the zygote; the mature organism bears no additional

such information.

Let us say that a mechanism is a learning mechanism if its function is to gain

information. Chomsky's point, recast in these terms, is that the acquisition of cogni-

tive universals entails no information gain; as much can be determined (in principle)

about the subject matter of such knowledge by examining a zygote as by examining

an adult. The same can be said for analytic-necessarily true-knowledge, such as

2 + 2 = 4. In the case of nonanalytic universals, either examination is fruitful; in the

case of analytic knowledge, both examinations are superfluous.

Nonetheless, in opposition to Chomsky's conclusion, such knowledge might de-

velop as the product of a learning mechanism. That is, a mechanism whose function

is to gain information might also develop usable forms of universal or analytic knowl-

edge, acquired by the same principles of operation that produce information gain.

A study of the knowledge acquired by a learning mechanism would have no cause

to exclude those of its acquisitions that turn out to be inevitable, hence universal

to mechanisms of that class; all of a learning mechanism's acquisitions are sensibly

called learned.

Thus, universal and analytic knowledge can be learned, if produced by a learning

mechanism-a mechanism for gaining information. But even if cognitive universals

are in fact learned, it remains sensible to say that they are innately specified and

develop maturationally. These claims are reconcilable if the innately specified devel-

opmental process is a learning process, in the sense just given.

The substantive question, then, is which such knowledge, if any, is in fact learned

by human beings, and which, if any, is either present at birth, or arises by a non-

learning maturational process.
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1.1.2 Learning in artificial systems

A parallel question arises when designing an artificial intelligence (A.I.). To what

extent is it reasonable to seek powerful general mechanisms of learning; to what extent

should research focus on more domain-specific mechanisms? The question about

humans is distinct from the question about A.I. Even if general learning mechanisms

are feasible, human beings might not be designed that way; conversely, even if much

of human intelligence does flow from a general learning mechanism, engineering a

replica of that mechanism may be an intractible problem.

Indeed, early A.I. work, pursuing self-organizing systems, tried and failed to find

just such a mechanism. As this approach became discredited, there followed a genera-

tion of knowledge-based A.I., characterized by the principle that intelligence, especially

learning, derives its power from knowledge: about domains, about reasoning, about

space and time and so on. There must be a wealth of structure to support the acqui-

sition of new structure. From this point of view, bootstrapping from meager initial

knowledge seems unlikely.

On the other hand, the failure to develop tabula rasa systems may have been due to

problems not intrinsic to the very attempt. In particular, the study of self-organizing

systems (like some philosophical and psychological inquiries about the innateness

vs. acquisition of human knowledge) has been handicapped by lack of attention to

empirical evidence. The relevance of empirical data to the question about humans is

clear: by observing the intellectual development of humans from infancy, one can hope

to obtain evidence as to the early presence or absence of certain abilities or knowledge.

With regard to the A.I. approach, it is good to be reminded of a maxim of Seymour

Papert: in order to think seriously about thinking, one must think about thinking

about something. But what is a self-organizing system to "think" about? Not the

things that human adults think about: adult tasks are predicated upon much acquired

knowledge, not available to a tabula rasa machine. On the other hand, whatever it

is that human infants think about is a plausible candidate for the subject matter
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of a learning-based A.I. mechanism. The infant's learning achievements offer target

abilities for the mechanism, providing a basis for the mechanism's design. Without

data about infants (and without a plausible constructivist theory to characterize that

data) there is no good source of inspiration as to what, specifically, a constructivist

mechanism ought to do.

The methodological flaw-not having a clearly specified target domain-is com-

pounded by a second problem in research about self-organizing systems: it is tradi-

tional to set up a chaotic gaggle of interacting elements and then wait for order to

emerge from the chaos. But extracting order from chaos is hard work. A mechanism

to do this work must be designed not just to amass atomic facts, but to organize

data into functional units, to abstract essential attributes and discard useless ones,

to verify suspected regularities and pursue variations on them, to develop new kinds

of representation as old ones prove inadequate-the sort of activity that must be

involved in any serious effort to make sense of the world.'

1.1.3 Humanlike learning in artificial systems

Piaget's work offers an antidote to both the lack of a clear target domain and the

naive-order-from-chaos problem. Piaget gives an elaborate description of the course

of cognitive development from infancy through childhood and adolescence, taking ac-

count of the evolution of primitive problem-solving and domain-specific knowledge.

Piaget characterizes ways in which, at a given point, a person uses existing knowledge

and skills to achieve specific goals, and to create new knowledge and skills. Piaget's

intricate roadmap of the course of development-especially during infancy-specifies

a target domain for artificial systems, a sequence of cognitive acquisitions for a mech-

anism to achieve.

'The resurrection of self-organizing systems in the guise of connectionism avoids the primary pit-
falls of earlier such research. Present-day connectionism tends to focus more modestly on providing
alternative computational gools for solving particular problems. Section 6.1.2 compares connection-
ist work with the approach advocated here.
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Piaget documents some striking uniformities throughout cognitive development,

and refers to these as the functional invariants of intelligence. These invariants

amount to a loose characterization of an underlying developmental mechanism. De-

parting from the older empiricist tradition, Piaget's characterization of developmental

invariants emphasizes the importance of well-designed activities of organizing, struc-

turing, and abstracting from experience, and of the purposive application of knowl-

edge and exploration in the pursuit of goals, in contrast with merely accumulating

data from and being conditioned by the environment. Piaget's loose description

of functional invariants falls far short of a formal specification of a developmental

mechanism; still, it furnishes an important alternative to naive-order-from-chaos as a

starting point for a precise specification.

My research program, then, is to design and implement a mechanism that cor-

responds to Piaget's sketch of the functional invariants of cognitive development.

This endeavor has two broad goals: to help understand the human mind, and to

help design an artificial mind. As mentioned above, questions about the nature of

intelligence might have different answers for cognitive science than for A.I. Nonethe-

less, the program advocated here (not as the sole promising approach, but as one of

them) is to try to build an intelligent mechanism by taking human intelligence as the

inspiration-that is, by trying to reverse engineer the mechanism of the human mind.

I presume, as a working hypothesis, the approximate correctness of Piaget's theory

(or rather, of a significant revision of the theory in light of modern evidence, as

discussed in section 2.8.3). That is, I assume that a general learning mechanism

resembling Piaget's is indeed present in the human mind, and is of central importance

to the development of intelligence from infancy to adulthood. I present results to show

that a mechanism designed along the lines of Piaget's theory can account for some

early aspects of the Piagetian developmental progression. The motivation for stressing

early (rather than later) development is threefold: early development is simplest; the

most detailed observations of human development concern early development; and the
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developmental mechanism is most clearly discerned in its earliest operation, before

its own constructs obscure it by complicating its observable activity.

I present here what I call the schema mechanism, a proposed approximation to

the mechanism of Piagetian development. Two fundamental influences contribute to

the design of the schema mechanism: the Piagetian characterization, and engineering

constraints. The mechanism is intended both to help explain the themes of Piage-

tian development, and to be well-motivated from a engineering standpoint, given the

computational demands of the learning tasks involved. I avoid machinery that ac-

cords with only one of these two principles: machinery that is rigged to replicate this

or that developmental event, but without any good reason for a learning system to

incorporate such machinery; or apparatus that builds in sophisticated abilities which,

however, are not initially present in Piagetian development. These exclusions stem

from the goal of reverse engineering the Piagetian mechanism. Mere replication of

developmental events is only of interest here to the extent that those events reflect

the operation of a reasonably designed learning mechanism. And reasonably designed

mechanisms that do not correspond to the human apparatus are certainly worthy of

investigation, but belong to a different program of research.

Piaget's theory is symbiotic with the schema mechanism:

* As just noted, Piaget outlines the main themes of cognitive development, and

details much of the content of its early learning. This gives a first approximation

to the mechanism, and a set of target achievements.

e The schema mechanism adds precision to Piaget's characterization of construc-

tivism. A more concrete statement of Piagetian theory makes possible more

specific tests and evaluations of the theory.

* Implementing a mechanism for Piagetian development is itself a partial test of

his theory. Successful replication of Piagetian milestones by a plausibly engi-

neered learning mechanism is circumstantial evidence that such a mechanism
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is involved in human development. Unsuccessful attempts at such replication

may point to places where the theory is wrong, or needs to be supplemented.

In sum, the project of designing and implementing the schema mechanism explores

Piaget's theory by the methodology of artificial intelligence: testing a theory of the

mind by building a mechanism that works according to that theory, and seeing if the

mechanism does what it was intended to do.

1.2 The schema mechanism: an overview

The schema mechanism is a general learning mechanism. It engages in the discovery

of regularities in the world, and the construction of new concepts, which then form

the vocabularity for expressing further regularities. The schema mechanism uses the

knowledge it acquires to guide its actions, both for the sake of specific goals and in

order to gain further knowledge.

The schema mechanism connects to what I call an animaton, a simulated robot

body that appears on a computer screen, in a two-dimensional simulated world (a

microworld); see figure 1-1. The aninaton includes a crude visual system, and a

single, mobile hand with tactile sensors and the ability to grasp and move objects.

Like a neonate, the animaton at first lacks the ability to move itself from place to

place.

The schema mechanism has been implemented by a computer program, MARC-

SYST I (an acronym for Marginal Attribution and Representation Construction Sys-

tem). I intend schema mechanism to be a generic term (like internal combustion

engine); it designates any learning mechanism that operates more or less as described

here, no matter whether the mechanism is instantiated biologically, electronically, or

is just an unimplemented abstraction. MARCSYST I is the particular implemen-

tation of the schema mechanism that provides the results presented here. Except

where otherwise stated, all aspects of the schema mechanism discussed here have
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been implemented in MARCSYST I; and all described learning achievements of the

mechanism, unless otherwise noted, have been demonstrated by the implementation.

objects

the hand

0*@
the head/body

Figure 1-1: The schema mechanism controls an animaton (simulated robot) in a

two-dimensional microworld.

The schema mechanism focuses on Piaget's description of cognitive schemas. As

modeled here, a schema (figure 1-2) is an assertion that a certain action (here, action

a) has a specified result, provided that certain context conditions are met; the assertion

is subject to a reliability factor that the schema maintains on the basis of actual trials.

A schema makes no assertion about what happens if the action is taken when the

context conditions are not all satisfied. To activate a schema is to initiate its action

when the schema's context conditions are satisfied; the schema's activation finishes

when its action terminates.

A schema:

p-'qr Ixy
a >

context action result

Figure 1-2: The schema: a basic unit of representation.

A schema is a unit of knowledge, both declarative and procedural. Declaratively,

a schema makes a factual assertion, an assertion about what would happen under

certain circumstances. Procedurally, a schema can pursue a goal; the goal may be in

the schema's own result,

or some other result that that schema helps pursue. A schema is also a unit of

experimentation, comparing what happens when an action is taken to what happens
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without it, and comparing what happens with vs. without various context conditions.

As explained below, new schemas arise from such experiments.

The schema mechanism supports three kinds of goals: primitive goals, which are

built in; instrumental goals, which are momentarily of value as prerequisite steps to-

ward achieving some other goal (eg, the intermediate states in a chain of schemas);

and delegated goals, which receive lasting value from their general tendency to facil-

itate other goals.

Schemas' contexts and results are represented in terms of binary (On-Off) state

elements called items. Each context designates zero or more items; some may be

negated. In figure 1-2, the context consists of nonnegated items p, r, and negated

item q; the result comprises nonnegated items x and y. A context is satisfied when

and only when all of its non-negated items are On, and all of its negated items are Off.

A result similarly contains zero or more (possibly negated) items, which are expected,

subject to the schema's reliability factor, to turn On (or Off, if negated) when the

schema completes its activation.

Each item corresponds to some partial state of the world. If the item is On, it

asserts that that state currently obtains; if Off, it asserts that that state does not

obtain. An item can also be in an Unknown state.

The schema mechanism's primitively supplied items all correspond to perceptual

information, such as there's something touching the hand or there's some object at

the upper left of the visual field. Each primitively supplied action corresponds to

some simple motor activity, like moving the hand incrementally forward or glancing

incrementally to the left. Calling the initial actions and items primitive is just to

say that they comprise the initial representational vocabulary, in contrast with later

elements, which the mechanism itself constructs. What the primitive items designate,

and how they are computed, need not be simple; the visual items, for example, may

correspond to information that (in humans) is the result of a complicated analysis of

a visual scene to extract information about three-dimensional structure.
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However sophisticated the processing may be that supplies primitive information

to the schema mechanism, the schema mechanism itself is, at first, wholly ignorant

of what the primitive actions and items correspond to, or how they might relate to

one another. It does not know, for example, which items are visual and which tactile,

or even what it would mean to be visual or tactile. It does not know that two items

designating similar kinds of information-for example, two tactile items corrseponding

to contact with adjacent regions of the hand-have any closer relationship to one

another than to arbitrary other items. And the mechanism does not even have-let

alone understand-any primitive items that designate persistent objects that exist

independently of how (or even whether) they currently appear. It is the schema

mechanism's task to learn about the relations among its units of representation, both

primitive and constructed.

A constructivist mechanism is like a programming language in that its character

is defined not so much by its primitives as by its ways of combining structures to

form larger ones, and by its means of abstraction-its means of forming new units

of representation that allow the details of their implementation to be ignored.2 The

schema mechanism, like a good programming language, is extensible: instances of its

basic units of representation-schemas, items, and actions-can all be constructed by

the mechanism's means of combination and abstraction. More than this, the schema

mechanism is self-extensible-it is the mechanism itself (rather than a programmer

or other external agent) that manufactures these extensions.

The schema mechanism interacts with the world, and based on its experiences,

learns about the world by processes of induction, abstraction, and invention.

9 Induction. The schema mechanism builds schemas that connect items and ac-

tions to express discoveries about regularities in the microworld-particularly

causal relationships.

2 This analysis of programming languages is borrowed from (Abelson and Sussman 1985).
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* Abstraction. For any achievable result, the mechanism can define a composite

action, the action of achieving that result, regardless of the details of just how

the result is achieved.

* Conceptual invention. The mechanism synthesizes new state elements, synthetic

items, to designate aspects of the world that were not previously represented.

Discovering the results of actions is complicated by the fact that a particular

action typically has different effects on different occasions. Even a result that follows

very reliably under the appropriate circumstances might follow only rarely in general;

moreover, the result, even when it does occur, may accompany a large number of

unrelated events. For example, the action of moving my hand backward reliably

results in touching my chin, but only if the hand had been just in front of my chin.

Had the hand begun in another position, some other result would have obtained

instead. And when chin-touching does occur, any other of other events might also

happen by coincidence.

Until the corresponding context conditions have been identified, a result is there-

fore difficult to designate as such; but until a result is so designated, it is difficult to

look for conditions under which it occurs reliably. The schema mechanism incorpo-

rates a novel induction technique, marginal attribution, to solve this chicken-and-egg

problem. Marginal attribution tries to identify a relevant state transition-one which,

even if it follows a given action only rarely, is even more rare in the absence of the

action. Then, the mechanism searches for conditions under which the relevant result

follows more reliably.

But it isn't enough to discover connections among existing representations. A

constructivist system's greatest challenge is to transcend its initially supplied terms of

representation, to extend its own ontological vocabulary, to designate kinds of things

that are radically different from any that it had previously been able to represent.

The schema mechanism can define a new state element, a synthetic item, to rep-

resent the validity conditions of an unreliable schema. For example, suppose a given
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schema asserts that moving the hand to a certain body-relative position results in

a tactile sensation. The schema mechanism defines a synthetic item to represent

whatever unknown condition must hold for the schema to be valid; in this case, the

condition is that there be a palpable object at that position. The concept of palpable

objects is not built in; rather, this synthetic item itself implements the mechanism's

first approximation to that concept, thus reifying the schema's validity conditions,

that is, treating the schema's validity as a thing-in-itself.

The construction of a synthetic item works backward from some previously con-

ceived manifestation of a thing (for example, the tactile manifestation of an object)

to postulate the previously unconceived-of thing that is manifested. The new kind of

thing may be radically different from any concept that preceded it-as, for example,

the sort of thing that an object is is nothing like the sort of thing that a sensory

impression is, despite the fact that direct perception is among the kinds of evidence

by which we know an object.

Having defined a new synthetic item, the mechanism begins a process of finding

the item's verification conditions, which tell about its state. For example, the presence

or absence of a palpable object at some location may be verified by feeling there, by

looking there, and by many other means. Verification conditions set the state of a

synthetic item, turning it On or Off according to whether the associated schema is

believed valid at the moment. Crucially, a synthetic item's verification conditions do

not define the synthetic item. The item is defined to represent the validity conditions

of the associated schema, whatever those turn out to be; the currently specified

verification conditions are just the mechanism's best approximation so far to the

schema's validity conditions, and are always subject to extension and revision.

The continual variability of a synthetic item's verification conditions compounds

the radical novelty of the concept-invention accomplished by building synthetic items.

Not only does such an item designate a kind of thing that is very different from its

previously-conceived-of manifestations-it is also inexpressible, in practice, as any
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fixed function of those manifestations. 3

Synthetic items correspond to Piagetian conservation phenomena, wherein an in-

dividual postulates some new kind of thing that remains invariant even when all

manifestations of it change or cease. This is arguably the most powerful and dra-

matic capability of human intellect.

1.3 Guide to the dissertation

This dissertation includes a synopsis of the schema mechanism's replication of aspects

of the Piagetian infant's reconstruction of the world in progressively more objective,

less egocentric terms. Marginal attribution promotes learning on a given level of

reconstruction, while synthetic items and composite actions facilitate ascension to

the next level.

The synopsis documents how the schema mechanism makes its way through as-

pects of the stages that Piaget outlines within the first, so-called sensorimotor period

of intelligence; development culminating in Piaget's fifth stage is discussed, with em-

phasis on the construction of the concept of a physical object. At first, the infant

represents the world only in terms of sensory impressions and personal actions; visual

and tactile sensations, for example, are not even known to be related to one another.

Sensorimotor development includes learning about the visual and tactile effects of eye

and hand motions-eg, learning how to look directly at an object, or to move a hand

into view; and the organization of that knowledge to designate the tactile properties

of "visual objects", and vice versa-e. g. knowing how to touch an object that is

seen. This paves the way to a sensory-mode-invariant representation of objects and

space. A sense of the permanence of objects also arises-the idea that an object

not currently perceived still exists, and its sensory manifestation can be recovered.

The synopsis reinterprets these developments-spanning from the first to the fifth

'In principle, such a function could express the meaning of the item, by addressing all possible
verification conditions. See section 3.4.3 for elaboration.
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sensorimotor stage-in terms of the schema mechanism.

Five chapters follow the present one:

* Chapter Two gives a synopsis of the initial, sensorimotor period of Piagetian

development (and touches briefly on subsequent periods); this developmental

sequence is the target scenario for the schema mechanism. This chapter assesses

the status of Piaget's theory in light of contemporary data.

* Chapter Three describes the schema mechanism: its data structures, and its

machinery for building new instances of those structures.

* Chapter Four presents a synopsis of the schema mechanism's implementation's

achievement of some of the developmental milestones described in the second

chapter, and proposes a hypothetical scenario of further achievements.

e Chapter Five raises the possibility that the basic learning mechanism, acting

in concert with its own constructs, can implement more sophisticated virtual

structures and mechanisms.

* Chapter Six appraises the schema mechanism with respect to its accord with

cognitive science, and its relation to other A.I. research programs.
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Chapter 2

Synopsis of Piagetian development

This chapter discusses Piaget's theory of the development of sensorimotor intelligence,

as described in (Piaget 1952a) and (Piaget 1954). I present a summary of the origi-

nal theory, and suggest a reinterpretation in light of modern evidence which reveals

infant knowledge that is inexplicably precocious by Piagetian theory. To anticipate,

the reinterpretation suggests that, although some cognitive modules have, for exam-

ple, extensive built-in knowledge about properties of physical objects, there is also

a distinct learning mechanism, in charge of governing actions, which starts without

such knowledge, and develops it for itself according to the Piagetian script. Thus,

while Piaget's story turns out not to be true of the infant as a whole, the story may

well be true of one important cognitive module.

The point of departure of Piaget's theory is the schema: a unit of behavior and

knowledge which, by Piaget's biological metaphor, interacts and evolves with its phys-

ical environment, and with other schemas. The initial schemas are merely those of

reflex responses. For quite some time, the infant's schemas are closely associated

with her own actions. Later sophistications, involving the combination of schemas,

abstraction above specific acts and perspectives, and the interiorization of schemas'

activity, will allow the schema to transcend a literal dependence on physical action,

while retaining its procedural flavor. Schemas of looking, grasping what's seen, swing-
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ing, dropping, hiding one object under another, pushing one object with another, are

examples of post-reflex schemas.

Piaget identifies as the functional invariants of intelligence assimilation and ac-

commodation: respectively

* a schema's use of things in the world (including other schemas) as part of its

own functioning; and

* the modification of schemas in adjustment to novelties in the world.

Of course, Piaget doesn't try to present complete, explicit rules governing the

activity and modification of schemas. But his theory does try to characterize such

rules and to give an intricate chronicle of the low-level results of their functioning.

The sensorimotor period (from birth until about age two) is the first of four broad

periods of development in Piagetian theory. Sensorimotor intelligence is expressed

solely in actions that affect the world. In the later phases-the preoperational phase,

then the phases of concrete operations and formal operations-the truth of assertions

about the world becomes the focus of intelligence, first for assertions about the real

world, and later in the realms of the hypothetical and the abstract. (See Piaget and

Inhelder 1969.)

Piaget distinguishes six stages within the sensorimotor period. Each successive

stage is characterized by schemas that embody a new elaboration of problem-solving1

or goal-pursuing activity (which never implies the eradication of less sophisticated

schemas, or even that such schemas stop being created). The elaborations charac-

teristic of a given stage do not appear simultaneously; the "stage" is just the period

during which such appearances first peak. A stage's uniformity is thus a descriptive

invention, and doesn't imply rigid chronological partitioning.

The infant's representation of reality-space, objects, causation, time-exhibits

corresponding stages of development. In fact, Piaget argues that progressively more

'The infant's earliest behavior is only a zeroth-order example of "problem-solving"; later stages
do greater justice to the term.
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sophisticated techniques of intelligence, and progressively more sophisticated repre-

sentations of reality, are two indissociable aspects of the same development. At the

outset, problem-solving is just the dynamic expression of the infant's representation

of reality-a natural enough idea, since the infant's schemas are procedural: a thing is

understood in terms of what can be done to it or with it. So, more advanced problem

solving results from the application of the same mechanism to more sophisticated

representations of reality, and vice versa. Eventually, of course, the child acquires

explicit knowledge about thinking that can be used to improve methods of thought;

but there is substantial maturing of intelligence long before such meta-knowledge is

evident in the child.

One critical feature of the infant's intelligence, not well captured by this sum-

mary, is the incremental quality of its development. At least at the outset, each new

capability observed in the infant is only slightly different than what was previously

exhibited; the infant shows only minor adjustments of activity, in apparent response

to experience in prior activity. It should be kept in mind that the actual steps are of

much finer grain than are presented here. As intelligence progresses and there come

to be more powerful schemas for interpreting the world, the steps grow bolder, and,

in ways that I'll discuss, less dependent upon specific experience. So, the change

from trivial to powerful steps is a smooth one; the increments by which intelligence

improves are, in effect, of size proportional to the power of existing schemas, so the

development has an exponential character.

2.1 First stage: reflex activity, solipsist images

The infant's initial schemas are those of reflex activity: for example, closing the

hand in response to a touch on the palm, or sucking something that touches the lips.

These schemas are exercised either in response to the appropriate stimuli, or else

spontaneously, as though for play or practice.
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From the outset, schemas admit of modifications in response to experienced results

of their activity. For example, after many instances of disorderly reflexive groping for

a nipple touching the mouth, an infant's sucking schema appears to notice that when

the nipple touches (say) the left cheek, turning to the left will be propitious. Groping

in adjustment to the nipple thus assumes a gradually more coherent appearance, as

clues such as cheek-contact are exploited.

The early development of schemas also shows generalization and differentiation.

For example, the sucking schema adjusts itself not only to the nipple, but also to

other objects frequently presented to it: e. g. a finger or a toy. Often, the infant

will suck such an object as contentedly as if it were a nipple. But when hungry, the

infant responds with enthusiasm to the nipple while crying instead if given a finger

to suck. The appearance of this discrimination suggests that, despite the production-

like character of schemas' early, stimulus-triggered activity, the desired result of a

schema's activity also affects its course.

The first few months of life also see the first so-called primary circular reactions.

These are patterns of action, derived by gradual differentiation of reflex schemas,

that tend towards repetition. For example, the grasp-reflex schema gives rise to a

alternately-hold-then-release-object schema, and to a scratch-object schema, and so

on. As with pure reflex schemas, these sometimes repeat "emptily", that is, without

any stimulus or object to interact with.

Visual schemas developing at this time include those of tracking a slowly moving

object, of visually exploring a stationary object, and of alternate glances between one

object and another.

A striking feature of these early schemas is that they haven't yet "intertwined".

For example, tactile stimuli elicit no visual response; things seen inspire no effort at

prehension. Moreover, when for example a watched object passes beyond the infant's

field of view, the infant either loses all evident interest in it, as though it no longer

existed; or else, with apparent expectation of seeing it again, either continues to look
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off in the same direction, or gazes back to where the object was first seen. Similarly,

an object that is touched but not seen may be repeatedly grasped then released; but

if, say, it falls to a new position, the infant will neither search for it visually, nor move

her hand to search for the object in a different position than where just grasped.

These observations imply that the infant's model of the world-in the sense of

what aspects of the world the infant can react to or exploit-is (metaphorically)

solipsist in nature: the infant's universe contains not objects of substance and per-

manence viewable from different perspectives, but rather "images", some visual, some

tactile, etc., that change state in response to personal actions (themselves "known"

only by the transformations they produce). The infant's early schemas organize the

world into various solipsist spaces, each giving a group (in the mathematical sense)

of operations: the operations are primitive motor actions (or, sometimes, passive

expectation), and the things operated on are sensory states.

2.2 Second stage: the coordination of primary

schemas

As reflex schemas elaborate into primary circular reactions, they also begin to inter-

coordinate and thus to bridge the gap between sensory modes. The primary circular

reactions, and the intercoordinations, both appear to have the same character of

development: a schema acquires differentiated responses to, and anticipations of,

sensory signals with which it was previously unacquainted. If the new signals of one

schema are already familiar to another, then a functional intercoordination results,

as when schemas of hand movements combine with sucking to form in integrated

thumb-sucking schema.

Initially, an infant will suck her finger (or other object) only if it comes in fortuitous

contact with the infant's mouth (or, slightly later, cheeks etc.). (Even then, the infant

doesn't know how to keep her hand in place, and the hand is quickly pulled away.)
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But random hand movements may accidently brush the hand against the vicinity

of the mouth. Not only will this trigger attempts to suck, but also, future hand

trajectories will converge to the mouth more and more directly. Eventually, the

infant can smoothly and spontaneously move her hand to her mouth, and insert and

suck on a finger. Later, a more profound development is seen: the infant is capable

of carrying a grasped object to her mouth and sucking on it; thus, prehension is

coordinated with sucking.

More striking still is the coordination that develops between vision and prehension.

Piaget discerns a number of milestones in this development:

* The infant watches the movements of her hand, and gradually learns to bring

her hand into her visual field, and keep it there while watching it.

* The infant watches while grasping and releasing objects.

* The infant subsequently will turn to look at an object when the object touches

her hand, or will move the object into her visual field to look at it.

* At some point, the infant will reach for an object, but only if the object and

the infant's hand are seen together.

* Eventually, the sight of the object alone will suffice to trigger a successful at-

tempt to grasp it.

Of course, each of these bits and pieces of eye/hand coordination develops not as

a sudden leap, but by gradually improved groping.

The acquisition of visual/tactile coordination has an important consequence: here-

after, the infant's learning and attention become oriented around "objects", not just

particular sensory impressions. The appearance of this more objective behavior marks

the onset of the next sensorimotor stage.
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2.3 Third stage: secondary circular reactions, ob-

jects of subjective permanence

The third sensorimotor stage usually begins four or five months after birth, and

continues until eight or nine months of age.

Secondary circular reactions are characteristic of third stage behavior; these con-

sist of the repetition of actions in order to reproduce fortuitously-discovered effects

on objects. For example:

* The infant's hand hits a hanging toy. The infant sees it bob about, then repeats

the gesture several times, later applying it to other objects as well, developing

a "striking" schema.

* A strange sound is made by accidentally striking the crib wicker with a toy. The

infant reproduces the motion involved, and after more occasional fortuitous

contacts, will rub the toy deliberately against the wicker. However, spatial

contact between the objects is not understood as such. If the infant's position

is changed such that the customary gesture fails to achieve contact with the

crib, she repeats the gesture anyway, doing nothing that adapts to the altered

situation.

* The infant pulls a string hanging from the bassinet hood, and notices that a toy,

also connected to the hood, shakes in response. The infant again grasps and

pulls the string, already watching the toy rather than the string. Again, the spa-

tial and causal nature of the connection between the objects is not understood;

the infant will generalize the gesture to inappropriate situations.

In these reactions, the infant responds quickly to a novel result by using a familiar

schema to reproduce the result, even though the schema had never previously been

used for that purpose. However, the effect is discovered by accident, and only the

particular schema involved in the accident is used to reproduce the effect.
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Nonetheless, thanks to the intersensorial schemas of the previous stage, the cur-

rent schemas transcend particular primitive motor actions and sensory images. This,

together with the more complex chain of actions involved in, say, seeing, grasping,

moving, or rubbing an object, give secondary circular reactions the appearance of

being goal-directed (where the goal is to reproduce the surprise effect), in contrast

with the stimulus-bound appearance of the primary circular reactions.

The sense in which the third stage initiates the representation of objects rather

than images is perhaps best described as follows: if one were to write a program

that did the sorts of things that a third stage infant does, the program would most

naturally be written on a level of abstraction that designated objects; a program to

mimic earlier stages would most naturally lack such a level, and would instead be

oriented around sensory images.

To the extent that they deal with objects rather than images, the secondary

circular reactions can begin to designate interactions, and hence practical relations,

between objects-but with the limitation that the relationship is given only by a

schema with a particular motor action, implying both unnecessary restrictions, and

inappropriate generalizations, of the relation (as in the wicker-striking and hood-

pulling examples above).

Similar progress, and limitations, appear in the third stage representation of ob-

jects' permanence and position:

* Deferred circular reactions appear. An infant, playing with a toy (via a sec-

ondary circular reaction schema) is momentarily distracted but soon turns back

to where the toy was left and resumes playing with it. This is similar to, but

more complicated than, the earlier feat of looking again at one image after shift-

ing gaze to another; here, a coordination of body and hand movements, guided

by vision, is required to recapture the object.
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* When the infant is watching an object that falls, moving too quickly to track so

that she loses sight of it, she will look downwards for it. At first this happens

primarily when it was the infant who held and dropped the object, and is also

catalyzed by the sound of the fallen object, or by tracking it momentarily when

it starts to fall. Eventually, the reaction becomes reliable even in the absence

of such clues.

e Similarly, if the infant holds (without looking at it) an object that falls, or is

taken, from her hand, she learns at this stage to extend her hand and reclaim

the object.

Thus, the third stage infant apparently conceives of objects as occupying particular

positions at which they can be reclaimed if they vanish from view. Moreover, in

contrast with the previous stage, the object can be sought in a new position, rather

than the first or last place that it was recently perceived. However, closer observation

shows that this reclamation is only understood with respect to a particular schema

of action. The infant confronted with an object's sudden disappearance tries to

recapture it either by extending the activity of a schema already invoked to keep sight

of the thing-e. g. for the falling object-or by reusing a schema just used to secure

the thing in the first place-e. g. reaching to regrasp an unseen object removed from

the hand. In this latter case, if that particular gesture fails to rediscover the object,

the infant will not (until the next, fourth, stage) employ perpendicular motions in a

systematic search for the thing, but may instead revert to looking for it in its original

position. 2

That the position of vanished objects is first conceived only in terms of particular

action schemas is further attested to by the reaction of an infant to the intervention

of an obstacle. If an infant of this stage is presented with a toy which, as she watches,

is covered with a cloth, the infant will not attempt to raise the cloth to recapture the

2This reversion to cruder techniques when more advanced ones fail tends to occur through all

stages of sensorimotor intelligence, and later intelligence as well.
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object-despite the fact that the infant is quite capable of picking up a cloth when

that itself is of interest. When the toy disappears, the infant either loses interest,

stares at where it was, or looks back at where it was first seen (if that was a different

place), but does not reach for it-or, if already reaching for it when sight of it is

blocked, will immediately give up. In fact, even if the infant's attempt to grasp a toy

is thwarted by a barrier that doesn't block sight of the toy, the infant appears to be

oblivious to the barrier, making no attempt to displace it or move around it. The

infant does, however, learn during this stage to grasp and extricate the hidden toy if

part of it is visible.

The need to rotate an object presents intellectual difficulties similar to those posed

by the need to move an obstacle. Suppose a third stage infant is presented with a

bottle, but the bottle is held with the nipple facing away from the child, so that the

nipple cannot be seen. Thus the important part of the bottle is obscured, not by

a foreign object but by the rest of the bottle itself. The infant exhibits problems

similar to those produced by a separate obstacle, giving up on the nipple when it is

no longer perceived. The difficulty is not a lack of the motor skill required to rotate

an object, since while the nipple is visible, the infant will turn the bottle to make the

nipple accessible; this is done quite unsystematically, but persistently until fortuitous

success is achieved. So the difficulty is again a representational one, characteristic of

this stage: the "potential nipple" (as opposed to the nipple when actually perceived)

is understood only in connection with certain schemas known to actualize it. There is

not yet a schema of rotation; the successes in orienting a visible nipple appear to be

due to a series of separate movements, each guided crudely by the current perception

of the nipple, and not organized into a coherent activity of reorientation. When, in

the next stage, these attempts are arranged in a coordinated structure, there will

indeed be a schema of rotation, with respect to which the potential nipple can be

represented.
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Finally, it should be noted that during the third stage, a "potential-X-with-

respect-to-prehension" is not strongly coordinated with a "potential-X-with-respect-

to-vision". For example, an infant of this stage who has looked at, but not touched,

an object that falls below her gaze may look downward for it, but will not make any

tactile search for it.

2.4 Fourth stage: coordination of secondary schemas

The fourth stage brings a coordination of secondary schemas analogous to the second

stage's intertwining of primary schemas. Just as the second stage allowed the infant's

representation of the world to transcend specific primitive motor sequences and sen-

sory impressions, and abstract these to acts upon objects (the subject of third stage

learning), so the fourth stage coordinations will allow the infant's understanding to

become independent of particular acts, preparing for fifth stage elaboration of the

activity of objects themselves, and their interrelationships.

The fourth stage infant is capable of using a familiar schema for a new purpose

in a new situation. This contrasts with the previous stage, whose secondary circular

reactions did allow familiar schemas to be used for new effects, but only if these effects

had previously been empirically (and fortuitously) produced.

A classic example of this is the removal of an object blocking the prehension of a

desired toy. This may be catalyzed by the accidental displacement of the intervening

object when the infant initially ignores it. But at some point, the infant's attention

is focused specifically on moving the obstacle (at first clumsily, but successive efforts

develop a well coordinated schema of -displacement- by picking up and moving, or

by striking). The infant's behavior makes clear that she is not interested in the

obstacle itself, since it is discarded and the desired toy is then grasped. The obstacle

displacement was thus subordinated to that goal. (Interestingly, it isn't until shortly

after this displacement coordination that Piaget observes the advent of the infant's
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ability to release one toy being held in order to pick up another.)

An important variation of the above displacement coordination is the removal

of an object that blocks the view of a desired toy. In transition between the third

and fourth stages, an infant might continue to reach for and grasp a toy whose view

was blocked, provided that the infant had already started to reach when the object

disappeared from sight. This, along with the extrication of partially hidden objects

(from the previous stage), and the displacement of non-hiding obstacles, leads to

the ability to react to the complete covering of an object by removing the cover and

claiming the rediscovered object. This is quickly generalized into a game of repeatedly

hiding and recovering an object.

Recall the third stage inability to, say, respond with prehension to a "potential

visual object". During the fourth stage, "potential" (in contrast with actually per-

ceived) objects with respect to different schemas are united in a way reminiscent

of the second stage's marriage of visual and tactile perceptions. The ability to un-

cover a hidden object extends this unity: not only is there a prehensile remedy to a

visual disappearance, but the remedy is complicated, involving a pair of secondary

schemas that deal with two distinct objects. Thus, both the permanence and spatial

localization of vanished objects are now understood, not just with respect to a given

secondary schema, but with respect to coordinated pairs of such schemas. This be-

gins to put objects in spatial relationship to one another. Similarly, the infant of this

stage becomes capable of:

* Systematic search. Eg, when the infant drops an object, her hand will not only

be moved down to find it, but will also be moved perpendicularly in exploration

of the immediate vicinity.

* Systematic rotation. The infant can recover the obscured reverse side of an

object.

* Exploitation of perspective. The infant can shift her head to look around an
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obstacle.

e Imitation of familiar but invisible movements. During the third stage, only

visible actions, producible by existing schemas, are imitated; e. g. grasping

a toy. (Interestingly, there is no imitation of a sequence, such as opening and

closing a hand, that is exercised as a part of various familiar schemas, but not

yet differentiated in its own right.) In the fourth stage, the infant will imitate

an action (such as sticking out the tongue) that she has taken many times,

but without having seen its effects. (Prior visual/tactile exploration of faces,

in conjunction with sounds sometimes accompanying the gesture, provide clues

that assist that identification.)

* Systematic exploration of novelty. When presented with a new object, the infant

applies in succession many familiar schemas to the object: shaking, striking,

rotating, etc. During the third stage, a new object would tend to excite some

schema or other, but the current emphasis is different: the schemas now seem

focused on the object, while previously, understanding of the object seemed

focused on a particular schema. (An unexpected effect of some exploratory

action-say, the production of an unusual sound-may give rise to a secondary

circular reaction repeating that effect. Piaget calls such a reaction derived to

denote that it arose in the context of more structured activity, namely the

exploration.)

Despite these advances, the fourth stage representations of reality still exhibit

many limitations of subjectivity. The most striking of these is the fourth-stage place

error, shown by the following experiment. The infant plays with a toy that is then

taken away and hidden under a pillow at the left. The infant raises the pillow and

reclaims the object. Once again, the toy is taken and hidden, this time under a

blanket at the right. The infant promptly raises, not the blanket, but the pillow

again, and appears surprised and puzzled not to find the toy.
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This sort of confusion is observed repeatedly during the fourth stage. It is a

remarkable analog to the earlier reaction to disappearance by searching in the first

or last place that the thing was recently perceived, or in a new position by extending

a reclaiming schema. Then, hidden position was represented only with respect to

the comparatively simple schemas that existed. Now, hidden position is understood

in terms of combinations of such schemas, which relate pairs of objects. Although

more complex, the representation is still procedural, and the procedures involved

have only developed to the point of saying something like: "when this toy disappears,

displacement of the pillow will rediscover it."

So the relationships among objects are yet understood only in terms of pairwise

transitions, as in the cycle of hiding and uncovering a toy. The intervention of a third

object is not properly taken into account. Moreover, the infant still comprehends

the displacement of an object relative to herself rather that to another object. For

instance, an infant who can easily turn a block around does not yet learn to orient it

relative to a box so as to fit inside. Similarly, there is no comprehension of the need

to put a stick in contact with a semi-distant toy in order to move the toy. These feats

will be possible in the following stage.

2.5 Fifth stage: experiments on objects

During the fifth sensorimotor stage (usually beginning about a year after birth) the

so-called tertiary circular reactions appear. These are little "experiments" that the

infant conducts to see what an object will do. For example, an infant may repeatedly

drop a toy, paying evident attention not to the act of dropping, but to the behavior

of the object as it falls. Similarly, the infant experiments with varying ways of placing

an object on an inclined surface to watch it roll, or perching it at the edge of a table

so that it tumbles to the ground, etc.

These experiments extend the focus on an object's behavior, rather than per-
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sonal action, noted during the last stage. But where fourth stage explorations merely

use the object in existing schemas, the present experiments vary the exploratory

schemas-not just in response to surprise results (as with the derived secondary reac-

tions noted in the previous section) but in provocation of unexpected behavior. (In-

deed, the specific autonomous activity of an object is yet unexpected by the infant,

as evidenced by systematic inability to account for it when necessary. For example,

an infant trying to dispose of an obtrusive cushion repeatedly pushes it back against

a wall, but in such a position that it must fall back in the way again.)

Tertiary (like secondary) circular reactions can be coordinated with other schemas

in a means-end relationship. For instance, an infant reaches through the bars of a

playpen to grasp a long toy. The infant doesn't anticipate the solidity of the bars,

which block the toy from being drawn closer. (The fourth stage infant learned about

the solidity of an obstacle to prehension, but that was only with respect to movement

of the hand itself! Here, the infant must learn that one object also blocks the motion

of another object.) Although the infant already knows how to rotate an object (say

to find its reverse side), there is not yet a schema for rotating one object relative

to another, as is called for here so the toy can be oriented to allow passage through

the bars. But, lacking such a schema, the infant nonetheless appears to identify the

collision as the source of difficulty, and for a long while gropes for different ways of

placing the object against the bars. Eventually, a successful orientation is found. On

subsequent attempts, the infant's gropings converge more and more quickly to the

solution, and a reliable schema of object-relative rotation evolves.

The gropings of this example are tertiary circular reactions, as they involve de-

liberate variations of a repeated action, and with interest in the effect on the object

(i. e. whether it is making progress through the bars), rather than in the action

itself. Now there is an additional feature: the experiment is directed toward the goal

of bringing the toy closer. Thus, many schernas influence the activity:

* the grasping schema, which specifies the goal.
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* the schema of turning an object, relative to one's self, which gives a point of

departure for the new means needed to fulfill the goal.

* importantly, the many schemas that by now exist to describe objects and space;

these are needed to interpret meaningfully the results of the experimental vari-

ations, to direct refinements of the evolving rotation schema.

e the intermediate approximations to the eventual object-relative rotation schema.

From the observer's point of view, the coordination of these schemas results in

an important amplification of the infant's intellectual capabilities: for the first time,

the infant responds to an unexpected obstacle by "inventing" a way to overcome it,

rather than just relying on an already-existing schema. Piaget concludes that this

capability essentially falls out of

e quantitatively, the myriad schemas that can be brought to bear on a situation;

and

* qualitatively, the higher level of abstraction on which the schemas now represent

things, focusing on objects as such;

thus allowing the same principles of interaction of schemas to yield more sophisticated

results.

Similar examples of the invention of new means are found when the infant learns

to use a stick, an underlying support, or an attached string, to move a given object.

You may recall that some secondary circular reactions involved influencing one object

by pulling another connected to the first by a string. But that effect was discovered

entirely by accident, and with no appreciation of the physical connection. During

the present stage, the infant wishing to influence a remote object learns to search

for an attached string, visually tracing the path of connection. As with the object-

relative rotation schema, a great deal of intermediate groping is required to develop

schemas for using a string, support, or stick. One interesting intermediate situation
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that Piaget observes regarding the use of a stick is that an infant who is trying to

grasp an object just out of reach, and who has previously succeeded in using a stick

to draw the object closer, will not think of doing that unless she is already holding

the stick, or unless the stick is presented to her. This is somewhat like the state of a

second stage infant who is learning to grasp what is seen, but only when the hand is

seen next to the object.

These developments add to the infant's conceptions of objects and space. Through

the tertiary circular reactions, objects are endowed with autonomous behavior; and

the direction of such reactions towards goals involving a second object teaches the

infant about the solidity of objects, and relationships among objects themselves. This

progress is also reflected in the fourth-stage place error, described above. During that

stage, some improvement is made in selecting the right place to look for a vanished

object, but the accomplishment has an empirical character and the selection is often

wrong, as though the infant had learned that "looking under the blanket sometimes

works instead" but without really getting the point. On the other hand, the fifth stage

infant learns reliably to search the place at which the object was seen to disappear.

2.6 Sixth stage: simulation of events

The fifth stage infant shows no sign of mentally "simulating" the activity of objects

and learning from the simulation instead of from actual experimentation. But the

sixth stage furnishes evidence of this ability. An infant who reaches the sixth stage

without happening to have learned about (say) using a stick may invent that behavior

(in response to a problem that requires it) quite suddenly, with dramatically less

groping than for similar inventions of the previous stage. Piaget argues that some

"interiorization" of physical activity is responsible for this capability.

In addition, the infant now becomes capable of interpreting situations whose un-

derstanding requires representation of events not actually observed. For instance,
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consider yet another form of hidden object confusion, which the fifth stage infant

exhibits: A toy is placed in a small box, without a lid, so that the infant still sees

it. Before the infant has a chance to recover the toy from the box, the box is moved

beneath a blanket where, hidden from the infant's view, toy is dumped out. The box

is brought to view again, empty. The infant is surprised that the toy is no longer in

the box, and does not attempt to search under the blanket. Analogously to fourth

stage progress with the place error, the fifth stage infant does learn, empirically and

unreliably, to search under the blanket. But when two screening objects are used in

succession, a remarkably parallel confusion results: the infant does not understand

the need to look specifically under that cover from which the box emerged. But now,

during the sixth stage, the infant deals successfully with these situations, apparently

able to represent the unobserved displacement of the toy under the screen.

The above developments are a small sample of the explosion of intellect and knowl-

edge of the sixth stage. The ability to represent one's own body in objective spatial

terms, to understand personal orientation (for example, being able to point back to

a house that's no longer in sight), and the beginning of language all arise during this

stage. The sixth stage thus forms a bridge between sensorimotor intelligence and the

later periods.

2.7 Subsequent periods: preoperational, concrete

operations, and formal operations

Throughout the sensorimotor period, the infant's intelligence is concerned with the

effects of actions on present reality. Even the first manifestations of language, towards

the end of the sensorimotor period, are concerned with the expression of desires and

commands, rather than the communication of ideas. But in the period to follow-the

Preoperational period-the child begins to manipulate the truth of propositions, via

inference and classification, just as earlier she had manipulated the state of objects
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via physical actions. The child begins to think and speak of past or distant events,

of causation and number and time, of other peoples' perspectives.

During the period of Concrete Operations, the child becomes able to reason more

systematically about the subject matter of the previous period; as during the various

sensorimotor stages, previously uncoordinated fragments of representation become

properly connected. A preoperational child, for example, confuses the relative dura-

tion of two time intervals with the ordering of their beginnings or ends; a child at

that period tends to believe that the older of two people was born later. A preop-

erational child has not grasped conservation of number (or at least, conservation of

1-1 correspondence); consider the following fascinating (and typical) protocol, taken

from a conversation with a child of five years (Piaget-1952b, p. 26):

What are these?-Little green [A2] and red [Al] beads.-Is there the same

amount in the two glasses?- Yes.-If we made a necklace with the red ones

and another with the green ones, would they be the same length?- Yes.-

Why?-Because there's the same height of green and red.-If we put the

beads in there [L], what would happen?- They would be higher.-Would

there be the same amount?-No. -Where would there be more?- There

-[L].-Why?-Because it is narrow.-[Al was poured into L] Do you

really think there are more beads there [L] than here [A2]?- Yes.-Why?

-Because it is narrow and they go higher.-If I poured them all out

[making as though to pour the red beads on one side and the green on

the other] would they be the same or not?-More red ones.-Why?--

Because that one [L] is narrow.-And if I make a necklace with the red

beads and one with the green beads, will they be the same, or not?- The

red one will be longer.-Why?-Because there'll be more in there [L].-

[The red beads were put back into Al.] And now?-They're the same

height again. -Why?-Because you've poured them into that one[A1].-

Are there more red ones or green ones? -The same.
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These and other illuminating confusions are corrected during the period of concrete

operations.

The final period of intelligence-the period of formal operations-begins approx-

imately at the onset of adolescence. Just as the ascension from sensorimotor intelli-

gence brought with it the ability to represent abstract truth instead of just current

state, the passage to formal operations brings the capacity to represent abstract va-

lidity instead of just actual truth. Previously the individual could use one proposition

to imply others in a variety of ways; but now implicability itself-i. e. , validity-

becomes an "object" about which the individual can reason. Reasoning about validity

as such makes formal reasoning possible-reasoning separated from the content of the

propositions reasoned about. In a similar vein:

* True hypothetico-deductive reasoning appears: a person gains the ability to

devise appropriate experiments to test hypotheses, systematically varying one

factor, then another, while holding the others constant. Previously the indi-

vidual maneuvered in a space of propositions linked by (more or less) logical

entailment; now, an entire such space is a single point in a new space, where

going from point to point corresponds to changing a hypothesis.

e The ability to generate systematic permutations appears. The concrete op-

erations individual could reason about sets of things; to generate all possible

permutations among a collection of objects, a person must reason about a set

of sets, each of the sets being one permutation of the objects.

In all these examples, relations among concrete-operations objects in turn become

the objects of formal reasoning.

Piaget describes the progression to concrete and then formal operations as a devel-

opment of more powerfully expressive logics. In reply, (Fodor 1975) argues that such

a progression, if indeed it occurs, cannot occur by learning. The essence of Fodor's

argument is that less powerful logics, by definition, simply cannot express, and there-

fore cannot build, systems that embody more powerful logics. This objection, and a
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way around it, can be understood by an analogy between logics and classes of com-

putational entities. A finite-state automaton is strictly less powerful than a Turing

machine: a Turing machine can simulate a finite-state automaton, but not vice versa;

hence, a finite-state automaton cannot possibly learn to be a Turing machine.

Nonetheless, any physically realized digital computer, though conventionally re-

garded as Turing-equivalent, is really just a finite-state automaton. It is considered

Turing-equivalent via the reasonable and customary idealization that its memory is in-

finite. There are no precise rules governing the suitability of this idealization; roughly,

the idealization is appropriate when a finite-state automaton has a large number of

state elements that it uses more or less uniformly. Conceivably, a finite-state au-

tomaton might have an initial state that does not lend itself to an infinite-memory

idealization, but might later enter a state for which that idealization becomes suit-

able. A Fodor-like argument is still correct, but only as a technicality: formally,

there has been no increase in expressive power. Nonetheless, for reasonable practical

purposes, by plausible customary idealizations, the system has indeed evolved from

being a finite-state automaton to being (virtually) a Turing machine. A similar pos-

sibility with regard to the development of logics of varying power circumvents Fodor's

impossibility argument concerning the learning of concrete and formal operations.

2.8 Themes of Piagetian development

Several recurrent themes of Piagetian development are illustrated in the foregoing

sections (in some detail for the sensorimotor stages, and hastily for the subsequent

periods). These also serve as central themes for the design of the schema mechanism.

* Intelligence develops by building state-spaces to represent the world:

- by discovering how states and transformations are related; and

- by constructing new elements of the space, and new transformations, whose

relations must in turn be discovered.
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From motions of physical objects to inferences among propositions, this theme

is repeated throughout Piagetian development.

9 New schemas are formed as incremental differentiations or generalizations of

existing ones.

* Schemas are intercoordinated to form composite structures that abstract above

the details of the component elements.

* Another important kind of abstraction involves conservation-the discovery of

a new kind of thing in the world, found by noticing the possibility of returning

to some manifestation of it.

2.8.1 Fragmented representation

Perhaps the most powerful theme, composed of the above strands, is that the boot-

strapping of intelligence involves the assembly of concepts from special-case fragments.

That is, many apparently atomic or fundamental concepts are in fact composites of

a large body of constituent schemas, from which the "atomic" thing arises. For ex-

ample:

* Knowing that the ball is on the table entails the expectation that it can be

detected there by sight, or by touch (or by weighing the table and noticing the

extra weight...); and entails that it won't be found elsewhere at the moment

(such as on the floor); and that it must have gotten there somehow, that it used

to be in a different position but moved; etc.

* Knowing that four things are present entails that adding another will make

five; that if none are added or removed, there will still be four; that if they are

counted, in any order, with each counted exactly once, the result will be "four";

etc.
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For each of these concepts (and many others), Piaget demonstrates that certain "en-

tailed consequences" of the concept can be seen coming into use for the first time

(thus, by implication, first existing) at different stages of development. Gradually,

they are organized into a coherent whole. Only in the eventual mature result are

the constituent parts of the concept so well coordinated, their mutual entailment so

"automatic", as to give rise to a functional unity.

2.8.2 Stages

The role of stages in Piagetian theory is often over-emphasized. As mentioned above

in section 1.1, the apparent simultaneity of the innovations of a given stage is an

expository device; the actual uniformity is only approximate. Moreover, even for some

particular strand of development, the invariance of the ordering along the sequence

is both less absolute, and less important, than is often thought. There are several

reasons that development A might be observed to preceed B, or on the other hand to

be contemporaneous with B, in a typical individual's development. For example:

* A and B might each derive quickly and independently from some common an-

cestor C, and thus tend to appear at the same time.

* A and B might develop (mostly) independently, with A just being "simpler"

than B, so that A would appear first.

e A and B might be comparable points along two similar but independent se-

quences of constructions, whose analogous developments are roughly contem-

poraneous.

* Some of A's structures might be included as components of B's; A's structures

are then a prerequisite for B, so A must appear first.

In the first three cases, it is plausible that the typical order of A and B might be

altered by circumstances that cause the individual to focus an unusual amount of
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attention on one or the other. Thus, it is not surprising that (White and Held 1966),

for example, have shown that by varying the prominence of a hanging, brightly-colored

object in infants' early environments, experimenters can induce variations in the order

of acquisition of hand-regard and "swiping" behavior. Even in the fourth case above,

where the ordering constraint is the strongest, it is possible that alternative paths

of development can bypass certain prerequisites, especially when unusual conditions

(say, physical handicaps) block the "most natural" path.

Indeed, there is no a priori reason to expect a constructivist mechanism to exhibit

stagelike regularities at all; the space of plausible developmental paths might be large

enough for each individual to pursue her own idiosyncratic construction, in some or all

domains. Alternatively, there may be domains where a particular next step is always

so "obvious" that there's little room for variation. But in fact, some domains do

show strong developmental regularities among different individuals, and it is natural

for the study of constructivist mechanisms to begin there. For by observing similar

developments among different individuals, the experimenter can partially compensate

for being unable to repeat, with controlled variations, the same development for a

given individual. Hence, a reason for the preponderance of stagelike developments in

the discussion of constructivism.

2.8.3 Constructivism vs. nativism

A constructivist account of the development of intelligence holds that the difference

between the mind of an adult, and that of an infant, lies in mental structures built by

the individual. Even when a given concept is attained universally (e. g. the idea of

a physical object), it is because the concept is prominent in reality, in a way that is

accessible to the mechanism of learning. A nativist account, on the other hand, holds

that universal knowledge is innate, and is either already operative in the neonate, or

unfolds according to a predetermined, nonlearning process.

The debate between constructivist and nativist accounts of human intelligence
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extends back to antiquity. In a famous dialog, Socrates leads a student to a difficult

conclusion by a series of leading questions; Socrates concludes that the student must

have known the conclusion all along, since the teacher communicated no facts, just

questions (eg Russell 1945, p. 92).

Modern arguments on this subject often involve actual evidence. But the in-

terpretation of such evidence can be difficult; it is easy to under- or over-attribute

knowledge to an infant. The fact that a certain piece of knowledge does not show

itself in an infant's behavior until a certain age does not guarantee that it was re-

cently learned. Perhaps the infant had the knowledge sooner, but lacked some further

capability needed to act on that knowledge. Or, perhaps the knowledge was recently

acquired, but by a nonlearning maturational process. Piaget's strategy of observing

infants' activity can give the false impression that learning occurs, by failing to detect

the early presence of knowledge in some latent form.

On the other hand, it is also easy to overestimate an infant's knowledge, by pre-

suming more awareness than is actually required to explain an infant's behavior.

Consider an infant who sees an object, then reaches out and grasps it. This could be

due to the infant's understanding that there are objects, that an object has a spatial

location, that it has visual and tactile manifestations, that a certain visual pattern

means object A is at position X, and that moving the hand to position X will there-

fore result in touching the object, which the infant desires. Alternatively, the infant

might have no suspicion of the existence of objects, but might have noticed that a

certain sensation, followed by a certain action, results in another particular sensation

(which the infant desires). A third possibility is that the infant is just exhibiting a

reflex consisting of a motor response to a visual stimulus, without specifically desiring

the result of that response, without even anticipating what the result will be, indeed

without even knowing that there is any result.

In the present example, the Piagetian view is that all three interpretations are

correct, each at a different stage of development. Mindless reflex activity yields to
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learned predictions that can be harnessed to pursue goals. These predictions are at

first in drastically subjective form, expressed exclusively in terms of primitive percep-

tual inputs and motor actions. The predictions are then reformulated in gradually

more objective terms of representation, terms that become progressively independent

of personal action and perception.

What sort of evidence can be marshaled for or against such an interpretation?

In principle, an examination of the infant's neural apparatus could reveal what sort

of cognitive event was taking place; but that would require both a technology for

monitoring the apparatus, and a theory for understanding what was being monitored,

neither of which is forthcoming in the forseeable future. Thus, for now, we must settle

for less direct forms of evidence.

* Pro-Piagetian evidence. Piaget chronicles a gradual elaboration of abilities, each

step incrementally more advanced than the last. The themes of this process

correspond to plausible learning methods, which the schema mechanism makes

precise. That the incremental elaborations are consistent with the steps taken

by a learning mechanism is circumstantial evidence that learning is in fact taking

place.

* Anti-Piagetian evidence. Many recent experiments reveal infant knowledge that

is expressed more subtly than by overt, purposeful action. Often, such ex-

pressions occur considerably prior to the first Piagetian manifestations of the

corresponding knowledge, casting doubt on the Piagetian interpretation.

Some such evidence suffers from the problem of over-attributing knowledge to an

infant. A clear example occurs in T.G.R. Bower's description of a neonate's aversion

to a looming object. An infant sits in front of a screen that shows a projected outline

of a rapidly approaching object. The infant exhibits an avoidance response: the

infant closes its eyes, turns its head away, raises its arms in front of its face, and so

on. Bower takes this as evidence that the infant interprets the visual information as
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an indication of an approaching object, anticipates that an unpleasant collision could

occur, and takes action intended to ward off the collision.

Alternatively, the infant may have no such understanding of the movement and

effects of objects, or even of their very existence. Instead, the infant may simply

have a reflex that releases a particular motor response to a one simple class of visual

stimuli. This more conservative attribution of knowledge is indeed the more plausible,

given the obvious benefit of having such a reflex, and the anomolous complexity of

the infant's behavior by comparison with any other interactions with objects until

several months later.

In other cases, however, Piaget under-attributes the infant's or child's abilities.

For example, Piaget demonstrates that a preoperational child, when asked how a

given scene (e. g. a model of some terrain) looks to an observer stationed somewhere

in the terrain, instead describes how the scene looks from her own vantage point.

Piaget infers a general inability to appreciate the difference of another's perspective;

but experiments by (Masangkay et al 1974) show that in simpler tasks-eg, asking

which of two sides of a card an observer sees when the card is placed between the

child and the observer-children as young as two answer correctly. Still, in view of the

Piagetian theme of assembling concepts from simpler fragments, it remains plausible

that these special-case earlier abilities, missed by Piaget, are precursor components

of a more general ability exhibited in the tasks Piaget describes.

Some recent experiments, however, demonstrate knowledge that exists prior to any

evident Piagetian explanation. Here, the recent work of Renee Baillargeon is exem-

plary. In one experiment (Baillargeon 1987), a five-month-old infant (third Piagetian

stage) sits opposite a plywood board; the board attatches to a tabletop by hinges on

which the board can rotate toward or away from the infant. Initially, the board is

rotated flat against the table, tilting toward the infant. Just behind the board is a

small toy. As the infant watches, the board rotates up, away from the infant, until

it blocks the infant's view of the toy. The experimenter then surreptitiously removes
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the now-hidden toy, and the board continues its rotation until it is flat on the table,

tilting away from the infant; the board could not have rotated that far if the toy were

still in its way.

This seemingly impossible event surprises the infant, as determined by the infant's

extended scrutiny of the apparatus, compared to (among other relevant controls) the

time spent looking at similar rotation in the absence of an obstructing toy. Moreover,

the infant takes into consideration such properties as the hidden toy's size and com-

pressibility, showing surprise only if the board rotates further than those properties

should allow.

Baillargeon's evidence thus reveals knowledge of hidden objects in infants who

cannot yet retrieve such an object by displacing the barrier (despite being able to

grasp and move the barrier when that object is itself of interest). It remains an open

question whether such knowledge is innate or learned. Clearly, however, Piaget's

explanation for the third-stage obliviousness to hidden objects-that the infant sim-

ply does not represent that the object still exists-is contradicted by Baillargeon's

evidence.

Nonetheless, a close revision of Piaget's claim remains viable: that the Piagetian

story is true, not of the infant's cognition as a whole, but of the infant's central cog-

nitive system. The central system, by this hypothesis, incorporates a general learning

mechanism, and uses what it learns to guide its actions to achieve goals. True, the

infant's peripheral, perceptual modules enjoy extensive, possibly innate knowledge

about physical objects. But the central system, according to the revised Piagetian

claim, lacks access to the knowledge embodied in the peripheral modules. Those

modules use their knowledge to assemble the perceptual input to the central system,

which, by this account, has no initial understanding of that input. The central sys-

tem must recapitulate for itself much of the peripheral modules' knowledge (such as

awareness of hidden objects), according to the Piagetian sequence. Observations of in-

fants' purposeful behavior, in contrast with experiments that elicit subtle indications
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of surprise, reflect the Piagetian learning accomplished by the central system.

It may seem implausibly wasteful for the central system to have to recapitulate

knowledge already present in other modules. Suppose, however, an evolving learning

system suddenly (on an evolutionary timescale) became powerful enough to go far be-

yond its original function-in particular, powerful and general enough to recapitulate

and transcend much built-in knowledge in other cognitive modules. The knowledge

in other modules would not be suitable for extension by the learning mechanism;

there would be no reason for that knowledge to be in a form accessible to the learn-

ing mechanism. The built-in knowledge would then be redundant-perhaps, in some

cases, even vestigial-as the learned recapitulation gained importance.3 Built-in, bio-

logically evolved knowledge of the existence of physical objects is (partly) superseded

by similar concepts re-invented by each individual; to put it succinctly, ontology re-

capitulates phylogeny.4

Postulating the learned recapitulation of apparently built-in competence may seem

an unduly contorted effort to salvage Piaget's theory by explaining away the contrary

evidence. In my judgement, in the absence of clear positive evidence for construc-

tivism, the defense would be plausible but weak. What makes the view stronger is

that it turns out to make sense for infant development to result from a Piagetian

learning mechanism, in that, I claim, a reasonably designed mechanism would indeed

exhibit the milestones of infant development. This dissertation presents preliminary

evidence for that claim.

Baillargeon's own conclusion appears compatible with the recapitulation interpre-

tation, among others. Baillergeon construes the evidence to demonstrate a failure of

coordination between an infant's knowledge of hidden objects, and purposeful activity

that rests on that knowledge. One possible form of this coordination is the revised

3 Even if such recapitulation is thus required, might we not expect evolution itself to perform
the recapitulation, building the duplicated knowledge directly into the central system? Perhaps,
eventually. But would that built-in recapitulation evolve before the central system became powerful
enough to ask this very question? If not, the evolved recapitulation has not happened yet.

'This adroit pun is due to Ed Hardebeck.
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Piagetian view: the perceptual system provides the central system with input, but

does not share the knowledge that helped produce the input, which knowledge the

central system must recapitulate. Alternatively, such recapitulation may never occur;

perhaps the pre-Piagetian awareness of hidden objects is what the infant eventually

uses to recover hidden objects, after some yet-unknown impediment to that coordi-

nated activity is overcome, perhaps maturationally. Should this prove true, there

may be little to salvage of the constructivist account of sensorimotor development.

The research program presented here takes the revised Piagetian claim as a work-

ing hypothesis. The revised claim suffices to support the dual motivation for this

research: using human cognition as inspiration for design of an artificial mechanism,

and experimenting with an artificial mechanism in order to elaborate and demon-

strate the possible workings of human cognition. If, on the other hand, the nativist

alternative is correct after all, then these motivations collapse. In that case, aspects

of the schema mechanism will still hold interest as artificial learning techniques, but

the likelihood of their being prominent in human or humanlike development will be

far smaller.

Even if the revised Piagetian account is correct, there remain many possible ver-

sions of the claim, with different balances of nativism and constructivism. Consider

these illustrative points along a spectrum of possibilities:

e There is an invariant constructivist mechanism, and it is responsible for Piage-

tian development within the central system.

* The constructivist mechanism is invariant, except for some parameters or re-

source levels that improve maturationally. This maturational system serves

merely to delay cognitive development, compared to a system in which the full

complement of resources was available from the outset.5

'Conceivably, though, certain delays of complexity actively help subsequent development by
providing useful simplifications to build upon.
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* Various auxiliary features are added maturationally, embellishing the the con-

structivist mechanism but leaving it qualitatively unchanged. As in the case

just above, Piagetian development still results from the structures built by this

mechanism, rather than from the predetermined changes to the mechanism.

e There is a preprogrammed succession of fundamentally different developmen-

tal mechanisms; for example, one for sensorimotor development, one for the

concrete operations phase, one for formal operations.

e Much development is via structures built by a constructivist mechanism, but

some major developments (say, instantiating a universal grammar) occur mat-

urationally, due to other, more specialized mechanisms.

* No cognitive development is driven by learning. Acquired knowledge is tightly

constrained, for a given domain at a given stage, to be of the sort that that

domain's module is preprogrammed to accommodate at that stage.

Only the first of these possibilities is purely constructivist. But only the last

three have significant maturational, nonlearning aspects, and only the last is entirely

nonconstructivist. Any but the last of these possibilities preserves the motivations for

building the schema mechanism. The schema mechanism itself, as currently proposed,

is at the constructivist extreme of the above spectrum, but that can be regarded as

a simplifying assumption. At this distance, the difference is not yet perceptible.
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Chapter 3

Inside the schema mechanism

The schema mechanism is engineered to pursue two symbiotic fundamental objec-

tives: to gain knowledge by constructing or revising symbolic assertions about the

world, and to use those symbolic constructs to pursue specific goals and to gain fur-

ther knowledge. The acquisition of symbolic constructs in turn has two principal

themes: making discoveries expressed in terms of existing representational elements,

and constructing new elements with which to express further discoveries.

This chapter describes the schema mechanism and aspects of its present implemen-

tation, the computer program MARCSYST I. The chapter begins with a description

of the microworld in which the implementation exists, and the sensorimotor interface

between the schema mechanism and the microworld. There follows a specification

of the structure and function of the representational elements used by the schema

mechanism, and the machinery for constructing and revising new instances of those

elements.

A caveat concerning experiments with computer programs is in order. In the hard

sciences, experiments must be replicable; published descriptions must be at a level

of detail that is adequate to that purpose. Apart from safeguarding against outright

error (or fraud), this policy helps determine that observed results indeed follow from

the factors described, rather than from extraneous, unnoticed conditions.
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Computer experiments in AI, however, are seldom subject to systematic attempts

at replication' This may be due in part to the nature of computer programs; a deter-

ministic program that produces a given output for a given input will always do so.

In this sense, replication is trivially guaranteed.

On the other hand, the slightest change to a program obviates the trivial guar-

antee. One would like to know what characteristics a program must have-short of

being identical-in order to behave similarly to a given prototype. The description

that follows is an attempt to so characterize the schema mechanism implementation.

As in the hard sciences, this attempt should be validated by independent replication.

3.1 The mechanism's microworld

The computer program MARCSYST I, which implements the schema mechanism,

operates in a discrete, two-dimensional microworld (figure 3-1). The program controls

an animaton-a simulated robot with an animated graphic depiction-that has a

body, a single hand, and a visual system. The hand can touch and grasp objects, and

move them about. The visual system maps a visual field onto a region of the world

in the immediate vicinity of the animaton's body; the visual field provides a bird's-

eye view of that region. The animaton can shift its gaze, changing the body-relative

orientation of its visual field. (The visual system is designed to provide a bird's-eye

view, rather than a projection onto a one-dimensional retina, because of the paucity

of information in a one-dimensional projection.) Objects in the microworld (including

the animaton body, and the hand) are of uniform size. They move but do not rotate,

and their motion occurs in discrete units of the same size as the objects themselves.

The microworld is energetic, meaning that objects can move spontaneously, not just

in response to the animaton's actions.

'See (McDermott 1981) for discussion; (Haase 1990)'s reworking of (Lenat 1983)'s Eurisko is an
exception.
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the visual field

objects_ . . .

the hand

the head/body

Figure 3-1: The animaton's visual field maps onto a portion of the microworld. Here,
the hand and one object are in view.

The schema mechanism's data structures-primitive and constructed-are avail-

able to the experimenter for direct examination; in effect, there is a monitoring tool

for reading the mechanism's mind. Since the internal representations may be observed

directly, we need not try to infer them from the animaton's external behavior. Thus,

it is much easier with the schema mechanism than with infants to determine what

the system knows, and when it knows it.

The schema mechanism's primitive actions are summarized in table 3.1. The

animaton's hand can move about in a particular five-by-five unit region relative to

the position of the body, as shown in figure 3-2a (actually, one of the 25 positions

is occupied by the body, and thus inaccessible to the hand). Similarly, the visual

field can have 25 body-relative orientations, within a range of five units in each

dimension (figure 3-2b); the coincidence of the range of eye and hand movements is

of no consequence. The potentially visible body-relative region is ten units on a side,

since the five-by-five visual field can assume each of five by five orientations. (That

the visual field is itself a five-by-five region is also an inconsequential coincidence.)

There are four primitive actions, called incremental hand actions, for moving the

hand one unit forward, backward, right, or left. The actions are effective as long as

the hand stays within the permitted body-relative range; an action that would move
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the hand beyond that range has no effect. Similarly, four incremental eye actions shift

the glance orientation one unit in each direction, within the permitted range. Two

other actions close or open the hand; these actions can cause objects to be grasped or

released. For each of these primitive actions, the mechanism has an initially supplied

bare schema (empty context and result) with that action.

Range of body-relative

hand positions:

F
example handj
orientation

-Fn_

Range of body-relative

glance orientations:
- --visual-field center

confined to this region

visual field periphery
can extend to here

L /

(a) (b)

example visual-field
orientation

Figure 3-2: The hand and glance each has a 5-by-5 range of possible orientations.

The mechanism's primitive items present visual, tactile, and proprioceptive infor-

mation (table 3.2). Proprioception is the direct perception of the orientation of limbs

or eyes via muscle tension and the like. For each of the 25 body-relative hand posi-

tions, there is a proprioceptive item that is On just in case the hand is at that position;

similarly, there is a proprioceptive item for each of the 25 visual-field orientations.

There is one coarse tactile item for each of the four sides of the hand, designating

contact with that side of the hand. In addition, the left side of the hand (the edge
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e handf, handb, handr, handl: These actions move the hand incrementally forward,
backward, right, or left.

* eyef, eyeb, eyer, eyel: These actions shift the glance orientation incrementally
forward, backward, right, or left.

* grasp: This action closes the hand, grasping any object touching the hand's
"fingers" (its left edge) unless the hand was already closed. Once closed or
grasping, the hand remains in that state for several (twenty) time units, unless
explicitly opened in the interim. Moving the hand moves any grasped object.

* ungrasp: This action opens the hand, releasing any object that had been
grasped.

Table 3.1: The primitive actions.

with its "fingers") has four tactile detail items that report on the texture of any object

that makes contact there; each such item designates an arbitrary, unspecified textural

property. There is also an item that is On whenever the hand is closed, and another

that is On whenever the hand is grasping something.

Similarly, there are four tactile items designating contact with the four sides of

the body; and the front of the body (where the "head" and "mouth" are) has four

items that designate arbitrary, unspecified aspects of an object's taste.

There are 25 coarse visual items, one for each of the five by five visual field

regions. Each coarse visual item is On just in case an object's image appears at the

corresponding region. Coarse visual items thus report only the presence or absence

of an object at each region; there is no information as to the specific appearance of

the objects. For objects appearing in any of the five foveal regions of the visual field

(figure 3-3), that information is provided by visual detail items.

There are 16 visual detail items for each foveal region. The items present informa-

tion intended to be analogous to real-world visual details concerning shape, texture,

color, and other aspects of appearance. Rather than being faithful to aspects of real-

world appearance, however, the visual detail items, like the texture and taste items,
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* hpOO,...,hp44: Haptic-proprioceptive (hand-position) items, one for each possible
hand position. Position (0,0) is the lower left corner of the range; in figure 3-2a,
the hand appears at hp03.

* vpOO,...vp44: Visual-proprioceptive items, one for each possible glance orienta-
tion. Coordinate designates center of visual field, using same conventions as for
hand position; in figure 3-2b, the glance is oriented at vp0l.

e tactf,tactb,tactr,tactI: coarse tactile items, one for each side of the hand (front,
back, right, left).

* text0,...text3: Detailed tactile (i. e. textural) items, denoting arbitrary textural
details of an object touching the "fingers" (left edge of hand).

* bodyf,bodyb,bodyr,bodyl: Coarse tactile items, one for each side
(front, back, right, left).

* taste0,...taste3: Taste items, designating arbitrary surface details
touching the "mouth" (front edge of body/head).

of the body

of an object

* hcl: Hand closed.

e hgr: Hand closed and grasping something.

e vfOO,...,vf44: Coarse visual-field items, one for each of 25 regions. Region (0,0)
is at the lower left; in figure 3-2b, the body appears at vf4l.

* fovfO0,...,fovf33, fovbO0-33, fovlOO-33, fovr00-33, fovx00-33: Visual details corre-
sponding to each of five foveal regions (figure 3-3): front, back, left, right, and

center. Each has 16 arbitrary details: 00,...,03, 10,...,13, ..., 30,...33.

Table 3.2: The primitive items.

F

L X R

B

Figure 3-3: Five foveal regions (front, back, right, left, and center) in the center of

the visual field provide detailed visual information.
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denote arbitrary, unspecified properties. The designation is consistent, in that an ob-

ject that turns On a given detail item at one foveal region turns On the corresponding

detail item at any other such region to which the image shifts. (In fact, the visual

detail items are implemented as a low-resolution rendition of the pixel appearance of

each object.)

The coarse and detailed visual-region items are entirely unlike pixel-level infor-

mation from the human retina. Rather than designating something analogous to the

intensity of light at a particular spot on the human retina, the visual items convey in-

formation similar to the output of sophisticated processing in human vision, involving

the detection of edges, the distinction of figure and ground regions, and the formation

of 2}-dimensional sketches of objects (Marr 1982). The end product of this processing

encodes the existence, appearance, and location of objects in space (three-dimensional

space in the real world, or two-dimensional space in the microworld).

Of course, the animaton's visual system does not perform comparably sophisti-

cated computations to arrive at this encoding. Rather, the computation is trivial

because of the simplicity of the microworld-in particular, the uniformity of objects'

size, units of motion, and mapping onto visual-field regions. Furthermore, because the

visual field enjoys a bird's-eye view, it need not recover information from a collapsed

representation, as with the interpretation of depth from a real-world two-dimensional

projection. Thus, the design of the animaton's visual system deliberately bypasses

the difficult problems of real-world vision; the artificial system merely provides infor-

mation about nearby objects that is roughly similar to real-world visual information.

Notice what is and is not hardwired about the nature of physical objects. The

visual system itself may be regarded as being rigged to know much about objects,

by virtue of the close correspondnence between the appearance of objects in the

visual field and their actual spatial arrangement in the microworld; as just noted, this

correspondence stands in for elaborate, visual domain-specific computations in real-

world vision. Nonetheless, the schema mechanism, as opposed to its visual subsystem,
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does not know about objects. That is, the mechanism does not know that some of

its sensory primitives designate visual information, or that there are categories of

inputs that correspond to different modalities; the mechanism starts out knowing

nothing about what each item or action represents, or how they might be related to

one another. It is up to the mechanism itself to derive the meaning of the items and

actions by learning about their interrelationships.

From the mechanism's initial point of view, each primitive item and action is a

featureless entity, rather like a gensym in the computer language LISP (Steele 1948)

(a gensym is a symbol with a unique but arbitrary, automatically generated name).

Whatever innate, domain-specific knowledge about objects and space the visual sys-

tem uses to maintain the state of the visual inputs, this knowledge is encapsulated to

the visual system, and is not available to the schema mechanism. (Similarly, of course,

for the tactile and other domains.) This encapsulation corresponds to the working

hypothesis put forth in section 2.8, that the Piagetian constructivist account is ap-

proximately correct with respect to the acquisition of knowledge by a central, general

learning mechanism, although peripheral modules embody more innately specified

competence than Piaget acknowledged.

3.2 Representational elements: structure and use

The schema mechanism uses three kinds of representational elements: schemas, ac-

tions, and items. This section describes the elements themselves. Then, section 3.4

describes the machinery for building new instance of these elements.

3.2.1 Data structure formats

Schemas

A schema has three main parts: a context, an action, and a result; figure 3-4 shows

a schema with context p-nqr, action a, and result xy. By notational convention, a
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schema's name is written in the form contezt/action/result; a negated item is pre-

ceeded with a -, and items conjoined in a context or result are seperated with an &

(ampersand) (or, if the items have single-letter names, they are simply concatenated).

Thus, the schema in figure 3-4 is p-iqr/a/xy.

A schema:

p-qr xy
a a >

context action result

Figure 3-4: The basic components of a schema.

A schema asserts that if its action is taken when its context conditions are all

satisfied, then its result conditions will obtain. The assertion is subject to some

auxiliary information that the schema maintains, including a reliability factor and a

set of known overriding conditions, as discussed below.

Three clarifications may circumvent some easily gained misconceptions about

schemas. First, a schema makes no assertion about what happens if its action is

taken when its context conditions are not all satisfied. Second, a schema is not a

rule that says to take its action when its context is satisfied; the schema just says

what would happen if that were done. Third, satisfying a schema's context is not

a prerequisite for taking the designated action; the context pertains to the action's

result, rather than to the action itself.

As noted in the introduction (section 1.2), a schema serves as a declarative, pro-

cedural, and experimental unit of representation. Declaratively, a schema asserts a

prediction about what would happen if a given action were taken. Procedurally, a

schema directs activity, often to pursue a designated goal. Experimentally, a schema

performs certain controlled experiments to ascertain which events are relevant to one

another, as explained immediately below and in section 3.4.1.

A schema's context is a set of zero or more items (discussed in the next section),

each included in either positive or negative form; a schema's result is another such

set. An item can be in the state of being On or Off. (A synthetic item can also be
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in an Unknown state; see section 3.4.3.) A schema's context is satisfied when all the

positively included items are On and all the negatively included items Off.

A schema is said to be applicable when its context is satisfied and no known

overriding conditions obtain. To activate a schema is to initiate its action when the

schema is applicable. A schema asserts that its activation culminates in turning On

those items that are positively included in the result, and turning Off those items

that are negatively included. An activated schema is said to succeed if its predicted

results all in fact obtain, and to fail otherwise.

Schemas compete for activation on two bases: a schema may be activated for the

sake of its own exercise, giving the mechanism a chance to test its validity and to

extend or revise it; or it may be activated to help achieve a goal. When a reliable

schema whose context is satisfied includes what the mechanism considers a goal in its

result, the value of that goal contributes to the mechanism's incentive to activate the

schema. More generally, as shown in figure 3-5, there may exist a chain of schemas

from a current state to a goal. Such a chain has an initial schema whose context is

satisfied. Its result conditions are a superset of the context conditions of the next

schema in the chain, and so on to the final schema, whose results include a goal.

If the chained schemas are reliable, activating each in succession should achieve the

context conditions of the next one, which can then be activated in turn, until the goal

is achieved.

There are two kinds of activation: explicit and implicit. To explicitly activate

an applicable schema is to select it for activation and initiate its action. As a side-

effect of an explicit activation, other applicable schemas, not themselves selected

for activation, may have their actions initiated (if they share the same action as

the schema that was explicitly activated). Such schemas are said to be implicitly

activated. As documented in section 3.4.1, schemas maintain some statistics that

depend on activation, but do not distinguish between implicit and explicit activation.

Implicit activation also helps maintain an estimate of a given schema's cost of explicit
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activation; its cost is the minimum (i. e. the greatest magnitude) of any negative-

valued results of schemas that are implicitly activated as a side-effect of the given

schema's activation.

goal

Figure 3-5: Schemas chain from a current state to a goal state.

A schema maintains various auxiliary data, documented for reference in table 3.3,

and discussed in this and subsequent sections. The data include a reliability measure

and a correlation measure.

9 A schema's reliability is the probability with which the schema succeeds when

activated. Each schema keeps track of its success rate when activated (biased

toward more recent activations), which is taken to measure its reliability.

* A schema's correlation is the ratio of the probability with which a transition to

the schema's result state obtains when the schema is activated to the frequency

with which that transition obtains when the schema is applicable, but not ac-

tivated (here again, a tabulation of actual frequency serves as a presumptive

probability). Thus, a schema's correlation indicates the extent to which the

result depends on the action.

Activating a schema for the sake of its result makes most sense when the schema's

reliability and correlation are both high, so that the action is likely to be both sufficient

and necessary.

In addition to its three main parts, each schema has two large ancillary structures,

an extended context and an extended result (figure 3-6). Each has a slot for every

item in the schema mechanism-not just the items appearing in that schema. (Each

extended result also has a slot for certain context-like sets of items, as explained below
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Correlation. Ratio of frequency of result transition with vs. without activation.
Reliability. Rate of successful activation.
Duration. Average time from activation to completion of action.
Cost. Average cost (negative-value side-effects) of activating the schema.

Table 3.3: Schema data.

in sections 3.3.1 and 3.4.1). Each such slot maintains some data about correlations

between the schema and that item, and also, based on that data, specifies whether that

item's being On (or being Off) overrides the schema; if so, the schema is inapplicable

whenever the overriding item is On (or Off, as specified), even if the schema's context

is satisfied.

extended context extended result

2 p-qr xy 0
o a
* *

Figure 3-6: A schema has an extended context and extended result.

A schema's auxiliary data (including the content of the extended-context and

extended-result slots) is subject to revision, as documented in section 3.4.1. But a

schema's context, action, and result uniquely identify that schema, and do not change.

Although schemas maintain some statistical information, such as the reliability

factor and correlations just mentioned, schemas are designed to provide symbolic,

qualitative representations of the world. The schema mechanism endeavors to build

schemas that are of near-certain reliablility; there is no attempt to make accurate or

sophisticated models of the probabilities of less certain events. Quantitative reliability

measures serve mainly to exclude schemas that fall far short of the ideal. Extended-

context and -result correlations have a different purpose: to guide the construction

of reliable schemas, as explained in section 3.4.1.
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Items

An item is a binary state element. Each item represents some condition in the world,

and has a state of On or Off to assert respectively that the condition does or does

not currently obtain. An item also maintains some auxiliary data, documented for

reference in table 3.4, and described in the sections to follow.

Generality. Rate of being On rather than Off.
Accessibility. Rate of being at the end of some chain of schemas

that starts with an applicable schema.

Primitive value. Built-in Positive or negative desirability measure.

Delegated value. Acquired positive or negative desirability measure.

Table 3.4: Item data.

There are two kinds of items, primitive and synthetic. Primitive items are built

in to the schema mechanism-they are part of its initial endowment. Each primitive

item corresponds to some sensory input; for the current implementation, the inputs

are as shown above in table 3.2. The state of a primitive item-that is, whether the

item is On or Off-is maintained by the sensory apparatus.

Synthetic items are constructed by the mechanism itself. Each such item desig-

nates the validity conditions of a particular unreliable schema, called the item's host

schema (figure 3-7); the synthetic item is called its host schema's reifier, because

constructing the item treats the attainment of those conditions as a thing or state in

its own right, thus reifying the validity conditions of the host schema. By notational

convention, a synthetic item's name is its host schema's name, surrounded by square

brackets; thus, the item in figure 3-7 is [p/a/x].

Primitive items are hardwired to sensory inputs that maintain their state. For each

synthetic item, however, the schema mechanism itself must discover the conditions

under which the item should be On or Off. Section 3.4.3 describes the machinery for

this discovery process.
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Figure 3-7: A synthetic item and the host schema it reifies.

Actions

There are two kinds of actions, primitive and composite. Primitive actions, like

primitive items, are part of the schema mechanism's built-in endowment. Just as

each primitive item is wired to a sensory input device, each primitive action is wired

to a device that carries out a particular motor action. Table 3.1 above documents the

primitive actions used in the current implementation. Initiating a primitive action

(by activating a schema which has that action) initiates the corresponding motor

device.

A composite action is defined with respect to some goal state. Like a schema's

context or result, a composite action's goal state is a set of (positively or negatively

included) items. A composite action is essentially a subroutine: it is the action of

achieving its goal state, by whatever means available. The means are given by chains

of schemas that lead to the goal state from various other states (figure 3-8); such

schemas are said to serve as components of the composite action. (A given schema

may be a component of any number of composite actions, or of none at all.)

Each composite action has an associated controller. Just as a schema's extended

context and extended result have a slot for every extant item, a composite action's

controller has a slot for every schema. Each slot contains data about whether the

schema lies along some chain to the goal state, and, if so, the proximity to the goal

that will be achieved if the schema is activated. Proximity is a inversely proportionate

to the expected time to reach the goal state, derived from the expected activation

time of the schemas in the relevant chain; proximity is also proportionate to those
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composite action
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Figure 3-8: A schema whose composite action has goal state z.

schemas' reliability, and inversely proportionate to their cost of activation.

Initiating a composite action (again, by activating a schema which has that action)

causes the controller to identify a schema (among those currently applicable) with

greatest proximity to that action's goal state; that schema is then activated. This

process iterates until either the goal state obtains, or the action fails. The action

is considered to have failed if either it has greatly exceeded its expected execution

duration (a statistic that each action maintains, based on prior performance) without

making much progress-that is, without much increase in proximity to the goal; or if

a brief interval passes during which no component schema is applicable.

The iterative selection of the most proximal component permits a kind of oppor-

tunism (Agre 1988) in composite action execution: control may pass from one chain

of schemas to another, if a more proximal schema along a different chain unexpectedly

becomes applicable. The controller does not notice this shift as such; the shift is just

a consequence of always selecting next the most proximal applicable component. 2

2 Recent work on universal plans (Schoppers 1987) describes a planning scheme similar in this

regard to composite-action control.
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3.2.2 Control

Schemas compete for activation. At top level, the schema mechanism selects a schema

for activation at each next time unit (in the current, discrete-time implementation; a

continuous-time version might perform this selection at regular, frequent intervals-

perhaps a few times per second). In the present implementation, only one schema is

activated at a time. However, the activation of a schema that has a composite action

entails the immediate activation of some component schema; thus, the mechanism

supports nested activations, but not parallel activations.

The top-level selection process activates the applicable schema that asserts the

greatest activation importance. The importance of activating a given schema is based

on two criteria: explicit goal-pursuit, and exploration. The goal-pursuit criterion

contributes to a schema's importance to the extent that the schema's activation helps

chain to some item that is of positive value; the exploration criterion boosts the

importance of a schema to promote its activation for the sake of what might be

learned by that activation. (Of course, the exploration criterion also serves a kind

of goal, the goal of acquiring knowledge; but explicit goal-pursuit refers to achieving

some explicitly represented state for the sake of its explicitly represented value.)

To strike a balance, the mechanism alternates between emphasizing goal-pursuit

critera for a time, then emphasizing exploration criteria. Also, rather than merely

selecting the schema asserting the highest activation value, the mechanism chooses

at random among those schemas with value within a certain factor of the maximum

value then asserted; each such schema's probability of selection is proportionate to

its share of the total such value. This process prevents a small advantage from

disproportionately favoring some schemas' activation over others nearly as good; but

limiting the selection to schemas close to the maximum value prevents large differences

from being passed over.

A new activation selection occurs at each time unit. Even if a chain of schemas

leading to some goal is still in progress, each next link in the chain must compete
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for activation. Thus, as with the execution of a composite action, control may shift

to an unexpected, new, better path to the same goal. Top-level selection carries this

opportunism one step further: here, control may even shift to a chain that leads

instead to a different, more important goal.

The mechanism also permits an executing composite action to be interrupted. A

schema with a composite action, of course, may take arbitrarily long to complete,

depending on the length of the chain of schemas used to reach the action's goal state,

and on the duration of the activation of each schema in the chain. Even if a schema

with a composite action is in progress, the cycle of schema selection continues at each

next time unit. If the pending schema is re-selected, its composite action proceeds

to select and activate the next component schema (which may recursively invoke yet

another composite action, etc). If, on the other hand, a schema other than the pending

schema is selected, the pending schema is aborted, its composite action terminated

prematurely. A pending schema is given enhanced importance for selection, so it will

likely be re-selected until its completion, unless some far more important possibility

arises. Hence, there is a kind of focus of attention that deters wild thrashing from

one never-completed action to another, while still allowing interruption for a good

enough reason.

Explicit goal-pursuit

Three kinds of value may be associated with an item: primitive, instrumental, or

delegated value. Each is a positive or negative quantity associated with an item or

set of (possibly negated) items.

e Primitive value is associated with certain primitive items. In biological systems,

for example, representations of events beneficial to the organism or species (e.

g. taste of food, sexual stimulation) ought to have built-in positive value,

and designations of deleterious events (hunger, pain) should be negative. Cor-

respondingly, the present schema mechanism implementation assigns positive
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primitive value to certain tastes, and negative primtive value to certain tactile

sensations ("sharpness").

e A state is of instrumental value if its attainment is a specific prerequisite for

achieving something else of value. When the schema mechanism activates a

schema as a link in some chain to a positively valued state, then that schema's

result (or rather, the part of it that include's the next link's context) is said to

have instrumental value.

Instrumental value, unlike primitive (and delegated) value, is transient rather

than persistent. As the state of the world changes, a given state may lie along

a chain from the current state to a goal at one moment but not the next.

* Delegated value combines aspects of primitive and instrumental value. As with

instrumental value, an item's delegated value derives from other things of value

that that item helps achieve. But delegated value, like primitive value, is per-

sistent. Delegated value is assigned as follows.

At each time unit, the schema mechanism computes the value explicitly accessi-

ble from the current state-that is, the maximum value of any items that can be

reached by a reliable chain of schemas starting with an applicable schema. (Sec-

tion 3.3.1 discusses the machinery for identifying such chains efficiently.) The

mechanism also keeps track of the average accessible value over an extended

period of time.

For each item, the mechanism keeps track of the average accessible value when

the item is On, compared to when the item is Off. If the accessible value when

On tends to exceed the unconditional accessible value, the item receives positive

delegated value; if the accessible value when On is less than the unconditional

average, the item receives negative delegated value. (Each item also keeps track

how much of the time it is accessible; this information determines composite

action formation, as explained in section 3.4.2.)
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For purposes of the value-delegation comparison, accessible items of zero value

count as having slight positive value, thus delegating more value to states that

tend to offer a greater variety of accessible options.

Delegated and instrumental value serve complementary functions: value is dele-

gated to states that generally tend to facilitate other things of value; instrumental

value is for states that currently facilitate other things of value, and by a specifically

forseen chain of events. Thus, delegated value may be said to be strategic whereas

instrumental value is tactical.

An item does not (and should not) receive delegated value just by virtue of re-

ceiving frequent instrumental value. The state of, say, being in a standing position

is often of instrumental value (as a prerequisite for walking somewhere, for instance);

but it would be foolish (under most circumstances) to make a point of remaining

standing just in case a contingency arose that required walking somewhere. If a fre-

quently instrumental state is itself readily accessible, then the things it facilitates are

accessible even before the instrumental state itself has been achieved. Consequently,

the value accessible when the state obtains does not exceed the value accessible when

it does not; therefore, no value is delegated to that state.

Delegated value arises, and is useful, when a state is that is not readily accessible

facilitates other things of value under circumstances that are likely to occur while the

state still obtains. To an infant, for example, the presence of a parent may receive

delegated value, even when there is no specific goal for which the infant needs the

parent at the moment, because such a need arises often enough that it is good to

have the parent nearby just in case. When a given state does not facilitate a specific

goal at the moment, there is no chain of schemas to impart instrumental value to

that state; consequently, delegated value is needed to promote the strategic pursuit

of that state.

Furthermore, to designate goals only in terms of the mechanism's primitive lexi-

con would be as burdensome as having to represent all predictions and plans at that
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bottommost level of abstraction. The delegation machinery allows higher-level, con-

structed concepts to acquire lasting value as well. At the same time, this machinery

must ensure consistency between original and delegated value, so that pursuing the

delegated value will continue to promote the top-level goals that the preassigned,

primitive values are designed to coincide with. Arbitrary, unconstrained revision of

the system's goals would be disastrous.

In particular, the mechanism must avert the danger of positive feedback in value

delegation when two or more states are of mutual strategic value. Depending on how

much value is delegated, each state's increase in delegated value could cause a similar

increase in the other's, and so on without bound. To dampen such feedback, the value

delegated to an item is only half of the difference between the unconditional average

attainable value, and the value attainable when the item is On.

Of course, despite such safeguards, the delegation of value not only facilitates

prior goals, but also changes the goal structure for the future. Thus changes that

locally do a better job of pursuing what is already sought may eventually culminate

in additional goals far removed from what was originally pursued. This is not unlike

biological evolution, in which the implicit goal of perpetuating what is aready there

is most effectively achieved by making slight improvements, thereby perpetuating

inexact copies that are more robust than the original design; eventually, what is being

perpetuated may bear little resemblance to its ancestors. (Indeed, biological cognitive

systems' built-in values for certain primitive sensations may be regarded as having

been delegated by evolution to various explicitly represented states and processes-

eating, copulating, etc-whose attainment strategically facilitates the implicit goal of

perpetuating the genome.)

Numeric values are used to adjudicate the selection of a schema for activation. Yet

this selection makes a qualitative decision: which of several eligible schemas to prefer.

Basing this qualitative choice on a quantitative measure may seem inappropriate,

particularly in light of the schema mechanism's presumption in favor of symbolic,
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nonnumeric representations. But I maintain that numeric values are appropriate to

the selection task: given n explicit goals, n numeric values allow the derivation of

n2 preferences that might arise in pairwise choices between goals; they also permit

the derivation of exponentially many possible choices between sets of multiple goals. 3

Just as monetary exchange, as opposed to bartering, prevents having to trade one

commodity directly for a preferred one, using quantitative values prevents having

to make a direct qualitative comparison of each pair of results that the system can

choose between. Still, delegated value derives from facilitating the accessibility of

other things of value, a qualititative relation.

Although the current schema mechanism implementation includes primitive, in-

strumental, and delegated value, the mechanism's acquired skills to date are so unso-

phisticated that primitive and delegated value have little effect on the mechanism's

activity; there simply are not any interesting things of value that the mechanism

knows how to achieve. The mechanism's activity is influenced instead by instrumen-

tal value (in that the initiation of a composite action involves chaining to its goal

state), and by exploration value, described below. Thus, in particular, the utility of

delegated value remains to be demonstrated.

Exploration value

The schema mechanism maintains a cyclic balance between emphasizing goal-directed

value and exploration value. The emphasis is achieved by changing the weights of

the relative contributions of these components to the importance asserted by each

schema. Goal-directed value is emphasized most of the time; but a significant part

of the time, goal-directed value is diluted so that only very important goals take

precedence over exploration criteria.

3 The constraints of nonreflexivity, asymmetry, and transitivity imposed by numeric values ought

to be respected by a preference system: it makes no sense to prefer A to itself (reflexivity), or to

prefer A to B and B to A (symmetry), or to prefer A to B and B to C but not A to C (nontransitivity),
given those pairwise choices all in the same situation.
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A schema's exploratory value is calculated to promote useful learning by the

schema mechanism, rather than to pursue explicitly represented goals. Two chief

components of exploration value are hysteresis and habituation: a recently activated

schema is favored for activation (hysteresis), providing a kind of focus of attention that

promotes repetition of a small number of schemas; but a schema that has recently

been activated many times becomes partly suppressed (habituation), preventing a

small number of schemas from persistently dominating the mechanism's activity.

A schema records its usage rate-its frequency of being selected for activation.

Other factors being equal, a more frequently used schema is favored for selection

over a less used schema. This factor mitigates possible redundancy among structures.

Suppose there is some set of nearly-identical schemas-schemas which differ, say,

by including different infrequently arising context conditions that only slightly affect

reliability; or schemas that use different, effectively synonomous items to designate

the same condition (see section 3.4.3). If one of these schemas, by chance, is used

slightly more than the others, it accumulates greater usage-which, in turn, promotes

its further usage (relative to those others), further increasing its value relative to those

others. This deliberate instability carves out a situational niche in which only a few

schemas, among all the similar ones, will dominate.4 The instability is controlled by

subordinating the usage factor to other components of a schema's value.

Another component of exploration value is designed to share activation among

different actions. Without such a component, actions that appear in relatively many

schemas tend to be initiated more often than others, which in turn promotes the

construction of more schemas for those actions, leading to instability. To circument

this problem, schemas with underrepresented actions receive enhanced exploration

value. Similarly, a component of exploration value promotes underrepresented levels

of actions, where a structure's level is defined as follows: primitive items and actions

are of level zero; any structure defined in terms of other structures is of one greater

'This trick also appears in (Holland et al 1986).
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level than the maximum of those structres' levels.

3.3 Architecture

To be a viable partial theory of theory of human intelligence, or a viable model

for artificial intelligence, the schema mechanism must not be intractibly inefficient.

A mechanism's efficiency depends in part on its presumed architecture; the schema

mechanism's dual citizenship, in psychology and A.I., requires two such substrates,

which this section presents: a loosely envisioned neural architecture, and the actual

architecture of MARCSYST I, the existing software implementation of the schema

mechanism.

3.3.1 Neural architecture

The schema mechanism is intended to explain aspects of human learning. The mecha-

nism's design must therefore respect the constraints of neurophysiological plausibility;

there ought to be a conceivable neural implementation of the schema mechanism, one

that does not violate what is known about the human brain.

This section outlines a neurally plausible architecture for the schema mechanism.

The outline is coarse-it is nothing more than a characterization of the sheer number

of computational units involved, the required connectivity among them, and the time

complexity of the required computations. I argue that these are plausibly within

human-brainlike bounds. In contrast with connectionist (McClelland et al 1986) or

neural-net models (Anderson and Rosenfeld 1988), the proposed architecture makes

no attempt to indicate how specific functions performed by the schema mechanism

might be implemented by vaguely neuron-like computational elements, such as linear-

threshold units (Minsky and Papert 1969).

The presumed architecture supports one million computational units that are

exhaustively cross-connected; that is, a seperate physical pathway exists between each
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pair of units. (Some units, corresponding to sensorimotor primitives, also connect to

peripheral modules.) The connections transmit data, both numeric and symbolic,

the latter consisting only of a small number of discrete tokens (perhaps a few dozen);

unlike, say, the letters of the alphabet, these tokens do not combine productively to

form long composite structures (such as words or sentences). The connection points

between units, and the units themselves, can each store some data, again consisting

of numeric quantities and a small number of tokens. The connections between units,

and the units themselves, operate in parallel.

Each unit and each connection point performs some simple, constant-time compu-

tations perhaps a few times per second; the results of the computation can affect the

stored values, and can be output along the connection lines. The computation at each

connection point is a function of the stored values there, and of data input from the

two units that connect there. The computation at each unit is a symmetric function

of the connection-line inputs to the unit, and of the stored values at the unit and at

its connection points; the function might be the conjunction or disjunction of a binary

value from each input, or to compute the sum, average, or maximum of a numeric

value from each input, or from those inputs flagged by a particular token stored at or

input to the corresponding connection point (figure 3-9) (such computations can be

performed in time logarithmic to the number of inputs). A unit can output numbers

and tokens along its connection lines, as well as receiving such data. There is also

centrally coordinated global communication, such as broadcasting a message to every

schema, every action, or every item.

The above assumptions are similar to those of standard connectionist architec-

tures, except for the presumption here of exhuastive cross-connectivity, and for the

absence here of any attempt to reduce the computation performed by each unit to

the behavior of neuron-like elements.

Let us presume, for the sake of this analysis, that on the order of a few million

schemas, items, and actions might suffice to implement adult-level intelligence. (At
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Figure 3-9: Each unit connects exhaustively to the others.

least on the order of a million cognitive cognitive units of some sort must be needed

for human intelligence; that is the smallest round number that isn't clearly wrong.

For comparison, the average vocabulary of an English-speaking adult is a few tens of

thousands of words; and presumably there are many non-linguistic concepts for each

one named by a word.) Assuming that each schema, action, and item is implemented

by one of the computational units just discussed, I argue that something like the

schema mechanism, with at least one million representational units, could fit in the

neocortex of the human brain.

I have little to say about the computational units themselves, except that the

10,000 or so neurons available per unit are, intuitively, more than enough for the

assigned computations. The more difficult matter is to account for: the cross-

connectivity that supports extended contexts and results, and action controllers;

identifying chains of schemas from current states to goals, and noting the accessi-

bility of goals from current states; and defining new schemas in terms of actions and

items.

The postulated crossbar connecting every unit to every other supports all four of

these capabilities. (In fact, a slightly smaller crossbar, connecting all schemas to all

items, and all actions to all schemas, would suffice; but the order of size of the required

structures would not be much less.) The remainder of this section first describes how

the crossbar supports these capabilities, and then argues for the neurophysiological

plausibility of the crossbar itself.
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Extended contexts, extended results, and action controllers

The exhaustive crossbar straightforwardly supports extended contexts, extended re-

sults, and action controllers. Each slot in an extended context or result, for example,

is a connection point between a schema and an item; the slot computes and stores

correlations between a schema's activation and the state of some item (as detailed in

3.4.1). Each action controller slot connects a composite action and a schema. The

connection point stores proximity information (described below), and receives data

from the connecting schema as to whether that schema is currently applicable. The

lines connecting to a given composite action collectively compute the maximum stored

proximity among slots for schemas that are currently applicable.

Chaining

Identifying chains of schemas serves two functions: it propagates instrumental value to

intermediate states between a current state and a goal; and it is part of the assessment

of schemas' proximity to a composite action's goal state.

Finding a chain that leads to a particular item works by a parallel broadcast. The

item sends a message to each schema asserting that that item is a goal; the item's

value is also transmitted. A schema ignores this message unless the schema includes

the item in its result; each connection point between a schema and item includes

that information, stored when the schema is created (see below). If the schema does

include the item that sent the message, and if the schema is reliable, then the schema

broadcasts a message in turn to its context, making its context a goal; the value

information is broadcast as well. Also broadcast is a proximity measure that takes

account of the schema's reliability, expected duration of activation, and cost.

This process iterates, tracing backward along various chains in parallel, each

schema along the way storing its proximity to the original goal, and the goal's value.

The proximity measures computed by each link of the chain combine as the broad-

cast proceeds, diminishing the proximity at each step. When two or more items send
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converging messages to the same schema, the largest proximity measure is stored and

propagated further; the others are ignored. The backwards iteration proceeds to some

maximum depth of search; the time required is propotionate to this depth.

A schema's context designate a conjunction of items, rather than just one item.

Broadcasting a message to each item individually would not work, since arbitrarily

many schemas might do so simultaneously. It is necessary to distinguish, say, between

broadcasting to the items a and b from a schema whose context includes both, and

broadcasting to those items from two distinct schemas, one with just a in its context,

the other with just b. A chaining schema's result must include the entire context of

the next schema in the chain; hence, in the first case, a schema whose result included

only a or only b would not be a link in the chain, but it would be in the second case.

This problem is solved by broadcasting to the context set as a whole. As men-

tioned above in section 3.2.1, certain context conjunctions-specifically, those that

are contexts of schemas of nonnegligible reliability-have extended result slots, just

as individual items have. As with the slots for individual items, each such slot is set

up, when a schema is created, to store a bit that says whether the schema's result

items include all of that slot's conjunct items; a second bit indicates whether the

result negates an included item.

When chaining is used to propagate instrumental value to help find the next

schema to activate, the process proceeds not just from one goal item, but simulta-

neously from all items that have positive primitive or delegated value. When two or

more goals' broadcasts converge to the same schema, the one with greatest value is

stored and propagated; among converging broadcasts that have the same value, the

one with greatest proximity is used, as above. A schema whose context is satisfied

does not broadcast further, but rather competes for activation based in part of the

instrumental value received from the broadcast. There is no need for the mechanism

to keep track of which goal a particular broadcast is in aid of; keeping track of value

and proximity provides the information needed by the selection for activation.
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Chaining also serves a distinct but related purpose: determining each schema's

proximity to a given composite action's goal, so that that information can be recorded

in the slots of the action's controller. The broadcast process for this purpose proceeds

as above, but for just one composite action's goal at a time, since in this case it is

necessary to know what goal each schema is helping to chain to; broadcasts converging

to a given schema from multiple actions' goal states would not all be able to propagate

further back in the chain. (Of course, the mechanism could be extended to support

simultaneous broadcasts for some fixed number of composite actions, but not for

arbitrarily many, given the assumption that each computational unit can receive and

store just a small number of distinct tokens.) Section 3.4.2 elaborates on the use of

chaining information by composite action controllers.

Finally, chaining is used to determine what states are accessible from the current

state. (Accessibility is discussed above in connection with delegated value in section

3.2.2, and also below in section 3.4.2, in connection with composite action construc-

tion.) To determine accessibility, the mechanism broadcasts messages forward along

chains of reliable schemas (in contrast with propagating instrumental value and find-

ing goal proximity, for which the broadcast goes backwards). To begin, each schema

that is currently applicable broadcasts a message via its extended result to the items

and conjunctions that are included in the schema's result. Any schema that has such

an item or conjunction as its context braodcasts in turn via its own extended result,

and so on, to some maximum depth of search. Any item or conjunction of items that

receives a message by this process is currently accessible.

Composition

By the above architectural assumptions, the computational units that implement

the schema mechanism do not support productive composition of symbolic tokens,

as letters compose to form arbitrarily many words or sentences. Yet the schema

mechanism presumes the ability to compose schemas from actions and items in just
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such a fashion. The exhaustive crossbar between schemas and items, and between

schemas and actions, reconciles these two assumptions.

A schema designates its context and result simply by storing, at each connection

point to an included item, the data that that item is included; whether it is included

in the context, result, or both; and whether each such inclusion is positive or negative.

Similarly, the schema designates its action at the connection point between the schema

and the action.

Creating a schema with a specified context, action, and result has two steps:

checking whether such a schema already exists (in which case it is not duplicated); and

allocating an unused computational unit, setting up the connection-point designations

of the context, action, and result, and also the extended-result data designating items

and some sets of items that are included in the result proper.

* To check if a specified schema already exists, the mechanism broadcasts to

the action, and to each included item, its designation in the specified schema.

The items and actions transmit this data along their connection lines to all

schemas. If any schema finds a match, at all its item and action connection

points, between the status of those items and actions for that schema, and their

status according to the broadcast, then the specified schema already exists.

e Each reliable schema's context, if it is a set of more than one item, is allocated

a computational unit that connects to every item; an item's membership in

such a set is recorded at the set's connection point to that item, along with a

designation of positive or negative inclusion. The unit also connects to every

schema, as part of each schema's extended result.

- When a unit is allocated for a new such set, each schema's extended result

must record, at the connection point to the new set, whether the new set

is included in the schema's result. To this end, every schema is informed

of the number of items in the new set. For each schema, each connection
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point between the schema and an item stores whether the item belongs to

the schema's result (and, if so, its sign), and is told by the item whether

the item is included in the new set (and, if so, its sign). On this basis, the

schema counts how many of its result items also belong to the new set,

with the appropriate sign. If that number is greater than or equal to the

size of the new set, the schema's result includes the new set, and this fact

is recorded at the connection point between the schema and the new set.

- When a new schema is built, its extended result must record, at each

connection point, whether the item or set of items at that connection point

is included in the schema's result. For individual items, that information

provides the very specification of the schema's result, as noted above. For

sets of items, each unit designating such a set determines (by a process

similar to the one just described) whether it includes all the items in the

new schema's result. If so, the unit thus informs the new schema via

the extended-result connection line between that set and the schema; that

connection point then records the information.

Neural crossbars

An exhaustive crossbar between units of one type and units of another might be

implemented as in figure 3-10a. Each unit of the first type connects to the input side

of a fanout element; the output side of the fanout element has a separate connection

for every unit of the second type.

A row of adjacent fanout elements, shown in figure 3-10b, forms a sheet that ex-

tends from all elements of the first type to all elements of the second. The connection

is accomplished by taking a similar sheet of fanin elements (figure 3-11a) rotated

ninety degrees from the fanout sheet and facing in the opposite direction, and placing

the two sheets together (figure 3-11b). A similar pair of sheets implements exhaus-

tive cross-communication in the other direction. Perhaps several such pairs of sheets
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Figure 3-10: Each fanout element connects one input unit to all output units.

would be needed to implement various different crossbar computations.

(a) sheet of fanins

crossbar

(b)

Figure 3-11: A fanout sheet atop a fanin sheet forms an exhaustive crossbar.

It remains to consider the implementation of the fanin and fanout elements them-

selves. If there are one million units being cross-connected, then the branching factor

for the fanout and fanin elements far exceeds the 1,000-10,000 factor for neurons (see

e. g. Crick and Asanuma 1986 for this and other neurophysiological data cited just

below). However, each element can be constructed as a two-stage device comprised

of elements that have a neurally plausible branching factor, as shown in figure 3-12.

The total number of neurons required is about 1010, which lies within the bounds

set by the size of the human neocortex. Furthermore, almost all the neurons compris-

ing the crossbar are second-stage neurons, each of which needs to reach only a small
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Figure 3-12: A two-stage fanout element.

fraction (1/1, 000) of the target volume. Consequently, although the crossbar crossbar

implements exhaustive cross-connectivity with regard to the million computational

units, it exhibits almost exclusively local connectivity with respect to individual neu-

rons. Only the first stage neurons-one crossbar neuron in a thousand-makes a

distant connection. This locality accords with observations of the wiring of the hu-

man cortex.

3.3.2 Digital implementation architecture

MARCSYST I, a computer program that is the current digital implementation of

the schema mechanism, runs on a Connection Machine (CM) (Hillis 1985), using a

dedicated Lisp machine (Symbolics 3650) as front end. The CM's salient architectural

features are as follows:

e There are up to 64,000 physical processors that operate in parallel. The machine

portion available for this research had 4,000 processors. Each processor has

64,000 bits of memory.

* The CM is a SIMD machine (Single Instruction, Multiple Data streams), which

means that all processors execute the same instruction at once, each on its own

data.

* Some instructions operate locally to each processor, affected by or affecting that

processor's data alone. Other instructions act globally, computing, for example,

the sum or maximum of some specified processors' values for a given numeric

datum, or the logical conjunction or disjunction of some specified processors'

values for some logical datum. Some global instructions act in the other direc-

tion, sending a value to all processors.
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* Finally, there is a class of communications instructions, which send messages

from one or more source procesors to one or more target processors per source

processor. A source processor may designate its target by address, or by coor-

dinates in an n-dimensional grid into which virtual processors can be organized.

A message may be sent to an entire row (or even hyperplane) of such a grid at

once.

Most of MARCSYST I is written in *LISP(Thinking Machines 1988), a parallel ex-

tension of LISP (Steele 1984). Some inner-loop code is written in ParIS (Thinking

Machines 1988), an assembly-language-like instruction set for the CM.

MARCSYST I allocates virtual processors for each schema, action, and item, and

for each connection point in the schemas-items crossbar and the actions-schemas cross-

bar; the connection-point virtual processors are organized into two-dimensional grids

for purposes of the communications instructions. The basic compuations performed

at each time unit by each schema, action, item, and by each crossbar connection

point, are cycled through in sequence, all instances of the same kind of structure

performing their computation in together. The crossbar connectivity is simulated by

using CM communications instructions to transmit data from one kind of structure

to another.

Each of MARCSYST I's 4,096 CM processors can designate one schema or com-

posite action; these are large structures because of the extended contexts and results,

and controllers. Ninety percent of the processors are reserved for schemas, the re-

mainder for composite actions. Available memory for schemas is the limiting factor

in the implementation's performance.
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3.4 Constructing and revising schemas, actions,

and items

Above all, the design of the schema mechanism reflects its need to learn, to build

its own structures for its own use, to come to represent the world in a way that is

both practical and informative. As mentioned in chapter 1, the processes of con-

structing new schemas, actions, and items correspond roughly and respectively to

learning by induction, abstraction, and conceptual invention. Schemas express dis-

coveries about the relations among existing actions and items; composite actions

designate the achievement of particular goals, abstracting above the details of how

those goals are reached, permitting the goal itself to be seen as a cause of further

results; and, especially, synthetic items represent aspects of the state of the world of

which (some) previously represented states were mere manifestations, such that there

the new concept may be inexpressible, as a practical matter, as any fixed function of

its manifestations.

3.4.1 Marginal attribution: spinning off new schemas

Piagetian development is rife with examples of generalizations and specializations of

schemas. These examples involve the discovery of consequences of actions, and the

discovery of the conditions that these consequences depend on. The schema mecha-

nism tries to capture this sort of discovery with the process of marginal attribution,

which constructs new schemas.

The chicken-and-egg problem: which comes first, the context or result?

As noted in section 1.2, the task of constructing reliable schemas poses a chicken-and-

egg problem. Even if some result very reliably follows a given action under certain

conditions, the result may follow arbitrarily rarely in general. For example, the

action of moving my hand incrementally backward reliably causes a tactile sensation
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on my chin-provided that the hand was just in front of the chin before that action

occurred. In general, though, that particular result seldom follows; and similarly for

other results that the same action has reliably under various other conditions.

Not only might each of an action's many reliable results (subject to the right

conditions) follow seldom in general; in addition, when such a result does follow,

it may be accompanied by dozens, perhaps thousands, of entirely coincidental state

transitions at various levels of description. Thus, identifying an action's result as

such, before knowing the corresponding context conditions, is not a mere matter of

noting that the result typically, or occasionally, follows the action.

Thus, the chicken-and-egg problem: a result does not look like one except with

respect to the appropriate context. Until the context is known, finding the result is

difficult; but finding the context is impossible without knowning what result it is the

context for.

Another, related chicken-and-egg problem arises even after a result has somehow

been identified, if a conjunction of several conditions is required for the result to

follow the action; if less than all of those conditions is satisfied, the result does not

follow. Consequently, the relevance of any one of those conditions is difficult to discern

until the others have been identified-only when the last conjunct is added does the

schema become reliable. More generally, if the required context is a disjunction of

many conjunctions, the same problem arises for each of the conjunctions.

There is a brute-force solution to the conjunctive-context problem: express all

possible conjunctions of items, and for each one, tabulate the probability of the result

following the action when that conjunction is satisfied. In fact, this approach solves

the context-result problem too, if all context-result pairs are similarly tabulated for

each action. However, these approaches are clearly intractible; the number of express-

ible context conjunctions, or of context-result pairs, is exponential in the number of

items. If the conjunctions are limited in size to k conjuncts, only polynomially many

(nk, where n is the number of items) need be monitored, as (Littlestone 1987) points
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out; still, if n is on the order of a million or more, even a limit of, say, five conjuncts

puts nk vastly beyond the number of neurons or synapses in the brain.

The combinatorial problem would be eased if there were a priori constraints on

which items might be relevant to which schemas or actions. But it is impossible, in

a constructivist learning mechanism, to supply such constraints. Certainly, among

the primitive sensory items and motor actions, there are no natural partitions-

hand motions, for example, can have tactile, visual, and auditory effects; further,

the effects might be contingent on conditions in any of those domains. Similarly,

vocal actions can have diverse effects-especially via people as intermediary agents

(and the discovery of such effects needn't entail awareness of that agency). As for

constructed items and actions, as opposed to primitive ones, it is even harder to

impose a priori constraints on relations among elements when the elements are not

a priori themselves, when those elements derive from primitive underpinnings which,

as just argued, are also without such constraints. (The need to be able learn without

a priori relevance constraints does not, however, preclude the possibility of other

machinery that uses acquired constraints on relevance enable more powerful forms of

learning.)

Fortunately, both chicken-and-egg problems-the context-result problem, and con-

junctive context problem-have a solution that does not presuppose a priori con-

straints on relevance. This solution is the marginal attribution algorithm, which re-

quires only the brute force of an crossbar between schemas and items. For n schemas

and items, only n 2 computational units are needed for an exhaustive crossbar (rather

than an exponential or larger-order polynomial number); as argued in section 3.3.1,

a crossbar of that size is neurophysiologically plausible.

Marginal attribution: the basic machinery

Marginal attribution works as follows. Initially, for each primitive action, the schema

mechanism has a bare schema, with empty context and result (e. g. at left in figure 3-
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13). Similarly, when a new composite action is defined, the mechanism constructs

a bare schema that uses that action. Bare schemas make no assertion in their own

right, but they are the points of departure for the discovery of the effects of their

respective actions. Marginal attribution initially identifies relevant but unreliable

effects of a schema's activation, then searches for context conditions with respect to

which those effects obtain more reliably. A series of intermediate, unreliable schemas

serves as a scaffold for the construction of an eventual, reliable schema (when the

process succeeds). Each schema keeps track of its own reliability, so the intermediate

constructs are not mistaken for reliable assertions.

A bare schema's extended result discovers effects of the schema's action. The

discovery proceeds by way of two statistics maintained by each extended result slot.

One statistic, the positive-transition correlation, is the ratio of the probability of the

slot's item turning On when the schema's action has just been taken to the probability

of its turning On when the schema's action is not being taken. The other statistic,

the negative-transition correlation, is a similar ratio, but with respect to turning Off

instead of On. These statistics are tabulated over a number of trials in which the

action is taken, and trials in which it is not; the more trials there have been, and the

more discrepancy there is between the two probabilities, the sooner the machinery

will detect the difference (see section 3.4.1). The sampling is weighted toward the

most recent trials.

Since the machinery seeks transitions to the result state, a trial for which the

result was already satisfied before the action was taken does not count as a positive-

transition trial; and one for which the result was already unsatisfied does not count

as a negative-transition trial. Arguably, the mechanism should also look for a result

that is kept constant by an action, when it would otherwise have changed. The

present implementation does not do this-looking for transitions is more important,

and memory is limited-but it could easily be extended to maintain such statistics

as well.
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If some extended result slot for a given schema shows that an item is significantly

more likely to turn On (or Off) when the schema's action is taken, that item is deemed

relevant to the action. A relevant item is a candidate for positive inclusion (if it turns

On) or negative inclusion (if Off) in a schema that is said to spin off from the given

schema. A spinoff schema copies the given schema's context, action, and result,

but with the designated item included in the copy's result (or context, as discussed

below). For example, in figure 3-13, the extended result of the schema /a/ discovers

the relevance of items x, y, and z. Correspondingly, the schemas /a/x, /a/y, and /a/z

spin off from the bare schema /a/.

Figure 3-13: A bare schema discovers some results of an action, spawning spinoff
schemas.

A relevant result need not follow an action reliably. In fact, its occurrence following

the action may be arbitrarily unlikely, provided that it is even less likely in the

action's absence. The relevance criterion uses the schema to specifiy a controlled

experiment, comparing what happens with activation to what happens without (the

control). Subtle but significant statistical differences then serve to identify a relevant

but arbitrarily unreliable result, solving the context-result chicken-and-egg problem.

The machinery's sensitivity to relevant results is amplified by an embellishment

of marginal attribution: considering only unezplained transitions, that is, transitions

that were not predicted by the activation of a reliable schema; when an item's (or

conjunction's) state transition is explained, schemas' extended results do not update

their slots for that item (or conjunction). Consequently, a given schema whose activa-

tion is a less frequent cause of some result needn't compete with other, more frequent

causes, once those causes have been identified; for the result to be deemed relevant
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to the given schema, that schema need only bring about the result more often than

its other unexplained occurrences.

Once an relevant result has been so designated by the spawning of a spinoff schema,

the induction machinery looks for context conditions with respect to which the result

follows more reliably than in general; the spinoff schema's extended-context slots

maintain statistics that identify such conditions. In particular, each extended-context

slot records the ratio of the probability that the schema will succeed (i. e. , that

its result will obtain) if the schema is activated when the slot's item is On, to the

probability of success if that item is Off when the schema is activated. As with

extended-result statistics, these are weighted toward more recent trials; also, the more

trials there have been, and the greater the difference between the two probabilities,

the sooner the machinery can detect the difference.

As mentioned previously, for purposes of the statistics maintained by marginal

attribution, a schema is considered to have been activated (implicitly activated) any

time its action is taken when its context is satisfied, even if that schema was not

selected for activation (explicit activation). Thus, many schemas' extended-context

data may be updated at once. (In fact, all activation-dependent schema data equates

implicit and explicit activation; and the explainedness of a state transition, invoked

just above, is also with respect to either kind of activation.) Since implicit and explicit

activation both require a schema's context to have been satisfied, each extended-

context slot measures the corresponding item's contribution together with the context

proper to the schema's reliability.

If the first (or second) of the extended-context probabilities is significantly higher

than the other, the item is deemed a relevant condition for the schema's success,

and is a candidate for positive inclusion (if the schema is more reliable with it On)

or negative inclusion (more reliable when Off) in the context of a spinoff schema.

In figure 3-14, the extended context of /a/x discovers that p boosts the schema's

reliability, spinning off p/a/x; similarly, the relevance of i to /a/y spins off the schema
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i/a/y.
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Figure 3-14: Each of two schemas discovers a relevant context item, spawning a spinoff

schema.

Context spinoff schemas, like result spinoffs, need not be reliable. For an item to

be a relevant condition for a given schema, the schema need only be significantly more

reliable for one state of the item than for the other, but even the greater of these reli-

ability levels can be arbitrarily small. A context spinoff's own extended context seeks

conditions that further improve reliability; the discovery of such conditions spawns

additional context spinoffs, as in figure 3-15. In this fashion, marginal attribution

can build up to some conjunction of conditions that does make the schema reliable.

P 0

x ~r o p

Figure 3-15: Successive spinoffs build up to a conjunction of context conditions.

Here again, distinguishing relevance from reliability solves a chicken-and-egg prob-

lem. If, say, items p, q, and r must all be On for result x to follow from action a, then

the probability that the result follows if, say, p was On when the action initiated-call
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that P(winla)-is just the probability that q and r were On then too. If p, q, and

r are statistically independent of one another, then P(winla) is the product of the

individual probabilities of q and r being On; if p, q, and r are positively correlated,

then P(winja) is even larger than that product. However small this probability may

be, it is significantly larger of the zero likelihood that the result follows the action if p

is Off (given the above assumption that p, q, and r are all required); hence, the rele-

vance of p is detectable (and similarly for the other conjuncts; the one that makes the

biggest difference will be detected first). Note that discovering the context-relevance

of p does not depend on there being any nonzero chance that the schema succeeds

when only p (but not q and r) is on.

Most generally, there may be a disjunction of conjunctions of conditions under

which the result x follows the action a. The schema mechanism does not represent

disjunctive contexts as such; however, it may construct several reliable schemas that

all have the same action and the same result, but with different contexts. This

effectively expresses a disjunctive condition for the result to follow the action.

In that case, however, p's relevance is detected only if P(winja) exceeds the prob-

ability that some disjunct that does not include p is satisfied. If, on the other hand,

some alternative disjunct-say, the conjunction of items d, e, f-is more likely to be

satisfied (when p is On) than is the conjunction of q and r, then the relevance of p

will be obscured.

Suppressing redundant attribution

There is an embellishment of the marginal attribution algorithm-deferring to a more

specific applicable schema-that can enable the discovery of an item whose relevance

has been obscured. Suppose, in the above example, that the context-relevance of d to

schema /a/x is not obscured; the schema's extended context discovers this relvance,

leading to the construction of the schema d/a/x. The extended-context slot for d in

/a/x records that a schema has been spun off from that schema for that (positively
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included) item. The following embellishment then occurs:

e All correlation data in all extended context slots of the schema /a/x are reset

to zero.

* Subsequently, whenever /a/x is activated and d is On, the updating of all ex-

tended context data for that trial of /a/x is suppressed.

The effect of this embellishment is that the extended context of /a/x now main-

tains correlation data only for trials for which d is not On (resetting the data erases

correlations that had been tabulated without this condition). Thus, when d is on,

attribution is deferred from /a/x to the more specific applicable schema d/a/x. That

schema, of course, can update its own extended context data for the trial, leading to

the eventual construction of def/a/x.)

Once the relevance of d has been thus recorded, the probability of /a/x succeeding

when a is On no longer has to compete with the probability of its success when d is

On. The embellishment of deferring to a more specific applicable schema ensures that

as some (conjuncts of) disjuncts of a disjunctive condition are identified, it becomes

easier to detect the relevance of (conjuncts of) other disjuncts-the other disjuncts

need only compete against the "background" probability of the schema's success due

to yet-unidentified conditions.

Deferring to a more specific applicable schema performs a second vital function.

Consider again the sequence of constructions shown in figure 3-15, in which /a/x spins

off p/a/x, which spins off pq/a/x, which spins off pqr/a/x. If not for the provision

for deferring to more specific applicable schemas, /a/x would also spin off q/a/x and

r/a/x; schema p/a/x would also spin off pr/a/x, and so on.

With just three items in the eventual realiable context, such a proliferation of

intermediate constructs poses no crisis. In general, though, the number of such in-

termediate constructs is exponential in the size of the eventual context (the set of

intermediate constructs corresponds to the powerset-the set of all subsets-of the
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eventual context). Fortunately, deferring to more specific applicable schemas prevents

this exponential proliferation. If /a/x has already spun off, say, p/a/x, then /a/x's

extended context slot for q will no longer be updated on trials when p is On; hence,

/a/x will not redundantly discover the relevance of q.

A second embellishment also reduces redundancy: when a schema's extended

context simultaneously detects the relevance of several items-that is, their statistics

pass the significance threshold on the same trial-the most specific is chosen as the

one for inclusion in a spinoff from that schema. Thus, if i is a special case of j (that is,

i is On only when j is On), and the extended context of /b/z discovers the relevance of

both simultaneously, i/b/z will spin off. (Both conditions' relevance will be discovered

simultaneously if all encountered trials of /b/z when j is On also have i On.) If the

more general condition j actually suffices, then /b/z will eventually spawn j/b/z as

well, due to trials when j is On and i is Off. If, on the other hand, the more specific

condition is necessary, j/b/z will not be built. (See section 4.1.4 for an example from

the implementation's performance.)

Without this specific-priority embellishment, /b/z might first spawn j/b/z. Then,

if the more specific condition i were actually necessary, /b/z would defer attribution

to j/b/z, which would spawn ij/b/z. The unnecessary conjunction ij, appearing as

the context of a reliable schema, would then be eligible for inclusion in the results of

other schemas. The specific-first embellishment avoids this unnecessary proliferation.

An item is considered more specific if it is On less frequently. Although the

specific-first embellishment is intended for situations in which the more specific item

is a special case of the more general (as opposed to occurring disjointly), the machinery

does assure that this is so. When it is not so, the specific-first criterion makes an

arbitrary choice among relevant items.
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Result conjunctions

In order for one schema to chain to another, its result items must include all the

context items of the other (and with the same signs). For purposes of chaining,

the schemas in figure 3-16a are not equivalent to those in figure 3-16b; the chaining

broadcast described in section 3.3.1 identifies a chain to x in the second case, but not

the first. Consequently, the marginal attribution machinery must be able to build

schemas with conjunctive results, as well as conjunctive contexts.

zz
b a b

(a) No chain to xy. (b) These schemas chain together.

Figure 3-16: Predicting two items separately does not chain to a context that requires
their conjunction.

The mechanism might be designed to build conjunctive results incrementally, as

with contexts. However, this approach would create a powerset proliferation problem,

as above. And the above solution to that problem for conjunctive contexts-deferring

to more-specific applicable schemas-does not suffice for conjunctive results; it fails

to block a different exponential proliferation, as illustrated in figure 3-17. Suppose

there exist reliable schemas p/a/x and q/a/y. If p/a/x sometimes activates when q is

On, then if p/a/x could have its own result spinoffs, it would discover the relevance

of y as a further result, and would spin off the schema p/a/xy; similarly, q/a/y could

spawn q/a/xy. Either of these schemas, in turn, could spawn the reliable schema

pq/a/xy, which combines the assertions of p/a/x and q/a/y.

A combination of two such schemas is acceptable. But, here again, if n schemas

thus combine, the number of such combinations is exponential in n. To prevent the

explosive proliferation of such combinations, the schema mechanism does not build

conjunctive results incrementally; a schema with more than one item in its result is
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Figure 3-17: Incrementally extending results would proliferate combinations of
schemas.

prevented from spinning off a schema with an addition to that result. Chaining to

contexts that have more than two items is made possible by permitting a schema to

spawn a multiple-item result spinoff all at once, as follows.

As noted in section 3.2.1, a schema's extended result has a slot for every con-

junction of items that appears as a context of a reliable schema (as well as a slot

for every individual item). Marginal attribution treats each such conjunction just

like an individual item with respect to maintaining extended-result statistics about

the correlation between its transition and the schema's activation, and with respect

to including a relevant conjunction in the result of a spinoff schema. Thus, when

a conjunctive result is actually needed--to chain to a reliable schma's context-the

marginal attribution machinery will permit that result.

Overriding conditions

Extended contexts, like extended results, identify relevant items for inclusion in spinoff

schemas. Extended contexts serve a second function: identifying overriding condi-

tions, that is, conditions under which an ordinarily reliable schema is invalid. A

schema whose context is satisfied is nevertheless inapplicable when its extended con-

text reports that a known overriding condition obtains.

The example in figure 3-18 illustrates the need to recognize overriding condi-

tions. The schema p/a/x is very reliable, but fails when the (unusual) condition w
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obtains. The extended context of p/a/x duly discovers the relevance of w being Off-

the schema has a much higher probability of suceeding if activated then than if w is

On. Consequently, the schema -wp/a/x is spun off.

But merely creating the more specific schema -wp/a/x does nothing to suppress

p/a/x when w is On. Permanently suppressing p/a/x, and relying instead on -wp/a/x,

would solve that problem, but at an unacceptable cost: schemas chaining to x via a

would now have to include -,w in their results-and similarly for all other overriding

conditions that may be discovered. But if these conditions arise rarely, the overhead

of having to build new chains of schemas that explicitly include the negations of the

overriding conditions is unacceptable.

Instead, the suppression of p/a/x when w is On is accomplished by the extended

context's override machinery, which notes that item w is not in the state which makes

more reliable than otherwise by a significant factor; hence the mechanism deems the

schema unreliable at the moment, and does not regard it as applicable. At other

times, however, p/a/x may applicable and useful.

-IWO

Figure 3-18: Condition w overrides schema p/a/x.

Sustained context conditions

Actions have variable execution times. In the present implementation, each primitive

action takes one time unit to execute (in principle, this need not be the case). The

time between a composite action's initiation and completion can vary considerably,

even for different invocations of the same action, depending on the number of steps

in the shortest chain to the action's goal state.

Some context conditions need only be satisfied when an action is initiated. Others
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need to be satisfied throughout the action's execution. The primary extended-context

slot correlation, described above, compares two probabilities of a schema's success that

are conditional on an item's state at the time that the schema's action is initiated. A

second correlation, also maintained by each extended context slot, compares similar

probabilities defined with respect to an item's state at the conclusion of the action.

If both the initiation-time and completion-time correlations are significant, the mech-

anism presumes that the corresponding condition needs to be sustained throughout

the action's execution.

If a context condition needs to be sustained until completion of a (composite)

action, the mechanism obliges this requirement in two ways:

* When components of the composite action are selected for execution, actions

whose results assert the negation of that condition are thereby suppressed. First,

the activated schema informs its sustained context items of that status. Then,

the mechanism identifies every schema whose result would negate a sustained

item. Any such schema that is of applicable, of nonnegligible reliability, and is

not superseded by a more specific applicable schema informs its action of its

status. The action then suppresses the activation of all schemas that have that

action.

* If such a condition becomes negated anyway (due to external events or to

unanticipated side-effects of the mechanism's actions), the pending schema is

aborted. (In that case, some chain of schemas that reestablishes the violated

context condition and proceeds to the same goal may well be the basis for the

next activation, effectively repairing the problem.)

Except for conditions that need only be satisfied initially, the mechanism does not

seek context conditions that need to be satisfied for only part of the action-execution

interval. This is in keeping with the use of schemas to chain to a goal-each prior

link establishes the conditions needed for the next link to be applicable. A condition
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which is only necessary at, say, the completion of an action can be designated as

a condition to be sustained thoughout the action. Finer specification can always be

achieved by spawning spinoffs from the components of a composite action, rather than

designating conditions to be sustained throughout the composite action's execution.

Compactly storing correlation data

Each schema has an extended-context and extended-result slot for every item (and,

in the case of the extended context, for certain conjunctions of items). Almost all of

the memory required by the schema mechanism's data structures is devoted to the

correlation statistics in schemas' extended contexts and extended results. A naive

representation of these statistics would be so bulky that the schema mechanism could

not be implemented on present-day hardware. This section digresses from loftier

theoretical concerns to describe a low-level scheme for compactly representing such

statistics.

Every extended-context or extended-result slot maintains two correlation statis-

tics, each of which is the ratio of two probabilities, a with-probability and a without-

probability. For extended-result slots, these are respectively the probabilities of par-

ticular state transition with or without activation of the schema; for extended-context

slots, these are the probabilities of successful activation with or without a pariticular

item being on. Positive trials are the events whose probability is tabulated. For ex-

tended results, positive trials are ones for which the state transition does occur; for

extended contexts, positive trials are ones for which the activation is successful.

Naively, each correlation statistic could be represented by a pair of probabilities

(figure 3-19), each represented as a rational number, with fixed-length numerator

(corresponding to the number of positive trials) and denominator (the total number of

trials).' The size of the smallest detectable probability then depends on the number

5A floating-point representation might be used instead. However, incrementing the number of
trials by one then becomes impossible when the exponent is larger than zero, so that the least
significant bit of the mantissa is greater than one.
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of bits used for each probability; for example, sensitivity to about one event in a

million requires a numerator and denominator of twenty bits each, for each of the two

probabilities per correlation statistic.

with-probability

numerator

denominator

without-probability

numerator

denominator

Figure 3-19: Representing a correlation as a pair of probabilities, each with a 20-bit
numerator and denominator, has a resolution of 1/1,000,000.

The representation can be made more compact by alternating between one with-

sample and one without-sample (figure 3-20); an alternation bit is added to the rep-

resentation to indicate whether the next sample should be a with-trial-that is, a

trial that contributs to the with-probability-or a without-trial. If the next trial is

not of the indicated type, it is ignored. Alternating between the two types of samples

assures that the two probabilities have the same denominator. Then, since only the

ratio of the two is of interest, the denominators needn't be stored.

with-probability

count

without-probability

count

EL next-sample bit

Figure 3-20: Alternating between the two samples obviates the need for the denomi-
nators.

A provision for overflow offers further improvement. If either numerator reaches

its maximum value, both numerators shift right by one bit (that is, divide by two);
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this operation preserves their ratio. Moreover, the representation now has sensitivity

to arbitrarily small probabilities-not merely, say, one in a million-since precision

is no longer limited by the size of the numerator. The number of bits per numerator

can be reduced sharply (figure 3-21). As information about earlier trials vanishes

when the numerators shift, the sample is biased toward more recent trials. This bias

is arguably desirable: circumstances change, and if the two probabilities significantly

differ in the course of recent trials, it is likely that the item in question is indeed

relevant now.

with-count without-count next-sample bit

Figure 3-21: Right-shifting to prevent overflow requires fewer bits per count.

A final improvement, due to Rivest (personal communication), compresses both

counts into one signed count (MARCSYST I uses a four-bit count, plus sign bit, as

in figure 3-22). The count increments for a with-trial, and decrements for a without-

trial. To attenuate random drift (which otherwise would soon bring the count to

one of its two extrema even if the two probabilities were equal), increments (and

decrements) are of different sizes. In particular, if the count is positive, then a with-

trial increments the count by a larger amount (three, in the present implementation),

but a without-trial decrements by a smaller amount (presently two). Similarly, if the

count is negative, with-trials increment the count by the larger amount, and without-

trials decrement it by the smaller amount. This disparity exerts pressure toward zero,

so that the with-probability must exceed the without-probability by the ratio of the

two increments for it to be likely that the value steadily diverges from zero. If the

value reaches either extreme, the corresponding item is deemed relevant.

The actual ratio of the two probabilities cannot be recovered from the single-

count representation; that representation indicates only whether the ratio's magnitude

exceeds a threshold determined by the ratio of the two increments. For a given

probability ratio, the ratio of the larger increment to the maximum count magnitude
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count sign bit next-sample bit

Figure 3-22: Two counts collapse into one signed count which gets incremented and
decremented, with a bias towards zero.

determines how many positive trials are required before relevance is detected. When

two probabilities are actually equal, the likelihood of a false indication of relevance

decreases exponentially in the number of trials required (double-exponentially in the

number of bits in the count). Hence, although the parameters used by MARCSYST I

are no doubt adequate only because of the unrealistic simplicity of the microworld-

requiring fewer trials to distinguish real correlations from coincidence-scaling up

does not strain computational storage or time resources.

3.4.2 Composite actions

Even for sensorimotor-stage schemas, primitive actions alone are insufficient, for two

reasons. The schema mechanism needs to express actions at higher levels of abstrac-

tion; and it needs to discover the results of external events as well as of its own

actions.

Composite actions facilitate the abstraction and externalization of actions. A

composite action is defined by its goal state; it is the action of bringing about that

state. A composite action is implemented by schemas that chain to its goal state.

When a primitive action is initiated (by the activation of a schema which has that

action), the action triggers a particular hardwired mechanism. When a composite

action is initiated, the schema mechanism identifies a chain of schemas leading from

the current state to the goal state, and activates those schemas in sequence. (More

accurately, the information to identify such chains is stored in advance in the action's

controller, and is deployed when the action is initiated, as discussed below.) Schemas

that lie along some chain to a composite action's goal state are called component

schemas of that action.

112



Consider, for example, the action of turning on a lightswitch. On a given occasion,

that action might be accomplished by a particular low-level motor action, occurring

in just the right context at the end of some chain of schemas that prepares for the

final flick of the switch. Rather than (or in addition to) such a representation, it

is valuable for the schema mechanism to designate turning on the lightswitch as an

action in itself." Such a designation offers three advantages:

* By abstracting above the action's implementation, the mechanism can learn

about the result of turning on the lightswitch per se (eg, that a light turns

on), rather than just learning about the result of some particular lowlevel ac-

tion, which lesson would not generalize to the next instance of turning on the

lightswitch, if accomplished then by a different lowlevel action.

e Also, by abstracting above the action's implementation, the mechanism is able

to organize activity hierarchically. A chain of schemas may incorporate the

action of turning on the lightswitch-or much higher-level actions than that-

as a single step, the details of which needn't be accounted for as part of that

chain; the details may depend in part on circumstances that are yet unknown

when that action is initiated.

o Finally, representing lightswitch-on as an action enables the schema mechanism

to learn about the effects of that action (eg, a light going on) even when the

action occurs as an external event, not under the mechanism's own control (as

explained immediately below). Thus, the schema mechanism's composite-action

facility brings about a transition from representing the result of some action,

to representing the external result as an action in itself-and in turn finding its

own results. This facilitates the Piagetian progression from schemas of physical

activity, to schemas that are independent of personal action, via intermediate

'This hypothetical example is considerably beyond the implementation's actual achievements.
Lower-level examples of the same principle appear in the synopsis of chapter 4.
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schemas that involve the effects of personally-caused external events.

Special properties of schemas that have composite actions

As noted in section 3.4.1, the marginal attribution facility considers a schema to

have been implicitly activated if the schema's action is initiated when the schema

is applicable, even if that schema was not selected for activation, and thus was not

responsible for the action's initiation. Composite actions carry implicit activation one

step further. A composite action is considered to have been implicitly taken whenever

its goal state becomes satisfied-that is, makes a transition from Off to On-even if

that composite action was never initiated by an activated schema-in fact, even if

the goal state's achievement is due to external events entirely uninfluenced by the

mechanism. Consequently, a schema whose action is composite is implicitly activated

each time its action's goal state becomes satisfied when the schema is applicable.

Marginal attribution can thereby detect results caused by the goal state, even if the

goal state obtains due to external events.

Designating external events as actions combines with activation hysteresis (section

3.2.2) to promote imitation by the schema mechanism of external events that corre-

spond to extant schemas. Hysteresis applies even to implicitly activated schemas,

so if a schema is implicitly activated due to an external event, the schema receives

enhanced value for an explicit activation, which would repeat the external event.

A schema with a composite action is restricted from collecting extended result

data except on trials for which the action was explained-its goal state predicted

by some reliable schema that just finished its (perhaps implicit) activation. And

on such a trial, data is collected only at those extended-result slots whose items'

transition was unexplained. This restriction mitigates an undesirable proliferation of

schemas when several state transitions that have been made goal states of composite

actions tend to co-occur. Without the restriction, each of the co-occurring actions

would come to regard the others' goal states as its own results, spawning a spinoff
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schema for each. But with the restriction, if the co-occurring transitions become

explicable to the mechanism at about the same time, the mutual attribution and

consequent proliferation is blocked. (In particular, the restriction prevents the useless

construction for each composite action of a useless schema whose result is just the

action's goal state.) Examples of this restriction's usefulness occur in section 4.1.7.

A composite action is enabled when one of its components is applicable. If a

schema is applicable but its action is not enabled, activating the schema is ineffec-

tive, and the schema most likely fails. If failures due to a disabled action are frequent,

a schema's extended context may be able to learn override conditions that designate

situations in which the action does not work. For such conditions to percolate up

into a schema's context violates the abstraction barrier that is supposed to insulate

the schema from the details of executing its action. But if the action fails under iden-

tifiable circumstances, the abstraction barrier is partly misplaced, and the schema's

context needs to take note of the problem.

Constructing and maintaining composite actions

As discussed in section 3.2.2, the schema mechanism keeps track of the average ac-

cessibility of each item and result-conjunction of items. An item or conjunction is

accessible when there is a chain of schemas that leads to it from the current state; its

average accessiblity is the probability that the item is accessible at a given moment.

When the accessibility of an item or conjunction is high, the schema mechanism de-

fines a composite action with that item or conjunction as its goal state. The schema

mechanism also constructs a bare schema which has that action; that schema's ex-

tended result discovers effects of achieving the action's goal state.

When a new composite action forms, the mechanism also allocates and initial-

izes the new action's controller, which, as discussed in section 3.3.1, connects to all

schemas, with a slot for each schema that records the schema's proximity to the ac-

tion's goal state. To initialize the controller, the mechanism broadcasts a message
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backwards in parallel through chains of schemas that lead to the goal state (sec-

tion 3.3.1). Occasionally thereafter, when the composite action is taken, the mecha-

nism performs another such broadcast to update the controller information. Usually,

though, the action executes on the basis of the already recorded controller data.

Recording proximity information in an action's controller is similar to chunking

in SOAR (Laird, Newell and Rosenbloom 1987); both involve searching through a

state-space, recording the points of departure, so that the path from those points to

the goal is subsequently known without having to recapitulate the search. But the

nature of the search that is thus abbreviated is different here; see sections 6.1.3 and

6.1.4 for elaboration.

Using controller data has several advantages over performing a broadcast. The

most straightforward advantage is that it is faster: a broadcast takes time proportion-

ate to the maximum chain length searched for, whereas finding the closest applicable

schema based via the controller only takes time logarithmic in the number of schemas.

Controller data facilitates the concurrent activity of several composite actions.

(The current implementation only activates one toplevel schema at a time, but many

nested composite actions may run simultaneously; furthermore, the mechanism could

be extended to permit several toplevel activations.) As noted in section 3.3.1, concur-

rent broadcasts would interfere with one another. Using prerecorded controller data

circumvents such interference.

Using controller data also extends the length of chains that can be found by a

broadcast, by means of an embellishment to the broadcast process. When a broadcast

updates the information in a previously initialized composite action, the existing data

serves as a point of departure. That is, rather than beginning the broadcast only from

schemas whose results include the goal state, the broadcast also starts with schemas

of already-known proximity to the goal. Schemas that had been at the fringe of prior

broadcasts can now discover predecessor links in chains to the goal.

A second embellishment creates still other advantages. A composite action con-
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troller does not only record proximity information from broadcasts. It also averages

in data from actual executions of the action. That is, each time a composite ac-

tion is explicitly initiated, the controller keeps track of which component schemas

are actually activated and when. (The present implementation only keeps track of

the initial such component for each time an action is initiated; this lets the data

be kept globally, instead of commanding space in each controller slot.) If the action

sucessfully culminates in its goal state, the actual cost and duration of execution from

each entry point are compared with the proximity information stored in the slot of

each component actually activated; in case of discrepancy, the stored information is

adjusted in the direction of the actual data. If the action fails to reach its goal state,

the proximity measures for the utilized components are degraded.

Most straightforwardly, this empirical revision of controller data serves to correct

false predictions based on proximity broadcasts. More subtly, the revision might fos-

ter the discovery of certain kinds of reliable paths that a proximity broadcast cannot

identify as such (although such discovery is thus far undemonstrated by the implemen-

tation). In particular, it might be expected to foster the discovery of diverging and

reconverging paths, of paths that require the repetition of a particular component,

and of paths that involve on-the-fly repair of broken links in a chain.

* Divergence and reconvergence. Consider a set of three chains of schemas to a

common goal, as shown in figure figure 3-23a. The three paths diverge, via

three schemas with the same context and action as one another, but different

results. Suppose it is reliably the case that one of these three results follows,

but no particular one follows reliably (for example, there may be a 1/3 chance

of each occurring). Since each of the three results lies on a path that reliably

reconverges to the goal, a chain that passes through the area of divergence and

reconvergence is reliable.

However, the broadcast process misses this reliability. The cumulative proximity

measure broadcast along each of the three chains is attenuated by the low
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reliability of each of the three diverging schemas. Thus, the broadcast proximity

at and before those links in the chain underestimates the actual proximity of

those links.

An underestimated component might nonetheless be selected by the controller,

if no component schema with greater proximity is applicable. Each time such a

selection culminated in reaching the goal state, the proximity measure for that

component increases, until the estimate became accurrate.

e Repetition. There may be a component schema that needs to be repeated several

times until its result obtains successfully, enabling further progress along a chain

(figure 3-23b). As in the previous example, the schema that is unreliable at

each repetition (but that is, by assumption, reliable within several repetitions)

attenuates the proximity measure that broadcasts backward through that link

in the chain. Also as in the previous example, the empirical success of paths to

the goal that pass through the underestimated link tends eventually to correct

the underestimate.

* On-the-fly repair. Suppose a particular component schema is unreliable, and

often fails when there is no other applicable component to shift to, thus in-

terrupting the composite aciton. It may so happen that certain schemas that

tend to be applicable and to get activated at that point have the side-effect of

making applicable some component of the interrupted action. It may even be

the case that those schemas tend to create some new component schema, and

create circumstances that make it applicable. The break in the original chain

is thus repaired. If such repair follows reliably, the controller again comes to

recognize empirically that the unreliable component, and its predecessor links,

reliably leads to the goal state.

By counting on this repair taking place, the machinery effectively invokes the

system's overall intelligence, used to effect the repair, as a subroutine. But
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this invocation is not explicit; it is a consequence of the empirically derived

high proximity value for an unreliable component which nonetheless leads to

situations in which repair is possible.

(a) (b)

Figure 3-23: Action controllers make possible the discovery of paths that diverge and
reconverge, or that involve repetition.

3.4.3 Synthetic items

It is plainly inadequate to represent states of the world directly in terms of primitive

sensory elements. Even if, say, statements about physics, baseball, or politics could

in principle be reduced to statements about the sensory manifestations of those do-

mains, the reduction would be impossibly cumbersome. If a learning system's initial

conceptual repertoire is indeed limited to sensorimotor terms, then a necessary con-

dition for the system's eventual attainment of humanlike intelligence is the ability to

synthesize much higher-level concepts. Such concepts must somehow be defined in

terms of the primitives; the question is how.

One possibility is to use boolean combinations of prior concepts. For example, the

contexts of schemas express conditions for action-result pairs, the conditions expressed
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as arbitrary boolean combinations of items. (An individual context does not have

disjunctive form, but several schemas that share the same action and result effectively

express a disjunctive condition.) In the standard AI sense of concept learning, a new

target concept is just such a boolean combination, and the system's task is to converge

to the correct one. I argue, however, that new concepts need to differ from old ones

more radically than being novel boolean combinations of old ones.

A concept's verification conditions are the possible indications of whether or not

a given situation presents an instance of that concept. When a concept is defined

as a boolean function of other concepts, the arguments to that function serve as

verification conditions for that concept (except for any arguments that the function

ignores, such as the argument a in the function (a or not-a) and b; but all items in

a schema's context should make a difference, since only relevant items are added to

spinoffs). The designation of a persistent object at a particular location, for example,

might include the verification condition of having recently seen the object there. (This

designation would require being able to define new concepts or conditions as boolean

combinations of past as well as present values of other conditions, effectively treating

different time-values as different conditions.)

But it is well known that few concepts can be defined by a fixed set of verification

conditions. It is logically possible that the world will present evidence that some addi-

tional condition is relevant, or that what had been considered a conclusive indication

of the concept in question actually admits previously unsuspected exceptions. In the

case of a persistent object, for example, one may discover a new theory of physics

which predicts that an object will materialize at a particular position under certain

circumstances; observing those circumstances then becomes a verification condition

for there being an object at that position. Or one may be told of an object's presence

by a person whom one considers trustworthy. Being so informed qualifies as a verifi-

cation condition; but discovering that that person is a pathological liar may rescind

that verification condition.
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As these examples illustrate, the acquisition of new verification conditions, or the

revision of old ones, for a given concept may involve discoveries in domains that are

arbitrarily abstruse (e. g. theoretical physics), or arbitrarily remote from that concept

(e. g. judging people's personalities). Thus, verification conditions should always

admit extension and revision in the course of learning more about the world; and

since the verification conditions for a given concept can always change, the concept

cannot be defined by a fixed set of such conditions. Moreover, nothing in this analysis

depends on the functions in question being boolean (as opposed to, say, functions of

first-order logic). More generally, then, it does not work to define a concept as any

fixed function of its verification conditions.

However, any concept entertained by a physically realized mechanism must be ex-

pressible as some function of the system's (past and present) inputs, because the (full

or partial) state of any physical system computes some function of the system's inputs.

This expressibility in principle may seem to contradict the fact that the verification

conditions might always need revision depending on yet-undiscovered aspects of the

world. However, a concept might-in principle-be defined to incorporate the very

criteria for judging the appropriateness of particular verification conditions, based

on the totality of knowledge available to the system. That construal of a concept's

definition produces meaning holism (Fodor 1987), whereby each concept's meaning

must incorporate all other concepts and beliefs.

However possible in principle such a definition might be, it is prohibitively un-

wieldy. Correspondingly, although the schema mechanism does maintain verification

conditions for each synthetic item (as discussed below), those conditions are not fixed

or exhaustive. Rather, they are always subject to change, and thus do not define the

synthetic item. Section 3.4.3 describes what does do so.
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Intension, extension, and verification conditions

Using synthetic items to define concepts offers a perspective on the relations among

the intension, extension, and verification conditions of a concept. A concept's ez-

tension is the set of possible circumstances under which the concept holds. (This

definition presumes that the concept is propositional; if, instead, it designates, say,

a particular object, it can be converted into a related proposition, such as Such-

and-such object is present.) The intension of a concept is a particular designation

or representation of that concept; in the schema mechanism, the intension of the

concept represented by a given synthetic item is the set of validity conditions of the

item's host schema. Finally, the verification conditions are what an agent uses to

determine whether the concept does or does not obtain (under actual or hypothetical

circumstances).

On the face of it, it may seem arbitrary to ascribe to an agent a concept whose

extension differs from the extension of the verification conditions that the agent uses

for the concept. After all, the verification conditions specify precisely when the agent

deems the concept applicable; in what sense might the agent actually have in mind a

different concept than that? Synthetic items suggest an answer: an item's verification

conditions change, and change systematically in the direction of corresponding to the

item's intension. That intension, then, is the concept that the verification conditions

try to match (though they may never fully converge to it).

The relation among an item's intension, extension, and verification conditions

helps solve the puzzle of how a concept's extension can have psychological reality. It

is well known that two concepts can have the same extension but different intensions

(e. g. Fodor 1981). For example, section 4.3.1 discusses the formation of a syn-

thetic item that designates a palpable-object-at-position-X, and another designating

a visible-object-at-position-X. In a world lacking invisible or intangible objects, the

two concepts are coextensive: each holds exactly when the other does. But they have

different intensions: one is defined with respect to a host schema for reaching and
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touching something, the other for looking and seeing. At first, the schema mecha-

nism does not represent their mutual equivalence; indeed, it sometimes recognizes the

applicability of one of the coextensive concepts, but not the other. In what sense,

then, is their coextensivity psychologically real, that is, a property of the schema

mechanism rather than of the world external to the mechanism?

Again, the answer concerns the verification conditions of the two concepts, which

converge to the same extension, which-at an imaginary limit-matches the two syn-

onymous intensions. Even before this convergence occurs, the verification conditions,

as maintained by the schema mechanism, can be said to be disposed to so convergence,

given suitable experience in the world; and this dispositional property is reasonably

regarded as a property of the mechanism, even though-like other dispositional prop-

erties, such as solubility-it depends as well on external conditions.

Constructing synthetic items

Creating new state elements involves a more radical sense of novelty than building

new schemas and actions. Spinoff schemas and composite actions are merely re-

organizations of existing structures. But a synthetic item is a new element of the

system's ontology-an element fundamentally different from the prior contents of the

system's conceptual vocabulary, to the extent of being practically inexpressible as

any function of those prior concepts, as just discussed.

Sometimes, as with conservation of object or of mass, what's required is the con-

ception of some underlying physical reality. In contrast, conservation of number,

for example, involves the conception of an underlying nonphysical abstraction. The

synthetic-item machinery is designed to promote conservation discoveries of both

kinds by creating new items to represent newly-conceived aspects of reality.

The schema mechanism constructs a synthetic item to reify the validity conditions

of an unreliable schema. That is, a new synthetic item is defined to represent whatever

unknown aspect of the world governs the schema's validity. This is best explained
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with an example.

Consider the schema in figure 3-24, which asserts that moving the hand to some

body-relative position X results in a tactile sensation at the hand. This schema is

unreliable; it only succeeds when there happens to be an object at that position,

waiting to be touched.

tactl

hand-to-X

Figure 3-24: Sometimes, moving the hand to X brings tactile contact.

Significantly, however, the schema is locally consistent, meaning that if it happens

to succeed when activated on some occasion, it is likely to succeed again if activated

again within, say, the next several seconds. This consistency follows from the tendency

of objects in our environment to stay put for a while. The schema mechanism, of

course has no appreciation of this explanation; but it does keep track, empirically, of

each schema's local consistency, the probability of its success when its last activation

was successful; and, for a schema with high local consistency, the mechanism also

tabulates the expected duration of the schema's consistency, the average interval

during which the schema is observed to remain valid.

When a schema is found to be unreliable but locally consistent, the mechanism

constructs a new synthetic item, called that schema's reifier; the schema is the new

item's host schema. The host schema's reifier designates whatever condition makes

the schema valid-in this case, roughly the condition that a paplable object is present

at body-relative position X.

palpa ble-object-at-X
.. l- ... reifier (synthetic item)

tacti ------ host schema

ha-te o-X

Figure 3-25: A synthetic item reifies the conditions under which this schema is valid.
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The host schema associates its reifier with a probe-the host schema's action-

and a manifestation-the host schema's result. A synthetic item thus works backward

from a thing's manifestation, and a way of probing for that manifestation, to define

the very thing manifested. In the present example, an object at a given position

is manifested by a tactile sensation when probed by putting the hand there. But

the concept a palpable object being there says more than that that probe in fact

yielded the manifestation-the concept further entails that, even when the probe is

not actually carried out, it would yield the manifestation if it were carried out (a so-

called counterfactual assertion (Lewis 1973), based on a hypothetical premise-that

the probe is carried out-that is contrary to fact).

What persists in between probes and in between manifestations is the fact that

the probe would yield the manifestation. This persistence is not merely the recency or

recurrence of the manifestation; many states recur without there being any underly-

ing entity which persists between recurrences and which the recurrent state manifests.

In the present example, the condition that persists is a rudimentary fragment of the

concept of there being a physical object (at a particular position). As section 4.3.2 il-

lustrates, the development and intercoordination of many such fragments implements

progressively better approximations to the concept of physical objects.

Looking for persistence is certainly built into the schema mechanism's synthetic

item facility; it is innate, rather than acquired. When the mechanism constructs a

synthetic item, what is novel and learned is not persistence per se, but rather the

very thing whose persistence is noticed-not the manifestation, but rather the state

of the world such that the probe would yield the manifestation.

Maintaining verification conditions

The state of a primitive item is set directly by some input module. In contrast, the

state of a synthetic item must be maintained according to learned criteria for distin-

guishing whether the represented state currently obtains or not-that is, according
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to learned verification conditions.

The schema mechanism recognizes four kinds of verification conditions:

* Host schema trial. Each time the host schema completes its activation, it turns

its reifier On or Off according to whether the schema succeeded or failed.

* Context conditions. The host schema may spin off other schemas that include

context conditions under which the result follows the action reliably. For ex-

ample, as illustrated in figure 3-26, the palpable-object schema shown above

may spin off a schema whose context designates reliable visual evidence for the

presence of an object at position X.

A reliable schema reports its applicability to its parent schema (the schema that

spun it off); in this example, when the visual-evidence schema is applicable, it

reports that fact to the palpable-object schema. Thus, the palpable-object

schema knows, without actually having to try, that its activation would succeed

at the moment. Accordingly, the palpable-object synthetic item is turned On.

* Predictions. A synthetic item, like a primitive item, may come to be included

in the results and contexts of many schemas; indeed, synthetic items would

not otherwise be useful. If a synthetic item appears in the result of a reliable

schema, and that schema is activated, then in the absence of any evidence to the

contrary, the mechanism presumes that that schema succeeded; thus the item

is turned On (if positively included in the result, or Off if negatively included).

e Local consistency. When a synthetic item turns On, it stays in that state (unless

turned Off by one of the above conditions) for a period of time equal to the

empirically determined expected duration of the host schema's local consistency;

then it turns Off. When a synthetic item turns Off, it remains Off until turned

On by one of the above conditions. Thus, local-consistency evidence is just the

memory of the most recent host-trial, context-condition, or prediction-based

evidence for the state of an item.
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If several times the expected duration of local consistency passes without any ev-

idence about a given synthetic item's state, its state becomes Unknown. An item also

becomes Unknown if there is contradictory evidence as to its state-except that host-

trial evidence simply overrides any conflicting evidence, since host-schema validity

is the very definition of a synthetic item's referent; also, local-consistency evidence

simply yields to any newer evidence that comes along.

_ palpable-object-at-X
visual-evidence-for-object-at-X

tactl

hand-to-X

visual-evidence-for-object-at-X tactl

hand-to-X

Figure 3-26: Context spinoffs specify evidence that helps maintain a synthetic item's
state.
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Chapter 4

Synopsis of schema mechanism

development

The schema mechanism is designed to recapitulate significant milestones of the Pi-

agetian developmental sequence in infancy, in a manner consistent with the Piagetian

developmental themes, and thus to explain how that development might in fact come

about. This chapter presents a synopsis of the actual developmental progression

exhibited by the extant computer implementation of the schema mechanism.

The schema mechanism has been run from scratch on several dozen occasions,

with at least minor variations of the mechanism from one run to the next. The

synopsis describes typical results from two modes of operation: a full mode (using

the microworld as described in section 3.1, and a restricted mode (using a restricted

version of the microworld, described below). Informally, the results described here

are similar to the results from several runs of similar versions of the mechanism, or

with different randomizing factors; thus, the results are unlikely to be a fluke. But

there is no attempt here to quantify the consistency and variation of results from

different runs. The synopsis may be regarded as a pilot study in preparation for a

more rigorous analysis, which should be carried out in conjunction with independent

replication efforts, as discussed at the start of chapter 3.
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Running in the full mode exhausts the available Connection Machine memory

before constructing synthetic items that designate persistent objects. Consequently,

there is also a restricted mode, for which the microworld is curtailed in two respects:

of the primitive eye and hand actions, only forward and backward ones are enabled

(left and right are disabled); and there is only one object (other than the body and

hand) that comes into view, and it stays within the body-relative region indicated in

figure 4-1. Except where otherwise noted, the descriptions through section 4.2.1 refer

to the full mode, and descriptions thereafter to the restricted mode.

I IE

Figure 4-1: In the restricted microworld, hand and eye motions are vertical, and a
single external object is confined to the shaded region.

4.1 Spatial substrates

4.1.1 Initial schemas

As noted in section 3.1, there is an initial, bare schema for each primitive action.

Figure 4-2 shows the initial schemas for the full mode and for the restricted mode.

(The reader may wish to refer back to tables 3.1 and 3.2 in section 3.1 for the names

and descriptions of the primitive actions and items.)

4.1.2 Grasping

The first schema built is /grasp/hcl (figure 4-3), which asserts that grasping results

in the sensation of the hand being closed. This schema is unusual in that its result

follows from its action unconditionally; hence, the schema is reliable despite an empty
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handf

0-n0
handb

handr0
handr

handi

Figure 4-2:

0-=0
eyef

eyeb

grasp

ungrasp

eyer

eyel

The initially supplied schemas.

context. That the result follows unconditionally also makes the schema easy to dis-

cover quickly, since every occurrence of the action produces a state transition to the

result (unless the hand is already closed, in which case the action's occurrence does

not count as a trial); and a transition to the result occurs only when that action is

taken. Thus, the significant difference between the result's occurrence with and with-

out the action becomes apparent more quickly than in the case of a relevant result

that follows only infrequently, and that occurs under other circumstances as well.

o hct

grasp
-~O-_O hel

grasp

Figure 4-3: The grasp action closes the hand.

Similar schemas describe the ability to close the hand and grasp an object that

touches the hand's "fingers", provided that the hand wasn't already closed (figure 4-

4). The unreliable schema /grasp/hgr designates the relevance of the grasp action to

the sensation of grasping. The (fairly reliable) schema tactl/grasp/hgr denotes the

necessity of being in appropriate contact with an object; and tactl&-hcl/grasp/hgr

notes that the hand must not already be closed in order for grasping to follow.

130



O hgr tactl 0

0-7_0 I0_)Ohgr
grasp grasp

,, ,hcl tactl tact
r-)0 hgr tahclt hgr

grasp grasp

Figure 4-4: The grasp action grasps an object in contact with the hand (unless the

hand was already closed.)

4.1.3 Elaborating the visual field

Often, it happens that an object is in the visual field when an incremental glance

action occurs. Suppose, for example, that on several occasions, an object appears at

vf22 when the action eyel is taken (figure 4-5). As a result of the action, the image

shifts to the adjoining visual region to the right, and vf32 turns On.

before glance-left after glance-left

Figure 4-5: A glance action shifts a visual image to an adjoining region.

The transition to vf32 is an infrequent result of the action of glancing leftward; it

results only if an object happens to be within view, and at just the right region of

the visual field, when the action occurs. Moreover, that transition also happens, on

occasion, in the absence of the action in question-if, say, a downward glance brings

an image from vf3l to vf32, or if a moving object's image passes through that region

while the glance is stationary.

Nonetheless, the transition to vf32 happens more often when the action eyel is

taken than when not.

131



e When eyel is taken, a transition to vf32 follows if:

- A stationary object appears at vf22 before the action starts, and the glance

is not already at its leftmost orientation; or

- A moving object arrives at the projection of vf32 as the action concludes

(regardless of whether the glance orientation changed, or was already at

its leftmost extreme).

* When eyel is not taken, a transition to vf32 follows if:

- Some other glance action moves the image of a stationary object to vf32;

or

- A moving object arrives at the projection of vf32, regardless of whether a

glance action was just taken.

Transitions to vf32 brought about by moving objects happen about as often when

the eyel action is taken as when not; in either case, what is required is that the object's

image move to wherever vf32 ends up being mapped. Since objects are stationary

most of the time, the comparison between the likeihood of transition with and without

the action is dominated by the case in which the object does not move.

Transitions due to a stationary object require that some incremental glance action

be taken, that visual field is not already in its most extreme orientation in the direction

of that action, and that the object's image is in the appropriate adjoining region just

before the action. The glance-orientation and image-position requirements are as

likely to be met in the case of the eyel action as in the case of any of the other three

incremental glance actions; therefore, these factors attenuate the probability of the

vf32 transition equally whether or not the eyel action occurs. The only remaining

factor is whether a glance action occurs, and this occurrence is significantly more

likely (in fact, certain) if the action eyel is taken than if not. Thus, the transition to

vf32 is significantly more likely when eyel occurs.
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As indicated in figure 4-6, the extended result of /eyel/ discovers the relevance of

vf32, spinning off the schema /eyel/vf32. Of course, the relevance of other visual-field

items is similarly discovered by the extended result, leading to spinoffs for those items

as well.

" W3 O-,r)O vf32
" vf32 eyel

0 vf21 O ,X vf21
eyel Leyel

Figure 4-6: A glance-action schema discovers visual-field results.

These schemas, with empty contexts, are all unreliable. But their extended con-

texts each identify the appropriate context condition, designating the visual-field

region immediately to the right of the result item (glancing left shifts an image to the

right). So, for example, /eyel/vf32 spins off the reliable schema vf22/eyel/vf32, and

similarly for the other schemas showing results of glancing left (figure 4-7), except for

those glance-left schemas that result in a visual appearnce at the leftmost edge of the

retina.

vf22 o vf32 vf22 -HO vf32
eyel eyel

vfl1 0 vf21 vf11 -r-) vf32

eyel eyel

Figure 4-7: Schemas expressing visual results identify corresponding context condi-

tions.

Similar schemas form for each of the other three incremental glance actions. Even-

tually, these schemas link together to form a network that elaborates the spatial
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structure of the visual field (figure 4-8). The spatial elaboration is practical; the

adjacency of visual-field regions is designated by their connection via an incremental

glance action. The network comprises chains of schemas that say how to shift an

image from one visual-field region to another by a series of incremtal glance actions.

vf44 vf44

vf34 0 rJI vf44
eyer

vf34 5 t D vf44 eyef eyeb

eyel

vf43 vf43

Figure 4-8: Schemas with incremental glance actions link adjacent visual-field items.

In the full mode, the schema mechanism constructs most of the schemas shown in

figure 4-8, but it does not realize the entire network.

4.1.4 Foveal relations

The visual-detail items in the fovea also have adjacency relations; when an image shifts

from one foveal region to another, the details of its appearance shift correspndingly.

The extended result of the bare schema for each incremental glance action (such as

/eyer/ in figure 4-9) notes the relevance of each visual detail item, spinning off schemas

such as /eyer/fovxl2 and /eyer/fovf3O.

The extended context of each such schema seeks conditions that make the schema's

result follow reliably. For some schemas, such as /eyer/fovx12, the corresponding

visual-detail item in an adjoining retinal region serves as such a condition; thus, for

example, the schema fovr12/eyer/fovx12 spins off (figure 4-10a), and similarly for

other actions, regions, and details.
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O-1-)o fovxl2
eyer

OrHO fovf30
eyer

Figure 4-9: A glance-action schema discovers visual-detail results.

O-1_)o fovx12
eyer

fovrl2 EI---hI fovxl2
eyer

(b) vf33 o O-=O fovf30
eyer

vf33 0 -- I fovf30

eyer

Figure 4-10: Glance-action schemas discover contexts for visual-detail results.
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For other schemas, such as /eyer/fovf30, there is no visual-detail item to confer

reliability, since vf33, the region immediately to the right the forward foveal region, is

not itself a foveal region, and thus conveys no visual detail. The extended context of

/eyer/fovf30 does identify the coarse item vf33 as a relevant condition, leading to the

construction of vf33/eyer/fovf30 (figure 4-10b). This schema, though still unreliable,

is much more reliable than the unconditional /eyer/fovf30.

The extended context of /eyer/fovx12 also identifies the result's adjoining coarse

item (in this case vf32) as a relevant context condition. If vf32 spawned a spinoff

schema vf32/eyer/fovx12 before fovrl2 spins off fovr12/eyer/fovx12, then the extended

context of vf32/eyer/fovx12 would itself discover the necessity of the condition fovrl2,

constructing the schema vf32&fovr12/eyer/fovx12. Since fovrl2 is never On unless

vf32 is On, /eyer/fovxl2 would not, in this case, ever spawn fovr12/eyer/fovx12, due

to the provision, discussed in section 3.4.1, for suppressing redundant attribution by

deferring to a more-specific applicable schema.

Two factors make it likely that /eyer/fovx12 will spawn fovr12/eyer/fovx12 before

spawning vf32/eyer/fovx12. First, the mechanism may encounter an object lacking the

visual feature 12 whose image passes from the right-foveal region to the central-foveal

region when the action eyer is taken. In that case, fovxl2 makes a larger observable

contribution to the reliability of /eyer/fovx12 than does vf32, so the extended context

will detect the relevance of fovxl2 sooner. Second, if instead the relevance of the two

items is detected concurrently, the mechanism prefers to create a spinoff for the more

specific context condition (section 3.4.1 again), again favoring fovxl2.

Once fovr12/eyer/fovx12 exists, the context condition vf32 does not give rise to

further spinoffs for the action eyer and result fovxl2: /eyer/fovxl2 cannot spawn

vf32/eyer/fovx12, because of redundant-attribution suppression; and fovr12/eyer/fovx12

does not spawn vf32&fovr12/eyer/fovx12, because there is no measured improvement

in the reliability of fovr12/eyer/fovx12 when vf32 is On rather than Off (indeed,

fovr12/eyer/fovx12 cannot even be tested when vf32 is Off, since fovrl2 must then
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be Off too, making the schema inapplicable). Thus, the mechanism avoids the ineffi-

ciency of building a conjunctive context here when a single item suffices.

That inefficiency does arise in another way, however. If, in the trials encountered

so far, every object with feature 12 also has, say, feature 40, then from the point

of view of the extended context of /eyer/fovx12, there is no distinction between the

relevance of fovrl2 and fovr40. The extended context discovers both conditions si-

multaneously, and it is a matter of chance which then spawns a spinoff schema. If

fovr12 happens to be chosen, then the other condition becomes extraneous (like the

condition vf32 in the exmple above). If fovr40 happens to be chosen instead, spawning

the schema fovx40/eyer/fovx12, then fovrl2 instead appears to be extraneous-until

the mechanism encounters an object that has feature 12 but not 40. When, on some

occasion, glancing left shifts that object's image from the rightmost foveal region to

the central foveal region, /eyer/fovx12 can spawn fovr12/eyer/fovx12; since fovr40 was

Off, it does not suppress the attribution of relevance on this trial to fovrl2.

4.1.5 Elaborating the proprioceptive fields

Incremental glance actions affect visual proprioceptive items as well as visual-field

items. Schemas such as vp20/eyef/vp21 express the adjacency of visual proprioceptive

items by designating their connectivity with respect to incremental glance actions. (I

omit the details of this schema's derivation, which is similar to the examples above.)

Such schemas link the visual proprioceptive items into a network (similar to the

visual-field network in section 4.1.3) that elaborates their spatial structure (figure 4-

11). This network provides a chain of schemas from any given eye orientation to any

other, conferring the ability to shift from any orientation to any other.

Similarly, incremental hand actions affect haptic (hand) proprioceptive items; for

example, hp23/handl/hp13 shows the adjacency of hp23 and hp13. Such schemas

form yet another network (figure 4-12) that implements a practical description of the

spatial arrangement of the haptic proprioceptive items. (This network has a hole at
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vp34( C vp44
eyel

vp34O- CD vp44
eyer

vp44 vp44

eyeb eyef

vp43 vp43

Figure 4-11: Schemas with incremental glance actions link adjacent visual proprio-

ceptive items.

hp02; that body-relative position is inaccessibile because the body is there.)

hp44 hp44

hp34(3ETC hp44
handi

hp34 hp44 handb handf

hhandrp

hp43 hp43

Figure 4-12: Schemas with incremental hand actions link adjacent haptic propricep-
tive items.

As with the visual-field netwok, the full mode realizes most, but not all, of the

schemas in these networks.

4.1.6 Negative consequences

Shifting the position of the hand, the glance, or a visual image not only establishes a

new position, but also eradicates the prior position. Schemas like those in figure 4-13

designate such consequences.
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vf23 , vf23 vp12 vp12 hp34( -7--)(Q - hp34
eyef eyel handb

Figure 4-13: Moving to a new position eradicates the old one.

4.1.7 Positional actions

Each of the proprioceptive items linked in the above networks is readily accessible-

there is a chain of schemas from any glance orientation to any other, and from any

hand orientation to any other. Each such item can thus become the goal state for a

composite action-the action of achieving that glance or hand orientation. As stated

in section 3.4.2, for each newly defined composite action, the mechanism also builds a

bare schema which has that action. Figure 4-14a, for example, shows the bare schema

with a composite action whose goal state is hp22; the action's component schemas

are those of the network in figure 4-12 above. The action hp34, shown in figure 4-14b,

has the same component schemas-as do all the other composite actions with haptic

proprioceptive goal states.

0hp2 h p340

goal state: hp22 goal state: hp34

(a) (b)

Figure 4-14: Composite actions form for various hand positions. Each defines the

action of bringing the hand to that position.
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These proprioceptive-goal hand actions are positional, in contrast with the prim-

itive hand actions, which are incremental. Activating a given positional hand action

moves the hand to a particular position, regardless of where the hand started.

Similarly, the schemas that link together the visual proprioceptive items make

each of those states accessible, enabling each to be the goal of a composite action,

as illustrated in figure 4-15; the actions' component schemas are not shown. These

composite actions are positional glance actions, again in contrast with the incremental

primitives.

vp20 vp34 vp31 vp44

Figure 4-15: A composite action forms for various glance orientations. Each defines

the action of shifting the glance to that orientation.

Finally, the schemas that link adjacent visual-field items also provide a basis for

the definition of composite actions with those items as goal states (figure 4-16). Each

such composite action is the action of shifting an image to a particular region of the

visual field.

222e ovf23' ovfI40 f330

Figure 4-16: A visual-field action shifts an image to a particular region. The first two

actions shown are foveation actions.

Of particular interest are the foveation composite actions: a foveal action shifts

an image to one of the foveal regions of the visual field. Foveal actions permit the

visual details of an object to become apparent.

The visual-detail items themselves become goal states of composite actions (fig-

ure 4-17). Most objects exhibit a number of visual details, which therefore tend to

co-occur when the object's image appears at some foveal region. This could lead

to an n 2 proliferation of schemas, in which each visual-detail action claimed each

co-occurring visual detail as a result. The restriction discussed in section 3.4.2-
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preventing result spinoffs for explained result transitions or unexplained actions-

substantially mitigates this proliferation. Still, many such schemas do form, because

the various visual-detail events do not become explicable simultaneously; some are

designated the goals of composite actions before others are explained. (Section 6.2

raises the possibility of purging such schemas.)

fov112 fovI30 fovrl fox22

Figure 4-17: Visual-detail items also define foveation actions.

4.2 Steps toward intermodal coordination

The schemas documented above set forth a substrate for the practical representation

of visual and proprioceptive spatial knowledge. Other schemas begin to describe

the relationships among these domains-in particular, the visual manifestations of

moving the hand, and coordination between sight and touch.

4.2.1 Visual effects of incremental hand motions

Moving the hand while it is in view affects where the hand's image appears in the

visual field. If the motion occurs within the foveal region, the visual change can be

reliably predicted (if the hand is only peripherally visible, its identity as the hand is

uncertain). As shown in figure 4-18, a bare incremental hand-motion schema such as

/handl/ spawns schemas that show the hand appearing at various visual-field regions

(eg, /handl/vf12, /handl/vf3O; similarly, of course, for other hand actions and visual

regions).

Some of these schemas denote the motion of the hand from a foveal visual region,

others from a peripheral region. In the case of a peripheral origin, the best that the

extended context can do is to discover that an image at the appropriate adjoining re-

gion is a relevant context condition; for example, /handl/vf3O spawns vf4O/handl/vf30
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O vf12' vf 12o vfl 2 handl
0 vf3O
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L Ohandio

Figure 4-18: These are initial schemas for depicting the visual effects of hand motions.

(figure 4-19). This schema is unreliable, since the object seen at vf4O need not be the

hand.

vf40 vf30

ahandi

Figure 4-19: The motion of the hand's visual image is unreliably predicted from its

peripheral appearance.

In contrast, the extended context of, say, /handl/vf12 discovers the relevance of

various visual features of the hand when it appears at the adjoining foveal region vf22

(figure 4-20a). The relevance of the item vf22 is also noted, but only after some of the

details that are unique to the hand are found relevant; vf22, and details less specific

to the hand, also obtain when objects other than the hand are at vf22, and thus make

a smaller difference to the with-without comparison made by the extended context

data. Therefore, /handl/vf22 spawns a context that best distinguishes the hand from

other objects seen at vf22 just before moving the hand to the left.

This process culminates in the schema SeeHand@22/handl/vf12 (figure 4-20b),

where SeeHand@22 is shorthand for a conjunction of visual features that suffices here

to distinguish the hand from other objects seen at vf22 before moving the hand left;

additional visual details of the hand do not further measurably increase the reliability

with which the action follows the result, and are not relevant context candidates-

though they would gain this status if other objects were encountered that share with

the hand the details noted so far. (In the restricted mode, the hand and the body

142



vf12 o

(a) fovx2l o vf12(a)fovxO2o 0 vrl'ahandio

(b) SeeHand@22 vf12
SeIn (2 O haidI i i

Figure 4-20: When the hand appears in the fovea, the destination of its image is

reliably anticipatible.

are the only objects that appear in some positions, and a single visual detail suffices

to distinguish them from one another.)

Similarly, schemas such as SeeHand@23/handb/SeeHand@22 in figure 4-21 chain

together to say how to move the hand so as to move the hand's image among the

foveal regions. (SeeHand@23 is shorthand notation like SeeHand@22.)

SeeHand@32( O-TKD SeeHandD22
handb

Figure 4-21: Moving the hand moves its image acros the fovea.

The schemas just described are among the last built in the full mode before the

implementation runs out of memory. Except where otherwise noted, the remainder

of the synopsis describes the restricted mode.

4.2.2 Touching what's seen beside the hand

Sometimes, moving the hand not only shifts its visual image, but also results in tactile

contact. The schema in figure 4-21, for example, discovers this additional result,

spawning the schema in figure 4-22a. That schema is able to discover a condition

that confers reliability on the tactile result: that an object be seen next to where

the hand will move. The schema in figure 4-22b incorporates that condition in its
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context. (In fact, the restricted-mode runs out of memory just before building this

schema; by the end of the run, the prior schema's extended context has taken note

of the condition's relevance, but the threshold required to spawn a new schema has

not been reached.)

This schema would tell the mechanism how to touch what is seen (at a particular

place in the visual field)-provided that the hand is in view at a foveal region from

which there is a chain of schemas for moving the hand to be seen beside the object.

Thus, the ability to grasp the object is only applicable when the object and the hand

are both in view. This limitation corresponds to an early form of grasping observed by

Piaget (section 2.2). Section 4.4.1 shows how the schema mechanism might overcome

this limitation.

SeeHand@22

(a) S nndb tactl

SeeHand22 -

(b) SeeHandh32 tactl

Figure 4-22: Moving the hand, and its image, results in tactile contact if an object is

present next to the hand's destination.

There is another route that starts in the direction of developing of a schema for

touching what's seen near the hand, but turns out to be a dead end. The schema

/handb/, for example, spawns the unreliable schema /handb/tactl. That schema,

however, is unable to make progress toward identifying visual conditions that confer

reliability on the schema. The problem is that the object being touched could appear

anywhere in the visual field (or could fail to appear at all); its appearance at a given

visual region makes tactile contact no more likely than its appearance at any other

region (and not measurably more likely than when it does not appear, given that an
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object is likely to be nearby even if not in view). Similarly, the hand's appearance at

a given region makes tactile contact no more likely than for another hand position.

Any conjunction of an image's appearance at one region and the hand's appearance

at the appropriate nearby region would confer reliability on the schema /handb/tactl.

But, in this case, the marginal attribution facility is unable to build incrementally

to any of the required conjunctions, because the conjuncts, taken individually, do

not enhance reliability. The schema mechanism breaks this impasse by discovering

that tactile contact results from the activation of a schema whose context already

designates the appearance of the hand at a particular visual-field region; given that

context, the mechanism can discover where an object must appear to be touched by

moving the hand forward.

4.2.3 Bringing the hand into view

The schema mechanism learns how to bring its hand into view. Being able to do so

extends the ability to touch what is seen near the hand to the general ability to touch

what is seen.

Unreliable schemas such as /hp23/SeeHand@22 (figure 4-23a) reflect the fact that

seeing the hand at the center of the fovea sometimes results from that positional hand

action. This schemas is reliable for a particular glance orientation (which must be

sustained through the positional hand action's execution); thus, the above schemas

spawns vp23/hp23/SeeHand022. By constructing a number of such schemas, the

mechanism in effect builds a dispatch table that says, for each of several glance

orientations, where the hand must be put (relative to the body) to appear in the

visual field when the glance is in that orientation.
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(a) 0 vp23 0

00 SeeHand22 SeeHand22
hp23 L hp23

(b) vp23 SeeHand@22
0hp23

Figure 4-23: Schemas that dispatch from glance orientation move the hand into view.

4.3 Beginnings of the persistent-object concept

At this point, schemas are structured so as to provide rudimentary representations of

the spatial relationships of both external and proprioceptive sensory data, both within

and between the various sensory modes. This knowledge was acquired through action,

and its embodiment is practical: it is knowledge of how to act and what to expect to

happen. But the content of these schemas is not only procedural: the coordination

of hand motions and eye motions, of seeing and feeling, begins to describe the nature

of objects and space; sight and touch begin to be known as coordinated properties of

external objects.

All this boasts respectable progress from the schema mechanism's initial endow-

ment of knowledge, in which all actions and items were devoid of any meaning to the

mechanism. Still, it remains to transcend the rendering of reality only in terms of

sensory and motor primitives. If an object is not perceived, then as far as schema

mechanism is concerned, it has ceased to be-there are no items whose state sig-

nifies the thing's continued existence. And similarly, an object's specific identity is

immediately forgotten when its distinguishing features (e. g. visual details) cease to

be perceived, even when some (partial) perception of the object persists. Next, the

schema mechanism begins to synthesize items to represent these persistent states in

their own right.
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4.3.1 Palpable and visible persistent objects

Various positional hand actions, e. g. hp22, sometimes result in tactile contact, e.

g. tactl. The schema /hp22/tactl reflects this occasional result (figure 4-24). As

in the example of section 3.4.3, this schema is unreliable-it only succeeds when an

object happens to be present at position hp12. But the schema is locally consistent-

if it succeeds on some occasion, it probably will succeed again if activated again

soon, since nearby objects tend to stay put for a while. Without understanding that

reason, of course, the schema nonetheless discovers, over a number of trials, that it

is indeed locally consistent; and the schema determines the expected duration of its

local consistency, the average time that the schema remains valid (in this case, the

average time that an object stays put there).

0mtacti
hp22

Figure 4-24: Moving the hand to a particular position sometimes results in tactile

contact.

Such schemas develop for other hand positions as well. Each such schema serves

as host to a synthetic item that designates a persistent palpable object at a particular

body-relative position. For example, the host schema /hp22/tactl acquires a reifying

synthetic item that I'll call PalpableObj@12 (figure 4-25). The host schema's posi-

tional hand action serves as probe, the schema's tactile result as manifestation, of

the condition reified by the synthetic item-the condition of there being a palpable

object beside that hand position.

Analogous synthetic items designate persistent visible objects. For example, the

unreliable, locally consistent schema /vp2l/vfl3 (figure 4-26) reveals a manifestation

of a visible object-seeing it at visual-field center-by the probing action of glancing

at a particular body-relative position. The reifying synthetic item, which I'll call

VisibleObj@12, designates a persistent visible object at that position.
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PalpableObj12

0 -_ acti
hp22 )

Figure 4-25: This synthetic item designates a persistent palpable object at a particular

position.

VisibleObj12

vp21 )

Figure 4-26: This synthetic item designates a persistent visible object at a particular

position.

Tactile and visual details also serve as manifestations of conditions representable

by synthetic items. Figure 4-27 shows some synthetic items that designate the per-

sistence of the particular details associated with objects at particular locations. Such

items let the mechanism represent more than the continued existence of an unper-

ceived object-its persistent identity is now representable as well, at least to the

extent that its apparent details specify its identity.

, [/hp22/tactdO] , [/vp22/fovx12J

O ) tactdO fovxl2
hp22 vp22

. [/hp22/tactd3] , [/vp22/fovx23]

_rO tactd3 fovx23
hp22 vp22

Figure 4-27: Some synthetic items correspond to a persistent object's specific identity.

In a similar vein, some items designate the identity of an object whose image

has moved to the visual periphery, rendering its details inaccessible. For example, in
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the full mode, the schema vf33/eyel/fovf2l is unreliable but locally consistent, since

on occasion the only visible object has visual detail 21; shifting that object's image

back to the fovea recovers the detail. The item [vf33/eyel/fovf2l] (figure 4-28) reifies

this state of affairs; when that item is On, the mechanism effectively remembers

which object is now seen peripherally, even though that information is no longer

perceptually apparent. In contrast with the previous examples of remembered details,

this representation has the advantage of being independent of the (body-relative)

position of the object in question; but it has the disadvantage of being easily confused

when several objects are present, since it might be a different object whose visual

image makes the host schema applicable.

[vf33/eyel/fovf2l]

vf33 CJ:;I( fovf2l
eyel

Figure 4-28: This synthetic item remembers a visual detail of an object no longer

visible at the fovea.

A more realistic visual system would persent some degree of visual detail even

at the periphery. Schemas incorporating such detail in their contexts could host

synthetic items that remember additional detail; this would be more reliable, since

the included details might distinguish among several objects in view at once.

4.3.2 Coordinating visible- and palpable-object representa-

tions

The synthetic items PalpableObj@12 and VisibleObj@12 in the previous section actually

designate the same state as one another-the state of there being an object at body-

relative position 12. This is not true in all possible worlds; in principle, invisible or

intangible objects could exist. Were there such objects, a palpable object at some
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location would not assure the presence of a visible one, or vice versa. But since

such objects do not exist, PalpableObj@12 and VisibleObj@12 are in fact coextensive-

whenever one of those states obtains, so does the other.

At first, the schema mechanism is unaware of these items' coextension. What

turns On PalpableObj@12 need not affect VisibleObj@12, or vice versa; initially, in

fact, each is turned On only by the successful activation of its own host schema.

Thus, the two items can be in opposite states at the same time; like a third-stage

Piagetian infant, the mechanism may know that it can touch a currently unperceived

object, but not know that it can look at it-or vice versa, depending on the modality

by which the object recently manifested itself to the mechanism.

But the mechanism begins to learn that these items are effectively synonymous.

As described in section 3.4.3, a synthetic item's state is maintained in part by re-

liable context spinoffs spawned by the host schema. Such schemas' contexts spec-

ify conditions under which the host schema is reliable; hence, its reifier turns On.

In this case, the host schema /vp2l/vfl3 spawns the reliable spinoff schema Palpa-

bleObj@12/vp21/vf13; conversely, /hp22/tactl VisibleObjQ12/hp22/tactI almost spawns

(figure 4-29) (the context correlation is noticed, but the limit of memory is reached be-

fore the correlation reaches the threshold for spawning a spinoff schema). Other pairs

of synonymous synthetic items designating objects at other body-relative positions

can likewise be coordinated by their host schemas' extended contexts.

. PalpableObje12
VisibleObj@120 0 ___0 tactl M*VisibleObj@12 C tactl

hp22 hp22

PalpableObj@12 0 VisibleObj@12

] 0 _rX vf13 PalpableObjQ12 vf13
vp21 vp2l

Figure 4-29: palpable-object representations admit visual evidence, and vice versa.
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When this coordination is achieved, each host schema's extended context also de-

termines that when the other synonymous item is Off, that host schema is unreliable;

hence, its reifier turns Off. When two items thus help maintain one another's state,

there is a danger of oscillation when their states differ (and if their states never dif-

fered, neither would ever be in a position to turn the other On or Off-the other would

already be in that state). Two factors prevent such oscillation: 1) that each item is

in an Unknown state when it has received no recent evidence; and 2) as discussed in

section 3.4.3, host-trial evidence takes precedence over other verification conditions,

and memory of previous evidence yields to current evidence; hence, seeing or touching

an object-or failing to when looking or reaching for it-definitively sets the state of

one of the two synonymous items, which then sets the state of the other.

Intermodal persistent-object schemas are among the last structures built during

the restricted mode before the implementation runs out of memory.

4.4 Hypothetical scenario of further developments

This section describes some hypothetical further achievements of the schema mechanism-

developments that build directly on the substrate of knowledge that the implementa-

tion has in fact constructed, and that would perhaps be exhibited if the same software

were to run on a larger machine. I present these hypothetical developments both to

call attention to what the implementation has not yet achieved, and to specify part

of a target scenario for future work.

4.4.1 Touching what's seen, and vice versa

Schemas that chain to the state of seeing the hand at a particular region of the visual

field-for example, SeeHand@22-lead to the construction of a composite action with

that goal state. The bare schema that has that action (figure 4-30a) discovers that

various tactile events, e. g. tacti (touching the left side of the hand), occasionally

151



result from this action, as expressed by the schema /SeeHand@22/tactl (figure 4-30b).

This schema's extended context discovers the condition needed for the schema to be

reliable: the condition vf12, which designates an image seen beside vf22, the place to

which the action will bring the hand.

o tactiL r_)vf 12 oj tactl

SeeHand@22 SeeHand@22

Figure 4-30: Moving the hand, and its image, sometimes results in tactile contact.

The schema vf12/See Hand@22/tactl then forms (figure 4-31). This schema enables

the mechanism to touch what is seen (at a particular place in the visual field). Unlike

the schema in figure 4-22, this schema can be used to touch an object even if the

hand is not seen beside it-because the action SeeHand@22 includes components for

bringinf the hand into view (such as the schema shown in figure 4-23b).

vf12 & -r-XJ tactl

SeeHand@22

Figure 4-31: This schema tells the mechanism how to touch an object seen at vf12.

The composite action SeeHand@22 acquires other component schemas besides

hand-motion schemas. In particular, eye-motion schemas can serve instead to shift

the hand's image. It would be unhelpful for the action's controller to select eye-motion

components in this case; shifting the gaze to see the hand at vf22 brings the hand

no closer to the object that had been seen at vf2l. But the context-preservation fea-

ture, discussed in section 3.4.1, suppresses such components: the extended context of

vf21/SeeHand@22/tact discovers that the condition vf2l must be sustained through-

out the schema's execution; and the schema's activation thereafter suppresses any

action that would negate that condition. The applicable schema vf21/eyer/,vf21, for

example, indicates that eyer would negate that condition, and so suppresses the ac-

tion eyer, which in turn suppresses the activation of any schema that has that action.
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(Similarly, of course for the other incremental eye actions.)

Alternatively, when the goal state SeeHand@22 is realized by glance actions rather

than hand actions, it occasionally has the result vf2l. The unreliable schema /See-

Hand@22/vf21 spawns the reliable schema tactI/SeeHande22/vf21 (figure 4-32), which

sustains its context condition tacti throughout its execution, assuring that the action's

goal state is pursued by eye movements rather than hand movements.

tacti vf__O 12

SeeHand@22

Figure 4-32: This schema facilitates looking to see what the hand is touching.

Thus, the mechanism (hypothetically) achieves bidirectional visual-tactile coordi-

nation: the ability to touch what is seen and to look at what is touched.

Some coordination between visual and tactile details also arises. That is, an

object's appearance sometimes predicts its texture, and vice versa. Figure 4-33 shows

schemas that express such predictions.

fov112 & -r-XQ tactd3 tactd3 D =40 fov112

SeeHand@22 SeeHand@22

Figure 4-33: Some schemas coordinate visual and tactile details.

4.4.2 Grasping and moving objects

Touching what is seen is a useful precursor for grasping and manipulating what is

seen. Figure 4-34a shows a schema for moving a grasped object incrementally, as

expressed in terms of the visual manifestation of that motion. Figure 4-34b shows a

schema that expresses similar knowledge in terms of persistent objects.

Moving an object not only puts it in a new place, but also removes it from its

previous place. Schemas such as those in figure 4-35 express such knowledge. These

are similar to, but more sophisticated than, the schemas in section 4.1.6 that show
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l I I I

hgr
SeeHand@32 vf23

vf22 handf

hgr
hp23

hand

Figure 4-34: These schemas depict object motion,
object representations.

PalpableObjQ14

visually or in terms of persistant-

the negation of previous hand and glance orientations, and of visual images, following

hand or glance actions. The earlier schemas expressed direct, nearly unconditional

results of primitive actions on primitive items; the present schemas, in contrast, ex-

press effects on grasped objects, and are therefore subject to context conditions that

describe the appropriate graspedness.

hgr
SeeHand@32 I' vf22

vf22 handf

PalpableObj (13 
ha Dhand

, PalpableObj@13

Figure 4-35: Moving an object removes it from its previous position.
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4.4.3 Hidden objects

Suppose the microworld were modified so that an object is obscured from the anima-

ton's view if some other object (other than the animaton's own body) lies directly

behind it (figure 4-36). (This ad hoc modification clashes with thinking of the visual

field as providing a bird's-eye view.) This modification introduces the problem of

hidden objects.

Figure 4-36: The hollow object hides the solid object from view.

If the animaton centers its gaze on the location of the hidden object (figure 4-37),

the schema /vp23/vf22, host to the synthetic item VisibleObjQ23, implicitly activates,

but its result fails to obtain. The synthetic item thus turns Off. Due to the coordina-

tion described above in section 4.3.2, the synonymous item PalpableObjQ23 also turns

Off-incorrectly, since the hidden object is still palpable. Thus, the mechanism, like

a third-stage Piagetian infant, is ignorant of the possibility of touching the hidden

object.

Figure 4-37: The animaton looks directly at the solid object, but does not see it.

One expression of an object's persistence while hidden appears in figure 4-38. A

schema for moving the hand while grasping the obstacle, thus displacing the obstacle,
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has the unreliable but locally consistent result of causing the manifestation to reap-

pear. This schema could serve as host to a synthetic item that designates an object

hidden behind the obstacle.

* Handmotion-hidden-object03

hgr

hph2 VisibleObjQO3
handr

Figure 4-38: Displacing the obstacle reveals a hidden object, locally consistently.

This representation would be vulnerable to making a curious mistake. Suppose

the host schema activates successfully, turning the hidden-object item On. Next, the

previously hidden object moves to a new location, in full view of the mechanism.

However, the hidden-object item remains On; there has been no unsuccessful activa-

tion of the host schema to turn it Off. If the object were now hidden behind another

obstacle at its new position, and the first obstacle returned to its original position,

the mechanism could exhibit a Piagetian fourth-stage place error (section 2.4) by still

expecting to be able to find the object behind the first obstacle.

This place error can be corrected by representing the displacement of the obstacle

on a less subjective level of abstraction. The schema in figure 4-39a has a composite

action designating the very displacement of the obstacle, rather than using the prim-

itive hand action of the previous host schema. Now, if the object moves to another

location after its original hidden position is uncovered, the continuing uncoveredness

of that position entails the continuing implicit activation of the schema whose action

is that there be no obstacle covering that position. As soon as the object moves away

from the uncovered position, that implicit activation is an unsuccessful activation,

which turns Off the associated synthetic item. (To eradicate the place error, the
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more subjective host schema must come to designate the new item as a synonym, as

shown in figure 4-39b.)

. Obstaclemotion-hidden-object03

VisibleObjO3 (a)
',VisibleObjeO02

Obstaclemotion-hidden-object03 0

Figure 4-39: A more objective

error.

,Handmotion-hidden-objectQ03

hgr2 VisibleObj@O3 (b)
handr

representation of the action fixes fourth-stage place

4.4.4 Large-scale Space

The spatial framework developed in the scenario is centered on the mechanism's own

body; proprioceptive inputs serve as spatial coordinates. This framework suffices for

a stationary infant. But after a while, the infant begins to crawl and then walk.

By displacing herself, the infant moves all the objects in her body-relative space (by

moving that space itself). But in externally-based, large-scale space, it is the infant

that moves, while the other objects remain still. Coordinates in large-scale space are

not given proprioceptively, but can be expressed in terms of fixed landmarks. The

infant herself is just one of many objects that can move about in large-scale space.
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It is plausible to imagine the schema mechanism going on to build a representa-

tion of large-scale space much the way it constructs its "personal" spatial framework

(though I have worked out no details for this). The accessor condition for an object

at some landmarked position in large-scale space is to move oneself to the landmark

there; the manifestation is for the object then to be present in body-relative space. As

in the scenario, extended views could be coordinated together, allowing an object's

position also to be recognized by seeing the object from a remote landmark, or from

a position between landmarks. 1

One might regard the entire schema mechanism as essentially a large-scale-space

facility, in which the terms of representing positions have been generalized-any prim-

itive or constructed item can be used, not just views of landmarks-and the actions

that connect places in the space have been generalized to arbitrary state-achievements,

not just moving among landmarks. (Something like the schema mechanism may even

have arisen, in the course of evolution, as a variation of a large-scale-space facility.)

The scenario shows how this generalized large-scale-space facility can be "retrofitted"

to the reconstruction of personal space; the extrapolations below speculate about the

extension of this facility to the representation of more-abstract "spaces".

'Anecdote: I have a bad sense of direction. Riding up in the Tech Square elevator, I don't know
which way I'm facing with respect to the building's surrounds, or with respect to the floor I'm
heading to (though I know the orientation of that floor with respect to the building's surrounds; e.
g. I know which way my office faces outside). For many years, I didn't realize there was an easy
way to keep track of such things. At some point, it occurred to me that whenever I enter an area
from which familiar landmarks are hidden, I can first take a moment to imagine a bird's-eye, x-ray
view of the area, and use this to designate landmarks (usually walls) in the new area according to
the familiar landmarks that lie beyond them. I then use the internal landmarks to keep track of my
orientation, rather than trying to remember how many turns I've made since leaving the familiar
surrounds.

The bird's-eye imaging has the flavor of a bridging schema that sets up an extended view (in terms
of internal landmarks) of orientation with respect to external landmarks. Perhaps people with a
good sense of direction have bridging schemas that get activated reliably in such situations; mine,
alas, seem to require special urging.
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4.4.5 Reality and beyond

One can imagine the schema mechanism constructing arbitrarily elaborate models

of the current state of the world. But can such a mechanism possibly move beyond

sensorimotor-level representations, to construct episodic memories that designate the

state of propositions that concern things other than immediate physical reality? Con-

sider, for example, the assertion that a certain object was in a given location yesterday,

rather than now. Its position now can be expressed as the coordinated reification of

the validity of various schemas, as discussed in the scenario. But past state can-

not be similarly represented, unless there is some accessor condition by which some

manifestation of the state can be revealed.

Sometimes this is the case, as when a seagull walking along the beach leaves

tracks in the sand that indicate its past presence. But it is unusual for past events

to be so obliging; or is it? One very general way for a past event to "leave tracks"

is to be remembered by a person. In principle, one's memory of a past event can

serve, for purposes of maintaining a synthetic-item state, as one "view" (among many

intercoordinated ones) of that past state. Other possible views include:

* Physical remnants of the event, such as tracks in the sand.

* One's cognitive remnants of the event, other than explicit memories; for exam-

ple, new abilities or insights acquired as a result of the event.

* Other people's cognitive remnants of the event, in the form of memories or new

abilities, as manifested verbally and by other behavior.

Such views serve as fragments of a representation of past state; the real representation

is their coordinated ensemble.

This may seem circular. After all, the representation of a past state cannot arise

from a representation of a memory of the past state, since that memory requires

that the past state is already representable. But then, in the same way, it is circular
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to say that the representation of an object's presence at some location when hidden

arises from a representation of the object's presence there when not hidden, since that

assumes there is already a representation of the object's presence at that location. On

closer examination, though, the circle becomes a spiral: the new representation is not

stated in terms of itself, but rather in terms of a cruder approximation to itself. The

scenario proposes the details of a few turns of that spiral for the development of the

physical-object concept; with regard to the speculation about representing past states,

I have no such details to offer. So, rather than giving a plausibility argument here, I

am just presenting a bare-possibility argument. Still, the thought seems intriguing. 2

This idea generalizes to the representation of abstractions. At a given moment,

the state of any item in the schema mechanism is always some function of the past and

present state of primitive, sensory items; hence, it would seem that an item can only

represent some physical reality, as reflected in the sensory data on which the item's

state (solely) depends. But whenever one's cognitive apparatus includes machinery

to perform a certain computational task, it may be possible, by representing that

machinery, to make (indirect) statements about the abstraction that the computation

embodies. For example:

* A thing's name is accessed by (something like) holding it up to an adult and

manifested by the adult's saying "That's an Z".

e Classification is like naming, except that a class names only one of a thing's

many attributes, so the same thing can belong to many classes. Piaget shows

that the child gradually coordinates an extensive view of a class-defined by

the actual set of members-with an intensive view-defined by a distinguishing

attribute of all members of the class.

2Another possibility is to have a distinct episodic-memory module accessible to the central system.
Traces of memories stored there could serve as one kind of manifestation of past events, to be
coordinated with the others mentioned above. Something resembling Minsky's k-lines (Minsky
1986) might provide an interface for storing and retrieving central-system states as memories.
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e The cardinality of a group of things is the number one arrives at by counting

them-that is, by reciting a number sequence in synchronization with touching

the objects, touching each exactly once. That process is the accessor, and

the final number the manifestation, of the cardinality of the collection. The

individual must discover that this is a persistent property of a collection-that

if the process is repeated, one gets the same number (conservation of number).

Note that this proposes an inductive basis for the discovery-that the individual

notices, that cardinality is persistent, without understanding why. On the other

hand, the induction can be carried out over a number of subactivated trials, so

the generalization can be arrived at merely by thinking; it need not depend on

actual events in the environment, as an extreme of the empiricist tradition has

held.

* In formal reasoning, the validity of an argument (as opposed to the truth of its

conclusion) has the accessor of inducing belief in the argument's premesis; the

manifestation is believing the conclusion.

In each of these examples, a new abstraction is conceived in terms of how a person's

computational machinery-one's own, or another's-behaves in some situation. The

new conception reifies the set of circumstances under which a piece of one's compu-

tational machinery behaves a certain way.3 Even more than with the physical-object

concept, each such conception eventually requires an ensemble of many fragments

of representation. As with the physical-object concept, Piaget presents snapshots of

various incomplete versions of the eventual coordinations. In these, one sees bizarre

bugs in a child's behavior that would be inexplicable if a more "appropriate" rep-

resentation were in use-appropriate, that is, to the given representation considered

'This is not to say that one explicitly or introspectively thinks of one's conception of abstractions
as being the representation of properties of certain machines; it need not "feel like" that is what is
going on. One's explicit ideas about one's representations are implemented by other structures that
express a theory about those representations; and that theory, like any other that one holds, can be
arbitrarily far off base.
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in isolation, rather than as part of the developmental system-just as the spatial

nonlocality of hidden objects is a bizarre property of the infant's fourth-stage con-

ception. The conservation protocol in section 2.7 is one striking illustration of this

phenomenon.

In general, then, self-modelling might provide a route to the representation of

abstractions, allowing an intelligent system to move beyond representing only the

state of the physical world. It is interesting to compare this with Papert's (1980)

speculation that access to the abstractions embodied in computers will profoundly

change the way people think, once intellectually-accessible computer systems become

widely available, especially to children; by working with the concrete embodiment of

a computational abstraction, a person may appropriate a model of that abstraction

for her own internal use. In effect, what I suggest here is that (much of) the neces-

sary access to sophisticated computer systems has long been provided to people-in

the form of people themselves. And the resulting cognitive revolution was quite as

spectacular as what Papert predicted.

Additionally, modelling one's own mind, and others', is important in its own right.

Understanding other people makes them more predictable and easier to interact with

in beneficial ways. Understanding oneself provides the opportunity to better exploit

one's own abilities, by forming model of strengths and weaknesses and means of im-

provement. And what we call consciousness requires a memory of the occurrence of

a thought or experience, understood as such. Nothing in the schema mechanism's

sensorimotor-level development, for example, qualifies as conscious. One might say

metaphorically that the mechanism is aware of the things that it represents; but to

take that awareness literally, in the sense of humanlike consciousness, would be to

indulge in a kind of animism. Consciousness requires knowledge (and hence represen-

tation) of one's own mental experiences; this the schema mechanism does not come

close to demonstrating.
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Chapter 5

Virtual structures and

mechanisms

The schema mechanism implementation has made rudimentary but encouraging progress

in the direction of the Piagetian infant's development of the concept of physical ob-

ject. Replicating this development is of special interest because of the possibility that

it is just the earliest achievement of a learning mechanism with far-reaching capabil-

ities. The present results certainly do not establish that the schema mechanism is

capable of going far beyond its achievements so far; but the mechanism's arguable

similarity to what is arguably a powerful human learning mechanism warrants at least

the speculation that extended achievements are possible.

This chapter elaborates the speculation by exploring some hypothetical further

activity of the schema mechanism-activity that is tantamount to the development

by the schema mechanism of virtual structures and mechanisms. Some of the hypo-

thetical developments presented here depend on two proposed (i. e. unimplemented)

extenstions to the schema mechanism, subactivation and reciprocal-action identifica-

tion, which are introduced below.
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5.1 Virtual generalizations

Many conventional formal systems make it easy to express generalizations. In the

predicate calculus, for example, one writes For all x, P(X) implies Q(x)., where P

and Q are predicates that apply to some arbitrary object. From the foregoing propo-

sition, and the proposition P(a), Q(a) follows; it can be deduced that a particular

object a that satisfies P must also satisfy Q. Other systems, such as semantic net-

works and knowledge-representation languages, provide analogous ways to perform a

deduction that instantiates a generalization, that is, that applies the generalization

to a particular instance.

The schema mechanism has no comparable facility for expressing generalizations.

Disconcertingly, the mechanism must re-learn essentially the same fact in numerous

different guises, rather than learning it in a general form and deducing the instantia-

tions. For example, learning about persistent palpable objects at a given body-relative

position is independent of learning about them at other positions. Similarly, the ef-

fect of grasping a persistent object and then moving the hand incrementally must be

learned seperately for each body-relative position; there is no automatic generaliza-

tion from one position to another, and no way to parameterize position in order to

express a more general, position-independent principle (such as Moving an object at

(x,y) incrementally right brings it to (x + 1,y)) which could then be instantiated for

various particular positions (e. g. Moving an object at (3,2) incremetally to the right

brings it to (4,2)).

One approach would be to augment the schema mechanism with parameterized

representations. But it is unclear how the mechanism itself might devise appropriate

parameterizations. A parameterization scheme limited to a few built-in special cases

would be of little use or interest.

Instead, I suggest a way that the schema mechanism might behave as though it

expressed and instantiated generalizations; the mechanism might then be said to em-

body virtual generalizations. This capability is speculative; the scenario to follow has
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not actually been demonstrated by the schema mechanism, and even the speculation

relies in part on currently unimplemented extensions to the mechanism, as described

below.

The realization of virtual generalizations relies on representations of the same

event in different frames of reference-for example, representing an event visually,

relative to the visual field, and also in terms of visible-object synthetic items, in body-

relative terms. A representation with respect to a particular position in one field of

reference-say, the visual field-applies to a number of different positions in the other

frame of reference-in this example, the body-relative frame. Call these the source

and target reference frames, respectively. A specific, fixed-position representation in

the source frame thus implies a general, position-independent statement about the

target frame. Shifting the glance orientation changes the mapping from source to

target, instantiating the generalization at a different target position, as shown in

figure 5-1.

Figure 5-1a shows a schema for moving a grasped object incrementally forward;

the schema expresses the visual manifestation of this event (vf23 turning On). In

each of the two examples in figure 5-1b, the glance orientation is such that a grasped

object appears in the same part of the visual field as in the context of the schema

in figure 5-1a. The schemas in figure 5-1b describe the same event as the schema in

figure 5-la, but in terms of persistent objects at particular body-relative positions,

rather than in terms of visual appearance.

The visual-field view shown in figure 5-1a serves as a canonical perspective of

the event that is represented. Suppose the mechanism learns that it is interesting to

orient the glance so as to bring about a canonical perspective; in effect, the mechanism

learns the heuristic, the rule of thumb, that achieving that perspective is a good idea.

Given the opportunity, the mechanism will then tend to bring about that perspective.

Doing so serves to instantiate the generalization with respect to whatever target

position is mapped onto. If a canonical perspective is achieved by foveation, as in
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this example, the primitive value associated with the visual-detail items promotes

the canonical perspective: trying to turn On the foveal items achieves the canonical

perspective. In other examples, the items designating the canonical perspective may

achieve delegated value by virtue of the things of value that are made accessible by

achieving the canonical perspective.

before: after:

(a) source frame: visual field

hgr 
v2SeeHand@32 vf23

vf22 handf

source-to-target mappings:
vp33 vp02 glance orientations

(b)

target frame: body-relative

hp4r3 PalpableObjQ34 hpl2 (D- =) PalpableObj@03
handf handf

Figure 5-1: Virtual generalizations are instantiated by mapping one reference frame
to another.

5.1.1 Implicit and explicit instantiation

A virtual generalization can be instantiated either implicitly or explicitly. Implicit in-

stantiation merely consists of achieving the canonical perspective, making the source-

frame schema applicable. Explicit instantiation consists of building a target-frame

schema for that pertains to the current target-frame position. This requires no
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special machinery; after a number of trials in the given target-frame position, the

marginal attribution facility builds a schema describing the event in terms of the

target frame-presuming, of course, the availability of target-frame representational

elements (in this case, visible-object synthetic items). (Furthermore, such elements

can themselves be formed by the instantiation of virtual generalizations, as discussed

below.) Activation of the source-frame schema brings about the event that serves

as the basis for building the target-frame representation, thus explicitly instantiating

the virtual generalization for a particular target-frame position.1

To repeat, virtual generalizations and their implicit and explicit instantiations do

not correspond to particular built-in features of the schema mechanism. Rather, they

are epiphenomena, higher-level emergent tendencies of the mechanism. (They are

also hypothetical, that is, not yet demonstrated by the implementation.)

Once a generalization has been explicitly instantiated in a target-frame schema,

that schema can participate in a chain of schemas leading to some goal. Thus, the

target-frame schema, like any other schema, can be identified by a rapid, parallel

process as being of use for a given purpose at a given moment. In the case of implicit

instantiation, there is no target schema to be so identified. Thus, the mechanism

must heuristically perform an action to achieve a canonical perspective before the

mechanism can recognize the generalization's pertinence. This requirement makes

generalization by implicit instantiation is an inherently serial process, since it is not

possible to adopt arbitrarily many perspectives simultaneously. But, since implicit

generalization promotes explicit generalization, the initial slow serial process gives

rise with repetition to the fast parallel process.

The computational space requirements of stamping out explicit instantiations of

'The idea of virtual generalization via canonical perspectives appears in (Drescher 1985), and in
Agre and Chapman's notion of indezical-functional representations (Agre and Chapman 1987); see
section 6.1.7. (More specifically, indexical-functional representations correspond to implicit, but not
explicit, instantiation of virtual generalizations.) Agre and Chapman have implemented a system
that plays a video game and that demonstrates the effectiveness of this alternative to conventional
expressions of generalization. However, their system is entirely hardwired; it does not learn its own
representations or skills.
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virtual generalizations may prove burdensome. But the burden could be offset by

encouraging the garbage collection of unimportant target-frame schemas. The mech-

anism could identify unimportant target-frame schemas by a conjunction of two cri-

teria:

* Rederivability. The marginal attribution facility records each spinoff schema

in the extended context or result of the spinoff's parent schema. This record

suppresses subsequent, redundant attempts to spin off the same schema. The

process could be modified to keep track of the frequency with which such re-

dundant attempts are thwarted. A schema that is a target-frame instantation

of a virtual generalization would tend to be the subject of frequent such at-

tempts, promoted by implicit instantiation of the generalization. There could

be a presumption in favor of garbage collecting readily rederivable schemas, on

the grounds that they will tend to reappear as needed.

* Importance. A schema that serves as an explicit target-frame instantiation is

important in proportion to its frequency of activation, and the value of the result

in aid of which it is activated. If such a schema is used more frequently than

rederivation attempts arise, then its garbage collection based on rederivability

should be suppressed.

5.1.2 Generalizing to other positions in the same reference

frame

Virtual generalizations depend on a mapping between source and target frames of

reference. This mapping may be bidirectional; that is, the reference frame that some-

times serves as the source frame, used to express a virtual generalization, may at

other times serve as the target frame, used to express an instantiation of a general-

ization from the other frame. For example, in figure 5-2, a body-relative schema now

expresses a generalization with respect to the visual field; the body-relative source

168



frame here maps to the visual-field-relative target frame, rather than vice versa.

09'

hp43 PalpableObjO34
handf

vp33 vp43

source frame: body-relative

source-to-target mappings:
glance orientations

target frame:
visual field

hgr 
v2SeeHand@32 vf23

vf22 handf

Figure 5-2: Here, the body-relative
the target frame.

hgr
SeeHande22

vf 12

Q-r-)Q vf13

handf

perspective is the source frame; the visual field is

A bidirectional mapping between two frames of reference makes possible a virtual

generalization that is instantiated at other positions in the same frame of reference

that serves to express the generalization. The instantiation occurs in two steps: first,

an explicit instantiation is made at some position in the other frame; then, that

instantiation serves as a generalization, which is instantiated at various positions in

the first reference frame, thus applying the original generalization to other positions

in the same reference frame.

Of course, the extrapolation of a schema from one position to another in the same

frame of reference does not follow deductively; the refrence frame might be inhomo-

geneous, so that objects behaved differently at different positions. (Indeed, even the

extrapolation to multiple positions in a distinct target frame of reference does not
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follow deductively.) Consequently, the processes described here may be regarded as

inductive. But it is equally reasonable to say that a given schema represents a virtual

generalization over all positions; that generalization itself is arrived at inductively, but

its instantiation at various positions is then a matter of deduction. These views are

not contradictory; they are just two ways of interpreting the same schema mechanism

phenomenon.

5.1.3 Subactivation

Empirical evidence from real-world events is not the only source of knowledge; much

can be learned from detached reflection and deliberation as well. A plausible cognitive

mechanism must be able to imagine events, as well as participate in actual events.

This section sketches a proposed extension to the schema mechanism that would

enable it to do this.

To activate an applicable schema is to take its action. To subactivate an applicable

schema is to simulate taking its action, by forcing its result items into a simulated-

On state (or, if negated, a simulated-Off state). In addition, any other applicable

schemas which share the subactivated schema's action are considered to be implicitly

subactivated; their results of their activation are also simulated by giving the appro-

priate items a simulate-On or simulated-Off state. If a subactivated schema's action

is composite, the mechanism may elect to subactivate the action's components, or

simply to treat the action as atomic.

An item's simulated state is distinct from its actual state (though if no simulated

state has been designated for a given item, its actual state is used instead). If a

schema's context conditions are all satisfied with respect to those items' simulated

state, then that schema is deemed applicable for subactivation (but not necessarily for

actual activation, which requires that the actual states satisfy the context). In other

words, the simulated state from a prior subactivation serves as a point of departure

for the next simulated action (though real actions, of course, only proceed from real
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states). The mechanism thus engages in a multi-step "thought experiment".

Such an experiment would be useless if the mechanism could not learn from it.

But if the marginal attribution machinery took notice of simulated states as well as

of actual states, then learning could proceed from imaginary as well as actual events.

It might seem that there would be nothing new to learn from a subactivation, which

only involves the re-enactment of results already represented by extant schemas. In

fact, however, the side-effect of implicitly subactivating some schemas when others

are explicitly subactivated can bring about novel sequences of events, leading to new

knowledge-or at least newly-expressed knowledge which, like any deduction, was

implicitly present all along. This re-expression is especially promising when explicit

subactivation at one level of abstraction has side-effects on another level; the following

section outlines some examples of this form.

5.1.4 Subactivation and virtual generalizations

As noted above, implicit generalization is a serial process; an action must first bring

about a canonical perspective in order for the generalization's applicability to the

present situation to become apparent. In addition to being serial, this instantiation

process also relies on a physical action (to bring about the perspective), rather than

just involving some internal calculation. Although being serial is inherent to implicit

generalization, relying on physical action is not. This section discusses the hypothet-

ical use of subactivation in lieu of physical action to achieve the implicit or explicit

instantiation of virtual generalizations.

Not surprisingly, the idea is for the schema mechanism to imagine achieving a

canonical perspective-that is, to subactivate rather than activate a schema which

achieves the perspective. Given an adequate substrate of schemas that describe the

source and target frames of reference, subactivation can accurately simulate what

it would be like to bring about the canonical perspective. Figure 5-3 illustrates the

subactivation of the schema /vf22/ to shift an image from vf11 to a canonical perspec-
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tive at vf22. The chain of schemas in figure 5-3a implement the action /vf22/. The

schemas in figure 5-3b are (implicitly) subactivated in succession as side effects of the

schemas which implement the composite action. In this illustration, the initial visual

orientation is vp22. The orientation after foveation would be vp11; the subactivation

simulation shows this new orientation, due to the schemas in figure 5-3b, which are

implicitly subactivated as a side-effect of the explicit subactivation of the schemas in

figure 5-3a. (Other implicitly subactivated schemas, not shown, turn Off the original

visual-field item vf11 and proprioceptive item vp22 in the subactivation simulation.)

vf11 vf21 vp22 vp12
eyel eyel

eyeb eyeb

vf22 vp11

(a) (b)

Figure 5-3: Explicitly subactivating the sequence in (a) implicitly subactivates the
sequence in (b), changing the subactivation-simulated glance orientation.

Correctly simulating the new visual orientation is crucial, since maintaining the

subactivation-state of the relevant visible-object synthetic items depends on that ori-

entation. In this example, suppose the subactivation next simulates moving the

hand beside the object and grasping it; suppose the schema in figure 5-1a is then

subactivated, showing the visual effects of moving the grasped object forward. In

consequence, and because the subactivation now shows vp11 On, VisibleObj@11 and

PalpableObj@11 turn Off and VisibleObj@12 and PalpableObj@12 turn On in the subac-

tivation simulation; on the basis of such subactivated trials, the mechanism can spin

off a target-frame schema similar to those in figure 5-1b. Thus, a virtual generaliza-
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tion is explicitly instantiated, just as though the entire experiment had been carried

out in reality, rather than by subactivation.

Thus, when schemas exist that supply enough information about the source and

target frames of reference, implicit instantiation (leading to explicit instantiation) can

take place by subactivation; it suffices for the mechanism to imagine assuming the

canonical perspective, rather than having to do so physically. The implicit instan-

tiation is still a serial process, however, since the mechanism cannot simultaneously

carry out arbitrarily many distinct subactivation simulations at once. But, as usual,

when a target-frame schema is built, making the instantiation explicit, that schema

can subsequently participate in fast, parallel chaining searches.

5.1.5 Conservation by instantiation of reciprocal-pair gen-

eralizations

The ability to repeatedly touch and then withdraw from an object appears early

in Piagetian development (section 2.1). As primitive as this capability is, it is an

important precursor to the concept of object persistence. It is itself a special case

of persistence; it repeatedly recovers the tactile manifestation of an object that is-

briefly-unperceived. However, this recovery can only be accomplished immediately

after the manifestation ceases, and only by a particular action which is the reciprocal

of the action that canceled the manifestation.

Suppose the schema mechanism were extended to identify pairs of reciprocal

actions-pairs such that the first action turns Off some item that reliably but un-

expectedly (with respect to any schema's prediction) turns back On if the second

action immediately follows the first. An action's reciprocal promotes the recovery of

a manifestation that the first action just caused to cease. For example, the action

of moving the hand left is the reciprocal of moving the hand right, when the latter

action removes the hand from an object to the left (figure 5-4a); and the action of

glancing left is the reciprocal of glancing right, when the latter averts the gaze from
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an object to the left (figure 5-4b).

tacti , vf42

tactl 0 _ tactl vf42 vf42
handr handl eyer eyel

(a) (b)

Figure 5-4: Reciprocal actions recover lost manifestations.

Recognizing the effect of such reciprocal actions is a limited recognition of persis-

tence, as just noted. Moreover, if the mechanism specifically promotes the successive

activation of reciprocal actions, this promotion will serve as a catalyst to develop

the more profound sense of persistence embodied by synthetic items that designate

persistent palpable or visible objects.

The successive activation of reciprocal actions promotes the formation of synthetic

items by demonstrating the local consistency of their host schemas. Consider, for

example, the reciprocal hand actions of figure 5-4a. Their successive activation when

the hand is at, say, hp22 implicitly activates the schema /hp22/tactl. The implicit

activation is successful-the schema's result does obtain; several repetitions of the pair

of successive activations thus amount to successive succesful activations of /hp22/tactl,

exhibiting that schema's local consistency, and spurring the construction of a synthetic

item for that schema (if none exists already). Similarly, of course, for other hand

positions (and for visible-object items; for those, reciprocal eye actions, rather than

hand actions, give aid.)

We may regard this synthetic item formation as the explicit, position-specific

instantiation of a position-independent generalization expressed in terms of the suc-

cessive reciprocal actions. Furthermore, this explicit instantiation can even be accom-

plished by subactivation of the relevant schema and its reciprocal action, as illustrated

in figure 5-5. Due to the schemas that designate the adjacency of hand-position items

with respect to incremental hand actions, subactivating the sequence of reciprocal ac-

tions has the side-effect of simulating (in this example) the repeated achievement of
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hp23 simultaneously with the repitition of Tactl, demonstrating the local consistency

of /hp23/tactl and promoting the reification of that schema's validity by the synthetic

item PalpableObjD2,3.

, tactl hp33 hp33

tactl K) =) tactl hp23 ( -- hp23
handr handl handr handl

(a) (b)

Figure 5-5: Subactivating the reciprocal actions in (a) implicitly subactivates the

schemas in (b), showing the side-effect on hand position.

Thus, the need to replicate the discovery of persistent objects at different positions

is mitigated by systematically promoting that replication, as the instantiation of a

virtual generalization.

5.2 Deductive overriding of default generalizations

Commonsense reasoning is nonmonotonic; we may believe the generalization that For

all X, P(X) implies Q(X), and then learn that for some A, P(A) is true but Q(A)

is false, contradicting the generalization. Typically, we retain the generalization as a

default assertion, which we can override in special situations in which the default is

known not to hold. (Such reasoning is called nonmonotonic, in reference to the fact

that the set of statements believed to be true does not just increase with additional

knowledge; sometimes, additional knowledge forces the retraction of a prior view

held by default.) Use of extended-context information to override an (imperfectly)

reliable schema (section 3.2.1) implements a kind of nonmonotonic reasoning: the

reliable schema makes a default assertion, which is trusted except when some specific

overriding condition obtains.

Overriding conditions pose a special problem for virtual generalizations. If an

ordinarily reliable schema that expresses a virtual generalization is overridden by
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som e particular condition, then all instantiations of the generalization ought to be

overridden by that condition too. In gure 5-6a, for exam ple, the schem a SeeDisplace

expresses the visual effect of moving the hand while grasping an object. The schema

exhibits an overriding condition for a particular object that (we stipulate) is too heavy

to move; thus, the object remains in place when the hand moves. Another schema,

SeeHeavy (figure 5-6b), asserts that the heavy grasped object stays in place when the

hand moves.

SeeDisplace:

hgr
SeeHand@32

SeeHeavyObjQ22 o vf22
(a) 1 vf23

handf

SeeHeavy:

hgr
(b) SeeHand@32 2TX 7 , vf23

SeeHeavyObj@22 handf .

Figure 5-6: Displacing an object fails if it is too heavy.

Suppose a heavy object is present, and the schema mechanism uses subactivation

to simulate achieving the canonical perspective that makes SeeDisplace applicable.

That schema's override condition then also turns On, suppressing the schema; and

furthermore, SeeHeavy becomes applicable. Thus, this implicit instantiation appro-

priately gives SeeHeavy precedence over SeeDisplace.

However, suppose SeeDisplace has been explicitly instantiated at some body-

relative position-say (3,4); call the schema that expresses this instantiation Ob-

jDisplace34 (figure 5-7). Suppose further that the overriding heavy-object schema

has not been explicitly instantiated at that position. Now, when the canonical per-
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spective has been achieved, there is a conflict between the prediction made by the

now-applicable SeeHeavy schema-which asserts that the grasped object will remain

in place if the hand moves-and the target-frame schema ObjDisplace34, which pre-

dicts that the grasped object will move when the hand does, contradicting SeeHeavy.

The contradiction arises at the item VisibleObje34; ObjDisplace34 predicts that that

item should turn On, while SeeHeavy predicts a visual scene that doesn't show the

object there.

source frame: visual field target frame: body-relative

SeeDisplace: ObjDisplace34:
I t I I i i

hgr g
Seelhgrd@32 vf23 hp4r VisibleObjQ34

vf22 handf handf

override virtual override

SeeHeavy: ObjHeavy34:

I ii i U

hgr g
SeeHandC32 CD CD, vf23 hp43 ,---) - VisibleObj@34

SeeHeavyObjO22 handf HeavyObjC33 handf

Figure 5-7: The schema ObjHeavy34 should override ObjDisplace34.

Of course, if the hand action actually occurs in this position on several occasions,

the overriding generalization expressed by SeeHeavy will be explicitly instantiated

for that position; that is, the schema ObjHeavy34 will be created, and the schema

ObjDisplace34 will come to recognize an override condition (the condition of there
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being specifically a heavy object at that position). But until then, there are conflicting

predictions; worse still, if the canonical perspective has not been achieved, then the

schema SeeDisplace will assert, wrongly but without opposition, that the object will

move-even though the mechanism should know better than that, because the visual

virtual generalization already properly takes note of the exceptional condition.

It is desirable that the mechanism be able to apply an overriding condition to each

target-frame position, rather than having to physically try the relevant action several

times at each such position in order to learn the exception there. In the absence of

this ability, the utility of virtual generalizations would be severely curtailed, given

the prevalence of imperfect generalizations that admit specific exceptions.

The ability to project a general schema's overriding conditions onto target-frame

instantiations can be achieved if it is possible to appropriately resolve the conflict

just noted between an overriding source-frame prediction (here, SeeHeavy), and a

non-overridden target-frame prediction (SeeDisplace). Given a proper resolution of

that conflict in the course of a subactivation, the exceptional event would be correctly

simulated-the heavy object would be shown to remain stationary. On that basis, the

ObjHeavy34 schema would be built, explicitly instantiating the overriding condition

at that position.

I speculate that the required conflict resolution might be achieved by augment-

ing the schema mechanism to be able to tell that the basic target-frame schema

(here, ObjDisplace34) was derivable by subactivation from another schema or schemas

(SeeDisplace), and to suppress the prediction made by a derivable schema when the

schemas from which it is derivable are applicable (even if overridden, as SeeDisplace

is here). Intuitively, SeeDisplace accounts for ObjDisplace34 (and for other instantia-

tions, in other positions); so something that supersedes SeeDisplace (e. g. SeeHeavy)

should also supersede what is accounted for by SeeDisplace, e. g. ObjDisplace34. The

target-frame override is thus deduced from the source-frame override, even though the

overriding condition may never have been encountered at the target-frame position
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in question.

The crux of this approach to deduced overrides is the detection of the derivability

of one schema from others by subactivation. The schema mechanism could recognize

derivability by detecting what is in fact derived (or rederived) from what during

subactivation.

Here is a sketch of how this detection might be accomplished. Suppose that the

mechanism kept track of the schemas used to maintain each item's state in the course

of a subactivation, and that it also kept track of which items' states were relied on

for the creation of a new schema in the course of that subactivation. Then, for each

schema derived (or rederived, as defined above in section 5.1.1) by subactivation, the

mechanism could note which schemas' result items caused the simulation of state-

transitions of the items that appear in the result of the derived schema. Those

are schemas from which that schema is derivable. (Counting rederivation, as well

as derivation, ensures the recognizability of a schema's derivability even if it arose

independently, empirically, before being derived from other schemas.)

As mentioned above, there are two ways to view the instantiation of virtual gener-

alizations. From one standpoint, a virtual generalization quantifies over positions in

some space (either physical positions, as in the above examples, or positions in some

abstract space); the generalization is arrived at inductively, and its instantiation by

subactivation may be regarded as a deduction. Alternatively, each application of the

original schema to a new position may be regarded as an inductive generalization.

From this standpoint, the projection of overriding conditions onto new instantiations

may be seen as resolving a conflict between two inductive generalizations at different

levels of description. (In the above example, one level of description is in terms of

visual images, the other in terms of objects that persist at body-relative positions.)
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5.3 Virtual mechanisms

An individual's intelligence develops; an adult's thought is more advanced than an

infant's. Piagetian development involves not only more elaborate representations

of the world-the focus of this thesis-but also more advanced forms of reasoning,

understanding, and problem solving.

5.3.1 Virtual mechanisms and Piagetian development

Some of the stages of sensorimotor development chronicled by Piaget follow directly

from representational advances. For example, Piaget's fourth stage brings the ability

to coordinate schemas so as to use one object to act upon another (section 2.4). This

has the prerequisites of representing the behavior of the acting-on and the acted-upon

objects individually (as the results of schemas; first, there must be items capable

of expressing those results), and being able attribute the latter to the former (by

having composite actions whose goal states correspond to the behavior of the acting-

on object-for example, in the hypothetical schema of figure 4-392).

Other advances in intelligence, however, require more than representational ad-

vances. For example, fifth-stage tertiary circular reactions (section 2.5) involve the

on-the-fly development of new techniques for acting upon an object. Or, to take an

example from much later development, the stage of formal operations brings, among

myriad new intellectual powers, the ability to systematically consider hypothetical

explanations for an event by exhaustively generating all possible permutations of

candidate factors. (For example, an individual may be asked to devise a series of

experiments to discover which subset of a group of combined chemicals was respon-

sible for a particular reaction.) Such a capability may well depend in part on new

representations-of an abstract space that organizes permutations, for example-but

21f the acting-on object is the hand, then less representational sophistication is required, since
hand motions are primitively represented as actions.
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it requires more than that too. It requires the ability to deploy the representation as

needed to generate explanations that depend on such permutations.

The schema mechanism's built-in problem-solving behavior is crude, consisting of

finding an explicit chain of extant schemas leading from a current state to a goal state.

Moreover, the schema mechanism itself does not develop; the mechanism remains

constant as its constructs-schemas, actions, and items-evolve. Superficially, this

constancy is at odds with the need for intelligence to grow. But just as virtual

structures (e. g. the virtual generalizations of the previous section) can overcome

some of the limitations of the actual data format, so virtual mechanisms can develop

and improve despite the schema mechanism's own invariance.

At a given moment, what action the schema mechanism inititates, and what inter-

nal structures it creates or alters, are a function of the extant data structures (and, of

course, of the mechanism's inputs). This function is invariant; it is in that sense that

the mechanism itself does not change. But the schema mechanism, taken together

with its acquired structures, operates according to some function of its inputs-and

that function can change, as the structures themselves change. What I call a virtual

mechanism is simply the operation of the invariant schema mechanism in concert

with some or all of its evolving structures. Thus, the invariant schema mechanism

can support virtual mechanisms that change.

In fact, the schema mechanism's hypothetical manipulation of virtual generaliza-

tions, discussed in the previous section, is an example of a virtual mechanism as well

as of virtual structures; the tendency to activate a source-to-target mapping schema

implements a virtual mechanism for instantiating virtual generalizations. But even

this rudimentary example, although sketched here in some detail, remains undemon-

strated by the implementation; the further-reaching virtual mechanisms required for

even sensorimotor-level Piagetian development are, at this point, no more than a bare

possibility for a system like the schema mechanism.
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5.3.2 Virtual mechanisms and the mind's expressibility

Perhaps human cognitive development culminates in some virtual mechanism that is

fixed from then on. In this case, adult intelligence can be explained at that level,

without reference to its development. But there is an alternative possibility which I

think more likely. It may well turn out that the work of the developmental process

is never complete-that the elusive human attributes of "creativity" and "common

sense" (a kind of routine, practical creativity) depend in part on continual revision and

extension of the constructed virtual mechanism. Then, I see no reason to expect that

the precise rules of revision are expressible on any level of abstraction higher than that

which describes the developmental system.3 If this is so, then an artificial intelligence

designed on a higher level of abstraction is sure to exhibit some degree of stereotypical

mechanical rigidity in the face of certain unanticipated contingencies; if this is so,

humanlike flexibility must be explained in terms of a long-term developmental system,

rather than as a later, static, higher-level virtual system.

The prospect of there being no precise virtual mechanism is related to arguments

by some authors (e. g. Dreyfus 1979, Winograd and Flores 1986) that intelligence

is inexpressible as a rule-like system. But if the human mind is a mechanism, and if

the Church-Turing thesis is correct, then a formal (hence rule-like) description of the

mind is surely possible. Nonetheless, if we think of rules in the sense of consciously

followed prescriptive steps-such as those of a recipe or other explicit plan of action-

then indeed there may be no precise description of intelligence at that level. 4

'This is related to the argument in (Hofstadter 1982) for describing the mind at what he calls the
subcognitive level, the details of which are inaccessible to conscious cognition. However, descriptions
of the mind at the developmental-mechanism level need not be subcognitive.

'Of course, one might imagine a person explicitly following rules that prescribe a hand-simulation
of a mechanism of intelligence; the person would thereby be acting intelligently by consciously
following explicit rules. But this approach is not just impossibly cumbersome; it is useless, in
principle. Either the hand-simulated intelligence will try the same trick, setting up another level
of simulation in turn, and so on to infinite regress; or else a different reasonable approach is taken
at some level of simulation. In the second case, all intervening levels of simulation are superfluous,
including the first. Whatever non-rule-like train of thought leads the last level of simulation to any
action or belief, that train of thought might just as well have been used in the first place, in lieu of
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any simulations.
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Chapter 6

Conclusion

6.1 Situating the schema mechanism in A.I.-space

This section relates the schema mechanism to other A.I. efforts. First come some

broad observations of where this research fits along several dimensions that charac-

terize A.I. research programs There follows a more detailed comparison of the schema

mechanism with some proximally related work.

6.1.1 The schema mechanism and production systems

Superficially, a schema resembles a production rule (eg Newell and Simon 1972). A

production rule has two parts: an antecedent and consequent, also called the left

side and right side, respectively. The antecedent specifies conditions for the rule's

applicability; the consequent specifies what happens when the rule is invoked. Some

production systems invoke every rule whose antecedent is satisfied; others arbitrate

among such rules to invoke just one, or a small number of them.

Three parts or two: modularity for learning

A schema differs most obviously from a production rule by having three main parts

rather than two. One way to assess the consequence of this difference is to compare
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the use of schemas and productions for achieving a goal. Productions can serve as

situation-action rules, in which the left side specifies conditions for taking the action

designated by the right side; the conditions may include a specification of a current

goal, so that the rule is invoked only when that goal is asserted. Alternatively,

productions can represent situation-result rules, in which the left side includes an

action and some preconditions for taking it, and the right side specifies a result.

The production system must identify a sequence of rule invocations that leads to a

goal; each rule's result may contribute to the conditions needed for the next one's

invocation. Identifying chains of schemas is a similar process.

For purposes of chaining to goals, then, there is little difference between schemas

and productions; the information in schemas could be converted to two-part pro duc tion-

rule syntax and used in that form. However, for purposes of learning such rules in

the first place, the three-way distinction, I argue, is crucial.1

One way to learn how to act is to discover what would happen if an action were

taken, and to use that piece of knowledge (perhaps in concert with other such units)

to decide which action to take, based on the desirability of the outcomes of various

possible actions. The schema mechanism takes this approach. Another possibility is

to try to learn directly what action is best in a given situation (rather than deriving

that from a representation of what would happen); Holland's bucket brigade algorithm

exemplifies this approach. First, the system learns the desirability of actions that lead

immediately to goals, in certain situations; it then learns the desirability of actions

that lead to those precursor situations, in other situations; and so on, extending

backward from the goals. The credit-assignment problem-attributing an eventual

outcome to earlier events or actions-is addressed by passing credit incrementally

backward from the goal.

The end result is much the same as with tripartate schemas. In the situation-

1Situation-result rules could be annotated to make a three-way distinction by dividing the sit-
uation into action and preconditions; but that annotation would amount to having a three-part
schema.
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action paradigm, results are not explicitly represented; still, the actions were learned

on the basis of the usefulness of the results obtained. When the rules are invoked,

the actions occur in turn, each enabling the next rule in the sequence. Thus, once

formed, such rules are as useful as schemas for reaching goals-although situation-

action rules would not support subactivation, for which results must be explicitly

simulated, hence explicitly predicted.

However, situation-action learning is intrinsically, infeasibly slow. One reason has

to do with the fact that such learning only takes place along the fringe of the state-

space that has already been connected to the goal. Encountering a situation several

steps back from the goal is of no use-even if the right action happens to be taken

then-if subsequent steps do not lead to the recognized fringe. In contrast, with

context-action-result structures, various islands of the state-space can be learned as

encountered, with no forseen applicability to any goal, then quickly chained to reach

a goal when the necessary pieces have been assembled.

Human beings-especially infants and children at play-clearly do seek and ob-

tain knowledge for its own sake, not just to apply to specific goals. Metaphorically

speaking, bucket-brigade-style situation-action learning does only applied research,

whereas schema learning does basic research as well. For infants and technological

cultures alike, it is imperative to be able to acquire knowledge without first having

to be able to specify the use to which that knowledge can be put.

Empirical learning of situation-action rules is slow for a second reason as well.

Different goals arise in different circumstances. For any kind of state-space, it may

sometimes be desirable to be at a given point in that space, sometimes elsewhere; for

example, at different times, one might want to assume a variety of different positions

in a room (going to the door, sitting on a chair, etc). In order for the bucket-brigade

to deal with this variability of goals, rules' situations must include either the very fact

that a certain position is now a goal, or a reference to some current circumstance that

bears the information that that positions is desirable (the doorbell has rung, dinner
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is served, etc).

The number of situation-action rules that have to be learned is then proportionate

the product of the size of the state-space and the number of goal positions. In contrast,

each piece of a schema-implemented state-space network says what the result of some

action would be, and is acquired independently of the system's goals; these pieces are

then are used to chain to various goals in order to determine what action to take.

Thus, decomposing the question of what action to take into the questions of what the

result would be, and what results are desirable, has the right modularity for learning.

If goals were relatively constant-as strategic goals are, more than tactical goals-

then the problem of multiplying positions with goals would not arise. In my view,

bucket-brigade-style credit-assignment misapplies a strategic learning algorithm to

tactical learning. The schema mechanism instead distinguishes between instrumen-

tal value, which facilitates tactical planning, and delegated value, which promotes

strtgegic pursuits (section 3.2.2).

The foregoing considerations-of basic vs. applied learning, and tactical vs.

strategic learning-establish the need to represent the result of an action. This, in

turn, requires a designation of appropriate context conditions, since, as discussed

in section 3.4.1, a given action may have a variety of distinct results in different

situations. Finally, for purposes of learning, the context and action cannot combine

to form an undifferentiated antecedent of a two-part rule; the marginal attribution

machinery, needed to solve the context-result chicken-and-egg problem (section 3.4.1),

compares what happens with vs. without the action, given satisfaction of the context

condition, and thus requires an explicit distinction between context and action.

Constants and variables

Many production systems allow variables to appear in production rules. A rule's an-

tecedent is checked for satsifaction with respect to any instantiation of those variables;

if some instantiation matches, the consequent is asserted using the same variable val-
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ues as resulted in an antecedent match.

Checking for antecedent satisfaction is much slower when variables are permitted,

because many different instantiations may have to be tried. Still, an intelligent system

needs to express and instantiate generalizations, and it is unclear that the variable-

matching method for doing so cannot be made as efficient as any other (see section

6.1.7 below).

The schema mechanism does not support variables or matching for the elements of

schemas. Therefore, some other method is needed to support generalizations. Section

5.1 raises the possibility that the mechanism might maintain virtual generalizations,

together with virtual machinery for their instantiation. The reason to rely on this

hope, rather than building in a variable-matching implementation of generalizations,

is just that there is no apparent way to support such an implementation without

abandoning the constructivist working hypothesis by including domain-specific build-

in structure. For example, if each proprioceptive item were structured as, say (Prop

Hand 3 2), with components that designate spatial coordinates, then the mechanism

might be augmented to express generalizations of the form Prop Hand x y, where x

and y can be matched to particular coordinates. Atomic elements, however, do not

lend themselves to such generalization.

Perhaps the system itself could be made to devise structured representations to

support variablized generalizations. If virtual generalization turns out to work, the

inclusion of such machinery might be gratuitous, even if feasible. But if virtual

generalization fails, devising such machinery may be vital to the schema mechanism.

6.1.2 The schema mechanism and connectionism

Schemas, although different from production rules, have in common with productions

that they are a kind of qualitative, symbolic construct. This contrasts with connec-

tionist systems, which pass numeric values through networks that have adjustable

weights.
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Yet the schema mechanism's architecture (section 3.3) is connectionist-symbolic

structures are composed by setting bits at connection points; data paths transmit only

nonsymbolic information, consisting of numbers, truth values, or a small number of

atomic tokens (which could just as well be numbers). In fact, as the next section

argues, a schema's extended context is essentially a connectionist network solving

a classifier problem. The schema mechanism might be viewed as a kind of hybrid

system, in which symbolic structures are created and maintained with the help of a

connectionist substrate.

Extended context as connectionist network

A connectionist network divides a global computation into numerous simple, local

computations. A single-layer, single-output connectionist network has a processing

unit which computes a simple function-typically a weighted sum-of the network's

numeric input values. A multi-layer network includes hidden processing units whose

inputs are other units' outputs.

If the inputs are restricted to the values 0 and 1, we can regard a connectionist

network as computing a boolean function of its inputs; the function's value is taken

to be 0 if the output value is below a specified threshold, else 1. Equivalently, the

network classifies all possible input combinations into one of two sets, corresponding

to the two boolean outputs.

A classifying network can be trained by starting the network with arbitrary weights,

presenting a series of example input combinations, and adjusting the weights accord-

ing to the correctness of the network's classification for each example. There are

various algorithms for this adjustment; all share the property that, on each example,

each unit's weight is adjusted according to 1) the sign of the unit's contribution to

the weighted sum; and 2) whether the network's comptation for that example gave

the right answer. A positive contribution to a correct answer may be rewarded by

increasing the weight's magnitude; a negative contribution to a correct answer may
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be punished by decreasing the weight's magnitude.

A single-layer network can compute some boolean functions, but not all. For

example:

e If a function is a conjunction of several inputs (e. g. a(-b)c, a network can re-

alize that function by having a positive threshold k, and dividing that threshold

among the weights for the non-negated conjuncts. Negated conjuncts receive

negative weights; all other weights are set to zero. Then, only if the non-negated

conjuncts are all 1, and the negated ones all 0, can the threshold be reached.

* If a function is a disjunction of non-negated inputs (e. g. a + b + c), then each

disjunct can be given a weight whose magnitude exceeds that of the positive

threshold k.

* If a function is a disjunction of possibly negated inputs (e. g. a + (-b) + c),

then the threshold is set to -k, where k is the number of negated inputs. Each

negated input receives weight -(1 + 1/k), so that even if all non-negated inputs

are 0, the threshold will still be met, unless all negated inputs are 1. Each

non-negated input receives weight 1, so that even if all negated inputs are 1,

any non-negated input will cause the threshold to be reached if that input is 1.

If there exists a set of weights to compute a given function, a convergence theorem

(Minsky and Papert 1969) shows that a connectionist network can be trained to

adjust its weights so as to compute that function. This fact is noteworthy; it means

that a series of incremental adjustments to local computing elements culminate in

computing the appropriate overall computation.

But single-layer networks cannot compute arbitrary boolean formulae. This is

made apparent by considering DNF (disjunctive-normal-form) formulae; a DNF for-

mula is a disjunction of clauses, each a conjunction of (possibly negated) atomic

terms. Consider, for example, the formula ab + cd. If ab and bc each exceed the

threshold, then a's weight or b's must be at least half the threshold, as must eithr
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c's or d's. But then the larger weight from one conjunction, plus the larger from the

other, also exceeds the threshold; no assignment of weights to a, b, c and d can allow

ab and cd to exceed the threshold, while preventing both ac and ad (or bc and bd)

from doing so.

The problem is that inputs that satisfy the formula are not linearly seperable from

those that do not. Multi-layer connectionist networks solve this problem by having

hidden units that compute functions in terms of which the formula is linear. For

example, two internal units might compute the conjunctions ab and cd; an output

unit then computes the disjunction of those internal units' outputs. However, there

is no demonstration that such networks converge to the appropriate weights within a

practical number of training examples, if the inputs number hundreds or more, and

if there may be many (say, dozens) of conjunctive clauses of several terms each.

Marginal attribution in the schema mechanism takes a different approach. A

schema's extended context resembles a first-order connectionist network; it faces the

classification problem of distinguishing input combinations (i. e. , items' states) that

correspond to successful activations from those that correspond to failures. (Of course,

extant items aren't always adequate to make that distinction.) Each extended-context

slot's correlation measure is roughly like a connectionist weight; it adjusts after each

trial to reflect the corresponding item's contribution to the overall classification. An

item's relevance is identified quickly; the identification needs only a handful of suc-

cessful trials to demonstrate a significant difference in the schema's success rate as a

function of the item's state.

Rather than using intermediate processing units to compute conjunctions, the

schema mechanism builds spinoff schemas, whose contexts compute conjunctions.

Each such schema has its own extended context-in effect, its own entire connection-

ist network. Having an entire such network support each small, symbolic unit of rep-

resentation is expensive, though arguably (section 3.3.1) within neurophysiolocially

plausible bounds.
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Back-propagation and empirical credit assignment

Section 6.1.1's remarks about the modularity of learning, and about credit assignment,

also apply to much connectionist work. (Holland's bucket-brigade alogrithim, in

fact, has dual citizenship as a production system and a connectionist system; since

Holland's rules' antecedents require no variable-matching, and since all applicable

rules are invoked in parallel, a network of such rules is isomorphic to a connectionist

circuit.) Sutton's temporal difference methods (Sutton 1988) generalize the bucket-

brigade algorithm, and introduce an important distinction between rewarding that

which leads to eventual success vs. rewarding that which leads to a normally reliable

precursor of eventual success. Nontheless, temporal difference methods fall within

the scope of the foregoing discussion.

6.1.3 The schema mechanism and search algorithms

The schema mechanism broadcasts messages in parallel through chains of schemas

(section 3.3.1). Backward broadcasts from a goal state find paths to that goal; for-

ward broadcasts from the current state find accessible states. Such broadcasts imple-

ment a breadth-first traversal of the state-space described by schemas. Such searches

are prominent in conventional A.I.; they appear, for example, in classic game-playing

programs (eg Samuel 1963), which do a minimax search (eg Winston 1984) in a heuris-

tically limited portion of state space; and in SOAR (Laird, Newell, and Rosenbloom

1987), which uses productions that chain to describe series of transformations.

Compared to these other state-space searches, schema mechanism broadcasts are

more efficient and more limited. Both properties derive from the fact that a broacast

merely propagates messages in parallel through existing structures, whereas general

state-space searching requires computing at each step a new total world state from

which the next step can proceed.

Consider, for example, a goal of placing two toy blocks on a table. It is not enough

for there to be a schema for placing each of the blocks (figure 6-1a). Even though
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activating them in succession would indeed reach the goal state, those schemas do not

chain to the goal state, because neither schema's result shows there being two blocks

on the table; each shows only one. This matters, since, for example, any other schema

whose context required two blocks on the table could not be chained to by either of

these schemas. Chaining to the goal is possible only if one of the schemas has a result

that designates both blocks on the table; if the schema's action is to place a single

block, then a two-block result requires the context condition that the other block

already be there. Such a schema is indeed chained to by a single-block-placement

schema (figure 6-1b), thus chaining to the goal.

blockeleft

putleft
(a)

block~right

putright

block~right blockcleft

(b) blok iht

putright putleft

Figure 6-1: Achieving each result separately does not chain to a conjunctive goal.

In short, each link along the chain must explicitly designate all aspects of the

world state that are still needed further down the chain. In contrast, conventional

state-space searches can generate that information on the fly by applying successive

transformations each of which designates only that part of the world that is locally

relevant to that transformation. This difference makes the conventional transforma-

tions far more general, because the links in a schema chain must involve not only a

widely applicable transformation (e. g. placing a block), but also a specific version

of it that is relevant to the goal of the particular sitation (e. g. placing a block when

another has already been placed). But such on-the-fly generation cannot be done in
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parallel by propagating a fixed set of tokens through pre-established links; hence, the

greater expense of the conventional paradigm.

Subactivation, the extension to the schema mechanism proposed in section 5.1.3,

offers the possibility of performing the more general and more expensive kind of

search. Subactivating, say, one of the block-placement schema in figure 6-1a pro-

duces a simulated world state in which the block is on the table; subactivating the

other placement schema then yields a simulated state in which both blocks are there.

From such subactivations (or from actual activations of the same schemas), the mech-

anism can derive the dual-block-placement schema of figure 6-lb (either by marginal

attribution, or perhaps by a faster process suggested in the following section); that

schema is thereafter available for rapid, parallel chaining to the goal.

As with conventional state-space search, subactivation steps are serial. Also, as

with conventional search, there needs to be some systematic or heuristic basis for

selecting the next subactivation step, since the action is not yet known to chain to

the goal; rather, that discovery will be a consequence of the subactivation. What is

needed is the development of a virtual mechanism (section 5.3) implemented with the

aid of schemas that promote the appropriate search steps in an appropriate sequence.

Such a development is, at this point, entirely speculative and undemonstrated.

6.1.4 The schema mechanism and explanation-based learn-

ing

As noted in section 5.1.3, having multiple levels of representation means that schemas

at a given level might combine to predict results at another level, which can then be

described at that level. Were there but one level of representation, subactivation

would just re-enact what is already known, without deriving anything new.

One way for the schema mechanism to learn from subactivated events is by using

the marginal attribution machinery just as for actual events. But this is needlessly

inefficient, for it requires several trials, despite the fact that repeating a sequence
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of subactivations with the same structures will have the same result; the repeated

subactivated trials convey no more information than a single such trial.

Conceivably (though I propose no details here) the mechanism could keep track of

the aspects of the world state that the subactivated result depended on, and build a

schema based on a single subactivated trial, with the depended-on state elements in

the context of the new schema. Such a technique would resemble chunking in SOAR

(Rosenbloom and Newell 1983), which, like other explanation-based learning mech-

anisms, identifies and records the dependencies in a search process, and abbreviates

subsequent searches by recording what follows from those dependencies, so that that

search need not be recapitulated. (The recording of proximity information in a com-

posite action's controller was also likened to SOAR broadcasting-section 3.4.2-but

with respect to the more primitive search process carried out by parallel chaining.)

Or, in lieu of explicit dependency tracking, the mechanism might simply grant a sub-

activated trial exaggerated impact on correlation statistics, having the same effect as

several actual trials.

Section 3.2.2 raised the possibility that the hysteresis of schemas' activation value-

a tendency to reactivate schemas recently activated-might promote imitation, by

inducing the mechanism to explicitly activate a schema that had just activated im-

plicitly. Explanation-based learning by means of subactivation might exploit a ten-

dency toward imitation: a subactivated imitation of an event just observed might

include a derivation of an explanation of the event, by deriving schemas that predict

the observed outcome.

The mechanism might safeguard against spurious subactivation acquisitions by

flagging subactivation-derived schemas that have received no actual test. Such schemas

can be viewed with some suspicion, particularly in the event of conflict with more

concretely supported schemas.
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6.1.5 The schema mechanism and rational learning

Biological entities are self-constructing and self-maintaining. To be sure, suitably

nuturing environments are essential. But the eventual structure of a newly conceived

organism is determined primarily from within, by its genetic endowment; likewise,

repair of injuries is guided from within.

Artificial machines, in contrast, are built and repaired from without-for example,

by technicians at a factory. It is not clear that the biological approach is advantageous

if factories (or the like) are readily available to provide synthesis and maintenance.

But if they are not available, self-organization is the only possible choice; systems

that bootstrap themselves from scratch, as in the case of biological evolution, must

therefore organize from within.

In the cognitive domain, the dichotomy empirical vs. rational learning (Kodratoff

1988) parallels the distinction between building from within vs. from without. Ra-

tional learning analyzes representations in light of their internal structure and their

relations to other structures-forming analogies, noticing dependencies, and so on.

The bulding or modifying of a particular structure is determined mostly by the knowl-

edge implemented by myriad other structures; in that sense, the construction and

elaboration is directed from without, not from within the structure that is affected.

In contrast, empirical learning proceeds locally; each structure (for example, a

schema) maintains its own statistics, and spawns variations of itself. True, the

schema's behavior depends in part on its connections to other structures (for ex-

ample, via the extended context and result). But those structures do not implement

an understanding of the subject matter of the schema they connect to; the connec-

tions do not allow those structures to analyze the schema, but rather pass data to the

schema, which process the data (e. g. by maintaining correlation statistics), again

without having any representation of the meaning of the structures.

Doing empirical learning-having structures that learn from within, rather than

from without-is crucial to constructivist bootstrapping, just as self-replication is to
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evolutionary bootstrapping. Just as evolution had no factories to set it in motion,

constructivist systems have no built-in domain-specific knowledge to guide earliest

learning. This is most evident with regard to the invention of new concepts by the

assembly of autonomously developed precursor fragments of that concept (recall the

discussion of this Piagetian theme in section 2.8.1).

For example, in conventional systems of representation, an object's presence at

some location is designated by some such notation as (AT-POSITION OBJ259 25 16);

the system's domain knowledge and deductive resources combine with this notation to

derive, for example, that to grasp OBJ259, the hand should move to (25,16) (and that

to see it, the glance should be directed there). In contrast, the schema mechanism

constructs the very concept of at-position from what other systems would regard as

derived fragments of the concept. This is not merely a matter of reasoning in the other

direction; the concept is invented, rather than just having its applicability deduced,

from the underlying fragments. This having been done, the system indeed reasons

both from the fragments to the concept (by using verification conditions to judge

the concept's applicability), and vice versa (by the concept's designation in schemas'

contexts and results).

These considerations do not argue for empirical learning to the exclusion of ratio-

nal learning. Explanation-based learning is a form of rational learning; and, as the

previous section suggests, subactivation may allow the schema mechanism to sup-

port such learning-after an adequate substrate of knowledge has been laid down by

another process. (Analogously, biologically evolved systems that build from within

eventually do implement factories, which build from without; the two systems are

thereafter symbiotic.) Empirical rather than rational learning is needed to get off the

ground, both at the very origin of individual development, and upon introduction

to drastically novel domains; conceivably, even routine situations often require some

on-the-fly fine-tuning of skills at levels for which no rational analysis is available. Con-

ventional A.I. proclaims that "in the knowledge lies the power"; the constructivist
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reply, to paraphrase a well-known adage, is that learning will get you through times

of no knowledge better than knowledge will get you through times of no learning.

6.1.6 Virtual mechanisms and self-modification

There are two ways that a mechanism might change as it learns. As discussed in sec-

tion 5.3, a mechanism might operate in conjunction with its acquired data structures

to form a virtual mechanism that evolves as the structures evolve. Alternatively,

the mechanism might actually modify itself. For example, Lenat's learning system

Eurisko (Lenat 1983) represents its own implementation in a format that the system

itself can modify (though not with great usefulness; see Haase 1989). Similarly, in

SOAR, aspects of the mechanism's control structure are represented in a format that

the system can change, making the system partially self-modifying.2

In my view, it is implausible for a constructivist system to modify its own imple-

mentation by the same principles it uses to modify its other data structures. Rep-

resenting the system's implementation in structures amenable to elaboration by the

system itself is vastly more difficult than thus representing, say, the rudiments of

physical objects. It would make no sense to design a system that starts with the

far more sophisticated built-in knowledge, but has to reinvent the much more basic

knowledge.

2 Even a self-modifying mechanism can be described as an invariant mechanism operating in
conjunction with variable data to produce a variable mechanism at a higher level of abstraction. For
example, any computer implementation of Eurisko runs on digital hardware that remains constant;
the hardware maintains data which describe the implementation, and which change. But the level
of abstraction at which there is an invariant mechanism is one that describes a general-purpose
computer, not one that describes anything specific to Eurisko's learning apparatus. In contrast, the
schema mechanism separates into a fixed mechanism and mutable data at an abstraction level that
does correspond to the substance of the learning mechanism.
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6.1.7 The schema mechanism and situated activity

The schema mechanism follows Piaget in emphasizing that an individual's physical

activity is the foundation for acquired knowledge-even eventual abstract knowledge

far removed from physical domains. Recent trends in A.I., highlighted by the work

of Suchman (1987), Agre and Chapman (1987) and Agre (1988) and Brooks (1986a),

also address activity that is said to be situated in the physical world.

Brooks offers an intriguing methodological rationale for his line of research. Brooks

designs robot systems with roughly insect-like abilities; he argues that, on the scale

of biological evolution, insects are most of the way to humans, so artificial replication

of humanlike intelligence might arise from gradual elaboration of artificial insectlike

intelligence. In my view, infants are a more fruitful point of departure than insects;

but this, like many methodological disagreements, is probably most quickly resolved

by investing the necessary years of work on both approaches, and seeing which (if

either) succeeds.

A central theme of situated-activity work is the use of what Agre and Chapman

call leaning on the world in lieu of requiring explicit representations. In particular,

actions can be specified relative to perceptual states rather than with respect to an

explicit internal model of the state of the world. This is similar to the Piagetian

view, but with a different emphasis. Sensorimotor schemas, which do not represent

an object apart from its perceptual manifestations, indeed provide a basis for the

infant's early activity. But, even more importantly, such schemas and activity also

form a scaffold for the creation of explicit representations apart from perception,

which in turn support more sophisticated activity; the emphasis on perception-based

activity's role in bootstrapping up to explicit, perception-independent representations

distinguishes constructivist A.I. from situated-activity A.I.

Agre and Chapman, and Brooks, present innovative architectures to support sit-

uated activity. Agre and Chapman's system is organized around the use of visual

routines (Ullman 1984) to direct action; Brooks's system is organized in a subsump-
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tion hierarchy (Brooks 1986b) that allows progressive elaboration of the system's

behavior. In keeping with the philosophy of representation avoidance, both systems

have machinery that falls under the situation-action paradigm, in that there is no

designation of expected results of actions. This, I believe, will prove to be an imped-

iment to automatic learning in such systems, for the modularity reasons discussed

above in section 6.1.1. (Also, not representing results prevents being able to learn

from thought experiments as well as from real activity.) Agre and Chapman's primary

argument against using world models that make results explicit is the intractability

of conventional planning (Chapman 1987) based on maintaining world models (par-

ticularly in the presence of uncertainty); but, as discussed in sections 3.2.1 and 3.2.2,

the schema mechanism's control structure is efficient, and, like some systems without

explicit world models, supports the deferral of lowlevel aspects of a plan that depend

on yet-unknown details of the world, and can respond seamlessly to unanticipated

problems and opportunities.

Agre and Chapman's indezical-functional representation has much in common

with virtual generalization in the schema mechanism. Like virtual generalization,

indexical-functional representation expresses a general rule by mapping an instance

to a particular perceptual view, and then having a routine that applies to that view

(for example, moving the hand to the position of object X can be expressed as: look

at object X; then move the hand to where-looking). But the schema mechanism,

in keeping with its philosophy of transcending leaning on the world, can go on to

build explicit instantiations of virtual generalizations, obviating the subsequent need

to physically enact the mapping step (section 5.1.1).

Agre and Chapman propose indexical-functional representation as an efficient al-

ternative to variable binding. I am unpersuaded, and do not make a similar claim

for the schema mechanism's virtual generalizations. Variable binding is intractible

when done exhaustively; but it need not be so when good heuristics guide the match-

ing of variables to constants. The mapping step for virtual generalizations, and for

200



indexical-functional representations, effectively embodies such heuristics; the tech-

niques will stand or fall on the development of heuristics that indeed converge to the

correct sliver of an exponential search space.

6.1.8 Other Piagetian learning systems

Cunningham

Cunningham's work (Cunningham 1972) was the direct inspiration of my own effort;

that work first suggested to me the idea of trying recapitulate sensorimotor devel-

opment, and the mechanism Cunningham proposed served as a point of departure

for the schema mechanism. Cunningham presents a hypothetical sensorimotor-level

scenario for his unimplemented mechanism. His scenario emphasizes the develop-

ment of the typical stages of intellegent strategy (the various circular reactions, etc),

rather than the development of object concepts. Cunningham does not propose a

viable mechanism for empirical learning; his bipartite schemas simply tie together all

simultaneously active elements. There is no other provision for creating new repre-

sentations.

Becker

Becker (1973) proposes a mechanism and microworld for sensorimotor-level learning

(though he does not explicitly cast this in a Piagetian context, and he presents no sce-

nario of expected development). Becker's mechanism examines an exhaustive record

of serial primitive events. An event designated as a goal is found in the sequence. A

sequence starting with this event is taken to be a result, and a sequence of events

preceeding it is proposed as its cause. Different event sequences leading to a common

result are compared, and irrelevent events (and irrelevant ordering-constraints on the

events) are discarded. This creates schemas such as

[a] -> [b] [c] -> [d] -> [e] [f] [g] => [h] [i] -> [j]
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the sequence to the left of the double arrow is a cause, the sequence to the right a

result; a single arrow designates an ordering constraint, while events not separated by

an single arrow are mutually unordered. The double arrow is place so that no actions

lie in the result sequence. Elements of the cause sequence include actions, and non-

actions that serve serve as context conditions, which, as in the schema mechanism,

assure that the result will follow the action. Becker argues for this context-action-

result structure on the grounds of being able to chain schemas to lead to a goal

(although, as argued in section 6.1.1, two-part rules can be used for that purpose as

well).

The state elements that appear in event sequences are structured rather than

atomic. His system includes machinery for comparing and generalizing over parts of

these structures, but the structuring itself is built in; there is no provision for the

system to acquire such structuring of its own. There is no abstraction facility apart

from discarding irrelevant components (or orderings) from a compound structure.

Becker's system does not address the chicken-and-egg problem of empirical learn-

ing. Rather, the combinatorial problem of associating events is glossed over by con-

sidering only serial events. A variant of Becker's unimplemented mechanism was

implemented by (Bond and Mott). Their system used a simple robot, which learned

to turn towards and approach a light source to recharge its battery when it ran low.

Despite its being situated in the real world, the robot's trivial sensorimotor interface

ensured that events were serial, and were typically related when contiguous.

BAIRN

BAIRN, a program by Wallace, Klahr, and Bluff (Wallace et al 1987), is a production-

system model of cognitive development. BAIRN organizes its declarative and proce-

dural knowledge in structures called nodes. A node comprises a set of productions,

some of which express procedural knowledge-what action to take given particular

circumstances and goals; others express declarative knowledge-what follows from
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current facts.

Insofar as nodes compete for activation, resulting in the invocation of their con-

stituent productions, a node is somewhat like a schema with a composite action

(though a node's productions need not converge to a goal state). In addition, a token

corresponding node's activation can appear as a condition in a production rule. The

node's activation thus effectively defines a state element; in this regard, nodes are like

synthetic items.

But nodes and synthetic items represent differently. A schema designates a spe-

cific assertion, the counterfactual proposition that a given action, under specified

circumstances, would have a particular effect; and a synthetic item represents the

validity conditions of a schema, the conditions under which the schema's assertion

is true. In contrast, a node need not correspond to a succinct assertion, though it

might, depending on the productions in the node.

Wallace et al report an impressive synopsis of BAIRN's aqcuisition of conserva-

tion of number; the developmental progression closely follows the sequence shown in

children (Gelman and Gallistel 1978). The progression culminates in BAIRN's con-

struction of nodes designating the cardinality of collections, with productions that

embody the understanding that a collection of a number of objects keeps its cardinal-

ity, despite any rearrangement of the objects, unless something is added or removed.

The construction of these nodes is particularly striking in view of the amorphous

nature of what a node represents. The key to BAIRN's ability to build such nodes

is the presence of highly structured built-in nodes that serve as predecessors to the

eventual number-representing nodes. In particular, Wallace et al postulate built-

in subitizing nodes, which perceive the numerosity of a small collection of objects

that are in the system's focus of attention. When BAIRN counts actual objects, its

differentiation and generalization machinery builds variants of the primitive nodes,

appopriately modifying the variants' constituent production rules. A complicated

derivation leads eventually to the number nodes.
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Wallace et al cite compelling evidence for the existence of innate subitizing abilities

in infants (e. g. Strausss and Curtis 1981); hence, their built-in subitizing nodes

are not at all ad hoc. Still, it is an open question how such innate competence

might be embodied with respect to the central system. In the spirit of the schema

mechanism, for example, there might be a primitive item whose meaning is There

are two objects in view that resemble the object I'm focusing on, another item that

means There are three of them, etc. These primitive items could enable a system's

behavior to give evidence of subitizing abilities before the system recapitulates any

actual understanding of number. In contrast, BAIRN's built-in subitizing nodes

have extensive internal structure that is in the same format that BAIRN itself uses,

and that is fully accessible to BAIRN; without this accessibility, the construction

of number-representing nodes could not proceed. Thus, BAIRN's invention of the

number concept does not accord with a radically constructivist account of human

development; whether it accords with the actuality of human development remains

to be seen.

6.2 Future work

Suggestions for extensions of this work are scattered through this chapter and the

preceeding ones. First, as noted in the introduction to chapter 4, the present imple-

mentation results are best viewed as a pilot effort; validation of the implementation

results presented here requires replication and quantitative characterization of those

results. Secondly, some further through the Piagetian sequence might be achieved

just by moving the existing implementation to a larger machine, and making trivial

microworld extensions, such as providing for visually obscured objects.

Thirdly, several extensions to the basic mechanism appear worthy of exploration,

some of which have been mentioned above:

e Subactivation. As discussed in section 5.1.3, subactivation would allow the
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mechanism to learn from thought experiments, as well as from actual physi-

cal events. Furthermore, the learning mechanism might be augmented (section

6.1.4) to learn from a single subactivated trial, rather than having to do statis-

tical learning based on several identical repetitions.

e Combinatorics and garbage collection. Marginal attribution does a creditable

job of picking out reliable schemas (and their precursors) from the exponential

space of expressible schemas. But even among such schemas, there can be

combinatorial proliferations of schemas that are useless variations of one another

(eg, schemas expressing the co-occurence of foveal events, as discussed in section

4.1.7); there may also be many schemas that explore useless and sterile corners of

state-space. The schema mechanism may benefit from being able to recognize

and purge such structures-that is, to garbage-collect them. (I borrow the

term garbage collection from programming languages that feature automatic

reclamation of memory used by inaccessible and therefore unusable structures.

The metaphor is used loosely here; in the present sense, the reclaimed structures

are estimated to be of lesser value, but need not be flatly unusable.)

- The most straightforward garbage collection technique is to purge the least

useful schemas, where usefulness increases with the frequency of a schema's

activation, and with the result-value achieved by activating it (section

3.2.2). Depending on actual activation makes the usefulness measure re-

sponsive to all factors that contribute to a schema's selection for activation

(including the availability of other, competing schemas in the situations

that make a given schema applicable).

The value of actions and items might derive from the value of the schemas

in which they appear. Care must be taken when purging a structure to

either purge those structures that contain it as a component, or to change

such them to remove their reference to that structure.
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Garbage collection based on actual use is infeasible until a large enough set

of structures has ammassed. The threshold is determined by the amount

of structure needed to do interesting and useful things; the schema mecha-

nism's basic rather than applied learning (section 6.1.1) causes it to build

fragments of skills that will not become useful until the rest of the necessary

fragments also arise. Only then can the usefulness of the useful structures

become apparent, supporting an informed choice of which structures to

purge.

- Other possible garbage collection criteria involve recognizing particular

kinds of unnecessary proliferations, and purging the proliferating struc-

tures.

* As pointed out in section 4.1.7, some schemas such as /fovx23/fovxl2

manage to form despite the requirement for attribution that an action

be explained and a result not explained (section 3.4.2). The happens

because fovx23 might happen to become explicable much earlier than

fovxl2. In consequence, many merely co-occurring events are deemed

to cause one another. A possible mitigation of the problem would be

to discover belatedly that the result fovxl2 is otherwise explained, and

regard /fovx23/fovx12 as less useful.

* Building up to a context conjunction one item at a time leaves be-

hind a trail of precursor structures with incomplete contexts. If these

structures' extended contexts fail over a number of trials to make any

progress toward spawning further spinoffs, they might be purged.

* The mechanism might keep track of how often a given schema would

be spun off, if it didn't already exist. If re-creating circumstances

arise much more frequently than the schema's activation, the schema

might be purged, in the expectation that it is likely to be re-created

before it is next needed (or at least before the next several times). This
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reclamation would have the plausible consequence that the mechanism

might become rusty at unused skills, due to the need to re-create some

components on the fly when the skill is resurrected.

* A schema's extended context data proposes spinoff schemas, and also maintains

override conditions for the schema. The latter function could be generalized by

allowing the extended context to act as a conventional connectionist network

(recall section 6.1.2), adjusting its weights to compute some function of its

inputs (the state of all items) that corresponds to the validity conditions of

the schema. Such a function might usefully complement the validity conditions

computed by the contexts of spinoff schemas.

In addition to further extending and experimenting with the schema mechanism

itself, the schema mechanism's developmental progression might suggest experiments

to perform with actual infants, to find evidence for or against corresponding details

of their development.

6.3 Evaluation and summary

It is important that at attempt to engineer a constructivist mechanism be guided by a

plausible theory of constructivism in humans; this provides both a point of departure

for the mechanism's design, and a roadmap of target abilities by which the mechanism

can be appraised and revised. Moreover, taking such a theory as a working hypothesis

for the design of an artificial mechanism provides an elaboration and appraisal of the

original theory. The schema mechanism is built upon Piaget's theory of cognitive

development; the focus is on sensorimotor-period development, since the underlying

mechanism is easiest to discern when acquired structure is still simple.

The schema mechanism is a self-extensible system that constructs schemas, ac-

tions, and items, and uses these to represent the state of the world, to assert predic-

tions about the world, and to make plans in the pursuit of goals.
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The achievements of the schema mechanism implementation are on target, but

preliminary. The mechanism does use plausibly designed domain-indpendent learning

machinery to recapitulate some early milestones of Piagetian development, including

the anticipation of visual effects of hand motions, learning how to bring the hand

into view, discovering intermodal coordination (e. g. touching what's seen, and vice

versa), conceiving of persistent visible and palpable objects, and discovering their

coextension. However, the mechanism just barely reaches the point of constructing

some such representations, and does not go so far as to put them to practical use

(say, to grasp an object in order to do something with it). And even its rudimentary

abilities are aquired in the context of a microworld and sensorimotor interface that

are far simpler than what the human environment provides.

Prior to its most advanced acquisitions, the schema mechanism weaves networks of

spatial knowledge (the visual and proprioceptive networks) that are not predicted by

Piaget. Nor do these acquisitions contradict Piaget; there is no conspicuous external

manifestation of their presence or absence, so their development is not externally

evident. Nonetheless, their development proceeds according to the same themes as

explicitly Piagetian acquisitions, and, in the schema mechanism, obtains from the

same machinery. Doubtless much of this micro-Piagetian knowledge (as we might

call it) is also built in to innate cognitive modules; this may be so of much Piagetian

knowledge as well, as discussed in section 2.8.3. But, as argued there, a general

learning mechanism may need to recapitulate what is built in elsewhere in order to

represent that knowledge in the format that the learning mechanism can operate on,

to transcend what was built in.3

Indeed, such eventual trasncendence is the only apparent reason for any system,

'The design of the schema mechanism makes no attempt to incorporate in its peripheral modules
the sort of innate competence that exists in those modules in human beings. For one thing, not
enough is known of this innate competence to support a reasonable job of replicating it. Also, it
is unclear what influence, if any, the peripheral competence has on central-system development.
If the peripheral competence does help, then not having it in the schema mechanism makes the
mechanism's task more formidable.
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natural or artificial, to be designed to bother with recapitulating what is built in.

Thus, if infant cognitive development is in fact a form of learning, there is good reason

to expect that later development involves similar learning, so that the principles of

the early learning extrapolate to more advanced performance.

I think this argument offers the strongest reason to suspect that something along

the lines of the schema mechanism may be capable of more advanced achievements.

As just noted, the mechanism's performance so far, while on the right track, is far too

rudimentary to suggest an extrapolation to adultlike (or even childlike) intellectual

capabilities. (I think this true of all artificial intelligence systems to date; extant A.I.

programs either have expert-like abilities in very narrow domains, general methods

that work on toy problems, or are virtual programming languages whose generality

and power derive from their specific programming.)

In particular, the schema mechanism-again, like other A.I. systems-faces com-

binatorial problems that threaten its ability to scale up to more advanced abilities.

Although the schema mechanism incorporates a number of features designed to mit-

igate the combinatorial assault, there is no theoretical argument or practical demon-

stration that these features are necessary or sufficient; these features are the weakest

and most tenative part of the mechanism's design. But the core features of the

schema mechanism-the machinery for induction (marginal attribution), abstraction

(composite actions), and conceptual invention (synthetic items)-arguably might help

explain Piagetian development. To the extent that an artificial system resembles a

natural system, the natural system is an existence proof that something resembling

the artificial system can indeed work. And if the natural system has a way to keep

its combinatorics in check-as it must, if it functions-then such an ability can be

built into the artificial system as well.

Without Piaget's elaborate observations of actual development, one might react

to the schema mechanism by saying Yes, that looks potentially powerful, but the

mechanism's early object representations (for example) seem too strange for us to be
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comfortable with the idea of an intelligence having to pass through that. Similarly,

given Piaget alone, one might acknowledge the force of his description of major de-

velopmental themes, but be skeptical of how or why a sensibly engineered mechanism

would exhibit (for example) the odd bugs evident in early object-understanding. The

schema mechanism and Piaget's theory, taken together, provide significant (albeit

circumstantial) evidence for one another.

When a mechanism figures out for itself that there are objects "out there", that is a

dramatic demonstration of an ability to invent new concepts. The schema mechanism

implementation has taken preliminary but promising steps in that direction. If this

success continues-if it is shown that more of the Piagetian sequence of achievements,

and mistakes, would indeed follow from this machinery designed to construct and use

novel representations-then I think it likely that such machinery is actually involved

in the infant's development.

In sum, to the extent that the schema mechanism might approximate the actual

mechanism of early Piagetian development, and to the extent that the mechanism of

early Piagetian development might be responsible for later development as well, it is

plausible that something like the schema mechanism can account for aspects of later

development as well. The most ambitious hope for the present research is that it may

be an early step towards an eventual such account.

The end.
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