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ABSTRACT

In this thesis, we describe a polynomial time algorithm that, for every input graph,
either outputs the minimum bisection of the graph or halts without output. More impor-
tantly, we show that the algorithm chooses the former course with high probability for
many natural classes of graphs. In particular, for every fixed d > 3, all sufficiently large n
and all b = o(ni-1/d2lJ), the algorithm finds the minimum bisection for almost all d-regular
labelled simple graphs with 2n nodes and bisection width b. For example, the algorithm
succeeds for almost all 5-regular graphs with 2n nodes and bisection width o(n2/3). The
algorithm differs from other graph bisection heuristics (as well as from many heuristics for
other NP-complete problems) in several respects. Most notably:

(i) the algorithm provides exactly the minimum bisection for almost all input graphs
with the specified form, instead of only an approximation of the minimum bisection,

(ii) whenever the algorithm produces a bisection, it is guaranteed to be optimal (i.e.,
the algorithm also produces a proof that the bisection it outputs is an optimal
bisection),

(iii) the algorithm works well both theoretically and experimentally,
(iv) the algorithm employs global methods such as network flow instead of local oper-

ations such as 2-changes, and
(v) the algorithm works well for graphs with small bisections (as opposed to graphs

with large bisections, for which arbitrary bisections are nearly optimal).
We also show that with high probability the greedy algorithm will not be able

to find the optimal bisection for almost every random regular graph with given bisection
width.

In the last part of the thesis we describe a new algorithm which is found to perform
well in practice, but we have no analysis for it. Finally, we describe a heuristic that when
combined with other well-known algorithms such as Kernighan-Lin seems to improve the
performance of these algorithms for small degree graphs.

Thesis Supervisor : F. Thomson Leighton
Title : Associate Professor of Applied Mathematics
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Chapter 1

Introduction

Let G be a 2n-node undirected, simple graph. A bisection of G is a set of edges
whose removal partitions G into two disjoint n-node subgraphs. A minimum bisection of
G is a bisection with minimum cardinality. The cardinality of the minimum bisection is
called the bisection width of the graph. The graph bisection problem is the problem of
finding the minimum bisection of a graph.

The graph bisection problem is a special case of a more general problem, namely the
graph partitioning problem. Given an undirected, simple graph G with a weight function on
its edges and r a positive integer, the graph partitioning problem is the problem of finding
a partition of the graph G into disjoint subsets each of size less than r such that the total
weight of the edges having endpoints in different subsets of the partition is minimized. The
graph partitioning problem serves as an abstraction for several problems such as program
partitioning and printed circuit board layout in the natural way. It is, however, not easy
to use this abstraction directly when the number of subsets is greater than two. The graph
bisection problem on the other hand serves well as an abstraction because it fits better to
the divide-and-conquer scheme. Perhaps the most visible application of graph bisection
algorithms in recent years is in the VLSI placement and routing programs.

Engineering advances in recent years in the Very Large Scale Integration (VLSI)
process have made possible the placing of hundreds of thousands of components on a
single chip. Considering such a large number of components, it is essential to lay out
these components and to route the wires connecting them efficiently. The main objective
is to lay out these components in the smallest area subject to various constraints such
as fabrication techniques and routability. The problem of minimizing the layout area is
NP-complete even when there is no routing constraints [LaP80]. In practice a number of
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efficient layout placement and routing heuristics are used. The typical programs for VLSI
placement and routing ususally start by splitting a network in halves, recursively laying out
each half, and then reinserting the wires connecting the two halves. It has been observed
in practice that the quality of the final layout depends greatly on the number of wires that
have to be reinserted in the last step. In fact, it has been proved recently that one can
obtain a provably good layout algorithm if one has a provably good algorithm for splitting
a network in halves [BL84]. It has also been observed that many divide-and-conquer based
algorithms run much faster on graph with small bisection.[Ba83][LT77].

Considering the wide-spread application of the graph bisection problem it is unfor-
tunate that the problem is NP-complete [GJS76]. There are no known approximation

algorithm for graph bisection, even for the case of planar graphs which always have bisec-
tion width O(fi) [LT79]. However, exact algorithms for graph bisection are known for
special graphs such as trees and bounded width planar graphs.

Previous works on this problem have been focused on determining upper and lower
bounds of the bisection width for various classes of graphs and on devising heuristics for
bisecting graphs. No analysis of the behaviour of any of these well known heuristics are
offered. Any hints of the performance of these heuristics are drawn from data collected in
experiments or in practice. In this thesis we will try to overcome this deficiency by giving
graph bisection algorithms which are provably good on the average for large classes of
natural graphs. Perhaps the most important aspect of our work is the different approach

that we take in devising the algorithms. In particular, we use global method instead

of local optimization methods as in existing graph bisection algorithms. Our algorithms

also differ from other graph bisection heuristics, as well as from many heuristics for other

NP-complete problems, in several respects. Most notably:

(i) the algorithms provide exactly the minimum bisection for almost all input graphs

with the specified form, instead of only an approximation of the minimum bisection,
(ii) whenever the algorithms produce a bisection, it is guaranteed to be optimal (i.e.,

the algorithms also produce a proof that the bisection they output is an optimal

bisection),

(iii) the algorithms work well for graphs with small bisections (as opposed to graphs with

large bisections, for which arbitrary bisections are nearly optimal).

(iv) the algorithms work well both theoretically and experimentally.

In addition we also analyze the performance of some well known heuristics on these
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same classes of graphs. The analysis and data from our experiments indicate that our

algorithms perform at least as well as or better than the well known heuristics.

The remainder of the thesis is divided as follows. In Chapter 2 we review the various

models of random graphs that are commonly used in probabilistic analysis and we present

a new model of random graphs that we argue to be better suited for the study of graph

bisection. We then review the various well-known graph bisection heuristics in Chapter 3.

In Chapter 4 we present our graph bisection algorithms which are based on the maxflow

algorithm. Analysis of the performance of our algorithms will also be given. Chapter 5

provides the analysis of the performance of the greedy algorithm. We provide the data

comparing the performances of these algorithms and also some new heuristics in Chapter

6. Chapter 6 also contains some remarks for the practitioner regarding those aspects of

the thesis that might prove useful to them. The thesis concludes with our conclusions and

the references.
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Chapter 2

Models of Random Graphs

Even though there are several graph bisection algorithms which seem to perform

well in practice, attempts at analyzing their performance on "any old graph" seems to be
not useful in determining their true behavior and capability. It is, therefore, natural to
restrict the analysis to graphs from special classes. Furthermore, even within a special
class of graphs worst case analysis doesn't seem to be feasible either, at least with the

known bisection algorithms. This leads to attempt at analyzing average behavior of graph

bisection algorithms. To prove theorems about the average behavior of an algorithm

we need a probability distribution over which the average is to be taken. For the case

of graph bisection algorithms the natural choice is random graphs. However, there are

several models of random graphs and not all of them are suitable for analyzing graph

bisection algorithms. In this chapter we review the two most popular models and explain

why they are not suitable to be used as inputs for analyzing and testing the behavior of

graph bisection algorithms. We then present a new model of random graphs which we

argue to be more suitable for testing and analyzing graph bisection algorithms. We also

show that the graph bisection problem does not become easier when restricted to this class

of graphs.

2.1. Model 9(n,p)

The study of random graphs was initiated by Erd6s and R6nyi in their seminal papers

[ER59],[ER60]. Since then hundreds of papers have been written on the subject, and one

of the most used models of random graphs is 9 (n, p). This class of graphs contains all

simple graphs on n vertices, in which an edge between any two vertices is present with

probability p independent of all other edges. The appeal of this model is that it is very
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easy to work with due to the independence of the edges' existences and hence placing no
restriction on the degree of the vertices in the graph. There are numerous results about
this model, one of the most basic one is the following theorem which can be easily shown
with the help of Chebyshev's inequality.

Theorem 2.1. Given e > 0 and p E (0,1) fixed. Almost every graph in 9(n, p)
has at least (p - E)n2 /2 edges and at most (p + e)n 2 /2 edges. If p is a function from N to
(0, 1) such that n2p(n) -+ oo and (1 - p(n))n 2 -+00 then we again have the same result.

This theorem indicates that graphs in 9 (n, p) are usually very dense for fixed constant
p. By our definition of bisection we can only consider graphs with an even number of
vertices, and hence the following theorems will be stated with respect to graphs on an
even number of vertices. The following theorem from [Bu83] showed that the bisection
width of a graph in 9 (2n, p) is also very large and contain about half of the edges of the
graph.

Theorem 2.2. [Bu83] Let f(n) be a function such that f(n) = o(1) and f(n) =

11(1/n). Let p E (0, 1) be a fixed constant. Then almost every graph in 9(2n,p) has
bisection width greater than or equal to

n 2p - n 4npq log 2 - 2pq log n - 2pq logf (n) + 0(1)

and less than or equal to

n2p - an

for some a < V /27r.

We note that the theorem is about graphs in 9(2n,p), i.e., graphs on 2n vertices,
not n vertices. For the case of p = c/n for some c > 1, we have the following bounds on

bisection width of graphs in 9(2n,p).

Theorem 2.3. [Bu83] Let c > 9 be a fixed constant, and p = c/n. Then almost

every graph in 9(2n, p) has bisection width greater than or equal to

cn - nV/2c log 2 (1 + o(1))

and less than or equal to

cn - 2H(c)cn

where H(c) - 0.238c-y 2 .
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It is not difficult to show that a random bisection of a graph in 9 (2n, p) will contain
about half of the edges, and thus differs from optimal bisections in only low order terms.
Therefore, this class of graphs may not serve well to distinguish between good heuristics
and mediocre ones, either in practice or in analysis.

2.2. Model 9(n,m)

Another frequently used model of random graphs is 9(n, m). This is a class of all
graphs on n vertices having exactly m edges. This class of graph is turned into a probability
space by assigning equal probability to each graph in the class. This class of graphs is
closely related to the class 9 (n, p) for appropriate choice of p. In fact, results about graphs
in the class 9 (n, p) can usually be translated into results for graphs in 9 (n, n) under
appropriate conditions [Bo79]. As in the previous section we have the following bounds on
the bisection width for graphs in 9(2n, m).

Theorem 2.4. [Mac78] Let s > 9 be fixed and n -> oo. Almost every graph in

9 (2n, n) where n = 2sn has bisection width greater than or equal to

1 log 2
2 V2s

and less than or equal to

- H(s))m

where H(s) ; 0.238s-/ as s --+ oo.

Again as in the case of the 9 (2n, p) model the bisection width of a graph in 9 (2n, m)
is about half the number of the edges in the graph, thus causing the same kind of problem
for testing and analyzing the performance of graph bisection algorithms. In the next
section we will present another model of random graphs which will prove to be more useful
for our purpose.

2.3. Model 9(nd,b)

Because graphs in 9 (n, p) and 9 (n, in) may not serve well to distinguish really good
heuristics from mediocre or even horrible ones (e.g., heuristics that try to maximize the
bisection), it is useful to examine graphs for which the minimum bisection is much smaller
than the average bisections. Numerous papers (for the most part empirical studies) have
attempted to do precisely this, but most end up constructing graphs according to a specified
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procedure that (at best) imposes an upper bound on the bisection width of the constructed
graphs. Unfortunately, it is usually not clear what relationship exists between the behavior
of an algorithm on an average graph in such a class, and on an average graph with specified
properties (such as fixed bisection width). Of course, it is the behavior of algorithms on
graphs randomly selected from a class of the latter type that is of greatest interest. In this
section we introduce a new model of random graphs which will overcome the problems of

9(n, p) and 9 (n, m). We consider the class 9 (n, d, b) of labelled simple graphs that have
2n nodes, node degree d, and bisection width b for fixed d > 3 and b = o(n'-1/LtlTJ). In
other words, we consider precisely the distribution of random 2n-node, d-regular graphs
conditioned on having minimum bisection b. Since every graph with dn edges has average
bisection dn/2, the minimum bisection for these graphs is much smaller than the average
bisection. Moreover, we will show that the graph bisection problem is NP-complete for

9(n, d, b) whenever b > n' for any constant e > 0. Hence 9(n, d, b) is a natural and suitable
class of graphs for analysis.

2.3.1. Analyzing Random Graphs With Small Bisection Width

Methods of constructing d-regular graphs with uniform probability are well known
[Bo80]. In what follows, we extend one such standard method to construct d-regular graphs
with bisection width b with near uniform probability for b = o(n1-1/ldtlJ).

Step 1. Consider a set of 2n distinctly labelled nodes, and randomly designate half
of them as left nodes , and half as right nodes. Then replace each node with d
distinctly labelled points. (E.g., node 1 is replaced by points 1.1, 1.2,... , 1.d.)

Step 2. Randomly match b left points to b right points.

Step 3. Randomly match the remaining dn - b left points among themselves and

the remaining dn - b right points among themselves.

Step 4. Coalesce each set of d points back into a node.

Step 5. Output the graph, maintaining the node and point labels.

Let 9* (n, d, b) be the collection of graphs (included according to multiplicity) that

are constructed by the previous routine. At first glance it is not clear that 9* (n, d, b) has

any relation at all to 9(n, d, b). For example, 9*(n, d, b) contains graphs with multiple

edges and loops as well as graphs with bisection width less than b. No such graphs are

contained in 9(n, d, b). Moreover, graphs in 9(n, d, b) occur with varying frequencies in

9*(n, d, b), depending on the number of b-bisections in the graph and on the number of

ways of labelling points.
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Despite all of these obstacles, however, we prove a theorem later in this section that
any condition that holds with probability 1 - o(1) for 9*(n, d, b) as n -+ oo also holds

with probability 1 - o(1) for 9(n, d, b). This result is crucial to the thesis since it allows
us to analyze the much simpler class 9*(n, d, b) in order to prove theorems about the
more natural class 9(n, d, b). Without such an indirect analysis, it is unlikely that we
would be able to prove anything at all about graphs randomly selected from 9 (n, d, b). For
example, no closed expression is known for the number of d-regular 2n-node graphs (simple
or otherwise), yet the number of graphs (counted according to multiplicity) contained in
9*(n, d, b) is easily calculated.

Before proving the main theorem of this section , however, we need several lemmas.
These lemmas highlight some of the more interesting properties of graphs in 9 (n, d, b)
and 9* (n, d, b), and will be used throughout the thesis. We start with a lemma concerning
random pointwise-labelled d-regular graphs (possibly with multiple edges and loops). Such
graphs are generated in much the same fashion as graphs in 9*(n, d, b). The term pointwise-
labelled refers to the existence of labelled points at each node, as in Step 1 of the procedure
for 9*(n, d, b).

Lemma 2.5. There is a constant c > 0 such that for all d > 3, n -> oo and

almost every pointwise-labelled n-node d-regular graph G, every k-node subset S of G (for

all k ; n/2) is incident to at least cdk edges that connect nodes in S to nodes in G - S.

Proof: Let M(dn) denote the number of pointwise-labelled, n-node, d-regular

graphs. It is easily seen that

M(dn) = ) (dn/2)! 2 ~dn/2

The number of pointwise-labelled n-node d-regular graphs that have a k-node subset

with exactly t connections to the rest of the graph is at most

(n) (dk) (dn - dk)t!M(dk - t)M(dn - dk - t).

Taking the ratio of the two formulas and simplifying, we find that the probability that

such a graph has a k-node subset with only t = cdk connections is

c)(1 c)/2 a(1 c)/2 1/d c (a-c)/2 + 1 (1+a)(1/2-1/d) ] dk

O c'(1 i -)2uc/-/
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where a= (n-k)/k > 1. Forc 1/4,d> 3 and a> 1, this is

S Cc(1 - c)(1-c)/
2e-c/2e1 / 6  n - k 1/24] -3k

Since c"(1 - c)(1-c)/2e-c/2_-+1 as c-+O, we can conclude that

c(1 - c)(1-c)/2e-c/2e1/6 > 1 + 6

for all sufficiently small c and some constant 6 > 0. Hence for small enough c > 0, the
probability that a pointwise-labelled n-node d-regular graph has a k-node subset with less
than cdk connections is

O cdk (1+i) n - k 1/241 -3k

It is easily checked that the preceding expression converges to 0 as n -+ oo for all
1 < k < n/2. In fact, the sum of these terms for 1 < k < n/2 is O(n- 1 /') which also
converges to 0. Thus the claim holds simultaneously for all k-node subsets in almost every
graph. I

Results such as Lemma 2.5 are common in probabilistic graph theory and have
numerous useful applications. We include one such application in the following corollary.
Although the result is only stated for pointwise-labelled graphs, possibly containing loops
and multiple edges, it is easily extended to simple labelled d-regular graphs.

Corollary 2.6. For all d > 3, n -+ oo and almost every pointwise-labelled n-node

d-regular graph G, every bisection of G has size between (1 - e)dn/4 and (1 + e)dn/4 where

6 = O(1/v' d).

Proof: Setting k = n/2 and a = 1 in the proof of Lemma 2.5, we find that the

probability that G has a bisection of size cdn/2 is

O ([1c(i - c)1~c 2 1-2/d] -dn/2

This expression is maximized at c = 1/2 and thus the probability that G has a bisection

of size less than (1 - e)dn/4 or greater than (1 + E)dn/4 is

O n (1+c)/2 2 12/I
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Simplifying, we find that the preceding expression is

0 (n [e2/22~2/d] ~dn/2

which tends to 0 for e > 2/-/d log e. i

Of more immediate concern to us in this thesis is the following corollary to Lemma
2.5. In the corollary and throughout the rest of the thesis, the phrase left or right half of

a graph in 9* (n, d, b) refers to the left or right, respectively, nodes created in Step 1 of
the procedure for .9*(n, d, b) and to the edges inserted in Step 3, but does not include the
bisection edges inserted in Step 2.

Corollary 2.7. There is a constant c > 0 such that for all d > 3, n -- oo and

almost every graph G that forms the left or right half of a graph in 9*(n, d, b), every m-node
subset S of G that is incident to t bisection edges, is also incident to at least cdm - t edges

connecting S to G - S for all rn < n/2 and t < b.

Proof: For simplicity, assume b is even and randomly connect the b bisection
points in G with b/2 edges to form a new graph G'. It is easily observed that G' is a
random d-regular pointwise-labelled graph, possibly containing loops or multiple edges.
Hence, if G' is one of the 1 - o(1) portion of d-regular graphs satisfying Lemma 2.5, there
will be at least cdm edges connecting S to G' - S. In that case, there clearly must be at

least cdm - t edges connecting S to G - S in G.I -

The following lemmas will serve to further strengthen Corollary 2.7.

Lemma 2.8. Given any r > 2, d > 3, m = o(n'-/') and n -+ oo, if m items are

chosen at random from n groups of d items each, then with probability 1 - o(1) fewer than

r items will be selected from each group. Moreover, the same conclusion holds provided

that each item is selected at random from some (possibly varying) subset of at least n - m

groups.

Proof: Assume that each item is selected at random from some subset of at least

n - rn groups. The probability that the ith item selected comes from the jth group is at

most d/[(n - m)d - m] since there are at least n - m groups of d items to choose from and

at most i - 1 < m of the items have already been chosen. Hence, the probability that k

items are chosen from the same group is at most

nQ(m) 1-k
\k }(n - m- d~
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Simplifying, we find that this probability is 0 ( 4) which for m = o(n-1ir) is o(n'-k/r).
Summing over k > r, we find the probability that fewer than r items are selected from
each group is 1 - o( -

Lemma 2.9. For all fixed d > 3, all b = o(nl-1/L d+J), n -+ oo and almost every
graph G that forms the left or right half of a graph in 9*(n,d,b), every subset of G with at
most n/2 nodes that is incident to k bisection edges for any k < b, is also incident to at
least k + 1 edges connecting nodes in S to nodes in G - S.

Proof: Let G be the left half (without loss of generality) of a graph constructed
according to the procedure for 9*(n, d, b). In what follows, we will show that the nodes of
G which are incident to bisection edges have sufficiently bushy neighborhoods so that any
set S incident to k bisection edges and at most k edges that connect nodes in S to nodes
in G - S must contain at least 4k/cd nodes, where c is the constant defined in Corollary
2.7. We will then use Corollary 2.7 to obtain a contradiction of the hypothesis that S is
incident to at most k edges which link S to G - S.

Without loss of generality, we can assume that the edges created in Step 3 to form G
were generated in order of increasing distance from the bisection edges. In particular, we
are interested in the generation of edges within distance d log(1/c) of the bisection where
c is the constant defined in Corollary 2.7. For fixed d, there are at most m = 0(b) =
o(n1/Ld2 J) such edges. Applying Lemma 2.8 to the node by node generation of edges

to form G, it is easily shown that, with high probability each node of G within distance
d log(1/c) is incident to fewer than [d~1j previously generated edges (i.e., edges that are
also incident to previously processed nodes).

Let S be a set of at most n/2 nodes of G that is incident to k bisection edges and at
most k edges that connect S to G - S. Let ej denote the number of edges in S that link
two nodes which are of distance i from the bisection and ejj+i denote the number of edges
in S that link nodes which are of distance i and i + 1 from the bisection. (Throughout

this proof, distance means the length in edges of the shortest path totally contained in S
to the bisection. Nodes incident to bisection edges are considered to be of distance 1 from

the bisection.) By definition, eo,1 = k. Also define n; to be the number of nodes in S at

distance i from the bisection, and f, to be the number of edges that link a distance i node

of S to G - S. By assumption fo = 0 and E*_O ft  k.

Because the edges of S were generated in order of increasing distance from the

bisection, and since each node is incident to at most (d - 1)/2 previously generated edges,
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we can deduce that
ei- 1 ,i + ei

ni 2 (*)
- d-1

2

and that

ej,,,~ > i (d + 1 e -
ei~+1 n 2

for every i < d log(1/c). Combining the two inequalities, we find that

ei,i+1 + d 2 ei- 1, + d 2 -

( 2 2iii i
1 d-1

It is not difficult to show that ej, 1 is minimized for every i < dlog(1/c) by setting

fi = k and fi = 0 for i > 2. Then it is clear that

ei,i+1 1+d 1 )8 1+d 1 )eo,1-k

2k 2 ~

d-1 1+d-1

Hence for i < dlog(1/c) using (*) and (**) we get Ejnj+1 > 4k/(c(d - 1)) and hence S

contains at least 4k/(c(d - 1)) nodes. By Corollary 2.7, however, this means that there

are at least cd ( ) - k > 3k edges linking S to G - S. This provides the necessary

contradiction and concludes the proof.i

We are now able to prove the main result of this section.

Theorem 2.10. For all fixed d > 3 and all b = o(nl-IL dI J), any condition that

holds with probability 1 - o(1) for 9*(n, d, b) as n -+ oo also holds with probability 1 - o(1)

for 9(n, d, b) as n -+ oo.

Proof: We first observe that every graph G in 9(n, d, b) that has a unique minimum

bisection is generated with the same frequency in 9* (n, d, b). This is because the b edges

inserted in Step 2 of the procedure for 9*(n, d, b) must then be precisely the edges in the

unique b-bisection of G. Since the left and right halves of G are connected, the halves and

the edges they contain are also distinguished. Finally, since G contains no multiple edges

or loops, there are exactly d! ways to pointwise label the d edges incident to each node.

Hence there are (d!)2 " pointwise labellings for each labelled graph.

Graphs in 9(n, d, b) with nonunique b-bisections appear proportionally more often

in 9*(n, d, b) than do graphs with unique b-bisections. Moreover, 9*(n, d, b) also contains
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graphs with multiple edges and loops, and with bisection width less than b. However, we

will show in what follows that these bad graphs constitute at most a constant fraction

of the graphs in 9*(n, d, b). We commence by showing that 0 (e-2(d-1)2) of the graphs

generated for 9*(n, d, b) have no loops or multiple edges. For fixed d, this is a constant

fraction.

The probability of generating a multiple edge during an insertion of a bisection edge

in Step 2 is at most
b(d - 1)2  . b 1
(dn - b)2 - n2 - n

Hence the probability of avoiding multiple edges altogether during Step 2 is at least

1 - - > 1 - - = 1 - o(1).
n n

The probability of generating a multiple edge or loop at any fixed point of Step

3 (conditioned only on the knowledge that no multiple edges or loops were generated

previously - not on the actual edge selections made) is at most (d - 1) 2 /dn. Hence the

probability that none of the dn edge insertions create loops or multiple edges is at least

1 (d - 1)2 2dn (-2(d-1)2)

We conclude the proof by showing that only a small portion of the graphs occurring in

.9*(n, d, b) have bisections less than b or multiple bisections of size b. This fact is an

immediate consequence of Lemma 2.9, since the existence of such a bisection for a graph

G in 9*(n, d, b) would imply the existence of a subset S with at most n/2 nodes in the left

or right half of G that is incident to k bisection edges for some k < b but to k or fewer

other edges that link S to G - S.

In conclusion, sampling graphs in 9(n, d, b) is equivalent to sampling a constant por-

tion f (e-2(d-1)2) of the graphs in 9*(n, d, b) and ignoring point labels. Hence, any condi-

tion that holds for 1- o(1) of the graphs in 9* (n, d, b) must also hold for 1-o (e-2(d-1)2 =

1 - o(1) of the graphs in 9(n, d, b).I

2.3.2. NP-completeness Of Graph Bisection In 9(n,d,b)

In this section we will show that the problem of deciding whether or not a d-regular

graph has a bisection of size b or less is NP-complete whenever d > 3 and b = n' for

any fixed e in the range (0,1). We will reduce the general graph bisection problem to this

problem. The proof will be done in two steps. Given a graph G and an integer b, we
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transform G to a 3-regular graph G* such that G has a bisection of size b or less if and
only if G* has a bisection of size b or less. We next transform G* into a d-regular graph
G' such that G* has a bisection of size b or less if and only if G' has a bisection of size b'
or less, where b' = n", where n is the size of G', for any fixed E E (0,1). We start with the
following lemma.

Lemma 2.11.

1. Every s-node subset

S.

Let H be an n-node honeycomb-like 3-regular

S of H, where s < n/2, is adjacent to at least
graph as in Figure

Ns/2 nodes not in

The proof of this lemma is not difficult and we will omit it.

Figure 1. An example of a honeycomb-like graph.

Theorem 2.12. The problem of deciding whether or not a d-regular graph has

a bisection of size b or less is NP-complete, whenever d > 3 and b = n' for any fixed
E E (0,1).

Proof: Let G be an n-node graph and b an integer. We will construct a 3-regular

graph G* on m = 0(n') nodes as follows. Replace each node of G with an n'-node

honeycomb-like graph H of Lemma 2.11. An edge between two nodes in G is replaced

by an edge connecting two edges of the two corresponding graphs H in G*, thus creating

two new nodes of degree 3 (see Figure 2). Furthermore, edges coming into a graph H are
dispersed widely so that any r-subset R of H which is incident to s incoming edges will
also incident to at least s + V/r/4 edges in H - S. This can be done using Lemma 2.11.
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Figure 2. The connection of two H-graphs.

Let B be a minimum bisection of G*, i.e., B is a minimum set of edges whose removal

divides G* into two subgraphs of equal size.

Claim 1: B induces a corresponding bisection of G, i.e., B contains only edges that
correspond to the original edges of G.

Suppose not, then we can rearrange the bisection to obtain a new cut by moving each
copy of H that is cut by B entirely to the side of the bisection containing the majority of
its nodes. Suppose we have to move t nodes, then the new cut has at least /t/4 fewer
edges than the original bisection. This new cut, however, might no longer be a bisection.

To make it a bisection we have to move at most t/n' H-graphs. This will increase the size

of the cut by at most t/n 4 edges. Since the size of any bisection of G is at most n2, it can
be easily seen that t is at most n4 . Thus the new bisection is smaller than the original one,
a contradiction. This proves the claim.

Hence B is also a minimum bisection of G.

The next step is to transform G* into a d-regular graph G' as follows. Replace each

edge of G* with k edges where k is such that bk = (100mk)' and 100k is a square. We

then replace each node of G* with a graph H' satisfying the following conditions:

(i) H' has 3k degree d - 1 nodes and 97k degree d nodes, and

(ii) every subset of H' with r < 50k nodes, s of which are degree d - 1 nodes, is incident

to at least s + 1.3r/40 nodes not in the subset.
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Graphs like H' are easily constructed from expander graphs, even for d = 3.
Edges in G* now can be replaced by edges connecting the (d - 1)-degree nodes in the

corresponding H' graphs. The resulting graph G' will then be d-regular.

Claim 2: G' has a bisection of size bk or less if and only if G* has a bisection of size
b or less.

The proof is similar to before. Given a bisection of G', form a new cut by moving
each copy of H' entirely to the side of the bisection containing the majority of its nodes.
If t nodes are moved in this step then the new cut contains at least 1.3t/40 fewer edges
than the original bisection. Although the new cut corresponds nicely to a cut of G*, it is
not necessarily a bisection. To make a bisection, move up to t/(100k) copies of H' from
one side to the other. This increases the cut by at most 3/100 edges which is less than
the 1.3t/40 edges decrease performed earlier.

Thus a bk-bisection of G' can be converted into a b-bisection of G. This proves Claim
2 and the theorem. i
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Chapter 3

Classical Approaches

Previous works on the graph bisection problem have been focused on devising efficient
heuristics for bisecting graphs. Some of these heuristics and their variations have been used
widely in practice, even though no theoretical analysis of their performances are available.
In this chapter we will review some of the most well-known graph bisection algorithms. The
common feature of all these algorithms is that they are iterative improvement algorithms,
where the improvements are achieved by local optimizing operations. Typically, such an
algorithm starts with a random bisection of the graph. It then tries to improve upon
this bisection by doing some local operation such as 2-change (the interchanging of a pair
of vertices). The actual method for this step varies with each algorithm. This step is
then repeated until no more improvement can be made. This constitutes one pass of the
algorithm. The algorithm usually begins another pass with the starting bisection being
the one found in the previous pass. This process repeats for a fixed number of passes
or until no more improvement is made. Another approach is for the algorithm to start
each pass, for a fixed number of passes, with a new random bisection and report the best
solution found. In the following we will describe the greedy algorithm, the well-known
Kernighan-Lin algorithm and the recently discovered simulated annealing algorithm.

To facilitate our discussion we will first define some terminologies. Let G = (V, E)
be a graph on 2n vertices and let (A, B) be a bisection of G. We denote the cardinality

of the bisection (A, B) by |(A, B)| . With respect to that bisection we define the gain

of each vertex in the graph as follows. For a E A, the gain of a (denoted by ga) is the

difference between the number of edges connecting a to vertices in B and the number of

edges connecting a to vertices in A, i.e.,

ga={ v E B I (a,v) E E} - |{ v E A | (a,v) E E}
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We extend this definition to pairs of vertices, one in A and one in B. More formally, define

g,= |(A, B)| - (A', B')I

where

A' = (A - {a}) u {b} and B' = (B - {b}) U {a}

In other words, ga,b is the reduction in the size of the bisection when a and b are inter-
changed. Clearly,

ga,b = ga + g - 26(a, b)

where

6(a,b) = {1, if (a, b) E E;

0, if (a, b) V E.

3.1. The Greedy Algorithm

The first graph bisection algorithm that we will describe is the greedy algorithm,
it is perhaps the simplest graph bisection algorithm. There are several versions of this
algorithm, but we will consider only the following greedy algorithm. The algorithm has
several passes, each pass tries to improve the result of the previous pass. The algorithm
starts with a random bisection. At each step in one pass of the algorithm, two vertices
will be chosen, one in each side of the bisection. These vertices are chosen in such a way
that when they are interchanged they will yield the largest positive reduction in the size
of the bisection. Ties are broken arbitrarily. If such a pair is found the vertices are then
interchanged. Once a vertex has been chosen to be exchanged it will not be chosen again.
A pass is finished when there is no pair that will give a positive reduction in the size of
the bisection. That is, the algorithm keeps making downhill moves and it stops as soon as
it has to make an uphill move. The algorithm can be run for a fixed number of passes or
until no more improvement can be made.

The running time of this algorithm can be easily found to be O(n2 log n). That is
the worst case running time of the algorithm, on the average the greedy algorithm will
stop much sooner. It is difficult, however, to determine the average running time of the
algorithm without further assumption on the inputs. In practice, to save time each vertex

in the pair is chosen independently, i.e., each vertex is the best choice in each half but
as a pair they may not be the best choice over all pairs. By doing this we reduce the

running time significantly, and experience shows that it does not affect the performance
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begin
1. Compute ga, gb for each a E A, b E B.
2. QA = 0, QB = 0, STOP = FALSE.
3. while not STOP do

begin
4. Choose a' E A - QA and b' E B - QE such that gab'

is maximum over all choices of a and b.
5. if gab < 0, set STOP = TRUE
6. else
7. Set QA = QA U {a'},QB = QB U {b'}
8. for each a E A - QA do

9. ga = ga + 26(a, a') - 26(a, b')
10. for each bEB-QB do

11. gb = gb + 26(b, b') - 2b(b, a')
end

12. Return new bisection ((A - QA) U QE, (B - QE) U QA).
end

Figure 3.1. One pass of the greedy graph bisection algorithm.

of the algorithm very much. Even for this simple algorithm no analysis of its performance

is available.

3.2. The Kernighan-Lin Algorithm

Kernighan and Lin in [KL70] gave a heuristic for solving the graph bisection problem

which seems to work well in practice. It and its variations are the most widely used graph

bisection algorithms. Let a graph G = (V, E), V = 2n be given. The main idea here is

the same as before, that is to start with an arbitrary bisection, say (A, B), and improve

upon it. The improvement is accomplished by interchanging subsets X C A, Y C B, and

IXJ = |Y| < n so that the size of the bisection is decreased. Clearly, there exist equal sized

subsets X and Y of A and B, respectively, such that when X and Y are interchanged we

will obtain an optimal bisection, but there is no known efficient way of finding them short

of exhaustive search. The Kernighan-Lin heuristic finds these subsets approximately by

choosing elements of X and Y sequentially. This choosing process is done as follows. For

each element a E A, b E B, let ga,b be defined as before. The algorithm first computes ga,

for all a E A, b E B. It then chooses a1 E A, bi E B such that

ga,b = max{ ga,baEA, bEB}
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begin
1. Compute ga, gb for each a E A, b E B.
2. QA= 0 ,QB= 0 .
3. fori=2 ton do

begin
4. Choose a, E A - QA and b; E B - QE such that ga,,bi

is maximum over all choices of a and b.
5. Set QA = QA U {ai}, QB = QB U {bi}
6. for eachaE A-QA do

7. ga = ga+ 26(a, a) - 26(a, bi)
8. for each bEB-QB do

9. g= g9b + 265(b, bi) - 26(b, a,)
end

10. Choose k E {1,. . . ,n} to maximize Ek__1 gaibi

11. Interchange the subsets {a 1,... , ak} and {bi,..., bk} to get the new bisection.
end

Figure 3.2. One pass of the Kernighan-Lin graph bisection algorithm.

The algorithm now updates the gains of all vertices in V, except a1 and bi, with respect

to the new bisection ((A - {a 1}) U {bi1}, (B - {b1}) U {a 1}). The algorithm next repeats

the process for this new bisection and chooses a new pair of vertices to be exchanged,

except that a1 and b, will not be considered anymore in choosing the next pair that will

give the maximum reduction. That is, once a vertex is chosen to be exchanged it will no

longer be considered in later steps. The process is repeated untill all vertices have been

considered. We now have a list of pairs (a1, bi), ... , (a,, b,). Of course, if all these pairs are

interchanged the total reduction is zero. The algorithm now chooses a k < n such that the

interchange of the subsets {ai, ... , ak} and {bi,..., bkj will give a maximum reduction over

all choices of k < n. This whole process makes up a pass of the algorithm. The algorithm

can have several passes. Each pass, except the first one, starts with the bisection given as

the result of the previous pass. The algorithm can have a fixed number of passes or it can

run until no more improvement is possible. The main difference between this algorithm

and the greedy algorithm is that Kernighan-Lin will accept uphill moves in the hope of

finding a smaller bisection later on. As in the case of the greedy algorithm, the choices of

a, and b in Step 4 of Figure 3.2 are made independently to save time in practice. It is also

observed that the performance of the algorithm is not greatly affected by doing that.
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We now describe the algorithm formally. Let G = (V, E) be a graph with V = 2n.

Let (A, B) be a bisection of G. For each a E A b E B define ga,b as before. The heuristic is

shown in Figure 3.2. Steps 7 and 9 of the algorithm can be easily checked that the values

of the ga and g are correctly updated with respect to the new bisection, that is after the

sets {ai,... , a;} and {bi,..., b;} have been interchanged. It is also easily shown that the

running time of the algorithm is O(n 2 logn).
Variations of the Kernighan-Lin's algorithm have been considered by Macgregor

[Mac78], he also considered hybrid of Kernighan-Lin algorithm with other heuristics. A

slight variation of the Kernighan-Lin heuristic has also been implemented by Fiduccia and

Mattheyses [FM82] to run in linear time by using some clever data structures.

3.3. Simulated Annealing Graph Bisection Algorithm

In this section we present an algorithm proposed by Kirkpatrick, et al., [KGV82],

which makes an interesting connection between the annealing process and the iterative

improvement process of the graph bisection heuristics. They actually presented a general

scheme which mirrors the annealing process of materials and can be adapted to solve

problems that are susceptible to an iterative improvement algorithm such as the graph

bisection problem. In fact, experiments performed by Johnson, et al. on a variety of

cominatorial optimization problems indicate that among the problems they considered,

which include the traveling salesman problem, the graph coloring problem and the number

partitioning problem, simulated annealing did well only on the graph bisection problem.

Consider a system consisting of a large number of atoms, such as a sample of liquid

or solid matter. The aggregate behavior of the system can be observed by considering the

average behavior taken over an ensemble of identical systems. We associate with each con-

figuration of the system in the ensemble a Boltzmann's probability, exp(-E({r;})/kBT),

where E({ri}) is the energy of the configuration defined by the atomic positions {ri}, kB

is the Boltzman's constant, and T is the temperature. One wishes to know what happens

to the system in the limit of low temperature, for instance, whether atoms remain fluid

or solidify. It is known that ground states and configurations having energy close to them

are very rare, nonetheless, they dominate the behavior of the system at low temperature

because as T is lowered the Boltzmann distribution collapses into the lowest energy state

or states. To find the low temperature states of a system it is necessary to use an anneal-

ing process. That is to first melt the substance, then lower the temperature slowly, and

spend a long time at the temperatures near the freezing point. Otherwise, the resulting
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configuration will be metastable.

There is a simple algorithm given by Metropolis, et al. [M53] which simulates a
collection of atoms in equilibrium at a given temperature. In each step of the algorithm, an
atom is given a small random displacement, and the corresponding change in energy, AE, of
the system is computed. If AE < 0, then the displacment is accepted, and the configuration
with the just displaced atom is used as the starting configuration for the next step. When
AE > 0, the configuration is accepted with probability Pr(AE) = exp(-AE/kBT). A
random number is chosen uniformly in the interval (0,1), and compared with Pr(AE).
If it is less than Pr(AE) then the new configuration is accepted, if not, the original
configuration is retained and we repeat the process.

It is observed in [KGV82] that the iterative improvement process in a combinatorial
optimization problem such as the graph bisection problem is similar to the microscopic
rearrangement processes modelled by statistical mechanics, where an appropriate cost
function for the graph bisection problem will play the role of energy. Using this analogy
we note that in the process of finding the solution if we only accept rearrangements that
reduce the cost function, then this is like rapid quenching from high temperature to T = 0,
thus the resulting solutions will often be local optima and metastable. By utilizing the
Metropolis' algorithm described above, in which rearrangements that increase the cost
function are sometimes accepted, we can expect to get better solutions as indicated by the
observation made in actual physical processes.

We will now describe the simulated annealing algorithm for graph bisection that was
used by Johnson in [J841. The algorithm starts by creating a random partition of the vertex
set into two sets that are not necessarily equal. The algorithm will then proceed through
a "cooling" process. The rate of cooling is controlled by the variable TEMP-FACTOR,
which is set to 0.95. At each temperature the algorithm will perform a number of steps

determined by the product of the variables EPOCH-SCALE and N, where EPOCH-SCALE
is set to be 16, and N is the size of the graph. For each step, the algorithm randomly picks
a neighbor of the current partition of the graph, where a neighbor of a partition is defined

to be another partition that is obtained from the original partition by moving one vertex

from one side of the partition to the other. The algorithm then computes the change A in

the cost of the two partitions, where the cost of a partition (V1, V2) is defined as

Cut-Size(V1, V2) + SCALE x (2V1 ,V2 |)2,

where SCALE = 0.1. If A < 0 the current partition is set to be the new partition,
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otherwise the current partition is set to be the new partition with probability e-A/T. The

cooling process stops when a reduction in the temperature does not yield an improvement.

By then we have a partition of the graph which is not necessarily a bisection. A bisection

can be obtained from this partition by performing a greedy heuristic, that is by balancing

the partition in a greedy manner. In other words, we move vertices one by one from the

larger side of the partition to the smaller side in such a way that the cut size increases the

least.

begin
1. Randomly partition V into two not necessarily equal sets V and V2.
2. Set initial temperature T = 1.
3. Until a decrease in temperature yields no improvement do
4. begin
5. From 1 to EPOCH-SCALE x N do
6. begin
7. Randomly pick a neighbor S' = (V,, V2)

of the current partition S = (V1,V 2 ).
8. Compute Cost(S) = Cut-Size(V,V 2) + SCALE x (jVil -|V 21)2

9. Compute Cost(S') = Cut-Size(Vj,V2) + SCALE x (2V - IVjI)2

10. Compute A = Cost(S') - Cost(S)

11. if A < 0 then set S = S'
12. if A > 0 then set S = S' with probability e-A/T

13. end
14. Set T = T x TEMP-FACTOR
15. end
end

Figure 3.3. Simulated Annealing Graph Bisection Algorithm.
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Chapter 4

Maxflow-based

Graph Bisection Algorithms

All the known algorithms share a basic property, namely they all use some local
optimization method to improve the current bisection. In this chapter, we consider a totally
different approach to the graph bisection problem by using global method such as network
flow. In particular, we describe a graph bisection algorithm that finds the minimum
bisection for almost every graph G in 9(n,d,b) for fixed d > 3 and b = o(n1-1/Lj).
In addition, the algorithm is constructed so that every time a bisection is output, it is
guaranteed to be optimal. The description of the algorithm and its analysis is divided
into three sections. In Section 4.1, we present and analyze a simple algorithm for graphs
with o(V"i) bisections. The general algorithm is described and analyzed in Section 4.2. In
Section 4.3, we bound the running time of the algorithms.

The idea of the algorithm is quite simple: we wish to convert G into an instance
of the maxifow problem for which the mincut is the minimum bisection. Of course, it's
hard to do this without knowing which edges comprise the minimum bisection, but we can
come close. In fact, we will find that by replacing the neighborhoods around two nodes u
and v with an infinite capacity source and sink, the resulting flow problem will often have
a mincut close to a bisection. By exploiting this phenomenon, we are able to prove the
desired result.

Throughout this chapter and for the rest of the thesis, we will state and prove "almost
all"-type theorems for graphs in 9*(n, d, b). By Theorem 2.10, such results also hold for
graphs in j9(n, d, b). We start by proving one such result for the size of neighborhoods

around nodes in the left and right halves of graphs in 9*(n, d, b).
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Lemma 4.1. For all fixed d > 3, all b = o(n'-1/L 'J ), n -+ oo and almost every

graph G that forms the left or right half of a graph in 9*(n, d, b), every node of G is within
distance logd 1) m + 0(1) of at least m other nodes for every m = o(nl-1/L 'J ).

Proof: Let G be a graph that forms the left or right half of a graph in 9* (n, d, b)
and let v be a fixed node of G. We will show that with probability 1 - o(1/n), there are
m nodes within distance log(d-1) m + 0(1) of v for every m = o(nl-1/LdT2J). Hence, with
probability 1 - o(1), this condition will be true for every node of G. (Note that distance
in G is measured by paths that are contained entirely within G. Artificial bisection edges
inserted in Step 2 of the graph generating procedure are not allowed in such paths.)

Without loss of generality, we can select the edges of G in Step 3 of the procedure for
9*(n, d, b) in order of increasing distance from v. Initially, we try to select neighbors for
v. Of course, some of the points comprising v may be incident to bisection edges (thus not
having a neighbor in G), some might be incident to other points in v, and some might be
incident to points in some other common node of G. Let ni denote the number of nodes
in G found to be adjacent to v via a single edge. Similarly, define ni to be the number of
nodes selected only once to be adjacent to a node of distance i - 1 from v. For each i, it
is easily shown that n;+1 n,(d - 1) - 2r,, where ri is the number of points at distance
i from v that become incident to a bisection edge, to another point at distance i, or to a
point in a node that already is known to be of distance i + 1 from v. The probability that
a point falls into one of these classes is at most

b +nid+nid _dj

nd - mdO() =o(n/12

since n; m = o(nl-1/Ld9J) and d is fixed.

Hence the probability that ri of the n,(d - 1) points fall into this bad class is at most

ni(d - 1) -,r/d+a 0 n,(d - 1)e] r
ri ~ ~ ~ r 2 /d

[nde 'i
rin2/(d+I)

For ni : n1/(d+1), choosing ri = 4d is more than sufficient to make this probability o(1/n 2 ).

Otherwise, it is sufficient to make ,j- < and r, ; 2log n. For ni > n 1/(d+1), this can

be accomplished by setting ri = 2n, log n/nI(d+1).

Thus for any m = o(n1~1/l +J), we can conclude that with probability 1 - o(1/n),

ni+1  n,(d - 1) - 8d
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for all i such that ni < n1/(d+l), and

( 2 log n\
nj+1 2: ni (d - 1 - n/dl

for all i such that ni K m. Provided that nf is greater than 8d/(d -2) for some constant f,
the first recurrence can be solved to find that n, = 0 ((d - 1)'-'). The second recurrence
extends this result to large i. Hence with probability 1 - o(1/n), v has m neighbors within
distance logd- 1 m + 0(1). Although we have omitted the proof that n1 is greater than

8d/(d - 2) for some constant f (with probability 1 - o(1/n)), the details are not difficult
to work out.1

4.1. Bisecting Graphs With o(y'n) Bisection Width

Let G be a d-regular graph. For each node v in G, define the neighborhood N(v) of v
to be the set of all nodes within distance logd_ 1 i4 /- - 2 of v. For each pair of nodes u and

v, the algorithm finds the mincut c(u, v) in G using the maxflow-mincut algorithm when
N(u) is replaced by an infinite capacity source and N(v) is replaced by an infinite capacity
sink. More precisely, the edges linking N(u) and N(v) to G - N(u) - N(v) are replaced
by edges linking G - N(u) - N(v) directly to the source and sink, respectively. Edges of G
linking nodes contained in N(u) to nodes contained in N(v) are replaced by edges linking
the source and sink directly. If a cut with the minimum cardinality is a bisection, then the
algorithm outputs that cut. Otherwise, the algorithm halts without output. We call this
procedure Algorithm 1.

We first show that Algorithm 1 never outputs a suboptimal bisection.

Theorem 4.2. Whenever Algorithm 1 outputs a bisection for a d-regular graph,
it is guaranteed to be the minimum bisection.

Proof: Suppose a graph G has a bisection of size b' that is less than the bisection
of size b output by the algorithm. Since the sources and sinks are grown to a distance of

logd_ 1 /ni - 2, it is easily shown that every mincut has size at most yii, and thus b' < \f.
Given that G is d-regular for some d, the number of nodes within distance r of the

b'-bisection in each half of the 2n-node graph is at most 2b'(d - 1)'. Hence, at least half

of the nodes in each half of G (with respect to the b'-bisection) have distance greater than

logd 1 (n/4b') > logdl(v'ni/4) from the b'-bisection. Hence, the algorithm finds at least
one such pair of nodes on opposite sides of the bisection. Because the sources and sinks
grown out from these nodes extend for distance at most log_ 1 \i -2, neither will cross the
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b'-bisection. Hence, the maxfiow between the two can be at most b'. This is a contradiction
since the algorithm would not have output a b-bisection had there been a mincut of size
b' < b.u

From the preceding analysis, it is clear that Algorithm 1 never outputs bisections
for graphs with bisection width greater than v9/i. For almost all graphs with o(vf,/) bisec-
tion width, however, the smallest mincut found in Algorithm 1 is precisely the minimum
bisection.

Theorem 4.3. For all d > 3, all b = o(f'i?), n -+ oo and almost every graph G

in (n, d, b), Algorithm 1 outputs the minimum bisection of G.

Proof: We will show that for almost all G, the smallest of the mincuts (over all
pairs of sources and sinks) is precisely the bisection artificially inserted into G during Step
2 of the procedure for 9*(n, d, b). The fact that this bisection is optimal then follows from
either Theorem 2.10 or Theorem 4.2.

There are two cases to consider depending on whether the source and sink originate
on the same or different sides of the bisection. In either case, they encompass at least
3b/cd nodes on their respective sides (by Lemma 4.1), where c is the constant defined in
Corollary 2.7. If they are on the same side, then by Corollary 2.7, the mincut separating
them must contain at least cd(3b/cd) - b > 2b edges of G (including edges incident to the

source and/or sink). Such large cuts have no impact -on the output.

If the source and sink originate on opposite sides of the bisection, there are again

two cases to consider depending on whether or not either includes one or more edges of the
bisection. By the arguments in the proof of Theorem 4.2, at least 1/4 of such source-sink

pairs will not reach the bisection. In this case, Corollary 2.7 and Lemma 2.9 are easily
combined to show that the mincut between the source and sink is precisely the bisection.

Were another cut of smaller or equal size to exist, then there would be a cut with k or fewer

edges separating the source from k of the bisection edges in (without loss of generality)

the left half of G for some k. If the smaller piece of this cut contains the source, Lemma

4.1 and Corollary 2.7 provide a contradiction as before. Otherwise, Lemma 2.9 applies to

provide the contradiction.

If the source and sink originate on opposite sides of the bisection, but one or both

includes one or more edges of the bisection, then the mincut must be greater than b. This

is because both the source and sink still encompass at least 3b/cd nodes on their respective

sides. By the argument in the preceding paragraph, however, the implanted bisection is
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the only cut of size b or smaller separating the two. Since at least one edge of the bisection
is included inside the source or sink, that bisection no longer separates them. Hence, the
mincut that does separate them must be larger.

In conclusion, at least 1/8 of the source-sink pairs will produce a unique mincut that
is the bisection. The remainder will produce larger cuts. 1

4.2. Bisecting Graphs With Larger Bisection Width

Algorithm 1 does not work for graphs with bisection width b = 11(.n/) since the
neighborhoods required for such graphs must be grown to a depth of logd_ 1 b + E)(1) and,
as a consequence, will almost always contain part of the minimum bisection. Hence the
minimum bisection is not likely to appear as a mincut for any source-sink pair.

However, it is possible to prove that for almost all graphs in *(n, d, b) with b =
o(n1-1/LdlJ), many of the mincuts will contain all the bisection edges not absorbed by the
source and sink and, otherwise, only edges that are incident to the source and/or sink.
Hence, by summing the number of times each edge appears in a mincut c(u,v) over all
pairs u and v, it is possible to readily distinguish the edges in the minimum bisection of
such graphs (since they are guaranteed to appear in many more mincuts than edges not
in the bisection). This process is the first phase of Algorithm 2. Phase II is designed to
verify that bisections found in Phase I are, in fact, optimal. A more detailed description
of Algorithm 2 follows.

Algorithm 2

(Do both phases for q = 2,4,8,..., o(n-1/Ld+lJ) and then halt.)
Phase I Initial computation of bisection.

Step 1. For each node v in G define the neighborhood N(v) of v to be the set of all

nodes within distance logd_1 q of v.

Step 2. For each pair of nodes u and v in G, compute the mincut c(u, v) in G using the

maxflow-mincut algorithm when N(u) is replaced by an infinite capacity source

and N(v) is replaced by an infinite capacity sink. (As in Algorithm 1, the edges

linking N(u) or N(v) to G-N(u) - N(v) are replaced by edges linking the source

or sink to G - N(u) - N(v), respectively. Edges linking nodes contained in N(u)

to nodes contained in N(v) are replaced by edges linking the source and sink.)

Step 3. Let B be the set of b edges of G contained in at least n2 /2 of the (22) mincuts.

If B is a bisection then proceed to Phase II. Otherwise, proceed with the next

value of q.
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Phase II Verification that B is the minimum bisection.

Step 4. Repeat Steps 1 and 2 above for all u and v on opposite sides of B, except

replace each edge of B with an edge of capacity 1+ 1/d and restrict the construc-

tion of the sources and sinks so that they do not cross from one side of B to the

other.

Step 5. Check that the maxflows computed in Step 4 all have size b(1 + 1/d). If this

is the case, then output B and halt. Otherwise, proceed with the next value of q.

In Theorems 4.5 and 4.6 we will show that Algorithm 2 never outputs a suboptimal

bisection, and almost always finds the optimal bisection. Both theorems make use of the

following simple lemma.

Lemma 4.4. For every 2n-node graph G with node degree at most d, and every

s-edge subset S of G,

E p(v, r) ; 4sr(d - 1)r-1
vEG

for all r, where p(v, r) is the number of nodes reachable by a path of length r or less

originating from v and traveling through S.

Proof: The claim is proved by bounding the number of paths of length r or less

that pass through one of the s edges of S. The number of such paths is clearly at most

r-1

4s Z(d - 1)'(d - 1)'-i-1
i=o

since at most 2(d - 1)' nodes are within distance i of the one side of an edge of S and at

most 2(d - 1)r~i are within distance r - 1 - i of the other side for any i. Simplifying the

preceding expression then gives the desired bound. 1

Theorem 4.5. For sufficiently large n, whenever Algorithm 2 outputs a bisection,

it is guaranteed to be the minimum bisection.

Proof: Suppose a 2n-node d-regular graph G has a bisection B' of size b' which

is less than the size b of the bisection B output by Algorithm 2. In what follows, we will

show that this implies that a substantial portion of the source-sink pairs computed in Step

4 have flow less than b(1 + 1/d), thus establishing a contradiction.

A simple counting argument reveals that at least half of the source-sink pairs on

opposite sides of B originated with a pair of nodes u and v that are also on opposite sides
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of B'. The maximum flow for such a pair is at most

b' + (b'-s)+m<b 1+ + m
d \d d

where s is the number of nodes in S = B' - B and m is the number of nodes included in
N(u) or N(v) but that are across B' from u or v, respectively.

Since the source and sink cannot cross or include edges in B, only nodes that have
short paths through S to u or v can be opposite B' from u or v and still be included in
the source or sink, respectively. Hence, by Lemma 4.4 we can deduce that

m < 16sr(d - 1)r-1
n

for at least 1/4 of the source-sink pairs that are on opposite sides of B and of B', where r =

logd_ 1 q is the radius of the sources and sinks defined in Algorithm 2. Since q < n1-1/Ld2IJ

m is much less than s/d for large values of n, thus giving the contradiction. *
By Theorem 4.5, we know that bisections output by Algorithm 2 are optimal when-

ever n satisfies
d +1 _+16d(1-1/[ J) logd_ 1 n < (d - 1)n'/L 2 J.

For small values of n, the inequality is not satisfied but the result is probably still true.
We are currently working through a more careful analysis that will provide lower bound
proofs for most small graphs.

Theorem 4.6. For all d > 3, all b = o(n-1/dl J), n -+ oo and almost every
graph G in 9*(n, d, b), Algorithm 2 outputs the minimum bisection of G.

Proof: We consider a pass of Algorithm 2 when q is much larger than b, but is
still much smaller than n1-1/L +J. For such q, we show that with probability 1 - o(1), all

of the artificially inserted bisection edges of G are included in at least (1 - o(1))n 2 of the
(2) mincuts, and that all other edges are included in only o(n 2 ) mincuts. Hence, precisely

the artificial bisection B is identified at the end of Phase I for almost all G in 9*(n, d, b).

We conclude by showing that B almost always satisfies the conditions checked in Phase II,
thus completing the proof.

We first make the following observation. From Lemma 4.4 it can be deduced that

no more than O(q log n) sources or sinks which start from one side of B and include more

than o(b) edges of B or nodes and edges on the opposite side of B. Thus 1- O(q log n/n) =
1 - o(1) of all the sources and sinks will stay (for the most part) on the side of B from

which they start from.
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We divide the analysis into 2 cases: (i) the source-sink pair starts from the same side
of B, and (ii) the source-sink pair starts from opposite sides of B.

Case (i): By the above observation, all but o(1) of the n2 - n source-sink pairs that
start on the same side of B stay (for the most part) on that same side. We first observe
that the mincut returned by the maxflow algorithm must be close to, i.e., within constant
distance of, the frontier of the source or sink. Otherwise, by Corollary 2.7 and the fact
that b < q < n''/LdJ, the mincut will be of size much larger than a cut at the bisection
and around the source or sink, which is O(q + b). Now by using a similar argument to
that of Lemma 2.9, we can easily show that the neighborhoods around a source or sink
are sufficiently bushy that the mincut has to occur right on the boundary of the source or
sink.

Since an edge can be on the frontier of a source or sink for at most O(qn) = o(n 2 )
source-sink pairs, the preceding analysis means that edges not in B are included in at most
o(n 2) mincuts during Phase I of the algorithm.

Case (ii): This is similar to the above case, in particular we can show that the mincut
is precisely the edges of B not in a source or sink along with the edges incident to a source
or sink but on the opposite side of B from the origin of the source or sink, respectively.
This is the case since by the observation at the beginning of the proof, all but o(1) of the
n2 source-sink pairs that start from opposite sides of B stay (for the most part) on the

sides of their origin. This fact, together with the observation that every bisection edge is
in at most 0(b) = o(n) sources or sinks, implies that each edge of B is included in at least

n2 _ o(n 2 ) mincuts. Hence B is distinguished for almost all G at the end of Phase I.

The analysis of Phase II is easier than that of Phase I since the sources and sinks

are not allowed to cross B. We need only mimic the proof of Theorem 4.3, substituting

higher capacity edges at the bisection in the proof of Lemma 2.9. Thus, with probability

1 - o(1), all Phase II source-sinkpairs have mincuts at B with size b(1 + 1/d). 1

4.3. Running Time Analysis

As stated, each pass of Algorithm 2 solves 0(n 2 ) flow problems on graphs with 2n

nodes and dn edges. At most O(dq) augmenting paths (each carrying 1/d unit of flow)

need to be found for each flow problem, and each requires at most O(dn) steps in the worst

case. Hence Algorithm 2 can always be made to run in 0(d2n /Lt2 J) steps. However, by

modifying the algorithm slightly, this bound can be substantially improved. For example,
by modifying the algorithm to check that most of the mincuts have 1(q) edges at each
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pass before proceeding to the next value of q, the worst case running time can be improved
to O(d2 bns) where b is the bisection width of the graph. (This can be proved by showing

that for q < b, this condition is almost always satisfied, but for q >> b the condition is
never satisfied.)

A more substantial improvement can be achieved by finding the mincuts for only
a small random sample of the source-sink pairs. A more careful look at the proof of
Theorems 4.5 and 4.6 reveals that only log n source-sink pairs are needed to insure the
results with probability 1 - o(1/n) for any graph. For the upper bounds on bisection, this

probability can be incorporated into the 1- o(1) term in Theorem 4.6. The randomization

has a more serious impact on the lower bound, however, since lower bound proofs would

then only be correct with probability 1 - o(1/n). In any case, the running time for the

probabilistic version of the algorithm is O(d2 bn log n). If we only require correct answers

with probability 1 - o(1), then the log n term can be replaced by any increasing function.

If we remove the lower bound portion of the algorithm entirely, then the expected time is
O(d 2 bn).

Savings can also be made in the flow algorithm itself. By restricting ourselves to unit

size flows in all but the bisection edges, one of the d factors can be removed. Although

we do not yet have a proof, it is quite possible that even greater savings can be obtained

by using the properties of random graphs to show that the augmenting paths are usually

found in far fewer than 0(dn) steps. In fact, it might be the case that the ith augmenting

path can be found in O(n/(b - i)) steps. If so, this would replace the dbn term in the

preceding expressions with an nlog b term. Hence, the expected time to find the upper

bound might be as fast as O(n log b).

In practice, the probabilistic version of the algorithm runs very quickly. When com-

puting the data in Chapter 6, the algorithm appeared to be much faster than both the

Kernighan-Lin algorithm and simulated annealing.
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Chapter 5

Analysis of The Greedy Algorithm

In this chapter we analyze the performance of the greedy algorithm on the class

9(n, 3, b). In particular, we will show that with probability 1 - o(1), the greedy algorithm

will not find the optimal bisection for graphs in 9 (n, 3, b), with b = o(x/hi). The greedy

algorithm that we consider in this chapter is a minor modification of the greedy algorithm

described in Chapter 3. Particularly, the greedy algorithm here does not mark a vertex

once the vertex has been chosen.

We will start with some definitions. Let G = (V, E) be a d-regular graph. let S C V,

|SI = k. A vertex v E S is bad if

{ w E S I (v,w) E E } < J{ w E V - S I (vw) E E }1,

i.e., if v is more strongly connected to V - S than to S. A set S is stable if it does not

have any bad vertices, otherwise it is unstable.

We will first consider graphs in the class 9(n, 3,0), i.e., random cubic graphs on 2n

vertices with bisection width 0. We will show that starting with a random bisection of

a graph G' E 9(n,3,0), with probability 1 - o(1), the greedy algorithm will not be able

to find the optimal bisection. This will be accomplished by showing that for any random

bisection of G', there are stable sets in each of the 4 parts of G' created by the bisection

(note that G' consists of 2 disjoint cubic graphs on n vertices each.) Since the greedy

algorithm will stop when it encounters a stable set, we will have shown that the greedy

algorithm fails to find the optimal solution. The stable sets that we are looking for will

be cycles. We will then show that the same result holds for graphs in 9(n, 3, b), with

b = o (pn .
For our purpose it is sufficient to consider a cubic graph G = (V, E) on n vertices
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which makes up the left or right part of a graph in 9*(n,3,O). A cycle in G is a set of

distinct ordered vertices {V 1,..., Vk} such that (v,, v-+ 1 ) E E for j = 1,...,k - 1 and

(Vk, v1 ) E E. We shall call a cycle of size i an i-cycle, and we will consider only cycles of

size o(V'i). Let ni be the number of potential pointwise-labelled i-cycles in G. Then

ni = (i - 1)! ()2%

n! 6'
(n -i)!

by using Stirling's formula we get

(6n) 2 (6n)' (5.1)

for i = o(/n). For j = 1,...,ni define

1, if the jth i-cycle is in G;

V {0, otherwise. (5.2)

Then it is not difficult to see that

=- M(3n - 2i)
Pr {X' = 1} =,(53 M(3n)

where as before M(x) denotes the number of ways to perfect match x points, and

Nf5 xz/2 e- x/2-1/(9z) < M~z x /Ze z/2.

Thus substituting into the above equation we get

(3n) - ei 2/4" < Pr {X- = 1} (3n) - ei2/" (5.4)

for i = o(v/fi), and for sufficiently large n.

Consider a random bisection of G', it partitions G into 2 disjoint subsets A and B

not necessarily of equal size. We define the following indicators Z,{ 1, if the jth i-cycle lies entirely in A;

Z2) = 0, otherwise. (5.5)

Clearly,
2n - i 2n(56

Pr {Zj = i} = n(5.6)

which yields

2-' e~2/S" < Pr {Zj = 1} < 2-' e~ 2 /12n (5.7)
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for i = o(Vn/) and for large enough n. We further let Uj = Xj Zj. Then Uj = 1 if the jth

i-cycle appears in G and lies entirely within A. Since Xj and Z are independent we have

Pr {U; = 1} = Pr {X = 1 and Z= 1}

= Pr {X = 1} Pr {Zj = 1} (5.8)

By equations (5.4) and (5.7) we get the following inequalities for i = o(V'ni) and for large

enough n

(6n)-' e- 2 / < Pr {U; = 1} (6n)-' e 2 /. (5.11)

Let W denote the number of i-cycles that are in A. Then

W; = Ui ,(5.12)
j=1

and let

W= S W (5.13)
i=3

be the total number of cycles in A of size at most Vlogn and at least 3. To show our main

result of this chapter it suffices to show that

Pr {W > 1} - 1 (5.14)

as n -+ oo.

We will start with some lemmas. The first lemma is the crux of what is usually

referred to as the second moment method.

Lemma 5.1.

Pr{W = 0} () -1.
E(W)2

Proof: For any t > 0, Chebyshev's inequality (see for example [Fe68]) gives

Pr {jW - E(W)| I t} < V 2 (5.1.1)

If W = 0 then (5.1.1) will be satisfied when t = IE(W)|. Thus

Var(W)
Pr {W=O} <

E(W 2) - E(W) 2

E(W)2
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E(W2)
E(W)2

Lemma 5.2. For i = o(fi) and for sufficiently large n,

! 2i 2 /ne 2 </ E E(Wi)2 E()

Proof: Since W = EII> U,', we have

rni

E(W) = E(Uj)
j=1

= [jPr {Uj = 1}
j=1

i n

for i = o(9/i)

get
, by (5.1) and (5.11). By using the lower bounds of these equations we also

E(W) ;> e -2v2o.

The next lemma gives an upper bound for the value of E(W,2).

Proof: Since Wi = III> U, we have

E(W;2) = E (U)
j=1

=EE ((Ui) 2

j=1

j=1 jik

E (Wi) + E Pr
jk

+ E E (UjU )
jok

{Uj = 1 and U = 1}
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(6n)-'e e 2
/n

Lemma 5.3. For i = o(-bfri) and for large enough n,

2/n 3i2/n 2i
E(W;2)< .+ -2 +--e.42/

% - n

(5.3.1)

E (Uj) + 1: E (UjUk )



Claim:

Pr {Uj = 1 and U = 1} /- + 2 i!.
jqk n

(5.3.2)

With this claim and Lemma 5.2 we obtain the lemma. It remains, therefore, to prove the
claim. We have

EPr {Ui = 1 and Uk = 1} = EEPr
j=1 k=1

kfij

{U = 1 and Uk = 1}

= Pr {Uj;
j=1

ni

= 1}z
k=1
kij

Pr {Uk = 1 1 Uj = 1}.

Consider the sum

EPr{Uk =1| Uj = 1}.
k=1
kjfi

(5.3.4)

Another way to look at it is to classify the potential i-cycles by the size of their intersections
with the jth i-cycle.

. If the intersection of the kth i-cycle with the jth i-cycle is empty then

M(3n - 4i) 2
Prf~ ki UjiM (3n - 2i)2- (5.3.5)

and the number of i-cycles that do not intersect with the j-th i-cycle is

n -3)
.( i - 2)!

- (6n)'
2' < e- (5.3.6)

for i =o(/n).

. On the other hand, if there are s < i edges in common between the jth i-cycle and

the kth i-cycle, then there are at most

1)! (3) V-'
2- (6 n)'-' i!
n

such i-cycles, for i = o(vf/i), and the probability Pr {Uk = 11 Uj' = 1} is at most

M(3n - 4i + 2s) 2 -i+2' < (6n)-+' 2' e 32/"

M(3n - 2i)

for i = o(/ni).
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Substituting equations (5.3.5), (5.3.6), (5.3.7), and (5.3.8) into equation (5.3.4) we
get

{U, = 1 j Uj = 1} (6n)~4 e 3 2/ (6n)' e_;2/"
i

2 2 /n 2 2i 3i2 /n

n

Using (5.3.9) the sum (5.3.3) can now be written as

E Pr{Uj =1 and Uk = 1} =ZPr
j=1

ni

{Uj= 1} Pr{U =

k=1
kfCj

1|U =1}

< EPr{Uj
j=1

< n, (6n) -ie

< .) e_2/4" (6n) -' e 2/"

3i2/n
i -2

e2i

=1} 

[/n2;2/n_

2/n 22i 1
+ - e
n

2 2i 1/
n i/

E e2
2 /n

.

+2 - 42/n i!.
n

This proves the claim and completes the proof of the lemma. 1

The previous lemma and the next lemma will help us compute an upper bound for

E(W 2 ).

Lemma 5.4. For i < j = o(xk) and for sufficiently large n,

E(W Wj) ..fnto + of e4, we 2v

2j n

Proof: By definition of Wi we have

E(W Wj) = E (EU )
k=1

ni ni

=E EE(U U
k=1 1=1

Pr Ui = 1
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"i

ZPr
k=1
kij

i! (6 n)-i+' 2' esi2
i-1

+ 12%(6n)'-'
8=1

(5.3.9)

22i

n
es i2 i

(5.3.10)

(= ut)

ni "i

k=1 1=1

and Uj = 1 }



ft ni

=Z Pr{U, = 1}Z PrUj = 1 Uk=1J. (5.4.1)
k=1 1=1

Claim:
ni 

e ~~2j2/n 22i e32nj
ZPr{U =1IU =1 } . + n (5.4.2)
L=1

Again we arrange the terms of the above sum according to the size of their intersection
with the kth i-cycle. We proceed as in the proof of the previous lemma.

* When the lth j-cycle and the kth i-cycle have an empty intersection then

Pr f{Uj = 11| U= 1} < M(3n - 2i - 2j) 2-3 < (6n)~I e232I/" (5.4.3)
M(3n - 2i)

and there are
(n. (- 1)! (3 2 < (5.4.4)

3 2y

such j-cycles.
* When the lth j-cycle and the kth i-cycle have s < i edges in common, then the

number of such i-cycles is at most

/*( / n - 1)! 23- < - (6n)' j! (5.4.5)

for i <j = o(/ ii). In that case the probability Pr{ Uj = 1| Uk = 1} is at most

M(3n - 2i - 2j + 2s) 2-j+2' < (6n)-+' 2' e3P/" (5.4.6)
M(3n - 2i)

Combining these terms we now have

Pr {Uj = 1U = 1} (6n)i e2/n (6n)'(6n)~j!(6n)-+'2
l=1 8=1

+2j2/n 2 2i 
e/n]<i. + -- eSP"j (5.4.7)

3 n

This completes the proof of the claim. We now use this claim to compute the value of

E(WWj). From (5.4.1) and the claim we now have

ni ni

E(WWj) ZPr {Uk = 1} Pr {Uj = 11 Uk = 1}
k=1 L=1

< n (6n)- e 2 / n e 22/ +2- e3j2/n i!
- j . n
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E 2j
2 /4

3 
.

Sj2/n

223

nj

+ 2 e4j2/n j!
n

This completes the proof of the lemma.I

We can now compute an upper bound for the second moment of W.

Lemma 5.5. For m = 'og n, let H(m) denote Z"l 3 (1/i). Then for large
enough n we have

E(W 2) <eM2 /nH(m) + esM2/nH2(m) + o(1).

Proof: Let m = \/Iog n, then by Lemmas 5.5 and 5.4 we have

E(W 2) =E [EW)
i=3

m

i=3

m

i=3

E(W 2) + 2 Z E(WWj)
i<j

(ie/n + i/n 22i

+ 2Z1
i<j

e3j2/n

<e" 2/n H(m) + 3"2/"

+ 2e 3 m 2 /n +
i<j

224
n~ 2 /lj'.

1

i=3

2 2 m 4m2/n M

n

22m+1
m e4m2/n m!

Since m = V/logn,

2 2m+1 me4m2/" m! = o(1),
n

We also have

e3m2/n 3m 2 /n 3M2n 2 = 3m 2 /n 2(M)
i=3 i<j i=3

thus (5.5.1) now becomes

E(W 2) eM2/n H(m) + e3M2/n H2(m) + o(1).
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This completes the proof of the lemma. I

With these lemmas, we are now ready to show that with high probability there exists
a cycle in A.

Theorem 5.6.

Pr{W > 1} -+ 1 as n -+ oo.

Proof: By Lemma 5.1, Lemma 5.2, and Lemma 5.5 we have

Pr {W = 0} E(W - 1
E(W)2

e M2/n H(m) + e3m 2 /n H 2 (m) + o(1) _ 1
-- e-4m'4/n H2 (m)

em2 /n+4m4/n

- ~) + ea"/+n'"+ o(1) - 1H(m)

Since
em2/n+4m'/n (em2/n+4m'/n ( 5 og2 n/n

H(m) log m log log n

and

e3m 2/n+4mn/n = 1 + o(1)

for m = v/logn, we have

Pr {W = 0} S o(1),

thus completing the proof of the theorem.1

Theorem 5.7. For almost every graph in 9(n,3,0), starting with a random

bisection the greedy algorithm will not be able to find the optimal solution, namely the

bisection of size 0.

Proof: Let G' be a graph in 9*(n,3,0), and let G be a cubic graph that makes

up the left hand side of G'. A random bisection of G' will partition G into two disjoint

subsets of not necessarily equal size. Then by theorem 5.6 we know that with probability

1 - O(e510 2 "/"/ log log n) there is a cycle of size at least 3 and no more than 0(Vlog n) in

both parts of this partition of G. By symmetry the same is true of the right hand side of

G'. Furthermore, by the arguments in the proof of Theorem 2.10 and Lemma 2.9 we know

that the optimal bisection is unique. Therefore, the greedy algorithm will not be able to
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find the optimal solution for almost every graph in 9*(n, 3,0). Thus by Theorem 2.10 we
have the theorem. i

We now extend the above theorem to graphs with bisection width greater than 0.
In particular we will show that the same result holds true for graphs in 9(n, 3, b), with
b = o(V/ri-).

Theorem 5.8. For almost every graph in 9(n,3,b), b = o(y/ni), starting with a
random bisection the greedy algorithm will not be able to find the optimal solution.

Proof: Let H be a graph in 9*(n, 3, b) and let G be the graph that makes up the
left hand side of H. Randomly connect the b bisection points to make a new graph G'. By
Theorem 5.7, in any two parts of G' created by a random bisection of H, there will be a
cycle of size at most v/log n with probability 1 - O(eog2 n/n/ log log n). Let C be such a
cycle. Then C is also a stable set in that partition with respect to H if none of the edges
in the cycles has both endpoints being bisection points. Let a = ( 2") and m be the size of
C, then the probability that C is also a stable set with respect to H is

(a - ma < e~"'i/a (5.8.1)b/2m / b/2 -

for m = O(V/og n) and b = o(/ri). Therefore, the probability that there exists a stable
set of size at most V/log n in any part of a partition of G created by a random bisection of
H is at least

(1 - O(e5*02 /n/ log logn)) e-mb/a = 1 - o(1).

By symmetry the same holds true for the right hand side of H. Combining this with the
fact that the optimal bisection is unique (by the arguments in the proof of Theorem 2.10
and Lemma 2.9,) and Theorem 2.10 we complete the proof of this theorem. i

The result in the above theorem, however, is not strong enough to say that the
algorithm still fails after a polynomial number of trials. We believe, nonetheless, that this

is indeed the case. To show this, however, we think that new techniques have to be used

since it is not difficult to see that Prob {W 1} < E(W) : 1/i. Thus starting with a

random bisection we have Prob {W; = 0} 1 - 1/i. Hence if all the W,'s are independent

then the probability that there are no cycles is at least

1 2

i=3

-47-



We believe that even if the random bisection made at the beginning of the greedy algorithm

does not contain any cycle, the greedy algorithm still gets into trouble as the algorithm

progresses, i.e., that cycles are created along the way. We also conjecture that algorithms

which utilize a local optimization technique, e.g., the Kernighan-Lin and simulated anneal-

ing algorithms, will fail for almost every graph in 9(n, 3, b), with very high probability.

The conjecture is based on informal intuition not presented here and the data in Chapter

6. An observation worth noting is that for large degree graphs, when one vertex is moved

from one side of the bisection to the other it is likely that a large number of vertices, which

were stable before, will now become unstable. This observation together with the data

collected in Chapter 6 prompts us to make the conjecture that for large enough degree d,

algorithms such as greedy and Kernighan-Lin will be able to find the optimal bisection for

almost every graph in 9 (n, d, b).
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Chapter 6

Experimental Data and New Heuristics

This chapter consists of three sections. In the first section we present the data that
we have collected in comparing the algorithms described in Chapter 3 and our algorithms
in Chapter 4. This set of data also contains the results of some new algorithms that we
suggest in the second section of this chapter. Finally, in the third section we give some
guidelines on how one could use our algorithms efficiently in practice.

6.1. Experimental Data

This section contains the data comparing the performance of the algorithms described
in Chapter 3 and our algorithms in Chapter 4. We have also tested two new algorithms on
the same set of graphs. These new algorithms will be described in the next section. Overall
we have generated over 100 graphs in 9(n, 3, b), 9*(n, 4, b) and 9*(n, 5, b). Each graph was
generated in the manner described in Chapter 2, and associated with each graph is a seed
used by the random number generator in the graph generating program. This seed allows
us to regenerate the exact same graph again to be tested on different algorithms. These
seeds are also recorded in the tables of data. Due to the difficulty in generating graphs
without loops and multiple edges for d > 3, we have generated graphs in 9*(n, 4, b) and
9*(n,5,b) instead of graphs in 9(n,4,b) and 9(n,5,b). Our experience with 9*(n,3,b)
and j9(n, 3, b) showed that the results are the same in either case.

For each graph generated, we run the greedy algorithm (GD), the Kernighan-Lin
algorithm (KL), the Kernighan-Lin algorithm with contraction (CKL, this algorithm will
be described in the next section), simulated annealing (SA), our maxflow-based algorithm
described in Chapter 4 (MF), and finally another maxflow-based algorithm (AMF) which
will be described in the next section.
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We used a probabilistic version of our algorithm described in Chapter 4 in collecting

the data. That is, instead of running the algorithm with all possible pairs of vertices as

sources and sinks, we only ran it on a number of random pairs. The actual number of pairs

chosen varied between 30 and 200, with the larger number of pairs used for larger graphs.

Except for rare cases when a node was incident to more than [4j 1J bisection edges or when

an edge linked two nodes that were each incident to !i bisection edges, the algorithms

always identified the correct bisection. Even in the few cases when a bisection was not

precisely identified, a quick look at vertices near the cut revealed the irregularity and the

optimal bisection. Such cases are identified by letters in the tables of data.

As can be seen from the data, none of the algorithms KL, SA, and GD performed very

well for degree 3 graphs, although the Kernighan-Lin and simulated annealing algorithms

performed dramatically better as the degree was increased. Experiment with graphs of

higher degree showed that the performance of the greedy algorithm also increased but

at a slower rate. Since the Kernighan-Lin and greedy algorithms were discovered to be

sensitive to the choice of the initial bisection, we ran these algorithms several times for each

graph (each time starting with a different random bisection). For each random starting

bisection KL and GD were run until there was no more improvements. The data for these

algorithms represent the bisections found for the three initial bisections tried for each

graph. To reduce the running time in our implementations of KL and GD, we have used

the shortcut approach described in Chapter 3 in choosing the pairs to be exchanged. That

is, the algorithms chose each vertex in the pair independently. This did not affect the

performance of these algorithms very much as observed in [KL70].

For the simulated annealing algorithm we used the version of [J84] with the param-

eters given in Chapter 3. For large graphs, however, SA seemed to run much too slow

comparing to the others, almost 3 times as slow as KL, and thus we have reduced the

running time by changing the parameter EPOCH-SCALE from 16 to 4 for some graphs.

Those results that were obtained with this reduced value of EPOCH-SCALE are marked

by t.
The values of the bisection width b were usually chosen between 2 and the largest

values for which MF still works. Our algorithm breaks down for large values of b primarily

because the probabilistic lemmas proved in Chapter 2 and 4 do not hold for large b.

The performance of CKL and AMF will be discussed in the next section after we

have described them. All the algorithms are written in Zeta Lisp, a dialect of Lisp, and run
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on the Symbolics 3600 Lisp Machines, release version 6.1. Since we have not implemented
the fastest known version of the Kernighan-Lin algorithm, i.e., the one used in [FM82], we
can't rigorously compare the running time of all these algorithms. However, we can make
the following general observation about the running time. First, the simulated annealing
algorithm seems to run very slow compared to our version of the Kernighan-Lin algorithm
and the algorithms presented in this thesis. The maxflow based algorithms, Algorithm 2
and AMF, seem to run faster than our implementation of the Kernighan-Lin algorithm,
even though in the worst case the Kernighan-Lin algorithm has a better time complexity
than the maxflow-based algorithms. The reason might be that the maxflow algorithm runs
faster on random graphs. It might be a good research topic to investigate the expected
running time of the maxflow-mincut algorithm on random graphs. Also we don't know if
in practice the fast implementation of the Kernighan-Lin algorithm will run faster than
the maxflow-based algorithms.
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Data for degree 3, random regular graphs with given bisection width b.

TABLE 3.1. 3-regular graphs on 100 vertices with bisection width b
b 2 6
Seed 5785 11790 79654 I 98123 81925 25132 1
KL | (18,2,22) (2,2,2) (22,2,2) (10,14,18) (12,6,6) (18,8,8) |
CKL (2,2,2) (2,2,2) (2,2,2) (6,6,6) (6,6,10) (6,6,8) |

(2,2,2) (2,2,2) (2,2,2) | (6,8,6) (6,6,6) (6,6,8) |
(2,2,2 2,2,2 2,2,2) (6,6,6) (6,6,6) (6,8,6) |

GD (18,24,42) (46,48,24) (14,32,38) (40,32,18) (32,24,26) (26,24,18) i
ISA 1 2 2 2 I 6 6 6 I

MF 2 2 2 1 6 6 6 I
AMF 2 2 2 6 6 6

TABLE 3.2. 3-regular graphs on 200 vertices with bisection width b
Ib 2 10
I Seed 92153 45242 55660 1 89811 2312 10990 1

KL | (2,36,34) (36,2,10) (2,14,44) (38,34,24) (18,38,28) (32,34,20)
CKL | 2,2) (2,2,2) (2,2,2) | 14,12,12 (10,10,10 10,10,10i

2,2,2) 2,2,2) (2,2,2 10,12,10 10,12,12 10,10,10
(2,2,2 (2,2,2) 2,2,2 | 10,10,12 (10,10,10 10,10,10) |

GD (88,48,76) (84,66,68) (88,50,40) | (80,50,38) (48,42,58) (52,68,54) |
S A 20 2 14 1 38 10 10 i
MF I 2 2 2 I 10 10 10 1
AMF 2 2 2 12 10 12

TABLE 3.3. 3-regular graphs on 400 vertices with bisection width b
b I 2 10 1

I Seed I 99388 34545 2656 1 93553 9329 1
KL | (2,74,74) (2,28,14) (2,82,84) | (74,68,24) (78,64,10) |

CKL | (2,2,2) (2,2,2) (2,2,2) | (10,10,10) (10,10,10) |
(2,2,2) (2 2 2 22 | ( 10 10,10,10 |
(2,2,2) 2,2,2 2 | 10,10,10 (10,10,10

GD (102,168,110) (94,156,138) (130,128,164) | (82,96,168) (94,180,90)
SA 2 2 42 I 26 50 1

1MF 2 2 2 10 10 1
AMF 2 2 2 1 10 10 1

TABLE 3.4. 3-regular graphs on 400 vertices with bisection width b

lb i 14 16 18
Seed 1 95549 32321 1 24243 66542 86310 60629
KL | (74,80,44) (80,46,78) | (72,42,24) (70,32,82) | (74,42,58) (46,72,60)

CKL | (14,14,14) 14,14,14 | 20,16,22) (18,18,18) | 16,22,16) 20,20,18)
18,14,14 14,16,14 | 16,20,16 16,16,20) | 16,18,16 18,20,20)|
14,14,14) 14,14,14 (24,16,20 16,18,16) | (16,16,16) 20,22,24)

GD | (92,168,86) (94,90,98) | (180,82,86) (90,102,84) | (170,98,96) (100,148,124) |

ISA I 60 76 I 70 44 I 74 54
IMF 14 14 I 16 16 I 18 18 1

AMF I 14 14 16 16 18 18
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TABLE 3.6. 3-regular graphs on 800 vertices with bisection width b

lb 24 28

Seed 87930 27934 1 2769 75407 1

I IIKL I(112,90,156) (78,150,54) I(144,144,144) (136,166,170)

CKL | (26,24,26) (26,26,28) (26,26,30) (28,30,28) |
(24,24,24) (28,30,34) (28,30,30) (30,30,28)

GD (174,312,176) (236,240,186) (298,326,188) (188,196,170) |

ISA 1 50 126 I 328 230 I

IMF 1 24 24 1 28 28 1
AMF 24 24 26 32

a = 28, b = 32, c = 34, these values were obtained with the help of
as explained in the text on page 50.

a brief visual inspection

t data obtained with different parameter values. See discussion on page 50.
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TABLE 3.5. 3-regular graphs on 800 vertices with bisection width b

b 2 10 20

Seed 31768 64969 75198 69456 37730 21231

KL (94,2,26) (78,8,138) (142,22,102) (146,10,158) (22,50,46) (152,144,98)

CKL (2,2,2) (2,2,2) | (10,10,10) (10,10,10) | (20,20,18) (24,20,24)

(222) (2,2,2) 10,10,10) 101010) (18,18,20) (20,20,20)
(2,2,2) (2,2,2) | 10,10,10) (10,10,10)

GD (286,186,314)(346,186,332) (314,174,190)(346,190,194) (188,198,174)(202,180,180)

SA 1 104 104 1 116 102 1 126 138
MF I 2 2 10 10 I 20 20
AMF I 2 2 1 10 10 1 20 32

TABLE 3.7. 3-regular graphs on 1000 vertices with bisection width b

b 10 20 30 32 34

I Seed I 35303 75386 38338 99915 70177

KL (36,168,180) (48,196,222) (192,186,172) (166,54,200) (194,184,174)

| CKL (14,10,10) (20,24,24) (30,32,34) (34,32,32) (34,36,34)
| | (10,10,10) (20,24,20) (30,32,30) (34,34,34) (34,36,34)

| GD (216,226,400) (242,216,226) (414,414,210) (230,502,438) (466,242,254)

| SA 372 388 344 318t 380t

IMF I 10 20 a b c
A M

IAMFI1 10 20 30 32 34



Data for degree 4, random regular graphs with given bisection width b.

TABLE 4.1. 4-regular graphs on 100 vertices with bisection width b

b 2 6
Seed 1 76869 27319 47952 I 6018 4632 1702 1
KL (2,2,2) (2,2,2) (2,2,2) | (6,6,6) (6,6,6) (6,6,6)

CKL (2,2,2) (2,2,2) (2,2,2) (6,6,6) (6,6,6) 6,6,6
(2,2,2) (2,2,2) (2,2,2 (6,6,6) (6,6,6) 6:6,6
(2,2,2) (2,2,2) (2,2,2 (6,6,6) (10,6,6) 6,6,6

GD (50,44,44) (48,50,54) (42,40,46) | (36,40,36) (42,46,62) (46,26,48)

1SA 1 2 2 2 1 6 6 6
MF I 2 2 2 1 6 6 6

AMF 2 2 2 1 6 6 6 1

TABLE 4.2. 4-regular graphs on 100 vertices with bisection width b

b 8 12
Seed 76936 30014 99651 907 353 66410 1
KL (8,8,8) (8,8,8) (8,8,8) (12,12,12) (12,12,12) (12,12,12)

CKL (8,8,8 8,8,8) (8,10,8) (12,12,12) (12,12,12) 12,12,12)
(8,8,8 8,8,8) (10,8,12) (12,12,12) (12,12,12) 12,12,12) |
(8,8,8 8,8,8) (8,8,8) (12,12,12) (12,12,12) 12,12,12)

GD (40,44,50) (54,46,48) (48,46,46) (52,50,50) (68,42,44) (46,46,48)

SA 8 8 8 1 40t 20t 32t I
IMF 1 8 8 8 12 12 12 1

AMF I 8 8 8 1 14 28 20 I
t data obtained with different parameter values. See discussion on page 50.

TABLE 4.3. 4-regular graphs on 200 vertices with bisection width b
b I 2 10
Seed 80932 12199 92472 1 70782 19498 85738
KL (2,2,2) (2,2,2) (2,2,2) (10,10,10) (10,10,12) (10,10,10)

CKL (2,2,2) (2,2,2) (2,2,2) I (10,10,10) (10,10,10) (10,10,10)
(2,2,2) (2,2,2) (2,2,2) I (10,10,10) (10 ,1 0) (10,10,10)
(2,2,2) (2,2,2) (2,2,2) | (10,10,10) (10,10,10) (10,10,10)

GD (86,106,74) (78,102,86) (100,86,94) I (82,88,100) (70,88,94) (102,102,106)

I SA I 2 2 2 I 10 10 10
I I 2 2
IMF 1 2 2 2 1 10 10 10 1
IAMF 1 2 2 2 1 10 10 10 1

TABLE 4.4. 4-regular graphs on 200 vertices with bisection width b

lb 14 20
Seed 842 57597 6877 I 12950 16298 42255

KL (14,14,14) (14,14,14) (14,14,14) I (20,20,20) (20,20,20) (20,20,20)

CKL (14,14,14) (14,14,14) (14,14,14) | (20,22,20) (20,20,20) (20,20,20) I
(14,14,14) (14,14,14) (14,14,14) (20,20,20) (20,20,20) (20,20,20)
(14,14,14) (14,14,14) (14,14,14) | (20,20,22) (20,22,22) (20,20,20)

GD (74,88,108) (86,106,106) (114,100,72) (90,106,110) (118,98,88) (104,98,84)

ISA | 14 14 14 1 20t 34t 28t
I II MF I 14 14 14 1 20 20 20 1

I AMF I 14 14 14 1 20 22 32 1
t data obtained with different parameter values. See discussion on page 50.

-54-



TABLE 4.5. 4-regular graphs on 400 vertices with bisection width b
b I 2 10 14 20 22 24
Seed I 82292 74588 55222 14499 74289 65298 i
KL (2,2,2) (10,10,10) (14,14,14) (20,20,20) (22,22,22) (24,24,24)

CKL (2,2,2) (10,10,10) (14,14:14) 20,20,20) 22,22,22) (24,24,24)
C (2,2,2) (10,10,10) (1414,14) (20,20,20) (22,22,22) (24,24,24)

(2,2,2) (10,10,10) (14,14,14) (20,20,20) (22,22,22) (24,24,24)

| GD 1(400,378,366) (196,192,202) (208,184,190) (196,174,184) (206,178,140) (200,218,192)1

|SA | 2 10 14 20t 26t 58t |
I MF 1 2 10 14 20 22 24 1
IAMFI 2 10 14 20 22 26
t data obtained with different parameter values. See discussion on page 50.

TABLE 4.6. 4-regular graphs on 800 vertices with bisection width b

lb 2 14 20 28
I Seed I 83080 20467 52320 97303
| KL | (2,2,2) (14,14,14) (20,20,20) (28,28,28)
I C(2,2,2) (14,14,14) (20,20,20) 28,28,28)

CL | (2,2,2) (14,14,14) (20,20,20) (28,28,28) |
(2,2,2) (14,14,14) (20,20,20) (28,28,28) |

GD | (400,378,366) (384,404,374) (394,386,368) (404,362,390)

| SA I 30t 14t 54t 28

|MF 1 2 14 20 28

SAMF I 2 14 20 28I I

t data obtained with different parameter values. See discussion on page 50.

TABLE 4.7. 4-regular graphs on 800 vertices with bisection width b

b 34 42 50
Seed I 83107 3051 52224

KL | (34,34,34) (42,42,42) (50,50,50)

CKL (34,34,34) (42,42,42) (50,50,50)
(34,34,34) (42,42,42) (50,50,50)

| (34,34,34) (42,42,42) (50,50,50)I I (43,4 4,24)(05,0
| GD | (358,396,424) (390,354,402) (404,354,384)

| SA I 74t 58t 80t
I I
I MF 1 34 42 50 1
1 AMF I 36 44 50 1
t data obtained with different parameter values. See discussion on page 50.

TABLE 4.8. 4-regular graphs on 1000 vertices with bisection width b

I b I 10 20 30 40 50
Seed 84932 36824 22071 51220 9816

| KL | (10,10,10) (20,20,20) (30,30,30) (40,40,44) (50,50,50)

| CKL | (10,10,10) (20,20,20) (30,30,30) (40,40,40) (50,50,50)

| GD | (518,490,492) (476,492,512) (526,476,468) (504,502,462) (468,496,478)

1 SA I 58t 44t 30t 402t 152t

I MF I 10 20 30 a b
I I
I AMF I 10 20 30 40 50
a = 40, b = 50, these values were obtained with the help of a brief visual inspection
as explained in the text on page 50.
t data obtained with different parameter values. See discussion on page 50.
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Data for degree 5, random regular graphs with given bisection width b.

TABLE 5.1. 5-regular graphs on 100 vertices with bisection width b
b 2 10 14
Seed I 37552 98456 1 71564 15052 I 4885 43587
KL | (2,2,2) (2,2,2) (10,10,10) (10,10,10) | (14,14,14) (14,14,14)

CKL (2,2,2) (2,2,2) (10,10,10) 10,10,10) | (14,14,14) 14,14,14)
(2,2,2) (2,2,2) | (10,10,10) 10,10,10) | (14,14,14) 14,14,14)
(2,2,2) (2,2,2) | (10,10,10) 10,10,10) | (14,14,14) 14,14,14)

| GD I (2,40,2) (2,56,58) (52,10,56) (10,46,10) | (50,76,64) (66,64,28)

|SA | 2 2t I lot lot 1 14 14
|MF 1 2 2 1 10 10 1 14 14
1AMFI 2 2 1 10 10 14 14
t data obtained with different parameter values. See discussion on page 50.

TABLE 5.2. 5-regular graphs on 100 vertices with bisection width b
lb 1 18 22

Seed 1 39835 22833 1 88519 18175 1

KL (18,18,18) (18,18,18) | (22,22,22) (22,22,22)

CKL (18,18,18) (18,18,18) | (22,22,22) (22,22,22) |
(18,18,18) (18,18,18) | (22,22,22) (22,22,22) |
(18,18,18) (18,18,18) | (22,24,22) (22,22,22) |

GD (38,50,58) (38,34,60) (62,74,64) (56,82,18)

I SA I 62 20 1 26 22 I
I MF I 18 18 22 22 1

AMF 1 18 18 26 26 |

TABLE 5.3. 5-regular graphs on 200 vertices with bisection width b
I b i 2 20

Seed 45562 59744 92082 58228
KL (2,2,2) (2,2,2) (20,20,20) (20,20,20)

CKL (2,2,2) (2,2,2) I (20,20,20) (20,20,20) |
(2,2,2) (2,2,2) | (20,20,20) (20,20,20) |
(2,2,2 2,2,2 | 020:20 20:20:20)

GD (124,158,140) (2,30,106) (120,116,142) (126,40,115)

1 SA I 2 2 1 20 20
I M 1 2

MF I 2 2 I 20 20 1
IAMF 1 2 2 1 20 201

TABLE 5.4. 5-regular graphs on 200 vertices with bisection width b

lb 26 32
Seed 43479 68838 I 16980 95669
KL (26,26,26) (26,26,26) | (32,32,32) (32,32,32)

CKL (26,26,26) (26,26,26) | (32,32,32) (32,32,32)
(26,26,26) (26,26,26) | (32,32,32) (32,32,38)
(26,26,26) (26,26,26) | (32,32,32) (32,32,32)

GD (26,126,26) (98,136,108) (152,80,116) (164,104,114)

1SA I 32t 30t | 32 32t

I MF I 26 26 I 32 32 1
I AMF I 26 28 1 32 32 1
t data obtained with different parameter values. See discussion on page 50.
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TABLE 5.5. 5-regular graphs on 400 vertices with bisection width b

b 2 14 20 30 36 
Seed I 94008 54921 6403 40405 59897

KL (2,2,2) (14,14,14) (20,20,20) (30,30,30) (36,36,36)

CKL (2,2,2) 14,14,14) (20,20,20) (30,30,30 (36,36,36)
(2,2,2) (14,14,14) (20,20,20) (30,30,30) (36,36,36)
(2,2,2) (14,14,14) (20,20,20) (30,30,30) (36,36,36)

GD | (272,2,224) (14,298,14) (308,236,20) (266,234,314) (214,180,218)

I SA I 2 14 20 30 40

I MF I 2 14 20 30 36

AMF 2 14 20 30 40 1

TABLE 5.6. 5-regular graphs on 800 vertices with bisection width b

Ib 2 20 40
Seed 12457 19301 42694

KL (2,2,2) (20,20,20) (40,40,40)

CK L (2,2,2) (20,20,20) (40,40,40)
(2,2,2) (20,20,20) (40,40,40)
(2,2,2) (20,20,20) (40,40,40)

GD | (430,2,2) (580,450,448) (454,440,512)

|SA I 32 26 44t

IMF 1 2 20 40

I AMF I 2 20 40

t data obtained with different parameter values. See discussion on page 50.

TABLE 5.7. 5-regular graphs on 800 vertices with bisection width b

lb 50 70 94 1
Seed 54273 77409 84494

KL (50,50,50) (70,70,70) (94,94,94) |

CKL (50,50,50) 70,70,70) (94,94,94) |
( 5,50,50 70,70,70) (94,94,94) |
(50,50,50) (70,70,70) (94,94,94) |

GD | (634,622,492) (604,444,460) (532,456,378)

I SA I 110 78 138 1

1 MF I 50 70 94 1

I AMF I 52 80 100 1

TABLE 5.8. 5-regular graphs on 1000 vertices with bisection width b
l b 10 30 50 70
I Seed I 26386 226 2373 24974

I II KL | (10,10,10) (30,30,30) (50,50,50) (70,70,70)

ICKL (10,10,10) (30,30,30) (50,50,50) (70,70,70)

| GD | (520,586,556) (534,548,736) (550,550,58) (550,476,436)

1 SA I 18t 30t 70t 84t
I II
I MF I 10 30 50 70
1 - II
I AMF I 10 30 50 72
t data obtained with different parameter values. See discussion on page 50.

-57-



TABLE 5.9. 5-regular graphs on 1000 vertices with bisection width b
b 90 110 130
Seed I 52305 10643 32841 I
KL (90,90,90) (110,110,110) (128,128,128) |

CKL (90,90,90) (110,110,110) (128,132,128)

GD (540,536,524) (550,542,518) (536,542,782)

SA I 116t 126t 142t

I MF I 90 110 128
AMF 1 106 120 138t it data obtained with different parameter values. See discussion on page 50.
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6.2. New Graph Bisection Heuristics

The data in the previous section on the performance of KL, SA, and GD seems to

indicate that these algorithms work better for graphs with high degree. This observation

suggests an interesting variation of the algorithms for small degree graphs, namely to: 1)
randomly contract edges out of the graph to increase the average node degree, 2) run the

algorithm to find a bisection of the contracted graph, 3) uncontract the edges to obtain

the original graph (the bisection of the contracted graph found in step 2 might not be a

bisection of the original graph, in that case randomly adjust that bisection to obtain a

bisection for the original graph) and 4) run the algorithm again, starting with this new

bisection.

We have implemented such a modified algorithm for the KL algorithm and it is

called the contracted Kernighan-Lin algorithm (CKL). The actual CKL algorithm is as

follows. Find a random maximal matching of the given graph. Form a new graph by

contracting the edges in the random matching, i.e., coalesce the two endpoints of an edge

in the random matching to form a new vertex. This new vertex now has degree 2d - 1.

To keep the new graph from having an odd number of vertices we might have to leave one

edge of the random matching uncontracted. We then run KL on this contracted graph to

obtain a bisection. The graph is then uncontracted and if necessary the found bisection

is randomly adjusted to obtain a bisection for the original graph. This bisection is now

used as a starting bisection to run KL again. For small graphs, we usually tried 3 random

contractions for each graph.

As can be seen from the data in the previous section, this algorithm seemed to

perform remarkably well. Even for degree 3 graphs, CKL almost always found the optimal

solution. (A related strategy is also used in a heuristic by Goldberg and Burstein in

[GB84] to upgrade the performance of bisection algorithms, although less dramatic results

are observed.)

It is also worth noting that even though the KL algorithm is used twice in CKL,

CKL in fact appears to run faster than KL alone on the same graph. The reason seems to

be that starting with a random bisection KL usually takes many passes before it reaches

a local minimum, whereas when KL starts with a bisection from the contracted graph in

the second stage of CKL, it converges much more quickly (in 2 or 3 passes). Furthermore,

the time KL spent on the contracted graph is also small since for a random matching the

contracted graph is usually about half the size of the original graph. Also the random
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matching does not take very much time either.

Thus CKL seems to perform better than KL for small degree graphs in both efficiency
and quality of the solutions. For larger degree graphs, there is essentially no difference in
the quality of the solution, however, CKL again seems to run faster.

We now describe a new algorithm which is also based on the maxflow-mincut algo-
rithm. The algorithm, which will be denoted by AMF, works as follows. For each pair of
vertices the algorithm performs the following routine to obtain a bisection. It will return
the smallest bisection found.

For each pair of vertices, let one be the source and the other be the sink. Run
maxflow-mincut algorithm to determine a mincut separating the source and the sink. If
this mincut exactly bisects the graph, then we are done with this pair of vertices. Consider
the next pair of vertices. Otherwise, there is one side of the cut with fewer than n/2 vertices,
say the side containing the source. Make that side into a super-source, i.e., coalesce every
vertex in that side into one big vertex, and every edge incident to that side will now be
incident to that new super-vertex. Then run maxflow again between the super-source and
the old sink. Repeat the above process until the difference between the two sides is no
more than a predetermined number of vertices, say 10. Then we will use a greedy type
procedure to balance out the partition to obtain a bisection.

This algorithm seems to work well for small bisection width graphs since these small
bisections are usually the bottleneck when the source and sink are on opposite sides of an
optimal bisection. We have tested a probabilistic version of this algorithm. The algorithm
just chose 10 pairs of vertices at random and returned the best bisection found. The data
in the previous section indicated that for small degree graphs and also for graphs with
small bisection width AMF performed as well as or better than KL and SA. Certainly
it seemed to perform much better than GD. This algorithm also ran much faster than
KL, SA, and GD as well as MF. The reason seems to be that it converged rather quickly,
usually taking no more than 3 or 4 passes, i.e., maxflow-mincut runs.

6.3. Guide to Pratical Use of Our Algorithms

Since the major part of this thesis is a theoretical study of the graph bisection
problem, not all the algorithms presented in this thesis can be used directly for all graphs
in practice. The purpose of this section is to give the practitioner some of the main ideas
of this thesis that can be used in devising practical graph bisection algorithms.

The algorithms that we have given in Chapter 4 are found to perform well in ex-
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periments with graphs from 9(n, d, b), for b = o(n'-1/+) as expected from the analysis.
For the case of graphs with larger bisection width, it is not clear that Algorithm 2 can be
used directly without any modification. The reason is that, intuitively, graphs with large
bisection width tend to have more than one optimal bisection, whereas Algorithm 2 does
rely on the fact that graphs in 9(n, d, b) almost always have a small and unique optimal
bisection. Nonetheless, we believe the idea of using the maxflow technique will still be of
help here. One such application of the maxflow technique is the AMF algorithm described
in the previous section.

To use our algorithms for graphs with small bisection width in practice, we offer
the following suggestions which we have found to be useful in our experiments. First,
we observe that the two algorithms in Chapter 4 and algorithm AMF described in the
previous section of this chapter all run some main procedure on all pairs of vertices. In
practice a substantial amount of running time can be saved by running the algorithms on
a number of randomly chosen pairs of vertices. In that case only Step 3 of Algorithm 2
needs to be modified slightly to work correctly.

Another modification can be made to Algorithm 2 as follows. If the set of edges
picked out by the algorithm does not make up a bisection but is close to a bisection then
we can use a greedy heuristic to obtain a bisection. Alternatively, we can remove this set
of edges and run the algorithm again.

Another important idea that can be used in designing graph bisection algorithms is
that of contraction. The contraction heuristic seems to work well for graphs with small

degree and for any bisection width. This heuristic is very useful when combined with

algorithms which work well for large degree graphs but fail to work well for small degree

graphs. In this thesis we have tested the contraction heuristic with the Kernighan-Lin al-

gorithm as described in the previous section. The contraction heuristic not only improved

the performance of the Kernighan-Lin algorithm on small degree graphs, but it also im-

proved the running time. The idea of contraction can be carried further by doing repeated

contraction. Although it is not clear if this will further improve the performance of the

algorithms involved, it will require a greater programming effort.
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Chapter 7

Conclusion

In this thesis we have introduced the model 9(n, d, b) of random regular graphs
with bisection width b, where b = o(n'-1/Ld+l). We have argued that this model is more

suitable for the testing and analyzing of graph bisection algorithms. We then presented
two graph bisection algorithms, one for small bisection width graphs and one for larger
bisection width graphs, with provably good average performance on 9(n, d, b). Particularly,
we showed that for fixed d > 3, for almost every graph in 9(n, d, b) our algorithms find
the optimal bisection. Furthermore, we showed that whenever the algorithms produce a
bisection it is guaranteed to be optimal.

Our experiments also showed that our algorithms performed as well as expected. We
also tested other algorithms such as greedy, Kernighan-Lin and simulated annealing. We
found them to perform badly on cubic graphs but their performance improves as the degree

gets larger. In fact, we showed that for cubic graphs, starting with a random bisection, the
greedy algorithm will not be able to find the optimal bisection with probability 1 - o(1).

Finally, based on our observation of the data we suggested a heuristic which can be
combined with the various algorithms to improve their performance for graphs with small

degree. One such modification was implemented for the Kernighan-Lin algorithm and the

results were very good.

We also introduced a new heuristic which used the maxflow idea of our main algo-

rithms. Experiments showed that the performance of this algorithm is very good and is

comparable to or better than the Kernighan-Lin and simulated annealing algorithms.

The main open question that remains to be resolved is the construction of an ap-

proximate algorithm for the graph bisection problem. We suspect that maxflow-based

techniques will be of some help in doing that. It would also be nice to show that the
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greedy algorithm will be able to find the optimal bisection for graphs in 9(n, d, b) with

high probability when d is large enough.
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Appendix

In this appendix we give a listing of the program that we used to generate the graphs
tested in Chapter 6. The program is written in Zetalisp and run on the Symbolics 3600
Lisp Machine, release version 6.1.

(eval-when (compile)
(special *half-size* *bisection* *deg* *counter* *not-legal* *pointsl* *points2* n

*bisl* *bis2* *bisection-edge-list* *int11* *int12* *int21* *int22*
*same-headvertex* *same-tailvertex* *vertices* *perm-vertices*
*vertex-array* *old-vertex-array* *temp-vertex-array* *max-times* max-times
*random-number* *large-num* *number-graphs* *seed*
*multiplier* *increment* *modulus* *continue*))

creating arrays for storing points
initializing random seed

(defun grg-setup ()
(setq *pointsl* (make-array (list (* *half-size* *deg*)) ':type 'art-q))
(setq *points2* (make-array (list (* *half-size* *deg*)) ':type 'art-q))
(cond ((- *bisection* 0) nil)

(t
(setq *bis1* (make-array (list *bisection*) ':type 'art-q))
(setq *bis2* (make-array (list *bisection*) ':type 'art-q))))

(setq *intll* (make-array (list (/ (- (* half-size* *deg*) *bisection*) 2)) ':type 'art-q))
(setq *int12* (make-array (list (/ (- (* half-size* *deg*) *bisection*) 2)) ':type 'art-q))
(setq *int21* (make-array (list (// (- (* half-size* *deg*) *bisection*) 2)) ':type 'art-q))
(setq *int22* (make-array (list (/ (- (* half-size* *deg*) *bisection*) 2)) ':type 'art-q))
(setq *same-headvertex* (make-array-(list *half-size*) ':type 'art-q))
(setq *same-tailvertex* (make-array (list *half-size*) ':type 'art-q))
(setq *vertices* (make-array (list- (* 2 *half-size* *deg*)) ':type 'art-q))
(setq *vertex-array* (make-array (list (* 2 *half-size*) *deg*) ':type 'art-q))
(setq *old-vertex-array* (make-array (list (* 2 *half-size*) *deg*) ':type 'art-q))
(setq *temp-vertex-array* (make-array (list (* 2 *half-size*) *deg*) ':type 'art-q))
(setq *perm-vertices* (make-array (list (* 2 *half-size*)) ':type 'art-q)))

initializing some constants

(defun grg-set-constants (seed)
(setq max-times 0)
(setq *max-times* 10)
(setq *large-num* seed)
(setq *random-number* 0)
(setq *increment* 76543)
(setq *multiplier* 895432)
(setq *modulus* 43896721))
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;; generating graphs of size 2n, with bisection width b and degree d

(defun grg-gen-graph (size bisection deg)
(format t "-2% A random -3d -regular graph on -6d vertices

and bisection -6d is being generated -1%" deg (* 2 size) bisection)
(setq *not-legal* t *half-size* size *bisection* bisection *deg* deg

*number-graphs* 500 *counter* 0)
(cond ((oddp (- (* *half-size* *deg*) *bisection*))

(print "WRONG VALUE OF ARGUMENTS"))
(t
(grg-setup)
(loop while (and *not-legal* (> *number-graphs* *counter*))

do
(setq *seed* (random 100000))
(grg-set-constants *seed*)
(grg-gen-graph-aux)
(grg-check-legal))))

(cond (*not-legal*
(setq *continue* nil)
(format t "-1% Fail to construct a graph after -4d trials. Try again; you
may want to increase the number of trials (*number-graphs*)" *number-graphs*))

(t
(setq *continue* t)
(format t "-% Success on trial number -4d" *counter*)
(format t "-1% The seed is -6d" *seed*))))

this is the same as the above function except that the *seed* is
given

(defun grg-gen-graph-seed (size bisection deg seed)
(format t "-2% A random -3d -regular graph on -6d vertices

and bisection -6d is being generated -1%" deg (* 1 size) bisection)
(setq *half-size* size *bisection* bisection *deg* deg

*counter* 0 *seed* seed *not-legal* t)
(cond ((oddp (- (* *half-size* *deg*) *bisection*))

(print "WRONG VALUE OF ARGUMENTS"))
(t
(grg-setup)
(grg-set-constants *seed*)
(grg-gen-graph-aux)
(setq *not-legal* nil)))

(cond (*not-legal*
(setq *continue* nil)
(format t "-1% Can't construct a graph"))

(t
(setq *continue* t)
(format t "-1% Success on trial number 1")
(format t "-1% The seed is -6d" *seed*))))

generates a random deg graph without eliminating multiple edges and loops

(defun grg-gen-graph-and-loops (size bisection deg)
(format t "-2% A random -3d -regular graph on -6d vertices

and bisection -6d is being generated -1%" deg (* 2 size) bisection)
(setq *half-size* size *bisection* bisection *deg* deg

*counter* 0)
(cond ((oddp (- (* *half-size* *deg*) *bisection*))

(print "WRONG VALUE OF ARGUMENTS"))
(t
(grg-setup)
(setq *seed* (random 100000))
(grg-set-constants *seed*)
(grg-gen-graph-aux)))

(setq *continue* t)
(format t "-1% Success on trial number -4d" *counter*)
(format t "-1% The seed is -6d" *seed*))

-68-



an auxiliary procedure which increments the counter. Additional comments will
be provided for each function.

(defun grg-gen-graph-aux ()
(setq *counter* (1+ *counter*))
(grg-fill-*pointsl-and-2*)
(grg-choose-points)
(grg-create-*vertices*)
(grg-create-*vertex-array*))

This procedure fills the arrays *points1* and *points2* with arbitrary numbers
since the function grg-create-*vertices* creates a variable points from entries of
; points1* and *points2*. Points must be a numeric argument, so if either array
contains any NILs an error may occur.

(defun grg-fill-*pointsl-and-2* ()
(loop for i from 0 to (1- (* *deg* *half-size*))

do (aset i *pointsl* i)
(aset i *points2* i)))

creates a set of points for the bisection edges if a bisection is called for, then
creates a set of points for the interior edges.

(defun grg-choose-points ()
(if (not (= *bisection* 0))

(grg-choose-bisection-points))
(grg-choose-interior-points))

(defun grg-choose-bisection-points ()
(grg-create-*bisl*)
(grg-create-*bis2*))

(defun grg-choose-interior-points ()
(grg-create-*int11*)
(grg-create-*int12*)
(grg-create-*int21*)
(grg-create-*int22*))

Randomly selects points which will be the boundaries of the bisection edges
(hence the bisection edges will also be random). grg-create-*bisl* selects
points for one half of the graph; grg-create-*bis2* selects points for the other.

(defun grg-create-*bisl* ()
(loop for i from 0 to (1- *bisection*)

do (let* ((j (random-between i (1- (* *half-size* *deg*))))
(i-val (aref *pointsl* i))
(j-val (aref *pointsl* j)))

(aset j-val *pointsl* i)
(aset i-val *points1* j)
(aset j-val *bisl* i))))

(defun grg-create-*bis2* ()
(loop for i from 0 to (1- *bisection*)

do (let' ((j (random-between i (1- (* *half-size* *deg*))))
(i-val (aref *points2* i))
(j-val (aref *points2* j)))

(aset j-val *points2* i)
(aset i-val *points2* j)
(aset j-val *bis2* i))))
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Randomly selects points which will be the boundaries of the interior edges
of the graph (hence the interior edges will also be random). grg-create-*intll*
selects the points which will be one boundary of the interior edges in one side
of the graph; grg-create-*int12* selects the points which will be the other
boundaries of the edges on that side. grg-create-*int21* and grg-create-*int22*
do the same for the other half of the graph.

(defun grg-create-*intll* ()
(loop for i from 0 to (1- (/ (- (* half-size* *deg*) *bisection*) 2))

do (let* ((j (random-between (+ i *bisection*) (1- (* *half-size* *deg*))))
(i-val (aref *pointsl* (+ i *bisection*)))
(j-val (aref *pointsl* j)))

(aset j-val *pointsl* (+ i *bisection*))
(aset i-val *pointsl* j)
(aset j-val *int11* 1))))

(defun grg-create-*int12* ()
(loop for i from 0 to (1- ( (- (* *half-size* *deg*) *bisection*) 2))

do (let* ((val (aref *points1* (+ i (// (+ (* *half-size* *deg*)
*bisection*) 2)))))

(aset val *int12* i))))

(defun grg-create-*int21* ()
(loop for i from 0 to (1- (/ (- (* *half-size* *deg*) *bisection*) 2))

do (let* ((j (random-between (+ i *bisection*) (1- (* *half-size* *deg*))))
(i-val (aref *points2* (+ i *bisection*)))
(j-val (aref *points2* J)))

(aset j-val *points2* (+ i *bisection*))
(aset i-val *points2* j)
(aset j-val *int21* i))))

(defun grg-create-*int22* ()
(loop for i from 0 to (1- (// (- (* half-size* *deg*) *bisection*) 2))

do (let* ((val (aref *points2* (+ i (// (+ (* *half-size* *deg*)
*bisection*) 2)))))

(aset val *int22* i))))

grg-update-*pointsl* and grg-update-*points2* update the points in *points1* and
*points2* after multiple edges and loops are removed

(defun grg-update-*pointsl* ()
(loop for i from *bisection* to (1- (// (+ (* *half-size* *deg*) *bisection*) 2))

do (aset (aref *intll* (- i *bisection*)) *points1* i))

(loop for i from (// (+ (* *half-size* *deg*) *bisection*) 2) to (1- (* *half-size* *deg*))
do (aset (aref *int12* (- i (// (+ (* *half-size* *deg*) *bisection*) 2)))

*points1* i))
(if (not (= *bisection* 0))

(loop for i from 0 to (1- *bisection*)
do (aset (aref *bis1* i) *pointsl* i))))

(defun grg-update-*points2* ()
(loop for i from *bisection* to (1- (// (+ (* *half-size* *deg*) *bisection*) 2))

do (aset (aref *1nt21* (- i *bisection*)) *points2* i))
(loop for i from (// (+ (* *half-size* *deg*) *bisection*) 2) to (1- (* *half-size* *deg*))

do (aset (aref *int22* (- i (// (+ (* *half-size* *deg*) *bisection*) 2)))
*points2* i))

(if (not (a *bisection* 0))
(loop for i from 0 to (1- *bisection*)

do (aset (aref *bis2* i) *points2* i))))

-70-



grg-create-*vertex-array* stores, at the index of vertex in *vertex-array*, the
vertices connected to vertex

(defun grg-create-*vertex-array* ()
(loop for vertex from 0 to (1- (* 2 *half-size*)) do

(let ((num 0))
(cond ((< vertex *half-size*)

(loop for i from 0 to (1- *bisection*) do points in
(if (< num *deg*)

(cond ((- (aref *vertices* 1) vertex)
(aset (aref *vertices* (+ i (* *half-size* *deg*)))

*vertex-array* vertex num)
(setq num (1+ num)))
(t nil))))

; points in *int11*
(loop for i from *bisection* to (1- (// (+ (* *half-size*

do
(if (< num *deg*)

(cond ((- (aref *vertices* i) vertex)
(aset (aref *vertices*

(+ i (// (- (* *half-size* *deg*)
*vertex-array* vertex num)

(setq num (1+ num)))
(t nil))))

points in *int12*
(loop for i from (// (+ (* *half-size* *deg*) *bisection*)

to (1- (* *half-size* *deg*)) do
(if (< num *deg*)

(cond ((- (aref *vertices* I) vertex)
(aset (aref *vertices*

(- I (// (- (* *half-size* *deg*)
*vertex-array* vertex num)

(setq num (1+ num)))
(t nil)))))

*deg*)

*bis1*

*bisection*) 2))

*bisection*) 2)))

2)

*bisection*) 2)))

; points in *bis2*
(t (loop for i from (* *half-size* *deg*) to (1- (+ (* *half-size* *deg*)

*bisection*)) do
(if (< num *deg*)

(cond ((= (aref *vertices* i) vertex)
(aset (aref *vertices* (- 1 (* *half-size* *deg*)))

*vertex-array* vertex num)
(setq num (1+ num)))
(t nil))))

(loop for i
; points in 1*int21*

from (+ (* *half-size* *deg*) *bisection*)
to (1- (+ (* *half-size* *deg*) (// (+ (* *half-size* *deg*)

*bisection*) 2))) do
(if (< num *deg*)

-(cond ((= (aref *vertices* i) vertex)
(aset (aref *vertices*

(+ i (// (- (* *half-size* *deg*) *bisection*)
*vertex-array* vertex num)

(setq num (1+ num)))
(t nil))))

points in *int22*
(loop for i

2)))

from (+ (* half-size* *deg*)
(// (+ (* *half-size* *deg*) *bisection*) 2))

to (1- ( 2 (* *half-size* *deg*))) do
(if (< num *deg*)

(cond ((= (aref *vertices* i) vertex)
(aset (aref *vertices*

(- i (// (- (* *half-size* *deg*) *bisection*) 2)))
*vertex-array* vertex num)

(setq num (1+ num)))
(t nil)))))))))
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;; grg-create-*vertices* stores the vertices of the graph

(defun grg-create-*vertices* ()
(loop for i from 0 to (1- (* *half-size* *deg*))

do (let* ((point (aref *points1* i)))
(aset (grg-find-vertex point) *vertices* i)))

(loop for i from (* *half-size* *deg*) to (1- (* 2 (* *half-size* *deg*)))
do (let* ((point (aref *points2* (- i (* *half-size* *deg*)))))

(aset (+ *half-size* (grg-find-vertex point)) *vertices* i))))

grg-change-ordering randomly permutes the ordering of the vertices of one half
of the bisected graph and creates the new vertex-array

(defun grg-change-ordering ()
(grg-create-*perm-vertices*)
(copy-array *old-vertex-array* *vertex-array*)
(loop for vertex from 0 to (1- (* 2 *half-size*))

do (let* ((new-vertex (aref *perm-vertices* vertex)))
(loop for num from 0 to (1- *deg*)

do (let* ((change-vertex (aref *old-vertex-array* vertex num)))
(loop for num1 from 0 to (1- *deg*)

do (if (= (aref *old-vertex-array* change-vertex numi)
vertex)

(aset new-vertex *vertex-array* change-vertex numl)))))))
(copy-array *old-vertex-array* *vertex-array*)
(loop for vertex from 0 to (1- (* 2 *half-size*))

do (let* ((new-vertex (aref *perm-vertices* vertex)))
(loop for num from 0 to (1- *deg*)

do (aset (aref *old-vertex-array* vertex num)
*vertex-array* new-vertex num)))))

grg-create-*perm-vertices* fills *perm-vertices* with numbers from 1 to
(1- (* 2 *half-size)), then randomly permutes these numbers to form the
final 'perm-vertices*

(defun grg-create-*perm-vertices* ()
(loop for i from 0 to (1- (* 2 *half-size*))

do (aset i 'perm-vertices* i))
(loop for i from (1- (* 2 *half-size*)) downto 1

do (let* ((j (random i))
(i-val (aref *perm-vertices* 1))
(j-val (aref *perm-vertices* j)))

(aset j-val 'perm-vertices* 1)
(aset i-val *perm-vertices* j))))

grg-check-legal checks the graph for multiple edges and loops, and it sets
*not-legal* to t if any occur

(defun grg-check-legal ()
(setq *not-legal* nil)
(loop for vertex.from 0 to (1- (* 2 *half-size*)) until *not-legal*

do (loop for num from 1 to (1- *deg*) until *not-legal*
do (loop for numi from 0 to (1- num) until *not-legal*

do (cond ((= (aref *vertex-array* vertex num)
(aref *vertex-array* vertex numi))

(setq *not-legal* t))
(t nil))))))

since each vertex is represented by deg points, grg-find-vertex returns the
vertex represented by a given point.

(defun grg-find-vertex (point)
(fix (// point *deg*)))
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