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Chapter 1

Introduction

Monte Carlo methods are essential tools for solving probabilistic

problems involving lattice fields. This work explores and discusses the use of

Monte Carlo methods in the context of lattice fields and intends to propose

new ideas for solving problems that are currently being examined. First, we

discuss the Ising model, explaining what can be solved with it and what

cannot be solved. Next, we consider three algorithms - the Metropolis, Gibbs

sampler, and Swendsen-Wang algorithms - and after a qualitative discussion

of the strengths and weaknesses of each algorithm, we compare experimental

results obtained for each of the algorithms and draw conclusions about the

rapidity of convergence for each of the algorithms. Then, we discuss an a

priori model for determining crystal structures from x-ray crystallography data.

Finally, we discuss the possibility of creating an algorithm for the

crystallography model that would be analogous to the Swendsen-Wang

algorithm.
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Chapter 2

The Ising Model

2.1 Background

As stated in Kindermann and Snell (1980), the Ising model was

originally developed by Ernst Ising as his doctoral thesis project under the

supervision of Lenz. This model was used in an attempt to explain certain

empirically observed facts about ferromagnetic materials. Since the inception

of the model, it has also been found to be applicable to modeling other

systems that are not necessarily physical, such as gases, binary alloys, cell

structures, and even sociological models.

2.2 Description

The Ising model consists of variables positioned at sites on a lattice L.

These site variables can have one of two values at any point in time, the

values usually consisting of +1 and -1. Let us define Q to be the sample

space of all possible configurations o that can be formed by the site variables.

Next, consider the configuration energy function

U(o) = -J Li o,o; (2-1)

where wn is the variable for site n in a configuration o which takes on a

value of either +1 or -1, and J is a coupling constant that determines the

strength of the interactions and is usually assumed to be 1. The summation is
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over all pairs of sites i and j that are separated by one unit distance. Using

this configuration energy function, we can define the invariant probability

measure

n= exp(-U/7) (2-2)

where T is a temperature parameter of the system and Z is a

normalizing constant. Thus, the probability of any configuration can be

determined from equation 2-2.

As stated by Marroquin (1985) and Kindermann and Snell (1980), the

Ising model is a Markov random field. A Markov random field is defined as a

collection of random variables corresponding to the sites on a lattice which

has a probability distribution that satisfies the following relation:

P(oj=qlok,k+I) = P(oj=qlok,keN) (2-3)

where j is an arbitrary site on the lattice, N is the set of all the neighbors

of site j, and q is an arbitrary value for the variable at site j. Essentially, sites

are only influenced by other sites within its neighborhood while it is not

influenced at all by sites outside its neighborhood.

The entropy of any measure it on a sample space Q, as stated by

Kindermann and Snell (1980), is defined as
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S(s) = --L n(o) logni(o) (2-4)

where the summation is over all configurations o in the sample space Q.

The invariant measure in equation 2-2 is the measure that maximizes the

entropy out of all valid measures given a certain expected energy.

The Ising model is characterized by three temperature regions: below

the critical temperature, near the critical temperature, and above the critical

temperature. As stated by Marroquin (1985) the critical temperature is

defined to be the maximum temperature for which fixed conditions on the

boundary of a square lattice are felt at the center of the lattice no matter how

large the lattice is.

2.3 Onsager's Solution

Huang (1963) gives a full description of Onsager's solution to the two

-dimensional Ising model. This solution is of great importance since it

provides a method for determining properties of the Ising model analytically

rather than experimentally and is thus an essential tool when using the ising

model. Some of the physical properties solved for including the internal

energy per spin

u = -cothj[1 +2K'K,(K)] (2-5)

where
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(2-6)

(2-7)

and K1 () is the complete elliptical integral of the first kind, and the

specific heat

c = 2( cothT)2{2K,(K) - 2E,(ic) - ( (2-8)

where E1 () is the complete elliptical integral of the second kind. The

critical temperature can be derived from these formulas and the actual

formula for the critical temperature is

T, = 2 / sinh- 11 (2-9)

2.4 Limitations of the Model

There are limits to what can be solved with the Ising model. Since a

probability measure is typically assigned to a sample space which represents

unobservable outcomes, only very broad properties of the system can be

observed, such as the properties determined by Onsager.
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Chapter 3

Monte Carlo Algorithms - The Ising Model

Many Monte Carlo algorithms have been developed for generating

sample functions of Markov random fields. However, only three algorithms -

Metropolis, Gibbs sampler, and Swendsen-Wang - were chosen for tests

involving the Ising model for this project. The Metropolis algorithm was

chosen since it represents the first successful algorithm and was also the

simplest in its approach. The Gibbs sampler was chosen since its

deterministic approach in its selection of sites to be visited presents itself well

for a parallel processing approach. Finally, the Swendsen-Wang algorithm

was selected since it represents a unique approach to overcoming the

problem of critical slowing down.

3.1 The Metropolis Algorithm

3.1.1 Description

The methodology behind the algorithm proposed by Metropolis is as

follows: First, choose a site j from the lattice at random. Let the current

configuration be wo and the current state of site j be ojo. Next, randomly pick

a new state o i for site j from the set of allowable states with a uniform

probability distribution. Then, compute the change in energy AU that results

from changing the state of j from ojo to w j1. If AU is less than or equal to

zero, then change the state of jto con. Otherwise, generate a random number

r uniformly distributed between zero and one. If the r is less than or equal to
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exp(-AU/T), then change the state of j to oj1; otherwise, leave j unchanged.

Finally, repeat the steps for enough iterations until convergence is obtained.

3.1.2 Proof of Reversibility

We wish to show that

n(OO)P(OOo,) = n(O,)P(o1,o0 ) (3-1)

where nT is the invariant measure defined in the preceding chapter, P is

the transition matrix for the Markov chain, and o and o1, are two

configurations in the sample space Q. This equation is known as the detailed

balance equation. Using the notation from the description given above, we

have

P((oo,co,) = min [1 , exp(-AU/ T)] (3-2)

and

P(w,oo) = min[1 , exp(AU/7)] (3-3)

where N represents the total number of sites on the lattice L. Hence,

since

n(o,) = n(o)exp(-AU/T) (3-4)
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we have

= n(oo)exp(-AU/ T) 1exp(AU/l T) (3-5)

and

n(oo) exp(-AU/ T) = n(oo))exp(-AU/ T) (3-6)

where equation 3-5 represents the case when AU is less than or equal

to zero and equation 3-6 represents the case when AU is greater than zero.

Thus, since both equation 3-5 and equation 3-6 are correct, equation 3-3 is

satisfied for all o and o1. Therefore, the Markov chain is reversible, and

hence, the algorithm statisfies the invariant measure.

3.2 The Gibbs Sampler Algorithm

3.2.1 Description

The Gibbs sampler algorithm as proposed by Geman and Geman

(1984) is as follows: Sites in the lattice L are visited in some deterministic

order. At a given site j, choose q new site at random from the conditional

distribution

P(o,1 = qIoo) = exp(-AUq/T)/PE exp(-AUP/T) (3-7)

where AUq is the change in configuration energy if site jtakes on state q

and Q is the set of all possible states. Repeat these steps for all sites in the

lattice for enough iterations to obtain satisfactory results.
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If we simplify equation 3-7 to consider a two-state system such as the

Ising model, and defining AU to be the change in configuration energy if site j

were to take on the state other than its current state. We then have

P(o,=oo Ioo) = 1 /[1+exp(-AU/T)] (3-8)

and

P(co1#co oIoo) = 1 /[1+exp(AU/T)] (3-9)

which is known as the heat bath algorithm for a binary system.

3.2.2 Proof of Reversibility

Once again we wish to show

configurations o and co1. We will

systems such as the Ising model.

configuration energy between coo and

3-9, we get

that equation 3-3 holds for arbitrary

limit this proof to arbitrary two-state

Defining AU to be the difference in

co1 and using equations 3-4, 3-8, and

(o) ) = (o)exp(-AU/) 1ep(A )1+exp(AU/7) = i ~ex)xp(-A/T) (3-10)

which is correct. Thus, the Gibbs sampler algorithm is reversible for at

least two-state systems, and this proof can be extended to more general

systems.



-16-

3.3 The Swendsen-Wang Algorithm

3.3.1 Description

Swendsen and Wang (1987) derived their Swendsen-Wang algorithm

as follows: First, consider the configuration energy function for a Potts model

(3-11)

where the temperature parameter has been absorbed into K. From this

function we define the invariant measure to be

t= exp(-U/7) (3-12)

where Z is a normalizing constant. Next, remove the energy

contribution due to the interaction between sites / and m from the energy

function. Then we have

(3-13)

Using this function we can define the two restricted sums

nsame = IeXP(Um/)Sol~om

and

(3-14)

U = Kj.,j;, (1 - Se7,,ci)

U,,m = KL,;j>#,,,, (1-,,)
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Cmdiff'"= exp(-Ujm/7)(1-5aS,,a) (3-15)

Using these terms we can rewrite equation 3-12 as

7 = g ,msame+ exp(-K)x,"mdiff (3-16)

Next, we define a new term representing the invariant measure

independent of the interaction of sites / and m:

nt Im "d = Cmsame +tInmdiff (3-17)

Finally, rewriting equation 3-16 in terms of equation 3-17, we get

C = [1- exp(-K)] Imsame+ exp(-K)t,'mind (3-18)

Since the second term in equation 3-18 is independent of the interaction

between sites / and m and the first term restricts the spin variables at sites /

and m to be the same, the probability, p = 1 - exp(-K), can be interpreted as a

bond between the two sites.

Swendsen and Wang make use of this bond nature in the formulation of

their algorithm for the Potts model. The methodology of the algorithm is as

follows: First, visit every nearest neighbor interaction between sites i and j on

the lattice. If sites i and j have the same state, then a bond is generated with

probability p = 1 - exp(-K); otherwise, no bond is formed. This process
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continues until all nearest neighbor interactions have been visited. Thus, we

are left with a bond configuration, upon which we define clusters which consist

of sites on the lattice connected by bonds. Now, for each of the clusters, we

randomly assign with a uniform distribution a new state out of the set of

possible states and then assign this state to each site on the lattice in the

cluster. The process is then repeated until enough iterations have been

performed to achieve satisfactory results.

3.3.2 Proof of Reversibility

First, we note that if q is the number of possible Potts states and No is

the number of clusters, then the invariant measure can be rewritten as

=pb (1-p)nqNc (3-19)

where b is the number of bonds and n is the number of interactions with

the same Potts state that did not form a bond. The probability of passing

through a particular bond/cluster configuration has a factor of p for each bond

and a factor of q for each cluster, but differs by a number of factors of (1 -p) =

exp(-K) for each interaction with the same state that did not form a bond. The

probability of going from a bond/cluster configuration to a Potts configuration

is uniform, so the bond/cluster configuration uniquely describes the resulting

Potts configuration. Thus, the two' Potts configurations differ in configuration

energy by a total of An terms of K, where An is the difference of the number of

interactions with the same state that did not form a bond for two arbitrary

Potts configurations, o and -o1, which pass through the same bond/cluster

configuration. So, we have
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n(co1) = ir(oO)exp(-AnK) (3-20)

Finally, applying equations 3-19 and 3-20 to equation 3-1, we get

n(0)) pb (1 -p)n+An qNc = n(oo) exp(-AnK) pb (1 -p)n qNc (3-21)

which is a correct equation. Therefore, the Swendsen-Wang algorithm

produces a reversible chain.

3.4 Qualitative Comparison of the Algorithms

All three algorithms discussed above have about the same execution

efficiency in terms of average time required to update a site. The Metropolis

algorithm is the most straightforward of the three algorithms to implement.

However, the Metropolis algorithm has no unique feature that allows it to

achieve greater efficiency, unlike the other two algorithms which do. The

Gibbs sampler algorithm is the next easier to implement, but can require

many calculations for each iteration, including calculations of exponentials.

Nevertheless, the Gibbs sampler is made worthwhile by the fact that it can be

implemented in a parallel processing fashion since it is deterministic in its

choice of next site to be updated and the Markovian nearest neighbor

property isolates the sites to a certain extent. The only necessary condition

for parallel implementation of the Gibbs sampler is that two neighbors never

try to update at the same time. The Swendsen-Wang algorithm is difficult to

implement efficiently. However, it is possible to implement the algorithm so

that the average access time per site on the lattice is about the same as that
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of the Metropolis algorithm. The main benefit of the Swendsen-Wang

algorithm lies in its inherent ability to achieve convergence with significantly

fewer iterations than the other algorithms.
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Chapter 4

Experimental Results - The Ising Model

4.1 Introduction

The three algorithms described in the preceding chapter - Metropolis,

Gibbs sampler, and Swendsen-Wang - were implemented on an Ardent Titan

computer, and experimental data were generated for a number of different

test cases. The main goals for these experiments were to get a feel for the

nature in which the algorithms approached their solutions and to obtain

comparative information between the algorithms for different parameters and

conditions. The comparative information included relative efficiency, effort

required to achieve acceptable accuracy with respect to theoretical results,

and overall performance.

4.2 Equilibrium Energy

The first major block of experiments was concerned with determining

lattice equilibrium energy per spin for each of the algorithms in each of the

three temperature regions. Conditions such as different lattice sizes and

numbers of iterations were also considered in these trials. However, all trials

were conducted with free boundary conditions (no interaction at lattice edges),

and the initial state of the lattice for each of the trials was an entirely random

configuration.



-22-

4.2.1 Low Temperature

The first group of trials for this block of experiments had the following

conditions. The trials were run for all three algorithms operating in the low

temperature region (at about half the critical temperature), and results for

three lattice sizes - 32x32, 64x64, and 128x128 - were considered. Figure 4-1

on page 23 shows the results of a sample of one hundred trials for each set of

conditions with an execution length of one hundred iterations per lattice site.

Figure 4-2 on page 24 show these results for samples of ten trials with an

execution length of one thousand iterations per lattice site.

As can be seen in both figure 4-1 and figure 4-2, the Swendsen-Wang

algorithm approaches the theoretical result more rapidly than the other

algorithms. Since the Metropolis and Gibbs sampler algorithms approach the

equilibrium energy asymptotically with a slope that gets flatter with respect to

time as the temperature decreases, these algorithms require a large increase

in the number of iterations to get a small improvement in the difference

between the theoretical and experimental values for the equilibrium energy.

The Swendsen-Wang algorithm overcomes this sluggishness through 'its

ability to alter large portions (clusters) of the lattice in a single iteration as

discussed in the preceding chapter.

4.2.2 Critical Temperature

The next group of trials concerned with equilibrium energy consisted of

trials with the temperature fixed near the critical temperature. These trials

were also run for all three algorithms for each of the three lattice sizes. Figure

4-3 on page 26 shows the results for one hundred samples of one hundred
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the value calculated by analytical methods. The bars correspond to the
results obtained for the algorithm within two standard deviations of the
mean. Algorithms from top to bottom: Metropolis, Swendsen-Wang. Graphical
data for the Gibbs sampler were not available.
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data for the Gibbs sampler were not available.
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iterations per site, and figure 4-4 on page 27 shows the results for ten

samples of one thousand iterations per site.

Once again, the contrast between the rapid approach of the Swendsen-

Wang algorithm to the equilibrium energy as compared to the slow progress

of the Metropolis and Gibbs sampler algorithms is immediately evident in the

two figures. Another interesting observation is the difference in the rates of

convergence of the three lattice sizes. In general the smaller the lattice

spacing (ie. the larger the lattice), the quicker the energy converges to the

equilibrium value. This effect can be attributed to the finite size of the lattices.

The invariant measure is actually defined for an infinite lattice, so the larger

the lattice spacing, the more significant the "edge effects" are upon the results

of the trials. It is interesting to note that these effects are most pronounced

when the temperature is close to the critical temperature.

4.2.3 High Temperature

The last group of trials concerned with equilibrium energy per site

consisted of trials with a temperature much higher than the critical

temperature. Trials were run for each of the three algorithms with each of the

three lattice sizes. Figure 4-5 on page 28 shows the results of the trials for

one hundred samples of one hundred iterations per site while figure 4-6 on

page 29 shows the results for ten samples of one thousand iterations per site.

As can be observed from the two figures, all of the algorithms converge

to the equilibrium energy quickly with little or no difference resulting from

lattice size or choice of algorithm. In terms of performance, the Swendsen
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-Wang algorithm becomes almost identical to the Metropolis and Gibbs

sampler algorithms in this temperature range because most clusters consist of

only single sites and thus the ability to manipulate large portions of the lattice

in a single iteration is lost.

4.3 Temporal Correlation of Equilibrium Energy over Time

The second major block of experiments was concerned with determining

the temporal correlation of the equilibrium energy over time for each of the

algorithms in each of the three temperature regions. Each of the trials was

conducted upon a 64x64 lattice with periodic boundary conditions. The initial

state of the lattice for each of the trials was an entirely random configuration.

The trials were run for both one hundred iterations per site and one thousand

iterations per site.

4.3.1 Low Temperature

The first set of trials for this block of experiments was conducted in the

low temperature region. Figure 4-7 on page 31 shows the results for each of

the three algorithms for a run of one hundred iterations per site. Figure 4-8 on

page 32 shows the same information except for a run of one thousand

iterations per site.

The most notable feature of these figures is the marked difference

between the Swendsen-Wang algorithm and the Metropolis and Gibbs

sampler algorithms in the amount of time required for the data to become

uncorrelated. Since we can't expect to get good statistics until after several
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times as many iterations as are required for the data to become uncorrelated,

these figures effectively represent the speed with which the algorithms reach

the desired results. The difference in algorithm efficiency is thus very

pronounced at this low temperature, with the Swendsen-Wang algorithm

arriving at a solution at more than twice the speed of the Metropolis and Gibbs

sampler algorithms. The Metropolis and Gibbs sampler operate with near

equal efficiency. These results reaffirm the comments made in the preceding

section regarding low temperature performance of the three algorithms.

4.3.2 Critical Temperature

The next set of trials for this block of experiments were conducted near

the critical temperature. Figure 4-9 on page 34 shows the results of the three

algorithms for a run of one hundred iterations per site. Figure 4-10 on page

35 shows the same results for a run of one thousand iterations per site.

Once again the Swendsen-Wang algorithm shows substantial

improvement in efficiency over the Metropolis and Gibbs sampler algorithms.

This result is as expected since the Swendsen-Wang algorithm is still forming

reasonably sized clusters and thus is still able to effect larger changes per

iteration that the other two algorithms.

4.3.3 High Temperature

For the final set of trials for this block of experiments, the temperature

was set well into the high temperature region. Figure 4-11 on page 36 shows

the results of the trials for each of the three algorithms for a run of one

hundred iterations per site. Figure 4-12 on page 37 shows the same results

except for a run of one thousand iterations per site.
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Figure 4-9: Temporal Correlation - Critical Temperature

100 iterations per lattice site. Lattice size: 64x64. The graphs show the
normalized temporal correlation of equilibrium energy over time. Algorithms
from top to bottom: Metropolis, Gibbs sampler, Swendsen-Wang.
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Figure 4-10: Temporal Correlation - Critical Temperature

1000 iterations per lattice site. Lattice size: 64x64. The graphs show the
normalized temporal correlation of equilibrium energy over time. Algorithms
from top to bottom: Metropolis, Gibbs sampler, Swendsen-Wang.
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Figure 4-11: Temporal Correlation - High Temperature
100 iterations per lattice site. Lattice size: 64x64. The graphs show the
normalized temporal correlation of equilibrium energy over time. Algorithms
from top to bottom: Metropolis, Gibbs sampler, Swendsen-Wang.
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Figure 4-12: Temporal Correlation - High Temperature

1000 iterations per lattice site. Lattice size: 64x64. The graphs show the
normalized temporal correlation of equilibrium energy over time. Algorithms
from top to bottom: Metropolis, Gibbs sampler, Swendsen-Wang. Graphical
data for the Gibbs sampler were not available.
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The results obtained for this set of trials again confirm the observations

made in the previous section. There is very little difference in efficiency

between the three algorithms in the high temperature region. The data from

all three of the algorithms becomes uncorrelated very quickly, and thus, all of

the algorithms produce valid results in a very short time when operating in this

temperature region.

4.4 Conclusion

Thus, the Swendsen-Wang algorithm outperforms the Metropolis and

Gibbs sampler algorithms near and below the critical temperature. At higher

temperatures the three algorithms are virtually equivalent in terms of

efficiency and agreement with theoretical results. Since the Swendsen -Wang

algorithm has nearly the same execution efficiency as the Metropolis and

Gibbs sampler algorithms as discussed in the previous chapter (discounting

the fact that the Gibbs sampler can be implemented using a parallel

processing approach), the Swendsen-Wang algorithm has an overall

efficiency equal to or greater than the other algorithms depending upon the

operating temperature.
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Chapter 5

Single Crystal X-ray Crystallography

5.1 Background

Determination of crystal structure through the use of X-ray

crystallography is currently a long and complicated process. The

crystallography data is essentially a fourier transform of the electron density of

the crystal structure and only provides information about the amplitudes of the

frequencies. Thus, the phase information is missing and must be

reconstructed using some analytical method. The process at the present

consists of several long and time consuming steps. What is desired is the

ability to take the crystallography data and reconstruct the crystal structure in

one step. The proposed method for accomplishing this goal is the use of a

probabilistic model that incorporates the a posteriori information with an a

priori distribution derived from a known solution to a similar crystal.

5.2 The Crystallography Model

The model selected for use was developed by Peter Doerschuk at the

Laboratory for Information and Decision Systems at Massachusetts Institute

of Technology and is similar in many respects to the Ising model discussed in

the previous chapters. This approach discretizes the atomic locations and

models the locations using a Markovian random field. Thus, the crystal is

mapped on to a 3D lattice L with the points on the lattice defining the possible

positions of atoms within the crystal. At each lattice point n, we define a
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random variable $n which takes on the value 1 if the lattice site is occupied by

an atom and 0 otherwise. The $n are modeled as a Markovian random field.

The a priori model chosen for this problem takes a fairly simple

approach. The model simply requires that all atoms are covalently bonded to

some other atom with a covalent bond of chemically appropriate length. The

total number of covalent bonds to a given atom, the type of covalent bond,

and the geometry of the covalent bonds are not specified. What we do

specify is the appropriate ranges that the covalent bond lengths must fall

within to be considered a proper bond length. Let nmin represent the

minimum bond length and nmax represent the maximum bond length for a

proper bond. Furthermore, define the neighborhoods of the Markovian

random field as Nn = {m ||m-n|<-nmax} - {n}. Therefore, An = Nn - {m

|jm-n|>nmin} represents the set of all neighbors of site n that are too close to

have a proper bond length with site n, and Bn = Nn - An represents the set of

all neighbors of site n that have a proper bond length with site n. Thus, the

neighborhood for each site is separated into two concentric shells, one

determining improper bond lengths (too close) and the other determining

proper bond lengths.

Next, we consider the contribution of a site n to the total configuration

energy. Since the physical interpretation is not clear as to what the

contribution of an unoccupied site ($n=O) is to the total configuration energy,

we assume that there is no coritribution to the configuration energy by

unoccupied sites. Thus, we will consider only occupied sites or atoms j = {n I

*n=l} on the lattice in the determination of total configuration energy. In
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determining total configuration energy, we wish to penalize atoms that are

improperly bonded (other atoms too close or no atoms at the proper bond

lengths), and we wish to reward atoms that are properly bonded (only atoms

at the proper bond lengths). The penalty and reward will take the form of a

higher configuration energy contribution and a lower configuration energy

contribution, respectively. Thus, we define the function

= [1 -rm (1-$,)] [HmEA )] (5-1)

Thus, 4 indicates whether or not an atom is properly bonded. The so
and $1 terms are parameters which weight the effects of the two bonding

conditions upon the configuration energy. While these parameters are free to

take on any value desired, they usually are of equal magnitude and opposite

sign, with so positive to effect a higher configuration energy and with 1

negative to effect a lower configuration energy. For the contribution of atom j

to the total configuration energy we have

u; = sO(1-4) + P141 (5-2)

Hence, the total configuration energy is

U(O) = L;, u; (5-3)

where o is the configuration on the lattice L. Finally, we define the

invariant measure to be
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1exp(-

where Zis a normalizing constant.

(5-4)
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Chapter 6

Swendsen-Wang Approach to the Crystallography Model

While Metropolis algorithms have been developed for the

crystallography model described in the previous chapter, the development of

an algorithm similar to the Swendsen-Wang algorithm for the Potts model

would be a valuable asset in the crystallography project. This algorithm would

borrow the notion of "bonds" from Swendsen-Wang and redefine it to fit the

crystallography model. The overall idea would be to generate configurations

in which bonded interactions maintain fixed low energy contributions. Thus,

bonded interactions would have the same energy contribution in all

configurations that they pass through.

6.1 Derivation of Algorithm

Following the reasoning of Swendsen and Wang (1987), we restrict the

more general energy function given by equations 5-2 and 5-3 to

U = P L,,(-F.,, ) (6-1)

where the summation is over all occupied sites (atoms) and P is a

parameter of the system. Hence, we penalize improperly bonded atoms by

assigning it an energy of @ while we neither penalize nor encourage properly

bonded atoms. Using this quantity, we define the invariant measure to be
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x = exp(-U) (6-2)

Next, consider the energy contribution of an atom / and remove it from

the configuration energy. Thus, we have

u, = pL, ,, (1-4) (6-3)

From this we can derive the restricted sums

r proper = 1exp(-u,) t,

and

Iximp = pexp(-u,)(1-,)

such that

(6-4)

(6-5)

(6-6)C = xproper+ exp(-P) nimp

where iproper represents the case where atom / is properly bonded, and

niimP represents the case where atom / is improperly bonded. Next, we

introduce the term that corresponds to weighting the proper and improper

bonding cases equally, thus generating a term independent of the state of

atom :
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rind = nproper+ imp (6-7)

Using equation 6-7, we can rewrite equation 6-6 so that

n = [1- exp(-P)] nPropr+ exp(-P) n/n (6-8)

The first term contains the restriction that atom / be properly bonded

while the second term contains no restrictions whatsoever. Thus, the

weighting factor for the first term can be interpreted as the probability, p = 1 -

exp(-%), that the atom / be "bonded" in the same sense as in the Swendsen-

Wang algorithm for the Potts model. Hence, if atom / is properly bonded in a

given configuration in the crystallography model, then with probability p atom /

will be properly bonded in the next configuration derived from the current

configuration when traversing the Markovian chain.

6.2 Obstacles to Algorithm Development

Deriving a working algorithm for the crystallography model from the

results obtained in equation 6-8 is difficult if not impossible. Two problems

exist that hamper attempts to construct an algorithm. First, the nature of the

energy function couples atoms together in a way that cannot easily be

described mathematically. In other words, an atom's neighbors determine the

energy contribution of that atom, but the individual effect of each neighbor

upon the atom's energy contribution is not explicitly defined. Thus, it is not

possible to uncouple restrictions demanding that an atom be properly bonded

and restrictions demanding that other atoms must assume a state

independent of any restrictions.
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As an example, consider a certain crystallography algorithm in which the

number of atoms is fixed. The methodology of this example algorithm is that

every atom is visited without regard for order. If a visited atom is properly

bonded, it is marked with a probability p = 1 - exp(-p); otherwise, it is left

unmarked. Once all atoms have been visited, the atoms are removed from

the lattice and set aside. Next, all unmarked atoms are placed on the lattice

in entirely random sites. After all unmarked atoms have been placed, the

marked atoms are placed one by one on the lattice in randomly determined

sites with the restriction that the marked atom be placed in a site that will

ensure that the marked atom will be properly bonded. At first glance, this

algorithm appears to satisfy the invariant measure given in equation 6-8.

Now, consider a lattice that contains only two atoms that are positioned

so that they are properly bonded. Indeed, since there are only two atoms,

they could only be either both properly bonded or both improperly bonded.

Upon performing one iteration of the example algorithm upon the lattice, say

that one atom was marked and the other was left unmarked. So, the lattice is

cleared and the unmarked atom is placed randomly upon the lattice. The

marked atom is then randomly placed upon the lattice so that it is properly

bonded. This means that it is placed with the proper bonding range of the

unmarked atom. Thus, as long as at least one of the two atoms is marked,

both will always end up being properly bonded. This result is contrary to the

desired result since the independence of state required for unmarked atoms is

compromised by the restriction that marked atoms be properly bonded.

Essentially, it is impossible to enforce that certain atoms be properly bonded

and also obtain independence of state for others.
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The second problem is related to the first but focuses more on the

crystallography model, the Potts model, and their relationship with the

Swendsen-Wang algorithm. State within the Potts model and the interactions

that determine configuration energy have a transitive nature. For example, if

site a and site b have the same state, and site b and site c have the same

state, then site a and site c have the same state. This is not necessarily the

case with the crystallography model. Just because atoms b and c are both

properly bonded to a does not mean that they are properly bonded to each

other. The Swendsen-Wang algorithm works well with the Potts model since

groups of sites with the same state always interact the same. Since states

vary relative to spatial locations in the crystallography model, grouping of

atoms into clusters is not feasible. Thus, due to the relative spatial nature of

the crystallography model rather than absolute spatial nature of the Potts

model, it is not possible to implement an algorithm analogous to the

Swendsen-Wang algorithm in which large clusters of atoms are processed at

the same time.
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Chapter 7

Conclusion

Thus, while the Swendsen-Wang algorithm performs well for the Potts

and Ising models, it is not possible to create an algorithm for the

crystallography model that would be analogous to the Swendsen-Wang

algorithm. However, this result does not entail considering future

modifications that might allow an algorithm similar to the Swendsen-Wang to

be developed for the crystallography problem. There are a number of

potential changes that could be made to the crystallography model that look

promising. First, the energy function could be modified to look at individual

interactions between atoms rather than the aggregate effect that currently

exists. Second, the entire lattice structure could be transformed onto another

lattice structure on which the states look more like a Potts model. Hence,

while the issue of adapting the Swendsen-Wang algorithm to the current

crystallography model has been concluded unsuccessfully, the larger issue of

adapting the Swendsen-Wang algorithm to the crystallography model is by no

means closed.
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